
eCosPro Reference Manual

eCosPro Reference Manual

Publication date 18 March 2024
Copyright © 1998-2011 Free Software Foundation, Inc
Copyright © 2003-2023 eCosCentric Limited

About this reference manual

This reference manual is for eCos and eCosPro. It forms part of the eCosPro Developer's kit and includes documentation of
the standard features of eCos as well documentation of eCosPro libraries and runtime features. Not all the eCosPro features
or libraries documented in this reference manual may be available in the runtime code due to licensing restrictions. Some
eCosPro features are subject to the eCosPro Evaluation License and require seperate licensing exclusively from eCosCentric
when included in a product.

Documentation licensing terms

Open Publication License The document containing or referencing this license was produced in full, or in part if the document contains multiple
licensing references, from work that is subject to the terms and conditions set forth in the Open Publication License,
v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission
is obtained from the copyright holder(s).

eCosPro Non-Commercial Public
License

The document containing or referencing these licenses was produced in full, or in part if the document contains multiple
licensing references, from work that is subject to the terms and conditions of the eCosPro Non-Commercial Public
License.

Distribution of the work or derivative of the work is permitted for Non-Commercial* use only.

*As defined by the eCosPro Non- Commercial Public License.

eCosPro License The document containing or referencing these licenses was produced in full, or in part if the document contains multiple
licensing references, from work that is subject to the terms and conditions of the eCosPro License.

Distribution of the work or derivative of the work is not permitted.

Apache 2.0 License The document containing or referencing this license was produced in full, or in part if the document contains multiple
licensing references, from work that is subject to the terms and conditions of the Apache 2.0 License.

Microchip “AS IS” License The document containing or referencing these licenses was produced in full, or in part if the document contains multiple
licensing references, from work that is subject to the terms and conditions of the Basic BSD-Style license that accom-
panies Microchip Software's cryptoauthlib.

See also Modified BSD “2 clause” and “3 clause” Licenses.

Trademarks

Altera® and Excalibur™ are trademarks of Altera Corporation.

AMD® is a registered trademark of Advanced Micro Devices, Inc.

ARM®, Cortex-M®, StrongARM®, Thumb®, ARM7™, ARM9™ are trademarks of Advanced RISC Machines, Ltd.

Apple®, Bonjour® and Safari® are registered trademarks of Apple Inc., registered in the U.S. and other countries.

Cirrus Logic® and Maverick™ are registered trademarks of Cirrus Logic, Inc.

Cogent™ is a trademark of Cogent Computer Systems, Inc.

Compaq® is a registered trademark of the Compaq Computer Corporation.

Debian® is registered trademark of Software in the Public Interest, Inc.

eCos®, eCosCentric® and eCosPro® are registered trademarks of eCosCentric Limited.

Fujitsu® is a registered trademark of Fujitsu Limited.

IBM®, and PowerPC™ are trademarks of International Business Machines Corporation.

IDT® is a registered trademark of Integrated Device Technology Inc.

http://www.opencontent.org/openpub/
https://www.ecoscentric.com/ecospro-nc-public-license.html
https://www.ecoscentric.com/ecospro-nc-public-license.html
https://www.ecoscentric.com/ecospro-license.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/MicrochipTech/cryptoauthlib
https://www.ecoscentric.com/licensing/ecospro-distribution-licenses-3.2.shtml#license_bsd3clause

Intel®, i386™, Pentium®, StrataFlash® and XScale™ are trademarks of Intel Corporation.

Intrinsyc® and Cerf™ are trademarks of Intrinsyc Software, Inc.

Linux® is a registered trademark of Linus Torvalds.

Matsushita™ and Panasonic® are trademarks of the Matsushita Electric Industrial Corporation.

Microsoft®, Windows®, Windows NT®, Windows XP® and Windows 7® are registered trademarks of Microsoft Corporation, Inc.

MIPS®, MIPS32™ MIPS64™, 4K™, 5K™ Atlas™ and Malta™ are trademarks of MIPS Technologies, Inc.

Motorola® and ColdFire® are trademarks of Motorola, Inc.

NEC®, V800™, V850™, V850/SA1™, V850/SB1™, VR4300™ and VRC4375™ are trademarks of NEC Corporation.

openSUSE™, is a trademark of Novell, Inc. in the US and other countries.

PMC-Sierra®, RM7000™ and Ocelot™ are trademarks of PMC-Sierra Incorporated.

Red Hat®, Fedora™, RedBoot™, GNUPro® and Insight™ are trademarks of Red Hat, Inc.

Samsung® and CalmRISC™ are trademarks or registered trademarks of Samsung, Inc.

Sharp® is a registered trademark of Sharp Electronics Corp.

SPARC® is a registered trademark of SPARC International, Inc., and is used under license by Sun Microsystems, Inc.

Sun Microsystems® and Solaris® are registered trademarks of Sun Microsystems, Inc.

SuperH™ and Renesas™ are trademarks owned by Renesas Technology Corp.

Texas Instruments®, OMAP™ and Innovator™ are trademarks of Texas Instruments Incorporated.

Toshiba® is a registered trademark of the Toshiba Corporation.

Ubuntu® and Canonical® are a registered trademarks of Canonical Ltd.

UNIX® is a registered trademark of The Open Group.

All other brand and product names, trademarks, and copyrights are the property of their respective owners.

eCos and RedBoot Warranty

eCos and RedBoot are open source software, covered by a modified version of the GNU General Public Licence, and you are welcome to change it and/or
distribute copies of it under certain conditions. See http://ecos.sourceware.org/license-overview.html for more information about the license.

eCos and RedBoot software have NO WARRANTY.

Because this software is licensed free of charge, there are no warranties for it, to the extent permitted by applicable law. Except when otherwise stated in
writing, the copyright holders and/or other parties provide the software “as is” without warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the quality and performance of the software is
with you. Should the software prove defective, you assume the cost of all necessary servicing, repair or correction.

In no event, unless required by applicable law or agreed to in writing, will any copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general, special, incidental or consequential damages arising out of the use or inability
to use the program (including but not limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties or a failure of the
program to operate with any other programs), even if such holder or other party has been advised of the possibility of such damages.

eCosPro Warranty

While eCosPro is open source software, it is covered by a commercial license the most recent version of which can be found at http://www.ecoscentric.com/li-
censing/ecospro-license.shtml.

This software has no warranties associated with it, other than Intellectual Property Rights as stated in section 5 of the eCosPro license agreement. Distribution
of eCosPro sources licensed under the eCosPro license in any form is strictly prohibited unless expressly permitted by the copyright holder.

Other copyrights

Documentation on the lwIP TCP/IP stack includes portions derived from documentation distributed with the following license:

* Copyright (c) 2001 Swedish Institute of Computer Science.
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:

http://www.gnu.org/copyleft/gpl.html
http://ecos.sourceware.org/license-overview.html
http://www.ecoscentric.com/licensing/ecospro-license.shtml
http://www.ecoscentric.com/licensing/ecospro-license.shtml

*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.

Table of Contents
I. The eCos Kernel ... 1

Kernel Overview .. 2
SMP Support ... 9
Thread creation .. 11
Thread information ... 14
Thread control ... 16
Thread termination ... 18
Thread priorities ... 19
Per-thread data ... 20
Thread destructors .. 21
Exception handling ... 22
Counters ... 24
Clocks .. 25
Alarms .. 27
Mutexes .. 29
Condition Variables .. 33
Semaphores ... 36
Mail boxes .. 38
Event Flags ... 40
Spinlocks .. 42
Scheduler Control ... 44
Interrupt Handling .. 46
Kernel Real-time Characterization ... 51
Kernel thread-aware debugging ... 59
Kernel and infrastructure instrumentation ... 66

II. The eCos Hardware Abstraction Layer (HAL) .. 67
1. Introduction ... 70
2. Architecture, Variant and Platform .. 71
3. General principles ... 72
4. HAL Interfaces ... 73

Base Definitions ... 73
Byte order ... 73
Label Translation ... 73
Base types ... 73
Atomic types ... 73

Architecture Characterization .. 73
Register Save Format .. 74
Thread Context Initialization .. 74
Thread Context Switching .. 74
Bit indexing .. 75
Idle thread activity .. 75
Reorder barrier ... 75
Breakpoint support ... 75
GDB support ... 75
Setjmp and longjmp support ... 76
Stack Sizes .. 76
Address Translation .. 76
Global Pointer ... 76

Interrupt Handling .. 77
Vector numbers .. 77
Interrupt state control .. 77
ISR and VSR management .. 78
Interrupt controller management ... 78

Clocks and Timers .. 79
Clock Control .. 79

v

eCosPro Reference Manual

Microsecond Delay ... 80
Clock Frequency Definition ... 80

HAL I/O ... 81
Register address ... 81
Register read ... 81
Register write .. 81

HAL Unique-ID ... 82
HAL_UNIQUE_ID_LEN ... 82
HAL_UNIQUE_ID ... 82

Cache Control .. 82
Cache Dimensions .. 83
Global Cache Control ... 83
Cache Line Control .. 85

Linker Scripts .. 85
Diagnostic Support ... 86
SMP Support ... 86

Target Hardware Limitations .. 86
HAL Support ... 87

5. Exception Handling ... 91
HAL Startup .. 91
Vectors and VSRs .. 92
Default Synchronous Exception Handling ... 93
Default Interrupt Handling ... 93

6. HAL GDB File I/O Routines .. 95
HAL GDB File I/O Routines ... 96

7. Porting Guide ... 99
Introduction ... 99
HAL Structure ... 99

HAL Classes ... 99
File Descriptions ... 100

Virtual Vectors (eCos/ROM Monitor Calling Interface) ... 102
Virtual Vectors ... 103
The COMMS channels .. 104
The calling Interface API ... 106
IO channels ... 108

HAL Coding Conventions .. 111
Implementation issues ... 111
Source code details ... 111
Nested Headers .. 112

Platform HAL Porting ... 112
HAL Platform Porting Process .. 113
HAL Platform CDL .. 116
Platform Memory Layout ... 121
Platform Serial Device Support ... 121

Variant HAL Porting ... 123
HAL Variant Porting Process ... 123
HAL Variant CDL .. 123
Cache Support .. 125

Architecture HAL Porting .. 125
HAL Architecture Porting Process ... 125
CDL Requirements ... 130

8. Future developments .. 133
III. The ISO Standard C and Math Libraries ... 134

9. C and math library overview ... 136
Included non-ISO functions .. 136
Math library compatibility modes .. 137

matherr() .. 137
Thread-safety and re-entrancy ... 138

vi

eCosPro Reference Manual

Some implementation details .. 138
Thread safety ... 140
C library startup ... 141

10. Overview of ISO Standards Compliance .. 142
Definitions ... 142
Scope .. 142
General Overview ... 143
Common C/C++ headers .. 143

<assert.h> .. 143
<complex.h> .. 143
<ctype.h> .. 143
<errno.h> .. 144
<fenv.h> .. 144
<float.h> .. 144
<inttypes.h> .. 144
<iso646.h> .. 144
<limits.h> .. 144
<locale.h> .. 144
<math.h> .. 144
<setjmp.h> .. 144
<signal.h> .. 144
<stdarg.h> .. 145
<stdbool.h> .. 145
<stddef.h> .. 145
<stdint.h> .. 145
<stdio.h> .. 145
<stdlib.h> .. 145
<string.h> .. 146
<tgmath.h> .. 146
<time.h> .. 146
<wchar.h> .. 146
<wctype.h> .. 146

C11 specific headers ... 146
<stdalign.h> .. 146
<stdatomic.h> .. 146
<threads.h> .. 146
<uchar.h> .. 146

IV. eCosPro Standard C++ library support package .. 147
11. Introduction .. 149

Overview of features ... 149
12. Usage .. 151

Requirements ... 151
Issues to consider ... 151

Using C++ exceptions ... 151
Application size .. 152
C++ exceptions in callbacks ... 152
Licensing ... 152
Standards Compliance ... 153
Open issues ... 153

13. Testing .. 155
14. Toolchain ... 156

V. eCos Support for Dynamic Memory Allocation ... 157
Memory Allocation ... 158
Memory Pool Functions ... 161
Memory Debug Data ... 164

VI. I/O Package (Device Drivers) .. 175
15. Introduction .. 178
16. User API ... 179

vii

eCosPro Reference Manual

17. Serial driver details .. 180
Raw Serial Driver ... 180

Runtime Configuration .. 180
API Details .. 181

TTY driver ... 183
Runtime configuration ... 183
API details .. 184

18. How to Write a Driver ... 186
How to Write a Serial Hardware Interface Driver ... 187

DevTab Entry .. 187
Serial Channel Structure .. 187
Serial Functions Structure .. 188
Callbacks ... 189

Serial testing with ser_filter .. 189
Rationale ... 189
The Protocol .. 190
The Serial Tests ... 190
Serial Filter Usage .. 191
A Note on Failures ... 192
Debugging ... 192

19. Device Driver Interface to the Kernel ... 193
Interrupt Model .. 193
Synchronization .. 193
SMP Support ... 193
Device Driver Models ... 194
Synchronization Levels .. 194
The API .. 195

cyg_drv_isr_lock .. 195
cyg_drv_isr_unlock ... 195
cyg_drv_spinlock_init .. 196
cyg_drv_spinlock_destroy .. 196
cyg_drv_spinlock_spin ... 196
cyg_drv_spinlock_clear .. 196
cyg_drv_spinlock_try .. 197
cyg_drv_spinlock_test .. 197
cyg_drv_spinlock_spin_intsave .. 197
cyg_drv_spinlock_clear_intsave ... 197
cyg_drv_dsr_lock .. 198
cyg_drv_dsr_unlock .. 198
cyg_drv_mutex_init ... 198
cyg_drv_mutex_destroy ... 198
cyg_drv_mutex_lock ... 198
cyg_drv_mutex_trylock .. 199
cyg_drv_mutex_unlock .. 199
cyg_drv_mutex_release .. 199
cyg_drv_cond_init ... 199
cyg_drv_cond_destroy ... 200
cyg_drv_cond_wait ... 200
cyg_drv_cond_signal ... 200
cyg_drv_cond_broadcast .. 200
cyg_drv_interrupt_create .. 201
cyg_drv_interrupt_delete .. 201
cyg_drv_interrupt_attach .. 201
cyg_drv_interrupt_detach ... 202
cyg_drv_interrupt_mask ... 202
cyg_drv_interrupt_mask_intunsafe ... 202
cyg_drv_interrupt_unmask .. 202
cyg_drv_interrupt_unmask_intunsafe .. 202

viii

eCosPro Reference Manual

cyg_drv_interrupt_acknowledge .. 203
cyg_drv_interrupt_configure ... 203
cyg_drv_interrupt_level .. 203
cyg_drv_interrupt_set_cpu .. 203
cyg_drv_interrupt_get_cpu ... 204
cyg_ISR_t ... 204
cyg_DSR_t .. 204

Instrumentation ... 205
VII. File System Support Infrastructure .. 206

20. Introduction .. 208
21. File System Table ... 209
22. Mount Table ... 211
23. File Table .. 212
24. Directories .. 214
25. Synchronization ... 215
26. Initialization and Mounting ... 216
27. Automounter ... 218
28. Sockets .. 219
29. Select .. 220
30. Devices .. 221
31. Writing a New Filesystem .. 222

VIII. FAT File System Support ... 225
32. Introduction .. 227
33. Configuring the FAT Filesystem .. 228

Including FAT Filesystem in a Configuration .. 228
Configuring the FAT Filesystem ... 229

34. Using the FAT Filesystem .. 231
35. Removable Media Support .. 232
36. Non-ASCII Character Set Support .. 233
37. Formatting Support .. 235
38. Testing .. 236

IX. Multimedia File System ... 237
39. Introduction .. 239
40. Disk Data Structure ... 240

Directory ... 240
Free List ... 241
Block Allocation Tables .. 241
Data Area .. 242

41. Runtime Filesystem Organization ... 243
FILEIO Interface .. 243
File and Directory Handling ... 243
Caches .. 243
Disk Interface .. 243
Scan and Format .. 243

42. Configuration .. 245
Configuration Options ... 245

General Options ... 245
Formatting Options ... 245
Footprint Options .. 245

Configuration Guidelines ... 247
Block Size ... 247
BAT Size .. 247
Directory Size .. 248
Cache Sizes ... 248

43. Usage .. 249
FILEIO Interface .. 249
MMFSLib ... 249

MMFSLib API ... 249

ix

eCosPro Reference Manual

Example .. 251
44. Testing .. 254

X. Disk IO Package .. 255
45. Introduction .. 257
46. Configuring the DISK I/O Package .. 258

Including DISK I/O in a Configuration .. 258
Configuring the DISK I/O Package .. 258

47. Usage .. 259
48. Hardware Driver Interface .. 261

DevTab Entry .. 261
Disk Controller Structure ... 261
Disk Channel Structure .. 262
Disk Functions Structure .. 262
Callbacks ... 264
Putting It All Together .. 265

XI. USB Mass Storage Support ... 267
Overview ... 268

XII. MMC, SD, SDHC and SDIO Media Card Disk Driver ... 269
Device Driver for MMC, SD, SDHC and SDIO media Cards ... 270

XIII. MMC/SD Card Device Drivers ... 275
49. Atmel SAM series Multimedia Card Interface (MCI) driver .. 277

Overview ... 278
XIV. The Yaffs filesystem ... 279

50. What is Yaffs? .. 281
51. Getting started with Yaffs ... 282

Licensing considerations .. 282
Installation ... 282

Installation via the eCos Configuration Tool .. 282
Installing from the command-line .. 282

Configuration and Building .. 282
Package dependencies ... 282
Configuration options .. 283

Using Yaffs ... 284
Mounting a filesystem ... 284
Data flushing ... 285
Checkpointing .. 285
Limitations .. 285

Memory requirements .. 285
Worked example ... 286

Testing .. 286
52. Using Yaffs with RedBoot .. 288

Memory considerations under RedBoot .. 288
XV. eCos NAND I/O .. 289

53. eCos NAND Flash Library ... 291
Description .. 291

Structure of the library .. 291
Device support ... 292

Danger, Will Robinson! Danger! ... 292
Differences between NAND and NOR flash .. 292
Preparing for deployment ... 293

54. Using the NAND library .. 294
Configuring the NAND library ... 294
The NAND Application API .. 295

Device initialisation and lookup .. 295
NAND device addressing ... 295
Manipulating the NAND array .. 296
Ancillary NAND functions ... 298

55. Writing NAND device drivers ... 299

x

eCosPro Reference Manual

Planning a port ... 299
Driver structure and layout ... 299
Chip partitions ... 299
Locking against concurrent access ... 299
Required CDL declarations .. 300

High-level (chip) functions ... 300
Device initialisation .. 300
Reading, writing and erasing data .. 301
Searching for factory-bad blocks ... 302
Declaring the function set .. 302

Low-level (board) functions .. 302
Talking to the chip ... 303
Setting up the chip partition table .. 303
Putting it all together… ... 304

ECC implementation ... 304
The ECC interface .. 304

56. Tests and utilities .. 307
Unit and functional tests .. 307
Ancillary NAND utilities ... 307

57. eCos configuration store ... 308
Overview ... 308

Design limitations ... 308
Using the config store ... 308

Locking ... 309
Configuration ... 309
Storage details .. 310
Padding ... 310
Scanning ... 310

XVI. NAND Device Drivers .. 311
58. Samsung K9 family NAND chips .. 313

Overview ... 313
Using this driver in a board port ... 313

Memory usage ... 314
Low-level functions required from the platform HAL ... 314

59. ST Microelectronics NANDxxxx3a chips .. 315
Overview ... 315

Using this driver in a board port ... 315
Memory usage note ... 315
Low-level functions required from the platform HAL ... 315

60. Micron MT29F family NAND chips ... 317
Overview ... 317
Using this driver in a board port ... 317

Memory usage ... 318
Low-level functions required from the platform HAL ... 318

Synthetic Target NAND Flash Device .. 319
XVII. Journalling Flash File System v2 (JFFS2) .. 326

Journalling Flash File System v2 overview ... 327
Using JFFS2 .. 328

XVIII. NOR Flash Support .. 334
61. The eCos NOR FLASH Library ... 337

Notes on using the NOR FLASH library .. 337
Danger, Will Robinson! Danger! ... 337

62. The Version 2 eCos FLASH API ... 338
FLASH user API .. 338

Initializing the FLASH library .. 338
Retrieving information about FLASH devices .. 338
Reading from FLASH ... 338
Erasing areas of FLASH .. 339

xi

eCosPro Reference Manual

Programming the FLASH .. 339
Locking and unlocking blocks .. 339
Locking FLASH mutexes ... 339
Configuring diagnostic output ... 339
Return values and errors .. 340

FLASH device API ... 340
The FLASH device Structure .. 340

63. The legacy Version 1 eCos FLASH API ... 342
FLASH user API .. 342

Initializing the FLASH library .. 342
Retrieving information about the FLASH .. 342
Reading from FLASH ... 342
Erasing areas of FLASH .. 343
Programming the FLASH .. 343
Locking and unlocking blocks .. 343
Return values and errors .. 343
Notes on using the FLASH library ... 344

FLASH device API ... 344
The flash_info structure ... 344
Initializing the device driver ... 344
Querying the FLASH .. 344
Erasing a block of FLASH ... 344
Programming a region of FLASH .. 344
Reading a region from FLASH ... 345
Locking and unlocking FLASH blocks ... 345
Mapping FLASH error codes to FLASH IO error codes .. 345
Determining if code is in FLASH .. 345
Implementation Notes .. 345

64. FLASH I/O devices ... 346
Overview and CDL Configuration ... 346
Using FLASH I/O devices ... 346

65. Common SPI Flash Memory Device Driver ... 349
eCos Common Support for SPI Flash Memory Devices ... 350
Common SPI Memory Device Hardware Driver .. 352

66. AMD AM29xxxxx Flash Device Driver .. 360
eCos Support for AMD AM29xxxxx Flash Devices and Compatibles .. 361
Instantiating an AM29xxxxx Device .. 362

67. Atmel AT45xxxxxx DataFlash Device Driver .. 369
Overview ... 370
Instantiating a DataFlash Device ... 371

68. Freescale MCFxxxx CFM Flash Device Driver .. 374
Freescale MCFxxxx CFM Flash Support .. 375

69. Intel Strata Flash Device Driver ... 377
Overview ... 378
Instantiating a Strata Device ... 379
Strata-Specific Functions .. 386

70. SST 39VFXXX Flash Device Driver .. 387
Overview ... 388
Instantiating an 39vfxxx Device .. 389

XIX. ecoflash Flash Programming Utility ... 396
ecoflash Flash Programming Utility ... 397

XX. Flash Safe ... 403
Flash Safe ... 404
Flash Safe Programmer Interface ... 406

XXI. PCI Library ... 408
71. The eCos PCI Library .. 410

PCI Library ... 410
PCI Overview .. 410

xii

eCosPro Reference Manual

Initializing the bus .. 410
Scanning for devices ... 410
Generic config information ... 411
Specific config information .. 411
Allocating memory ... 412
Interrupts ... 413
Activating a device ... 413
Links .. 413

PCI Library reference .. 413
PCI Library API ... 414
Definitions ... 414
Types and data structures ... 414
Functions ... 414
Resource allocation ... 416
PCI Library Hardware API ... 417
HAL PCI support ... 417

XXII. SPI Support .. 419
72. SPI Support .. 421

Overview ... 422
SPI Interface .. 424
Porting to New Hardware .. 428

73. Freescale MCFxxxx ColdFire QSPI Bus Driver .. 430
Freescale MCFxxxx Coldfire QSPI Bus Driver .. 431

74. Microchip (Atmel) USART-as-SPI Bus Driver ... 436
Microchip (Atmel) SAM E70/S70/V70/V71 USART-as-SPI Bus Driver ... 437

XXIII. I²C Support ... 439
75. I²C Support .. 441

Overview ... 442
I²C Interface .. 444
Porting to New Hardware .. 447

76. Freescale MCFxxxx ColdFire I2C Bus Driver ... 451
Freescale MCFxxxx Coldfire I2C Bus Driver .. 452

XXIV. ADC Support ... 454
77. ADC Support .. 456

eCos Support for Analog/Digital Converters .. 457
ADC Device Drivers ... 461

78. STM32 ADC Driver .. 465
STM32 ADC Driver ... 466

79. STR7XX ADC Driver .. 468
STR7XX ADC Driver ... 469

80. TSC ADC Driver .. 470
TSC ADC Driver .. 471

81. Atmel AFEC (ADC) Driver .. 472
Atmel AFEC ADC Driver .. 473

82. NXP i.MX RT ADC Driver .. 474
NXP i.MX RT ADC Driver ... 475

XXV. Pulse Width Modulation (PWM) Support .. 477
83. PWM Support ... 479

Overview ... 480
XXVI. Framebuffer Support ... 481

84. Framebuffer Support .. 483
Overview ... 484
Framebuffer Parameters ... 487
Framebuffer Control Operations .. 491
Framebuffer Colours ... 496
Framebuffer Drawing Primitives ... 500
Framebuffer Pixel Manipulation .. 505
Writing a Framebuffer Device Driver ... 508

xiii

eCosPro Reference Manual

85. CSB337/900 Framebuffer Device Driver ... 513
CSB337/900 Framebuffer Device Driver .. 514

86. i.MXxx Framebuffer Device Driver .. 515
i.MXxx Framebuffer Device Driver ... 516

87. iPAQ Framebuffer Device Driver ... 517
iPAQ Framebuffer Device Driver .. 518

88. PC VGA Framebuffer Device Driver .. 519
PC VGA Framebuffer Device Driver ... 520

89. Synthetic Target Framebuffer Device .. 521
Synthetic Target Framebuffer Device ... 522

XXVII. CAN Support .. 524
90. CAN Support .. 526

Overview ... 527
CAN Interface .. 529
Configuration ... 535
Device Drivers ... 536

91. NXP FlexCAN CAN Driver .. 545
NXP FlexCAN CAN Driver ... 546

92. FlexCAN CAN Driver ... 547
FlexCAN CAN Driver ... 548

93. MSCAN CAN Driver .. 549
MSCAN CAN Driver .. 550

94. LPC2XXXX CAN Driver ... 551
LPC2XXX CAN Driver ... 552

95. Atmel SAM CAN Driver .. 553
Atmel SAM CAN Driver ... 554

96. Atmel MCAN CAN Driver ... 555
Atmel MCAN CAN Driver .. 556

97. SJA1000 CAN Driver .. 558
SJA1000 CAN Driver ... 559

98. BXCAN CAN Driver ... 560
BXCAN CAN Driver .. 561

99. STR7XX CAN Driver .. 562
STR7XX CAN Driver ... 563

XXVIII. Coherent Connection Bus .. 564
100. Coherent Connection Bus overview .. 566

Introduction ... 566
101. Configuration .. 567

Configuration Overview ... 567
Quick Start .. 567
Configuring the CCB memory footprint .. 567
Configuring the CCB control thread .. 567
Configuring the CCB master server ... 568

102. API Overview ... 569
Application support API .. 570
I/O Device Driver Interface .. 572

103. Internals ... 573
104. Debug and Test ... 574

Debugging ... 574
Asserts .. 574
Diagnostic Output ... 574

Testing .. 574
ccb_ut ... 574
ccb_master ... 575

XXIX. STM32 Coherent Connection Bus Driver ... 576
105. STM32 Coherent Connection Bus Driver overview .. 578

Introduction ... 578
106. Configuration .. 579

xiv

eCosPro Reference Manual

Configuration Overview ... 579
Configuring the STM32 CCB driver .. 579

107. Debug and Test ... 581
Debugging ... 581

Asserts .. 581
Diagnostic Output ... 581

XXX. MODBUS .. 582
108. MODBUS overview ... 584

Introduction ... 584
109. Configuration .. 585

Configuration Overview ... 585
Quick Start .. 585
Configuring the MODBUS server .. 585
Configuring the ModbusTCP Server .. 586

110. API Overview ... 587
Application API ... 587
Backend API ... 589
ModbusTCP specific API ... 594
MODBUS Exceptions ... 596
Backend Interface ... 597
Example backend .. 613

111. Internals ... 614
112. Debug and Test ... 615

Debugging ... 615
Asserts .. 615
Diagnostic Output ... 615

Testing .. 615
modbus_ut ... 615
modbus_server ... 616

XXXI. Direct Memory Access Controller (DMAC) Device Drivers ... 617
113. Atmel DMA Controller (DMAC) ... 619

Atmel DMAC Driver .. 620
114. Atmel DMA Controller (XDMAC) ... 622

Atmel XDMAC Driver .. 623
XXXII. RPMSG Support ... 625

Overview ... 626
RPMSG Application API ... 627

XXXIII. Serial Device Drivers .. 630
115. Freescale MCFxxxx Serial Driver ... 632

MCFxxxx Serial Driver ... 633
116. NXP PNX8310 Serial Driver ... 636

PNX8310 Serial Driver .. 637
117. Nios II Avalon UART Serial Driver ... 639

Nios II Avalon UART Serial Driver .. 640
XXXIV. USB Support ... 642

Overview ... 643
Configuration ... 648
Transfer Objects ... 651
Host Device Objects ... 655
Class Drivers ... 660
Host Controller Drivers ... 663
Target Objects .. 665
Peripheral Controller Drivers .. 672

XXXV. USB Serial Support ... 675
118. USB Serial Support .. 677

Overview ... 678
119. USB Target CDC ACM Protocol Driver .. 685

Overview ... 686

xv

eCosPro Reference Manual

120. USB Host CDC ACM Protocol Driver .. 688
Overview ... 689

121. USB Host FTDI Protocol Driver .. 691
Overview ... 692

XXXVI. VirtIO Support .. 694
Overview ... 695
Virtio API ... 698

XXXVII. Wallclock Device Drivers ... 699
122. Wallclock Support ... 701

Wallclock support ... 702
C API ... 704

123. Dallas DS1302 Wallclock Device Driver ... 706
Dallas DS1302 Wallclock Device Driver .. 707

124. Dallas DS1306 Wallclock Device Driver ... 709
Dallas DS1306 Wallclock Device Driver .. 710

125. Dallas DS1307 Wallclock Device Driver ... 712
Dallas DS1307 Wallclock Device Driver .. 713

126. Dallas DS1390 Wallclock Device Driver ... 714
Dallas DS1390 Wallclock Device Driver .. 715

127. Freescale MCFxxxx On-Chip Wallclock Device Driver .. 717
Freescale MCFxxxx On-Chip Wallclock Device Driver ... 718

128. Intersil ISL1208 Wallclock Device Driver .. 719
Intersil ISL1208 Wallclock Device Driver .. 720

129. Intersil ISL12028 Wallclock Device Driver .. 721
Intersil ISL12028 Wallclock Device Driver ... 722

130. ST M41TXX Wallclock Device Driver .. 723
ST M41TXX Wallclock Device Driver .. 724

131. ST M48T Wallclock Device Driver .. 725
ST M48T Wallclock Device Driver ... 726

XXXVIII. Watchdog Drivers .. 728
132. Freescale Kinetis Watchdog Driver ... 730

Kinetis Watchdog Driver ... 731
133. Freescale MCFxxxx SCM Watchdog Driver ... 732

MCFxxxx SCM Watchdog Driver ... 733
134. Freescale MCFxxxx Watchdog Driver ... 734

MCFxxxx Watchdog Driver ... 735
135. Freescale MCF5272 Watchdog Driver ... 736

MCF5272 Watchdog Driver ... 737
136. Freescale MCF5282 Watchdog Driver ... 738

MCF5282 Watchdog Driver ... 739
137. Freescale MCF532x Watchdog Driver ... 740

MCF532x Watchdog Driver ... 741
138. Nios II Avalon Timer Watchdog Driver ... 742

Nios II Avalon Timer Watchdog Driver ... 743
139. NXP PNX8310 Watchdog Driver ... 744

PNX8310 Watchdog Driver .. 745
140. NXP PNX8330 Watchdog Driver ... 746

PNX8330 Watchdog Driver .. 747
141. Synthetic Target Watchdog Device ... 748

Synthetic Target Watchdog Device .. 749
XXXIX. eCos POSIX compatibility layer ... 752

142. POSIX Standard Support .. 755
Process Primitives [POSIX Section 3] .. 755

Functions Implemented .. 755
Functions Omitted .. 755
Notes .. 756

Process Environment [POSIX Section 4] .. 756
Functions Implemented .. 756

xvi

eCosPro Reference Manual

Functions Omitted .. 756
Notes .. 756

Files and Directories [POSIX Section 5] ... 757
Functions Implemented .. 757
Functions Omitted .. 757
Notes .. 757

Input and Output [POSIX Section 6] .. 758
Functions Implemented .. 758
Functions Omitted .. 758
Notes .. 758

Device and Class Specific Functions [POSIX Section 7] ... 758
Functions Implemented .. 758
Functions Omitted .. 758
Notes .. 758

C Language Services [POSIX Section 8] .. 759
Functions Implemented .. 759
Functions Omitted .. 759
Notes .. 759

System Databases [POSIX Section 9] .. 759
Functions Implemented .. 759
Functions Omitted .. 759
Notes .. 760

Data Interchange Format [POSIX Section 10] .. 760
Synchronization [POSIX Section 11] ... 760

Functions Implemented .. 760
Functions Omitted .. 760
Notes .. 760

Memory Management [POSIX Section 12] ... 761
Functions Implemented .. 761
Functions Omitted .. 761
Notes .. 761

Execution Scheduling [POSIX Section 13] .. 761
Functions Implemented .. 761
Functions Omitted .. 762
Notes .. 762

Clocks and Timers [POSIX Section 14] .. 762
Functions Implemented .. 762
Functions Omitted .. 762
Notes .. 762

Message Passing [POSIX Section 15] .. 763
Functions Implemented .. 763
Functions Omitted .. 763
Notes .. 763

Thread Management [POSIX Section 16] ... 763
Functions Implemented .. 763
Functions Omitted .. 764
Notes .. 764

Thread-Specific Data [POSIX Section 17] .. 764
Functions Implemented .. 764
Functions Omitted .. 764
Notes .. 764

Thread Cancellation [POSIX Section 18] .. 764
Functions Implemented .. 764
Functions Omitted .. 765
Notes .. 765

Non-POSIX Functions ... 765
General I/O Functions ... 765
Socket Functions .. 765

xvii

eCosPro Reference Manual

Notes .. 765
References and Bibliography .. 766

XL. µITRON ... 767
143. µITRON API .. 769

Introduction to µITRON .. 769
µITRON and eCos .. 769
Task Management Functions .. 770

Error checking ... 770
Task-Dependent Synchronization Functions ... 771

Error checking ... 771
Synchronization and Communication Functions .. 772

Error checking ... 773
Extended Synchronization and Communication Functions .. 774
Interrupt management functions .. 774

Error checking ... 775
Memory pool Management Functions ... 775

Error checking ... 776
Time Management Functions .. 777

Error checking ... 777
System Management Functions .. 778

Error checking ... 778
Network Support Functions ... 778
µITRON Configuration FAQ .. 778

XLI. TCP/IP Stack Support for eCos ... 782
144. Ethernet Driver Design ... 784
145. Sample Code .. 785
146. Configuring IP Addresses .. 786
147. Tests and Demonstrations .. 788

Loopback tests ... 788
Building the Network Tests .. 788
Standalone Tests ... 788
Performance Test .. 789
Interactive Tests ... 789
Maintenance Tools .. 790

148. Support Features .. 792
TFTP .. 792
DHCP ... 793

149. TCP/IP Library Reference ... 795
getdomainname .. 795
gethostname ... 795
byteorder ... 796
ethers .. 798
getaddrinfo .. 799
gethostbyname .. 803
getifaddrs .. 805
getnameinfo ... 806
getnetent .. 809
getprotoent ... 810
getrrsetbyname ... 811
getservent .. 813
if_nametoindex ... 814
inet ... 815
inet6_option_space .. 818
inet6_rthdr_space .. 820
inet_net ... 823
ipx ... 824
iso_addr .. 825
link_addr ... 826

xviii

eCosPro Reference Manual

net_addrcmp .. 827
ns ... 827
resolver ... 828
accept ... 830
bind .. 831
connect ... 833
getpeername ... 834
getsockname .. 835
getsockopt ... 836
ioctl .. 839
listen ... 840
poll ... 840
select .. 842
send .. 844
shutdown ... 846
socket ... 846

XLII. FreeBSD TCP/IP Stack port for eCos .. 849
150. Networking Stack Features .. 851
151. Freebsd TCP/IP stack port ... 852

Targets .. 852
Building the Network Stack ... 852

152. APIs .. 853
Standard networking .. 853

XLIII. eCos PPP User Guide .. 854
153. Features ... 856
154. Using PPP .. 857
155. PPP Interface .. 859

cyg_ppp_options_init() .. 860
cyg_ppp_up() ... 863
cyg_ppp_down() ... 864
cyg_ppp_wait_up() .. 865
cyg_ppp_wait_down() .. 866
cyg_ppp_chat() ... 867

156. Installing and Configuring PPP .. 868
Including PPP in a Configuration .. 868
Configuring PPP ... 868

157. CHAT Scripts ... 871
Chat Script .. 871
ABORT Strings .. 872
TIMEOUT ... 872
Sending EOT ... 872
Escape Sequences ... 872

158. PPP Enabled Device Drivers ... 873
159. Testing ... 874

Test Programs .. 874
Test Script ... 875

XLIV. lwIP - the lightweight IP stack for eCosPro ... 876
160. lwIP overview ... 879

Introduction ... 879
lwIP sources and ports .. 879
External documentation ... 879
Licensing ... 880

161. Basic concepts .. 881
Structure .. 881
Application Programming Interfaces (APIs) .. 881
Protocol implementations ... 881
Packet data buffers ... 881
Configurability ... 882

xix

eCosPro Reference Manual

Limitations .. 883
Quick Start .. 884

162. Port ... 886
Port status ... 886
Implementation ... 886

System Configuration .. 886
System Source ... 887
Threads ... 887

Extensions ... 889
eCos API reference ... 889

163. Configuration .. 897
Configuration Overview ... 897
Configuring the lwIP stack ... 898
Performance and Footprint Tuning .. 902

Performance ... 902
Optimizations ... 903
Memory Footprint ... 904

164. Sequential API .. 908
Overview ... 908
Comparison with BSD sockets .. 908

BSD API Restrictions .. 908
Netbufs ... 908
TCP/IP thread .. 908
Usage ... 909

API declarations ... 909
Types .. 909

API reference ... 914
165. Raw API .. 955

Overview ... 955
Usage ... 955
Callbacks ... 956
TCP connection setup .. 957
Sending TCP data ... 962
Receiving TCP data .. 964
Application polling ... 966
Closing connections, aborting connections and errors .. 967
Lower layer TCP interface ... 970
UDP interface .. 970
System initialization .. 977

Initialization detail .. 978
166. Debug and Test ... 980

Debugging ... 980
Asserts .. 980
Memory Allocations .. 980
Statistics .. 980
GDB/RedBoot .. 980
Host Tools ... 981

Testing .. 981
lwipsnmp ... 981
lwipsntp .. 981
lwiperf .. 981
unitwrap .. 981
socket ... 982
tcpecho ... 982
udpecho .. 982
frag .. 982
nc_test_slave .. 982
httpd ... 982

xx

eCosPro Reference Manual

httpd2 ... 983
lookup .. 983
sys_timeout .. 983
lwiphttpd ... 983

XLV. Ethernet Device Support ... 984
167. Writing Ethernet Device Drivers .. 986

Generic Ethernet API .. 986
Review of the functions ... 988

Init function ... 988
Start function ... 988
Stop function ... 989
Control function ... 989
Can-send function ... 993
Send function ... 993
Deliver function ... 993
Receive function ... 994
Poll function .. 994
Interrupt-vector function .. 994

Upper Layer Functions .. 995
Callback Init function .. 995
Callback Tx-Done function .. 995
Callback Receive function .. 995

Calling graph for Transmission and Reception ... 995
Transmission .. 995
Receive ... 996

168. lwIP Direct Ethernet Device Driver .. 997
Introduction ... 997
API reference ... 997
Multiple direct drivers ... 1003
lwIP MANUAL initialisation ... 1004

169. CDC-EEM Target USB driver .. 1006
Introduction .. 1006
API ... 1006
Configuration ... 1006

Configuration Overview ... 1006
Debug and Test .. 1008

Debugging ... 1008
170. RNDIS Target USB driver ... 1009

Introduction .. 1009
API ... 1009
Configuration ... 1009

Configuration Overview ... 1010
Debug and Test .. 1011

Debugging ... 1011
171. Ethernet PHY Device Support .. 1012

Ethernet PHY Device API .. 1012
172. Synopsys DesignWare Ethernet GMAC Driver .. 1015

Synopsys DesignWare Ethernet GMAC Driver .. 1016
173. Freescale ColdFire Ethernet Driver ... 1019

Freescale ColdFire Ethernet Driver .. 1020
174. Nios II Triple Speed Ethernet Driver ... 1022

Nios II Triple Speed Ethernet Driver .. 1023
175. SMSC LAN9118 Ethernet Driver ... 1024

SMSC LAN9118 Ethernet Driver .. 1025
176. Synthetic Target Ethernet Driver ... 1027

Synthetic Target Ethernet Driver ... 1028
XLVI. DNS for eCos and RedBoot .. 1033

177. DNS .. 1035

xxi

eCosPro Reference Manual

DNS API ... 1035
DNS Client Testing ... 1036

XLVII. eCosPro-SecureSockets ... 1037
178. OpenSSL eCos Support ... 1039

Introduction .. 1039
Licensing, Copyrights and Patents ... 1039

Configuration ... 1039
Full Configuration ... 1039
Default Configuration .. 1040
Kernel Configuration ... 1040
Serial Line Support ... 1040
File System Dependencies .. 1041
Configuring OpenSSL .. 1041

openssl Command Tool ... 1041
Thread Safety ... 1043
eCos Customization ... 1044

Random Number Support ... 1044
BIO_diag ... 1044

Tests ... 1044
Limitations ... 1045

179. OpenSSL Manual ... 1046
openssl Command Line Tool .. 1046
Cryptographic functions ... 1221
SSL Functions .. 1565

XLVIII. Mbed TLS ... 1685
180. Mbed TLS overview ... 1687

Introduction .. 1687
181. Configuration .. 1691

Configuration Overview ... 1691
Quick Start .. 1691

182. eCos port .. 1692
Overview ... 1692
Entropy ... 1692

183. Test Programs ... 1694
Test Programs .. 1694

XLIX. eCosPro-SecureShell .. 1696
eCos Dropbear Port ... 1697
Dropbear Ssh Daemon ... 1699
Dropbear Ssh Client .. 1705
Dropbear Scp Client .. 1713

L. FTP Client for eCos TCP/IP Stack ... 1716
184. FTP Client API and Configuration .. 1718

FTP Client API .. 1718
Support API ... 1718
ftp_delete ... 1718
ftpclient_printf .. 1718
Basic FTP Client API .. 1718
ftp_get ... 1718
ftp_put .. 1719
ftp_get_var ... 1719
ftp_put_var ... 1719
Extended FTP Client API ... 1719
ftp_get_extended ... 1720
ftp_put_extended ... 1720
ftp_get_extended_var ... 1720
ftp_put_extended_var ... 1720

FTP Client Configuration ... 1720
LI. FTP Server Support .. 1722

xxii

eCosPro Reference Manual

Overview ... 1723
FTP Server API .. 1724
Test Programs .. 1728

LII. Embedded HTTP Server .. 1729
185. Embedded HTTP Server .. 1731

Introduction .. 1731
Server Organization ... 1731
Server Configuration ... 1732
Support Functions and Macros .. 1732

HTTP Support .. 1733
General HTML Support ... 1733
Table Support ... 1733
Forms Support .. 1734
Predefined Handlers .. 1734

System Monitor .. 1735
LIII. SNMP .. 1736

186. SNMP for eCos ... 1738
Version .. 1738
SNMP packages in the eCos source repository ... 1738
MIBs supported .. 1738
Changes to eCos sources .. 1739
Starting the SNMP Agent ... 1739
Configuring eCos .. 1740

Version usage (v1, v2 or v3) .. 1740
Traps .. 1740
snmpd.conf file .. 1741

Test cases .. 1741
SNMP clients and package use .. 1742
Unimplemented features ... 1742
MIB Compiler .. 1743
snmpd.conf .. 1744

LIV. mDNS Responder and DNS-SD ... 1751
187. mDNS overview .. 1753

Introduction .. 1753
188. API .. 1754

API ... 1754
Example Responder ... 1773
Example DNS-SD Queries .. 1774

189. Support API .. 1775
Support API ... 1775

190. Configuration .. 1784
Configuration Overview ... 1784

Quick Start .. 1784
Configuring the mDNS Responder ... 1784
Configuring the mDNS DNS-SD support .. 1786

Tuning .. 1786
Footprint .. 1786

191. Debug and Test ... 1788
Debugging ... 1788

Asserts .. 1788
Diagnostic Output ... 1788

Testing .. 1788
mdns_example .. 1788
dnssd_example .. 1789
mdns_testp ... 1789
mdns_farm ... 1789
Bonjour Conformance Test ... 1789
DNS-SD Example ... 1792

xxiii

eCosPro Reference Manual

LV. NTP Client Support .. 1795
Overview ... 1796
NTP Client API .. 1797
Test Programs .. 1799

LVI. Simple Network Time Protocol Client ... 1800
192. The SNTP Client ... 1802

Starting the SNTP client .. 1802
What it does .. 1802
Configuring the unicast list of NTP servers ... 1802
Warning: timestamp wrap around .. 1803
The SNTP test program ... 1803

LVII. WLAN ... 1804
193. WLAN overview ... 1806

Introduction .. 1806
194. Configuration .. 1807

Configuration Overview ... 1807
Configuration Options .. 1807

195. WLAN API .. 1809
API ... 1812

196. Testing ... 1814
wlan_scan .. 1814
wlan_switch ... 1814

LVIII. Cypress WWD WLAN ... 1815
197. Cypress WWD overview ... 1817

Introduction .. 1817
WICED-SDK Installation ... 1817

198. Configuration .. 1821
Configuration Overview ... 1821
Chipset Firmware .. 1821
Configuration Options .. 1821

199. Platform/Variant HAL .. 1823
LIX. Common Clock Services ... 1825

200. Overview .. 1827
Introduction .. 1827
Functionality .. 1827
Concepts and structure ... 1827

201. Dependencies .. 1829
HAL ... 1829
Kernel ... 1829
Wallclock (RTC) .. 1829
C library and POSIX layers .. 1830

202. Configuration .. 1831
203. API reference .. 1833

cyg_clock_get_systime() ... 1834
cyg_clock_get_systime_res ... 1835
cyg_clock_set_systime() ... 1836
cyg_clock_sync_wallclock() .. 1837
cyg_clock_adjust_systime() ... 1838
Time change notification .. 1840
cyg_clock_sysclock_handle() .. 1843
Time conversions .. 1844

LX. Object Loader .. 1845
Object Loader ... 1846
Extending the Object Loader ... 1851

LXI. CPU load measurements ... 1854
204. CPU Load Measurements .. 1856

CPU Load API ... 1856
cyg_cpuload_calibrate .. 1856

xxiv

eCosPro Reference Manual

cyg_cpuload_create ... 1856
cyg_cpuload_delete ... 1856
cyg_cpuload_get ... 1856
Implementation details ... 1857
SMP Support .. 1857

LXII. gprof Profiling Support ... 1859
Profiling .. 1860

LXIII. gcov Test Coverage Support ... 1866
Test Coverage .. 1867

LXIV. CRC Algorithms ... 1872
205. CRC Functions .. 1874

CRC API ... 1874
cyg_posix_crc32 ... 1874
cyg_crc32 .. 1874
cyg_ether_crc32 .. 1874
cyg_crc16 .. 1874

LXV. CryptoAuthLib ... 1875
206. CryptoAuthLib overview ... 1877

Introduction .. 1877
207. Configuration .. 1878

Configuration Overview ... 1878
Quick Start .. 1878

208. eCos port .. 1879
Overview ... 1879

209. Test Programs ... 1883
Test Programs .. 1883

LXVI. LibTomCrypt Cryptography Library ... 1885
LibTomCrypt Cryptography Library ... 1886

LXVII. LibTomMath Multi-Precision Math Package ... 1887
LibTomMath Multi-Precision Math Package .. 1888

LXVIII. BootUp ROM loader ... 1889
210. BootUp overview ... 1891

Introduction .. 1891
Configuration ... 1892

Platform Support ... 1892
Building BootUp ... 1894

Applications using VALID_ALT .. 1894
Supported Platform HALs and targets .. 1895

LXIX. Bundle image support .. 1897
211. Bundle overview .. 1899

Introduction .. 1899
Configuration ... 1899

212. Bundle format ... 1901
Introduction .. 1901
Internal Structure .. 1901

213. Bundle API ... 1904
API ... 1904

214. Host tool .. 1916
Introduction .. 1916

215. Bundle tests .. 1918
bundle1 ... 1918

LXX. RTT ... 1919
216. RTT overview ... 1921

Introduction .. 1921
217. Configuration .. 1922

Configuration Overview ... 1922
Quick Start .. 1922
Options .. 1922

xxv

eCosPro Reference Manual

218. eCos port .. 1924
Overview ... 1924

219. Test Programs ... 1925
Test Programs .. 1925

LXXI. eCos Support for Segger SystemView tracing .. 1926
220. SystemView overview .. 1928

Introduction .. 1928
221. SystemView Recording ... 1929

H/W debugger .. 1929
J-Link/J-Trace H/W debugger ... 1929
svproxy .. 1929

I/O Communication ... 1930
Performance and Analysis .. 1930

Overflows .. 1931
222. Events .. 1933

SystemView Events ... 1933
Kernel Instrumentation ... 1933
Infra Trace ... 1934

223. Configuration .. 1936
CYGBLD_SYSTEMVIEW_ENABLED .. 1936
CYGOPT_SYSTEMVIEW_RECORDER_HAL .. 1937
CYGOPT_SYSTEMVIEW_RECORDER .. 1938

CYGBLD_SYSTEMVIEW_RECORDER_UART .. 1939
LXXII. RedBoot User's Guide ... 1940

224. Getting Started with RedBoot ... 1942
More information about RedBoot on the web .. 1942
Installing RedBoot .. 1942
User Interface ... 1943
RedBoot Editing Commands ... 1943
RedBoot Command History .. 1944
RedBoot Startup Mode .. 1944
RedBoot Resource Usage ... 1945

Flash Resources .. 1945
RAM Resources .. 1946

Configuring the RedBoot Environment ... 1946
Target Network Configuration ... 1946
Host Network Configuration ... 1947
Verification .. 1949

225. RedBoot Commands and Examples ... 1950
Introduction .. 1950
Common Commands ... 1951
Flash Image System (FIS) .. 1975
Filesystem Interface ... 1988
Persistent State Flash-based Configuration and Control .. 2002
Persistent State in a NAND-based environment .. 2005

Manipulating persistent state stored on NAND ... 2005
Executing Programs from RedBoot .. 2005
NAND configuration commands .. 2008
NAND manipulation commands .. 2015

226. Rebuilding RedBoot ... 2024
Introduction .. 2024
Variables ... 2024
Building RedBoot using ecosconfig .. 2025
Rebuilding RedBoot from the eCos Configuration Tool ... 2026

227. Updating RedBoot .. 2028
Introduction .. 2028
Load and start a RedBoot RAM instance .. 2028
Update the primary RedBoot flash image .. 2029

xxvi

eCosPro Reference Manual

Reboot; run the new RedBoot image .. 2030
228. Initial Installation ... 2031

Hardware Installation ... 2031
What to Expect ... 2031

LXXIII. Robust Boot Loader .. 2032
Robust Boot Loader .. 2033
RedBoot Commands .. 2036
Application Library ... 2038
Application Library Extensions ... 2041

LXXIV. RedBoot Extra Initialization ... 2044
RedBoot Extra Initialization .. 2045

LXXV. Unity ... 2046
229. Unity overview .. 2048

Introduction .. 2048
230. Configuration .. 2049

Configuration Overview ... 2049
Quick Start .. 2049

231. eCos port .. 2050
Overview ... 2050

232. Test Programs ... 2052
Test Programs .. 2052

LXXVI. Synthetic Target Architecture .. 2053
233. eCos Synthetic Target ... 2055

Overview ... 2056
Installation ... 2058
Running a Synthetic Target Application .. 2060
The I/O Auxiliary's User Interface ... 2064
The Console Device .. 2068
System Calls .. 2070
Writing New Devices - target ... 2071
Writing New Devices - host ... 2075
Porting .. 2083

LXXVII. ARM7/ARM9/XScale/Cortex-A Architecture ... 2085
234. ARM Architectural Support ... 2092

ARM Architectural HAL .. 2093
Configuration ... 2094
The HAL Port .. 2097

235. Atmel AT91 Processor Variant Support ... 2101
Overview of Atmel AT91 Processor Variant .. 2102
Hardware definitions ... 2103
Interrupt Controller .. 2104
Timers ... 2105
Serial UARTs ... 2106

236. Atmel AT91SAM7 Processor Variant Support .. 2107
eCos Support for the Atmel AT91SAM7 Processor Variant .. 2108
Hardware definitions ... 2109
Interrupt Vector Definitions .. 2110

237. Atmel AT91SAM7A2-EK Board Support ... 2113
eCos Support for the Atmel AT91SAM7A2-EK ... 2114
Setup .. 2115
Configuration ... 2120
JTAG debugging support .. 2122
The HAL Port .. 2123

238. Atmel AT91SAM7A3-EK Board Support ... 2126
eCos Support for the Atmel AT91SAM7A3-EK ... 2127
Setup .. 2128
Configuration ... 2131
JTAG debugging support .. 2133

xxvii

eCosPro Reference Manual

The HAL Port .. 2135
239. Atmel AT91SAM7S-EK Board Support ... 2138

eCos Support for the Atmel AT91SAM7S-EK ... 2139
Setup .. 2140
Configuration ... 2145
JTAG debugging support .. 2147
The HAL Port .. 2149

240. Atmel AT91SAM7X-EK Board Support .. 2152
eCos Support for the Atmel AT91SAM7X-EK ... 2153
Setup .. 2154
Configuration ... 2160
JTAG debugging support .. 2163
The HAL Port .. 2165

241. NXP LPC2xxx variant HAL .. 2168
Overview ... 2169
On-chip subsystems and peripherals ... 2170
The HAL Port .. 2172

242. Ashling EVBA7 Eval Board Support ... 2174
Overview ... 2175
Setup .. 2176
Configuration ... 2178
The HAL Port .. 2179

243. Embedded Artists LPC2468 OEM Board Support .. 2181
Overview ... 2182
Setup .. 2183
Configuration ... 2186
The HAL Port .. 2191

244. Embedded Artists QuickStart Board Support ... 2192
Overview ... 2193
Setup .. 2195
Configuration ... 2197
The HAL Port .. 2199

245. IAR KickStart Card Support .. 2203
Overview ... 2204
Setup .. 2206
Configuration ... 2208
The HAL Port .. 2210

246. Keil MCB2387 Board Support ... 2214
Overview ... 2215
Setup .. 2216
Configuration ... 2217
The HAL Port .. 2221

247. Phytec phyCORE LPC2294 Board Support .. 2222
Overview ... 2223
Setup .. 2224
Configuration ... 2227
The HAL Port .. 2229

248. ST STR7XX variant HAL ... 2231
Overview ... 2232
On-chip Subsystems and Peripherals .. 2233
The HAL Port .. 2235
Power Management ... 2236

249. ST STR710-EVAL Board HAL .. 2241
Overview ... 2242
Setup .. 2243
Configuration ... 2249
JTAG debugging support .. 2252
The HAL Port .. 2253

xxviii

eCosPro Reference Manual

250. Atmel AT91RM9200 Processor Support .. 2254
eCos Support for the Atmel AT91RM9200 Processor .. 2255
Hardware definitions ... 2256
Interrupt controller .. 2257
Timer counters ... 2260
Serial UARTs ... 2261
Multimedia Card Interface (MCI) driver ... 2262
Two-Wire Interface (TWI) driver ... 2263
Power saving support ... 2264

251. Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support ... 2266
eCos Support for the Atmel AT91RM9200 Development Kit/Evaluation Kit 2267
Setup .. 2269
Configuration ... 2275
JTAG debugging support .. 2278
The HAL Port .. 2280

252. Cogent CSB337 Board Support .. 2284
Overview ... 2285
Setup .. 2286
Configuration ... 2289
The HAL Port .. 2291

253. SSV DNP/9200 with DNP/EVA9 Board Support ... 2292
Overview ... 2293
Setup .. 2294
Configuration ... 2300
JTAG debugging support .. 2303
The HAL Port .. 2305

254. KwikByte KB920x Board Family Support .. 2309
Overview ... 2310
Setup .. 2311
Configuration ... 2317
The HAL Port .. 2319

255. Motorola MX1ADS/A Board Support .. 2322
Overview ... 2323
Setup .. 2324
Configuration ... 2329
The HAL Port .. 2331

256. Texas Instruments OMAP L1xx Processor Support .. 2332
Overview ... 2333
Hardware definitions ... 2334
Interrupt Controller .. 2335
Timers ... 2336
Serial UARTs ... 2337
Multimedia Card Interface (MMC/SD) Driver .. 2338
I2C Two Wire Interface ... 2339
Pin Configuration and GPIO Support ... 2340
Peripheral Power Control ... 2342
DMA Support ... 2343

257. Atmel SAM9 Processor Support ... 2345
Overview ... 2346
Hardware definitions ... 2347
Interrupt controller .. 2348
Timers ... 2351
Serial UARTs ... 2352
Two-Wire Interface (TWI) driver ... 2353
Power saving support ... 2354

258. Atmel AT91SAM9260 Evaluation Kit Board Support ... 2356
Overview ... 2357
Setup .. 2359

xxix

eCosPro Reference Manual

Configuration ... 2363
JTAG debugging support .. 2366
The HAL Port .. 2367

259. Atmel AT91SAM9261 Evaluation Kit Board Support ... 2371
Overview ... 2372
Setup .. 2374
Configuration ... 2378
JTAG debugging support .. 2381
The HAL Port .. 2382

260. Atmel AT91SAM9263 Evaluation Kit Board Support ... 2387
Overview ... 2388
Setup .. 2390
Configuration ... 2394
JTAG debugging support .. 2397
The HAL Port .. 2398

261. Atmel AT91SAM9G20 Evaluation Kit Board Support .. 2402
Overview ... 2403
Setup .. 2405
Configuration ... 2409
JTAG debugging support .. 2412
The HAL Port .. 2413

262. Atmel AT91SAM9G45-EKES Evaluation Kit Board Support ... 2417
Overview ... 2418
Setup .. 2420
Configuration ... 2424
JTAG debugging support .. 2427
The HAL Port .. 2428

263. ARM Versatile 926EJ-S Board Support ... 2432
Overview ... 2433
Setup .. 2434
Configuration ... 2437
The HAL Port .. 2439

264. Spectrum Digital OMAP-L137 Board Support .. 2440
Overview ... 2441
Setup .. 2442
Configuration ... 2447
JTAG debugging support .. 2451
The HAL Port .. 2452

265. Logic Zoom Board Support ... 2454
Overview ... 2455
Setup .. 2457
Configuration ... 2461
JTAG debugging support .. 2463
The HAL Port .. 2464

266. Freescale i.MXxx Processor Support ... 2468
Overview ... 2469
Hardware definitions ... 2470
Interrupt Controller .. 2471
Timers ... 2472
Serial UARTs ... 2473
Pin Configuration and GPIO Support ... 2474
Peripheral Clock Control .. 2477

267. Freescale MCIMX25WPDK Board Support .. 2478
Overview ... 2479
Setup .. 2481
Configuration ... 2486
JTAG debugging support .. 2488
The HAL Port .. 2489

xxx

eCosPro Reference Manual

268. Intel IQ80321 Board Support ... 2494
Overview ... 2495
Setup .. 2496
Configuration ... 2503
The HAL Port .. 2505

269. Intel XScale IXP4xx Network Processor Support ... 2507
Overview ... 2508
IXP4xx hardware definitions ... 2509
IXP4xx interrupt controller ... 2510
General-purpose timers .. 2512
Watchdog .. 2513
Serial UARTs ... 2514
PCI bus controller ... 2515
PCI bus IDE controllers ... 2516
CompactFlash cards in TrueIDE mode .. 2517
GPIO .. 2518

270. Intel XScale IXDP425 Network Processor Evaluation Board Support .. 2519
Overview ... 2520
Setup .. 2521
Configuration ... 2526
JTAG debugging support .. 2528
The HAL Port .. 2529

271. Altera Hard Processor System Support .. 2532
Overview ... 2533
Hardware definitions ... 2534
Interrupt Controller .. 2535
Timers ... 2536
Serial UARTs ... 2537
Multimedia Card Interface (MMC/SD) Driver .. 2538
I2C Interface .. 2540
Pin Configuration and GPIO Support ... 2541

272. Broadcom IProc Support ... 2543
Overview ... 2544
Hardware definitions ... 2545
Interrupt Controller .. 2546
Timers ... 2547
Serial UARTs ... 2548

273. Broadcom BCM283X Processor Support .. 2549
Overview ... 2550
Hardware Definitions ... 2551
Interrupt Controller .. 2552
Timers ... 2553
Serial UARTs ... 2554
I²C Interface ... 2555
GPIO Support ... 2556
DMA Support ... 2558
GPU Communication Support ... 2560
Frequency Control ... 2562

274. Broadcom BCM56150 Reference Board Support ... 2563
Overview ... 2564
Setup .. 2565
Configuration ... 2569
The HAL Port .. 2571

275. Altera Cyclone V SX Board Support ... 2575
Overview ... 2576
Setup .. 2578
Configuration ... 2583
SMP Development and Debugging Support ... 2586

xxxi

eCosPro Reference Manual

The HAL Port .. 2588
276. Dream Chip A10 Board Support ... 2592

Overview ... 2593
Setup .. 2595
Configuration ... 2601
JTAG debugging support .. 2603
SMP Development and Debugging Support ... 2604
The HAL Port .. 2605

277. Atmel ATSAMA5D3 Variant HAL ... 2608
Atmel SAMA5D3 Variant HAL .. 2609
Hardware definitions ... 2610
Bootstrap ... 2611
On-chip Subsystems and Peripherals .. 2612
GPIO Support on SAMA5D3 processors ... 2617
Peripheral clock control ... 2620
DMA Support ... 2621
Configuration ... 2622
Test Programs .. 2625

278. Atmel SAMA5D3x-MB (MotherBoard) Platform HAL ... 2626
SAMA5D3x-MB Platform HAL .. 2627
Setup .. 2629
Configuration ... 2632
The HAL Port .. 2633
BootUp Integration .. 2634

279. Atmel SAMA5D3x-CM (CPU Module) Platform HAL ... 2641
SAMA5D3x-CM Platform HAL .. 2642
The HAL Port .. 2643

280. Atmel SAMA5D3 Xplained Platform HAL .. 2648
SAMA5D3 Xplained Platform HAL ... 2649
Setup .. 2650
Configuration ... 2657
The HAL Port .. 2661
BootUp Integration .. 2665

281. Raspberry Pi Board Support ... 2667
Overview ... 2668
Setup .. 2670
JTAG Debugger Support .. 2678
Configuration ... 2680
SMP Development and Debugging Support ... 2684
The HAL Port .. 2685
RedBoot Extensions .. 2689

282. Virtual Machine Support ... 2693
Overview ... 2694
Configuration ... 2695
The HAL Port .. 2697

283. QEMU Virtual Machine Support .. 2698
Overview ... 2699
Setup .. 2700
Configuration ... 2702
SMP Development and Debugging Support ... 2704
The HAL Port .. 2705

284. Xvisor Virtual Machine Support ... 2708
Overview ... 2709
Setup .. 2710
Configuration ... 2712
SMP Development and Debugging Support ... 2714
The HAL Port .. 2715

LXXVIII. Cortex-M Architecture ... 2719

xxxii

eCosPro Reference Manual

285. Cortex-M Architectural Support .. 2724
Cortex-M Architectural HAL .. 2725
Configuration ... 2726
Floating Point support .. 2728
The HAL Port .. 2730
Cortex-M Hardware Debug ... 2734

286. Kinetis Variant HAL .. 2736
Kinetis Variant HAL ... 2737
On-chip Subsystems and Peripherals .. 2738

287. Freescale TWR-K60N512 and TWR-K60D100M Platform HAL .. 2741
Freescale TWR-K60N512/TWR-K60D100M Platform HAL ... 2742
Setup .. 2743
Configuration ... 2747
Hardware debugging support ... 2749
The HAL Port .. 2752

288. Freescale TWR-K70F120M Platform HAL ... 2756
Freescale TWR-K70F120M Platform HAL .. 2757
Setup .. 2758
Configuration ... 2762
Hardware debugging support ... 2764
The HAL Port .. 2767

289. LM3S Variant HAL ... 2771
LM3S Variant HAL .. 2772
On-chip Subsystems and Peripherals .. 2773
GPIO Support ... 2775

290. LM3S8962-EVAL Platform HAL ... 2776
LM3S8962 EVAL Platform HAL .. 2777
Setup .. 2778
Configuration ... 2779
JTAG debugging support .. 2780
The HAL Port .. 2782

291. LPC1XXX Variant HAL ... 2783
LPC1XXX Variant HAL .. 2784
On-chip Subsystems and Peripherals .. 2785
GPIO Support ... 2787
Peripheral Clock and Power Control .. 2788

292. MCB1700 Platform HAL .. 2789
MCB1700 Platform HAL ... 2790
Setup .. 2791
Configuration ... 2792
JTAG debugging support .. 2793
The HAL Port .. 2795

293. SAM3/4/x70 Variant HAL ... 2796
SAM3/4/X70 Variant HAL ... 2797
On-chip Subsystems and Peripherals .. 2798
GPIO Support on SAM Processors .. 2801
Peripheral clock control ... 2803

294. Atmel SAM4E-EK Platform HAL .. 2804
SAM4E-EK Platform HAL ... 2805
Setup .. 2806
Configuration ... 2807
The HAL Port .. 2810

295. Atmel SAMX70-EK Platform HAL .. 2814
SAMX70-EK Platform HAL ... 2815
Setup .. 2816
Configuration ... 2818
The HAL Port .. 2820

296. STM32 Variant HAL .. 2824

xxxiii

eCosPro Reference Manual

STM32 Variant HAL ... 2825
On-chip Subsystems and Peripherals .. 2826
GPIO Support on STM32F processors .. 2831
Peripheral clock control ... 2834
DMA Support ... 2835
Test Programs .. 2838

297. STM3210C-EVAL Platform HAL ... 2839
STM3210C EVAL Platform HAL .. 2840
Setup .. 2841
Configuration ... 2843
JTAG debugging support .. 2845
The HAL Port .. 2847
Test Programs .. 2848

298. STM3210E-EVAL Platform HAL ... 2849
STM3210E EVAL Platform HAL .. 2850
Setup .. 2851
Configuration ... 2854
JTAG debugging support .. 2857
The HAL Port .. 2859
Test Programs .. 2861

299. STM32X0G-EVAL Platform HAL .. 2862
STM32X0G EVAL Platform HAL ... 2863
Setup .. 2865
Configuration ... 2871
JTAG debugging support .. 2874
The HAL Port .. 2876
Test Programs .. 2880

300. STM32F429I-DISCO Platform HAL ... 2881
STM32F429I-DISCO Platform HAL .. 2882
Setup .. 2883
Configuration ... 2885
Hardware debugging support ... 2887
The HAL Port .. 2890
Test Programs .. 2894

301. STM32F746G-DISCO Platform HAL .. 2895
STM32F746G-DISCO Platform HAL ... 2896
Setup .. 2897
Configuration ... 2899
Hardware debugging support ... 2901
The HAL Port .. 2904
Test Programs .. 2908

302. STM32H735-DISCO Platform HAL .. 2909
STM32H735-DISCO Platform HAL ... 2910
Setup .. 2911
Configuration ... 2913
Hardware debugging support ... 2915
The HAL Port .. 2917
Test Programs .. 2921

303. STM32H7 Nucleo-144 Platform HAL ... 2922
STM32H7 Nucleo-144 Platform HAL .. 2923
Setup .. 2924
Configuration ... 2926
Hardware debugging support ... 2928
The HAL Port .. 2930
Test Programs .. 2934

304. STM32F4DISCOVERY Platform HAL .. 2935
STM32F4DISCOVERY Platform HAL ... 2936
Setup .. 2937

xxxiv

eCosPro Reference Manual

Configuration ... 2942
JTAG/SWD debugging support ... 2945
The HAL Port .. 2949

305. STM324X9I-EVAL Platform HAL ... 2953
STM324X9I-EVAL Platform HAL .. 2954
Setup .. 2956
Configuration ... 2958
Hardware debugging support ... 2961
The HAL Port .. 2964
Test Programs .. 2969
BootUp Integration .. 2970

306. STM32F7XX-EVAL Platform HAL .. 2976
STM32F7XX-EVAL Platform HAL ... 2977
Setup .. 2978
Configuration ... 2980
Hardware debugging support ... 2984
The HAL Port .. 2987
Test Programs .. 2991
BootUp Integration .. 2992

307. STM32L476-DISCO Platform HAL .. 2998
STM32L476-DISCO Platform HAL ... 2999
Setup .. 3000
Configuration ... 3002
Hardware debugging support ... 3004
The HAL Port .. 3007
Test Programs .. 3011
BootUp Integration .. 3012

308. BCM943362WCD4 Platform HAL .. 3016
BCM943362WCD4 Platform HAL .. 3017
Setup .. 3018
Configuration ... 3020
JTAG debugging support .. 3022
The HAL Port .. 3024
Test Programs .. 3028

309. BCM943364WCD1 Platform HAL .. 3029
BCM943364WCD1 Platform HAL .. 3030
Setup .. 3031
Configuration ... 3033
JTAG debugging support .. 3035
The HAL Port .. 3037
Test Programs .. 3041

310. STM32L4R9-DISCO Platform HAL .. 3043
STM32L4R9-DISCO Platform HAL .. 3044
Setup .. 3045
Configuration ... 3047
Hardware debugging support ... 3049
The HAL Port .. 3050
Test Programs .. 3054
BootUp Integration .. 3055

311. STM32L4R9-EVAL Platform HAL ... 3058
312. NXP i.MX RT10XX Variant HAL .. 3059

NXP i.MX RT10XX Variant HAL ... 3060
On-chip Subsystems and Peripherals .. 3061
Hardware Configuration Support on IMX Processors .. 3064
OCOTP Support on IMX Processors .. 3068
BootUp .. 3070

313. NXP MIMXRT1xxx-EVK Platform HAL .. 3075
NXP MIMXRT1xxx-EVK Platform HAL ... 3076

xxxv

eCosPro Reference Manual

Setup .. 3083
Configuration ... 3091
The HAL Port .. 3095

LXXIX. H8300 Architecture ... 3099
314. H8/300 Architectural Support ... 3101

Overview ... 3102
Configuration ... 3103
The HAL Port .. 3105

LXXX. i386 Architecture ... 3109
315. I386 PC Support .. 3111

eCos Support for the i386 PC ... 3112
Setup .. 3113
Configuration ... 3116
The HAL Port .. 3120

316. STPC Atlas Support ... 3122
STPC Atlas Processor .. 3123

LXXXI. M68000 / ColdFire Architecture .. 3125
317. M68000 / ColdFire Architectural Support ... 3127

Overview ... 3128
Configuration ... 3130
The HAL Port .. 3132

318. Freescale MCFxxxx Variant Support ... 3137
MCFxxxx ColdFire Processors .. 3138

319. Freescale MCF5272 Processor Support .. 3143
The MCF5272 ColdFire Processor ... 3144

320. Freescale M5272C3 Board Support ... 3146
Overview ... 3147
Setup .. 3148
Configuration ... 3152
The HAL Port .. 3154

321. Freescale MCF5275 Processor Support .. 3156
The MCF5275 ColdFire Processor Family ... 3157

322. Freescale MCF5282 Processor Support .. 3161
The MCF5282 ColdFire Processor ... 3162

323. Freescale M5282EVB Board Support .. 3165
Overview ... 3166
Setup .. 3168
Configuration ... 3171
The HAL Port .. 3173

324. Freescale M5282LITE Board Support .. 3175
Overview ... 3176
Setup .. 3178
Configuration ... 3181
The HAL Port .. 3184

325. SSV DNP/5280 Board Support ... 3186
Overview ... 3187
Setup .. 3190
Configuration ... 3193
The HAL Port .. 3195

326. Motorola MCF521x Processor Support .. 3197
The MCF521x ColdFire Processor Family ... 3198

327. Motorola M5213EVB Board Support .. 3202
M5213EVB Board .. 3203

328. Freescale M5208EVBe Platform HAL ... 3212
Overview ... 3213
Setup .. 3215
Configuration ... 3219
Test Programs .. 3221

xxxvi

eCosPro Reference Manual

329. Motorola MCF532x Processor Support .. 3222
The MCF532x ColdFire Processor Family ... 3223

330. senTec Cobra5329 Board Support ... 3226
Overview ... 3227
Setup .. 3230
Configuration ... 3236

331. Motorola MCF520x Processor Support .. 3238
The MCF520x ColdFire Processor Family ... 3239

LXXXII. MIPS Architecture ... 3242
332. MIPS Architectural HAL ... 3244

MIPS Architectural HAL .. 3245
Configuration ... 3246
The HAL Port .. 3248

333. MIPS32 Variant HAL ... 3251
MIPS32 Variant HAL .. 3252
Configuration ... 3253
The MIPS32 HAL Port .. 3254

334. MIPS SEAD3 Board Support ... 3255
Overview ... 3256
Setup .. 3258
Configuration ... 3262
The HAL Port .. 3265
JTAG Debugging .. 3266

335. MIPS Malta Board Support ... 3268
Overview ... 3269
Setup .. 3270
Configuration ... 3273
The HAL Port .. 3275

336. NXP PNX83xx Common Support ... 3276
PNX83xx Processors ... 3277

337. NXP PNX8310 Processor Support .. 3278
The NXP PNX8310 Processor ... 3279

338. NXP STB200 Board Support ... 3281
Overview ... 3282
Setup .. 3284
Configuration ... 3287
The HAL Port .. 3289

339. NXP PNX8330 Processor Support .. 3290
The NXP PNX8330 Processor ... 3291

340. NXP STB220 Board Support ... 3293
Overview ... 3294
Setup .. 3296
Configuration ... 3299
The HAL Port .. 3301

LXXXIII. NIOS2 Architecture .. 3302
341. Nios II Architectural Support ... 3304

Nios II Architectural HAL .. 3305
Generic Installation Instructions ... 3306
Configuration ... 3309
The HAL Port .. 3310

342. Nios II Stratix II/2s60_RoHS and Cyclone II/2c35 Platform HAL ... 3314
Overview ... 3315

343. Nios II Cyclone II/2c35 Standard H/W Design HAL .. 3318
Cyclone II Standard Hardware Design HAL .. 3319

344. Nios II Cyclone II/2c35 TSEplus H/W Configuration HAL ... 3321
Cyclone II TSEplus Hardware Design HAL .. 3322

345. Nios II Stratix II/2s60_RoHS Standard H/W Design HAL ... 3324
Stratix II Standard Hardware Design HAL .. 3325

xxxvii

eCosPro Reference Manual

346. Nios II Stratix II/2s60_RoHS TSEplus H/W Design HAL ... 3327
Stratix II TSEplus Hardware Design HAL ... 3328

347. Board-level Support for the Nios II Embedded Evaluation Kit, Cyclone III edition 3330
Overview ... 3331

348. Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL 3333
Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector Hardware Design HAL 3334

LXXXIV. PowerPC Architecture ... 3338
349. A&M Adder Board Support ... 3340

Overview ... 3341
Setup .. 3342
Configuration ... 3344
The HAL Port .. 3346

350. ADS512101 Board Support ... 3347
Overview ... 3348
Setup .. 3349
Configuration ... 3352
JTAG debugging support .. 3354
The HAL Port .. 3355

351. Freescale MPC5554DEMO Board Support ... 3358
Overview ... 3359
Setup .. 3360
Configuration ... 3362
JTAG debugging support .. 3364
The HAL Port .. 3366

352. MPC8309KIT Board Support ... 3369
Overview ... 3370
Setup .. 3372
Configuration ... 3376
JTAG debugging support .. 3378
The HAL Port .. 3379
GPIO Support ... 3382
Test Programs .. 3383

353. MPC512X Variant Support .. 3385
MPC512X Variant HAL .. 3386
On-chip Subsystems and Peripherals .. 3387
SPI Slave support ... 3390

LXXXV. SH Architecture .. 3393
354. Renesas SDK7780 Development Board Support .. 3395

Overview ... 3396
Setup .. 3397
Configuration ... 3401
The HAL Port .. 3403

355. SuperH SH4-202 MicroDev Board Support .. 3405
Overview ... 3406
Setup .. 3407
Configuration ... 3411
The HAL Port .. 3413

356. STMicroelectronics ST40 Evaluation Board Support .. 3415
Overview ... 3416
Setup .. 3417
Configuration ... 3421
The HAL Port .. 3423

LXXXVI. TILE-Gx Architecture ... 3425
357. TILE-Gx Architectural Support .. 3427

Overview ... 3428
Hardware Setup .. 3430
eCos Configuration Options .. 3439
The HAL Port .. 3441

xxxviii

eCosPro Reference Manual

358. TILE-Gx TMC Library ... 3446
Overview ... 3447

Real-time characterization of selected targets ... 3450

xxxix

List of Figures
53.1. Library layout diagram .. 292
2. I/O auxiliary Dialog, Files .. 322
3. I/O auxiliary Dialog, Logging ... 323
75.1. I²C wiring specification .. 448
89.1. Synthetic Target Framebuffer X Window .. 522
197.1. Example WICED-Studio installation complete .. 1818
197.2. Example WICED-Studio WiFi directory copy and rename .. 1819
197.3. Example WICED-SDK installation ... 1820
212.1. <bundle> image .. 1901
212.2. <arbitrary> chunk .. 1901
212.3. <hash> chunk ... 1902
212.4. Uncompressed <item> .. 1902
212.5. Compressed <item> ... 1902
222.1. Example from application with SEGGER_SYSVIEW_Mark() use .. 1933
222.2. Example from application with Kernel instrumentation enabled ... 1934
222.3. Example from application using INFRA trace ... 1935
277.1. ROMRAM RedBoot .. 2623
277.2. ROM RedBoot .. 2624
278.1. On-chip RomBOOT executes .. 2635
278.2. On-chip RomBOOT copies second-level boot code from NVM to on-chip SRAM .. 2635
278.3. SRAM loaded second-level boot code is executed ... 2636
278.4. Final application ROMRAM is located in SPI or NOR NVM ... 2636
278.5. Second-level boot copies ROMRAM from NVM to DDR2-SDRAM ... 2637
278.6. Application is started ... 2637
278.7. Second-level boot code built with AES-256 key ... 2638
278.8. Stored key is used to decrypt NVM application into RAM .. 2638
278.9. Decrypted application is started ... 2639
280.1. SAM-BA Board Connection .. 2652
280.2. Enabling DDRAM ... 2653
280.3. Enabling NAND .. 2654
280.4. Programming the Second-Stage bootstrap .. 2655
280.5. Programming the Application .. 2656
305.1. On-chip flash .. 2971
305.2. NVM bundle ... 2971
305.3. BootUp and Application ... 2973
305.4. Application Update image ... 2973
306.1. On-chip flash .. 2993
306.2. NVM bundle ... 2993
306.3. BootUp and Application ... 2995
306.4. Application Update image ... 2995
307.1. BootUp and Application ... 3012
307.2. Application Update image ... 3013
312.1. On-chip ROM Bootloader executes ... 3071
312.2. On-chip ROM Bootloader copies second-level boot code from NVM to on-chip SRAM 3071
312.3. SRAM loaded second-level boot code is executed ... 3072
312.4. Final application is located in NVM ... 3072
312.5. Second-level boot copies application from NVM to SDRAM .. 3073
312.6. Application is started ... 3073
313.1. Standalone mimxrt1064_evk SRAM application .. 3078
313.2. Standalone mimxrt1050_evk SRAM application .. 3078
313.3. Standalone mimxrt1064_evk JSDRAM application .. 3079
313.4. Standalone mimxrt1050_evk JSDRAM application .. 3079
313.5. Standalone mimxrt1064_evk RBRAM application .. 3080
313.6. Standalone mimxrt1050_evk RBRAM application .. 3081
313.7. mimxrt1064_evk SRAM RedBoot and RAM application .. 3082

xl

eCosPro Reference Manual

313.8. mimxrt1064_evk SRAM RedBoot and JSDRAM application .. 3082
313.9. Checksum of QSPI image and Execution of RedBoot .. 3086
313.10. RedBoot Output ... 3086
313.11. Initialise Flash ... 3087
313.12. Loading RedBoot QSPI boot image into memory .. 3087
313.13. RedBoot cksum of memory image .. 3087
313.14. Program RedBoot into QSPI from memory image ... 3088

xli

List of Tables
9.1. Behavior of math exception handling ... 138
51.1. Yaffs RAM use worked example ... 286
113.1. Completion Codes ... 621
114.1. Completion Codes ... 624
5. USB class support ... 643
164.1. lwIP sequential API error codes ... 914
199.1. WICED options ... 1823
199.2. Hardware manifests ... 1823
199.3. Indirect firmware access ... 1824
212.1. HASH signatures ... 1902
221.1. Example Instrumentation “cost” ... 1931
234.1. Context Switch .. 2094
277.1. BMS signal .. 2611
277.2. Pin Mode ... 2617
277.3. Interrupt Type ... 2618
278.1. JP9 BMS .. 2627
293.1. Pin Mode ... 2801
293.2. Interrupt Type ... 2802
305.1. LEDs ... 2965
305.2. Pending update sequence .. 2973
306.1. LEDs ... 2988
306.2. Pending update sequence .. 2995
307.1. Pending update sequence .. 3013
310.1. Pending update sequence .. 3056

xlii

List of Examples
1. Mounting and unmounting a JFFS2 filesystem ... 328
2. Secure erase usage .. 332
164.1. This example shows the basic mechanisms for using netbufs. .. 916
164.2. This example shows a simple use of the netbuf_ref() ... 919
164.3. This example shows how to use the netbuf_next() function ... 922
164.4. This example shows a simple use of netbuf_copy() .. 924
164.5. This example shows how to open a TCP server on port 2000 .. 943
164.6. This example demonstrates usage of the netconn_recv() function ... 944
164.7. This example demonstrates basic usage of the netconn_write() function .. 947
164.8. This example demonstrates basic usage of the netconn_send() function .. 949
180.1. Apache 2.0 License .. 1687
183.1. lb_ssl test run ... 1694
191.1. doc/bct_stm32f207_result.txt ... 1790
206.1. “AS IS” License .. 1877
216.1. “AS IS” License .. 1921
224.1. Sample DHCP configuration file .. 1948
224.2. Sample /etc/named.conf for most Linux distributions ... 1948
229.1. “MIT” License .. 2048
237.1. at91sam7a2ek Real-time characterization ... 2123
238.1. at91sam7a3ek Real-time characterization ... 2135
239.1. at91sam7sek Real-time characterization ... 2149
240.1. at91sam7xek Real-time characterization .. 2165
244.1. ea_quickstart Real-time characterization .. 2199
245.1. iar_kickstart Real-time characterization ... 2210
251.1. atmel-at91rm9200-kits Real-time characterization .. 2281
253.1. dnp_sk23 Real-time characterization ... 2306
254.1. kb9200 Real-time characterization .. 2319
258.1. sam9260ek Real-time characterization ... 2368
259.1. sam9261ek Real-time characterization ... 2384
260.1. sam9263ek Real-time characterization ... 2399
261.1. sam9g20ek Real-time characterization ... 2414
262.1. sam9g45ek Real-time characterization ... 2429
265.1. zoom_l138 Real-time characterization ... 2465
267.1. mcimx25x Real-time characterization .. 2490
274.1. bcm56150_ref Real-time characterization ... 2572
275.1. cyclone5_sx Real-time characterization ... 2589
276.1. dreamchip_a10 Real-time characterization .. 2606
279.1. sama5d3x_cm Real-time characterization ... 2646
280.1. sama5d3xpld Real-time characterization .. 2662
281.1. Raspberry Pi3 Real-time characterization ... 2686
283.1. VM Real-time characterization ... 2705
284.1. VM Real-time characterization ... 2716
287.1. twr_k60n512 Real-time characterization .. 2753
288.1. twr_k70f120m Real-time characterization .. 2768
294.1. sam4e_ek Real-time characterization ... 2811
295.1. samv71-XULT Real-time characterization .. 2821
299.1. stm32x0g_eval Real-time characterization .. 2877
300.1. stm32f429i_disco Real-time characterization .. 2891
301.1. stm32f746g_disco Real-time characterization ... 2905
302.1. stm32h735_disco Real-time characterization ... 2918
303.1. nucleo144_stm32h723 Real-time characterization .. 2931
304.1. stm32f4dis Real-time characterization ... 2950
305.1. stm324x9i_eval Real-time characterization ... 2966
306.1. stm32f7xx_eval Real-time characterization ... 2989
307.1. stm32l476_disco Real-time characterization ... 3008

xliii

eCosPro Reference Manual

308.1. bcm943362wcd4 Real-time characterization ... 3025
309.1. bcm943364wcd1 Real-time characterization ... 3038
310.1. stm32l4r9_disco Real-time characterization .. 3051
313.1. MIMXRT1050-EVK Real-time characterization .. 3096
327.1. m5213evb Real-time characterization .. 3207
350.1. ads512101 Real-time characterization .. 3355
351.1. mpc5554demo Real-time characterization .. 3366
352.1. mpc8309kit Real-time characterization .. 3379

xliv

Part I. The eCos Kernel

Name
Kernel — Overview of the eCos Kernel

Description
The kernel is one of the key packages in all of eCos. It provides the core functionality needed for developing multi-threaded
applications:

1. The ability to create new threads in the system, either during startup or when the system is already running.

2. Control over the various threads in the system, for example manipulating their priorities.

3. A choice of schedulers, determining which thread should currently be running.

4. A range of synchronization primitives, allowing threads to interact and share data safely.

5. Integration with the system's support for interrupts and exceptions.

In some other operating systems the kernel provides additional functionality. For example the kernel may also provide memory
allocation functionality, and device drivers may be part of the kernel as well. This is not the case for eCos. Memory allocation
is handled by a separate package. Similarly each device driver will typically be a separate package. Various packages are
combined and configured using the eCos configuration technology to meet the requirements of the application.

The eCos kernel package is optional. It is possible to write single-threaded applications which do not use any kernel func-
tionality, for example RedBoot. Typically such applications are based around a central polling loop, continually checking all
devices and taking appropriate action when I/O occurs. A small amount of calculation is possible every iteration, at the cost
of an increased delay between an I/O event occurring and the polling loop detecting the event. When the requirements are
straightforward it may well be easier to develop the application using a polling loop, avoiding the complexities of multiple
threads and synchronization between threads. As requirements get more complicated a multi-threaded solution becomes more
appropriate, requiring the use of the kernel. In fact some of the more advanced packages in eCos, for example the TCP/IP
stack, use multi-threading internally. Therefore if the application uses any of those packages then the kernel becomes a required
package, not an optional one.

The kernel functionality can be used in one of two ways. The kernel provides its own C API, with functions like
cyg_thread_create and cyg_mutex_lock. These can be called directly from application code or from other packages.
Alternatively there are a number of packages which provide compatibility with existing API's, for example POSIX threads
or µITRON. These allow application code to call standard functions such as pthread_create, and those functions are
implemented using the basic functionality provided by the eCos kernel. Using compatibility packages in an eCos application
can make it much easier to reuse code developed in other environments, and to share code.

Although the different compatibility packages have similar requirements on the underlying kernel, for example the ability
to create a new thread, there are differences in the exact semantics. For example, strict µITRON compliance requires that
kernel timeslicing is disabled. This is achieved largely through the configuration technology. The kernel provides a number
of configuration options that control the exact semantics that are provided, and the various compatibility packages require
particular settings for those options. This has two important consequences. First, it is not usually possible to have two different
compatibility packages in one eCos configuration because they will have conflicting requirements on the underlying kernel.
Second, the semantics of the kernel's own API are only loosely defined because of the many configuration options. For example
cyg_mutex_lock will always attempt to lock a mutex, but various configuration options determine the behaviour when the
mutex is already locked and there is a possibility of priority inversion.

The optional nature of the kernel package presents some complications for other code, especially device drivers. Wherever
possible a device driver should work whether or not the kernel is present. However there are some parts of the system, especially
those related to interrupt handling, which should be implemented differently in multi-threaded environments containing the
eCos kernel and in single-threaded environments without the kernel. To cope with both scenarios the common HAL package
provides a driver API, with functions such as cyg_drv_interrupt_attach. When the kernel package is present these
driver API functions map directly on to the equivalent kernel functions such as cyg_interrupt_attach, using macros
to avoid any overheads. When the kernel is absent the common HAL package implements the driver API directly, but this
implementation is simpler than the one in the kernel because it can assume a single-threaded environment.

2

Kernel Overview

Schedulers
When a system involves multiple threads, a scheduler is needed to determine which thread should currently be running. The
eCos kernel can be configured with one of three schedulers, the bitmap scheduler, the multi-level queue (MLQ) scheduler
and the SMP scheduler (MLQSMP). The bitmap scheduler is somewhat more efficient, but has a number of limitations. Most
systems will instead use the MLQ scheduler, and MLQSMP in SMP configurations. Other schedulers may be added in the
future, either as extensions to the kernel package or in separate packages.

Both the bitmap and the MLQ schedulers use a simple numerical priority to determine which thread should be running. The
number of priority levels is configurable via the option CYGNUM_KERNEL_SCHED_PRIORITIES, but a typical system will
have up to 32 priority levels. Therefore thread priorities will be in the range 0 to 31, with 0 being the highest priority and 31
the lowest. Usually only the system's idle thread will run at the lowest priority. Thread priorities are absolute, so the kernel will
only run a lower-priority thread if all higher-priority threads are currently blocked.

The bitmap scheduler only allows one thread per priority level, so if the system is configured with 32 priority levels then
it is limited to only 32 threads — still enough for many applications. A simple bitmap can be used to keep track of which
threads are currently runnable. Bitmaps can also be used to keep track of threads waiting on a mutex or other synchronization
primitive. Identifying the highest-priority runnable or waiting thread involves a simple operation on the bitmap, and an array
index operation can then be used to get hold of the thread data structure itself. This makes the bitmap scheduler fast and totally
deterministic.

The MLQ schedulers (MLQ and MLQSMP) allows multiple threads to run at the same priority. This means that there is no
limit on the number of threads in the system, other than the amount of memory available. However operations such as finding
the highest priority runnable thread are a little bit more expensive than for the bitmap scheduler.

Optionally the MLQ schedulers support timeslicing, where the scheduler automatically switches from one runnable thread to
another when some number of clock ticks have occurred. Timeslicing only comes into play when there are two runnable threads
at the same priority and no higher priority runnable threads. If timeslicing is disabled then a thread will not be preempted by
another thread of the same priority, and will continue running until either it explicitly yields the processor or until it blocks by,
for example, waiting on a synchronization primitive. The configuration options CYGSEM_KERNEL_SCHED_TIMESLICE and
CYGNUM_KERNEL_SCHED_TIMESLICE_TICKS control timeslicing. The bitmap scheduler does not provide timeslicing
support. It only allows one thread per priority level, so it is not possible to preempt the current thread in favour of another
one with the same priority.

An experimental timeslicing feature is also available in eCosPro, which is "fair" timeslicing, and can be enabled with the
CYGSEM_KERNEL_SCHED_TIMESLICE_FAIR configuration option. By default, normal timeslicing does not guarantee
that different threads get a similar amount of CPU time. In fact, a thread could use most of one of its timeslice ticks allocated
to it, but then block shortly before the tick occurs, at which point as far as the kernel is concerned, it effectively used no time at
all from that tick. In some applications where some threads may often be operating on small parts of work that take less than a
tick, or where there is a periodic event such as an external interrupt that regularly causes a thread to be pre-empted and this can
occasionally happen roughly synchronised to the kernel clock, then this can result in other threads at the same priority being
starved. The fair timeslicing option seeks to prevent this by using information from the underlying HAL clock to determine
a more accurate view of how much CPU time a thread has used. This is naturally at the expense of a slightly greater context
switch time. With this option enabled, threads should become more fairly timesliced, although due to the granularity of the
kernel clock, there will always be a small error margin of roughly half a kernel clock tick on average. This feature can be tested
with the timeslice_fair kernel test.

Another important configuration option that affects the MLQ schedulers is CYGIMP_KERNEL_SCHED_SORTED_QUEUES.
This determines what happens when a thread blocks, for example by waiting on a semaphore which has no pending events.
The default behaviour of the system is last-in-first-out queuing. For example if several threads are waiting on a semaphore
and an event is posted, the thread that gets woken up is the last one that called cyg_semaphore_wait. This allows for a
simple and fast implementation of both the queue and dequeue operations. However if there are several queued threads with
different priorities, it may not be the highest priority one that gets woken up. In practice this is rarely a problem: usually there
will be at most one thread waiting on a queue, or when there are several threads they will be of the same priority. However if
the application does require strict priority queueing then the option CYGIMP_KERNEL_SCHED_SORTED_QUEUES should
be enabled. There are disadvantages: more work is needed whenever a thread is queued, and the scheduler needs to be locked
for this operation so the system's dispatch latency is worse. If the bitmap scheduler is used then priority queueing is automatic
and does not involve any penalties.

3

Kernel Overview

Some kernel functionality is currently only supported with the MLQ schedulers, not the bitmap scheduler. This includes support
for SMP systems, and protection against priority inversion using either mutex priority ceilings or priority inheritance.

The MLQSMP scheduler is a derivative of the MLQ scheduler that has some additional features for controlling thread affinity
and CPU activation. The MLQ scheduler can support SMP operation, but does not support the additional features. By default,
eCosPro uses the MLQSMP scheduler when configured for SMP operation.

Synchronization Primitives
The eCos kernel provides a number of different synchronization primitives: mutexes, condition variables, counting semaphores,
mail boxes and event flags.

Mutexes serve a very different purpose from the other primitives. A mutex allows multiple threads to share a resource safely:
a thread locks a mutex, manipulates the shared resource, and then unlocks the mutex again. The other primitives are used to
communicate information between threads, or alternatively from a DSR associated with an interrupt handler to a thread.

When a thread that has locked a mutex needs to wait for some condition to become true, it should use a condition variable.
A condition variable is essentially just a place for a thread to wait, and which another thread, or DSR, can use to wake it up.
When a thread waits on a condition variable it releases the mutex before waiting, and when it wakes up it reacquires it before
proceeding. These operations are atomic so that synchronization race conditions cannot be introduced.

A counting semaphore is used to indicate that a particular event has occurred. A consumer thread can wait for this event to
occur, and a producer thread or a DSR can post the event. There is a count associated with the semaphore so if the event occurs
multiple times in quick succession this information is not lost, and the appropriate number of semaphore wait operations will
succeed.

Mail boxes are also used to indicate that a particular event has occurred, and allows for one item of data to be exchanged per
event. Typically this item of data would be a pointer to some data structure. Because of the need to store this extra data, mail
boxes have a finite capacity. If a producer thread generates mail box events faster than they can be consumed then, to avoid
overflow, it will be blocked until space is again available in the mail box. This means that mail boxes usually cannot be used
by a DSR to wake up a thread. Instead mail boxes are typically only used between threads.

Event flags can be used to wait on some number of different events, and to signal that one or several of these events have
occurred. This is achieved by associating bits in a bit mask with the different events. Unlike a counting semaphore no attempt
is made to keep track of the number of events that have occurred, only the fact that an event has occurred at least once. Unlike
a mail box it is not possible to send additional data with the event, but this does mean that there is no possibility of an overflow
and hence event flags can be used between a DSR and a thread as well as between threads.

The eCos common HAL package provides its own device driver API which contains some of the above synchronization
primitives. These allow the DSR for an interrupt handler to signal events to higher-level code. If the configuration includes the
eCos kernel package then the driver API routines map directly on to the equivalent kernel routines, allowing interrupt handlers
to interact with threads. If the kernel package is not included and the application consists of just a single thread running in
polled mode then the driver API is implemented entirely within the common HAL, and with no need to worry about multiple
threads the implementation can obviously be rather simpler.

Threads and Interrupt Handling
During normal operation the processor will be running one of the threads in the system. This may be an application thread,
a system thread running inside say the TCP/IP stack, or the idle thread. From time to time a hardware interrupt will occur,
causing control to be transferred briefly to an interrupt handler. When the interrupt has been completed the system's scheduler
will decide whether to return control to the interrupted thread or to some other runnable thread.

Threads and interrupt handlers must be able to interact. If a thread is waiting for some I/O operation to complete, the interrupt
handler associated with that I/O must be able to inform the thread that the operation has completed. This can be achieved
in a number of ways. One very simple approach is for the interrupt handler to set a volatile variable. A thread can then poll
continuously until this flag is set, possibly sleeping for a clock tick in between. Polling continuously means that the CPU
time is not available for other activities, which may be acceptable for some but not all applications. Polling once every clock
tick imposes much less overhead, but means that the thread may not detect that the I/O event has occurred until an entire

4

Kernel Overview

clock tick has elapsed. In typical systems this could be as long as 10 milliseconds. Such a delay might be acceptable for some
applications, but not all.

A better solution would be to use one of the synchronization primitives. The interrupt handler could signal a condition variable,
post to a semaphore, or use one of the other primitives. The thread would perform a wait operation on the same primitive.
It would not consume any CPU cycles until the I/O event had occurred, and when the event does occur the thread can start
running again immediately (subject to any higher priority threads that might also be runnable).

Synchronization primitives constitute shared data, so care must be taken to avoid problems with concurrent access. If the thread
that was interrupted was just performing some calculations then the interrupt handler could manipulate the synchronization
primitive quite safely. However if the interrupted thread happened to be inside some kernel call then there is a real possibility
that some kernel data structure will be corrupted.

One way of avoiding such problems would be for the kernel functions to disable interrupts when executing any critical region.
On most architectures this would be simple to implement and very fast, but it would mean that interrupts would be disabled
often and for quite a long time. For some applications that might not matter, but many embedded applications require that the
interrupt handler run as soon as possible after the hardware interrupt has occurred. If the kernel relied on disabling interrupts
then it would not be able to support such applications.

Instead the kernel uses a two-level approach to interrupt handling. Associated with every interrupt vector is an Interrupt Service
Routine or ISR, which will run as quickly as possible so that it can service the hardware. However an ISR can make only a
small number of kernel calls, mostly related to the interrupt subsystem, and it cannot make any call that would cause a thread
to wake up. If an ISR detects that an I/O operation has completed and hence that a thread should be woken up, it can cause the
associated Deferred Service Routine or DSR to run. A DSR is allowed to make more kernel calls, for example it can signal
a condition variable or post to a semaphore.

Disabling interrupts prevents ISRs from running, but very few parts of the system disable interrupts and then only for short
periods of time. The main reason for a thread to disable interrupts is to manipulate some state that is shared with an ISR. For
example if a thread needs to add another buffer to a linked list of free buffers and the ISR may remove a buffer from this list
at any time, the thread would need to disable interrupts for the few instructions needed to manipulate the list. If the hardware
raises an interrupt at this time, it remains pending until interrupts are reenabled.

Analogous to interrupts being disabled or enabled, the kernel has a scheduler lock. The various kernel functions such as
cyg_mutex_lock and cyg_semaphore_post will claim the scheduler lock, manipulate the kernel data structures, and
then release the scheduler lock. If an interrupt results in a DSR being requested and the scheduler is currently locked, the DSR
remains pending. When the scheduler lock is released any pending DSRs will run. These may post events to synchronization
primitives, causing other higher priority threads to be woken up.

For an example, consider the following scenario. The system has a high priority thread A, responsible for processing some
data coming from an external device. This device will raise an interrupt when data is available. There are two other threads B
and C which spend their time performing calculations and occasionally writing results to a display of some sort. This display
is a shared resource so a mutex is used to control access.

At a particular moment in time thread A is likely to be blocked, waiting on a semaphore or another synchronization primitive
until data is available. Thread B might be running performing some calculations, and thread C is runnable waiting for its
next timeslice. Interrupts are enabled, and the scheduler is unlocked because none of the threads are in the middle of a kernel
operation. At this point the device raises an interrupt. The hardware transfers control to a low-level interrupt handler provided
by eCos which works out exactly which interrupt occurs, and then the corresponding ISR is run. This ISR manipulates the
hardware as appropriate, determines that there is now data available, and wants to wake up thread A by posting to the semaphore.
However ISR's are not allowed to call cyg_semaphore_post directly, so instead the ISR requests that its associated DSR
be run and returns. There are no more interrupts to be processed, so the kernel next checks for DSR's. One DSR is pending
and the scheduler is currently unlocked, so the DSR can run immediately and post the semaphore. This will have the effect of
making thread A runnable again, so the scheduler's data structures are adjusted accordingly. When the DSR returns thread B
is no longer the highest priority runnable thread so it will be suspended, and instead thread A gains control over the CPU.

In the above example no kernel data structures were being manipulated at the exact moment that the interrupt happened. How-
ever that cannot be assumed. Suppose that thread B had finished its current set of calculations and wanted to write the results
to the display. It would claim the appropriate mutex and manipulate the display. Now suppose that thread B was timesliced in
favour of thread C, and that thread C also finished its calculations and wanted to write the results to the display. It would call
cyg_mutex_lock. This kernel call locks the scheduler, examines the current state of the mutex, discovers that the mutex

5

Kernel Overview

is already owned by another thread, suspends the current thread, and switches control to another runnable thread. Another
interrupt happens in the middle of this cyg_mutex_lock call, causing the ISR to run immediately. The ISR decides that
thread A should be woken up so it requests that its DSR be run and returns back to the kernel. At this point there is a pending
DSR, but the scheduler is still locked by the call to cyg_mutex_lock so the DSR cannot run immediately. Instead the call
to cyg_mutex_lock is allowed to continue, which at some point involves unlocking the scheduler. The pending DSR can
now run, safely post the semaphore, and thus wake up thread A.

If the ISR had called cyg_semaphore_post directly rather than leaving it to a DSR, it is likely that there would have
been some sort of corruption of a kernel data structure. For example the kernel might have completely lost track of one of the
threads, and that thread would never have run again. The two-level approach to interrupt handling, ISR's and DSR's, prevents
such problems with no need to disable interrupts.

Calling Contexts
eCos defines a number of contexts. Only certain calls are allowed from inside each context, for example most operations on
threads or synchronization primitives are not allowed from ISR context. The different contexts are initialization, thread, ISR
and DSR.

When eCos starts up it goes through a number of phases, including setting up the hardware and invoking C++ static constructors.
During this time interrupts are disabled and the scheduler is locked. When a configuration includes the kernel package the final
operation is a call to cyg_scheduler_start. At this point interrupts are enabled, the scheduler is unlocked, and control
is transferred to the highest priority runnable thread. If the configuration also includes the C library package then usually the
C library startup package will have created a thread which will call the application's main entry point.

Some application code can also run before the scheduler is started, and this code runs in initialization context. If the application
is written partly or completely in C++ then the constructors for any static objects will be run. Alternatively application code
can define a function cyg_user_start which gets called after any C++ static constructors. This allows applications to be
written entirely in C.

void
cyg_user_start(void)
{
 /* Perform application-specific initialization here */
}

It is not necessary for applications to provide a cyg_user_start function since the system will provide a default imple-
mentation which does nothing.

Typical operations that are performed from inside static constructors or cyg_user_start include creating threads, syn-
chronization primitives, setting up alarms, and registering application-specific interrupt handlers. In fact for many applications
all such creation operations happen at this time, using statically allocated data, avoiding any need for dynamic memory allo-
cation or other overheads.

Code running in initialization context runs with interrupts disabled and the scheduler locked. It is not permitted to reenable
interrupts or unlock the scheduler because the system is not guaranteed to be in a totally consistent state at this point. A
consequence is that initialization code cannot use synchronization primitives such as cyg_semaphore_wait to wait for
an external event. It is permitted to lock and unlock a mutex: there are no other threads running so it is guaranteed that the
mutex is not yet locked, and therefore the lock operation will never block; this is useful when making library calls that may
use a mutex internally.

At the end of the startup sequence the system will call cyg_scheduler_start and the various threads will start running.
In thread context nearly all of the kernel functions are available. There may be some restrictions on interrupt-related operations,
depending on the target hardware. For example the hardware may require that interrupts be acknowledged in the ISR or DSR
before control returns to thread context, in which case cyg_interrupt_acknowledge should not be called by a thread.

At any time the processor may receive an external interrupt, causing control to be transferred from the current thread. Typically
a VSR provided by eCos will run and determine exactly which interrupt occurred. Then the VSR will switch to the appropriate
ISR, which can be provided by a HAL package, a device driver, or by the application. During this time the system is running at
ISR context, and most of the kernel function calls are disallowed. This includes the various synchronization primitives, so for
example an ISR is not allowed to post to a semaphore to indicate that an event has happened. Usually the only operations that

6

Kernel Overview

should be performed from inside an ISR are ones related to the interrupt subsystem itself, for example masking an interrupt or
acknowledging that an interrupt has been processed. On SMP systems it is also possible to use spinlocks from ISR context.

When an ISR returns it can request that the corresponding DSR be run as soon as it is safe to do so, and that will run in
DSR context. This context is also used for running alarm functions, and threads can switch temporarily to DSR context by
locking the scheduler. Only certain kernel functions can be called from DSR context, although more than in ISR context. In
particular it is possible to use any synchronization primitives which cannot block. These include cyg_semaphore_post,
cyg_cond_signal, cyg_cond_broadcast, cyg_flag_setbits, and cyg_mbox_tryput. It is not possible to
use any primitives that may block such as cyg_semaphore_wait, cyg_mutex_lock, or cyg_mbox_put. Calling such
functions from inside a DSR may cause the system to hang.

The specific documentation for the various kernel functions gives more details about valid contexts.

Error Handling and Assertions
In many APIs each function is expected to perform some validation of its parameters and possibly of the current state of the
system. This is supposed to ensure that each function is used correctly, and that application code is not attempting to perform a
semaphore operation on a mutex or anything like that. If an error is detected then a suitable error code is returned, for example
the POSIX function pthread_mutex_lock can return various error codes including EINVAL and EDEADLK. There are a
number of problems with this approach, especially in the context of deeply embedded systems:

1. Performing these checks inside the mutex lock and all the other functions requires extra CPU cycles and adds significantly
to the code size. Even if the application is written correctly and only makes system function calls with sensible arguments
and under the right conditions, these overheads still exist.

2. Returning an error code is only useful if the calling code detects these error codes and takes appropriate action. In practice
the calling code will often ignore any errors because the programmer “knows” that the function is being used correctly. If
the programmer is mistaken then an error condition may be detected and reported, but the application continues running
anyway and is likely to fail some time later in mysterious ways.

3. If the calling code does always check for error codes, that adds yet more CPU cycles and code size overhead.

4. Usually there will be no way to recover from certain errors, so if the application code detected an error such as EINVAL
then all it could do is abort the application somehow.

The approach taken within the eCos kernel is different. Functions such as cyg_mutex_lock will not return an error code.
Instead they contain various assertions, which can be enabled or disabled. During the development process assertions are
normally left enabled, and the various kernel functions will perform parameter checks and other system consistency checks. If
a problem is detected then an assertion failure will be reported and the application will be terminated. In a typical debug session
a suitable breakpoint will have been installed and the developer can now examine the state of the system and work out exactly
what is going on. Towards the end of the development cycle assertions will be disabled by manipulating configuration options
within the eCos infrastructure package, and all assertions will be eliminated at compile-time. The assumption is that by this
time the application code has been mostly debugged: the initial version of the code might have tried to perform a semaphore
operation on a mutex, but any problems like that will have been fixed some time ago. This approach has a number of advantages:

1. In the final application there will be no overheads for checking parameters and other conditions. All that code will have
been eliminated at compile-time.

2. Because the final application will not suffer any overheads, it is reasonable for the system to do more work during the
development process. In particular the various assertions can test for more error conditions and more complicated errors.
When an error is detected it is possible to give a text message describing the error rather than just return an error code.

3. There is no need for application programmers to handle error codes returned by various kernel function calls. This simplifies
the application code.

4. If an error is detected then an assertion failure will be reported immediately and the application will be halted. There is no
possibility of an error condition being ignored because application code did not check for an error code.

Although none of the kernel functions return an error code, many of them do return a status condition. For example the function
cyg_semaphore_timed_wait waits until either an event has been posted to a semaphore, or until a certain number of

7

Kernel Overview

clock ticks have occurred. Usually the calling code will need to know whether the wait operation succeeded or whether a
timeout occurred. cyg_semaphore_timed_wait returns a boolean: a return value of zero or false indicates a timeout, a
non-zero return value indicates that the wait succeeded.

In conventional APIs one common error conditions is lack of memory. For example the POSIX function pthread_create
usually has to allocate some memory dynamically for the thread stack and other per-thread data. If the target hardware does
not have enough memory to meet all demands, or more commonly if the application contains a memory leak, then there may
not be enough memory available and the function call would fail. The eCos kernel avoids such problems by never performing
any dynamic memory allocation. Instead it is the responsibility of the application code to provide all the memory required for
kernel data structures and other needs. In the case of cyg_thread_create this means a cyg_thread data structure to hold
the thread details, and a char array for the thread stack.

In many applications this approach results in all data structures being allocated statically rather than dynamically. This has
several advantages. If the application is in fact too large for the target hardware's memory then there will be an error at link-
time rather than at run-time, making the problem much easier to diagnose. Static allocation does not involve any of the usual
overheads associated with dynamic allocation, for example there is no need to keep track of the various free blocks in the
system, and it may be possible to eliminate malloc from the system completely. Problems such as fragmentation and memory
leaks cannot occur if all data is allocated statically. However, some applications are sufficiently complicated that dynamic
memory allocation is required, and the various kernel functions do not distinguish between statically and dynamically allocated
memory. It still remains the responsibility of the calling code to ensure that sufficient memory is available, and passing null
pointers to the kernel will result in assertions or system failure.

8

Name
SMP — Support Symmetric Multiprocessing Systems

Description

eCos contains support for limited Symmetric Multi-Processing (SMP). This is only available on selected architectures and
platforms. The implementation has a number of restrictions on the kind of hardware supported. These are described in the
section called “SMP Support”.

The aim for eCos SMP is to support embedded and real time applications on the class of hardware that is the likely target. This
means being able to allocate threads to specific CPUs and manage the CPUs that are active. eCos does not support the kind
of load balancing scheduler epitomized by the Linux Fair Scheduler, which is oriented to running massively parallel servers.
Instead eCos allows deliberately unbalanced scheduling to improve real time latency.

The following sections describe the changes that have been made to the eCos kernel to support SMP operation.

System Startup

The system startup sequence needs to be somewhat different on an SMP system, although this is largely transparent to appli-
cation code. The main startup takes place on only one CPU, called the primary CPU. All other CPUs, the secondary CPUs, are
either placed in suspended state at reset, or are captured by the HAL and put into a spin as they start up. The primary CPU is
responsible for copying the DATA segment and zeroing the BSS (if required), calling HAL variant and platform initialization
routines and invoking constructors. It then calls cyg_start to enter the application. The application may then create extra
threads and other objects.

It is only when the application calls cyg_scheduler_start that the secondary CPUs are initialized. This routine scans the
list of available secondary CPUs and invokes HAL_SMP_CPU_START to start each CPU. Finally it calls an internal function
Cyg_Scheduler::start_cpu to enter the scheduler for the primary CPU.

Each secondary CPU starts in the HAL, where it completes any per-CPU initialization before calling into the kernel at cyg_k-
ernel_cpu_startup. Here it claims the scheduler lock and calls Cyg_Scheduler::start_cpu.

Cyg_Scheduler::start_cpu is common to both the primary and secondary CPUs. The first thing this code does is to
install an interrupt object for this CPU's inter-CPU interrupt. From this point on the code is the same as for the single CPU
case: an initial thread is chosen and entered.

From this point on the CPUs are all equal, eCos makes no further distinction between the primary and secondary CPUs.
However, the hardware may still distinguish between them as far as interrupt delivery is concerned.

Scheduling

To function correctly an operating system kernel must protect its vital data structures, such as the run queues, from concurrent
access. In a single CPU system the only concurrent activities to worry about are asynchronous interrupts. The kernel can easily
guard its data structures against these by disabling interrupts. However, in a multi-CPU system, this is inadequate since it does
not block access by other CPUs.

The eCos kernel protects its vital data structures using the scheduler lock. In single CPU systems this is a simple counter that is
atomically incremented to acquire the lock and decremented to release it. If the lock is decremented to zero then the scheduler
may be invoked to choose a different thread to run. Because interrupts may continue to be serviced while the scheduler lock is
claimed, ISRs are not allowed to access kernel data structures, or call kernel routines that can. Instead all such operations are
deferred to an associated DSR routine that is run during the lock release operation, when the data structures are in a consistent
state.

By choosing a kernel locking mechanism that does not rely on interrupt manipulation to protect data structures, it is easier to
convert eCos to SMP than would otherwise be the case. The principal change needed to make eCos SMP-safe is to convert the
scheduler lock into a nestable spin lock. This is done by adding a spinlock and a CPU id to the original counter.

9

SMP Support

The algorithm for acquiring the scheduler lock is very simple. If the scheduler lock's CPU id matches the current CPU then
it can just increment the counter and continue. If it does not match, the CPU must spin on the spinlock, after which it may
increment the counter and store its own identity in the CPU id.

To release the lock, the counter is decremented. If it goes to zero the CPU id value must be set to NONE and the spinlock cleared.

To protect these sequences against interrupts, they must be performed with interrupts disabled. However, since these are very
short code sequences, they will not have an adverse effect on the interrupt latency.

Beyond converting the scheduler lock, further preparing the kernel for SMP is a relatively minor matter. The main changes
are to convert various scalar housekeeping variables into arrays indexed by CPU id. These include the current thread pointer,
the need_reschedule flag and the timeslice counter.

At present only the Multi-Level Queue (MLQ) schedulers are capable of supporting SMP configurations. The main change
made to this scheduler is to cope with having several threads in execution at the same time. Running threads are marked with
the CPU that they are executing on. When scheduling a thread, the scheduler skips past any running threads until it finds a
thread that is pending. While not a constant-time algorithm, as in the single CPU case, this is still deterministic, since the worst
case time is bounded by the number of CPUs in the system.

A second change to the scheduler is in the code used to decide when the scheduler should be called to choose a new thread.
The scheduler attempts to keep the n CPUs running the n highest priority threads. Since an event or interrupt on one CPU may
require a reschedule on another CPU, there must be a mechanism for deciding this. The algorithm currently implemented is
very simple. Given a thread that has just been awakened (or had its priority changed), the scheduler scans the CPUs, starting
with the one it is currently running on, for a current thread that is of lower priority than the new one. If one is found then a
reschedule interrupt is sent to that CPU and the scan continues, but now using the current thread of the rescheduled CPU as the
candidate thread. In this way the new thread gets to run as quickly as possible, hopefully on the current CPU, and the remaining
CPUs will pick up the remaining highest priority threads as a consequence of processing the reschedule interrupt.

The final change to the scheduler is in the handling of timeslicing. Only one CPU receives timer interrupts, although all CPUs
must handle timeslicing. To make this work, the CPU that receives the timer interrupt decrements the timeslice counter for all
CPUs, not just its own. If the counter for a CPU reaches zero, then it sends a timeslice interrupt to that CPU. On receiving the
interrupt the destination CPU enters the scheduler and looks for another thread at the same priority to run. This is somewhat
more efficient than distributing clock ticks to all CPUs, since the interrupt is only needed when a timeslice occurs.

In addition to the standard MLQ scheduler, eCosPro also contains an MLQSMP scheduler. This is a derivative of the MLQ
scheduler that has some additional features. The main change is to implement a CPU affinity mechanism. This is implemented
by adding a CPU affinity map to each thread, indicating which CPUs this thread is allowed to run on. When choosing which
thread to run a CPU will only look for threads that have its bit set in their affinity maps. In the future this scheduler will be
extended with support for CPU activation and deactivation. By default, eCosPro uses the MLQSMP scheduler when configured
for SMP operation.

All existing synchronization mechanisms work as before in an SMP system. Additional synchronization mechanisms have
been added to provide explicit synchronization for SMP, in the form of spinlocks.

New functions have also been added to support CPU affinity.

SMP Interrupt Handling
The main area where the SMP nature of a system requires special attention is in device drivers and especially interrupt handling.
It is quite possible for the ISR, DSR and thread components of a device driver to execute on different CPUs. For this reason
it is much more important that SMP-capable device drivers use the interrupt-related functions correctly. Typically a device
driver would use the driver API rather than call the kernel directly, but it is unlikely that anybody would attempt to use a
multiprocessor system without the kernel package.

Two new functions have been added to the Kernel API to do interrupt routing: cyg_interrupt_set_cpu and cyg_in-
terrupt_get_cpu. Once a vector has been routed to a new CPU, all other interrupt masking and configuration operations
are relative to that CPU, where relevant.

There are more details of how interrupts should be handled in SMP systems in the section called “SMP Support”.

10

Name
cyg_thread_create — Create a new thread

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_thread_create (sched_info, entry, entry_data, name, stack_base, stack_size,
handle, thread);

Description
The cyg_thread_create function allows application code and eCos packages to create new threads. In many applications
this only happens during system initialization and all required data is allocated statically. However additional threads can be
created at any time, if necessary. A newly created thread is always in suspended state and will not start running until it has
been resumed via a call to cyg_thread_resume. Also, if threads are created during system initialization then they will not
start running until the eCos scheduler has been started.

The name argument is used primarily for debugging purposes, making it easier to keep track of which cyg_thread structure is
associated with which application-level thread. The kernel configuration option CYGVAR_KERNEL_THREADS_NAME con-
trols whether or not this name is actually used.

On creation each thread is assigned a unique handle, and this will be stored in the location pointed at by the handle argument.
Subsequent operations on this thread including the required cyg_thread_resume should use this handle to identify the
thread.

The kernel requires a small amount of space for each thread, in the form of a cyg_thread data structure, to hold information
such as the current state of that thread. To avoid any need for dynamic memory allocation within the kernel this space has to
be provided by higher-level code, typically in the form of a static variable. The thread argument provides this space.

Thread Entry Point
The entry point for a thread takes the form:

void thread_entry_function(cyg_addrword_t data)
{
 …
}

The second argument to cyg_thread_create is a pointer to such a function. The third argument entry_data is used
to pass additional data to the function. Typically this takes the form of a pointer to some static data, or a small integer, or 0
if the thread does not require any additional data.

If the thread entry function ever returns then this is equivalent to the thread calling cyg_thread_exit. Even though the
thread will no longer run again, it remains registered with the scheduler. If the application needs to re-use the cyg_thread data
structure then a call to cyg_thread_delete is required first.

Thread Priorities
The sched_info argument provides additional information to the scheduler. The exact details depend on the scheduler being
used. For the bitmap and mlqueue schedulers it is a small integer, typically in the range 0 to 31, with 0 being the highest priority.
The lowest priority is normally used only by the system's idle thread. The exact number of priorities is controlled by the kernel
configuration option CYGNUM_KERNEL_SCHED_PRIORITIES.

It is the responsibility of the application developer to be aware of the various threads in the system, including those created by
eCos packages, and to ensure that all threads run at suitable priorities. For threads created by other packages the documentation
provided by those packages should indicate any requirements.

11

Thread creation

The functions cyg_thread_set_priority, cyg_thread_get_priority, and cyg_thread_get_curren-
t_priority can be used to manipulate a thread's priority.

Stacks and Stack Sizes
Each thread needs its own stack for local variables and to keep track of function calls and returns. Again it is expected that this
stack is provided by the calling code, usually in the form of static data, so that the kernel does not need any dynamic memory
allocation facilities. cyg_thread_create takes two arguments related to the stack, a pointer to the base of the stack and
the total size of this stack. On many processors stacks actually descend from the top down, so the kernel will add the stack
size to the base address to determine the starting location.

The exact stack size requirements for any given thread depend on a number of factors. The most important is of course the
code that will be executed in the context of this code: if this involves significant nesting of function calls, recursion, or large
local arrays, then the stack size needs to be set to a suitably high value. There are some architectural issues, for example the
number of CPU registers and the calling conventions will have some effect on stack usage. Also, depending on the configu-
ration, it is possible that some other code such as interrupt handlers will occasionally run on the current thread's stack. This
depends in part on configuration options such as CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK and
CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING.

Determining an application's actual stack size requirements is the responsibility of the application developer, since the kernel
cannot know in advance what code a given thread will run. However, the system does provide some hints about reasonable stack
sizes in the form of two constants: CYGNUM_HAL_STACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPI-
CAL. These are defined by the appropriate HAL package. The MINIMUM value is appropriate for a thread that just runs a single
function and makes very simple system calls. Trying to create a thread with a smaller stack than this is illegal. The TYPICAL
value is appropriate for applications where application calls are nested no more than half a dozen or so levels, and there are
no large arrays on the stack.

If the stack sizes are not estimated correctly and a stack overflow occurs, the probably result is some form of memory corrup-
tion. This can be very hard to track down. The kernel does contain some code to help detect stack overflows, controlled by the
configuration option CYGFUN_KERNEL_THREADS_STACK_CHECKING: a small amount of space is reserved at the stack
limit and filled with a special signature: every time a thread context switch occurs this signature is checked, and if invalid
that is a good indication (but not absolute proof) that a stack overflow has occurred. This form of stack checking is enabled
by default when the system is built with debugging enabled. A related configuration option is CYGFUN_KERNEL_THREAD-
S_STACK_MEASUREMENT: enabling this option means that a thread can call the function cyg_thread_measure_s-
tack_usage to find out the maximum stack usage to date. Note that this is not necessarily the true maximum because, for
example, it is possible that in the current run no interrupt occurred at the worst possible moment.

Valid contexts
cyg_thread_create may be called during initialization and from within thread context. It may not be called from inside
a DSR.

Example
A simple example of thread creation is shown below. This involves creating five threads, one producer and four consumers
or workers. The threads are created in the system's cyg_user_start: depending on the configuration it might be more
appropriate to do this elsewhere, for example inside main.

#include <cyg/hal/hal_arch.h>
#include <cyg/kernel/kapi.h>

// These numbers depend entirely on your application
#define NUMBER_OF_WORKERS 4
#define PRODUCER_PRIORITY 10
#define WORKER_PRIORITY 11
#define PRODUCER_STACKSIZE CYGNUM_HAL_STACK_SIZE_TYPICAL
#define WORKER_STACKSIZE (CYGNUM_HAL_STACK_SIZE_MINIMUM + 1024)

static unsigned char producer_stack[PRODUCER_STACKSIZE];
static unsigned char worker_stacks[NUMBER_OF_WORKERS][WORKER_STACKSIZE];

12

Thread creation

static cyg_handle_t producer_handle, worker_handles[NUMBER_OF_WORKERS];
static cyg_thread producer_thread, worker_threads[NUMBER_OF_WORKERS];

static void
producer(cyg_addrword_t data)
{
 …
}

static void
worker(cyg_addrword_t data)
{
 …
}

void
cyg_user_start(void)
{
 int i;

 cyg_thread_create(PRODUCER_PRIORITY, &producer, 0, "producer",
 producer_stack, PRODUCER_STACKSIZE,
 &producer_handle, &producer_thread);
 cyg_thread_resume(producer_handle);
 for (i = 0; i < NUMBER_OF_WORKERS; i++) {
 cyg_thread_create(WORKER_PRIORITY, &worker, i, "worker",
 worker_stacks[i], WORKER_STACKSIZE,
 &(worker_handles[i]), &(worker_threads[i]));
 cyg_thread_resume(worker_handles[i]);
 }
}

Thread Entry Points and C++
For code written in C++ the thread entry function must be either a static member function of a class or an ordinary function
outside any class. It cannot be a normal member function of a class because such member functions take an implicit additional
argument this, and the kernel has no way of knowing what value to use for this argument. One way around this problem is
to make use of a special static member function, for example:

class fred {
 public:
 void thread_function();
 static void static_thread_aux(cyg_addrword_t);
};

void
fred::static_thread_aux(cyg_addrword_t objptr)
{
 fred* object = static_cast<fred*>(objptr);
 object->thread_function();
}

static fred instance;

extern "C" void
cyg_start(void)
{
 …
 cyg_thread_create(…,
 &fred::static_thread_aux,
 reinterpret_cast<cyg_addrword_t>(&instance),
 …);
 …
}

Effectively this uses the entry_data argument to cyg_thread_create to hold the this pointer. Unfortunately this
approach does require the use of some C++ casts, so some of the type safety that can be achieved when programming in C++
is lost.

13

Name
cyg_thread_self, cyg_thread_idle_thread, cyg_thread_get_stack_base, cyg_thread_get_stack_size, cyg_thread_measure_s-
tack_usage, cyg_thread_get_next, cyg_thread_get_info, cyg_thread_get_id and cyg_thread_find — Get basic thread informa-
tion

Synopsis
#include <cyg/kernel/kapi.h>

cyg_handle_t cyg_thread_self ();

cyg_handle_t cyg_thread_idle_thread ();

cyg_addrword_t cyg_thread_get_stack_base (thread);

cyg_uint32 cyg_thread_get_stack_size (thread);

cyg_uint32 cyg_thread_measure_stack_usage (thread);

cyg_bool cyg_thread_get_next (thread, id);

cyg_bool cyg_thread_get_info (thread, id, info);

cyg_uint16 cyg_thread_get_id (thread);

cyg_handle_t cyg_thread_find (id);

Description
These functions can be used to obtain some basic information about various threads in the system. Typically they serve little
or no purpose in real applications, but they can be useful during debugging.

cyg_thread_self returns a handle corresponding to the current thread. It will be the same as the value filled in by
cyg_thread_create when the current thread was created. This handle can then be passed to other functions such as
cyg_thread_get_priority.

cyg_thread_idle_thread returns the handle corresponding to the idle thread. This thread is created automatically by
the kernel, so application-code has no other way of getting hold of this information.

cyg_thread_get_stack_base and cyg_thread_get_stack_size return information about a specific thread's
stack. The values returned will match the values passed to cyg_thread_create when this thread was created.

cyg_thread_measure_stack_usage is only available if the configuration option CYGFUN_KERNEL_THREADS_S-
TACK_MEASUREMENT is enabled. The return value is the maximum number of bytes of stack space used so far by the specified
thread. Note that this should not be considered a true upper bound, for example it is possible that in the current test run the
specified thread has not yet been interrupted at the deepest point in the function call graph. Never the less the value returned
can give some useful indication of the thread's stack requirements.

cyg_thread_get_next is used to enumerate all the current threads in the system. It should be called initially with the
locations pointed to by thread and id set to zero. On return these will be set to the handle and ID of the first thread. On
subsequent calls, these parameters should be left set to the values returned by the previous call. The handle and ID of the next
thread in the system will be installed each time, until a false return value indicates the end of the list.

cyg_thread_get_info fills in the cyg_thread_info structure with information about the thread described by the thread
and id arguments. The information returned includes the thread's handle and id, its state and name, priorities and stack para-
meters. If the thread does not exist the function returns false.

The cyg_thread_info structure is defined as follows by <cyg/kernel/kapi.h>, but may be extended in future with addi-
tional members, and so its size should not be relied upon:

14

Thread information

typedef struct
{
 cyg_handle_t handle;
 cyg_uint16 id;
 cyg_uint32 state;
 char *name;
 cyg_priority_t set_pri;
 cyg_priority_t cur_pri;
 cyg_addrword_t stack_base;
 cyg_uint32 stack_size;
 cyg_uint32 stack_used;
} cyg_thread_info;

cyg_thread_get_id returns the unique thread ID for the thread identified by thread.

cyg_thread_find returns a handle for the thread whose ID is id. If no such thread exists, a zero handle is returned.

Valid contexts
cyg_thread_self may only be called from thread context. cyg_thread_idle_thread may be called from thread or
DSR context, but only after the system has been initialized. cyg_thread_get_stack_base, cyg_thread_get_s-
tack_size and cyg_thread_measure_stack_usage may be called any time after the specified thread has been cre-
ated, but measuring stack usage involves looping over at least part of the thread's stack so this should normally only be done
from thread context. cyg_thread_get_id may be called from any context as long as the caller can guarantee that the
supplied thread handle remains valid.

Examples
A simple example of the use of the cyg_thread_get_next and cyg_thread_get_info follows:

#include <cyg/kernel/kapi.h>
#include <stdio.h>

void show_threads(void)
{
 cyg_handle_t thread = 0;
 cyg_uint16 id = 0;

 while(cyg_thread_get_next(&thread, &id))
 {
 cyg_thread_info info;

 if(!cyg_thread_get_info(thread, id, &info))
 break;

 printf("ID: %04x name: %10s pri: %d\n",
 info.id, info.name?info.name:"----", info.set_pri);
 }
}

15

Name
cyg_thread_yield, cyg_thread_delay, cyg_thread_suspend, cyg_thread_resume, cyg_thread_release, cyg_thread_set_affinity
and cyg_thread_get_affinity — Control whether or not a thread is running

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_thread_yield ();

void cyg_thread_delay (delay);

void cyg_thread_suspend (thread);

void cyg_thread_resume (thread);

void cyg_thread_release (thread);

void cyg_thread_set_affinity (thread, mask);

void cyg_thread_get_affinity (thread, *mask);

Description
These functions provide some control over whether or not a particular thread can run. Apart from the required use of
cyg_thread_resume to start a newly-created thread, application code should normally use proper synchronization prim-
itives such as condition variables or mail boxes.

Yield
cyg_thread_yield allows a thread to relinquish control of the processor to some other runnable thread which has the
same priority. This can have no effect on any higher-priority thread since, if such a thread were runnable, the current thread
would have been preempted in its favour. Similarly it can have no effect on any lower-priority thread because the current thread
will always be run in preference to those. As a consequence this function is only useful in configurations with a scheduler that
allows multiple threads to run at the same priority, for example the mlqueue scheduler. If instead the bitmap scheduler was
being used then cyg_thread_yield() would serve no purpose.

Even if a suitable scheduler such as the mlqueue scheduler has been configured, cyg_thread_yield will still rarely prove
useful: instead timeslicing will be used to ensure that all threads of a given priority get a fair slice of the available processor
time. However it is possible to disable timeslicing via the configuration option CYGSEM_KERNEL_SCHED_TIMESLICE, in
which case cyg_thread_yield can be used to implement a form of cooperative multitasking.

Delay
cyg_thread_delay allows a thread to suspend until the specified number of clock ticks have occurred. For example, if a
value of 1 is used and the system clock runs at a frequency of 100Hz then the thread will sleep for up to 10 milliseconds. This
functionality depends on the presence of a real-time system clock, as controlled by the configuration option CYGVAR_KER-
NEL_COUNTERS_CLOCK.

If the application requires delays measured in milliseconds or similar units rather than in clock ticks, some calculations are
needed to convert between these units as described in Clocks. Usually these calculations can be done by the application devel-
oper, or at compile-time. Performing such calculations prior to every call to cyg_thread_delay adds unnecessary over-
head to the system.

Suspend and Resume
Associated with each thread is a suspend counter. When a thread is first created this counter is initialized to 1.
cyg_thread_suspend can be used to increment the suspend counter, and cyg_thread_resume decrements it. The

16

Thread control

scheduler will never run a thread with a non-zero suspend counter. Therefore a newly created thread will not run until it has
been resumed.

An occasional problem with the use of suspend and resume functionality is that a thread gets suspended more times than it is
resumed and hence never becomes runnable again. This can lead to very confusing behaviour. To help with debugging such
problems the kernel provides a configuration option CYGNUM_KERNEL_MAX_SUSPEND_COUNT_ASSERT which imposes
an upper bound on the number of suspend calls without matching resumes, with a reasonable default value. This functionality
depends on infrastructure assertions being enabled.

Releasing a Blocked Thread
When a thread is blocked on a synchronization primitive such as a semaphore or a mutex, or when it is waiting for an alarm
to trigger, it can be forcibly woken up using cyg_thread_release. Typically this will call the affected synchronization
primitive to return false, indicating that the operation was not completed successfully. This function has to be used with great
care, and in particular it should only be used on threads that have been designed appropriately and check all return codes. If
instead it were to be used on, say, an arbitrary thread that is attempting to claim a mutex then that thread might not bother
to check the result of the mutex lock operation - usually there would be no reason to do so. Therefore the thread will now
continue running in the false belief that it has successfully claimed a mutex lock, and the resulting behaviour is undefined.
If the system has been built with assertions enabled then it is possible that an assertion will trigger when the thread tries to
release the mutex it does not actually own.

The main use of cyg_thread_release is in the POSIX compatibility layer, where it is used in the implementation of per-
thread signals and cancellation handlers.

Thread Affinity
In SMP configurations, using the MLQSMP scheduler, it is possible to control the set of CPUs on which a thread can be
run. This can be controlled by using cyg_thread_set_affinity. In addition to the thread handle, this function takes
a bitmask that has bit n set if that thread can run on CPU n and clear if it cannot. Bits corresponding to CPUs that are not
present are ignored. A mask of all ones allows the thread to run on any CPU and is the default setting. A value of all zeroes
will prevent the thread running at all. The function cyg_thread_get_affinity returns the current setting of the thread's
affinity mask.

These functions are also present in non-SMP configurations to retain compatibility. In this case cyg_thread_set_affin-
ity is a no-op, and cyg_thread_get_affinity returns a mask with just the bit for CPU 0 set.

Valid contexts
cyg_thread_yield can only be called from thread context, A DSR must always run to completion and cannot yield the
processor to some thread. cyg_thread_suspend, cyg_thread_resume, and cyg_thread_release may be called
from thread or DSR context.

17

Name
cyg_thread_exit, cyg_thread_kill and cyg_thread_delete — Allow threads to terminate

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_thread_exit ();

void cyg_thread_kill (thread);

cyg_bool_t cyg_thread_delete (thread);

Description
In many embedded systems the various threads are allocated statically, created during initialization, and never need to terminate.
This avoids any need for dynamic memory allocation or other resource management facilities. However if a given application
does have a requirement that some threads be created dynamically, must terminate, and their resources such as the stack be
reclaimed, then the kernel provides the functions cyg_thread_exit, cyg_thread_kill, and cyg_thread_delete.

cyg_thread_exit allows a thread to terminate itself, thus ensuring that it will not be run again by the scheduler.
However the cyg_thread data structure passed to cyg_thread_create remains in use, and the handle returned by
cyg_thread_create remains valid. This allows other threads to perform certain operations on the terminated thread, for
example to determine its stack usage via cyg_thread_measure_stack_usage. When the handle and cyg_thread struc-
ture are no longer required, cyg_thread_delete should be called to release these resources. If the stack was dynamically
allocated then this should not be freed until after the call to cyg_thread_delete.

Alternatively, one thread may use cyg_thread_kill on another This has much the same effect as the affected thread
calling cyg_thread_exit. However killing a thread is generally rather dangerous because no attempt is made to unlock
any synchronization primitives currently owned by that thread or release any other resources that thread may have claimed.
Therefore use of this function should be avoided, and cyg_thread_exit is preferred. cyg_thread_kill cannot be
used by a thread to kill itself.

cyg_thread_delete should be used on a thread after it has exited and is no longer required. After this call the thread handle
is no longer valid, and both the cyg_thread structure and the thread stack can be re-used or freed. If cyg_thread_delete
is invoked on a thread that is still running then there is an implicit call to cyg_thread_kill. This function returns true if
the delete was successful, and false if the delete did not happen. The delete may not happen for example if the thread being
destroyed is a lower priority thread than the running thread, and will thus not wake up in order to exit until it is rescheduled.

Valid contexts
cyg_thread_exit, cyg_thread_kill and cyg_thread_delete can only be called from thread context.

18

Name
cyg_thread_get_priority, cyg_thread_get_current_priority and cyg_thread_set_priority — Examine and manipulate thread pri-
orities

Synopsis
#include <cyg/kernel/kapi.h>

cyg_priority_t cyg_thread_get_priority (thread);

cyg_priority_t cyg_thread_get_current_priority (thread);

void cyg_thread_set_priority (thread, priority);

Description
Typical schedulers use the concept of a thread priority to determine which thread should run next. Exactly what this priority
consists of will depend on the scheduler, but a typical implementation would be a small integer in the range 0 to 31, with
0 being the highest priority. Usually only the idle thread will run at the lowest priority. The exact number of priority levels
available depends on the configuration, typically the option CYGNUM_KERNEL_SCHED_PRIORITIES.

cyg_thread_get_priority can be used to determine the priority of a thread, or more correctly the value last used in a
cyg_thread_set_priority call or when the thread was first created. In some circumstances it is possible that the thread
is actually running at a higher priority. For example, if it owns a mutex and priority ceilings or inheritance is being used to pre-
vent priority inversion problems, then the thread's priority may have been boosted temporarily. cyg_thread_get_cur-
rent_priority returns the real current priority.

In many applications appropriate thread priorities can be determined and allocated statically. However, if it is necessary for a
thread's priority to change at run-time then the cyg_thread_set_priority function provides this functionality.

Valid contexts
cyg_thread_get_priority and cyg_thread_get_current_priority can be called from thread or DSR con-
text, although the latter is rarely useful. cyg_thread_set_priority should also only be called from thread context.

19

Name
cyg_thread_new_data_index, cyg_thread_free_data_index, cyg_thread_get_data, cyg_thread_get_data_ptr and
cyg_thread_set_data — Manipulate per-thread data

Synopsis
#include <cyg/kernel/kapi.h>

cyg_ucount32 cyg_thread_new_data_index ();

void cyg_thread_free_data_index (index);

cyg_addrword_t cyg_thread_get_data (index);

cyg_addrword_t* cyg_thread_get_data_ptr (index);

void cyg_thread_set_data (index, data);

Description
In some applications and libraries it is useful to have some data that is specific to each thread. For example, many of the
functions in the POSIX compatibility package return -1 to indicate an error and store additional information in what appears
to be a global variable errno. However, if multiple threads make concurrent calls into the POSIX library and if errno were
really a global variable then a thread would have no way of knowing whether the current errno value really corresponded
to the last POSIX call it made, or whether some other thread had run in the meantime and made a different POSIX call which
updated the variable. To avoid such confusion errno is instead implemented as a per-thread variable, and each thread has
its own instance.

The support for per-thread data can be disabled via the configuration option CYGVAR_KERNEL_THREADS_DATA. If enabled,
each cyg_thread data structure holds a small array of words. The size of this array is determined by the configuration option
CYGNUM_KERNEL_THREADS_DATA_MAX. When a thread is created the array is filled with zeroes.

If an application needs to use per-thread data then it needs an index into this array which has not yet been allocated
to other code. This index can be obtained by calling cyg_thread_new_data_index, and then used in subsequent
calls to cyg_thread_get_data. Typically indices are allocated during system initialization and stored in static vari-
ables. If for some reason a slot in the array is no longer required and can be re-used then it can be released by calling
cyg_thread_free_data_index. When a slot index is allocated, then if the CYGVAR_KERNEL_THREADS_LIST op-
tion is enabled, the corresponding array entry for all threads will be reset back to zero in case that slot had been previously used.

The current per-thread data in a given slot can be obtained using cyg_thread_get_data. This implicitly operates on
the current thread, and its single argument should be an index as returned by cyg_thread_new_data_index. The per-
thread data can be updated using cyg_thread_set_data. If a particular item of per-thread data is needed repeatedly then
cyg_thread_get_data_ptr can be used to obtain the address of the data, and indirecting through this pointer allows
the data to be examined and updated efficiently.

Some packages, for example the error and POSIX packages, have pre-allocated slots in the array of per-thread data. These
slots should not normally be used by application code, and instead slots should be allocated during initialization by a call
to cyg_thread_new_data_index. If it is known that, for example, the configuration will never include the POSIX
compatibility package then application code may instead decide to re-use the slot allocated to that package, CYGNUM_KER-
NEL_THREADS_DATA_POSIX, but obviously this does involve a risk of strange and subtle bugs if the application's require-
ments ever change.

Valid contexts
Typically cyg_thread_new_data_index is only called during initialization, but may also be called at any time in thread
context. cyg_thread_free_data_index, if used at all, can also be called during initialization or from thread context.
cyg_thread_get_data, cyg_thread_get_data_ptr, and cyg_thread_set_data may only be called from
thread context because they implicitly operate on the current thread.

20

Name
cyg_thread_add_destructor and cyg_thread_rem_destructor — Call functions on thread termination

Synopsis
#include <cyg/kernel/kapi.h> typedef void (*cyg_thread_destructor_fn)(cyg_addrword_t);

cyg_bool_t cyg_thread_add_destructor (fn, data);

cyg_bool_t cyg_thread_rem_destructor (fn, data);

Description
These functions are provided for cases when an application requires a function to be automatically called when a thread exits.
This is often useful when, for example, freeing up resources allocated by the thread.

This support must be enabled with the configuration option CYGPKG_KERNEL_THREADS_DESTRUCTORS. When enabled,
you may register a function of type cyg_thread_destructor_fn to be called on thread termination using cyg_thread_ad-
d_destructor. You may also provide it with a piece of arbitrary information in the data argument which will be passed
to the destructor function fn when the thread terminates. If you no longer wish to call a function previous registered with
cyg_thread_add_destructor, you may call cyg_thread_rem_destructor with the same parameters used to
register the destructor function. Both these functions return true on success and false on failure.

By default, thread destructors are per-thread, which means that registering a destructor function only registers that function for
the current thread. In other words, each thread has its own list of destructors. Alternatively you may disable the configuration
option CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD in which case any registered destructors will be run
when any threads exit. In other words, the thread destructor list is global and all threads have the same destructors.

There is a limit to the number of destructors which may be registered, which can be controlled with the CYGNUM_KER-
NEL_THREADS_DESTRUCTORS configuration option. Increasing this value will very slightly increase the amount of memory
in use, and when CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD is enabled, the amount of memory used
per thread will increase. When the limit has been reached, cyg_thread_add_destructor will return false.

Valid contexts
When CYGSEM_KERNEL_THREADS_DESTRUCTORS_PER_THREAD is enabled, these functions must only be called
from a thread context as they implicitly operate on the current thread. When CYGSEM_KERNEL_THREADS_DESTRUC-
TORS_PER_THREAD is disabled, these functions may be called from thread or DSR context, or at initialization time.

21

Name
cyg_exception_set_handler, cyg_exception_clear_handler and cyg_exception_call_handler — Handle processor exceptions

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_exception_set_handler (exception_number, new_handler, new_data, old_handler,
old_data);

void cyg_exception_clear_handler (exception_number);

void cyg_exception_call_handler (thread, exception_number, exception_info);

Description

Sometimes code attempts operations that are not legal on the current hardware, for example dividing by zero, or accessing data
through a pointer that is not properly aligned. When this happens the hardware will raise an exception. This is very similar to
an interrupt, but happens synchronously with code execution rather than asynchronously and hence can be tied to the thread
that is currently running.

The exceptions that can be raised depend very much on the hardware, especially the processor. The corresponding documenta-
tion should be consulted for more details. Alternatively the architectural HAL header file hal_intr.h, or one of the variant
or platform header files it includes, will contain appropriate definitions. The details of how to handle exceptions, including
whether or not it is possible to recover from them, also depend on the hardware.

Exception handling is optional, and can be disabled through the configuration option CYGPKG_KERNEL_EXCEPTIONS. If an
application has been exhaustively tested and is trusted never to raise a hardware exception then this option can be disabled and
code and data sizes will be reduced somewhat. If exceptions are left enabled then the system will provide default handlers for
the various exceptions, but these do nothing. Even the specific type of exception is ignored, so there is no point in attempting to
decode this and distinguish between say a divide-by-zero and an unaligned access. If the application installs its own handlers and
wants details of the specific exception being raised then the configuration option CYGSEM_KERNEL_EXCEPTIONS_DECODE
has to be enabled.

An alternative handler can be installed using cyg_exception_set_handler. This requires a code for the exception, a
function pointer for the new exception handler, and a parameter to be passed to this handler. Details of the previously installed
exception handler will be returned via the remaining two arguments, allowing that handler to be reinstated, or null pointers can
be used if this information is of no interest. An exception handling function should take the following form:

void
my_exception_handler(cyg_addrword_t data, cyg_code_t exception, cyg_addrword_t info)
{
 …
}

The data argument corresponds to the new_data parameter supplied to cyg_exception_set_handler. The exception
code is provided as well, in case a single handler is expected to support multiple exceptions. The info argument will depend
on the hardware and on the specific exception.

cyg_exception_clear_handler can be used to restore the default handler, if desired. It is also possible for software
to raise an exception and cause the current handler to be invoked, but generally this is useful only for testing.

By default the system maintains a single set of global exception handlers. However, since exceptions occur synchronously it
is sometimes useful to handle them on a per-thread basis, and have a different set of handlers for each thread. This behaviour
can be obtained by disabling the configuration option CYGSEM_KERNEL_EXCEPTIONS_GLOBAL. If per-thread exception
handlers are being used then cyg_exception_set_handler and cyg_exception_clear_handler apply to the
current thread. Otherwise they apply to the global set of handlers.

22

Exception handling

Caution

In the current implementation cyg_exception_call_handler can only be used on the current thread.
There is no support for delivering an exception to another thread.

Note

Exceptions at the eCos kernel level refer specifically to hardware-related events such as unaligned accesses to
memory or division by zero. There is no relation with other concepts that are also known as exceptions, for
example the throw and catch facilities associated with C++.

Valid contexts
If the system is configured with a single set of global exception handlers then cyg_exception_set_handler and
cyg_exception_clear_handler may be called during initialization or from thread context. If instead per-thread ex-
ception handlers are being used then it is not possible to install new handlers during initialization because the functions operate
implicitly on the current thread, so they can only be called from thread context. cyg_exception_call_handler should
only be called from thread context.

23

Name
cyg_counter_create, cyg_counter_delete, cyg_counter_current_value, cyg_counter_set_value and cyg_counter_tick — Count
event occurrences

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_counter_create (handle, counter);

void cyg_counter_delete (counter);

cyg_tick_count_t cyg_counter_current_value (counter);

void cyg_counter_set_value (counter, new_value);

void cyg_counter_tick (counter);

Description
Kernel counters can be used to keep track of how many times a particular event has occurred. Usually this event is an external
signal of some sort. The most common use of counters is in the implementation of clocks, but they can be useful with other
event sources as well. Application code can attach alarms to counters, causing a function to be called when some number of
events have occurred.

A new counter is initialized by a call to cyg_counter_create. The first argument is used to return a handle to the new
counter which can be used for subsequent operations. The second argument allows the application to provide the memory
needed for the object, thus eliminating any need for dynamic memory allocation within the kernel. If a counter is no longer
required and does not have any alarms attached then cyg_counter_delete can be used to release the resources, allowing
the cyg_counter data structure to be re-used.

Initializing a counter does not automatically attach it to any source of events. Instead some other code needs to call
cyg_counter_tick whenever a suitable event occurs, which will cause the counter to be incremented and may cause
alarms to trigger. The current value associated with the counter can be retrieved using cyg_counter_current_value
and modified with cyg_counter_set_value. Typically the latter function is only used during initialization, for example
to set a clock to wallclock time, but it can be used to reset a counter if necessary. However cyg_counter_set_value will
never trigger any alarms. A newly initialized counter has a starting value of 0.

The kernel provides two different implementations of counters. The default is CYGIMP_KERNEL_COUNTERS_SIN-
GLE_LIST which stores all alarms attached to the counter on a single list. This is simple and usually efficient. However when a
tick occurs the kernel code has to traverse this list, typically at DSR level, so if there are a significant number of alarms attached
to a single counter this will affect the system's dispatch latency. The alternative implementation, CYGIMP_KERNEL_COUN-
TERS_MULTI_LIST, stores each alarm in one of an array of lists such that at most one of the lists needs to be searched
per clock tick. This involves extra code and data, but can improve real-time responsiveness in some circumstances. Another
configuration option that is relevant here is CYGIMP_KERNEL_COUNTERS_SORT_LIST, which is disabled by default. This
provides a trade off between doing work whenever a new alarm is added to a counter and doing work whenever a tick occurs.
It is application-dependent which of these is more appropriate.

Valid contexts
cyg_counter_create is typically called during system initialization but may also be called in thread context. Similar-
ly cyg_counter_delete may be called during initialization or in thread context. cyg_counter_current_value,
cyg_counter_set_value and cyg_counter_tick may be called during initialization or from thread or DSR context.
In fact, cyg_counter_tick is usually called from inside a DSR in response to an external event of some sort.

24

Name
cyg_clock_create, cyg_clock_delete, cyg_clock_to_counter, cyg_clock_set_resolution, cyg_clock_get_resolution, cyg_re-
al_time_clock and cyg_current_time — Provide system clocks

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_clock_create (resolution, handle, clock);

void cyg_clock_delete (clock);

void cyg_clock_to_counter (clock, counter);

void cyg_clock_set_resolution (clock, resolution);

cyg_resolution_t cyg_clock_get_resolution (clock);

cyg_handle_t cyg_real_time_clock ();

cyg_tick_count_t cyg_current_time ();

Description
In the eCos kernel clock objects are a special form of counter objects. They are attached to a specific type of hardware, clocks
that generate ticks at very specific time intervals, whereas counters can be used with any event source.

In a default configuration the kernel provides a single clock instance, the real-time clock. This gets used for timeslicing and for
operations that involve a timeout, for example cyg_semaphore_timed_wait. If this functionality is not required it can
be removed from the system using the configuration option CYGVAR_KERNEL_COUNTERS_CLOCK. Otherwise the real-time
clock can be accessed by a call to cyg_real_time_clock, allowing applications to attach alarms, and the current counter
value can be obtained using cyg_current_time.

Applications can create and destroy additional clocks if desired, using cyg_clock_create and cyg_clock_delete.
The first argument to cyg_clock_create specifies the resolution this clock will run at. The second argument is used
to return a handle for this clock object, and the third argument provides the kernel with the memory needed to hold
this object. This clock will not actually tick by itself. Instead it is the responsibility of application code to initialize a
suitable hardware timer to generate interrupts at the appropriate frequency, install an interrupt handler for this, and call
cyg_counter_tick from inside the DSR. Associated with each clock is a kernel counter, a handle for which can be ob-
tained using cyg_clock_to_counter.

Clock Resolutions and Ticks
At the kernel level all clock-related operations including delays, timeouts and alarms work in units of clock ticks, rather than
in units of seconds or milliseconds. If the calling code, whether the application or some other package, needs to operate using
units such as milliseconds then it has to convert from these units to clock ticks.

The main reason for this is that it accurately reflects the hardware: calling something like nanosleep with a delay of ten
nanoseconds will not work as intended on any real hardware because timer interrupts simply will not happen that frequently;
instead calling cyg_thread_delay with the equivalent delay of 0 ticks gives a much clearer indication that the application
is attempting something inappropriate for the target hardware. Similarly, passing a delay of five ticks to cyg_thread_delay
makes it fairly obvious that the current thread will be suspended for somewhere between four and five clock periods, as opposed
to passing 50000000 to nanosleep which suggests a granularity that is not actually provided.

A secondary reason is that conversion between clock ticks and units such as milliseconds can be somewhat expensive, and
whenever possible should be done at compile-time or by the application developer rather than at run-time. This saves code
size and CPU cycles.

25

Clocks

The information needed to perform these conversions is the clock resolution. This is a structure with two fields, a dividend
and a divisor, and specifies the number of nanoseconds between clock ticks. For example a clock that runs at 100Hz will have
10 milliseconds between clock ticks, or 10000000 nanoseconds. The ratio between the resolution's dividend and divisor will
therefore be 10000000 to 1, and typical values for these might be 1000000000 and 100. If the clock runs at a different frequency,
say 60Hz, the numbers could be 1000000000 and 60 respectively. Given a delay in nanoseconds, this can be converted to clock
ticks by multiplying with the the divisor and then dividing by the dividend. For example a delay of 50 milliseconds corresponds
to 50000000 nanoseconds, and with a clock frequency of 100Hz this can be converted to ((50000000 * 100) / 1000000000) = 5
clock ticks. Given the large numbers involved this arithmetic normally has to be done using 64-bit precision and the long long
data type, but allows code to run on hardware with unusual clock frequencies.

The default frequency for the real-time clock on any platform is usually about 100Hz, but platform-specific documenta-
tion should be consulted for this information. Usually it is possible to override this default by configuration options, but
again this depends on the capabilities of the underlying hardware. The resolution for any clock can be obtained using
cyg_clock_get_resolution. For clocks created by application code, there is also a function cyg_clock_set_res-
olution. This does not affect the underlying hardware timer in any way, it merely updates the information that will be re-
turned in subsequent calls to cyg_clock_get_resolution: changing the actual underlying clock frequency will require
appropriate manipulation of the timer hardware.

Valid contexts
cyg_clock_create is usually only called during system initialization (if at all), but may also be called from thread context.
The same applies to cyg_clock_delete. The remaining functions may be called during initialization, from thread context,
or from DSR context, although it should be noted that there is no locking between cyg_clock_get_resolution and
cyg_clock_set_resolution so theoretically it is possible that the former returns an inconsistent data structure.

26

Name
cyg_alarm_create, cyg_alarm_delete, cyg_alarm_initialize, cyg_alarm_enable and cyg_alarm_disable — Run an alarm func-
tion when a number of events have occurred

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_alarm_create (counter, alarmfn, data, handle, alarm);

void cyg_alarm_delete (alarm);

void cyg_alarm_initialize (alarm, trigger, interval);

void cyg_alarm_enable (alarm);

void cyg_alarm_disable (alarm);

Description
Kernel alarms are used together with counters and allow for action to be taken when a certain number of events have occurred. If
the counter is associated with a clock then the alarm action happens when the appropriate number of clock ticks have occurred,
in other words after a certain period of time.

Setting up an alarm involves a two-step process. First the alarm must be created with a call to cyg_alarm_create. This
takes five arguments. The first identifies the counter to which the alarm should be attached. If the alarm should be attached
to the system's real-time clock then cyg_real_time_clock and cyg_clock_to_counter can be used to get hold of
the appropriate handle. The next two arguments specify the action to be taken when the alarm is triggered, in the form of a
function pointer and some data. This function should take the form:

void
alarm_handler(cyg_handle_t alarm, cyg_addrword_t data)
{
 …
}

The data argument passed to the alarm function corresponds to the third argument passed to cyg_alarm_create. The
fourth argument to cyg_alarm_create is used to return a handle to the newly-created alarm object, and the final argument
provides the memory needed for the alarm object and thus avoids any need for dynamic memory allocation within the kernel.

Once an alarm has been created a further call to cyg_alarm_initialize is needed to activate it. The first argument
specifies the alarm. The second argument indicates the number of events, for example clock ticks, that need to occur before
the alarm triggers. If the third argument is 0 then the alarm will only trigger once. A non-zero value specifies that the alarm
should trigger repeatedly, with an interval of the specified number of events.

Alarms can be temporarily disabled and reenabled using cyg_alarm_disable and cyg_alarm_enable. Alternatively
another call to cyg_alarm_initialize can be used to modify the behaviour of an existing alarm. If an alarm is no longer
required then the associated resources can be released using cyg_alarm_delete.

If two or more alarms are registered for precisely the same counter tick, the order of execution of the alarm functions is
unspecified.

Handler context
The alarm function is invoked when a counter tick occurs, in other words when there is a call to cyg_counter_tick, and
will happen in the same context. If the alarm is associated with the system's real-time clock then by default this will be DSR
context, following a clock interrupt. If the alarm is associated with some other application-specific counter then the details will
depend on how that counter is updated.

27

Alarms

It is also possible to configure the kernel to call kernel RTC alarms in a thread context, instead of a DSR context. This is enabled
with the option "Call RTC events from a thread" (CYGIMP_KERNEL_COUNTERS_RTC_TICK_THREAD). When enabled, a
dedicated thread is created for running kernel alarm handlers. This can be useful in improving deterministic real-time behaviour
as lengthy alarm handlers in a DSR context could disrupt normal scheduling.

As an additional variation, normally the scheduler is locked while running all the alarm handlers, preventing DSRs (and any
higher priority threads) from running. However if the "Reduce DSR latency" option is enabled, the scheduler will briefly be
unlocked at a safe point between each alarm handler call, in order to allow DSRs to run. This reduces the worst case DSR
latency to that of the longest single running alarm handler. However note that if enabled, this option effects all counters and
clocks in the system, not just those associated with the kernel RTC.

Valid calling contexts
cyg_alarm_createcyg_alarm_initialize is typically called during system initialization but may also be called
in thread context. The same applies to cyg_alarm_delete. cyg_alarm_initialize, cyg_alarm_disable and
cyg_alarm_enable may be called during initialization or from thread or DSR context, but cyg_alarm_enable and
cyg_alarm_initialize may be expensive operations and should only be called when necessary.

28

Name
cyg_mutex_init, cyg_mutex_destroy, cyg_mutex_lock, cyg_mutex_timed_lock, cyg_mutex_trylock, cyg_mutex_unlock,
cyg_mutex_release, cyg_mutex_set_ceiling and cyg_mutex_set_protocol — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_mutex_init (mutex);

void cyg_mutex_destroy (mutex);

cyg_bool_t cyg_mutex_lock (mutex);

cyg_bool_t cyg_mutex_timed_lock (mutex, abstime);

cyg_bool_t cyg_mutex_trylock (mutex);

void cyg_mutex_unlock (mutex);

void cyg_mutex_release (mutex);

void cyg_mutex_set_ceiling (mutex, priority);

void cyg_mutex_set_protocol (mutex, protocol/);

Description
The purpose of mutexes is to let threads share resources safely. If two or more threads attempt to manipulate a data structure
with no locking between them then the system may run for quite some time without apparent problems, but sooner or later the
data structure will become inconsistent and the application will start behaving strangely and is quite likely to crash. The same
can apply even when manipulating a single variable or some other resource. For example, consider:

static volatile int counter = 0;

void
process_event(void)
{
 …

 counter++;
}

Assume that after a certain period of time counter has a value of 42, and two threads A and B running at the same priority
call process_event. Typically thread A will read the value of counter into a register, increment this register to 43, and
write this updated value back to memory. Thread B will do the same, so usually counter will end up with a value of 44.
However if thread A is timesliced after reading the old value 42 but before writing back 43, thread B will still read back the
old value and will also write back 43. The net result is that the counter only gets incremented once, not twice, which depending
on the application may prove disastrous.

Sections of code like the above which involve manipulating shared data are generally known as critical regions. Code should
claim a lock before entering a critical region and release the lock when leaving. Mutexes provide an appropriate synchronization
primitive for this.

static volatile int counter = 0;
static cyg_mutex_t lock;

void
process_event(void)
{
 …

29

Mutexes

 cyg_mutex_lock(&lock);
 counter++;
 cyg_mutex_unlock(&lock);
}

A mutex must be initialized before it can be used, by calling cyg_mutex_init. This takes a pointer to a cyg_mutex_t data
structure which is typically statically allocated, and may be part of a larger data structure. If a mutex is no longer required and
there are no threads waiting on it then cyg_mutex_destroy can be used.

The main functions for using a mutex are cyg_mutex_lock and cyg_mutex_unlock. In normal operation cyg_mu-
tex_lock will return success after claiming the mutex lock, blocking if another thread currently owns the mutex. However
the lock operation may fail if other code calls cyg_mutex_release or cyg_thread_release, so if these functions
may get used then it is important to check the return value. The current owner of a mutex should call cyg_mutex_unlock
when a lock is no longer required. This operation must be performed by the owner, not by another thread.

The kernel supplies a variant of cyg_mutex_lock, cyg_mutex_timed_wait, which can be used to wait for the lock
or until some number of clock ticks have passed. The number of ticks is specified as an absolute, not relative, tick count and
so in order to wait for a relative number of ticks, the return value of the cyg_current_time() function should be added
to determine the absolute number of ticks. If this function returns true then the mutex has been claimed, if it returns false
then either a timeout has occurred or the thread has been released.

cyg_mutex_trylock is a variant of cyg_mutex_lock that will always return immediately, returning success or failure
as appropriate. This function is rarely useful. Typical code locks a mutex just before entering a critical region, so if the lock
cannot be claimed then there may be nothing else for the current thread to do. Use of this function may also cause a form
of priority inversion if the owner runs at a lower priority, because the priority inheritance code will not be triggered. Instead
the current thread continues running, preventing the owner from getting any CPU time, completing the critical region, and
releasing the mutex.

cyg_mutex_release can be used to wake up all threads that are currently blocked inside a call to cyg_mutex_lock
for a specific mutex. These lock calls will return failure. The current mutex owner is not affected.

Priority Inversion
The use of mutexes gives rise to a problem known as priority inversion. In a typical scenario this requires three threads A,
B, and C, running at high, medium and low priority respectively. Thread A and thread B are temporarily blocked waiting for
some event, so thread C gets a chance to run, needs to enter a critical region, and locks a mutex. At this point threads A and
B are woken up - the exact order does not matter. Thread A needs to claim the same mutex but has to wait until C has left
the critical region and can release the mutex. Meanwhile thread B works on something completely different and can continue
running without problems. Because thread C is running a lower priority than B it will not get a chance to run until B blocks for
some reason, and hence thread A cannot run either. The overall effect is that a high-priority thread A cannot proceed because
of a lower priority thread B, and priority inversion has occurred.

In simple applications it may be possible to arrange the code such that priority inversion cannot occur, for example by ensuring
that a given mutex is never shared by threads running at different priority levels. However this may not always be possible even
at the application level. In addition mutexes may be used internally by underlying code, for example the memory allocation
package, so careful analysis of the whole system would be needed to be sure that priority inversion cannot occur. Instead it is
common practice to use one of two techniques: priority ceilings and priority inheritance.

Priority ceilings involve associating a priority with each mutex. Usually this will match the highest priority thread that will
ever lock the mutex. When a thread running at a lower priority makes a successful call to cyg_mutex_lock or cyg_mu-
tex_trylock its priority will be boosted to that of the mutex. For example, given the previous example the priority associ-
ated with the mutex would be that of thread A, so for as long as it owns the mutex thread C will run in preference to thread
B. When C releases the mutex its priority drops to the normal value again, allowing A to run and claim the mutex. Setting the
priority for a mutex involves a call to cyg_mutex_set_ceiling, which is typically called during initialization. It is pos-
sible to change the ceiling dynamically but this will only affect subsequent lock operations, not the current owner of the mutex.

Priority ceilings are very suitable for simple applications, where for every thread in the system it is possible to work out which
mutexes will be accessed. For more complicated applications this may prove difficult, especially if thread priorities change
at run-time. An additional problem occurs for any mutexes outside the application, for example used internally within eCos

30

Mutexes

packages. A typical eCos package will be unaware of the details of the various threads in the system, so it will have no way
of setting suitable ceilings for its internal mutexes. If those mutexes are not exported to application code then using priority
ceilings may not be viable. The kernel does provide a configuration option CYGSEM_KERNEL_SYNCH_MUTEX_PRIORI-
TY_INVERSION_PROTOCOL_DEFAULT_PRIORITY that can be used to set the default priority ceiling for all mutexes,
which may prove sufficient.

The alternative approach is to use priority inheritance: if a thread calls cyg_mutex_lock for a mutex that it currently owned
by a lower-priority thread, then the owner will have its priority raised to that of the current thread. Often this is more efficient
than priority ceilings because priority boosting only happens when necessary, not for every lock operation, and the required
priority is determined at run-time rather than by static analysis. However there are complications when multiple threads running
at different priorities try to lock a single mutex, or when the current owner of a mutex then tries to lock additional mutexes,
and this makes the implementation significantly more complicated than priority ceilings.

There are a number of configuration options associated with priority inversion. First, if after careful analysis it
is known that priority inversion cannot arise then the component CYGSEM_KERNEL_SYNCH_MUTEX_PRIORI-
TY_INVERSION_PROTOCOL can be disabled. More commonly this component will be enabled, and one
of either CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT or CYGSEM_KER-
NEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_CEILING will be selected, so that one of the two protocols
is available for all mutexes. It is possible to select multiple protocols, so that some mutexes can have priority ceilings while oth-
ers use priority inheritance or no priority inversion protection at all. Obviously this flexibility will add to the code size and to the
cost of mutex operations. The default for all mutexes will be controlled by CYGSEM_KERNEL_SYNCH_MUTEX_PRIORI-
TY_INVERSION_PROTOCOL_DEFAULT, and can be changed at run-time using cyg_mutex_set_protocol.

Priority inversion problems can also occur with other synchronization primitives such as semaphores. For example there could
be a situation where a high-priority thread A is waiting on a semaphore, a low-priority thread C needs to do just a little bit
more work before posting the semaphore, but a medium priority thread B is running and preventing C from making progress.
However a semaphore does not have the concept of an owner, so there is no way for the system to know that it is thread C which
would next post to the semaphore. Hence there is no way for the system to boost the priority of C automatically and prevent the
priority inversion. Instead situations like this have to be detected by application developers and appropriate precautions have
to be taken, for example making sure that all the threads run at suitable priorities at all times.

Warning

The default implementation of priority inheritance within the eCos kernel has been simplified in a way that may
cause behaviour which is unexpected for developers. Problems will only arise if a thread owns one mutex, then
attempts to claim another mutex, and there are other threads attempting to lock these same mutexes. Although
the system will continue running, the current owners of the various mutexes involved may not run at the priority
they should.

The reason for this is that, with the default implementation of priority inheritance, a thread which has its priority
boosted due to it having locked two or more mutexes will not have its priority reduced until both mutexes are
unlocked. In other words, that thread will continue running at the highest priority of any of the threads waiting
for a mutex it holds, and will keep running at that priority until it has unlocked all the mutexes which it holds.

This situation rarely arises in real-world code because a mutex should generally only be locked for a small critical
region, and there is no need to manipulate other shared resources inside this region. However eCosPro offers an
alternative implementation which does allow priorities to be reduced in a fair and accurate way when mutexes are
unlocked. This alternative is not enabled by default, but can be enabled with the "Fair priority inheritance seman-
tics" (CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT_ACCURATE)
CDL configuration option. However the trade-off of providing a fair and accurate behaviour of priority inher-
itance is that mutex unlock operations then have a non-deterministic element as each mutex held by a thread
must be examined to determine the priority of the highest waiting thread. Fortunately, it is unlikely in real-world
applications that more than a few mutexes will be held simultaneously, so that list should be short; and therefore
this trade-off may be acceptable for many developers.

Warning

Support for priority ceilings and priority inheritance is not implemented for all schedulers. In particular neither
priority ceilings nor priority inheritance are currently available for the bitmap scheduler.

31

Mutexes

Alternatives
In nearly all circumstances, if two or more threads need to share some data then protecting this data with a mutex is the
correct thing to do. Mutexes are the only primitive that combine a locking mechanism and protection against priority inversion
problems. However this functionality is achieved at a cost, and in exceptional circumstances such as an application's most
critical inner loop it may be desirable to use some other means of locking.

When a critical region is very very small it is possible to lock the scheduler, thus ensuring that no other thread can run until the
scheduler is unlocked again. This is achieved with calls to cyg_scheduler_lock and cyg_scheduler_unlock. If the
critical region is sufficiently small then this can actually improve both performance and dispatch latency because cyg_mu-
tex_lock also locks the scheduler for a brief period of time. This approach will not work on SMP systems because another
thread may already be running on a different processor and accessing the critical region.

Another way of avoiding the use of mutexes is to make sure that all threads that access a particular critical region run at the same
priority and configure the system with timeslicing disabled (CYGSEM_KERNEL_SCHED_TIMESLICE). Without timeslicing
a thread can only be preempted by a higher-priority one, or if it performs some operation that can block. This approach requires
that none of the operations in the critical region can block, so for example it is not legal to call cyg_semaphore_wait.
It is also vulnerable to any changes in the configuration or to the various thread priorities: any such changes may now have
unexpected side effects. It will not work on SMP systems.

Recursive Mutexes
The implementation of mutexes within the eCos kernel does not support recursive locks. If a thread has locked a mutex and
then attempts to lock the mutex again, typically as a result of some recursive call in a complicated call graph, then either an
assertion failure will be reported or the thread will deadlock. This behaviour is deliberate. When a thread has just locked a
mutex associated with some data structure, it can assume that that data structure is in a consistent state. Before unlocking the
mutex again it must ensure that the data structure is again in a consistent state. Recursive mutexes allow a thread to make
arbitrary changes to a data structure, then in a recursive call lock the mutex again while the data structure is still inconsistent.
The net result is that code can no longer make any assumptions about data structure consistency, which defeats the purpose
of using mutexes.

Valid contexts
cyg_mutex_init, cyg_mutex_set_ceiling and cyg_mutex_set_protocol are normally called during initial-
ization but may also be called from thread context. The remaining functions should only be called from thread context. Mutexes
serve as a mutual exclusion mechanism between threads, and cannot be used to synchronize between threads and the interrupt
handling subsystem. If a critical region is shared between a thread and a DSR then it must be protected using cyg_sched-
uler_lock and cyg_scheduler_unlock. If a critical region is shared between a thread and an ISR, it must be protected
by disabling or masking interrupts. Obviously these operations must be used with care because they can affect dispatch and
interrupt latencies.

32

Name
cyg_cond_init, cyg_cond_destroy, cyg_cond_wait, cyg_cond_timed_wait, cyg_cond_signal and cyg_cond_broadcast — Syn-
chronization primitive

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_cond_init (cond, mutex);

void cyg_cond_destroy (cond);

cyg_bool_t cyg_cond_wait (cond);

cyg_bool_t cyg_cond_timed_wait (cond, abstime);

void cyg_cond_signal (cond);

void cyg_cond_broadcast (cond);

Description
Condition variables are used in conjunction with mutexes to implement long-term waits for some condition to become true.
For example consider a set of functions that control access to a pool of resources:

cyg_mutex_t res_lock;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)
{
 cyg_mutex_init(&res_lock);
 <fill pool with resources>
}

res_t res_allocate(void)
{
 res_t res;

 cyg_mutex_lock(&res_lock); // lock the mutex

 if(res_count == 0) // check for free resource
 res = RES_NONE; // return RES_NONE if none
 else
 {
 res_count--; // allocate a resources
 res = res_pool[res_count];
 }

 cyg_mutex_unlock(&res_lock); // unlock the mutex

 return res;
}

void res_free(res_t res)
{
 cyg_mutex_lock(&res_lock); // lock the mutex

 res_pool[res_count] = res; // free the resource
 res_count++;

 cyg_mutex_unlock(&res_lock); // unlock the mutex
}

These routines use the variable res_count to keep track of the resources available. If there are none then res_allocate
returns RES_NONE, which the caller must check for and take appropriate error handling actions.

33

Condition Variables

Now suppose that we do not want to return RES_NONE when there are no resources, but want to wait for one to become
available. This is where a condition variable can be used:

cyg_mutex_t res_lock;
cyg_cond_t res_wait;
res_t res_pool[RES_MAX];
int res_count = RES_MAX;

void res_init(void)
{
 cyg_mutex_init(&res_lock);
 cyg_cond_init(&res_wait, &res_lock);
 <fill pool with resources>
}

res_t res_allocate(void)
{
 res_t res;

 cyg_mutex_lock(&res_lock); // lock the mutex

 while(res_count == 0) // wait for a resources
 cyg_cond_wait(&res_wait);

 res_count--; // allocate a resource
 res = res_pool[res_count];

 cyg_mutex_unlock(&res_lock); // unlock the mutex

 return res;
}

void res_free(res_t res)
{
 cyg_mutex_lock(&res_lock); // lock the mutex

 res_pool[res_count] = res; // free the resource
 res_count++;

 cyg_cond_signal(&res_wait); // wake up any waiting allocators

 cyg_mutex_unlock(&res_lock); // unlock the mutex
}

In this version of the code, when res_allocate detects that there are no resources it calls cyg_cond_wait. This does
two things: it unlocks the mutex, and puts the calling thread to sleep on the condition variable. When res_free is eventually
called, it puts a resource back into the pool and calls cyg_cond_signal to wake up any thread waiting on the condition vari-
able. When the waiting thread eventually gets to run again, it will re-lock the mutex before returning from cyg_cond_wait.

There are two important things to note about the way in which this code works. The first is that the mutex unlock and wait in
cyg_cond_wait are atomic: no other thread can run between the unlock and the wait. If this were not the case then a call to
res_free by that thread would release the resource but the call to cyg_cond_signal would be lost, and the first thread
would end up waiting when there were resources available.

The second feature is that the call to cyg_cond_wait is in a while loop and not a simple if statement. This is because
of the need to re-lock the mutex in cyg_cond_wait when the signalled thread reawakens. If there are other threads already
queued to claim the lock then this thread must wait. Depending on the scheduler and the queue order, many other threads may
have entered the critical section before this one gets to run. So the condition that it was waiting for may have been rendered
false. Using a loop around all condition variable wait operations is the only way to guarantee that the condition being waited
for is still true after waiting.

Before a condition variable can be used it must be initialized with a call to cyg_cond_init. This requires two arguments,
memory for the data structure and a pointer to an existing mutex. This mutex will not be initialized by cyg_cond_init,
instead a separate call to cyg_mutex_init is required. If a condition variable is no longer required and there are no threads
waiting on it then cyg_cond_destroy can be used.

When a thread needs to wait for a condition to be satisfied it can call cyg_cond_wait. The thread must have already
locked the mutex that was specified in the cyg_cond_init call. This mutex will be unlocked and the current thread will be

34

Condition Variables

suspended in an atomic operation. When some other thread performs a signal or broadcast operation the current thread will be
woken up and automatically reclaim ownership of the mutex again, allowing it to examine global state and determine whether
or not the condition is now satisfied.

The kernel supplies a variant of this function, cyg_cond_timed_wait, which can be used to wait on the condition variable
or until some number of clock ticks have occurred. The number of ticks is specified as an absolute, not relative tick count, and
so in order to wait for a relative number of ticks, the return value of the cyg_current_time() function should be added
to determine the absolute number of ticks. The mutex will always be reclaimed before cyg_cond_timed_wait returns,
regardless of whether it was a result of a signal operation or a timeout.

There is no cyg_cond_trywait function because this would not serve any purpose. If a thread has locked the mutex and
determined that the condition is satisfied, it can just release the mutex and return. There is no need to perform any operation
on the condition variable.

When a thread changes shared state that may affect some other thread blocked on a condition variable, it should call either
cyg_cond_signal or cyg_cond_broadcast. These calls do not require ownership of the mutex, but usually the mutex
will have been claimed before updating the shared state. A signal operation only wakes up the first thread that is waiting on the
condition variable, while a broadcast wakes up all the threads. If there are no threads waiting on the condition variable at the
time, then the signal or broadcast will have no effect: past signals are not counted up or remembered in any way. Typically a
signal should be used when all threads will check the same condition and at most one thread can continue running. A broadcast
should be used if threads check slightly different conditions, or if the change to the global state might allow multiple threads
to proceed.

Valid contexts
cyg_cond_init is typically called during system initialization but may also be called in thread context. The same applies to
cyg_cond_delete. cyg_cond_wait and cyg_cond_timedwait may only be called from thread context since they
may block. cyg_cond_signal and cyg_cond_broadcast may be called from thread or DSR context.

35

Name
cyg_semaphore_init, cyg_semaphore_destroy, cyg_semaphore_wait, cyg_semaphore_timed_wait, cyg_semaphore_post and
cyg_semaphore_peek — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_semaphore_init (sem, val);

void cyg_semaphore_destroy (sem);

cyg_bool_t cyg_semaphore_wait (sem);

cyg_bool_t cyg_semaphore_timed_wait (sem, abstime);

cyg_bool_t cyg_semaphore_trywait (sem);

void cyg_semaphore_post (sem);

void cyg_semaphore_peek (sem, val);

Description
Counting semaphores are a synchronization primitive that allow threads to wait until an event has occurred. The event may
be generated by a producer thread, or by a DSR in response to a hardware interrupt. Associated with each semaphore is an
integer counter that keeps track of the number of events that have not yet been processed. If this counter is zero, an attempt by
a consumer thread to wait on the semaphore will block until some other thread or a DSR posts a new event to the semaphore.
If the counter is greater than zero then an attempt to wait on the semaphore will consume one event, in other words decrement
the counter, and return immediately. Posting to a semaphore will wake up the first thread that is currently waiting, which will
then resume inside the semaphore wait operation and decrement the counter again.

Another use of semaphores is for certain forms of resource management. The counter would correspond to how many of a
certain type of resource are currently available, with threads waiting on the semaphore to claim a resource and posting to release
the resource again. In practice condition variables are usually much better suited for operations like this.

cyg_semaphore_init is used to initialize a semaphore. It takes two arguments, a pointer to a cyg_sem_t structure and an
initial value for the counter. Note that semaphore operations, unlike some other parts of the kernel API, use pointers to data
structures rather than handles. This makes it easier to embed semaphores in a larger data structure. The initial counter value
can be any number, zero, positive or negative, but typically a value of zero is used to indicate that no events have occurred yet.

cyg_semaphore_wait is used by a consumer thread to wait for an event. If the current counter is greater than 0, in other
words if the event has already occurred in the past, then the counter will be decremented and the call will return immediately.
Otherwise the current thread will be blocked until there is a cyg_semaphore_post call.

cyg_semaphore_post is called when an event has occurs. This increments the counter and wakes up the first thread waiting
on the semaphore (if any). Usually that thread will then continue running inside cyg_semaphore_wait and decrement
the counter again. However other scenarios are possible. For example the thread calling cyg_semaphore_post may be
running at high priority, some other thread running at medium priority may be about to call cyg_semaphore_wait when it
next gets a chance to run, and a low priority thread may be waiting on the semaphore. What will happen is that the current high
priority thread continues running until it is descheduled for some reason, then the medium priority thread runs and its call to
cyg_semaphore_wait succeeds immediately, and later on the low priority thread runs again, discovers a counter value of
0, and blocks until another event is posted. If there are multiple threads blocked on a semaphore then the configuration option
CYGIMP_KERNEL_SCHED_SORTED_QUEUES determines which one will be woken up by a post operation.

cyg_semaphore_wait returns a boolean. Normally it will block until it has successfully decremented the counter, retrying
as necessary, and return success. However the wait operation may be aborted by a call to cyg_thread_release, and
cyg_semaphore_wait will then return false.

36

Semaphores

cyg_semaphore_timed_wait is a variant of cyg_semaphore_wait. It can be used to wait until either an event has
occurred or a number of clock ticks have happened. The number of ticks is specified as an absolute, not relative tick count, and
so in order to wait for a relative number of ticks, the return value of the cyg_current_time() function should be added to
determine the absolute number of ticks. The function returns success if the semaphore wait operation succeeded, or false if the
operation timed out or was aborted by cyg_thread_release. If support for the real-time clock has been removed from
the current configuration then this function will not be available. cyg_semaphore_trywait is another variant which will
always return immediately rather than block, again returning success or failure. If cyg_semaphore_timedwait is given
a timeout in the past, it operates like cyg_semaphore_trywait.

cyg_semaphore_peek can be used to get hold of the current counter value. This function is rarely useful except for debug-
ging purposes since the counter value may change at any time if some other thread or a DSR performs a semaphore operation.

Valid contexts
cyg_semaphore_init is normally called during initialization but may also be called from thread context. cyg_sema-
phore_wait and cyg_semaphore_timed_wait may only be called from thread context because these operations may
block. cyg_semaphore_trywait, cyg_semaphore_post and cyg_semaphore_peek may be called from thread
or DSR context.

37

Name
cyg_mbox_create, cyg_mbox_delete, cyg_mbox_get, cyg_mbox_timed_get, cyg_mbox_tryget, cyg_mbox_peek_item,
cyg_mbox_put, cyg_mbox_timed_put, cyg_mbox_tryput, cyg_mbox_peek, cyg_mbox_waiting_to_get and cyg_mbox_wait-
ing_to_put — Synchronization primitive

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_mbox_create (handle, mbox);

void cyg_mbox_delete (mbox);

void* cyg_mbox_get (mbox);

void* cyg_mbox_timed_get (mbox, abstime);

void* cyg_mbox_tryget (mbox);

cyg_count32 cyg_mbox_peek (mbox);

void* cyg_mbox_peek_item (mbox);

cyg_bool_t cyg_mbox_put (mbox, item);

cyg_bool_t cyg_mbox_timed_put (mbox, item, abstime);

cyg_bool_t cyg_mbox_tryput (mbox, item);

cyg_bool_t cyg_mbox_waiting_to_get (mbox);

cyg_bool_t cyg_mbox_waiting_to_put (mbox);

Description
Mail boxes are a synchronization primitive. Like semaphores they can be used by a consumer thread to wait until a certain
event has occurred, but the producer also has the ability to transmit some data along with each event. This data, the message,
is normally a pointer to some data structure. It is stored in the mail box itself, so the producer thread that generates the event
and provides the data usually does not have to block until some consumer thread is ready to receive the event. However a mail
box will only have a finite capacity, typically ten slots. Even if the system is balanced and events are typically consumed at
least as fast as they are generated, a burst of events can cause the mail box to fill up and the generating thread will block until
space is available again. This behaviour is very different from semaphores, where it is only necessary to maintain a counter
and hence an overflow is unlikely.

Before a mail box can be used it must be created with a call to cyg_mbox_create. Each mail box has a unique handle
which will be returned via the first argument and which should be used for subsequent operations. cyg_mbox_create also
requires an area of memory for the kernel structure, which is provided by the cyg_mbox second argument. If a mail box is no
longer required then cyg_mbox_delete can be used. This will simply discard any messages that remain posted.

The main function for waiting on a mail box is cyg_mbox_get. If there is a pending message because of a call to cyg_m-
box_put then cyg_mbox_get will return immediately with the message that was put into the mail box. Otherwise this func-
tion will block until there is a put operation. Exceptionally the thread can instead be unblocked by a call to cyg_thread_re-
lease, in which case cyg_mbox_get will return a null pointer. It is assumed that there will never be a call to cyg_m-
box_put with a null pointer, because it would not be possible to distinguish between that and a release operation. Messages
are always retrieved in the order in which they were put into the mail box, and there is no support for messages with different
priorities.

There are two variants of cyg_mbox_get. The first, cyg_mbox_timed_get will wait until either a message is available
or until a number of clock ticks have occurred. The number of ticks is specified as an absolute, not relative tick count, and

38

Mail boxes

so in order to wait for a relative number of ticks, the return value of the cyg_current_time() function should be added
to determine the absolute number of ticks. If no message is posted within the timeout then a null pointer will be returned.
cyg_mbox_tryget is a non-blocking operation which will either return a message if one is available or a null pointer.

New messages are placed in the mail box by calling cyg_mbox_put or one of its variants. The main put function takes two
arguments, a handle to the mail box and a pointer for the message itself. If there is a spare slot in the mail box then the new
message can be placed there immediately, and if there is a waiting thread it will be woken up so that it can receive the message.
If the mail box is currently full then cyg_mbox_put will block until there has been a get operation and a slot is available.
The cyg_mbox_timed_put variant imposes a time limit on the put operation, returning false if the operation cannot be
completed within the specified number of clock ticks and as for cyg_mbox_timed_get this is an absolute tick count. The
cyg_mbox_tryput variant is non-blocking, returning false if there are no free slots available and the message cannot be
posted without blocking.

There are a further four functions available for examining the current state of a mailbox. The results of these functions must be
used with care because usually the state can change at any time as a result of activity within other threads, but they may prove
occasionally useful during debugging or in special situations. cyg_mbox_peek returns a count of the number of messages
currently stored in the mail box. cyg_mbox_peek_item retrieves the first message, but it remains in the mail box until a
get operation is performed. cyg_mbox_waiting_to_get and cyg_mbox_waiting_to_put indicate whether or not
there are currently threads blocked in a get or a put operation on a given mail box.

The number of slots in each mail box is controlled by a configuration option CYGNUM_KERNEL_SYNCH_M-
BOX_QUEUE_SIZE, with a default value of 10. All mail boxes are the same size.

Valid contexts
cyg_mbox_create is typically called during system initialization but may also be called in thread context. The remaining
functions are normally called only during thread context. Of special note is cyg_mbox_put which can be a blocking oper-
ation when the mail box is full, and which therefore must never be called from DSR context. It is permitted to call cyg_m-
box_tryput, cyg_mbox_tryget, and the information functions from DSR context but this is rarely useful.

39

Name
cyg_flag_init, cyg_flag_destroy, cyg_flag_setbits, cyg_flag_maskbits, cyg_flag_wait, cyg_flag_timed_wait, cyg_flag_poll,
cyg_flag_peek and cyg_flag_waiting — Synchronization primitive

Synopsis

#include <cyg/kernel/kapi.h>

void cyg_flag_init (flag);

void cyg_flag_destroy (flag);

void cyg_flag_setbits (flag, value);

void cyg_flag_maskbits (flag, value);

cyg_flag_value_t cyg_flag_wait (flag, pattern, mode);

cyg_flag_value_t cyg_flag_timed_wait (flag, pattern, mode, abstime);

cyg_flag_value_t cyg_flag_poll (flag, pattern, mode);

cyg_flag_value_t cyg_flag_peek (flag);

cyg_bool_t cyg_flag_waiting (flag);

Description
Event flags allow a consumer thread to wait for one of several different types of event to occur. Alternatively it is possible
to wait for some combination of events. The implementation is relatively straightforward. Each event flag contains a 32-bit
integer. Application code associates these bits with specific events, so for example bit 0 could indicate that an I/O operation
has completed and data is available, while bit 1 could indicate that the user has pressed a start button. A producer thread or a
DSR can cause one or more of the bits to be set, and a consumer thread currently waiting for these bits will be woken up.

Unlike semaphores no attempt is made to keep track of event counts. It does not matter whether a given event occurs once or
multiple times before being consumed, the corresponding bit in the event flag will change only once. However semaphores
cannot easily be used to handle multiple event sources. Event flags can often be used as an alternative to condition variables,
although they cannot be used for completely arbitrary conditions and they only support the equivalent of condition variable
broadcasts, not signals.

Before an event flag can be used it must be initialized by a call to cyg_flag_init. This takes a pointer to a cyg_flag_t data
structure, which can be part of a larger structure. All 32 bits in the event flag will be set to 0, indicating that no events have
yet occurred. If an event flag is no longer required it can be cleaned up with a call to cyg_flag_destroy, allowing the
memory for the cyg_flag_t structure to be re-used.

A consumer thread can wait for one or more events by calling cyg_flag_wait. This takes three arguments. The first
identifies a particular event flag. The second is some combination of bits, indicating which events are of interest. The final
argument should be one of the following:

CYG_FLAG_WAITMODE_AND

The call to cyg_flag_wait will block until all the specified event bits are set. The event flag is not cleared when the
wait succeeds, in other words all the bits remain set.

CYG_FLAG_WAITMODE_OR

The call will block until at least one of the specified event bits is set. The event flag is not cleared on return.

40

Event Flags

CYG_FLAG_WAITMODE_AND | CYG_FLAG_WAITMODE_CLR

The call will block until all the specified event bits are set, and the entire event flag is cleared when the call succeeds. Note
that if this mode of operation is used then a single event flag cannot be used to store disjoint sets of events, even though
enough bits might be available. Instead each disjoint set of events requires its own event flag.

CYG_FLAG_WAITMODE_OR | CYG_FLAG_WAITMODE_CLR

The call will block until at least one of the specified event bits is set, and the entire flag is cleared when the call succeeds.

A call to cyg_flag_wait normally blocks until the required condition is satisfied. It will return the value of the event flag
at the point that the operation succeeded, which may be a superset of the requested events. If cyg_thread_release is
used to unblock a thread that is currently in a wait operation, the cyg_flag_wait call will instead return 0.

cyg_flag_timed_wait is a variant of cyg_flag_wait which adds a timeout: the wait operation must succeed within
the specified number of ticks, or it will fail with a return value of 0. The number of ticks is specified as an absolute, not relative
tick count, and so in order to wait for a relative number of ticks, the return value of the cyg_current_time() function
should be added to determine the absolute number of ticks. cyg_flag_poll is a non-blocking variant: if the wait operation
can succeed immediately it acts like cyg_flag_wait, otherwise it returns immediately with a value of 0.

cyg_flag_setbits is called by a producer thread or from inside a DSR when an event occurs. The specified bits are
or'd into the current event flag value. This may cause one or more waiting threads to be woken up, if their conditions are
now satisfied. How many threads are awoken depends on the use of CYG_FLAG_WAITMODE_CLR. The queue of threads
waiting on the flag is walked to find threads which now have their wake condition fulfilled. If the awoken thread has passed
CYG_FLAG_WAITMODE_CLR the walking of the queue is terminated, otherwise the walk continues. Thus if no threads have
passed CYG_FLAG_WAITMORE_CLR all threads with fulfilled conditions will be awoken. If CYG_FLAG_WAITMODE_CLR
is passed by threads with fulfilled conditions, the number of awoken threads will depend on the order the threads are in the
queue.

cyg_flag_maskbits can be used to clear one or more bits in the event flag. This can be called from a producer when
a particular condition is no longer satisfied, for example when the user is no longer pressing a particular button. It can also
be used by a consumer thread if CYG_FLAG_WAITMODE_CLR was not used as part of the wait operation, to indicate that
some but not all of the active events have been consumed. If there are multiple consumer threads performing wait operations
without using CYG_FLAG_WAITMODE_CLR then typically some additional synchronization such as a mutex is needed to
prevent multiple threads consuming the same event.

Two additional functions are provided to query the current state of an event flag. cyg_flag_peek returns the current value
of the event flag, and cyg_flag_waiting can be used to find out whether or not there are any threads currently blocked
on the event flag. Both of these functions must be used with care because other threads may be operating on the event flag.

Valid contexts
cyg_flag_init is typically called during system initialization but may also be called in thread context. The same applies
to cyg_flag_destroy. cyg_flag_wait and cyg_flag_timed_wait may only be called from thread context. The
remaining functions may be called from thread or DSR context.

41

Name
cyg_spinlock_create, cyg_spinlock_destroy, cyg_spinlock_spin, cyg_spinlock_clear, cyg_spinlock_test, cyg_spin-
lock_spin_intsave and cyg_spinlock_clear_intsave — Low-level Synchronization Primitive

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_spinlock_init (lock, locked);

void cyg_spinlock_destroy (lock);

void cyg_spinlock_spin (lock);

void cyg_spinlock_clear (lock);

cyg_bool_t cyg_spinlock_try (lock);

cyg_bool_t cyg_spinlock_test (lock);

void cyg_spinlock_spin_intsave (lock, istate);

void cyg_spinlock_clear_intsave (lock, istate);

Description
Spinlocks provide an additional synchronization primitive for applications running on SMP systems. They operate at a lower
level than the other primitives such as mutexes, and for most purposes the higher-level primitives should be preferred. However
there are some circumstances where a spinlock is appropriate, especially when interrupt handlers and threads need to share
access to hardware, and on SMP systems the kernel implementation itself depends on spinlocks.

Essentially a spinlock is just a simple flag. When code tries to claim a spinlock it checks whether or not the flag is already set.
If not then the flag is set and the operation succeeds immediately. The exact implementation of this is hardware-specific, for
example it may use a test-and-set instruction to guarantee the desired behaviour even if several processors try to access the
spinlock at the exact same time. If it is not possible to claim a spinlock then the current thread spins in a tight loop, repeatedly
checking the flag until it is clear. This behaviour is very different from other synchronization primitives such as mutexes,
where contention would cause a thread to be suspended. The assumption is that a spinlock will only be held for a very short
time. If claiming a spinlock could cause the current thread to be suspended then spinlocks could not be used inside interrupt
handlers, which is not acceptable.

This does impose a constraint on any code which uses spinlocks. Specifically it is important that spinlocks are held only for a
short period of time, typically just some dozens of instructions. Otherwise another processor could be blocked on the spinlock
for a long time, unable to do any useful work. It is also important that a thread which owns a spinlock does not get preempted
because that might cause another processor to spin for a whole timeslice period, or longer. One way of achieving this is to
disable interrupts on the current processor, and the function cyg_spinlock_spin_intsave is provided to facilitate this.

Spinlocks should not be used on single-processor systems. Consider a high priority thread which attempts to claim a spinlock
already held by a lower priority thread: it will just loop forever and the lower priority thread will never get another chance to
run and release the spinlock. Even if the two threads were running at the same priority, the one attempting to claim the spinlock
would spin until it was timesliced and a lot of CPU time would be wasted. If an interrupt handler tried to claim a spinlock
owned by a thread, the interrupt handler would loop forever. Therefore spinlocks are only appropriate for SMP systems where
the current owner of a spinlock can continue running on a different processor.

Before a spinlock can be used it must be initialized by a call to cyg_spinlock_init. This takes two arguments, a pointer
to a cyg_spinlock_t data structure, and a flag to specify whether the spinlock starts off locked or unlocked. If a spinlock
is no longer required then it can be destroyed by a call to cyg_spinlock_destroy.

There are two routines for claiming a spinlock: cyg_spinlock_spin and cyg_spinlock_spin_intsave. The for-
mer can be used when it is known the current code will not be preempted, for example because it is running in an interrupt

42

Spinlocks

handler or because interrupts are disabled. The latter will disable interrupts in addition to claiming the spinlock, so is safe to
use in all circumstances. The previous interrupt state is returned via the second argument, and should be used in a subsequent
call to cyg_spinlock_clear_intsave.

Similarly there are two routines for releasing a spinlock: cyg_spinlock_clear and cyg_spin-
lock_clear_intsave. Typically the former will be used if the spinlock was claimed by a call to cyg_spinlock_spin,
and the latter when cyg_spinlock_intsave was used.

There are two additional routines. cyg_spinlock_try is a non-blocking version of cyg_spinlock_spin: if possi-
ble the lock will be claimed and the function will return true; otherwise the function will return immediately with failure.
cyg_spinlock_test can be used to find out whether or not the spinlock is currently locked. This function must be used
with care because, especially on a multiprocessor system, the state of the spinlock can change at any time.

Spinlocks should only be held for a short period of time, and attempting to claim a spinlock will never cause a thread to be
suspended. This means that there is no need to worry about priority inversion problems, and concepts such as priority ceilings
and inheritance do not apply.

Valid contexts
All of the spinlock functions can be called from any context, including ISR and DSR context. Typically cyg_spin-
lock_init is only called during system initialization.

43

Name
cyg_scheduler_start, cyg_scheduler_lock, cyg_scheduler_unlock, cyg_scheduler_safe_lock, cyg_scheduler_read_lock,
cyg_thread_lock_preemption, cyg_thread_unlock_preemption and cyg_thread_get_preemption_lock — Control the state of
the scheduler

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_scheduler_start ();

void cyg_scheduler_lock ();

void cyg_scheduler_unlock ();

cyg_ucount32 cyg_scheduler_read_lock ();

void cyg_thread_lock_preemption ();

void cyg_thread_unlock_preemption ();

cyg_ucount32 cyg_thread_get_preemption_lock ();

Description
cyg_scheduler_start should only be called once, to mark the end of system initialization. In typical configurations it is
called automatically by the system startup, but some applications may bypass the standard startup in which case cyg_sched-
uler_start will have to be called explicitly. The call will enable system interrupts, allowing I/O operations to commence.
Then the scheduler will be invoked and control will be transferred to the highest priority runnable thread. The call will never
return.

The various data structures inside the eCos kernel must be protected against concurrent updates. Consider a call to cyg_sem-
aphore_post which causes a thread to be woken up: the semaphore data structure must be updated to remove the thread
from its queue; the scheduler data structure must also be updated to mark the thread as runnable; it is possible that the newly
runnable thread has a higher priority than the current one, in which case preemption is required. If in the middle of the sem-
aphore post call an interrupt occurred and the interrupt handler tried to manipulate the same data structures, for example by
making another thread runnable, then it is likely that the structures will be left in an inconsistent state and the system will fail.

To prevent such problems the kernel contains a special lock known as the scheduler lock. A typical kernel function such as
cyg_semaphore_post will claim the scheduler lock, do all its manipulation of kernel data structures, and then release the
scheduler lock. The current thread cannot be preempted while it holds the scheduler lock. If an interrupt occurs and a DSR
is supposed to run to signal that some event has occurred, that DSR is postponed until the scheduler unlock operation. This
prevents concurrent updates of kernel data structures.

The kernel exports three routines for manipulating the scheduler lock. cyg_scheduler_lock can be called to claim the
lock. On return it is guaranteed that the current thread will not be preempted, and that no other code is manipulating any
kernel data structures. cyg_scheduler_unlock can be used to release the lock, which may cause the current thread to
be preempted. cyg_scheduler_read_lock can be used to query the current state of the scheduler lock. This function
should never be needed because well-written code should always know whether or not the scheduler is currently locked, but
may prove useful during debugging.

The implementation of the scheduler lock involves a simple counter. Code can call cyg_scheduler_lock multiple times,
causing the counter to be incremented each time, as long as cyg_scheduler_unlock is called the same number of times.
This behaviour is different from mutexes where an attempt by a thread to lock a mutex multiple times will result in deadlock
or an assertion failure.

Typical application code should not use the scheduler lock. Instead other synchronization primitives such as mutexes and
semaphores should be used. While the scheduler is locked the current thread cannot be preempted, so any higher priority threads
will not be able to run. Also no DSRs can run, so device drivers may not be able to service I/O requests. However there is one

44

Scheduler Control

situation where locking the scheduler is appropriate: if some data structure needs to be shared between an application thread
and a DSR associated with some interrupt source, the thread can use the scheduler lock to prevent concurrent invocations of
the DSR and then safely manipulate the structure. It is desirable that the scheduler lock is held for only a short period of time,
typically some tens of instructions. In exceptional cases there may also be some performance-critical code where it is more
appropriate to use the scheduler lock rather than a mutex, because the former is more efficient.

Valid contexts
cyg_scheduler_start can only be called during system initialization, since it marks the end of that phase. The remaining
functions may be called from thread or DSR context. Locking the scheduler from inside the DSR has no practical effect because
the lock is claimed automatically by the interrupt subsystem before running DSRs, but allows functions to be shared between
normal thread code and DSRs.

Pre-emption lock
Separate but similar to the scheduler lock is the thread pre-emption lock. This provides a more light-weight method of pre-
venting pre-emption by higher priority threads. So even if a higher priority thread becomes runnable (on this CPU, if SMP)
the current thread will not be descheduled until the pre-emption lock has been released. While the pre-emption lock is held,
DSRs (and ISRs) are still permitted to run.

Like the scheduler lock, the pre-emption lock is a count and so it can be called multiple times, and only when the final level
is unlocked will pre-emption become possible again. A thread should only invoke the lock for itself, not on another thread,
as the lock is not protected from access by multiple threads. If a thread blocks or goes to sleep, then it will be descheduled in
the normal way and another thread can run. Although, once it is rescheduled, its pre-emption lock state will be preserved; so
if pre-emption was disabled before, it will become disabled again when rescheduled. In an SMP system, locking pre-emption
will only affect operations on the current CPU, it will not affect threads on other CPUs.

If timeslicing is enabled and the current thread has locked pre-emption, then even if the thread has run out of time in its timeslice,
it will still not be descheduled. Instead, it will run until it unlocks pre-emption.

Clearly, as with the scheduler lock, the pre-emption lock can severely affect proper real-time operation and so it should be
avoided if other synchronization methods, such as mutexes, semaphores etc. can be used instead. If it is used, the length of
time pre-emption is disabled should be kept to a minimum.

The availability of pre-emption locking can be controlled with the CDL configuration option CYGFUN_KER-
NEL_THREAD_PREEMPTION_LOCK, which defaults to enabled.

45

Name
cyg_interrupt_create, cyg_interrupt_delete, cyg_interrupt_attach, cyg_interrupt_detach, cyg_interrupt_configure, cyg_inter-
rupt_acknowledge, cyg_interrupt_enable, cyg_interrupt_disable, cyg_interrupt_dsr_count, cyg_interrupt_mask, cyg_interrup-
t_mask_intunsafe, cyg_interrupt_unmask, cyg_interrupt_unmask_intunsafe, cyg_interrupt_set_cpu, cyg_interrupt_get_cpu,
cyg_interrupt_get_vsr and cyg_interrupt_set_vsr — Manage interrupt handlers

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_interrupt_create (vector, priority, data, isr, dsr, handle, intr);

void cyg_interrupt_delete (interrupt);

void cyg_interrupt_attach (interrupt);

void cyg_interrupt_detach (interrupt);

void cyg_interrupt_configure (vector, level, up);

void cyg_interrupt_acknowledge (vector);

void cyg_interrupt_disable ();

void cyg_interrupt_enable ();

cyg_ucount32 cyg_interrupt_dsr_count (interrupt);

void cyg_interrupt_mask (vector);

void cyg_interrupt_mask_intunsafe (vector);

void cyg_interrupt_unmask (vector);

void cyg_interrupt_unmask_intunsafe (vector);

void cyg_interrupt_set_cpu (vector, cpu);

cyg_cpu_t cyg_interrupt_get_cpu (vector);

void cyg_interrupt_get_vsr (vector, vsr);

void cyg_interrupt_set_vsr (vector, vsr);

Description
The kernel provides an interface for installing interrupt handlers and controlling when interrupts occur. This functionality is
used primarily by eCos device drivers and by any application code that interacts directly with hardware. However in most cases
it is better to avoid using this kernel functionality directly, and instead the device driver API provided by the common HAL
package should be used. Use of the kernel package is optional, and some applications such as RedBoot work with no need for
multiple threads or synchronization primitives. Any code which calls the kernel directly rather than the device driver API will
not function in such a configuration. When the kernel package is present the device driver API is implemented as #define's
to the equivalent kernel calls, otherwise it is implemented inside the common HAL package. The latter implementation can be
simpler than the kernel one because there is no need to consider thread preemption and similar issues.

The exact details of interrupt handling vary widely between architectures. The functionality provided by the kernel abstracts
away from many of the details of the underlying hardware, thus simplifying application development. However this is not
always successful. For example, if some hardware does not provide any support at all for masking specific interrupts then
calling cyg_interrupt_mask may not behave as intended: instead of masking just the one interrupt source it might disable
all interrupts, because that is as close to the desired behaviour as is possible given the hardware restrictions. Another possibility
is that masking a given interrupt source also affects all lower-priority interrupts, but still allows higher-priority ones. The

46

Interrupt Handling

documentation for the appropriate HAL packages should be consulted for more information about exactly how interrupts are
handled on any given hardware. The HAL header files will also contain useful information.

Interrupt Handlers
Interrupt handlers are created by a call to cyg_interrupt_create. This takes the following arguments:

cyg_vector_t vector

The interrupt vector, a small integer, identifies the specific interrupt source. The appropriate hardware documentation or
HAL header files should be consulted for details of which vector corresponds to which device.

cyg_priority_t priority

Some hardware may support interrupt priorities, where a low priority interrupt handler can in turn be interrupted by a
higher priority one. Again hardware-specific documentation should be consulted for details about what the valid interrupt
priority levels are.

cyg_addrword_t data

When an interrupt occurs eCos will first call the associated interrupt service routine or ISR, then optionally a deferred
service routine or DSR. The data argument to cyg_interrupt_create will be passed to both these functions.
Typically it will be a pointer to some data structure.

cyg_ISR_t isr

When an interrupt occurs the hardware will transfer control to the appropriate vector service routine or VSR, which is
usually provided by eCos. This performs any appropriate processing, for example to work out exactly which interrupt
occurred, and then as quickly as possible transfers control the installed ISR. An ISR is a C function which takes the
following form:

cyg_uint32
isr_function(cyg_vector_t vector, cyg_addrword_t data)
{
 cyg_bool_t dsr_required = 0;

 …

 return dsr_required ?
 (CYG_ISR_CALL_DSR | CYG_ISR_HANDLED) :
 CYG_ISR_HANDLED;
}

The first argument identifies the particular interrupt source, especially useful if there multiple instances of a given device
and a single ISR can be used for several different interrupt vectors. The second argument is the data field passed to
cyg_interrupt_create, usually a pointer to some data structure. The exact conditions under which an ISR runs
will depend partly on the hardware and partly on configuration options. Interrupts may currently be disabled globally,
especially if the hardware does not support interrupt priorities. Alternatively interrupts may be enabled such that higher
priority interrupts are allowed through. The ISR may be running on a separate interrupt stack, or on the stack of whichever
thread was running at the time the interrupt happened.

A typical ISR will do as little work as possible, just enough to meet the needs of the hardware and then acknowledge the
interrupt by calling cyg_interrupt_acknowledge. This ensures that interrupts will be quickly reenabled, so higher
priority devices can be serviced. For some applications there may be one device which is especially important and whose
ISR can take much longer than normal. However eCos device drivers usually will not assume that they are especially
important, so their ISRs will be as short as possible.

The return value of an ISR is normally a bit mask containing zero, one or both of the following bits: CYG_ISR_CALL_DSR
or CYG_ISR_HANDLED. The former indicates that further processing is required at DSR level, and the interrupt handler's
DSR will be run as soon as possible. The latter indicates that the interrupt was handled by this ISR so there is no need
to call other interrupt handlers which might be chained on this interrupt vector. If this ISR did not handle the interrupt it
should not set the CYG_ISR_HANDLED bit so that other chained interrupt handlers may handle the interrupt.

47

Interrupt Handling

An ISR is allowed to make very few kernel calls. It can manipulate the interrupt mask, and on SMP systems it can use
spinlocks. However an ISR must not make higher-level kernel calls such as posting to a semaphore, instead any such calls
must be made from the DSR. This avoids having to disable interrupts throughout the kernel and thus improves interrupt
latency.

cyg_DSR_t dsr

If an interrupt has occurred and the ISR has returned a value with CYG_ISR_CALL_DSR bit being set, the system will call
the DSR associated with this interrupt handler. If the scheduler is not currently locked then the DSR will run immediately.
However if the interrupted thread was in the middle of a kernel call and had locked the scheduler, then the DSR will be
deferred until the scheduler is again unlocked. This allows the DSR to make certain kernel calls safely, for example posting
to a semaphore or signalling a condition variable. A DSR is a C function which takes the following form:

void
dsr_function(cyg_vector_t vector,
 cyg_ucount32 count,
 cyg_addrword_t data)
{
 …
}

The first argument identifies the specific interrupt that has caused the DSR to run. The second argument indicates the
number of these interrupts that have occurred and for which the ISR requested a DSR. Usually this will be 1, unless the
system is suffering from a very heavy load. The third argument is the data field passed to cyg_interrupt_create.

cyg_handle_t* handle

The kernel will return a handle to the newly created interrupt handler via this argument. Subsequent operations on the
interrupt handler such as attaching it to the interrupt source will use this handle.

cyg_interrupt* intr

This provides the kernel with an area of memory for holding this interrupt handler and associated data.

The call to cyg_interrupt_create simply fills in a kernel data structure. A typical next step is to call cyg_interrup-
t_attach using the handle returned by the create operation. This makes it possible to have several different interrupt handlers
for a given vector, attaching whichever one is currently appropriate. Replacing an interrupt handler requires a call to cyg_in-
terrupt_detach, followed by another call to cyg_interrupt_attach for the replacement handler. cyg_inter-
rupt_delete can be used if an interrupt handler is no longer required.

Some hardware may allow for further control over specific interrupts, for example whether an interrupt is level or edge trig-
gered. Any such hardware functionality can be accessed using cyg_interrupt_configure: the level argument selects
between level versus edge triggered; the up argument selects between high and low level, or between rising and falling edges.

Usually interrupt handlers are created, attached and configured during system initialization, while global interrupts are still
disabled. On most hardware it will also be necessary to call cyg_interrupt_unmask, since the sensible default for inter-
rupt masking is to ignore any interrupts for which no handler is installed.

Controlling Interrupts
eCos provides two ways of controlling whether or not interrupts happen. It is possible to disable and reenable all interrupts
globally, using cyg_interrupt_disable and cyg_interrupt_enable. Typically this works by manipulating state
inside the CPU itself, for example setting a flag in a status register or executing special instructions. Alternatively it may
be possible to mask a specific interrupt source by writing to one or to several interrupt mask registers. Hardware-specific
documentation should be consulted for the exact details of how interrupt masking works, because a full implementation is not
possible on all hardware.

The primary use for these functions is to allow data to be shared between ISRs and other code such as DSRs or threads. If both
a thread and an ISR need to manipulate either a data structure or the hardware itself, there is a possible conflict if an interrupt
happens just when the thread is doing such manipulation. Problems can be avoided by the thread either disabling or masking
interrupts during the critical region. If this critical region requires only a few instructions then usually it is more efficient to

48

Interrupt Handling

disable interrupts. For larger critical regions it may be more appropriate to use interrupt masking, allowing other interrupts to
occur. There are other uses for interrupt masking. For example if a device is not currently being used by the application then
it may be desirable to mask all interrupts generated by that device.

There are two functions for masking a specific interrupt source, cyg_interrupt_mask and cyg_interrup-
t_mask_intunsafe. On typical hardware masking an interrupt is not an atomic operation, so if two threads were to per-
form interrupt masking operations at the same time there could be problems. cyg_interrupt_mask disables all interrupts
while it manipulates the interrupt mask. In situations where interrupts are already known to be disabled, cyg_interrup-
t_mask_intunsafe can be used instead. There are matching functions cyg_interrupt_unmask and cyg_inter-
rupt_unmask_intsafe.

If an interrupt handler is no longer required, it can be deleted from the interrupt system with cyg_interrupt_delete,
but it is up to the user to ensure that the interrupt source can no longer be generating interrupts, and there are no as-yet-unhan-
dled pending interrupts or DSRs. Calling cyg_interrupt_mask before cyg_interrupt_delete will be sufficient to
ensure that no more interrupts are delivered. The interrupt may be checked for pending DSRs by calling cyg_interrup-
t_dsr_count, which will return a non-zero result if there are DSRs pending. The application can cause pending DSRs to be
delivered by making a kernel call, for example to cyg_thread_yield. The following code example shows the sequence
that might be used to delete an interrupt handler:

 cyg_interrupt_mask(vector);
 while(cyg_interrupt_dsr_count(interrupt))
 {
 cyg_thread_yield();
 }
 cyg_interrupt_delete(interrupt);

If an interrupt handler is deleted but the interrupt is subsequently raised and is not masked, then the HAL will treat this as a
spurious interrupt which, depending on the HAL and the configuration, may result in an assertion failure, an exception or it
may simply be ignored albeit wasting the CPU resources to handle the interrupt.

SMP Support
On SMP systems the kernel provides an additional two functions related to interrupt handling. cyg_interrupt_set_cpu
specifies that a particular hardware interrupt should always be handled on a specified set of processors in the system. In other
words when the interrupt triggers it is only one of those processors which detects it, and it is only on those processors that the
VSR and ISR will run. If a DSR is requested then it will also run on the same CPU. The function cyg_interrupt_get_cpu
can be used to find out which interrupts are handled on which processors.

VSR Support
When an interrupt occurs the hardware will transfer control to a piece of code known as the VSR, or Vector Service Routine.
By default this code is provided by eCos. Usually it is written in assembler, but on some architectures it may be possible to
implement VSRs in C by specifying an interrupt attribute. Compiler documentation should be consulted for more information
on this. The default eCos VSR will work out which ISR function should process the interrupt, and set up a C environment
suitable for this ISR.

For some applications it may be desirable to replace the default eCos VSR and handle some interrupts directly. This minimizes
interrupt latency, but it requires application developers to program at a lower level. Usually the best way to write a custom
VSR is to copy the existing one supplied by eCos and then make appropriate modifications. The function cyg_interrup-
t_get_vsr can be used to get hold of the current VSR for a given interrupt vector, allowing it to be restored if the custom
VSR is no longer required. cyg_interrupt_set_vsr can be used to install a replacement VSR. Usually the vsr argu-
ment will correspond to an exported label in an assembler source file.

Note

On some eCos platforms, possibly only in certain configurations, the table of VSRs resides in read-only memory
and cyg_interrupt_set_vsr will not be available. Portable code can test for this condition by including
the header file cyg/hal/hal_intr.h and testing for the macro HAL_VSR_SET.

49

Interrupt Handling

Valid contexts
In a typical configuration interrupt handlers are created and attached during system initialization, and never detached or deleted.
However it is possible to perform these operations at thread level, if desired. Similarly cyg_interrupt_configure,
cyg_interrupt_set_vsr, and cyg_interrupt_set_cpu are usually called only during system initialization, but
on typical hardware may be called at any time. cyg_interrupt_get_vsr and cyg_interrupt_get_cpu may be
called at any time.

The functions for enabling, disabling, masking and unmasking interrupts can be called in any context, when appropriate. It is
the responsibility of application developers to determine when the use of these functions is appropriate.

50

Name
tm_basic — Measure the performance of the eCos kernel

Description
When building a real-time system, care must be taken to ensure that the system will be able to perform properly within the
constraints of that system. One of these constraints may be how fast certain operations can be performed. Another might be
how deterministic the overall behavior of the system is. Lastly the memory footprint (size) and unit cost may be important.

One of the major problems encountered while evaluating a system will be how to compare it with possible alternatives. Most
manufacturers of real-time systems publish performance numbers, ostensibly so that users can compare the different offerings.
However, what these numbers mean and how they were gathered is often not clear. The values are typically measured on a
particular piece of hardware, so in order to truly compare, one must obtain measurements for exactly the same set of hardware
that were gathered in a similar fashion.

Two major items need to be present in any given set of measurements. First, the raw values for the various operations; these
are typically quite easy to measure and will be available for most systems. Second, the determinacy of the numbers; in other
words how much the value might change depending on other factors within the system. This value is affected by a number
of factors: how long interrupts might be masked, whether or not the function can be interrupted, even very hardware-specific
effects such as cache locality and pipeline usage. It is very difficult to measure the determinacy of any given operation, but
that determinacy is fundamentally important to proper overall characterization of a system.

In the discussion and numbers that follow, three key measurements are provided. The first measurement is an estimate of the
interrupt latency: this is the length of time from when a hardware interrupt occurs until its Interrupt Service Routine (ISR)
is called. The second measurement is an estimate of overall interrupt overhead: this is the length of time average interrupt
processing takes, as measured by the real-time clock interrupt (other interrupt sources will certainly take a different amount of
time, but this data cannot be easily gathered). The third measurement consists of the timings for the various kernel primitives.

Methodology
Key operations in the kernel were measured by using a simple test program which exercises the various kernel primitive
operations. A hardware timer, normally the one used to drive the real-time clock, was used for these measurements. In most
cases this timer can be read with quite high resolution, typically in the range of a few microseconds. For each measurement, the
operation was repeated a number of times. Time stamps were obtained directly before and after the operation was performed.
The data gathered for the entire set of operations was then analyzed, generating average (mean), maximum and minimum
values. The sample variance (a measure of how close most samples are to the mean) was also calculated. The cost of obtaining
the real-time clock timer values was also measured, and was subtracted from all other times.

Most kernel functions can be measured separately. In each case, a reasonable number of iterations are performed. Where the
test case involves a kernel object, for example creating a task, each iteration is performed on a different object. There is also a
set of tests which measures the interactions between multiple tasks and certain kernel primitives. Most functions are tested in
such a way as to determine the variations introduced by varying numbers of objects in the system. For example, the mailbox
tests measure the cost of a 'peek' operation when the mailbox is empty, has a single item, and has multiple items present. In
this way, any effects of the state of the object or how many items it contains can be determined.

There are a few things to consider about these measurements. Firstly, they are quite micro in scale and only measure the
operation in question. These measurements do not adequately describe how the timings would be perturbed in a real system
with multiple interrupting sources. Secondly, the possible aberration incurred by the real-time clock (system heartbeat tick) is
explicitly avoided. Virtually all kernel functions have been designed to be interruptible. Thus the times presented are typical,
but best case, since any particular function may be interrupted by the clock tick processing. This number is explicitly calculated
so that the value may be included in any deadline calculations required by the end user. Lastly, the reported measurements
were obtained from a system built with all options at their default values. Kernel instrumentation and asserts are also disabled
for these measurements. Any number of configuration options can change the measured results, sometimes quite dramatically.
For example, mutexes are using priority inheritance in these measurements. The numbers will change if the system is built
with priority inheritance on mutex variables turned off.

The final value that is measured is an estimate of interrupt latency. This particular value is not explicitly calculated in the test
program used, but rather by instrumenting the kernel itself. The raw number of timer ticks that elapse between the time the

51

Kernel Real-time Characterization

timer generates an interrupt and the start of the timer ISR is kept in the kernel. These values are printed by the test program
after all other operations have been tested. Thus this should be a reasonable estimate of the interrupt latency over time.

Using these Measurements
These measurements can be used in a number of ways. The most typical use will be to compare different real-time kernel
offerings on similar hardware, another will be to estimate the cost of implementing a task using eCos (applications can be
examined to see what effect the kernel operations will have on the total execution time). Another use would be to observe how
the tuning of the kernel affects overall operation.

Influences on Performance
A number of factors can affect real-time performance in a system. One of the most common factors, yet most difficult to
characterize, is the effect of device drivers and interrupts on system timings. Different device drivers will have differing re-
quirements as to how long interrupts are suppressed, for example. The eCos system has been designed with this in mind, by
separating the management of interrupts (ISR handlers) and the processing required by the interrupt (DSR—Deferred Service
Routine— handlers). However, since there is so much variability here, and indeed most device drivers will come from the
end users themselves, these effects cannot be reliably measured. Attempts have been made to measure the overhead of the
single interrupt that eCos relies on, the real-time clock timer. This should give you a reasonable idea of the cost of executing
interrupt handling for devices.

Measured Items
This section describes the various tests and the numbers presented. All tests use the C kernel API (available by way of cyg/
kernel/kapi.h). There is a single main thread in the system that performs the various tests. Additional threads may be
created as part of the testing, but these are short lived and are destroyed between tests unless otherwise noted. The terminology
“lower priority” means a priority that is less important, not necessarily lower in numerical value. A higher priority thread will
run in preference to a lower priority thread even though the priority value of the higher priority thread may be numerically
less than that of the lower priority thread.

Thread Primitives

Create thread

This test measures the cyg_thread_create() call. Each call creates a totally new thread. The set of threads created
by this test will be reused in the subsequent thread primitive tests.

Yield thread

This test measures the cyg_thread_yield() call. For this test, there are no other runnable threads, thus the test should
just measure the overhead of trying to give up the CPU.

Suspend [suspended] thread

This test measures the cyg_thread_suspend() call. A thread may be suspended multiple times; each thread is already
suspended from its initial creation, and is suspended again.

Resume thread

This test measures the cyg_thread_resume() call. All of the threads have a suspend count of 2, thus this call does
not make them runnable. This test just measures the overhead of resuming a thread.

Set priority

This test measures the cyg_thread_set_priority() call. Each thread, currently suspended, has its priority set to
a new value.

Get priority

This test measures the cyg_thread_get_priority() call.

52

Kernel Real-time Characterization

Kill [suspended] thread

This test measures the cyg_thread_kill() call. Each thread in the set is killed. All threads are known to be suspended
before being killed.

Yield [no other] thread

This test measures the cyg_thread_yield() call again. This is to demonstrate that the cyg_thread_yield()
call has a fixed overhead, regardless of whether there are other threads in the system.

Resume [suspended low priority] thread

This test measures the cyg_thread_resume() call again. In this case, the thread being resumed is lower priority than
the main thread, thus it will simply become ready to run but not be granted the CPU. This test measures the cost of making
a thread ready to run.

Resume [runnable low priority] thread

This test measures the cyg_thread_resume() call again. In this case, the thread being resumed is lower priority than
the main thread and has already been made runnable, so in fact the resume call has no effect.

Suspend [runnable] thread

This test measures the cyg_thread_suspend() call again. In this case, each thread has already been made runnable
(by previous tests).

Yield [only low priority] thread

This test measures the cyg_thread_yield() call. In this case, there are many other runnable threads, but they are all
lower priority than the main thread, thus no thread switches will take place.

Suspend [runnable->not runnable] thread

This test measures the cyg_thread_suspend() call again. The thread being suspended will become non-runnable
by this action.

Kill [runnable] thread

This test measures the cyg_thread_kill() call again. In this case, the thread being killed is currently runnable, but
lower priority than the main thread.

Resume [high priority] thread

This test measures the cyg_thread_resume() call. The thread being resumed is higher priority than the main thread,
thus a thread switch will take place on each call. In fact there will be two thread switches; one to the new higher priority
thread and a second back to the test thread. The test thread exits immediately.

Thread switch

This test attempts to measure the cost of switching from one thread to another. Two equal priority threads are start-
ed and they will each yield to the other for a number of iterations. A time stamp is gathered in one thread before the
cyg_thread_yield() call and after the call in the other thread.

Scheduler Primitives

Scheduler lock

This test measures the cyg_scheduler_lock() call.

Scheduler unlock [0 threads]

This test measures the cyg_scheduler_unlock() call. There are no other threads in the system and the unlock
happens immediately after a lock so there will be no pending DSR‚s to run.

53

Kernel Real-time Characterization

Scheduler unlock [1 suspended thread]

This test measures the cyg_scheduler_unlock() call. There is one other thread in the system which is currently
suspended.

Scheduler unlock [many suspended threads]

This test measures the cyg_scheduler_unlock() call. There are many other threads in the system which are cur-
rently suspended. The purpose of this test is to determine the cost of having additional threads in the system when the
scheduler is activated by way of cyg_scheduler_unlock().

Scheduler unlock [many low priority threads]

This test measures the cyg_scheduler_unlock() call. There are many other threads in the system which are runnable
but are lower priority than the main thread. The purpose of this test is to determine the cost of having additional threads
in the system when the scheduler is activated by way of cyg_scheduler_unlock().

Mutex Primitives

Init mutex

This test measures the cyg_mutex_init() call. A number of separate mutex variables are created. The purpose of this
test is to measure the cost of creating a new mutex and introducing it to the system.

Lock [unlocked] mutex

This test measures the cyg_mutex_lock() call. The purpose of this test is to measure the cost of locking a mutex
which is currently unlocked. There are no other threads executing in the system while this test runs.

Unlock [locked] mutex

This test measures the cyg_mutex_unlock() call. The purpose of this test is to measure the cost of unlocking a mutex
which is currently locked. There are no other threads executing in the system while this test runs.

Trylock [unlocked] mutex

This test measures the cyg_mutex_trylock() call. The purpose of this test is to measure the cost of locking a mutex
which is currently unlocked. There are no other threads executing in the system while this test runs.

Trylock [locked] mutex

This test measures the cyg_mutex_trylock() call. The purpose of this test is to measure the cost of locking a mutex
which is currently locked. There are no other threads executing in the system while this test runs.

Destroy mutex

This test measures the cyg_mutex_destroy() call. The purpose of this test is to measure the cost of deleting a mutex
from the system. There are no other threads executing in the system while this test runs.

Unlock/Lock mutex

This test attempts to measure the cost of unlocking a mutex for which there is another higher priority thread waiting. When
the mutex is unlocked, the higher priority waiting thread will immediately take the lock. The time from when the unlock
is issued until after the lock succeeds in the second thread is measured, thus giving the round-trip or circuit time for this
type of synchronizer.

Mailbox Primitives

Create mbox

This test measures the cyg_mbox_create() call. A number of separate mailboxes is created. The purpose of this test
is to measure the cost of creating a new mailbox and introducing it to the system.

54

Kernel Real-time Characterization

Peek [empty] mbox

This test measures the cyg_mbox_peek() call. An attempt is made to peek the value in each mailbox, which is currently
empty. The purpose of this test is to measure the cost of checking a mailbox for a value without blocking.

Put [first] mbox

This test measures the cyg_mbox_put() call. One item is added to a currently empty mailbox. The purpose of this test is
to measure the cost of adding an item to a mailbox. There are no other threads currently waiting for mailbox items to arrive.

Peek [1 msg] mbox

This test measures the cyg_mbox_peek() call. An attempt is made to peek the value in each mailbox, which contains
a single item. The purpose of this test is to measure the cost of checking a mailbox which has data to deliver.

Put [second] mbox

This test measures the cyg_mbox_put() call. A second item is added to a mailbox. The purpose of this test is to measure
the cost of adding an additional item to a mailbox. There are no other threads currently waiting for mailbox items to arrive.

Peek [2 msgs] mbox

This test measures the cyg_mbox_peek() call. An attempt is made to peek the value in each mailbox, which contains
two items. The purpose of this test is to measure the cost of checking a mailbox which has data to deliver.

Get [first] mbox

This test measures the cyg_mbox_get() call. The first item is removed from a mailbox that currently contains two
items. The purpose of this test is to measure the cost of obtaining an item from a mailbox without blocking.

Get [second] mbox

This test measures the cyg_mbox_get() call. The last item is removed from a mailbox that currently contains one item.
The purpose of this test is to measure the cost of obtaining an item from a mailbox without blocking.

Tryput [first] mbox

This test measures the cyg_mbox_tryput() call. A single item is added to a currently empty mailbox. The purpose
of this test is to measure the cost of adding an item to a mailbox.

Peek item [non-empty] mbox

This test measures the cyg_mbox_peek_item() call. A single item is fetched from a mailbox that contains a single
item. The purpose of this test is to measure the cost of obtaining an item without disturbing the mailbox.

Tryget [non-empty] mbox

This test measures the cyg_mbox_tryget() call. A single item is removed from a mailbox that contains exactly one
item. The purpose of this test is to measure the cost of obtaining one item from a non-empty mailbox.

Peek item [empty] mbox

This test measures the cyg_mbox_peek_item() call. An attempt is made to fetch an item from a mailbox that is
empty. The purpose of this test is to measure the cost of trying to obtain an item when the mailbox is empty.

Tryget [empty] mbox

This test measures the cyg_mbox_tryget() call. An attempt is made to fetch an item from a mailbox that is empty.
The purpose of this test is to measure the cost of trying to obtain an item when the mailbox is empty.

Waiting to get mbox

This test measures the cyg_mbox_waiting_to_get() call. The purpose of this test is to measure the cost of deter-
mining how many threads are waiting to obtain a message from this mailbox.

55

Kernel Real-time Characterization

Waiting to put mbox

This test measures the cyg_mbox_waiting_to_put() call. The purpose of this test is to measure the cost of deter-
mining how many threads are waiting to put a message into this mailbox.

Delete mbox

This test measures the cyg_mbox_delete() call. The purpose of this test is to measure the cost of destroying a mailbox
and removing it from the system.

Put/Get mbox

In this round-trip test, one thread is sending data to a mailbox that is being consumed by another thread. The time from
when the data is put into the mailbox until it has been delivered to the waiting thread is measured. Note that this time
will contain a thread switch.

Semaphore Primitives

Init semaphore

This test measures the cyg_semaphore_init() call. A number of separate semaphore objects are created and intro-
duced to the system. The purpose of this test is to measure the cost of creating a new semaphore.

Post [0] semaphore

This test measures the cyg_semaphore_post() call. Each semaphore currently has a value of 0 and there are no other
threads in the system. The purpose of this test is to measure the overhead cost of posting to a semaphore. This cost will
differ if there is a thread waiting for the semaphore.

Wait [1] semaphore

This test measures the cyg_semaphore_wait() call. The semaphore has a current value of 1 so the call is non-
blocking. The purpose of the test is to measure the overhead of “taking” a semaphore.

Trywait [0] semaphore

This test measures the cyg_semaphore_trywait() call. The semaphore has a value of 0 when the call is made.
The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without blocking. In this case,
the answer would be no.

Trywait [1] semaphore

This test measures the cyg_semaphore_trywait() call. The semaphore has a value of 1 when the call is made.
The purpose of this test is to measure the cost of seeing if a semaphore can be “taken” without blocking. In this case,
the answer would be yes.

Peek semaphore

This test measures the cyg_semaphore_peek() call. The purpose of this test is to measure the cost of obtaining the
current semaphore count value.

Destroy semaphore

This test measures the cyg_semaphore_destroy() call. The purpose of this test is to measure the cost of deleting
a semaphore from the system.

Post/Wait semaphore

In this round-trip test, two threads are passing control back and forth by using a semaphore. The time from when one
thread calls cyg_semaphore_post() until the other thread completes its cyg_semaphore_wait() is measured.
Note that each iteration of this test will involve a thread switch.

56

Kernel Real-time Characterization

Counters

Create counter

This test measures the cyg_counter_create() call. A number of separate counters are created. The purpose of this
test is to measure the cost of creating a new counter and introducing it to the system.

Get counter value

This test measures the cyg_counter_current_value() call. The current value of each counter is obtained.

Set counter value

This test measures the cyg_counter_set_value() call. Each counter is set to a new value.

Tick counter

This test measures the cyg_counter_tick() call. Each counter is “ticked” once.

Delete counter

This test measures the cyg_counter_delete() call. Each counter is deleted from the system. The purpose of this
test is to measure the cost of deleting a counter object.

Alarms

Create alarm

This test measures the cyg_alarm_create() call. A number of separate alarms are created, all attached to the same
counter object. The purpose of this test is to measure the cost of creating a new counter and introducing it to the system.

Initialize alarm

This test measures the cyg_alarm_initialize() call. Each alarm is initialized to a small value.

Disable alarm

This test measures the cyg_alarm_disable() call. Each alarm is explicitly disabled.

Enable alarm

This test measures the cyg_alarm_enable() call. Each alarm is explicitly enabled.

Delete alarm

This test measures the cyg_alarm_delete() call. Each alarm is destroyed. The purpose of this test is to measure the
cost of deleting an alarm and removing it from the system.

Tick counter [1 alarm]

This test measures the cyg_counter_tick() call. A counter is created that has a single alarm attached to it. The
purpose of this test is to measure the cost of “ticking” a counter when it has a single attached alarm. In this test, the alarm
is not activated (fired).

Tick counter [many alarms]

This test measures the cyg_counter_tick() call. A counter is created that has multiple alarms attached to it. The
purpose of this test is to measure the cost of “ticking” a counter when it has many attached alarms. In this test, the alarms
are not activated (fired).

57

Kernel Real-time Characterization

Tick & fire counter [1 alarm]

This test measures the cyg_counter_tick() call. A counter is created that has a single alarm attached to it. The
purpose of this test is to measure the cost of “ticking” a counter when it has a single attached alarm. In this test, the alarm
is activated (fired). Thus the measured time will include the overhead of calling the alarm callback function.

Tick & fire counter [many alarms]

This test measures the cyg_counter_tick() call. A counter is created that has multiple alarms attached to it. The
purpose of this test is to measure the cost of “ticking” a counter when it has many attached alarms. In this test, the alarms
are activated (fired). Thus the measured time will include the overhead of calling the alarm callback function.

Alarm latency [0 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock interrupt until the
alarm function is called is measured. In this test, there are no threads that can be run, other than the system idle thread,
when the clock interrupt occurs (all threads are suspended).

Alarm latency [2 threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock interrupt until the
alarm function is called is measured. In this test, there are exactly two threads which are running when the clock interrupt
occurs. They are simply passing back and forth by way of the cyg_thread_yield() call. The purpose of this test is
to measure the variations in the latency when there are executing threads.

Alarm latency [many threads]

This test attempts to measure the latency in calling an alarm callback function. The time from the clock interrupt until the
alarm function is called is measured. In this test, there are a number of threads which are running when the clock interrupt
occurs. They are simply passing back and forth by way of the cyg_thread_yield() call. The purpose of this test is
to measure the variations in the latency when there are many executing threads.

58

Name
Thread Debugging — Overview of eCos Kernel thread-aware debugging

Description
Thread-aware debugging refers to the ability to interrogate the list of threads active within an application when the system is
stopped (halted). This is normally when the code has either stopped at a breakpoint, or when execution is interrupted via a
hosted debug session (e.g. from GDB).

Helper Symbols
For eCosPro to aid external host-based debug tools, a set of helper symbols are defined to provide information on the size
(width) and offset of useful fields, or relevant constant values, instead of addresses. The majority of these symbols are named
to avoid possible namespace clashes with applications, but for historical reasons some architecture specific symbols are valid
in the C/C++ namespace. Similarly different architectures export their own symbols.

An external tool that wishes to interpret thread information can check for the presence of the specifically named symbol, and
add support accordingly.

These symbols are held in the symbol table of the ELF file, but have no cost impact (code or data size) on the actual binary
loaded into the target (either via a debugger, or if an application binary is stored on the target). Obviously a stripped executable
will lose the helper symbols, but debugging using a stripped ELF file would always pose some restrictions.

Required

These symbols are required for accessing the list of threads and the currently active thread. If they are not present in the symbol
table then it indicates an eCos build without a thread scheduler, and hence there is no need for thread-aware debug support.

Cyg_Thread::thread_list

Pointer to the first thread descriptor in the chain of created threads.

Cyg_Scheduler_Base::current_thread

Pointer to the thread context for the currently active thread.

Common

When an eCos scheduler is configured, information describing the thread context is provided to enable generic scanning code
to be implemented in an external tool regardless whether some eCos features are enabled or disabled. Since individual eCos
configurations can have features present that change the shape of the actual thread descriptor structure, we need the important
fields for scanning a list of threads to be available in each ELF file.

__ecospro_syminfo.size.cyg_thread.list_next
__ecospro_syminfo.size.cyg_thread.state
__ecospro_syminfo.size.cyg_thread.sleep_reason
__ecospro_syminfo.size.cyg_thread.wake_reason
__ecospro_syminfo.size.cyg_thread.unique_id
__ecospro_syminfo.size.cyg_thread.name
__ecospro_syminfo.size.cyg_thread.priority
__ecospro_syminfo.size.cyg_thread.stack_ptr

The presence of a field in the thread descriptor structure can be determined by a non-zero size symbol being
provided. These symbols give the size, in bytes, of the relevant field at the offset specified by the corresponding
__ecospro_syminfo.off.* symbol. This allows any host tool to provide features based on the conditional presence
of fields.

__ecospro_syminfo.off.cyg_thread.list_next

Offset to field that points to the next thread descriptor.

59

Kernel thread-aware debugging

__ecospro_syminfo.off.cyg_thread.state
__ecospro_syminfo.off.cyg_thread.sleep_reason
__ecospro_syminfo.off.cyg_thread.wake_reason
__ecospro_syminfo.off.cyg_thread.unique_id
__ecospro_syminfo.off.cyg_thread.name
__ecospro_syminfo.off.cyg_thread.priority

Offsets for useful fields in a thread descriptor structure.

__ecospro_syminfo.off.cyg_thread.stack_ptr

This symbol is the offset for the field containing the address of the stacked register context for inactive threads.

Cortex-M

Cortex-M Base

For Cortex-M targets the following symbols describe the main CPU register state. The presence of the symbol
__ecospro_syminfo.cortexm.thread.saved can be used as indicator of an eCos Cortex-M application.

__ecospro_syminfo.cortexm.thread.saved

This symbol provides the actual PC address of the point in the code where a switch actually occurs, It may be useful
depending on how the external tool interprets the stacked context information.

__ecospro_syminfo.value.HAL_SAVEDREGISTERS.THREAD
__ecospro_syminfo.value.HAL_SAVEDREGISTERS.EXCEPTION
__ecospro_syminfo.value.HAL_SAVEDREGISTERS.INTERRUPT

These symbols provide the values in the type field used to identify the shape of the stacked context. Since on-
ly threads will be accessed by the Cyg_Thread::thread_list list the host tools should only ever encounter
__ecospro_syminfo.value.HAL_SAVEDREGISTERS.THREAD type contexts (with the optional FPU register
state indicator flag). The values for the other types of Cortex-M contexts are provided for completeness only.

__ecospro_syminfo.size.HAL_SavedRegisters.Thread

This symbol provides the total size, in bytes, of a stacked CPU context for contexts of type __ecospro_syminfo.val-
ue.HAL_SAVEDREGISTERS.THREAD.

__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.r

Total size, in bytes, of all the core CPU registers present in a stacked context.

__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.type

Size, in bytes, of the field that encodes the type of stacked context. Since for Cortex-M targets the actual context stored
(and its size) depends on whether the individual thread has any hardware FPU context saved. This is needed to ensure only
valid information is used when dealing with lazy per-thread hardware FPU support.

__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.basepri
__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.sp
__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.pc

Size of individual context fields referenced by the corresponding offset symbol.

__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.type
__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.basepri
__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.sp
__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.r
__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.pc

Offsets into the stacked context for the core register values.

60

Kernel thread-aware debugging

Cortex-M FPU

When a Cortex-M configuration with hardware FPU support configured is used then the following optional symbols will be
present with non-zero values where appropriate.

__ecospro_syminfo.value.HAL_SAVEDREGISTERS.WITH_FPU

This value provides the bitmask flag OR-ed into the type field provided at the __ecospro_syminfo.of-
f.HAL_SavedRegisters.u.thread.type offset used to identify individual thread contexts that contain FPU
state.

__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.fpscr

Size, in bytes, of the FPSCR register stacked in the context.

__ecospro_syminfo.size.HAL_SavedRegisters.u.thread.s

Total size, in bytes, of the single-precision vector stacked in the context.

__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.fpscr

Offset of FPSCR register in the stacked context.

__ecospro_syminfo.off.HAL_SavedRegisters.u.thread.s

Offset of the single-precision register vector in the stacked context.

ARM

ARM/Cortex-A Base

For ARM/Cortex-A targets the following symbols describe the main CPU register state. The presence of the symbol ARM-
REG_SIZE can be used as indicator of an eCos arm architecture application.

ARMREG_SIZE

This symbol, if non-zero, provides the total size of the stacked context for inactive threads.

armreg_r0
armreg_r1
armreg_r2
armreg_r3
armreg_r4
armreg_r5
armreg_r6
armreg_r7
armreg_r8
armreg_r9
armreg_r10
armreg_fp
armreg_ip
armreg_sp
armreg_lr
armreg_pc
armreg_cpsr

These symbols provide the offset of the corresponding register within the stacked context referenced from the thread object
__ecospro_syminfo.off.cyg_thread.stack_ptr field.

ARM/Cortex-A FPU

Optional ARM FPU symbols.

61

Kernel thread-aware debugging

ARMREG_FPUCONTEXT_SIZE

If non-zero then this symbol indicates that the eCos applicaton has been configured with hardware FPU support. The value
is the total size of the stacked inactive thread context.

armreg_fpscr

Offset with the stacked context of the FPSCR register.

ARM/Cortex-A FPU Single-Precision

Symbols present when single-precision ARM FPU is configured.

armreg_s_vec

The offset to the start of the stacked single-precision register vector.

ARMREG_S_COUNT

Number of single-precision registers present from the armreg_s_vec offset.

ARM/Cortex-A FPU Double-Precision

Symbols present when doubled-precision ARM FPU is configured.

armreg_vfp_vec

The offset to the start of the stacked double-precision register vector.

ARMREG_VFP_COUNT

Number of single-precision registers present from the armreg_vfp_vec offset.

ColdFire

Symbols provided by eCos ColdFire targets. The presence of the symbol hal_context_pcsr_offset can be used as
an identifier for ColdFire targets.

hal_context_size

The overall stacked context size.

hal_context_fpu_size

If hardware FPU support is configured this symbol provides the size of the stacked FPU context.

hal_context_pcsr_size
hal_context_integer_size

These symbols provide information on the size (width) of individual registers.

hal_context_pcsr_offset
hal_context_integer_d0_offset
hal_context_integer_d2_offset
hal_context_integer_a0_offset
hal_context_integer_a2_offset
hal_context_fpu_offset
hal_context_other_offset

The offsets within the stacked context for the processor state.

62

Kernel thread-aware debugging

hal_context_rte_adjust

The value, in bytes, if a PCSR RTE adjustment is used.

Other Useful Symbols

Some other standard eCos symbols may be present that could also be useful for external debug tools.

idle_thread

This symbol can be used to identify the idle (background) thread descriptor object if useful to the thread-aware host debug
tool.

cyg_libc_main_thread

This symbol will not be present in the application symbol table if the relevant object is not defined. When
CYGSEM_LIBC_STARTUP_MAIN_THREAD is configured this symbol can be used to reference the thread descriptor
object for the main() C thread created by the run-time.

GDB
The following documentation uses the GDB command-line interface for its examples, although the thread-aware debug support
is applicable to applications that access GDB via its programmatic interface, e.g. Eclipse.

When a GDB debug session halts the CPU, either from the code hitting a previously set breakpoint or via the user requesting
a halt, it will display the state of the currently active CPU state and select the currently executing thread. When displaying
threads via the info threads command the currently selected thread is highlighted by an asterisk (*) character. Therefore,
immediately after a halt this will indicate the active, running, thread. Examining the CPU register state will report the state
of this active thread.

With thread-aware debugging for the target application available, GDB will display a list of all known threads when given the
command info threads. The command thread id can be used to switch context to other threads, providing the ability
to examine their CPU register state, call stack, and local variables.

Notes:

1. The documentation for all GDB features is beyond the scope of this reference. Please refer to the website
GDB: The GNU Project Debugger for definitive documentation of the GDB thread debug support.

2. All GDB execution operations such as single stepping and return from function call will always apply to
the currently active, executing thread, NOT the thread currently selected by the developer or user within the
debugger.

Depending on the target system being connected, the act of loading an eCos application into memory will not necessarily ini-
tialise all the memory and hardware state. The eCos application run-time startup code will normally initialise memory alongside
other I/O requirements. Since it can be possible to execute thread interrogation commands before any target code has been
executed, it can be useful having helper macros in your .gdbinit script to minimise misinformation being displayed. The
following clear_ecos_thread_pointers GDB macro is an example which could be executed after loading an appli-
cation and before any system initialisation code in the loaded application has been executed. It ensures that debug commands
to interrogate thread state will not parse stale/undefined information from uninitialised memory.

define clear_ecos_thread_pointers
 set *((unsigned int *)&Cyg_Thread::thread_list) = 0
 set *((unsigned int *)&Cyg_Scheduler_Base::current_thread) = 0
end

document clear_ecos_thread_pointers
When starting a new debug session from application reset the run-time
code that clears BSS will not have been executed, so stale/unitialised
state may be present in memory. For RTOS aware thread debugging as
provided by external tools the GDB server may be confused and report
invalid state if the thread state is interrogated before the initial

63

https://www.gnu.org/software/gdb/documentation/

Kernel thread-aware debugging

eCos run-time initialisation has cleared the BSS area. This macro just
ensures that the relevant eCos pointers are NULL prior to debugging.
end

Of course if a hardware debugger is being used to connect to an existing application session (rather than loading and starting
a new application session) then the macro should not be called.

It is useful to wrap the steps needed to connect to a target in a helper macro. e.g.:

define connocd
 target extended-remote localhost:3333
 load
 break cyg_test_exit
 break cyg_assert_fail
 display/i $pc
 clear_ecos_thread_pointers
end

So that all of the normal steps for loading and setting the debug environment for an application can be performed by a single
command:

(gdb) connocd
0x080016dc in ?? ()

Loading section .rom_vectors, size 0x8 lma 0x90000000
Loading section .text, size 0x7b34 lma 0x90000008
Loading section .rodata, size 0x678 lma 0x90007b40
Loading section .data, size 0x180 lma 0x900081b8
Start address 0x90000008, load size 33588
Transfer rate: 94 KB/sec, 6717 bytes/write.
Breakpoint 1 at 0x900040f4: file ecospro-path/packages/infra/current/src/tcdiag.cxx, line 391.
Function "cyg_assert_fail" not defined.
Make breakpoint pending on future shared library load? (y or [n]) [answered N; input not from terminal]
(gdb)

The use of such macros from a GDB script file can make the task of debugging less cumbersome.

Ronetix PEEDI

Note

The Ronetix PEEDI firmware must be updated to at least version 21.2.0 to ensure the correct operation of the
thread-aware debugging support.

The PEEDI [TARGET] section option COREn_OS can be used to introduce a thread/context description using the generic
PEEDI support.

The example PEEDI configuration files supplied with eCosPro releases 4.5.8 and above should already have suitable
RTOS support fragments. For example, the file packages/hal/arm/arm9/sam9g45ek/<version>/misc/
peedi.sam9g45ek.cfg contains a [OS_ECOS_ARM] section, referenced from the head of the file via the
CORE0_OS=OS_ECOS_ARM setting.

With a suitable COREn_OS the PEEDI will parse the eCos thread lists and stacked register contents when interrogating threads
other than the current thread of executing on the CPU.

OpenOCD
OpenOCD provides the -rtos eCos option that can be used to configure thread-aware debug support in the configuration
file used for the OpenOCD session.

Note

eCoscentric contributed the previously eCosPro specific eCos thread-aware debug support to the OpenOCD
project. As of 2023-01-15 the support was merged into the OpenOCD mainline.

64

Kernel thread-aware debugging

At its simplest the OpenOCD configuration file just needs to specify:

$_TARGETNAME configure -rtos eCos

NOTE: When OpenOCD -rtos support for eCos is configured the act of executing target remote or target ex-
tended-remote to connect to an OpenOCD instance will cause the configured OpenOCD RTOS support to perform an
update_threads operation against the current memory state. This is to allow a debug session to be attached to an active system.
However, it does mean that for an undefined memory state (power-on, CPU reset with undefined DRAM state, an application
with a different thread context shape to the previous application new different-configuration application to be subsequently
loaded after connecting to the OpenOCD GDB server) that the GDB server may report spurious thread information upon re-
quest.

The following is example output when the application is halted in a thread named "busy". The name, state and priority of the
other available threads is also shown:

(gdb) info thr
 Id Target Id Frame
* 1 Thread 12 (Name: busy, State: Ready Pri: 20) 0x20009f50 in thread_busy (data=30000) at
 ecospro-path/packages/kernel/current/tests/fpint_thread_switch.cxx:566
 2 Thread 1 (Name: Idle Thread, State: Ready Pri: 31) Cyg_Scheduler::unlock_inner (new_lock=0) at
 ecospro-path/packages/kernel/current/src/sched/sched.cxx:233
 3 Thread 2 (Name: Test, State: Sleeping (WAIT) Pri: 3) Cyg_Scheduler::unlock_inner (new_lock=1) at
 ecospro-path/packages/kernel/current/src/sched/sched.cxx:233
 4 Thread 11 (Name: highpri, State: Sleeping (DELAY) Pri: 10) Cyg_Scheduler::unlock_inner (new_lock=0)
 at ecospro-path/packages/kernel/current/src/sched/sched.cxx:233

The OpenOCD GDB server can be left executing between GDB application debug sessions. It does not need to be re-started
for every GDB session.

Segger JLink/JTrace
Segger do not allow source distributions of RTOS aware plugins based on their SDK. This policy unfortunately restricts eCos
and eCos eCosPro support to pre-built shared library files only. There does not seem to be any obvious technical reason for this
binary-only restriction, considering the simplicity of the exposed SDK API and limited feature set required to support RTOS
aware debugging (as can be seen by the functionality required for the open-source OpenOCD "-rtos" support, and the generic
config-file description approach built into the PEEDI (closed source) firmware.

Currently only 64-bit Linux x86_64 is available via the file libRTOSPlugin_eCosPro.so. Please contact eCosCentric
to discuss the options available if other host platforms are required.

For example, the following is used to start a JLink GDB server session connected to a STM32F429I-DISCO board with the
eCosPro RTOS aware plugin selected:

$ JLinkGDBServer -device stm32f429zi -if swd -rtos libRTOSPlugin_eCosPro.so

The JLinkGDBServer can be left executing between GDB application debug sessions. It does not need to be re-started for
every GDB session.

GDB stubs
Unlike the hardware debug approaches described above which benefit from bare-metal hardware support (SWD, JTAG, BDM,
etc.), eCos also supports the use of GDBstubs which can be built into the application and accessed via an I/O channel (e.g. serial,
Ethernet, etc.), or provided via a boot monitor/loader (e.g. RedBoot covering in Chapter 224, Getting Started with RedBoot) that
provides an environment for executing applications. Such support has a run-time cost (code+data space as well as CPU cycles),
and is only usable after some level of system initialisation has occurred. A hardware debug solution is therefore preferred.

However, if GDBstubs is the only available/possible solution, the eCos GDBstubs implementation supports thread aware
debugging.

65

Name
Kernel Instrumentation — Overview of eCos Kernel and Infrastructure instrumentation

Description
The kernel implements a simple macro based mechanism for tracing the flow of execution. It is designed for embedding many
trace points, each with an optional small amount of associated data (e.g. that can be encoded in two 32-bit “argument” fields).
The mechanism also allows for extending the instrumentation with further package specific event generation as required.

Instrumentation records will only be generated if the CYGPKG_KERNEL_INSTRUMENT) option is enabled, and then only if
the relevant individual kernel event code sub-options are also enabled. The default state is for all the kernel instrumentation
sub-options to be enabled.

Warning

Some options, when enabled, will generate a large quantity of instrumentation records in a heavily loaded system
and so care may need to be taken regarding the instrumentation that is enabled vs the instrumentation recording
mechanism being used to avoid missing events. Depending on why the kernel instrumentation framework is being
enabled (debugging, timing validation, etc.) the user can choose which events they wish to record by enabling
only the specific CDL options required.

The tuning of the amount of instrumentation generated, and any buffering required to hold event records, is
always a consideration when investigating systems and it may not be possible to have every instrumentation
option enabled all of the time.

At its simplest, default, the kernel instrumentation stores event records in a memory buffer for subsequent extraction and post-
processing.

However the instrumentation code generated can be over-ridden by a configuration providing a suitable CYGBLD_KER-
NEL_INSTRUMENT_WRAPPER_H header to override the default kernel implementation. This allows for other eCos packages,
or for application specific support, to provide their own implementation.

The CYGPKG_INFRA infrastructure package also provides for other tracing mechanisms to be enabled. The provision of
multiple “tracing” solutions reflects the different feature sets they provided. The user has the option for using the mechanism
that best suits their needs, e.g. system level events, high-level application logic or performance, etc.

As an adjunct to the main kernel instrumentation support the infrastructure cyg_systrace.h header defines some macros
used to instrument specific points in the eCos source (INFRA, KERNEL, HAL, etc.). The CYG_SYSTRACE_* support has
been driven by the support required for specific features of 3rd-party trace tools.

The infrastructure package also provides the cyg_trac.h header which implements an alternative approach to tracing the
execution path of code. The documentation for that trace mechanism is provided in the actual header file.

66

Part II. The eCos Hardware
Abstraction Layer (HAL)

Table of Contents
1. Introduction ... 70
2. Architecture, Variant and Platform .. 71
3. General principles ... 72
4. HAL Interfaces ... 73

Base Definitions ... 73
Byte order ... 73
Label Translation ... 73
Base types ... 73
Atomic types ... 73

Architecture Characterization .. 73
Register Save Format .. 74
Thread Context Initialization .. 74
Thread Context Switching .. 74
Bit indexing .. 75
Idle thread activity .. 75
Reorder barrier ... 75
Breakpoint support ... 75
GDB support ... 75
Setjmp and longjmp support ... 76
Stack Sizes .. 76
Address Translation .. 76
Global Pointer ... 76

Interrupt Handling .. 77
Vector numbers .. 77
Interrupt state control .. 77
ISR and VSR management .. 78
Interrupt controller management ... 78

Clocks and Timers ... 79
Clock Control .. 79
Microsecond Delay ... 80
Clock Frequency Definition ... 80

HAL I/O ... 81
Register address ... 81
Register read ... 81
Register write .. 81

HAL Unique-ID ... 82
HAL_UNIQUE_ID_LEN ... 82
HAL_UNIQUE_ID ... 82

Cache Control .. 82
Cache Dimensions .. 83
Global Cache Control ... 83
Cache Line Control .. 85

Linker Scripts .. 85
Diagnostic Support ... 86
SMP Support ... 86

Target Hardware Limitations .. 86
HAL Support ... 87

5. Exception Handling ... 91
HAL Startup .. 91
Vectors and VSRs .. 92
Default Synchronous Exception Handling ... 93
Default Interrupt Handling ... 93

6. HAL GDB File I/O Routines .. 95
HAL GDB File I/O Routines ... 96

7. Porting Guide ... 99

68

The eCos Hardware Abstraction Layer (HAL)

Introduction ... 99
HAL Structure ... 99

HAL Classes ... 99
File Descriptions .. 100

Virtual Vectors (eCos/ROM Monitor Calling Interface) ... 102
Virtual Vectors ... 103
The COMMS channels .. 104
The calling Interface API ... 106
IO channels ... 108

HAL Coding Conventions .. 111
Implementation issues ... 111
Source code details ... 111
Nested Headers .. 112

Platform HAL Porting ... 112
HAL Platform Porting Process .. 113
HAL Platform CDL .. 116
Platform Memory Layout ... 121
Platform Serial Device Support ... 121

Variant HAL Porting ... 123
HAL Variant Porting Process ... 123
HAL Variant CDL .. 123
Cache Support .. 125

Architecture HAL Porting .. 125
HAL Architecture Porting Process ... 125
CDL Requirements ... 130

8. Future developments .. 133

69

Chapter 1. Introduction
This is an initial specification of the eCos Hardware Abstraction Layer (HAL). The HAL abstracts the underlying hardware of
a processor architecture and/or the platform to a level sufficient for the eCos kernel to be ported onto that platform.

Caveat

This document is an informal description of the HAL capabilities and is not intended to be full documentation,
although it may be used as a source for such. It also describes the HAL as it is currently implemented for the
architectures targeted in this release. It most closely describes the HALs for the MIPS, I386 and PowerPC HALs.
Other architectures are similar but may not be organized precisely as described here.

70

Chapter 2. Architecture, Variant and
Platform
We have identified three levels at which the HAL must operate.

• The architecture HAL abstracts the basic CPU architecture and includes things like interrupt delivery, context switching,
CPU startup etc.

• The variant HAL encapsulates features of the CPU variant such as caches, MMU and FPU features. It also deals with any
on-chip peripherals such as memory and interrupt controllers. For architectural variations, the actual implementation of the
variation is often in the architectural HAL, and the variant HAL simply provides the correct configuration definitions.

• The platform HAL abstracts the properties of the current platform and includes things like platform startup, timer devices,
I/O register access and interrupt controllers.

The boundaries between these three HAL levels are necessarily blurred since functionality shifts between levels on a target-by-
target basis. For example caches and MMU may be either an architecture feature or a variant feature. Similarly, memory and
interrupt controllers may be on-chip and in the variant HAL, or off-chip and in the platform HAL.

Generally there is a separate package for each of the architecture, variant and package HALs for a target. For some of the older
targets, or where it would be essentially empty, the variant HAL is omitted.

71

Chapter 3. General principles
The HAL has been implemented according to the following general principles:

1. The HAL is implemented in C and assembler, although the eCos kernel is largely implemented in C++. This is to permit
the HAL the widest possible applicability.

2. All interfaces to the HAL are implemented by CPP macros. This allows them to be implemented as inline C code, inline
assembler or function calls to external C or assembler code. This allows the most efficient implementation to be selected
without affecting the interface. It also allows them to be redefined if the platform or variant HAL needs to replace or enhance
a definition from the architecture HAL.

3. The HAL provides simple, portable mechanisms for dealing with the hardware of a wide range of architectures and platforms.
It is always possible to bypass the HAL and program the hardware directly, but this may lead to a loss of portability.

72

Chapter 4. HAL Interfaces
This section describes the main HAL interfaces.

Base Definitions
These are definitions that characterize the properties of the base architecture that are used to compile the portable parts of the
kernel. They are concerned with such things a portable type definitions, endianness, and labeling.

These definitions are supplied by the cyg/hal/basetype.h header file which is supplied by the architecture HAL. It is
included automatically by cyg/infra/cyg_type.h.

Byte order
CYG_BYTEORDER

This defines the byte order of the target and must be set to either CYG_LSBFIRST or CYG_MSBFIRST.

Label Translation
CYG_LABEL_NAME(name)

This is a wrapper used in some C and C++ files which use labels defined in assembly code or the linker script. It need only
be defined if the default implementation in cyg/infra/cyg_type.h, which passes the name argument unaltered, is
inadequate. It should be paired with CYG_LABEL_DEFN().

CYG_LABEL_DEFN(name)

This is a wrapper used in assembler sources and linker scripts which define labels. It need only be defined if the default
implementation in cyg/infra/cyg_type.h, which passes the name argument unaltered, is inadequate. The most
usual alternative definition of this macro prepends an underscore to the label name.

Base types
 cyg_halint8
 cyg_halint16
 cyg_halint32
 cyg_halint64
 cyg_halcount8
 cyg_halcount16
 cyg_halcount32
 cyg_halcount64
 cyg_halbool

These macros define the C base types that should be used to define variables of the given size. They only need to be defined if
the default types specified in cyg/infra/cyg_type.h cannot be used. Note that these are only the base types, they will
be composed with signed and unsigned to form full type specifications.

Atomic types
 cyg_halatomic CYG_ATOMIC

These types are guaranteed to be read or written in a single uninterruptible operation. It is architecture defined what size this
type is, but it will be at least a byte.

Architecture Characterization
These are definition that are related to the basic architecture of the CPU. These include the CPU context save format, context
switching, bit twiddling, breakpoints, stack sizes and address translation.

73

HAL Interfaces

Most of these definition are found in cyg/hal/hal_arch.h. This file is supplied by the architecture HAL. If there are
variant or platform specific definitions then these will be found in cyg/hal/var_arch.h or cyg/hal/plf_arch.h.
These files are include automatically by this header, so need not be included explicitly.

Register Save Format
typedef struct HAL_SavedRegisters
{
 /* architecture-dependent list of registers to be saved */
} HAL_SavedRegisters;

This structure describes the layout of a saved machine state on the stack. Such states are saved during thread context switches,
interrupts and exceptions. Different quantities of state may be saved during each of these, but usually a thread context state is
a subset of the interrupt state which is itself a subset of an exception state. For debugging purposes, the same structure is used
for all three purposes, but where these states are significantly different, this structure may contain a union of the three states.

Thread Context Initialization
HAL_THREAD_INIT_CONTEXT(sp, arg, entry, id)

This macro initializes a thread's context so that it may be switched to by HAL_THREAD_SWITCH_CONTEXT(). The argu-
ments are:

sp A location containing the current value of the thread's stack pointer. This should be a variable or a structure field.
The SP value will be read out of here and an adjusted value written back.

arg A value that is passed as the first argument to the entry point function.

entry The address of an entry point function. This will be called according the C calling conventions, and the value of arg
will be passed as the first argument. This function should have the following type signature void entry(CYG_AD-
DRWORD arg).

id A thread id value. This is only used for debugging purposes, it is ORed into the initialization pattern for unused
registers and may be used to help identify the thread from its register dump. The least significant 16 bits of this value
should be zero to allow space for a register identifier.

Thread Context Switching
HAL_THREAD_LOAD_CONTEXT(to)
HAL_THREAD_SWITCH_CONTEXT(from, to)

These macros implement the thread switch code. The arguments are:

from A pointer to a location where the stack pointer of the current thread will be stored.

to A pointer to a location from where the stack pointer of the next thread will be read.

For HAL_THREAD_LOAD_CONTEXT() the current CPU state is discarded and the state of the destination thread is loaded.
This is only used once, to load the first thread when the scheduler is started.

For HAL_THREAD_SWITCH_CONTEXT() the state of the current thread is saved onto its stack, using the current value of
the stack pointer, and the address of the saved state placed in *from. The value in *to is then read and the state of the new
thread is loaded from it.

While these two operations may be implemented with inline assembler, they are normally implemented as calls to assembly
code functions in the HAL. There are two advantages to doing it this way. First, the return link of the call provides a convenient
PC value to be used in the saved context. Second, the calling conventions mean that the compiler will have already saved the
caller-saved registers before the call, so the HAL need only save the callee-saved registers.

The implementation of HAL_THREAD_SWITCH_CONTEXT() saves the current CPU state on the stack, including the current
interrupt state (or at least the register that contains it). For debugging purposes it is useful to save the entire register set, but for
performance only the ABI-defined callee-saved registers need be saved. If it is implemented, the option CYGDBG_HAL_COM-
MON_CONTEXT_SAVE_MINIMUM controls how many registers are saved.

74

HAL Interfaces

The implementation of HAL_THREAD_LOAD_CONTEXT() loads a thread context, destroying the current context. With a
little care this can be implemented by sharing code with HAL_THREAD_SWITCH_CONTEXT(). To load a thread context
simply requires the saved registers to be restored from the stack and a jump or return made back to the saved PC.

Note that interrupts are not disabled during this process, any interrupts that occur will be delivered onto the stack to which the
current CPU stack pointer points. Hence the stack pointer should never be invalid, or loaded with a value that might cause the
saved state to become corrupted by an interrupt. However, the current interrupt state is saved and restored as part of the thread
context. If a thread disables interrupts and does something to cause a context switch, interrupts may be re-enabled on switching
to another thread. Interrupts will be disabled again when the original thread regains control.

Bit indexing
HAL_LSBIT_INDEX(index, mask)
HAL_MSBIT_INDEX(index, mask)

These macros place in index the bit index of the least significant bit in mask. Some architectures have instruction level
support for one or other of these operations. If no architectural support is available, then these macros may call C functions
to do the job.

Idle thread activity
HAL_IDLE_THREAD_ACTION(count)

It may be necessary under some circumstances for the HAL to execute code in the kernel idle thread's loop. An example might
be to execute a processor halt instruction. This macro provides a portable way of doing this. The argument is a copy of the idle
thread's loop counter, and may be used to trigger actions at longer intervals than every loop.

Reorder barrier
HAL_REORDER_BARRIER()

When optimizing the compiler can reorder code. In some parts of multi-threaded systems, where the order of actions is vital,
this can sometimes cause problems. This macro may be inserted into places where reordering should not happen and prevents
code being migrated across it by the compiler optimizer. It should be placed between statements that must be executed in the
order written in the code.

Breakpoint support
HAL_BREAKPOINT(label)
HAL_BREAKINST
HAL_BREAKINST_SIZE

These macros provide support for breakpoints.

HAL_BREAKPOINT() executes a breakpoint instruction. The label is defined at the breakpoint instruction so that exception
code can detect which breakpoint was executed.

HAL_BREAKINST contains the breakpoint instruction code as an integer value. HAL_BREAKINST_SIZE is the size of that
breakpoint instruction in bytes. Together these may be used to place a breakpoint in any code.

GDB support
HAL_THREAD_GET_SAVED_REGISTERS(sp, regs)
HAL_GET_GDB_REGISTERS(regval, regs)
HAL_SET_GDB_REGISTERS(regs, regval)

These macros provide support for interfacing GDB to the HAL.

HAL_THREAD_GET_SAVED_REGISTERS() extracts a pointer to a HAL_SavedRegisters structure from a stack pointer
value. The stack pointer passed in should be the value saved by the thread context macros. The macro will assign a pointer to
the HAL_SavedRegisters structure to the variable passed as the second argument.

75

HAL Interfaces

HAL_GET_GDB_REGISTERS() translates a register state as saved by the HAL and into a register dump in the format ex-
pected by GDB. It takes a pointer to a HAL_SavedRegisters structure in the regs argument and a pointer to the memory to
contain the GDB register dump in the regval argument.

HAL_SET_GDB_REGISTERS() translates a GDB format register dump into a the format expected by the HAL. It takes a
pointer to the memory containing the GDB register dump in the regval argument and a pointer to a HAL_SavedRegisters
structure in the regs argument.

Setjmp and longjmp support
CYGARC_JMP_BUF_SIZE
hal_jmp_buf[CYGARC_JMP_BUF_SIZE]
hal_setjmp(hal_jmp_buf env)
hal_longjmp(hal_jmp_buf env, int val)

These functions provide support for the C setjmp() and longjmp() functions. Refer to the C library for further informa-
tion.

Stack Sizes
CYGNUM_HAL_STACK_SIZE_MINIMUM
CYGNUM_HAL_STACK_SIZE_TYPICAL

The values of these macros define the minimum and typical sizes of thread stacks.

CYGNUM_HAL_STACK_SIZE_MINIMUM defines the minimum size of a thread stack. This is enough for the thread to function
correctly within eCos and allows it to take interrupts and context switches. There should also be enough space for a simple
thread entry function to execute and call basic kernel operations on objects like mutexes and semaphores. However there will
not be enough room for much more than this. When creating stacks for their own threads, applications should determine the
stack usage needed for application purposes and then add CYGNUM_HAL_STACK_SIZE_MINIMUM.

CYGNUM_HAL_STACK_SIZE_TYPICAL is a reasonable increment over CYGNUM_HAL_STACK_SIZE_MINIMUM, usual-
ly about 1kB. This should be adequate for most modest thread needs. Only threads that need to define significant amounts of
local data, or have very deep call trees should need to use a larger stack size.

Address Translation
CYGARC_CACHED_ADDRESS(addr)
CYGARC_UNCACHED_ADDRESS(addr)
CYGARC_PHYSICAL_ADDRESS(addr)

These macros provide address translation between different views of memory. In many architectures a given memory location
may be visible at different addresses in both cached and uncached forms. It is also possible that the MMU or some other address
translation unit in the CPU presents memory to the program at a different virtual address to its physical address on the bus.

CYGARC_CACHED_ADDRESS() translates the given address to its location in cached memory. This is typically where the
application will access the memory.

CYGARC_UNCACHED_ADDRESS() translates the given address to its location in uncached memory. This is typically where
device drivers will access the memory to avoid cache problems. It may additionally be necessary for the cache to be flushed
before the contents of this location is fully valid.

CYGARC_PHYSICAL_ADDRESS() translates the given address to its location in the physical address space. This is typically
the address that needs to be passed to device hardware such as a DMA engine, Ethernet device or PCI bus bridge. The physical
address may not be directly accessible to the program, it may be re-mapped by address translation.

Global Pointer
CYGARC_HAL_SAVE_GP()
CYGARC_HAL_RESTORE_GP()

76

HAL Interfaces

These macros insert code to save and restore any global data pointer that the ABI uses. These are necessary when switching
context between two eCos instances - for example between an eCos application and RedBoot.

Interrupt Handling
These interfaces contain definitions related to interrupt handling. They include definitions of exception and interrupt numbers,
interrupt enabling and masking.

These definitions are normally found in cyg/hal/hal_intr.h. This file is supplied by the architecture HAL. Any vari-
ant or platform specific definitions will be found in cyg/hal/var_intr.h, cyg/hal/plf_intr.h or cyg/hal/
hal_platform_ints.h in the variant or platform HAL, depending on the exact target. These files are include automati-
cally by this header, so need not be included explicitly.

Vector numbers
CYGNUM_HAL_VECTOR_XXXX
CYGNUM_HAL_VSR_MIN
CYGNUM_HAL_VSR_MAX
CYGNUM_HAL_VSR_COUNT

CYGNUM_HAL_INTERRUPT_XXXX
CYGNUM_HAL_ISR_MIN
CYGNUM_HAL_ISR_MAX
CYGNUM_HAL_ISR_COUNT

CYGNUM_HAL_EXCEPTION_XXXX
CYGNUM_HAL_EXCEPTION_MIN
CYGNUM_HAL_EXCEPTION_MAX
CYGNUM_HAL_EXCEPTION_COUNT

All possible VSR, interrupt and exception vectors are specified here, together with maximum and minimum values for range
checking. While the VSR and exception numbers will be defined in this file, the interrupt numbers will normally be defined
in the variant or platform HAL file that is included by this header.

There are two ranges of numbers, those for the vector service routines and those for the interrupt service routines. The rela-
tionship between these two ranges is undefined, and no equivalence should be assumed if vectors from the two ranges coincide.

The VSR vectors correspond to the set of exception vectors that can be delivered by the CPU architecture, many of these will
be internal exception traps. The ISR vectors correspond to the set of external interrupts that can be delivered and are usually
determined by extra decoding of the interrupt controller by the interrupt VSR.

Where a CPU supports synchronous exceptions, the range of such exceptions allowed are defined by CYGNUM_HAL_EX-
CEPTION_MIN and CYGNUM_HAL_EXCEPTION_MAX. The CYGNUM_HAL_EXCEPTION_XXXX definitions are standard
names used by target independent code to test for the presence of particular exceptions in the architecture. The actual exception
numbers will normally correspond to the VSR exception range. In future other exceptions generated by the system software
(such as stack overflow) may be added.

CYGNUM_HAL_ISR_COUNT, CYGNUM_HAL_VSR_COUNT and CYGNUM_HAL_EXCEPTION_COUNT define the number
of ISRs, VSRs and EXCEPTIONs respectively for the purposes of defining arrays etc. There might be a translation from the
supplied vector numbers into array offsets. Hence CYGNUM_HAL_XXX_COUNT may not simply be CYGNUM_HAL_XXX_MAX
- CYGNUM_HAL_XXX_MIN or CYGNUM_HAL_XXX_MAX+1.

Interrupt state control
CYG_INTERRUPT_STATE
HAL_DISABLE_INTERRUPTS(old)
HAL_RESTORE_INTERRUPTS(old)
HAL_ENABLE_INTERRUPTS()
HAL_QUERY_INTERRUPTS(state)

These macros provide control over the state of the CPUs interrupt mask mechanism. They should normally manipulate a CPU
status register to enable and disable interrupt delivery. They should not access an interrupt controller.

77

HAL Interfaces

CYG_INTERRUPT_STATE is a data type that should be used to store the interrupt state returned by HAL_DISABLE_IN-
TERRUPTS() and HAL_QUERY_INTERRUPTS() and passed to HAL_RESTORE_INTERRUPTS().

HAL_DISABLE_INTERRUPTS() disables the delivery of interrupts and stores the original state of the interrupt mask in the
variable passed in the old argument.

HAL_RESTORE_INTERRUPTS() restores the state of the interrupt mask to that recorded in old.

HAL_ENABLE_INTERRUPTS() simply enables interrupts regardless of the current state of the mask.

HAL_QUERY_INTERRUPTS() stores the state of the interrupt mask in the variable passed in the state argument. The state
stored here should also be capable of being passed to HAL_RESTORE_INTERRUPTS() at a later point.

It is at the HAL implementer‚s discretion exactly which interrupts are masked by this mechanism. Where a CPU has more than
one interrupt type that may be masked separately (e.g. the ARM's IRQ and FIQ) only those that can raise DSRs need to be
masked here. A separate architecture specific mechanism may then be used to control the other interrupt types.

ISR and VSR management
HAL_INTERRUPT_IN_USE(vector, state)
HAL_INTERRUPT_ATTACH(vector, isr, data, object)
HAL_INTERRUPT_DETACH(vector, isr)
HAL_VSR_SET(vector, vsr, poldvsr)
HAL_VSR_GET(vector, pvsr)
HAL_VSR_SET_TO_ECOS_HANDLER(vector, poldvsr)

These macros manage the attachment of interrupt and vector service routines to interrupt and exception vectors respectively.

HAL_INTERRUPT_IN_USE() tests the state of the supplied interrupt vector and sets the value of the state parameter to either
1 or 0 depending on whether there is already an ISR attached to the vector. The HAL will only allow one ISR to be attached
to each vector, so it is a good idea to use this function before using HAL_INTERRUPT_ATTACH().

HAL_INTERRUPT_ATTACH() attaches the ISR, data pointer and object pointer to the given vector. When an interrupt
occurs on this vector the ISR is called using the C calling convention and the vector number and data pointer are passed to it
as the first and second arguments respectively.

HAL_INTERRUPT_DETACH() detaches the ISR from the vector.

HAL_VSR_SET() replaces the VSR attached to the vector with the replacement supplied in vsr. The old VSR is returned
in the location pointed to by pvsr. On some platforms, possibly only in certain configurations, the table of VSRs will be in
read-only memory. If so then this macro should be left undefined.

HAL_VSR_GET() assigns a copy of the VSR to the location pointed to by pvsr.

HAL_VSR_SET_TO_ECOS_HANDLER() ensures that the VSR for a specific exception is pointing at the eCos exception
VSR and not one for RedBoot or some other ROM monitor. The default when running under RedBoot is for exceptions to be
handled by RedBoot and passed to GDB. This macro diverts the exception to eCos so that it may be handled by application
code. The arguments are the VSR vector to be replaces, and a location in which to store the old VSR pointer, so that it may
be replaced at a later point. On some platforms, possibly only in certain configurations, the table of VSRs will be in read-only
memory. If so then this macro should be left undefined.

Interrupt controller management
HAL_INTERRUPT_MASK(vector)
HAL_INTERRUPT_UNMASK(vector)
HAL_INTERRUPT_ACKNOWLEDGE(vector)
HAL_INTERRUPT_CONFIGURE(vector, level, up)
HAL_INTERRUPT_SET_LEVEL(vector, level)

These macros exert control over any prioritized interrupt controller that is present. If no priority controller exists, then these
macros should be empty.

78

HAL Interfaces

Note

These macros may not be reentrant, so care should be taken to prevent them being called while interrupts are
enabled. This means that they can be safely used in initialization code before interrupts are enabled, and in ISRs.
In DSRs, ASRs and thread code, however, interrupts must be disabled before these macros are called. Here is an
example for use in a DSR where the interrupt source is unmasked after data processing:

…
HAL_DISABLE_INTERRUPTS(old);
HAL_INTERRUPT_UNMASK(CYGNUM_HAL_INTERRUPT_ETH);
HAL_RESTORE_INTERRUPTS(old);
…

HAL_INTERRUPT_MASK() causes the interrupt associated with the given vector to be blocked.

HAL_INTERRUPT_UNMASK() causes the interrupt associated with the given vector to be unblocked.

HAL_INTERRUPT_ACKNOWLEDGE() acknowledges the current interrupt from the given vector. This is usually executed
from the ISR for this vector when it is prepared to allow further interrupts. Most interrupt controllers need some form of
acknowledge action before the next interrupt is allowed through. Executing this macro may cause another interrupt to be
delivered. Whether this interrupts the current code depends on the state of the CPU interrupt mask.

HAL_INTERRUPT_CONFIGURE() provides control over how an interrupt signal is detected. The arguments are:

vector The interrupt vector to be configured.

level Set to true if the interrupt is detected by level, and false if it is edge triggered.

up If the interrupt is set to level detect, then if this is true it is detected by a high signal level, and if false by a
low signal level. If the interrupt is set to edge triggered, then if this is true it is triggered by a rising edge and
if false by a falling edge.

HAL_INTERRUPT_SET_LEVEL() provides control over the hardware priority of the interrupt. The arguments are:

vector The interrupt whose level is to be set.

level The priority level to which the interrupt is to set. In some architectures the masking of an interrupt is achieved by
changing its priority level. Hence this function, HAL_INTERRUPT_MASK() and HAL_INTERRUPT_UNMASK()
may interfere with each other.

Clocks and Timers
These interfaces contain definitions related to clock and timer handling. They include interfaces to initialize and read a clock
for generating regular interrupts, definitions for setting the frequency of the clock, and support for short timed delays.

Clock Control
HAL_CLOCK_INITIALIZE(period)
HAL_CLOCK_RESET(vector, period)
HAL_CLOCK_READ(pvalue)

These macros provide control over a clock or timer device that may be used by the kernel to provide time-out, delay and
scheduling services. The clock is assumed to be implemented by some form of counter that is incremented or decremented by
some external source and which raises an interrupt when it reaches a predetermined value.

HAL_CLOCK_INITIALIZE() initializes the timer device to interrupt at the given period. The period is essentially the value
used to initialize the timer counter and must be calculated from the timer frequency and the desired interrupt rate. The timer
device should generate an interrupt every period cycles.

HAL_CLOCK_RESET() re-initializes the timer to provoke the next interrupt. This macro is only really necessary when the
timer device needs to be reset in some way after each interrupt.

79

HAL Interfaces

HAL_CLOCK_READ() reads the current value of the timer counter and puts the value in the location pointed to by pvalue.
The value stored will always be the number of timer cycles since the last interrupt, and hence ranges between zero and the
initial period value. If this is a count-down cyclic timer, some arithmetic may be necessary to generate this value.

Microsecond Delay
HAL_DELAY_US(us)

This macro provides a busy loop delay for the given number of microseconds. It is intended mainly for controlling hardware
that needs short delays between operations. Code which needs longer delays, of the order of milliseconds, should instead use
higher-level functions such as cyg_thread_delay. The macro implementation should be thread-safe. It can also be used
in ISRs or DSRs, although such usage is undesirable because of the impact on interrupt and dispatch latency.

The macro should never delay for less than the specified amount of time. It may delay for somewhat longer, although since the
macro uses a busy loop this is a waste of CPU cycles. Of course the code invoking HAL_DELAY_US may get interrupted or
timesliced, in which case the delay may be much longer than intended. If this is unacceptable then the calling code must take
preventative action such as disabling interrupts or locking the scheduler.

There are three main ways of implementing the macro:

1. a counting loop, typically written in inline assembler, using an outer loop for the microseconds and an inner loop that
consumes approximately 1us. This implementation is automatically thread-safe and does not impose any dependencies on
the rest of the system, for example it does not depend on the system clock having been started. However it assumes that the
CPU clock speed is known at compile-time or can be easily determined at run-time.

2. monitor one of the hardware clocks, usually the system clock. Usually this clock ticks at a rate independent of the CPU so
calibration is easier. However the implementation relies on the system clock having been started, and assumes that no other
code is manipulating the clock hardware. There can also be complications when the system clock wraps around.

3. a combination of the previous two. The system clock is used during system initialization to determine the CPU clock speed,
and the result is then used to calibrate a counting loop. This has the disadvantage of significantly increasing the system
startup time, which may be unacceptable to some applications. There are also complications if the system startup code
normally runs with the cache disabled because the instruction cache will greatly affect any calibration loop.

Clock Frequency Definition
CYGNUM_HAL_RTC_NUMERATOR
CYGNUM_HAL_RTC_DENOMINATOR
CYGNUM_HAL_RTC_PERIOD

These macros are defined in the CDL for each platform and supply the necessary parameters to specify the frequency at which
the clock interrupts. These parameters are usually found in the CDL definitions for the target platform, or in some cases the
CPU variant.

CYGNUM_HAL_RTC_NUMERATOR and CYGNUM_HAL_RTC_DENOMINATOR specify the resolution of the clock interrupt.
This resolution involves two separate values, the numerator and the denominator. The result of dividing the numerator by the de-
nominator should correspond to the number of nanoseconds between clock interrupts. For example a numerator of 1000000000
and a denominator of 100 means that there are 10000000 nanoseconds (or 10 milliseconds) between clock interrupts. Express-
ing the resolution as a fraction minimizes clock drift even for frequencies that cannot be expressed as a simple integer. For
example a frequency of 60Hz corresponds to a clock resolution of 16666666.66… nanoseconds. This can be expressed accu-
rately as 1000000000 over 60.

CYGNUM_HAL_RTC_PERIOD specifies the exact value used to initialize the clock hardware, it is the value passed as a para-
meter to HAL_CLOCK_INITIALIZE() and HAL_CLOCK_RESET(). The exact meaning of the value and the range of legal
values therefore depends on the target hardware, and the hardware documentation should be consulted for further details.

The default values for these macros in all HALs are calculated to give a clock interrupt frequency of 100Hz, or 10ms between
interrupts. To change the clock frequency, the period needs to be changed, and the resolution needs to be adjusted accordingly.
As an example consider the i386 PC target. The default values for these macros are:

CYGNUM_HAL_RTC_NUMERATOR 1000000000

80

HAL Interfaces

CYGNUM_HAL_RTC_DENOMINATOR 100
CYGNUM_HAL_RTC_PERIOD 11932

To change to, say, a 200Hz clock the period needs to be halved to 5966, and to compensate the denominator needs to be doubled
to 200. To change to a 1KHz interrupt rate change the period to 1193 and the denominator to 1000.

Some HALs make this process a little easier by deriving the period arithmetically from the denominator. This calculation may
also involve the CPU clock frequency and possibly other factors. For example in the ARM AT91 variant HAL the period is
defined by the following expression:

((CYGNUM_HAL_ARM_AT91_CLOCK_SPEED/32) / CYGNUM_HAL_RTC_DENOMINATOR)

In this case it is not necessary to change the period at all, just change the denominator to select the desired clock frequency.
However, note that for certain choices of frequency, rounding errors in this calculation may result in a small clock drift over
time. This is usually negligible, but if perfect accuracy is required, it may be necessary to adjust the frequency or period by hand.

HAL I/O
This section contains definitions for supporting access to device control registers in an architecture neutral fashion.

These definitions are normally found in the header file cyg/hal/hal_io.h. This file itself contains macros that are generic
to the architecture. If there are variant or platform specific IO access macros then these will be found in cyg/hal/var_io.h
and cyg/hal/plf_io.h in the variant or platform HALs respectively. These files are included automatically by this header,
so need not be included explicitly.

This header (or more likely cyg/hal/plf_io.h) also defines the PCI access macros. For more information on these see
the eCos PCI library reference documentation.

Register address
HAL_IO_REGISTER

This type is used to store the address of an I/O register. It will normally be a memory address, an integer port address or an
offset into an I/O space. More complex architectures may need to code an address space plus offset pair into a single word,
or may represent it as a structure.

Values of variables and constants of this type will usually be supplied by configuration mechanisms or in target specific headers.

Register read
HAL_READ_XXX(register, value)
HAL_READ_XXX_VECTOR(register, buffer, count, stride)

These macros support the reading of I/O registers in various sizes. The XXX component of the name may be UINT8, UINT16,
UINT32.

HAL_READ_XXX() reads the appropriately sized value from the register and stores it in the variable passed as the second
argument.

HAL_READ_XXX_VECTOR() reads count values of the appropriate size into buffer. The stride controls how the
pointer advances through the register space. A stride of zero will read the same register repeatedly, and a stride of one will
read adjacent registers of the given size. Greater strides will step by larger amounts, to allow for sparsely mapped registers
for example.

Register write
HAL_WRITE_XXX(register, value)
HAL_WRITE_XXX_VECTOR(register, buffer,count, stride)

These macros support the writing of I/O registers in various sizes. The XXX component of the name may be UINT8, UINT16,
UINT32.

81

HAL Interfaces

HAL_WRITE_XXX() writes the appropriately sized value from the variable passed as the second argument stored it in the
register.

HAL_WRITE_XXX_VECTOR() writes count values of the appropriate size from buffer. The stride controls how the
pointer advances through the register space. A stride of zero will write the same register repeatedly, and a stride of one will
write adjacent registers of the given size. Greater strides will step by larger amounts, to allow for sparsely mapped registers
for example.

HAL Unique-ID
This section contains definitions for supporting the optional Unique-ID access in an architecture neutral fashion. Not all vari-
ants, or platforms, will provide a mechanism for accessing device-specific Unique-ID data, in which case the macros as doc-
umented in this section will not be defined.

The required definitions are normally referenced via the header file cyg/hal/hal_io.h. This file itself contains macros
that are generic to the configured architecture. If there are variant or platform specific Unique-ID access macros then these will
be found in cyg/hal/var_io.h and cyg/hal/plf_io.h in the variant or platform HALs respectively. These files are
included automatically by the architecture header, so need not be included explicitly.

HAL_UNIQUE_ID_LEN
HAL_UNIQUE_ID_LEN(CYG_WORD32 maxlen)

This macro, when defined, provides a mechanism for ascertaining the maximum number of bytes of Unique-ID data available.

For most implementations this macro will return a build-time constant value in the passed maxlen parameter, but some systems
may have a run-time calculated limit.

HAL_UNIQUE_ID
HAL_UNIQUE_ID(CYG_BYTE *buffer, CYG_WORD32 bufflen)

T his macro, when defined, provides a mechanism for filling the passed buffer parameter with upto bufflen bytes of
Unique-ID data. If the implementation provides fewer that bufflen bytes of unique information then only the available data
will be copied to the destination buffer.

The use of returned Unique-ID data is application specific, but examples may include use for USB device serial# identification,
Ethernet MAC addresses, cryptography seeds, etc.

When a valid buffer parameter is passed then the bufflen parameter indicates how many bytes are available. This buf-
flen size may be less than the total amount of Unique-ID information available, with the variant/platform implementation
only copying the requested amount.

Note

This “always-copy” model is used since it allows the same API to be used for systems where the ID information
is not held in CPU addressable memory, or where multiple sources are concatenated by an implementation to
provide a larger Unique-ID value.

Cache Control
This section contains definitions for supporting control of the caches on the CPU.

These definitions are usually found in the header file cyg/hal/hal_cache.h. This file may be defined in the architecture,
variant or platform HAL, depending on where the caches are implemented for the target. Often there will be a generic imple-
mentation of the cache control macros in the architecture HAL with the ability to override or undefine them in the variant or
platform HAL. Even when the implementation of the cache macros is in the architecture HAL, the cache dimensions will be
defined in the variant or platform HAL. As with other files, the variant or platform specific definitions are usually found in

82

HAL Interfaces

cyg/hal/var_cache.h and cyg/hal/plf_cache.h respectively. These files are include automatically by this head-
er, so need not be included explicitly.

There are versions of the macros defined here for both the Data and Instruction caches. these are distinguished by the use of
either DCACHE or ICACHE in the macro names. Some architectures have a unified cache, where both data and instruction
share the same cache. In these cases the control macros use UCACHE and the DCACHE and ICACHE macros will just be calls to
the UCACHE version. In the following descriptions, XCACHE is used to stand for any of these. Where there are issues specific
to a particular cache, this will be explained in the text.

There might be target specific restrictions on the use of some of the macros which it is the user's responsibility to comply with.
Such restrictions are documented in the header file with the macro definition.

Note that destructive cache macros should be used with caution. Preceding a cache invalidation with a cache synchronization
is not safe in itself since an interrupt may happen after the synchronization but before the invalidation. This might cause the
state of dirty data lines created during the interrupt to be lost.

Depending on the architecture's capabilities, it may be possible to temporarily disable the cache while doing the synchronization
and invalidation which solves the problem (no new data would be cached during an interrupt). Otherwise it is necessary to
disable interrupts while manipulating the cache which may take a long time.

Some platform HALs now support a pair of cache state query macros: HAL_ICACHE_IS_ENABLED(x) and HAL_D-
CACHE_IS_ENABLED(x) which set the argument to true if the instruction or data cache is enabled, respectively. Like
most cache control macros, these are optional, because the capabilities of different targets and boards can vary considerably.
Code which uses them, if it is to be considered portable, should test for their existence first by means of #ifdef. Be sure to
include <cyg/hal/hal_cache.h> in order to do this test and (maybe) use the macros.

Cache Dimensions
HAL_XCACHE_SIZE
HAL_XCACHE_LINE_SIZE
HAL_XCACHE_WAYS
HAL_XCACHE_SETS

These macros define the size and dimensions of the Instruction and Data caches.

HAL_XCACHE_SIZE

Defines the total size of the cache in bytes.

HAL_XCACHE_LINE_SIZE

Defines the cache line size in bytes.

HAL_XCACHE_WAYS

Defines the number of ways in each set and defines its level of associativity. This would be 1 for a direct mapped cache,
2 for a 2-way cache, 4 for 4-way and so on.

HAL_XCACHE_SETS

Defines the number of sets in the cache, and is calculated from the previous values.

Global Cache Control
HAL_XCACHE_ENABLE()
HAL_XCACHE_DISABLE()
HAL_XCACHE_INVALIDATE_ALL()
HAL_XCACHE_SYNC()
HAL_XCACHE_BURST_SIZE(size)
HAL_DCACHE_WRITE_MODE(mode)
HAL_XCACHE_LOCK(base, size)
HAL_XCACHE_UNLOCK(base, size)

83

HAL Interfaces

HAL_XCACHE_UNLOCK_ALL()

These macros affect the state of the entire cache, or a large part of it.

HAL_XCACHE_ENABLE() and HAL_XCACHE_DISABLE()

Enable and disable the cache.

HAL_XCACHE_INVALIDATE_ALL()

Causes the entire contents of the cache to be invalidated. Depending on the hardware, this may require the cache to be
disabled during the invalidation process. If so, the implementation must use HAL_XCACHE_IS_ENABLED() to save
and restore the previous state.

Note

If this macro is called after HAL_XCACHE_SYNC() with the intention of clearing the cache (invalidating
the cache after writing dirty data back to memory), you must prevent interrupts from happening between
the two calls:

…
HAL_DISABLE_INTERRUPTS(old);
HAL_XCACHE_SYNC();
HAL_XCACHE_INVALIDATE_ALL();
HAL_RESTORE_INTERRUPTS(old);
…

Since the operation may take a very long time, real-time responsiveness could be affected, so only do this
when it is absolutely required and you know the delay will not interfere with the operation of drivers or the
application.

HAL_XCACHE_SYNC()

Causes the contents of the cache to be brought into synchronization with the contents of memory. In some implementations
this may be equivalent to HAL_XCACHE_INVALIDATE_ALL().

HAL_XCACHE_BURST_SIZE()

Allows the size of cache to/from memory bursts to be controlled. This macro will only be defined if this functionality
is available.

HAL_DCACHE_WRITE_MODE()

Controls the way in which data cache lines are written back to memory. There will be definitions for the possible modes.
Typical definitions are HAL_DCACHE_WRITEBACK_MODE and HAL_DCACHE_WRITETHRU_MODE. This macro will
only be defined if this functionality is available.

HAL_XCACHE_LOCK()

Causes data to be locked into the cache. The base and size arguments define the memory region that will be locked into
the cache. It is architecture dependent whether more than one locked region is allowed at any one time, and whether this
operation causes the cache to cease acting as a cache for addresses outside the region during the duration of the lock. This
macro will only be defined if this functionality is available.

HAL_XCACHE_UNLOCK()

Cancels the locking of the memory region given. This should normally correspond to a region supplied in a matching lock
call. This macro will only be defined if this functionality is available.

HAL_XCACHE_UNLOCK_ALL()

Cancels all existing locked memory regions. This may be required as part of the cache initialization on some architectures.
This macro will only be defined if this functionality is available.

84

HAL Interfaces

Cache Line Control
HAL_DCACHE_ALLOCATE(base , size)
HAL_DCACHE_FLUSH(base , size)
HAL_XCACHE_INVALIDATE(base , size)
HAL_DCACHE_STORE(base , size)
HAL_DCACHE_READ_HINT(base , size)
HAL_DCACHE_WRITE_HINT(base , size)
HAL_DCACHE_ZERO(base , size)

All of these macros apply a cache operation to all cache lines that match the memory address region defined by the base and
size arguments. These macros will only be defined if the described functionality is available. Also, it is not guaranteed that the
cache function will only be applied to just the described regions, in some architectures it may be applied to the whole cache.

HAL_DCACHE_ALLOCATE()

Allocates lines in the cache for the given region without reading their contents from memory, hence the contents of the
lines is undefined. This is useful for preallocating lines which are to be completely overwritten, for example in a block
copy operation.

HAL_DCACHE_FLUSH()

Invalidates all cache lines in the region after writing any dirty lines to memory.

HAL_XCACHE_INVALIDATE()

Invalidates all cache lines in the region. Any dirty lines are invalidated without being written to memory.

HAL_DCACHE_STORE()

Writes all dirty lines in the region to memory, but does not invalidate any lines.

HAL_DCACHE_READ_HINT()

Hints to the cache that the region is going to be read from in the near future. This may cause the region to be speculatively
read into the cache.

HAL_DCACHE_WRITE_HINT()

Hints to the cache that the region is going to be written to in the near future. This may have the identical behavior to
HAL_DCACHE_READ_HINT().

HAL_DCACHE_ZERO()

Allocates and zeroes lines in the cache for the given region without reading memory. This is useful if a large area of
memory is to be cleared.

Linker Scripts
When an eCos application is linked it must be done under the control of a linker script. This script defines the memory areas,
addresses and sized, into which the code and data are to be put, and allocates the various sections generated by the compiler
to these.

The linker script actually used is in lib/target.ld in the install directory. This is actually manufactured out of two other
files: a base linker script and an .ldi file that was generated by the memory layout tool.

The base linker script is usually supplied either by the architecture HAL or the variant HAL. It consists of a set of linker script
fragments, in the form of C preprocessor macros, that define the major output sections to be generated by the link operation.
The .ldi file, which is #include'ed by the base linker script, uses these macro definitions to assign the output sections
to the required memory areas and link addresses.

85

HAL Interfaces

The .ldi file is supplied by the platform HAL, and contains knowledge of the memory layout of the target platform. These
files generally conform to a standard naming convention, each file being of the form:

pkgconf/mlt_<architecture>_<variant>_<platform>_<startup>.ldi

where <architecture>, <variant> and <platform> are the respective HAL package names and <startup> is the
startup type which is usually one of ROM, RAM or ROMRAM.

In addition to the .ldi file, there is also a congruously name .h file. This may be used by the application to access information
defined in the .ldi file. Specifically it contains the memory layout defined there, together with any additional section names
defined by the user. Examples of the latter are heap areas or PCI bus memory access windows.

The .ldi is manufactured by the Memory Layout Tool (MLT). The MLT saves the memory configuration into a file named

include/pkgconf/mlt_<architecture>_<variant>_<platform>_<startup>.mlt

in the platform HAL. This file is used by the MLT to manufacture both the .ldi and .h files. Users should beware that direct
edits the either of these files may be overwritten if the MLT is run and regenerates them from the .mlt file.

The names of the .ldi and .h files are defined by macro definitions in pkgconf/system.h. These are CYGHWR_MEM-
ORY_LAYOUT_LDI and CYGHWR_MEMORY_LAYOUT_H respectively. While there will be little need for the application to
refer to the .ldi file directly, it may include the .h file as follows:

#include CYGHWR_MEMORY_LAYOUT_H

Diagnostic Support
The HAL provides support for low level diagnostic IO. This is particularly useful during early development as an aid to bringing
up a new platform. Usually this diagnostic channel is a UART or some other serial IO device, but it may equally be a a memory
buffer, a simulator supported output channel, a ROM emulator virtual UART, and LCD panel, a memory mapped video buffer
or any other output device.

HAL_DIAG_INIT() performs any initialization required on the device being used to generate diagnostic output. This may
include, for a UART, setting baud rate, and stop, parity and character bits. For other devices it may include initializing a
controller or establishing contact with a remote device.

HAL_DIAG_WRITE_CHAR(c) writes the character supplied to the diagnostic output device.

HAL_DIAG_READ_CHAR(c) reads a character from the diagnostic device into the supplied variable. This is not supported
for all diagnostic devices.

These macros are defined in the header file cyg/hal/hal_diag.h. This file is usually supplied by the variant or platform
HAL, depending on where the IO device being used is located. For example for on-chip UARTs it would be in the variant
HAL, but for a board-level LCD panel it would be in the platform HAL.

SMP Support
eCos contains support for limited Symmetric Multi-Processing (SMP). This is only available on selected architectures and
platforms.

Target Hardware Limitations
To allow a reasonable implementation of SMP, and to reduce the disruption to the existing source base, a number of assumptions
have been made about the features of the target hardware.

• Modest multiprocessing. The typical number of CPUs supported is two to four, with an upper limit around eight. While there
are no inherent limits in the code, hardware and algorithmic limitations will probably become significant beyond this point.

• SMP synchronization support. The hardware must supply a mechanism to allow software on two CPUs to synchronize.
This is normally provided as part of the instruction set in the form of test-and-set, compare-and-swap or load-link/store-

86

HAL Interfaces

conditional instructions. An alternative approach is the provision of hardware semaphore registers which can be used to
serialize implementations of these operations. Whatever hardware facilities are available, they are used in eCos to implement
spinlocks.

• Coherent caches. It is assumed that no extra effort will be required to access shared memory from any processor. This means
that either there are no caches, they are shared by all processors, or are maintained in a coherent state by the hardware. It
would be too disruptive to the eCos sources if every memory access had to be bracketed by cache load/flush operations.
Any hardware that requires this is not supported.

• Uniform addressing. It is assumed that all memory that is shared between CPUs is addressed at the same location from all
CPUs. Like non-coherent caches, dealing with CPU-specific address translation is considered too disruptive to the eCos
source base. This does not, however, preclude systems with non-uniform access costs for different CPUs.

• Uniform device addressing. As with access to memory, it is assumed that all devices are equally accessible to all CPUs.
Since device access is often made from thread contexts, it is not possible to restrict access to device control registers to
certain CPUs.

• Interrupt routing. The target hardware must have an interrupt controller that can route interrupts to specific CPUs. It is
acceptable for all interrupts to be delivered to just one CPU, or for some interrupts to be bound to specific CPUs, or for some
interrupts to be local to each CPU. At present dynamic routing, where a different CPU may be chosen each time an interrupt
is delivered, is not supported. ECos cannot support hardware where all interrupts are delivered to all CPUs simultaneously
with the expectation that software will resolve any conflicts.

• Inter-CPU interrupts. A mechanism to allow one CPU to interrupt another is needed. This is necessary so that events on one
CPU can cause rescheduling on other CPUs.

• CPU Identifiers. Code running on a CPU must be able to determine which CPU it is running on. The CPU Id is usually
provided either in a CPU status register, or in a register associated with the inter-CPU interrupt delivery subsystem. ECos
expects CPU Ids to be small positive integers, although alternative representations, such as bitmaps, can be converted rela-
tively easily. Complex mechanisms for getting the CPU Id cannot be supported. Getting the CPU Id must be a cheap oper-
ation, since it is done often, and in performance critical places such as interrupt handlers and the scheduler.

HAL Support
SMP support in any platform depends on the HAL supplying the appropriate operations. All HAL SMP support is defined in
the cyg/hal/hal_smp.h header. Variant and platform specific definitions will be in cyg/hal/var_smp.h and cyg/
hal/plf_smp.h respectively. These files are include automatically by this header, so need not be included explicitly.

SMP support falls into a number of functional groups.

CPU Control

This group consists of descriptive and control macros for managing the CPUs in an SMP system.

HAL_SMP_CPU_TYPE

A type that can contain a CPU id. A CPU id is usually a small integer that is used to index arrays of variables that are
managed on an per-CPU basis.

HAL_SMP_CPU_MASK

A type that can contain a bitmask of all CPUs in the system. In this mask, bit n corresponds to CPU n.

HAL_SMP_CPU_COUNT

The maximum number of CPUs that can be supported. This is used to provide the size of any arrays that have an element
per CPU.

HAL_SMP_CPU_MAX

The maximum possible CPU ID. This should normally be one less that HAL_SMP_CPU_COUNT.

87

HAL Interfaces

HAL_SMP_CPU_THIS()

Returns the CPU id of the current CPU.

HAL_SMP_CPU_NONE

A value that does not match any real CPU id. This is uses where a CPU type variable must be set to a null value.

HAL_SMP_CPU_MASK_ALL

A value for the HAL_SMP_CPU_MASK type that has a bit set for each CPU supported. This value can be derived from
HAL_SMP_CPU_COUNT.

HAL_SMP_CPU_START(cpu)

Starts the given CPU executing at a defined HAL entry point. After performing any HAL level initialization, the CPU
calls up into the kernel at cyg_kernel_cpu_startup().

HAL_SMP_CPU_RESCHEDULE_INTERRUPT(cpu, wait)

Sends the CPU a reschedule interrupt, and if wait is non-zero, waits for an acknowledgment. The interrupted CPU should
call cyg_scheduler_set_need_reschedule() in its DSR to cause the reschedule to occur.

HAL_SMP_CPU_TIMESLICE_INTERRUPT(cpu, wait)

Sends the CPU a timeslice interrupt, and if wait is non-zero, waits for an acknowledgment. The interrupted CPU should
call cyg_scheduler_timeslice_cpu() to cause the timeslice event to be processed.

Test-and-set Support

Test-and-set is the foundation of the SMP synchronization mechanisms.

HAL_TAS_TYPE

The type for all test-and-set variables. The test-and-set macros only support operations on a single bit (usually the least
significant bit) of this location. This allows for maximum flexibility in the implementation.

HAL_TAS_SET(tas, oldb)

Performs a test and set operation on the location tas. oldb will contain true if the location was already set, and false
if it was clear.

HAL_TAS_CLEAR(tas, oldb)

Performs a test and clear operation on the location tas. oldb will contain true if the location was already set, and
false if it was clear.

Spinlocks

Spinlocks provide inter-CPU locking. Normally they will be implemented on top of the test-and-set mechanism above, but
may also be implemented by other means if, for example, the hardware has more direct support for spinlocks.

HAL_SPINLOCK_TYPE

The type for all spinlock variables.

HAL_SPINLOCK_INIT_CLEAR

A value that may be assigned to a spinlock variable to initialize it to clear.

HAL_SPINLOCK_INIT_SET

A value that may be assigned to a spinlock variable to initialize it to set.

88

HAL Interfaces

HAL_SPINLOCK_INIT(lock, val)

A macro to initialize a spinlock at runtime. The current state of the spinlock is set according to val: zero for clear, non-
zero for set.

HAL_SPINLOCK_SPIN(lock)

The caller spins in a busy loop waiting for the lock to become clear. It then sets it and continues. This is all handled
atomically, so that there are no race conditions between CPUs.

HAL_SPINLOCK_CLEAR(lock)

The caller clears the lock. One of any waiting spinners will then be able to proceed.

HAL_SPINLOCK_TRY(lock, val)

Attempts to set the lock. The value put in val will be true if the lock was claimed successfully, and false if it was not.

HAL_SPINLOCK_TEST(lock, val)

Tests the current value of the lock. The value put in val will be true if the lock is claimed and false of it is clear.

Scheduler Lock

The scheduler lock is the main protection for all kernel data structures. By default the kernel implements the scheduler lock
itself using a spinlock. However, if spinlocks cannot be supported by the hardware, or there is a more efficient implementation
available, the HAL may provide macros to implement the scheduler lock.

HAL_SMP_SCHEDLOCK_DATA_TYPE

A data type, possibly a structure, that contains any data items needed by the scheduler lock implementation. A variable of
this type will be instantiated as a static member of the Cyg_Scheduler_SchedLock class and passed to all the following
macros.

HAL_SMP_SCHEDLOCK_INIT(lock, data)

Initialize the scheduler lock. The lock argument is the scheduler lock counter and the data argument is a variable of
HAL_SMP_SCHEDLOCK_DATA_TYPE type.

HAL_SMP_SCHEDLOCK_INC(lock, data)

Increment the scheduler lock. The first increment of the lock from zero to one for any CPU may cause it to wait until the
lock is zeroed by another CPU. Subsequent increments should be less expensive since this CPU already holds the lock.

HAL_SMP_SCHEDLOCK_ZERO(lock, data)

Zero the scheduler lock. This operation will also clear the lock so that other CPUs may claim it.

HAL_SMP_SCHEDLOCK_SET(lock, data, new)

Set the lock to a different value, in new. This is only called when the lock is already known to be owned by the current
CPU. It is never called to zero the lock, or to increment it from zero.

Interrupt Routing

The routing of interrupts to different CPUs is supported by two new interfaces in hal_intr.h.

Once an interrupt has been routed to a new CPU, the existing vector masking and configuration operations should take account
of the CPU routing. For example, if the operation is not invoked on the destination CPU itself, then the HAL may need to
arrange to transfer the operation to the destination CPU for correct application.

89

HAL Interfaces

HAL_INTERRUPT_SET_CPU(vector, mask)

Route the interrupt for the given vector to any of the CPUs whose bit is set in mask.

HAL_INTERRUPT_GET_CPU(vector, mask)

Set mask to the set of CPUs to which this vector is routed.

90

Chapter 5. Exception Handling
Most of the HAL consists of simple macros or functions that are called via the interfaces described in the previous section.
These just perform whatever operation is required by accessing the hardware and then return. The exception to this is the
handling of exceptions: either synchronous hardware traps or asynchronous device interrupts. Here control is passed first to
the HAL, which then passed it on to eCos or the application. After eCos has finished with it, control is then passed back to the
HAL for it to tidy up the CPU state and resume processing from the point at which the exception occurred.

The HAL exceptions handling code is usually found in the file vectors.S in the architecture HAL. Since the reset entry
point is usually implemented as one of these it also deals with system startup.

The exact implementation of this code is under the control of the HAL implementer. So long as it interacts correctly with the
interfaces defined previously it may take any form. However, all current implementation follow the same pattern, and there
should be a very good reason to break with this. The rest of this section describes these operate.

Exception handling normally deals with the following broad areas of functionality:

• Startup and initialization.

• Hardware exception delivery.

• Default handling of synchronous exceptions.

• Default handling of asynchronous interrupts.

HAL Startup
Execution normally begins at the reset vector with the machine in a minimal startup state. From here the HAL needs to get the
machine running, set up the execution environment for the application, and finally invoke its entry point.

The following is a list of the jobs that need to be done in approximately the order in which they should be accomplished. Many
of these will not be needed in some configurations.

• Initialize the hardware. This may involve initializing several subsystems in both the architecture, variant and platform HALs.
These include:

• Initialize various CPU status registers. Most importantly, the CPU interrupt mask should be set to disable interrupts.

• Initialize the MMU, if it is used. On many platforms it is only possible to control the cacheability of address ranges via
the MMU. Also, it may be necessary to remap RAM and device registers to locations other than their defaults. However,
for simplicity, the mapping should be kept as close to one-to-one physical-to-virtual as possible.

• Set up the memory controller to access RAM, ROM and I/O devices correctly. Until this is done it may not be possible
to access RAM. If this is a ROMRAM startup then the program code can now be copied to its RAM address and control
transferred to it.

• Set up any bus bridges and support chips. Often access to device registers needs to go through various bus bridges and
other intermediary devices. In many systems these are combined with the memory controller, so it makes sense to set
these up together. This is particularly important if early diagnostic output needs to go through one of these devices.

• Set up diagnostic mechanisms. If the platform includes an LED or LCD output device, it often makes sense to output
progress indications on this during startup. This helps with diagnosing hardware and software errors.

• Initialize floating point and other extensions such as SIMD and multimedia engines. It is usually necessary to enable these
and maybe initialize control and exception registers for these extensions.

• Initialize interrupt controller. At the very least, it should be configured to mask all interrupts. It may also be necessary
to set up the mapping from the interrupt controller's vector number space to the CPU's exception number space. Similar
mappings may need to be set up between primary and secondary interrupt controllers.

91

Exception Handling

• Disable and initialize the caches. The caches should not normally be enabled at this point, but it may be necessary to clear
or initialize them so that they can be enabled later. Some architectures require that the caches be explicitly reinitialized
after a power-on reset.

• Initialize the timer, clock etc. While the timer used for RTC interrupts will be initialized later, it may be necessary to set
up the clocks that drive it here.

The exact order in which these initializations is done is architecture or variant specific. It is also often not necessary to do
anything at all for some of these options. These fragments of code should concentrate on getting the target up and running
so that C function calls can be made and code can be run. More complex initializations that cannot be done in assembly code
may be postponed until calls to hal_variant_init() or hal_platform_init() are made.

Not all of these initializations need to be done for all startup types. In particular, RAM startups can reasonably assume that
the ROM monitor or loader has already done most of this work.

• Set up the stack pointer, this allows subsequent initialization code to make proper procedure calls. Usually the interrupt stack
is used for this purpose since it is available, large enough, and will be reused for other purposes later.

• Initialize any global pointer register needed for access to globally defined variables. This allows subsequent initialization
code to access global variables.

• If the system is starting from ROM, copy the ROM template of the .data section out to its correct position in RAM. (the
section called “Linker Scripts”).

• Zero the .bss section.

• Create a suitable C call stack frame. This may involve making stack space for call frames, and arguments, and initializing
the back pointers to halt a GDB backtrace operation.

• Call hal_variant_init() and hal_platform_init(). These will perform any additional initialization needed
by the variant and platform. This typically includes further initialization of the interrupt controller, PCI bus bridges, basic
IO devices and enabling the caches.

• Call cyg_hal_invoke_constructors() to run any static constructors.

• Call cyg_start(). If cyg_start() returns, drop into an infinite loop.

Vectors and VSRs
The CPU delivers all exceptions, whether synchronous faults or asynchronous interrupts, to a set of hardware defined vectors.
Depending on the architecture, these may be implemented in a number of different ways. Examples of existing mechanisms are:

PowerPC Exceptions are vectored to locations 256 bytes apart starting at either zero or 0xFFF00000. There are 16 such
vectors defined by the basic architecture and extra vectors may be defined by specific variants. One of the base
vectors is for all external interrupts, and another is for the architecture defined timer.

MIPS Most exceptions and all interrupts are vectored to a single address at either 0x80000000 or 0xBFC00180.
Software is responsible for reading the exception code from the CPU cause register to discover its true source.
Some TLB and debug exceptions are delivered to different vector addresses, but these are not used currently
by eCos. One of the exception codes in the cause register indicates an external interrupt. Additional bits in
the cause register provide a first-level decode for the interrupt source, one of which represents an architecture
defined timer.

IA32 Exceptions are delivered via an Interrupt Descriptor Table (IDT) which is essentially an indirection table indexed
by exception number. The IDT may be placed anywhere in memory. In PC hardware the standard interrupt con-
troller can be programmed to deliver the external interrupts to a block of 16 vectors at any offset in the IDT. There
is no hardware supplied mechanism for determining the vector taken, other than from the address jumped to.

ARM All exceptions, including the FIQ and IRQ interrupts, are vectored to locations four bytes apart starting at zero.
There is only room for one instruction here, which must immediately jump out to handling code higher in memory.
Interrupt sources have to be decoded entirely from the interrupt controller.

92

Exception Handling

With such a wide variety of hardware approaches, it is not possible to provide a generic mechanism for the substitution of
exception vectors directly. Therefore, eCos translates all of these mechanisms in to a common approach that can be used by
portable code on all platforms.

The mechanism implemented is to attach to each hardware vector a short piece of trampoline code that makes an indirect jump
via a table to the actual handler for the exception. This handler is called the Vector Service Routine (VSR) and the table is
called the VSR table.

The trampoline code performs the absolute minimum processing necessary to identify the exception source, and jump to the
VSR. The VSR is then responsible for saving the CPU state and taking the necessary actions to handle the exception or interrupt.
The entry conditions for the VSR are as close to the raw hardware exception entry state as possible - although on some platforms
the trampoline will have had to move or reorganize some registers to do its job.

To make this more concrete, consider how the trampoline code operates in each of the architectures described above:

PowerPC A separate trampoline is contained in each of the vector locations. This code saves a few work registers away to
the special purposes registers available, loads the exception number into a register and then uses that to index the
VSR table and jump to the VSR. The VSR is entered with some registers move to the SPRs, and one of the data
register containing the number of the vector taken.

MIPS A single trampoline routine attached to the common vector reads the exception code out of the cause register
and uses that value to index the VSR table and jump to the VSR. The trampoline uses the two registers defined in
the ABI for kernel use to do this, one of these will contain the exception vector number for the VSR.

IA32 There is a separate 3 or 4 instruction trampoline pointed to by each active IDT table entry. The trampoline for
exceptions that also have an error code pop it from the stack and put it into a memory location. Trampolines
for non-error-code exceptions just zero the memory location. Then all trampolines push an interrupt/exception
number onto the stack, and take an indirect jump through a precalculated offset in the VSR table. This is all done
without saving any registers, using memory-only operations. The VSR is entered with the vector number pushed
onto the stack on top of the standard hardware saved state.

ARM The trampoline consists solely of the single instruction at the exception entry point. This is an indirect jump via
a location 32 bytes higher in memory. These locations, from 0x20 up, form the VSR table. Since each VSR is
entered in a different CPU mode (SVC,UNDEF,ABORT,IRQ or FIQ) there has to be a different VSR for each
exception that knows how to save the CPU state correctly.

Default Synchronous Exception Handling
Most synchronous exception VSR table entries will point to a default exception VSR which is responsible for handling all
exceptions in a generic manner. The default VSR simply saves the CPU state, makes any adjustments to the CPU state that is
necessary, and calls cyg_hal_exception_handler().

cyg_hal_exception_handler() needs to pass the exception on to some handling code. There are two basic destina-
tions: enter GDB or pass the exception up to eCos. Exactly which destination is taken depends on the configuration. When the
GDB stubs are included then the exception is passed to them, otherwise it is passed to eCos.

If an eCos application has been loaded by RedBoot then the VSR table entries will all point into RedBoot's exception VSR, and
will therefore enter GDB if an exception occurs. If the eCos application wants to handle an exception itself, it needs to replace
the the VSR table entry with one pointing to its own VSR. It can do this with the HAL_VSR_SET_TO_ECOS_HANDLER()
macro.

Default Interrupt Handling
Most asynchronous external interrupt vectors will point to a default interrupt VSR which decodes the actual interrupt being
delivered from the interrupt controller and invokes the appropriate ISR.

The default interrupt VSR has a number of responsibilities if it is going to interact with the Kernel cleanly and allow interrupts
to cause thread preemption.

93

Exception Handling

To support this VSR an ISR vector table is needed. For each valid vector three pointers need to be stored: the ISR, its data
pointer and an opaque (to the HAL) interrupt object pointer needed by the kernel. It is implementation defined whether these
are stored in a single table of triples, or in three separate tables.

The VSR follows the following approximate plan:

1. Save the CPU state. In non-debug configurations, it may be possible to get away with saving less than the entire machine
state. The option CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT is supported in some targets to
do this.

2. Increment the kernel scheduler lock. This is a static member of the Cyg_Scheduler class, however it has also been aliased
to cyg_scheduler_sched_lock so that it can be accessed from assembly code.

3. (Optional) Switch to an interrupt stack if not already running on it. This allows nested interrupts to be delivered without
needing every thread to have a stack large enough to take the maximum possible nesting. It is implementation defined how to
detect whether this is a nested interrupt but there are two basic techniques. The first is to inspect the stack pointer and switch
only if it is not currently within the interrupt stack range; the second is to maintain a counter of the interrupt nesting level
and switch only if it is zero. The option CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK controls
whether this happens.

4. Decode the actual external interrupt being delivered from the interrupt controller. This will yield the ISR vector number.
The code to do this usually needs to come from the variant or platform HAL, so is usually present in the form of a macro
or procedure callout.

5. (Optional) Re-enable interrupts to permit nesting. At this point we can potentially allow higher priority interrupts to occur.
It depends on the interrupt architecture of the CPU and platform whether more interrupts will occur at this point, or whether
they will only be delivered after the current interrupt has been acknowledged (by a call to HAL_INTERRUPT_ACKNOWL-
EDGE() in the ISR).

6. Using the ISR vector number as an index, retrieve the ISR pointer and its data pointer from the ISR vector table.

7. Construct a C call stack frame. This may involve making stack space for call frames, and arguments, and initializing the
back pointers to halt a GDB backtrace operation.

8. Call the ISR, passing the vector number and data pointer. The vector number and a pointer to the saved state should be pre-
served across this call, preferably by storing them in registers that are defined to be callee-saved by the calling conventions.

9. If this is an un-nested interrupt and a separate interrupt stack is being used, switch back to the interrupted thread's own stack.

10.Use the saved ISR vector number to get the interrupt object pointer from the ISR vector table.

11.Call interrupt_end() passing it the return value from the ISR, the interrupt object pointer and a pointer to the saved
CPU state. This function is implemented by the Kernel and is responsible for finishing off the interrupt handling. Specifi-
cally, it may post a DSR depending on the ISR return value, and will decrement the scheduler lock. If the lock is zeroed by
this operation then any posted DSRs may be called and may in turn result in a thread context switch.

12.The return from interrupt_end() may occur some time after the call. Many other threads may have executed in the
meantime. So here all we may do is restore the machine state and resume execution of the interrupted thread. Depending
on the architecture, it may be necessary to disable interrupts again for part of this.

The detailed order of these steps may vary slightly depending on the architecture, in particular where interrupts are enabled
and disabled.

94

Chapter 6. HAL GDB File I/O Routines

95

HAL GDB File I/O Routines

Name
hal_gdb_fileio — access host file system

Synopsis
#include <cyg/hal/hal_gdb_fileio.h>

int hal_gdb_fileio_open (path, flags, mode);

int hal_gdb_fileio_close (fd);

int hal_gdb_fileio_read (fd, buffer, count);

int hal_gdb_fileio_write (fd, buffer, count);

cyg_int32 hal_gdb_fileio_lseek (fd, offset, whence);

int hal_gdb_fileio_rename (oldpath, newpath);

int hal_gdb_fileio_unlink (path);

int hal_gdb_fileio_stat (path, stat);

int hal_gdb_fileio_fstat (fd, stat);

int hal_gdb_fileio_gettimeofday (tv, tz);

int hal_gdb_fileio_isatty (fd);

int hal_gdb_fileio_system (command);

Description
In some configurations an eCos application can perform a number of file I/O and other operations on the host by interacting
with gdb. For example the application can open a log file to the host and write very large amounts of debug data to that file
over a period of time while consuming minimal target-side resources. However, the application will be completely blocked
for the duration of the I/O operation with interrupts globally disabled. The functionality uses the gdb File I/O Remote Protocol
Extension, described in the Remote Protocol appendix of the gdb documentation.

The gdb file I/O support is only available when the configuration option CYGFUN_HAL_GDB_FILEIO is enabled. In turn that
option will have dependencies on other parts of the HAL, and the required functionality will not be available for all targets.

When debugging involves a hardware debug solution such as jtag or BDM, typically gdb will interact with a remote protocol
server running inside or controlling the hardware debug unit. That server will implement the core parts of the remote protocol
such as accessing memory, but typically there will be no way for the eCos application to get the server to send specific requests
such as for file I/O. Instead a different approach is used. From inside the gdb session the command set hwdebug on should
be used after attaching to the target. The next time the eCos application attempts a file I/O operation it will cause execution
to halt at _gdb_hwdebug_breakpoint. Code inside gdb recognises that address, retrieves details of the I/O request from
the target's memory, and then acts as if the request had come in a remote protocol message. The target resumes execution
automatically once the I/O operation has been performed. If the hwdebug flag has not been set or if the application is run-
ning outside a gdb debug session, the behaviour of eCos is dependant on the CYGFUN_HAL_DIAG_VIA_GDB_FILEIO and
CYGSEM_HAL_DIAG_VIA_GDB_FILEIO_IMMEDIATE configuration options. If both options are set, the target will halt
at _gdb_hwdebug_breakpoint until a gdb session is established and the command set hwdebug on issued. Otherwise
the file I/O operations will fail with error code HAL_GDB_FILEIO_ENOSYS.

This behaviour is useful during initial debugging using Eclipse as it allows diagnostic messages that would otherwise be
discarded to be captured by a gdb session. A typical example is where an application is located in flash and diagnostic messages
are issued by eCos before the application's main entry point is reached. During this initial stage of target bring-up eCos's internal
data structures may not be adequately initialized so as to allow eCos to determine whether file I/O operations should either:

96

HAL GDB File I/O Routines

(1) fail with diagnostic messages to gdb_hwdebug_fileio discarded (See HAL GDB File I/O Diagnostics Support); or
(2) be passed to an underlying gdb session. See Use with the Eclipse CDT extensions for eCosPro application development
for additional information regarding the use of Eclipse for debugging.

The Functions
Full details of the functions, parameters, data structures and error codes can be found in the header file cyg/hal/
hal_gdb_fileio.h. The I/O calls are loosely modelled after the equivalent POSIX calls. They return 0 or a positive num-
ber for success, a negative number to indicate an error. The specific error code is the absolute value of the return value, so
for example hal_gdb_fileio_open will return -HAL_GDB_FILEIO_ENOENT when attempting to open a file that does
not exist. Some example code can be found in the testcase gdb_fileio.c.

hal_gdb_fileio_open is used to open a file on the host file system. It should only be used on files, not on special
devices such as serial port or Unix-domain sockets: the gdb file I/O functionality is limited and has no support for se-
lect, non-blocking I/O, ioctl-style control, and so on. Hence if the eCos application does attempt to open and read from
a serial port that will cause gdb to block and both the application and the debug session will freeze. Valid flags include
HAL_GDB_FILEIO_O_RDONLY, HAL_GDB_FILEIO_O_WRONLY, and HAL_GDB_FILEIO_O_CREAT. The mode argu-
ment is used only when creating a new file and is used to set the access rights, for example HAL_GDB_FILEIO_S_IURSR
+HAL_GDB_FILEIO_S_IWUSR.

The return value of hal_gdb_fileio_open is an integer file descriptor. Note that this is distinct from the file
descriptor returned by the eCos open call. The two types of file descriptor are not interchangeable. For example
hal_gdb_fileio_read should only be used with a file descriptor returned from hal_gdb_fileio_open, not with
the return value of open.

hal_gdb_fileio_read, hal_gdb_fileio_write, hal_gdb_fileio_lseek, hal_gdb_fileio_fstat
and hal_gdb_fileio_isatty perform operations on a file opened with hal_gdb_fileio_open.
hal_gdb_fileio_write can also be used with the predefined file descriptor HAL_GDB_FILEIO_STD-
OUT, corresponding to gdb's standard output. For hal_gdb_fileio_lseek valid whence parameters are
HAL_GDB_FILEIO_SEEK_SET, HAL_GDB_FILEIO_SEEK_CUR and HAL_GDB_FILEIO_SEEK_END. Due to limita-
tions within the protocol and the implementation hal_gdb_fileio_lseek cannot fully support files of 2GB or larger. In
other words offsets are limited to 31 bits.

The hal_gdb_fileio_stat and hal_gdb_fileio_fstat functions should be called with a struct hal_gdb-fileio_stat
buffer:

struct hal_gdb_fileio_stat
{
 cyg_uint32 st_dev;
 cyg_uint32 st_ino;
 cyg_uint32 st_mode;
 cyg_uint32 st_nlink;
 cyg_uint32 st_uid;
 cyg_uint32 st_gid;
 cyg_uint32 st_rdev;
 cyg_uint64 st_size;
 cyg_uint64 st_blksize;
 cyg_uint64 st_blocks;
 cyg_uint32 st_atime;
 cyg_uint32 st_mtime;
 cyg_uint32 st_ctime;
};

Warning

The time values obtained are not year 2038 safe, as only space for a 32-bit time_t has been allocated. It is
hoped that newlib and GDB will update the protocol in order to support 64-bit time_t, at which point eCos will
be able to conform to whatever mechanism they use to supply the updated time, but this has not yet happened. It
is therefore recommended that the time values are not used if this function is intended to be used after year 2038.

The first argument to hal_gdb_fileio_gettimeofday should be hal_gdb_fileio_timeval structure:

struct hal_gdb_fileio_timeval

97

HAL GDB File I/O Routines

{
 cyg_uint32 tv_sec;
 cyg_uint32 tv_usec;
};

The second argument to hal_gdb_fileio_gettimeofday is not currently used and application code should use a NULL
pointer for this.

Warning

Again, the time values obtained are not year 2038 safe, as only space for a 32-bit time_t has been allocated. eCos
will be updated when the GDB maintainers update the protocol to exchange a 64-bit time value. It is therefore
strongly recommended that this function is not used if it may still be in use after year 2038.

hal_gdb_fileio_system can be used to invoke an arbitrary command on the host. For obvious security reasons this
functionality is disabled within gdb by default. It must be explicitly enabled within gdb using a set remote system-call-allowed
command.

Diagnostics Support
When the eCos application is built stand-alone and will be debugged via a hardware debug solution such as jtag or
BDM, some platforms will allow HAL diagnostics to be sent a destination gdb_hwdebug_fileio. This output will
end up being written to the gdb console via hal_gdb_fileio_write if the application is running inside a gdb
session and the set hwdebug on command has been used after connecting to the target. Otherwise, if both CYG-
FUN_HAL_DIAG_VIA_GDB_FILEIO and CYGSEM_HAL_DIAG_VIA_GDB_FILEIO_IMMEDIATE configuration op-
tions are set, the eCos application will halt at a simulated breakpoint at _gdb_hwdebug_breakpoint until a gdb session
is established. If CYGSEM_HAL_DIAG_VIA_GDB_FILEIO_IMMEDIATE is not set, the eCos application will not halt and
HAL diagnostics will be discarded. Upon establishing a gdb session, the GDB console command set hwdebug on command
must be used. On resuming the target and eCos application with the GDB command continue, the original HAL diagnostics
message will appear within the gdb console and execution of the eCos application continue. Subsequent HAL diagnostics
messages will appear without further interaction as GDB automatically resumes the application once hwdebug has been set.
(See HAL GDB File I/O Description)

If the eCos application is resumed by a gdb session without the set hwdebug on command being issued, this output will be
discarded and execution resumed until the next time the application performs a GDB file I/O operation and halts at the simulated
breakpoint at _gdb_hwdebug_breakpoint. This behaviour will continue until set hwdebug on is issued as automatic
resumption of execution is only performed by GDB once it has been issued. If subsequent HAL diagnostics are to be discarded,
the set hwdebug off can be issued although this will also disable any further GDB file I/O operations as well.

Use with the Eclipse CDT extensions for eCosPro applica-
tion development
The eCosCentric CDT extensions for eCosPro application development for the Eclipse Kepler release and above always effec-
tively test if an eCos application is configured with option CYGFUN_HAL_GDB_FILEIO enabled and automatically issues the
command set hwdebug on when enabled. This ensures that all HAL diagnostics messages will be visible within the GDB con-
sole window prior to and after the initial application entry point is reached (normally either main or cyg_user_start). The
eCos application developer therefore does not need to be concerned with issuing these GDB commands when using eCosCen-
tric's Eclipse CDT extensions for the Kepler release and above. They only need to configure eCos appropriately when they
wish to make use of GDB file I/O operations or capture HAL diagnostics messages when debugging through either jtag or
BDM when no alternative stream is available for HAL diagnostics messages (e.g. serial). (See HAL GDB File I/O Diagnostics
Support and HAL GDB File I/O Description)

98

Chapter 7. Porting Guide
Introduction
eCos has been designed to be fairly easy to port to new targets. A target is a specific platform (board) using a given architecture
(CPU type). The porting is facilitated by the hierarchical layering of the eCos sources - all architecture and platform specific
code is implemented in a HAL (hardware abstraction layer).

By porting the eCos HAL to a new target the core functionality of eCos (infra, kernel, uITRON, etc) will be able to run on
the target. It may be necessary to add further platform specific code such as serial drivers, display drivers, ethernet drivers,
etc. to get a fully capable system.

This document is intended as a help to the HAL porting process. Due to the nature of a porting job, it is impossible to give
a complete description of what has to be done for each and every potential target. This should not be considered a clear-cut
recipe - you will probably need to make some implementation decisions, tweak a few things, and just plain have to rely on
common sense.

However, what is covered here should be a large part of the process. If you get stuck, you are advised to read the ecos-discuss
archive where you may find discussions which apply to the problem at hand. You are also invited to ask questions on the ecos-
discuss mailing list to help you resolve problems - but as is always the case with community lists, do not consider it an oracle
for any and all questions. Use common sense - if you ask too many questions which could have been answered by reading the
documentation, FAQ or source code, you are likely to be ignored.

This document will be continually improved by Red Hat engineers as time allows. Feedback and help with improving the
document is sought, so if you have any comments at all, please do not hesitate to post them on ecos-discuss (please prefix
the subject with [porting]).

At the moment this document is mostly an outline. There are many details to fill in before it becomes complete. Many places
you'll just find a list of keywords / concepts that should be described (please post on ecos-discuss if there are areas you think
are not covered).

All pages or sections where the caption ends in [TBD] contain little more than key words and/or random thoughts - there has
been no work done as such on the content. The word FIXME may appear in the text to highlight places where information
is missing.

HAL Structure
In order to write an eCos HAL it's a good idea to have at least a passing understanding of how the HAL interacts with the
rest of the system.

HAL Classes
The eCos HAL consists of four HAL sub-classes. This table gives a brief description of each class and partly reiterates the
description in Chapter 2, Architecture, Variant and Platform. The links refer to the on-line CVS tree (specifically to the sub-
HALs used by the PowerPC MBX target).

HAL type Description Functionality Overview

Common HAL
(hal/common)

Configuration options and functionality
shared by all HALs.

Generic debugging functionality, driver
API, eCos/ROM monitor calling inter-
face, and tests.

Architecture HAL
(hal/<architecture>/arch)

Functionality specific to the given archi-
tecture. Also default implementations of
some functionality which can be over-
ridden by variant or platform HALs.

Architecture specific debugger func-
tionality (handles single stepping, ex-
ception-to-signal conversion, etc.), ex-
ception/interrupt vector definitions and
handlers, cache definition and control

99

http://ecos.sourceware.org/ml/ecos-discuss/
http://ecos.sourceware.org/ml/ecos-discuss/
http://ecos.sourceware.org/intouch.html
http://ecos.sourceware.org/intouch.html
http://ecos.sourceware.org/ecos/docs-latest/
http://ecos.sourceware.org/fom/ecos
http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/?cvsroot=ecos
mailto:ecos-discuss@ecos.sourceware.org?subject=[porting]%3Csubject%3E
http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/hal/common/current?cvsroot=ecos
http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/hal/powerpc/arch/current?cvsroot=ecos

Porting Guide

HAL type Description Functionality Overview

macros, context switching code, assem-
bler functions for early system initial-
ization, configuration options, and pos-
sibly tests.

Variant HAL
(hal/<architecture>/<variant>)

Some CPU architectures consist of a
number variants, for example MIPS
CPUs come in both 32 and 64 bit ver-
sions, and some variants have embed-
ded features additional to the CPU core.

Variant extensions to the architecture
code (cache, exception/interrupt), con-
figuration options, possibly drivers for
variant on-core devices, and possibly
tests.

Platform HAL
(hal/<architecture>/<platform>)

Contains functionality and configuration
options specific to the platform.

Early platform initialization code, plat-
form memory layout specification, con-
figuration options (processor speed,
compiler options), diagnostic IO func-
tions, debugger IO functions, platform
specific extensions to architecture or
variant code (off-core interrupt con-
troller), and possibly tests.

Auxiliary HAL
(hal/<architecture>/<module>)

Some variants share common mod-
ules on the core. Motorola's PowerPC
QUICC is an example of such a module.

Module specific functionality (interrupt
controller, simple device drivers), possi-
bly tests.

File Descriptions
Listed below are the files found in various HALs, with a short description of what each file contains. When looking in existing
HALs beware that they do not necessarily follow this naming scheme. If you are writing a new HAL, please try to follow it as
closely as possible. Still, no two targets are the same, so sometimes it makes sense to use additional files.

Common HAL

File Description

include/dbg-thread-syscall.h Defines the thread debugging syscall function. This is used by the ROM
monitor to access the thread debugging API in the RAM application. .

include/dbg-threads-api.h Defines the thread debugging API. .

include/drv_api.h Defines the driver API.

include/generic-stub.h Defines the generic stub features.

include/hal_if.h Defines the ROM/RAM calling interface API.

include/hal_misc.h Defines miscellaneous helper functions shared by all HALs.

include/hal_stub.h Defines eCos mappings of GDB stub features.

src/dbg-threads-syscall.c Thread debugging implementation.

src/drv_api.c Driver API implementation. Depending on configuration this provides ei-
ther wrappers for the kernel API, or a minimal implementation of these
features. This allows drivers to be written relying only on HAL features.

src/dummy.c Empty dummy file ensuring creation of libtarget.a.

src/generic-stub.c Generic GDB stub implementation. This provides the communication
protocol used to communicate with GDB over a serial device or via the
network.

src/hal_if.c ROM/RAM calling interface implementation. Provides wrappers from
the calling interface API to the eCos features used for the implementa-
tion.

src/hal_misc.c Various helper functions shared by all platforms and architectures.

100

http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/hal/powerpc/mpc8xx/current?cvsroot=ecos
http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/hal/powerpc/mbx/current?cvsroot=ecos
http://ecos.sourceware.org/cgi-bin/cvsweb.cgi/ecos/packages/hal/powerpc/quicc/current?cvsroot=ecos

Porting Guide

File Description

src/hal_stub.c Wrappers from eCos HAL features to the features required by the generic
GDB stub.

src/stubrom/stubrom.c The file used to build eCos GDB stub images. Basically a cyg_start func-
tion with a hard coded breakpoint.

src/thread-packets.c More thread debugging related functions.

src/thread-pkts.h Defines more thread debugging related function.

Architecture HAL

Some architecture HALs may add extra files for architecture specific serial drivers, or for handling interrupts and exceptions
if it makes sense.

Note that many of the definitions in these files are only conditionally defined - if the equivalent variant or platform headers
provide the definitions, those override the generic architecture definitions.

File Description

include/arch.inc Various assembly macros used during system initialization.

include/basetype.h Endian, label, alignment, and type size definitions. These override com-
mon defaults in CYGPKG_INFRA.

include/hal_arch.h Saved register frame format, various thread, register and stack related
macros.

include/hal_cache.h Cache definitions and cache control macros.

include/hal_intr.h Exception and interrupt definitions. Macros for configuring and control-
ling interrupts. eCos real-time clock control macros.

include/hal_io.h Macros for accessing IO devices.

include/<arch>_regs.h Architecture register definitions.

include/<arch>_stub.h Architecture stub definitions. In particular the register frame layout used
by GDB. This may differ from the one used by eCos.

include/<arch>.inc Architecture convenience assembly macros.

src/<arch>.ld Linker macros.

src/context.S Functions handling context switching and setjmp/longjmp.

src/hal_misc.c Exception and interrupt handlers in C. Various other utility functions.

src/hal_mk_defs.c Used to export definitions from C header files to assembler header files.

src/hal_intr.c Any necessary interrupt handling functions.

src/<arch>stub.c Architecture stub code. Contains functions for translating eCos excep-
tions to UNIX signals and functions for single-stepping.

src/vectors.S Exception, interrupt and early initialization code.

Variant HAL

Some variant HALs may add extra files for variant specific serial drivers, or for handling interrupts/exceptions if it makes sense.

Note that these files may be mostly empty if the CPU variant can be controlled by the generic architecture macros. The defi-
nitions present are only conditionally defined - if the equivalent platform headers provide the definitions, those override the
variant definitions.

File Description

include/var_arch.h Saved register frame format, various thread, register and stack related
macros.

101

Porting Guide

File Description

include/var_cache.h Cache related macros.

include/var_intr.h Interrupt related macros.

include/var_regs.h Extra register definitions for the CPU variant.

include/variant.inc Various assembly macros used during system initialization.

src/var_intr.c Interrupt functions if necessary.

src/var_misc.c hal_variant_init function and any necessary extra functions.

src/variant.S Interrupt handler table definition.

src/<arch>_<variant>.ld Linker macros.

Platform HAL

Extras files may be added for platform specific serial drivers. Extra files for handling interrupts and exceptions will be present
if it makes sense.

File Description

include/hal_diag.h Defines functions used for HAL diagnostics output. This would normally
be the ROM calling interface wrappers, but may also be the low-level IO
functions themselves, saving a little overhead.

include/platform.inc Platform initialization code. This includes memory controller, vectors,
and monitor initialization. Depending on the architecture, other things
may need defining here as well: interrupt decoding, status register initial-
ization value, etc.

include/plf_cache.h Platform specific cache handling.

include/plf_intr.h Platform specific interrupt handling.

include/plf_io.h PCI IO definitions and macros. May also be used to override generic
HAL IO macros if the platform endianness differs from that of the CPU.

include/plf_stub.h Defines stub initializer and board reset details.

src/hal_diag.c May contain the low-level device drivers. But these may also reside in
plf_stub.c

src/platform.S Memory controller setup macro, and if necessary interrupt springboard
code.

src/plf_misc.c Platform initialization code.

src/plf_mk_defs.c Used to export definitions from C header files to assembler header files.

src/plf_stub.c Platform specific stub initialization and possibly the low-level device dri-
ver.

The platform HAL also contains files specifying the platform's memory layout. These files are located in include/pkgconf.

Auxiliary HAL

Auxiliary HALs contain whatever files are necessary to provide the required functionality. There are no predefined set of files
required in an auxiliary HAL.

Virtual Vectors (eCos/ROM Monitor Calling Inter-
face)
Virtually all eCos platforms provide full debugging capabilities via RedBoot. This environment contains not only debug stubs
based on GDB, but also rich I/O support which can be exported to loaded programs. Such programs can take advantage of

102

Porting Guide

the I/O capabilities using a special ROM/RAM calling interface (also referred to as virtual vector table). eCos programs make
use of the virtual vector mechanism implicitly. Non-eCos programs can access these functions using the support from the
newlib library.

Virtual Vectors
What are virtual vectors, what do they do, and why are they needed?

"Virtual vectors" is the name of a table located at a static location in the target address space. This table contains 64 vectors
that point to service functions or data.

The fact that the vectors are always placed at the same location in the address space means that both ROM and RAM startup
configurations can access these and thus the services pointed to.

The primary goal is to allow services to be provided by ROM configurations (ROM monitors such as RedBoot in particular)
with clients in RAM configurations being able to use these services.

Without the table of pointers this would be impossible since the ROM and RAM applications would be linked separately - in
effect having separate name spaces - preventing direct references from one to the other.

This decoupling of service from client is needed by RedBoot, allowing among other things debugging of applications which
do not contain debugging client code (stubs).

Initialization (or Mechanism vs. Policy)

Virtual vectors are a mechanism for decoupling services from clients in the address space.

The mechanism allows services to be implemented by a ROM monitor, a RAM application, to be switched out at run-time, to
be disabled by installing pointers to dummy functions, etc.

The appropriate use of the mechanism is specified loosely by a policy. The general policy dictates that the vectors are initialized
in whole by ROM monitors (built for ROM or RAM), or by stand-alone applications.

For configurations relying on a ROM monitor environment, the policy is to allow initialization on a service by service basis. The
default is to initialize all services, except COMMS services since these are presumed to already be carrying a communication
session to the debugger / console which was used for launching the application. This means that the bulk of the code gets tested
in normal builds, and not just once in a blue moon when building new stubs or a ROM configuration.

The configuration options are written to comply with this policy by default, but can be overridden by the user if desired.
Defaults are:

• For application development: the ROM monitor provides debugging and diagnostic IO services, the RAM application relies
on these by default.

• For production systems: the application contains all the necessary services.

Pros and Cons of Virtual Vectors

There are pros and cons associated with the use of virtual vectors. We do believe that the pros generally outweigh the cons by
a great margin, but there may be situations where the opposite is true.

The use of the services are implemented by way of macros, meaning that it is possible to circumvent the virtual vectors if
desired. There is (as yet) no implementation for doing this, but it is possible.

Here is a list of pros and cons:

Pro: Allows debugging without including stubs

This is the primary reason for using virtual vectors. It allows the ROM monitor to provide most of the debugging infra-
structure, requiring only the application to provide hooks for asynchronous debugger interrupts and for accessing kernel
thread information.

103

Porting Guide

Pro: Allows debugging to be initiated from arbitrary channel

While this is only true where the application does not actively override the debugging channel setup, it is a very nice feature
during development. In particular it makes it possible to launch (and/or debug) applications via Ethernet even though the
application configuration does not contain networking support.

Pro: Image smaller due to services being provided by ROM monitor

All service functions except HAL IO are included in the default configuration. But if these are all disabled the image for
download will be a little smaller. Probably doesn't matter much for regular development, but it is a worthwhile saving for
the 20000 daily tests run in the Red Hat eCos test farm.

Con: The vectors add a layer of indirection, increasing application size and reducing performance.

The size increase is a fraction of what is required to implement the services. So for RAM configurations there is a net
saving, while for ROM configurations there is a small overhead.

The performance loss means little for most of the services (of which the most commonly used is diagnostic IO which
happens via polled routines anyway).

Con: The layer of indirection is another point of failure.

The concern primarily being that of vectors being trashed by rogue writes from bad code, causing a complete loss of the
service and possibly a crash. But this does not differ much from a rogue write to anywhere else in the address space which
could cause the same amount of mayhem. But it is arguably an additional point of failure for the service in question.

Con: All the indirection stuff makes it harder to bring a HAL up

This is a valid concern. However, seeing as most of the code in question is shared between all HALs and should remain
unchanged over time, the risk of it being broken when a new HAL is being worked on should be minimal.

When starting a new port, be sure to implement the HAL IO drivers according to the scheme used in other drivers, and
there should be no problem.

However, it is still possible to circumvent the vectors if they are suspect of causing problems: simply change the
HAL_DIAG_INIT and HAL_DIAG_WRITE_CHAR macros to use the raw IO functions.

Available services

The hal_if.h file in the common HAL defines the complete list of available services. A few worth mentioning in particular:

• COMMS services. All HAL IO happens via the communication channels.

• uS delay. Fine granularity (busy wait) delay function.

• Reset. Allows a software initiated reset of the board.

The COMMS channels
As all HAL IO happens via the COMMS channels these deserve to be described in a little more detail. In particular the controls
of where diagnostic output is routed and how it is treated to allow for display in debuggers.

Console and Debugging Channels

There are two COMMS channels - one for console IO and one for debugging IO. They can be individually configured to use
any of the actual IO ports (serial or Ethernet) available on the platform.

The console channel is used for any IO initiated by calling the diag_*() functions. Note that these should only be used during
development for debugging, assertion and possibly tracing messages. All proper IO should happen via proper devices. This
means it should be possible to remove the HAL device drivers from production configurations where assertions are disabled.

104

Porting Guide

The debugging channel is used for communication between the debugger and the stub which remotely controls the target for
the debugger (the stub runs on the target). This usually happens via some protocol, encoding commands and replies in some
suitable form.

Having two separate channels allows, e.g., for simple logging without conflicts with the debugger or interactive IO which
some debuggers do not allow.

Mangling

As debuggers usually have a protocol using specialized commands when communicating with the stub on the target, sending
out text as raw ASCII from the target on the same channel will either result in protocol errors (with loss of control over the
target) or the text may just be ignored as junk by the debugger.

To get around this, some debuggers have a special command for text output. Mangling is the process of encoding diagnostic
ASCII text output in the form specified by the debugger protocol.

When it is necessary to use mangling, i.e. when writing console output to the same port used for debugging, a mangler function
is installed on the console channel which mangles the text and passes it on to the debugger channel.

Controlling the Console Channel

Console output configuration is either inherited from the ROM monitor launching the application, or it is specified by the
application. This is controlled by the new option CYGSEM_HAL_VIRTUAL_VECTOR_INHERIT_CONSOLE which defaults
to enabled when the configuration is set to use a ROM monitor.

If the user wants to specify the console configuration in the application image, there are two new options that are used for this.

Defaults are to direct diagnostic output via a mangler to the debugging channel (CYGDBG_HAL_DIAG_TO_DEBUG_CHAN
enabled). The mangler type is controlled by the option CYGSEM_HAL_DIAG_MANGLER. At present there are only two mangler
types:

GDB This causes a mangler appropriate for debugging with GDB to be installed on the console
channel.

None This causes a NULL mangler to be installed on the console channel. It will redirect the
IO to/from the debug channel without mangling of the data. This option differs from
setting the console channel to the same IO port as the debugging channel in that it will
keep redirecting data to the debugging channel even if that is changed to some other port.

Finally, by disabling CYGDBG_HAL_DIAG_TO_DEBUG_CHAN, the diagnostic output is directed in raw form to the specified
console IO port.

In summary this results in the following common configuration scenarios for RAM startup configurations:

• For regular debugging with diagnostic output appearing in the debugger, mangling is enabled and stubs disabled.

Diagnostic output appears via the debugging channel as initiated by the ROM monitor, allowing for correct behavior whether
the application was launched via serial or Ethernet, from the RedBoot command line or from a debugger.

• For debugging with raw diagnostic output, mangling is disabled.

Debugging session continues as initiated by the ROM monitor, whether the application was launched via serial or Ethernet.
Diagnostic output is directed at the IO port configured in the application configuration.

Note:

There is one caveat to be aware of. If the application uses proper devices (be it serial or Ethernet) on the same
ports as those used by the ROM monitor, the connections initiated by the ROM monitor will be terminated.

And for ROM startup configurations:

105

Porting Guide

• Production configuration with raw output and no debugging features (configured for RAM or ROM), mangling is disabled,
no stubs are included.

Diagnostic output appears (in unmangled form) on the specified IO port.

• RedBoot configuration, includes debugging features and necessary mangling.

Diagnostic and debugging output port is auto-selected by the first connection to any of the supported IO ports. Can change
from interactive mode to debugging mode when a debugger is detected - when this happens a mangler will be installed as
required.

• GDB stubs configuration (obsoleted by RedBoot configuration), includes debugging features, mangling is hardwired to
GDB protocol.

Diagnostic and debugging output is hardwired to configured IO ports, mangling is hardwired.

Footnote: Design Reasoning for Control of Console Channel

The current code for controlling the console channel is a replacement for an older implementation which had some shortcomings
which addressed by the new implementation.

This is what the old implementation did: on initialization it would check if the CDL configured console channel differed from
the active debug channel - and if so, set the console channel, thereby disabling mangling.

The idea was that whatever channel was configured to be used for console (i.e., diagnostic output) in the application was what
should be used. Also, it meant that if debug and console channels were normally the same, a changed console channel would
imply a request for unmangled output.

But this prevented at least two things:

• It was impossible to inherit the existing connection by which the application was launched (either by RedBoot commands
via telnet, or by via a debugger).

This was mostly a problem on targets supporting Ethernet access since the diagnostic output would not be returned via the
Ethernet connection, but on the configured serial port.

The problem also occurred on any targets with multiple serial ports where the ROM monitor was configured to use a different
port than the CDL defaults.

• Proper control of when to mangle or just write out raw ASCII text.

Sometimes it's desirable to disable mangling, even if the channel specified is the same as that used for debugging. This
usually happens if GDB is used to download the application, but direct interaction with the application on the same channel
is desired (GDB protocol only allows output from the target, no input).

The calling Interface API
The calling interface API is defined by hal_if.h and hal_if.c in hal/common.

The API provides a set of services. Different platforms, or different versions of the ROM monitor for a single platform, may
implement fewer or extra service. The table has room for growth, and any entries which are not supported map to a NOP-
service (when called it returns 0 (false)).

A client of a service should either be selected by configuration, or have suitable fall back alternatives in case the feature is
not implemented by the ROM monitor.

Note:

Checking for unimplemented service when this may be a data field/pointer instead of a function: suggest reserving
the last entry in the table as the NOP-service pointer. Then clients can compare a service entry with this pointer
to determine whether it's initialized or not.

106

Porting Guide

The header file cyg/hal/hal_if.h defines the table layout and accessor macros (allowing primitive type checking and
alternative implementations should it become necessary).

The source file hal_if.c defines the table initialization function. All HALs should call this during platform initialization -
the table will get initialized according to configuration. Also defined here are wrapper functions which map between the calling
interface API and the API of the used eCos functions.

Implemented Services

This is a brief description of the services, some of which are described in further detail below.

VERSION Version of table. Serves as a way to check for how many features are available in the
table. This is the index of the last service in the table.

KILL_VECTOR [Presently unused by the stub code, but initialized] This vector defines a function to
execute when the system receives a kill signal from the debugger. It is initialized with
the reset function (see below), but the application (or eCos) can override it if necessary.

CONSOLE_PROCS The communication procedure table used for console IO (see the section called “IO
channels”.

DEBUG_PROCS The communication procedure table used for debugger IO (see the section called “IO
channels”).

FLUSH_DCACHE Flushes the data cache for the specified region. Some implementations may flush the
entire data cache.

FLUSH_ICACHE Flushes (invalidates) the instruction cache for the specified region. Some implementa-
tions may flush the entire instruction cache.

SET_DEBUG_COMM Change debugging communication channel.

SET_CONSOLE_COMM Change console communication channel.

DBG_SYSCALL Vector used to communication between debugger functions in ROM and in RAM. RAM
eCos configurations may install a function pointer here which the ROM monitor uses to
get thread information from the kernel running in RAM.

RESET Resets the board on call. If it is not possible to reset the board from software, it will jump
to the ROM entry point which will perform a "software" reset of the board.

CONSOLE_INTERRUPT_FLAG Set if a debugger interrupt request was detected while processing console IO. Allows the
actual breakpoint action to be handled after return to RAM, ensuring proper backtraces
etc.

DELAY_US Will delay the specified number of microseconds. The precision is platform dependent
to some extend - a small value (<100us) is likely to cause bigger delays than requested.

FLASH_CFG_OP For accessing configuration settings kept in flash memory.

INSTALL_BPT_FN Installs a breakpoint at the specified address. This is used by the asynchronous break-
point support (see).

Compatibility

When a platform is changed to support the calling interface, applications will use it if so configured. That means that if an
application is run on a platform with an older ROM monitor, the service is almost guaranteed to fail.

For this reason, applications should only use Console Comm for HAL diagnostics output if explicitly configured to do so
(CYGSEM_HAL_VIRTUAL_VECTOR_DIAG).

107

Porting Guide

As for asynchronous GDB interrupts, the service will always be used. This is likely to cause a crash under older ROM monitors,
but this crash may be caught by the debugger. The old workaround still applies: if you need asynchronous breakpoints or thread
debugging under older ROM monitors, you may have to include the debugging support when configuring eCos.

Implementation details

During the startup of a ROM monitor, the calling table will be initialized. This also happens if eCos is configured not to rely
on a ROM monitor.

Note:

There is reserved space (256 bytes) for the vector table whether it gets used or not. This may be something that
we want to change if we ever have to shave off every last byte for a given target.

If thread debugging features are enabled, the function for accessing the thread information gets registered in the table during
startup of a RAM startup configuration.

Further implementation details are described where the service itself is described.

New Platform Ports

The hal_platform_init() function must call hal_if_init().

The HAL serial driver must, when called via cyg_hal_plf_comms_init() must initialize the communication channels.

The reset() function defined in hal_if.c will attempt to do a hardware reset, but if this fails it will fall back to simply
jumping to the reset entry-point. On most platforms the startup initialization will go a long way to reset the target to a sane
state (there will be exceptions, of course). For this reason, make sure to define HAL_STUB_PLATFORM_RESET_ENTRY in
plf_stub.h.

All debugging features must be in place in order for the debugging services to be functional. See general platform porting notes.

New architecture ports

There are no specific requirements for a new architecture port in order to support the calling interface, but the basic debugging
features must be in place. See general architecture porting notes.

IO channels
The calling interface provides procedure tables for all IO channels on the platform. These are used for console (diagnostic)
and debugger IO, allowing a ROM monitor to provided all the needed IO routines. At the same time, this makes it easy to
switch console/debugger channels at run-time (the old implementation had hardwired drivers for console and debugger IO,
preventing these to change at run-time).

The hal_if provides wrappers which interface these services to the eCos infrastructure diagnostics routines. This is done in a
way which ensures proper string mangling of the diagnostics output when required (e.g. O-packetization when using a GDB
compatible ROM monitor).

Available Procedures

This is a brief description of the procedures

CH_DATA

Pointer to the controller IO base (or a pointer to a per-device structure if more data than the IO base is required). All the
procedures below are called with this data item as the first argument.

WRITE

Writes the buffer to the device.

108

Porting Guide

READ

Fills a buffer from the device.

PUTC

Write a character to the device.

GETC

Read a character from the device.

CONTROL

Device feature control. Second argument specifies function:

SETBAUD Changes baud rate.

GETBAUD Returns the current baud rate.

INSTALL_DBG_ISR [Unused]

REMOVE_DBG_ISR [Unused]

IRQ_DISABLE Disable debugging receive interrupts on the device.

IRQ_ENABLE Enable debugging receive interrupts on the device.

DBG_ISR_VECTOR Returns the ISR vector used by the device for debugging receive interrupts.

SET_TIMEOUT Set GETC timeout in milliseconds.

FLUSH_OUTPUT Forces driver to flush data in its buffers. Note that this may not affect hardware
buffers (e.g. FIFOs).

DBG_ISR

ISR used to handle receive interrupts from the device (see).

GETC_TIMEOUT

Read a character from the device with timeout.

Usage

The standard eCos diagnostics IO functions use the channel procedure table when CYGSEM_HAL_VIRTUAL_VECTOR_DIAG
is enabled. That means that when you use diag_printf (or the libc printf function) the stream goes through the selected console
procedure table. If you use the virtual vector function SET_CONSOLE_COMM you can change the device which the diag-
nostics output goes to at run-time.

You can also use the table functions directly if desired (regardless of the CYGSEM_HAL_VIRTUAL_VECTOR_DIAG setting
- assuming the ROM monitor provides the services). Here is a small example which changes the console to use channel 2,
fetches the comm procs pointer and calls the write function from that table, then restores the console to the original channel:

#define T "Hello World!\n"

int
main(void)
{
 hal_virtual_comm_table_t* comm;
 int cur = CYGACC_CALL_IF_SET_CONSOLE_COMM(CYGNUM_CALL_IF_SET_COMM_ID_QUERY_CURRENT);

 CYGACC_CALL_IF_SET_CONSOLE_COMM(2);

109

Porting Guide

 comm = CYGACC_CALL_IF_CONSOLE_PROCS();
 CYGACC_COMM_IF_WRITE(*comm, T, strlen(T));

 CYGACC_CALL_IF_SET_CONSOLE_COMM(cur);
}

Beware that if doing something like the above, you should only do it to a channel which does not have GDB at the other end:
GDB ignores raw data, so you would not see the output.

Compatibility

The use of this service is controlled by the option CYGSEM_HAL_VIRTUAL_VECTOR_DIAG which is disabled per default
on most older platforms (thus preserving backwards compatibility with older stubs). On newer ports, this option should always
be set.

Implementation Details

There is an array of procedure tables (raw comm channels) for each IO device of the platform which get initialized by the ROM
monitor, or optionally by a RAM startup configuration (allowing the RAM configuration to take full control of the target). In
addition to this, there's a special table which is used to hold mangler procedures.

The vector table defines which of these channels are selected for console and debugging IO respectively: console entry can be
empty, point to mangler channel, or point to a raw channel. The debugger entry should always point to a raw channel.

During normal console output (i.e., diagnostic output) the console table will be used to handle IO if defined. If not defined,
the debug table will be used.

This means that debuggers (such as GDB) which require text streams to be mangled (O-packetized in the case of GDB), can
rely on the ROM monitor install mangling IO routines in the special mangler table and select this for console output. The
mangler will pass the mangled data on to the selected debugging channel.

If the eCos configuration specifies a different console channel from that used by the debugger, the console entry will point to
the selected raw channel, thus overriding any mangler provided by the ROM monitor.

See hal_if_diag_* routines in hal_if.c for more details of the stream path of diagnostic output. See cyg_hal_gdb_diag_*()
routines in hal_stub.c for the mangler used for GDB communication.

New Platform Ports

Define CDL options CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS, CYGNUM_HAL_VIRTUAL_VECTOR_DE-
BUG_CHANNEL, and CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL.

If CYGSEM_HAL_VIRTUAL_VECTOR_DIAG is set, make sure the infra diag code uses the hal_if diag functions:

#define HAL_DIAG_INIT() hal_if_diag_init()
#define HAL_DIAG_WRITE_CHAR(_c_) hal_if_diag_write_char(_c_)
#define HAL_DIAG_READ_CHAR(_c_) hal_if_diag_read_char(&_c_)

In addition to the above functions, the platform HAL must also provide a function cyg_hal_plf_comms_init which initializes
the drivers and the channel procedure tables.

Most of the other functionality in the table is more or less possible to copy unchanged from existing ports. Some care is
necessary though to ensure the proper handling of interrupt vectors and timeouts for various devices handled by the same
driver. See PowerPC/Cogent platform HAL for an example implementation.

Note:

When vector table console code is not used, the platform HAL must map the HAL_DIAG_INIT,
HAL_DIAG_WRITE_CHAR and HAL_DIAG_READ_CHAR macros directly to the low-level IO functions,
hardwired to use a compile-time configured channel.

110

Porting Guide

Note:

On old ports the hardwired HAL_DIAG_INIT, HAL_DIAG_WRITE_CHAR and HAL_DIAG_READ_CHAR im-
plementations will also contain code to O-packetize the output for GDB. This should not be adopted for new
ports! On new ports the ROM monitor is guaranteed to provide the necessary mangling via the vector table. The
hardwired configuration should be reserved for ROM startups where achieving minimal image size is crucial.

HAL Coding Conventions
To get changes and larger submissions included into the eCos source repository, we ask that you adhere to a set of coding
conventions. The conventions are defined as an attempt to make a consistent tree. Consistency makes it easier for people to
read, understand and maintain the code, which is important when many people work on the same project.

The below is only a brief, and probably incomplete, summary of the rules. Please look through files in the area where you are
making changes to get a feel for any additional conventions. Also feel free to ask on the list if you have specific questions.

Implementation issues
There are a few implementation issues that should be kept in mind:

HALs HALs must be written in C and assembly only. C++ must not be used. This is in part to keep the HALs
simple since this is usually the first part of eCos a newcomer will see, and in part to maintain the existing
de facto standard.

IO access Use HAL IO access macros for code that might be reused on different platforms than the one you are writing
it for.

MMU If it is necessary to use the MMU (e.g., to prevent caching of IO areas), use a simple 1-1 mapping of memory
if possible. On most platforms where using the MMU is necessary, it will be possible to achieve the 1-1
mapping using the MMU's provision for mapping large continuous areas (hardwired TLBs or BATs). This
reduces the footprint (no MMU table) and avoids execution overhead (no MMU-related exceptions).

Assertions The code should contain assertions to validate argument values, state information and any assumptions the
code may be making. Assertions are not enabled in production builds, so liberally sprinkling assertions
throughout the code is good.

Testing The ability to test your code is very important. In general, do not add new code to the eCos runtime unless
you also add a new test to exercise that code. The test also serves as an example of how to use the new code.

Source code details
Line length Keep line length below 78 columns whenever possible.

Comments Whenever possible, use // comments instead of /**/.

Indentation Use spaces instead of TABs. Indentation level is 4. Braces start on the same line as the expression. See
below for emacs mode details.

;;===
;; eCos C/C++ mode Setup.
;;
;; bsd mode: indent = 4
;; tail comments are at col 40.
;; uses spaces not tabs in C;

(defun ecos-c-mode ()
 "C mode with adjusted defaults for use with the eCos sources."
 (interactive)
 (c++-mode)
 (c-set-style "bsd")
 (setq comment-column 40)
 (setq indent-tabs-mode nil)

111

Porting Guide

 (show-paren-mode 1)
 (setq c-basic-offset 4)

 (set-variable 'add-log-full-name "Your Name")
 (set-variable 'add-log-mailing-address "Your email address"))

(defun ecos-asm-mode ()
 "ASM mode with adjusted defaults for use with the eCos sources."
 (interactive)
 (setq comment-column 40)
 (setq indent-tabs-mode nil)
 (asm-mode)
 (setq c-basic-offset 4)

 (set-variable 'add-log-full-name "Your Name")
 (set-variable 'add-log-mailing-address "Your email address"))

(setq auto-mode-alist
 (append '(("/local/ecc/.*\\.C$" . ecos-c-mode)
 ("/local/ecc/.*\\.cc$" . ecos-c-mode)
 ("/local/ecc/.*\\.cpp$" . ecos-c-mode)
 ("/local/ecc/.*\\.inl$" . ecos-c-mode)
 ("/local/ecc/.*\\.c$" . ecos-c-mode)
 ("/local/ecc/.*\\.h$" . ecos-c-mode)
 ("/local/ecc/.*\\.S$" . ecos-asm-mode)
 ("/local/ecc/.*\\.inc$" . ecos-asm-mode)
 ("/local/ecc/.*\\.cdl$" . tcl-mode)
) auto-mode-alist))

Nested Headers
In order to allow platforms to define all necessary details, while still maintaining the ability to share code between common
platforms, all HAL headers are included in a nested fashion.

The architecture header (usually hal_XXX.h) includes the variant equivalent of the header (var_XXX.h) which in turn
includes the platform equivalent of the header (plf_XXX.h).

All definitions that may need to be overridden by a platform are then only conditionally defined, depending on whether a lower
layer has already made the definition:

hal_intr.h: #include <var_intr.h>

 #ifndef MACRO_DEFINED
 # define MACRO ...
 # define MACRO_DEFINED
 #endif

var_intr.h: #include <plf_intr.h>

 #ifndef MACRO_DEFINED
 # define MACRO ...
 # define MACRO_DEFINED
 #endif

plf_intr.h:

 # define MACRO ...
 # define MACRO_DEFINED

This means a platform can opt to rely on the variant or architecture implementation of a feature, or implement it itself.

Platform HAL Porting
This is the type of port that takes the least effort. It basically consists of describing the platform (board) for the HAL: memory
layout, early platform initialization, interrupt controllers, and a simple serial device driver.

112

Porting Guide

Doing a platform port requires a preexisting architecture and possibly a variant HAL port.

HAL Platform Porting Process

Brief overview

The easiest way to make a new platform HAL is simply to copy an existing platform HAL of the same architecture/variant and
change all the files to match the new one. In case this is the first platform for the architecture/variant, a platform HAL from
another architecture should be used as a template.

The best way to start a platform port is to concentrate on getting RedBoot to run. RedBoot is a simpler environment than full
eCos, it does not use interrupts or threads, but covers most of the basic startup requirements.

RedBoot normally runs out of FLASH or ROM and provides program loading and debugging facilities. This allows further
HAL development to happen using RAM startup configurations, which is desirable for the simple reason that downloading an
image which you need to test is often many times faster than either updating a flash part, or indeed, erasing and reprogramming
an EPROM.

There are two approaches to getting to this first goal:

1. The board is equipped with a ROM monitor which allows "load and go" of ELF, binary, S-record or some other image type
which can be created using objcopy. This allows you to develop RedBoot by downloading and running the code (saving
time).

When the stub is running it is a good idea to examine the various hardware registers to help you write the platform initial-
ization code.

Then you may have to fiddle a bit going through step two (getting it to run from ROM startup). If at all possible, preserve
the original ROM monitor so you can revert to it if necessary.

2. The board has no ROM monitor. You need to get the platform initialization and stub working by repeatedly making changes,
updating flash or EPROM and testing the changes. If you are lucky, you have a JTAG or similar CPU debugger to help you.
If not, you will probably learn to appreciate LEDs. This approach may also be needed during the initial phase of moving
RedBoot from RAM startup to ROM, since it is very unlikely to work first time.

Step-by-step

Given that no two platforms are exactly the same, you may have to deviate from the below. Also, you should expect a fair
amount of fiddling - things almost never go right the first time. See the hints section below for some suggestions that might
help debugging.

The description below is based on the HAL layout used in the MIPS, PC and MN10300 HALs. Eventually all HALs should
be converted to look like these - but in a transition period there will be other HALs which look substantially different. Please
try to adhere to the following as much is possible without causing yourself too much grief integrating with a HAL which does
not follow this layout.

Minimal requirements

These are the changes you must make before you attempt to build RedBoot. You are advised to read all the sources though.

1. Copy an existing platform HAL from the same or another architecture. Rename the files as necessary to follow the standard:
CDL and MLT related files should contain the <arch>_<variant>_<platform> triplet.

2. Adjust CDL options. Primarily option naming, real-time clock/counter, and CYGHWR_MEMORY_LAYOUT variables,
but also other options may need editing. Look through the architecture/variant CDL files to see if there are any require-
ments/features which where not used on the platform you copied. If so, add appropriate ones. See the section called “HAL
Platform CDL” for more details.

3. Add the necessary packages and target descriptions to the top-level ecos.db file. See the section called “eCos Database”.
Initially, the target entry should only contain the HAL packages. Other hardware support packages will be added later.

113

Porting Guide

4. Adjust the MLT files in include/pkgconf to match the memory layout on the platform. For initial testing it should be
enough to just hand edit .h and .ldi files, but eventually you should generate all files using the memory layout editor in the
configuration tool. See the section called “Platform Memory Layout” for more details.

5. Edit the misc/redboot_<STARTUP>.ecm for the startup type you have chosen to begin with. Rename any platform
specific options and remove any that do not apply. In the cdl_configuration section, comment out any extra packages
that are added, particularly packages such as CYGPKG_IO_FLASH and CYGPKG_IO_ETH_DRIVERS. These are not
needed for initial porting and will be added back later.

6. If the default IO macros are not correct, override them in plf_io.h. This may be necessary if the platform uses a different
endianness from the default for the CPU.

7. Leave out/comment out code that enables caches and/or MMU if possible. Execution speed will not be a concern until the
port is feature complete.

8. Implement a simple serial driver (polled mode only). Make sure the initialization function properly hooks the procedures
up in the virtual vector IO channel tables. RedBoot will call the serial driver via these tables.

By copying an existing platform HAL most of this code will be already done, and will only need the platform specific
hardware access code to be written.

9. Adjust/implement necessary platform initialization. This can be found in platform.inc and platform.S files (ARM:
hal_platform_setup.h and <platform>_misc.c, PowerPC: <platform>.S). This step can be postponed if
you are doing a RAM startup RedBoot first and the existing ROM monitor handles board initialization.

10.Define HAL_STUB_PLATFORM_RESET (optionally empty) and HAL_STUB_PLATFORM_RESET_ENTRY so that Red-
Boot can reset-on-detach - this is very handy, often removing the need for physically resetting the board between downloads.

You should now be able to build RedBoot. For ROM startup:

% ecosconfig new <target_name> redboot
% ecosconfig import $(ECOS_REPOSITORY)/hal/<architecture>/<platform>/<version>/misc/redboot_ROM.ecm
% ecosconfig tree
% make

You may have to make further changes than suggested above to get the make command to succeed. But when it does, you
should find a RedBoot image in install/bin. To program this image into flash or EPROM, you may need to convert to some
other file type, and possibly adjust the start address. When you have the correct objcopy command to do this, add it to the
CYGBLD_BUILD_GDB_STUBS custom build rule in the platform CDL file.

Having updated the flash/EPROM on the board, you should see output on the serial port looking like this when powering on
the board:

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 15:42:24, Mar 14 2002

Platform: <PLATFORM> (<ARCHITECTURE> <VARIANT>)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x01000000, 0x000293e8-0x00ed1000 available
FLASH: 0x24000000 - 0x26000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

If you do not see this output, you need to go through all your changes and figure out what's wrong. If there's a user programmable
LED or LCD on the board it may help you figure out how far RedBoot gets before it hangs. Unfortunately there's no good way
to describe what to do in this situation - other than that you have to play with the code and the board.

Adding features

Now you should have a basic RedBoot running on the board. This means you have a the correct board initialization and a
working serial driver. It's time to flesh out the remaining HAL features.

1. Reset. As mentioned above it is desirable to get the board to reset when GDB disconnects. When GDB disconnects it sends
RedBoot a kill-packet, and RedBoot first calls HAL_STUB_PLATFORM_RESET(), attempting to perform a software-in-

114

Porting Guide

voked reset. Most embedded CPUs/boards have a watchdog which is capable of triggering a reset. If your target does not
have a watchdog, leave HAL_STUB_PLATFORM_RESET() empty and rely on the fallback approach.

If HAL_STUB_PLATFORM_RESET() did not cause a reset, RedBoot will jump to HAL_STUB_PLATFOR-
M_RESET_ENTRY - this should be the address where the CPU will start execution after a reset. Re-initializing the board
and drivers will usually be good enough to make a hardware reset unnecessary.

After the reset caused by the kill-packet, the target will be ready for GDB to connect again. During a days work, this will
save you from pressing the reset button many times.

Note that it is possible to disconnect from the board without causing it to reset by using the GDB command "detach".

2. Single-stepping is necessary for both instruction-level debugging and for breakpoint support. Single-stepping support should
already be in place as part of the architecture/variant HAL, but you want to give it a quick test since you will come to
rely on it.

3. Real-time clock interrupts drive the eCos scheduler clock. Many embedded CPUs have an on-core timer (e.g. SH) or decre-
menter (e.g. MIPS, PPC) that can be used, and in this case it will already be supported by the architecture/variant HAL. You
only have to calculate and enter the proper CYGNUM_HAL_RTC_CONSTANTS definitions in the platform CDL file.

On some targets it may be necessary to use a platform-specific timer source for driving the real-time clock. In this case you
also have to enter the proper CDL definitions, but must also define suitable versions of the HAL_CLOCK_XXXX macros.

4. Interrupt decoding usually differs between platforms because the number and type of devices on the board differ. In
plf_intr.h (ARM: hal_platform_ints.h) you must either extend or replace the default vector definitions provid-
ed by the architecture or variant interrupt headers. You may also have to define HAL_INTERRUPT_XXXX control macros.

5. Caching may also differ from architecture/variant definitions. This maybe just the cache sizes, but there can also be bigger
differences for example if the platform supports 2nd level caches.

When cache definitions are in place, enable the caches on startup. First verify that the system is stable for RAM startups,
then build a new RedBoot and install it. This will test if caching, and in particular the cache sync/flush operations, also
work for ROM startup.

6. Asynchronous breakpoints allow you to stop application execution and enter the debugger. Asynchronous breakpoint details
are described in .

You should now have a completed platform HAL port. Verify its stability and completeness by running all the eCos tests and
fix any problems that show up (you have a working RedBoot now, remember! That means you can debug the code to see
why it fails).

Given the many configuration options in eCos, there may be hidden bugs or missing features that do not show up even if you run
all the tests successfully with a default configuration. A comprehensive test of the entire system will take many configuration
permutations and many many thousands of tests executed.

Hints

• JTAG or similar CPU debugging hardware can greatly reduce the time it takes to write a HAL port since you always have
full visibility of what the CPU is doing.

• LEDs can be your friends if you don't have a JTAG device. Especially in the start of the porting effort if you don't already
have a working ROM monitor on the target. Then you have to get a basic RedBoot working while basically being blindfolded.
The LED can make it little easier, as you'll be able to do limited tracking of program flow and behavior by switching the
LED on and off. If the board has multiple LEDs you can show a number (using binary notation with the LEDs) and sprinkle
code which sets different numbers throughout the code.

• Debugging the interrupt processing is possible if you are careful with the way you program the very early interrupt entry
handling. Write it so that as soon as possible in the interrupt path, taking a trap (exception) does not harm execution. See
the SH vectors.S code for an example. Look for cyg_hal_default_interrupt_vsr and the label cyg_hal_de-
fault_interrupt_vsr_bp_safe, which marks the point after which traps/single-stepping is safe.

115

Porting Guide

Being able to display memory content, CPU registers, interrupt controller details at the time of an interrupt can save a lot
of time.

• Using assertions is a good idea. They can sometimes reveal subtle bugs or missing features long before you would otherwise
have found them, let alone notice them.

The default eCos configuration does not use assertions, so you have to enable them by switching on the option CYGP-
KG_INFRA_DEBUG in the infra package.

• The idle loop can be used to help debug the system.

Triggering clock from the idle loop is a neat trick for examining system behavior either before interrupts are fully working,
or to speed up "the clock".

Use the idle loop to monitor and/or print out variables or hardware registers.

• hal_mk_defs is used in some of the HALs (ARM, SH) as a way to generate assembler symbol definitions from C header
files without imposing an assembler/C syntax separation in the C++ header files.

HAL Platform CDL
The platform CDL both contains details necessary for the building of eCos, and platform-specific configuration options. For
this reason the options differ between platforms, and the below is just a brief description of the most common options.

See Components Writers Guide for more details on CDL. Also have a quick look around in existing platform CDL files to get
an idea of what is possible and how various configuration issues can be represented with CDL.

eCos Database

The eCos configuration system is made aware of a package by adding a package description in ecos.db. As an example we
use the TX39/JMR3904 platform:

package CYGPKG_HAL_MIPS_TX39_JMR3904 {
 alias { "Toshiba JMR-TX3904 board" hal_tx39_jmr3904 tx39_jmr3904_hal }
 directory hal/mips/jmr3904
 script hal_mips_tx39_jmr3904.cdl
 hardware
 description "
 The JMR3904 HAL package should be used when targeting the
 actual hardware. The same package can also be used when
 running on the full simulator, since this provides an
 accurate simulation of the hardware including I/O devices.
 To use the simulator in this mode the command
 `target sim --board=jmr3904' should be used from inside gdb."
}

This contains the title and description presented in the Configuration Tool when the package is selected. It also specifies where
in the tree the package files can be found (directory) and the name of the CDL file which contains the package details
(script).

To be able to build and test a configuration for the new target, there also needs to be a target entry in the ecos.db file.

target jmr3904 {
 alias { "Toshiba JMR-TX3904 board" jmr tx39 }
 packages { CYGPKG_HAL_MIPS
 CYGPKG_HAL_MIPS_TX39
 CYGPKG_HAL_MIPS_TX39_JMR3904
 }
 description "
 The jmr3904 target provides the packages needed to run
 eCos on a Toshiba JMR-TX3904 board. This target can also
 be used when running in the full simulator, since the simulator provides an
 accurate simulation of the hardware including I/O devices.

116

Porting Guide

 To use the simulator in this mode the command
 `target sim --board=jmr3904' should be used from inside gdb."
}

The important part here is the packages section which defines the various hardware specific packages that contribute to
support for this target. In this case the MIPS architecture package, the TX39 variant package, and the JMR-TX3904 platform
packages are selected. Other packages, for serial drivers, ethernet drivers and FLASH memory drivers may also appear here.

CDL File Layout

All the platform options are contained in a CDL package named CYGPKG_HAL_<architecture>_<vari-
ant>_<platform>. They all share more or less the same cdl_package details:

cdl_package CYGPKG_HAL_MIPS_TX39_JMR3904 {
 display "JMR3904 evaluation board"
 parent CYGPKG_HAL_MIPS
 requires CYGPKG_HAL_MIPS_TX39
 define_header hal_mips_tx39_jmr3904.h
 include_dir cyg/hal
 description "
 The JMR3904 HAL package should be used when targeting the
 actual hardware. The same package can also be used when
 running on the full simulator, since this provides an
 accurate simulation of the hardware including I/O devices.
 To use the simulator in this mode the command
 `target sim --board=jmr3904' should be used from inside gdb."

 compile platform.S plf_misc.c plf_stub.c

 define_proc {
 puts $::cdl_system_header "#define CYGBLD_HAL_TARGET_H <pkgconf/hal_mips_tx39.h>"
 puts $::cdl_system_header "#define CYGBLD_HAL_PLATFORM_H <pkgconf/hal_mips_tx39_jmr3904.h>"
 }

 …
}

This specifies that the platform package should be parented under the MIPS packages, requires the TX39 variant HAL and all
configuration settings should be saved in cyg/hal/hal_mips_tx39_jmt3904.h.

The compile line specifies which files should be built when this package is enabled, and the define_proc defines some
macros that are used to access the variant or architecture (the _TARGET_ name is a bit of a misnomer) and platform config-
uration options.

Startup Type

eCos uses an option to select between a set of valid startup configurations. These are normally RAM, ROM and possibly
ROMRAM. This setting is used to select which linker map to use (i.e., where to link eCos and the application in the memory
space), and how the startup code should behave.

cdl_component CYG_HAL_STARTUP {
 display "Startup type"
 flavor data
 legal_values {"RAM" "ROM"}
 default_value {"RAM"}
 no_define
 define -file system.h CYG_HAL_STARTUP
 description "
 When targeting the JMR3904 board it is possible to build
 the system for either RAM bootstrap, ROM bootstrap, or STUB
 bootstrap. RAM bootstrap generally requires that the board
 is equipped with ROMs containing a suitable ROM monitor or
 equivalent software that allows GDB to download the eCos
 application on to the board. The ROM bootstrap typically
 requires that the eCos application be blown into EPROMs or
 equivalent technology."
}

117

Porting Guide

The no_define and define pair is used to make the setting of this option appear in the file system.h instead of the
default specified in the header.

Build options

A set of options under the components CYGBLD_GLOBAL_OPTIONS and CYGHWR_MEMORY_LAYOUT specify how eCos
should be built: what tools and compiler options should be used, and which linker fragments should be used.

cdl_component CYGBLD_GLOBAL_OPTIONS {
 display "Global build options"
 flavor none
 parent CYGPKG_NONE
 description "
 Global build options including control over
 compiler flags, linker flags and choice of toolchain."

 cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
 display "Global command prefix"
 flavor data
 no_define
 default_value { "mips-tx39-elf" }
 description "
 This option specifies the command prefix used when
 invoking the build tools."
 }

 cdl_option CYGBLD_GLOBAL_CFLAGS {
 display "Global compiler flags"
 flavor data
 no_define
 default_value { "-Wall -Wpointer-arith -Wstrict-prototypes -Winline -Wundef -Woverloaded-virtual " .
 "-g -O2 -ffunction-sections -fdata-sections -fno-rtti -fno-exceptions" }
 description "
 This option controls the global compiler flags which
 are used to compile all packages by
 default. Individual packages may define
 options which override these global flags."
 }

 cdl_option CYGBLD_GLOBAL_LDFLAGS {
 display "Global linker flags"
 flavor data
 no_define
 default_value { "-g -nostdlib -Wl,--gc-sections -Wl,-static" }
 description "
 This option controls the global linker flags. Individual
 packages may define options which override these global flags."
 }
 }

 cdl_component CYGHWR_MEMORY_LAYOUT {
 display "Memory layout"
 flavor data
 no_define
 calculated { CYG_HAL_STARTUP == "RAM" ? "mips_tx39_jmr3904_ram" : \
 "mips_tx39_jmr3904_rom" }

 cdl_option CYGHWR_MEMORY_LAYOUT_LDI {
 display "Memory layout linker script fragment"
 flavor data
 no_define
 define -file system.h CYGHWR_MEMORY_LAYOUT_LDI
 calculated { CYG_HAL_STARTUP == "RAM" ? "<pkgconf/mlt_mips_tx39_jmr3904_ram.ldi>" : \
 "<pkgconf/mlt_mips_tx39_jmr3904_rom.ldi>" }
 }

 cdl_option CYGHWR_MEMORY_LAYOUT_H {
 display "Memory layout header file"
 flavor data
 no_define

118

Porting Guide

 define -file system.h CYGHWR_MEMORY_LAYOUT_H
 calculated { CYG_HAL_STARTUP == "RAM" ? "<pkgconf/mlt_mips_tx39_jmr3904_ram.h>" : \
 "<pkgconf/mlt_mips_tx39_jmr3904_rom.h>" }
 }
}

Common Target Options

All platforms also specify real-time clock details:

Real-time clock/counter specifics
cdl_component CYGNUM_HAL_RTC_CONSTANTS {
 display "Real-time clock constants."
 flavor none

 cdl_option CYGNUM_HAL_RTC_NUMERATOR {
 display "Real-time clock numerator"
 flavor data
 calculated 1000000000
 }
 cdl_option CYGNUM_HAL_RTC_DENOMINATOR {
 display "Real-time clock denominator"
 flavor data
 calculated 100
 }
 # Isn't a nice way to handle freq requirement!
 cdl_option CYGNUM_HAL_RTC_PERIOD {
 display "Real-time clock period"
 flavor data
 legal_values { 15360 20736 }
 calculated { CYGHWR_HAL_MIPS_CPU_FREQ == 50 ? 15360 : \
 CYGHWR_HAL_MIPS_CPU_FREQ == 66 ? 20736 : 0 }
 }
}

The NUMERATOR divided by the DENOMINATOR gives the number of nanoseconds per tick. The PERIOD is the divider to be
programmed into a hardware timer that is driven from an appropriate hardware clock, such that the timer overflows once per
tick (normally generating a CPU interrupt to mark the end of a tick). The tick default rate is typically 100Hz.

Platforms that make use of the virtual vector ROM calling interface (see the section called “Virtual Vectors (eCos/ROM
Monitor Calling Interface)”) will also specify details necessary to define configuration channels (these options are from the
SH/EDK7707 HAL) :

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS {
 display "Number of communication channels on the board"
 flavor data
 calculated 1
}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL {
 display "Debug serial port"
 flavor data
 legal_values 0 to CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS-1
 default_value 0
 description "
 The EDK/7708 board has only one serial port. This option
 chooses which port will be used to connect to a host
 running GDB."
}

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL {
 display "Diagnostic serial port"
 flavor data
 legal_values 0 to CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS-1
 default_value 0
 description "
 The EDK/7708 board has only one serial port. This option
 chooses which port will be used for diagnostic output."
}

The platform usually also specify an option controlling the ability to co-exist with a ROM monitor:

119

Porting Guide

cdl_option CYGSEM_HAL_USE_ROM_MONITOR {
 display "Work with a ROM monitor"
 flavor booldata
 legal_values { "Generic" "CygMon" "GDB_stubs" }
 default_value { CYG_HAL_STARTUP == "RAM" ? "CygMon" : 0 }
 parent CYGPKG_HAL_ROM_MONITOR
 requires { CYG_HAL_STARTUP == "RAM" }
 description "
 Support can be enabled for three different varieties of ROM monitor.
 This support changes various eCos semantics such as the encoding
 of diagnostic output, or the overriding of hardware interrupt
 vectors.
 Firstly there is \"Generic\" support which prevents the HAL
 from overriding the hardware vectors that it does not use, to
 instead allow an installed ROM monitor to handle them. This is
 the most basic support which is likely to be common to most
 implementations of ROM monitor.
 \"CygMon\" provides support for the Cygnus ROM Monitor.
 And finally, \"GDB_stubs\" provides support when GDB stubs are
 included in the ROM monitor or boot ROM."
}

Or the ability to be configured as a ROM monitor:

cdl_option CYGSEM_HAL_ROM_MONITOR {
 display "Behave as a ROM monitor"
 flavor bool
 default_value 0
 parent CYGPKG_HAL_ROM_MONITOR
 requires { CYG_HAL_STARTUP == "ROM" }
 description "
 Enable this option if this program is to be used as a ROM monitor,
 i.e. applications will be loaded into RAM on the board, and this
 ROM monitor may process exceptions or interrupts generated from the
 application. This enables features such as utilizing a separate
 interrupt stack when exceptions are generated."
}

The latter option is accompanied by a special build rule that extends the generic ROM monitor build rule in the common HAL:

cdl_option CYGBLD_BUILD_GDB_STUBS {
 display "Build GDB stub ROM image"
 default_value 0
 requires { CYG_HAL_STARTUP == "ROM" }
 requires CYGSEM_HAL_ROM_MONITOR
 requires CYGBLD_BUILD_COMMON_GDB_STUBS
 requires CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS
 requires ! CYGDBG_HAL_DEBUG_GDB_BREAK_SUPPORT
 requires ! CYGDBG_HAL_DEBUG_GDB_THREAD_SUPPORT
 requires ! CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT
 requires ! CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM
 no_define
 description "
 This option enables the building of the GDB stubs for the
 board. The common HAL controls takes care of most of the
 build process, but the final conversion from ELF image to
 binary data is handled by the platform CDL, allowing
 relocation of the data if necessary."

 make -priority 320 {
 <PREFIX>/bin/gdb_module.bin : <PREFIX>/bin/gdb_module.img
 $(OBJCOPY) -O binary $< $@
 }
}

Most platforms support RedBoot, and some options are needed to configure for RedBoot.

 cdl_component CYGPKG_REDBOOT_HAL_OPTIONS {
 display "Redboot HAL options"
 flavor none
 no_define
 parent CYGPKG_REDBOOT

120

Porting Guide

 active_if CYGPKG_REDBOOT
 description "
 This option lists the target's requirements for a valid Redboot
 configuration."

 cdl_option CYGBLD_BUILD_REDBOOT_BIN {
 display "Build Redboot ROM binary image"
 active_if CYGBLD_BUILD_REDBOOT
 default_value 1
 no_define
 description "This option enables the conversion of the Redboot ELF
 image to a binary image suitable for ROM programming."

 make -priority 325 {
 <PREFIX>/bin/redboot.bin : <PREFIX>/bin/redboot.elf
 $(OBJCOPY) --strip-debug $< $(@:.bin=.img)
 $(OBJCOPY) -O srec $< $(@:.bin=.srec)
 $(OBJCOPY) -O binary $< $@
 }
 }
}

The important part here is the make command in the CYGBLD_BUILD_REDBOOT_BIN option which emits makefile com-
mands to translate the .elf file generated by the link phase into both a binary file and an S-Record file. If a different format
is required by a PROM programmer or ROM monitor, then different output formats would need to be generated here.

Platform Memory Layout
The platform memory layout is defined using the Memory Configuration Window in the Configuration Tool.

Note

If you do not have access to a Windows machine, you can hand edit the .h and .ldi files to match the properties
of your platform. If you want to contribute your port back to the eCos community, ask someone on the list to
make proper memory map files for you.

Layout Files

The memory configuration details are saved in three files:

.mlt This is the Configuration Tool save-file. It is only used by the Configuration Tool.

.ldi This is the linker script fragment. It defines the memory and location of sections by way
of macros defined in the architecture or variant linker script.

.h This file describes some of the memory region details as C macros, allowing eCos or
the application adapt the memory layout of a specific configuration.

These three files are generated for each startup-type, since the memory details usually differ.

Reserved Regions

Some areas of the memory space are reserved for specific purposes, making room for exception vectors and various tables.
RAM startup configurations also need to reserve some space at the bottom of the memory map for the ROM monitor.

These reserved areas are named with the prefix "reserved_" which is handled specially by the Configuration Tool: instead of
referring to a linker macro, the start of the area is labeled and a gap left in the memory map.

Platform Serial Device Support
The first step is to set up the CDL definitions. The configuration options that need to be set are the following:

121

Porting Guide

CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS

The number of channels, usually 0, 1 or 2.

CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL

The channel to use for GDB.

CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD

Initial baud rate for debug channel.

CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL

The channel to use for the console.

CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD

The initial baud rate for the console channel.

CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_DEFAULT

The default console channel.

The code in hal_diag.c need to be converted to support the new serial device. If this the same as a device already supported,
copy that.

The following functions and types need to be rewritten to support a new serial device.

struct channel_data_t;

Structure containing base address, timeout and ISR vector number for each serial device supported. Extra fields my be
added if necessary for the device. For example some devices have write-only control registers, so keeping a shadow of
the last value written here can be useful.

xxxx_ser_channels[];

Array of channel_data_t, initialized with parameters of each channel. The index into this array is the channel number
used in the CDL options above and is used by the virtual vector mechanism to refer to each channel.

void cyg_hal_plf_serial_init_channel(void *__ch_data)

Initialize the serial device. The parameter is actually a pointer to a channel_data_t and should be cast back to this
type before use. This function should use the CDL definition for the baud rate for the channel it is initializing.

void cyg_hal_plf_serial_putc(void * __ch_data, char *c)

Send a character to the serial device. This function should poll for the device being ready to send and then write the
character. Since this is intended to be a diagnostic/debug channel, it is often also a good idea to poll for end of transmission
too. This ensures that as much data gets out of the system as possible.

bool cyg_hal_plf_serial_getc_nonblock(void* __ch_data, cyg_uint8* ch)

This function tests the device and if a character is available, places it in *ch and returns TRUE. If no character is available,
then the function returns FALSE immediately.

int cyg_hal_plf_serial_control(void *__ch_data, __comm_control_cmd_t __func, ...)

This is an IOCTL-like function for controlling various aspects of the serial device. The only part in which you may need to
do some work initially is in the __COMMCTL_IRQ_ENABLE and __COMMCTL_IRQ_DISABLE cases to enable/disable
interrupts.

122

Porting Guide

int cyg_hal_plf_serial_isr(void *__ch_data, int* __ctrlc, CYG_ADDRWORD __vector,
CYG_ADDRWORD __data)

This interrupt handler, called from the spurious interrupt vector, is specifically for dealing with Ctrl-C interrupts from
GDB. When called this function should do the following:

1. Check for an incoming character. The code here is very similar to that in cyg_hal_plf_serial_getc_non-
block().

2. Read the character and call cyg_hal_is_break().

3. If result is true, set *__ctrlc to 1.

4. Return CYG_ISR_HANDLED.

void cyg_hal_plf_serial_init()

Initialize each of the serial channels. First call cyg_hal_plf_serial_init_channel() for each channel. Then
call the CYGACC_COMM_IF_* macros for each channel. This latter set of calls are identical for all channels, so the best
way to do this is to copy and edit an existing example.

Variant HAL Porting
A variant port can be a fairly limited job, but can also require quite a lot of work. A variant HAL describes how a specific CPU
variant differs from the generic CPU architecture. The variant HAL can re-define cache, MMU, interrupt, and other features
which override the default implementation provided by the architecture HAL.

Doing a variant port requires a preexisting architecture HAL port. It is also likely that a platform port will have to be done
at the same time if it is to be tested.

HAL Variant Porting Process
The easiest way to make a new variant HAL is simply to copy an existing variant HAL and change all the files to match the
new variant. If this is the first variant for an architecture, it may be hard to decide which parts should be put in the variant -
knowledge of other variants of the architecture is required.

Looking at existing variant HALs (e.g., MIPS tx39, tx49) may be a help - usually things such as caching, interrupt and exception
handling differ between variants. Initialization code, and code for handling various core components (FPU, DSP, MMU, etc.)
may also differ or be missing altogether on some variants. Linker scripts may also require specific variant versions.

Note

Some CPU variants may require specific compiler support. That support must be in place before you can undertake
the eCos variant port.

HAL Variant CDL
The CDL in a variant HAL tends to depend on the exact functionality supported by the variant. If it implements some of the
devices described in the platform HAL, then the CDL for those will be here rather than there (for example the real-time clock).

There may also be CDL to select options in the architecture HAL to configure it to a particular architectural variant.

Each variant needs an entry in the ecos.db file. This is the one for the SH3:

package CYGPKG_HAL_SH_SH3 {
 alias { "SH3 architecture" hal_sh_sh3 }
 directory hal/sh/sh3
 script hal_sh_sh3.cdl
 hardware
 description "
 The SH3 (SuperH 3) variant HAL package provides generic
 support for SH3 variant CPUs."

123

Porting Guide

}

As you can see, it is very similar to the platform entry.

The variant CDL file will contain a package entry named for the architecture and variant, matching the package name in the
ecos.db file. Here is the initial part of the MIPS VR4300 CDL file:

cdl_package CYGPKG_HAL_MIPS_VR4300 {
 display "VR4300 variant"
 parent CYGPKG_HAL_MIPS
 implements CYGINT_HAL_MIPS_VARIANT
 hardware
 include_dir cyg/hal
 define_header hal_mips_vr4300.h
 description "
 The VR4300 variant HAL package provides generic support
 for this processor architecture. It is also necessary to
 select a specific target platform HAL package."
}

This defines the package, placing it under the MIPS architecture package in the hierarchy. The implements line indicates
that this is a MIPS variant. The architecture package uses this to check that exactly one variant is configured in.

The variant defines some options that cause the architecture HAL to configure itself to support this variant.

 cdl_option CYGHWR_HAL_MIPS_64BIT {
 display "Variant 64 bit architecture support"
 calculated 1
}

cdl_option CYGHWR_HAL_MIPS_FPU {
 display "Variant FPU support"
 calculated 1
}

cdl_option CYGHWR_HAL_MIPS_FPU_64BIT {
 display "Variant 64 bit FPU support"
 calculated 1
}

These tell the architecture that this is a 64 bit MIPS architecture, that it has a floating point unit, and that we are going to use
it in 64 bit mode rather than 32 bit mode.

The CDL file finishes off with some build options.

 define_proc {
 puts $::cdl_header "#include <pkgconf/hal_mips.h>"
 }

 compile var_misc.c

 make {
 <PREFIX>/lib/target.ld: <PACKAGE>/src/mips_vr4300.ld
 $(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -o $@ $<
 @echo $@ ": \\" > $(notdir $@).deps
 @tail +2 target.tmp >> $(notdir $@).deps
 @echo >> $(notdir $@).deps
 @rm target.tmp
 }

 cdl_option CYGBLD_LINKER_SCRIPT {
 display "Linker script"
 flavor data
 no_define
 calculated { "src/mips_vr4300.ld" }
 }

}

The define_proc causes the architecture configuration file to be included into the configuration file for the variant. The
compile causes the single source file for this variant, var_misc.c to be compiled. The make command emits makefile

124

Porting Guide

rules to combine the linker script with the .ldi file to generate target.ld. Finally, in the MIPS HALs, the main linker
script is defined in the variant, rather than the architecture, so CYGBLD_LINKER_SCRIPT is defined here.

Cache Support
The main area where the variant is likely to be involved is in cache support. Often the only thing that distinguishes one CPU
variant from another is the size of its caches.

In architectures such as the MIPS and PowerPC where cache instructions are part of the ISA, most of the actual cache operations
are implemented in the architecture HAL. In this case the variant HAL only needs to define the cache dimensions. The following
are the cache dimensions defined in the MIPS VR4300 variant var_cache.h.

// Data cache
#define HAL_DCACHE_SIZE (8*1024) // Size of data cache in bytes
#define HAL_DCACHE_LINE_SIZE 16 // Size of a data cache line
#define HAL_DCACHE_WAYS 1 // Associativity of the cache

// Instruction cache
#define HAL_ICACHE_SIZE (16*1024) // Size of cache in bytes
#define HAL_ICACHE_LINE_SIZE 32 // Size of a cache line
#define HAL_ICACHE_WAYS 1 // Associativity of the cache

#define HAL_DCACHE_SETS (HAL_DCACHE_SIZE/(HAL_DCACHE_LINE_SIZE*HAL_DCACHE_WAYS))
#define HAL_ICACHE_SETS (HAL_ICACHE_SIZE/(HAL_ICACHE_LINE_SIZE*HAL_ICACHE_WAYS))

Additional cache macros, or overrides for the defaults, may also appear in here. While some architectures have instructions for
managing cache lines, overall enable/disable operations may be handled via variant specific registers. If so then var_cache.h
should also define the HAL_XCACHE_ENABLE() and HAL_XCACHE_DISABLE() macros.

If there are any generic features that the variant does not support (cache locking is a typical example) then var_cache.h
may need to disable definitions of certain operations. It is architecture dependent exactly how this is done.

Architecture HAL Porting
A new architecture HAL is the most complex HAL to write, and it the least easily described. Hence this section is presently
nothing more than a place holder for the future.

HAL Architecture Porting Process
The easiest way to make a new architecture HAL is simply to copy an existing architecture HAL of an, if possible, closely
matching architecture and change all the files to match the new architecture. The MIPS architecture HAL should be used if
possible, as it has the appropriate layout and coding conventions. Other HALs may deviate from that norm in various ways.

Note

eCos is written for GCC. It requires C and C++ compiler support as well as a few compiler features introduced
during eCos development - so compilers older than eCos may not provide these features. Note that there is no C++
support for any 8 or 16 bit CPUs. Before you can undertake an eCos port, you need the required compiler support.

The following gives a rough outline of the steps needed to create a new architecture HAL. The exact order and set of steps
needed will vary greatly from architecture to architecture, so a lot of flexibility is required. And of course, if the architecture
HAL is to be tested, it is necessary to do variant and platform ports for the initial target simultaneously.

1. Make a new directory for the new architecture under the hal directory in the source repository. Make an arch directory
under this and populate this with the standard set of package directories.

2. Copy the CDL file from an example HAL changing its name to match the new HAL. Edit the file, changing option names
as appropriate. Delete any options that are specific to the original HAL, and and any new options that are necessary for
the new architecture. This is likely to be a continuing process during the development of the HAL. See the section called
“CDL Requirements” for more details.

125

Porting Guide

3. Copy the hal_arch.h file from an example HAL. Within this file you need to change or define the following:

• Define the HAL_SavedRegisters structure. This may need to reflect the save order of any group register save/restore
instructions, the interrupt and exception save and restore formats, and the procedure calling conventions. It may also
need to cater for optional FPUs and other functional units. It can be quite difficult to develop a layout that copes with
all requirements.

• Define the bit manipulation routines, HAL_LSBIT_INDEX() and HAL_MSBIT_INDEX(). If the architecture contains
instructions to perform these, or related, operations, then these should be defined as inline assembler fragments. Otherwise
make them calls to functions.

• Define HAL_THREAD_INIT_CONTEXT(). This initializes a restorable CPU context onto a stack pointer so that a later
call to HAL_THREAD_LOAD_CONTEXT() or HAL_THREAD_SWITCH_CONTEXT() will execute it correctly. This
macro needs to take account of the same optional features of the architecture as the definition of HAL_SavedRegisters.

• Define HAL_THREAD_LOAD_CONTEXT() and HAL_THREAD_SWITCH_CONTEXT(). These should just be calls to
functions in context.S.

• Define HAL_REORDER_BARRIER(). This prevents code being moved by the compiler and is necessary in some or-
der-sensitive code. This macro is actually defined identically in all architecture, so it can just be copied.

• Define breakpoint support. The macro HAL_BREAKPOINT(label) needs to be an inline assembly fragment that in-
vokes a breakpoint. The breakpoint instruction should be labeled with the label argument. HAL_BREAKINST and
HAL_BREAKINST_SIZE define the breakpoint instruction for debugging purposes.

• Optionally provide a macro HAL_HWDEBUG_BREAKPOINT. This is used by the common HAL's gdb file I/O support
to get the attention of gdb when using hardware debug technology such as jtag or BDM. The macro may involve a
dedicated breakpoint instruction or a processor exception or trap of some sort. Only one instance of this macro will ever be
invoked. It should define either one or two labels. _gdb_hwdebug_break should correspond to the address that will
be reported to gdb. If that address is the same as the breakpoint instruction or trap, or if the instruction has side effects like
pushing exception data onto the stack, then the macro should also define a label _gdb_hwdebug_continue. When
the application is resumed gdb will transfer control to that label if defined, allowing any necessary clean-up operations
to be performed.

• Define GDB support. GDB views the registers of the target as a linear array, with each register having a well defined offset.
This array may differ from the ordering defined in HAL_SavedRegisters. The macros HAL_GET_GDB_REGISTERS()
and HAL_SET_GDB_REGISTERS() translate between the GDB array and the HAL_SavedRegisters structure. The
HAL_THREAD_GET_SAVED_REGISTERS() translates a stack pointer saved by the context switch macros into a point-
er to a HAL_SavedRegisters structure. Usually this is a one-to-one translation, but this macro allows it to differ if nec-
essary.

• Define long jump support. The type hal_jmp_buf and the functions hal_setjmp() and hal_longjmp() provide
the underlying implementation of the C library setjmp() and longjmp().

• Define idle thread action. Generally the macro HAL_IDLE_THREAD_ACTION() is defined to call a function in
hal_misc.c.

• Define stack sizes. The macros CYGNUM_HAL_STACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPI-
CAL should be defined to the minimum size for any thread stack and a reasonable default for most threads respectively.
It is usually best to construct these out of component sizes for the CPU save state and procedure call stack usage. These
definitions should not use anything other than numerical values since they can be used from assembly code in some HALs.

• Define memory access macros. These macros provide translation between cached and uncached and physical memory
spaces. They usually consist of masking out bits of the supplied address and ORing in alternative address bits.

• Define global pointer save/restore macros. These really only need defining if the calling conventions of the architecture
require a global pointer (as does the MIPS architecture), they may be empty otherwise. If it is necessary to define these,
then take a look at the MIPS implementation for an example.

4. Copy hal_intr.h from an example HAL. Within this file you should change or define the following:
126

Porting Guide

• Define the exception vectors. These should be detailed in the architecture specification. Essentially for each exception
entry point defined by the architecture there should be an entry in the VSR table. The offsets of these VSR table entries
should be defined here by CYGNUM_HAL_VECTOR_* definitions. The size of the VSR table also needs to be defined here.

• Map any hardware exceptions to standard names. There is a group of exception vector name of the form
CYGNUM_HAL_EXCEPTION_* that define a wide variety of possible exceptions that many architectures raise. Generic
code detects whether the architecture can raise a given exception by testing whether a given CYGNUM_HAL_EXCEP-
TION_* definition is present. If it is present then its value is the vector that raises that exception. This does not need to
be a one-to-one correspondence, and several CYGNUM_HAL_EXCEPTION_* definitions may have the same value.

Interrupt vectors are usually defined in the variant or platform HALs. The interrupt number space may either be continuous
with the VSR number space, where they share a vector table (as in the i386) or may be a separate space where a separate
decode stage is used (as in MIPS or PowerPC).

• Declare any static data used by the HAL to handle interrupts and exceptions. This is usually three vectors for inter-
rupts: hal_interrupt_handlers[], hal_interrupt_data[] and hal_interrupt_objects[], which
are sized according to the interrupt vector definitions. In addition a definition for the VSR table, hal_vsr_table[]
should be made. These vectors are normally defined in either vectors.S or hal_misc.c.

• Define interrupt enable/disable macros. These are normally inline assembly fragments to execute the instructions, or
manipulate the CPU register, that contains the CPU interrupt enable bit.

• A feature that many HALs support is the ability to execute DSRs on the interrupt stack. This is not an essential feature,
and is better left unimplemented in the initial porting effort. If this is required, then the macro HAL_INTERRUPT_S-
TACK_CALL_PENDING_DSRS() should be defined to call a function in vectors.S.

• Define the interrupt and VSR attachment macros. If the same arrays as for other HALs have been used for VSR and
interrupt vectors, then these macro can be copied across unchanged.

5. A number of other header files also need to be filled in:

• basetype.h. This file defines the basic types used by eCos, together with the endianness and some other characteristics.
This file only really needs to contain definitions if the architecture differs significantly from the defaults defined in
cyg_type.h

• hal_io.h. This file contains macros for accessing device IO registers. If the architecture uses memory mapped IO, then
these can be copied unchanged from an existing HAL such as MIPS. If the architecture uses special IO instructions, then
these macros must be defined as inline assembler fragments. See the I386 HAL for an example. PCI bus access macros
are usually defined in the variant or platform HALs.

This file may also provide further macro definitions, if relevant for the underlying hardware:

HAL_MEMORY_BARRIER()

This causes any memory writes pending within the CPU to be flushed to memory before continuing. Frequently there
is a specific instruction, such as sync on MIPS, to cause write buffers to be flushed. This macro is generally not
relevant to be called if you also have a writeback data cache, as that needs separate treatment. However this macro is
relevant for systems with no data cache, a writethrough data cache, or in code running with the data cache disabled.
For the latter reason this macro should be implemented if the facility exists, irrespective of the cache properties.

HAL_IO_BARRIER()

This causes any I/O writes pending within the CPU to be flushed to the I/O space before continuing. Frequently there
is a specific instruction, such as eieio on PowerPC, to cause such pending writes to be guaranteed to be committed.
On systems with no separate I/O space, such that all device access is instead memory-mapped, then this function
may be defined to be the same as HAL_MEMORY_BARRIER().

127

Porting Guide

• hal_cache.h. This file contains cache access macros. If the architecture defines cache instructions, or control registers,
then the access macros should be defined here. Otherwise they must be defined in the variant or platform HAL. Usually
the cache dimensions (total size, line size, ways etc.) are defined in the variant HAL.

• arch.inc and <architecture>.inc. These files are assembler headers used by vectors.S and context.S.
<architecture>.inc is a general purpose header that should contain things like register aliases, ABI definitions and
macros useful to general assembly code. If there are no such definitions, then this file need not be provided. arch.inc
contains macros for performing various eCos related operations such as initializing the CPU, caches, FPU etc. The defi-
nitions here may often be configured or overridden by definitions in the variant or platform HALs. See the MIPS HAL
for an example of this.

6. Write vectors.S. This is the most important file in the HAL. It contains the CPU initialization code, exception and
interrupt handlers. While other HALs should be consulted for structures and techniques, there is very little here that can
be copied over without major edits.

The main pieces of code that need to be defined here are:

• Reset vector. This usually need to be positioned at the start of the ROM or FLASH, so should be in a linker section of its
own. It can then be placed correctly by the linker script. Normally this code is little more than a jump to the label _start.

• Exception vectors. These are the trampoline routines connected to the hardware exception entry points that vector through
the VSR table. In many architectures these are adjacent to the reset vector, and should occupy the same linker section. If
the architecture allow the vectors to be moved then it may be necessary for these trampolines to be position independent
so they can be relocated at runtime.

The trampolines should do the minimum necessary to transfer control from the hardware vector to the VSR pointed to
by the matching table entry. Exactly how this is done depends on the architecture. Usually the trampoline needs to get
some working registers by either saving them to CPU special registers (e.g. PowerPC SPRs), using reserved general
registers (MIPS K0 and K1), using only memory based operations (IA32), or just jumping directly (ARM). The VSR
table index to be used is either implicit in the entry point taken (PowerPC, IA32, ARM), or must be determined from
a CPU register (MIPS).

• Write kernel startup code. This is the location the reset vector jumps to, and can be in the main text section of the
executable, rather than a special section. The code here should first initialize the CPU and other hardware subsystems.
The best approach is to use a set of macro calls that are defined either in arch.inc or overridden in the variant or
platform HALs. Other jobs that this code should do are: initialize stack pointer; copy the data section from ROM to
RAM if necessary; zero the BSS; call variant and platform initializers; call cyg_hal_invoke_constructors();
call initialize_stub() if necessary. Finally it should call cyg_start(). See the section called “HAL Startup”
for details.

• Write the default exception VSR. This VSR is installed in the VSR table for all synchronous exception vectors. See the
section called “Default Synchronous Exception Handling” for details of what this VSR does.

• Write the default interrupt VSR. This is installed in all VSR table entries that correspond to external interrupts. See the
section called “Default Synchronous Exception Handling” for details of what this VSR does.

• Write hal_interrupt_stack_call_pending_dsrs(). If this function is defined in hal_arch.h then it
should appear here. The purpose of this function is to call DSRs on the interrupt stack rather than the current thread's
stack. This is not an essential feature, and may be left until later. However it interacts with the stack switching that goes
on in the interrupt VSR, so it may make sense to write these pieces of code at the same time to ensure consistency.

When this function is implemented it should do the following:

• Take a copy of the current SP and then switch to the interrupt stack.

• Save the old SP, together with the CPU status register (or whatever register contains the interrupt enable status) and
any other registers that may be corrupted by a function call (such as any link register) to locations in the interrupt stack.

• Enable interrupts.

128

Porting Guide

• Call cyg_interrupt_call_pending_DSRs(). This is a kernel functions that actually calls any pending DSRs.

• Retrieve saved registers from the interrupt stack and switch back to the current thread stack.

• Merge the interrupt enable state recorded in the save CPU status register with the current value of the status register
to restore the previous enable state. If the status register does not contain any other persistent state then this can be a
simple restore of the register. However if the register contains other state bits that might have been changed by a DSR,
then care must be taken not to disturb these.

• Define any data items needed. Typically vectors.S may contain definitions for the VSR table, the interrupt tables and
the interrupt stack. Sometimes these are only default definitions that may be overridden by the variant or platform HALs.

7. Write context.S. This file contains the context switch code. See the section called “Thread Context Switching” for details
of how these functions operate. This file may also contain the implementation of hal_setjmp() and hal_longjmp().

8. Write hal_misc.c. This file contains any C data and functions needed by the HAL. These might include:

• hal_interrupt_*[]. In some HALs, if these arrays are not defined in vectors.S then they must be defined here.

• cyg_hal_exception_handler(). This function is called from the exception VSR. It usually does extra decoding
of the exception and invokes any special handlers for things like FPU traps, bus errors or memory exceptions. If there
is nothing special to be done for an exception, then it either calls into the GDB stubs, by calling __handle_excep-
tion(), or invokes the kernel by calling cyg_hal_deliver_exception().

• hal_arch_default_isr(). The hal_interrupt_handlers[] array is usually initialized with pointers to
hal_default_isr(), which is defined in the common HAL. This function handles things like Ctrl-C processing, but
if that is not relevant, then it will call hal_arch_default_isr(). Normally this function should just return zero.

• cyg_hal_invoke_constructors(). This calls the constructors for all static objects before the program starts.
eCos relies on these being called in the correct order for it to function correctly. The exact way in which construc-
tors are handled may differ between architectures, although most use a simple table of function pointers between labels
__CTOR_LIST__ and __CTOR_END__ which must called in order from the top down. Generally, this function can be
copied directly from an existing architecture HAL.

• Bit indexing functions. If the macros HAL_LSBIT_INDEX() and HAL_MSBIT_INDEX() are defined as function calls,
then the functions should appear here. The main reason for doing this is that the architecture does not have support for
bit indexing and these functions must provide the functionality by conventional means. While the trivial implementation
is a simple for loop, it is expensive and non-deterministic. Better, constant time, implementations can be found in several
HALs (MIPS for example).

• hal_delay_us(). If the macro HAL_DELAY_US() is defined in hal_intr.h then it should be defined to call
this function. While most of the time this function is called with very small values, occasionally (particularly in some
ethernet drivers) it is called with values of several seconds. Hence the function should take care to avoid overflow in
any calculations.

• hal_idle_thread_action(). This function is called from the idle thread via the HAL_IDLE_THREAD_AC-
TION() macro, if so defined. While normally this function does nothing, during development this is often a good place
to report various important system parameters on LCDs, LED or other displays. This function can also monitor system
state and report any anomalies. If the architecture supports a halt instruction then this is a good place to put an inline
assembly fragment to execute it. It is also a good place to handle any power saving activity.

9. Create the <architecture>.ld file. While this file may need to be moved to the variant HAL in the future, it should
initially be defined here, and only moved if necessary.

This file defines a set of macros that are used by the platform .ldi files to generate linker scripts. Most GCC toolchains
are very similar so the correct approach is to copy the file from an existing architecture and edit it. The main things that
will need editing are the OUTPUT_FORMAT() directive and maybe the creation or allocation of extra sections to various
macros. Running the target linker with just the --verbose argument will cause it to output its default linker script. This
can be compared with the .ld file and appropriate edits made.

129

Porting Guide

10.If GDB stubs are to be supported in RedBoot or eCos, then support must be included for these. The most important of
these are include/<architecture>-stub.h and src/<architecture>-stub.c. In all existing architecture
HALs these files, and any support files they need, have been derived from files supplied in libgloss, as part of the GDB
toolchain package. If this is a totally new architecture, this may not have been done, and they must be created from scratch.

include/<architecture>-stub.h contains definitions that are used by the GDB stubs to describe the size, type,
number and names of CPU registers. This information is usually found in the GDB support files for the architecture. It also
contains prototypes for the functions exported by src/<architecture>-stub.c; however, since this is common to
all architectures, it can be copied from some other HAL.

src/<architecture>-stub.c implements the functions exported by the header. Most of this is fairly straight for-
ward: the implementation in existing HALs should show exactly what needs to be done. The only complex part is the sup-
port for single-stepping. This is used a lot by GDB, so it cannot be avoided. If the architecture has support for a trace or
single-step trap then that can be used for this purpose. If it does not then this must be simulated by planting a breakpoint
in the next instruction. This can be quite involved since it requires some analysis of the current instruction plus the state of
the CPU to determine where execution is going to go next.

CDL Requirements

The CDL needed for any particular architecture HAL depends to a large extent on the needs of that architecture. This includes
issues such as support for different variants, use of FPUs, MMUs and caches. The exact split between the architecture, variant
and platform HALs for various features is also somewhat fluid.

To give a rough idea about how the CDL for an architecture is structured, we will take as an example the I386 CDL.

This first section introduces the CDL package and placed it under the main HAL package. Include files from this pack-
age will be put in the include/cyg/hal directory, and definitions from this file will be placed in include/pkg-
conf/hal_i386.h. The compile line specifies the files in the src directory that are to be compiled as part of this package.

cdl_package CYGPKG_HAL_I386 {
 display "i386 architecture"
 parent CYGPKG_HAL
 hardware
 include_dir cyg/hal
 define_header hal_i386.h
 description "
 The i386 architecture HAL package provides generic
 support for this processor architecture. It is also
 necessary to select a specific target platform HAL
 package."

 compile hal_misc.c context.S i386_stub.c hal_syscall.c

Next we need to generate some files using non-standard make rules. The first is vectors.S, which is not put into the library,
but linked explicitly with all applications. The second is the generation of the target.ld file from i386.ld and the
startup-selected .ldi file. Both of these are essentially boilerplate code that can be copied and edited.

make {
 <PREFIX>/lib/vectors.o : <PACKAGE>/src/vectors.S
 $(CC) -Wp,-MD,vectors.tmp $(INCLUDE_PATH) $(CFLAGS) -c -o $@ $<
 @echo $@ ": \\" > $(notdir $@).deps
 @tail +2 vectors.tmp >> $(notdir $@).deps
 @echo >> $(notdir $@).deps
 @rm vectors.tmp
}

make {
 <PREFIX>/lib/target.ld: <PACKAGE>/src/i386.ld
 $(CC) -E -P -Wp,-MD,target.tmp -DEXTRAS=1 -xc $(INCLUDE_PATH) $(CFLAGS) -o $@ $<
 @echo $@ ": \\" > $(notdir $@).deps
 @tail +2 target.tmp >> $(notdir $@).deps
 @echo >> $(notdir $@).deps
 @rm target.tmp
}

130

Porting Guide

The i386 is currently the only architecture that supports SMP. The following CDL simply enabled the HAL SMP support if
required. Generally this will get enabled as a result of a requires statement in the kernel. The requires statement here
turns off lazy FPU switching in the FPU support code, since it is inconsistent with SMP operation.

cdl_component CYGPKG_HAL_SMP_SUPPORT {
 display "SMP support"
 default_value 0
 requires { CYGHWR_HAL_I386_FPU_SWITCH_LAZY == 0 }

 cdl_option CYGPKG_HAL_SMP_CPU_MAX {
 display "Max number of CPUs supported"
 flavor data
 default_value 2
 }
}

The i386 HAL has optional FPU support, which is enabled by default. It can be disabled to improve system performance.
There are two FPU support options: either to save and restore the FPU state on every context switch, or to only switch the
FPU state when necessary.

cdl_component CYGHWR_HAL_I386_FPU {
 display "Enable I386 FPU support"
 default_value 1
 description "This component enables support for the
 I386 floating point unit."

 cdl_option CYGHWR_HAL_I386_FPU_SWITCH_LAZY {
 display "Use lazy FPU state switching"
 flavor bool
 default_value 1

 description "
 This option enables lazy FPU state switching.
 The default behaviour for eCos is to save and
 restore FPU state on every thread switch, interrupt
 and exception. While simple and deterministic, this
 approach can be expensive if the FPU is not used by
 all threads. The alternative, enabled by this option,
 is to use hardware features that allow the FPU state
 of a thread to be left in the FPU after it has been
 descheduled, and to allow the state to be switched to
 a new thread only if it actually uses the FPU. Where
 only one or two threads use the FPU this can avoid a
 lot of unnecessary state switching."
 }
}

The i386 HAL also has support for different classes of CPU. In particular, Pentium class CPUs have extra functional units, and
some variants of GDB expect more registers to be reported. These options enable these features. Generally these are enabled
by requires statements in variant or platform packages, or in .ecm files.

cdl_component CYGHWR_HAL_I386_PENTIUM {
 display "Enable Pentium class CPU features"
 default_value 0
 description "This component enables support for various
 features of Pentium class CPUs."

 cdl_option CYGHWR_HAL_I386_PENTIUM_SSE {
 display "Save/Restore SSE registers on context switch"
 flavor bool
 default_value 0

 description "
 This option enables SSE state switching. The default
 behaviour for eCos is to ignore the SSE registers.
 Enabling this option adds SSE state information to
 every thread context."
 }

 cdl_option CYGHWR_HAL_I386_PENTIUM_GDB_REGS {
 display "Support extra Pentium registers in GDB stub"

131

Porting Guide

 flavor bool
 default_value 0

 description "
 This option enables support for extra Pentium registers
 in the GDB stub. These are registers such as CR0-CR4, and
 all MSRs. Not all GDBs support these registers, so the
 default behaviour for eCos is to not include them in the
 GDB stub support code."
 }
}

In the i386 HALs, the linker script is provided by the architecture HAL. In other HALs, for example MIPS, it is provided in
the variant HAL. The following option provides the name of the linker script to other elements in the configuration system.

 cdl_option CYGBLD_LINKER_SCRIPT {
 display "Linker script"
 flavor data
 no_define
 calculated { "src/i386.ld" }
 }

Finally, this interface indicates whether the platform supplied an implementation of the hal_i386_mem_real_re-
gion_top() function. If it does then it will contain a line of the form: implements CYGINT_HAL_I386_MEM_RE-
AL_REGION_TOP. This allows packages such as RedBoot to detect the presence of this function so that they may call it.

 cdl_interface CYGINT_HAL_I386_MEM_REAL_REGION_TOP {
 display "Implementations of hal_i386_mem_real_region_top()"
 }

}

132

Chapter 8. Future developments
The HAL is not complete, and will evolve and increase over time. Among the intended developments are:

• Common macros for interpreting the contents of a saved machine context. These would allow portable code, such as debug
stubs, to extract such values as the program counter and stack pointer from a state without having to interpret a HAL_Save-
dRegisters structure directly.

• Debugging support. Macros to set and clear hardware and software breakpoints. Access to other areas of machine state may
also be supported.

• Static initialization support. The current HAL provides a dynamic interface to things like thread context initialization and
ISR attachment. We also need to be able to define the system entirely statically so that it is ready to go on restart, without
needing to run code. This will require extra macros to define these initializations. Such support may have a consequential
effect on the current HAL specification.

• CPU state control. Many CPUs have both kernel and user states. Although it is not intended to run any code in user state
for the foreseeable future, it is possible that this may happen eventually. If this is the case, then some minor changes may be
needed to the current HAL API to accommodate this. These should mostly be extensions, but minor changes in semantics
may also be required.

• Physical memory management. Many embedded systems have multiple memory areas with varying properties such as base
address, size, speed, bus width, cacheability and persistence. An API is needed to support the discovery of this information
about the machine's physical memory map.

• Memory management control. Some embedded processors have a memory management unit. In some cases this must be
enabled to allow the cache to be controlled, particularly if different regions of memory must have different caching properties.
For some purposes, in some systems, it will be useful to manipulate the MMU settings dynamically.

• Power management. Macros to access and control any power management mechanisms available on the CPU implementa-
tion. These would provide a substrate for a more general power management system that also involved device drivers and
other hardware components.

• Generic serial line macros. Most serial line devices operate in the same way, the only real differences being exactly which
bits in which registers perform the standard functions. It should be possible to develop a set of HAL macros that provide
basic serial line services such as baud rate setting, enabling interrupts, polling for transmit or receive ready, transmitting
and receiving data etc. Given these it should be possible to create a generic serial line device driver that will allow rapid
bootstrapping on any new platform. It may be possible to extend this mechanism to other device types.

133

Part III. The ISO Standard
C and Math Libraries

Table of Contents
9. C and math library overview ... 136

Included non-ISO functions .. 136
Math library compatibility modes .. 137

matherr() .. 137
Thread-safety and re-entrancy ... 138

Some implementation details .. 138
Thread safety ... 140
C library startup ... 141

10. Overview of ISO Standards Compliance .. 142
Definitions ... 142
Scope .. 142
General Overview ... 143
Common C/C++ headers .. 143

<assert.h> .. 143
<complex.h> .. 143
<ctype.h> .. 143
<errno.h> .. 144
<fenv.h> .. 144
<float.h> .. 144
<inttypes.h> .. 144
<iso646.h> .. 144
<limits.h> .. 144
<locale.h> .. 144
<math.h> .. 144
<setjmp.h> .. 144
<signal.h> .. 144
<stdarg.h> .. 145
<stdbool.h> .. 145
<stddef.h> .. 145
<stdint.h> .. 145
<stdio.h> .. 145
<stdlib.h> .. 145
<string.h> .. 146
<tgmath.h> .. 146
<time.h> .. 146
<wchar.h> .. 146
<wctype.h> .. 146

C11 specific headers ... 146
<stdalign.h> .. 146
<stdatomic.h> .. 146
<threads.h> .. 146
<uchar.h> .. 146

135

Chapter 9. C and math library overview
eCos provides compatibility with the ISO 9899:1990 specification for the standard C library, which is essentially the same as
the better-known ANSI C3.159-1989 specification (C-89).

There are three aspects of this compatibility supplied by eCos. First there is a C library which implements the functions defined
by the ISO standard, except for the mathematical functions. This is provided by the eCos C library packages.

Then eCos provides a math library, which implements the mathematical functions from the ISO C library. This distinction
between C and math libraries is frequently drawn — most standard C library implementations provide separate linkable files
for the two, and the math library contains all the functions from the math.h header file.

There is a third element to the ISO C library, which is the environment in which applications run when they use the standard C
library. This environment is set up by the C library startup procedure (the section called “C library startup”>) and it provides
(among other things) a main() entry point function, an exit() function that does the cleanup required by the standard
(including handlers registered using the atexit() function), and an environment that can be read with getenv().

The description in this manual focuses on the eCos-specific aspects of the C library (mostly related to eCos's configurability) as
well as mentioning the omissions from the standard in this release. We do not attempt to define the semantics of each function,
since that information can be found in the ISO, ANSI, POSIX and IEEE standards, and the many good books that have been
written about the standard C library, that cover usage of these functions in a more general and useful way.

Included non-ISO functions
The following functions from the POSIX specification are included for convenience:

extern char **environ variable (for setting up the environment for use with getenv())
_exit()
strtok_r()
rand_r()
asctime_r()
ctime_r()
localtime_r()
gmtime_r()

eCos provides the following additional implementation-specific functions within the standard C library to adjust the date and
time settings:

void cyg_libc_time_setdst(
 cyg_libc_time_dst state
);

This function sets the state of Daylight Savings Time. The values for state are:

CYG_LIBC_TIME_DSTNA unknown
CYG_LIBC_TIME_DSTOFF off
CYG_LIBC_TIME_DSTON on

These values will be reflected in the tm_isdst member of a struct tm. No other meaning is given to
CYG_LIBC_TIME_DSTNA, and in particular it is not interpreted as any sort of "auto-detect" value, as eCos does not have
the extensive timezone information that would be required in order to provide this. A call to mktime() with tm_isdst set
to -1 (which corresponds to CYG_LIBC_TIME_DSTNA) will be treated as if the supplied time is in UTC, i.e. with neither
standard time nor Daylight Savings Time offsets applied.

void cyg_libc_time_setzoneoffsets(
 time_t stdoffset, time_t dstoffset
);

This function sets the offsets from UTC used when Daylight Savings Time is enabled or disabled. The offsets are in time_t‚s,
which are seconds in the current inplementation.

136

C and math library overview

Cyg_libc_time_dst cyg_libc_time_getzoneoffsets(
 time_t *stdoffset, time_t *dstoffset
);

This function retrieves the current setting for Daylight Savings Time along with the offsets used for both STD and DST. The
offsets are both in time_t‚s, which are seconds in the current implementation.

cyg_bool cyg_libc_time_settime(
 time_t utctime
);

This function sets the current time for the system The time is specified as a time_t in UTC. It returns non-zero on error.

Math library compatibility modes
This math library is capable of being operated in several different compatibility modes. These options deal solely with how
errors are handled.

There are 4 compatibility modes: ANSI/POSIX 1003.1; IEEE-754; X/Open Portability Guide issue 3 (XPG3); and System V
Interface Definition Edition 3.

In IEEE mode, the matherr() function (see below) is never called, no warning messages are printed on the stderr output
stream, and errno is never set.

In ANSI/POSIX mode, errno is set correctly, but matherr() is never called and no warning messages are printed on the
stderr output stream.

In X/Open mode, errno is set correctly, matherr() is called, but no warning messages are printed on the stderr output stream.

In SVID mode, functions which overflow return a value HUGE (defined in math.h), which is the maximum single precision
floating point value (as opposed to HUGE_VAL which is meant to stand for infinity). errno is set correctly and matherr()
is called. If matherr() returns 0, warning messages are printed on the stderr output stream for some errors.

The mode can be compiled-in as IEEE-only, or any one of the above methods settable at run-time.

Note

This math library assumes that the hardware (or software floating point emulation) supports IEEE-754 style
arithmetic, 32-bit 2's complement integer arithmetic, doubles are in 64-bit IEEE-754 format.

matherr()
As mentioned above, in X/Open or SVID modes, the user can supply a function matherr() of the form:

int matherr(struct exception *e)

where struct exception is defined as:

struct exception {
 int type;
 char *name;
 double arg1, arg2, retval;
};

type is the exception type and is one of:

DOMAIN

argument domain exception

SING

argument singularity

137

C and math library overview

OVERFLOW

overflow range exception

UNDERFLOW

underflow range exception

TLOSS

total loss of significance

PLOSS

partial loss of significance

name is a string containing the name of the function

arg1 and arg2 are the arguments passed to the function

retval is the default value that will be returned by the function, and can be changed by matherr()

Note

matherr must have “C” linkage, not “C++” linkage.

If matherr returns zero, or the user doesn't supply their own matherr, then the following usually happens in SVID mode:

Table 9.1. Behavior of math exception handling

Type Behavior

DOMAIN 0.0 returned, errno=EDOM, and a message printed on stderr

SING HUGE of appropriate sign is returned, errno=EDOM, and a message is printed on stderr

OVERFLOW HUGE of appropriate sign is returned, and errno=ERANGE

UNDERFLOW 0.0 is returned and errno=ERANGE

TLOSS 0.0 is returned, errno=ERANGE, and a message is printed on stderr

PLOSS The current implementation doesn't return this type

X/Open mode is similar except that the message is not printed on stderr and HUGE_VAL is used in place of HUGE

Thread-safety and re-entrancy
With the appropriate configuration options set below, the math library is fully thread-safe if:

• Depending on the compatibility mode, the setting of the errno variable from the C library is thread-safe

• Depending on the compatibility mode, sending error messages to the stderr output stream using the C library fputs()
function is thread-safe

• Depending on the compatibility mode, the user-supplied matherr() function and anything it depends on are thread-safe

In addition, with the exception of the gamma*() and lgamma*() functions, the math library is reentrant (and thus safe to
use from interrupt handlers) if the Math library is always in IEEE mode.

Some implementation details
Here are some details about the implementation which might be interesting, although they do not affect the ISO-defined se-
mantics of the library.

138

C and math library overview

• It is possible to configure eCos to have the standard C library without the kernel. You might want to do this to use less
memory.

• The opaque type returned by clock() is called clock_t, and is implemented as a 64 bit integer. The value returned by
clock() is only correct if the kernel is configured with real-time clock support, as determined by the CYGVAR_KER-
NEL_COUNTERS_CLOCK configuration option in kernel.h .

• The FILE type is not implemented as a structure, but rather as a CYG_ADDRESS.

• The GNU C compiler will replace its own built-in implementations instead of calls to some C library functions. This can
be turned off with the -fno-builtin option. But it is recommended for normal use to leave compiler builtins enabled. The
functions affected by this are described in the documentation associated with the particular GNU compiler version you are
using, but include at least:

abs() labs() sin() strcpy()
cos() memcmp() sqrt() strlen()
fabs() memcpy() strcmp()

• memcpy() and memset() are located in the infrastructure package, not in the C library package. This is because the
compiler calls these functions, and the kernel needs to resolve them even if the C library is not configured.

• Error codes such as EDOM and ERANGE, as well as strerror() , are implemented in the error package. The error
package is separate from the rest of the C and math libraries so that the rest of eCos can use these error handling facilities
even if the C library is not configured.

• The memory allocation package CYGPKG_MEMALLOC is responsible for providing the various heap management functions
such as malloc(), free(), etc.

• Signals, as implemented by <signal.h>, are guaranteed to work correctly if raised using the raise() function from
a normal working program context. Using signals from within an ISR or DSR context is not expected to work. Also, it
is not guaranteed that if CYGSEM_LIBC_SIGNALS_HWEXCEPTIONS is set, that handling a signal using signal()
will necessarily catch that form of exception. For example, it may be expected that a divide-by-zero error would be caught
by handling SIGFPE. However it depends on the underlying HAL implementation to implement the required hardware
exception. And indeed the hardware itself may not be capable of detecting these exceptions so it may not be possible for the
HAL implementer to do this in any case. Despite this lack of guarantees in this respect, the signals implementation is still
ISO C compliant since ISO C does not offer any such guarantees either.

• If you include the POSIX compatibility layer in your configuration, by default it will present a conflict if the C library signals
implementation is also present. Only one signals implementation may be present.

• The getenv() function is implemented (as long as the CYGPKG_LIBC_STDLIB package is present in your configura-
tion), but there is no shell or putenv() function to set the environment dynamically. The environment is set in a global
variable environ, declared as:

extern char **environ; // Standard environment definition

If the "ISO environment startup/termination" (CYGPKG_LIBC_STARTUP) package is included in your configuration, the
environment can be statically initialized at startup time using the CYGDAT_LIBC_DEFAULT_ENVIRONMENT option.
If so, remember that the final entry of the array initializer must be NULL.

Here is a minimal eCos program which demonstrates the use of environments (see also the test case in language/c/
libc/VERSION/tests/stdlib/getenv.c):

#include <stdio.h>
#include <stdlib.h> // Main header for stdlib functions

extern char **environ; // Standard environment definition

int
main(int argc, char *argv[])
{
 char *str;
 char *env[] = { "PATH=/usr/local/bin:/usr/bin",
 "HOME=/home/fred",

139

C and math library overview

 "TEST=1234=5678",
 "home=hatstand",
 NULL };

 printf("Display the current PATH environment variable\n");

 environ = (char **)&env;

 str = getenv("PATH");

 if (str==NULL) {
 printf("The current PATH is unset\n");
 } else {
 printf("The current PATH is \"%s\"\n", str);
 }
 return 0;
}

Thread safety
The ISO C library has configuration options that control thread safety, i.e. working behavior if multiple threads call the same
function at the same time.

The following functionality has to be configured correctly, or used carefully in a multi-threaded environment:

• mblen ();

• mbtowc ();

• wctomb ();

• printf ();

and all standard I/O functions except for

sprintf() ();
sscanf ();

• strtok ();

• rand ();
srand ();

• signal ();
raise ();

• asctime ();
ctime ();
gmtime ();
localtime ();

• the errno variable

• the environ variable

• date and time settings

In some cases, to make eCos development easier, functions are provided (as specified by POSIX 1003.1) that define re-entrant
alternatives, i.e. rand_r(), strtok_r(), asctime_r(), ctime_r(), gmtime_r(), and localtime_r(). In oth-
er cases, configuration options are provided that control either locking of functions or their shared data, such as with standard
I/O streams, or by using per-thread data, such as with the errno variable.

In some other cases, like the setting of date and time, no re-entrant or thread-safe alternative or configuration is provided as it
is simply not a worthwhile addition (date and time should rarely need to be set.)

140

C and math library overview

C library startup
The C library includes a function declared as:

void cyg_iso_c_start(void)

This function is used to start an environment in which an ISO C style program can run in the most compatible way.

What this function does is to create a thread which will invoke main() — normally considered a program's entry point. In
particular, it can supply arguments to main() using the CYGDAT_LIBC_ARGUMENTS configuration option, and when
returning from main(), or calling exit(), pending stdio file output is flushed and any functions registered with atexit()
are invoked. This is all compliant with the ISO C standard in this respect.

This thread starts execution when the eCos scheduler is started. If the eCos kernel package is not available (and hence there is
no scheduler), then cyg_iso_c_start() will invoke the main() function directly, i.e. it will not return until the main()
function returns.

The main() function should be defined as the following, and if defined in a C++ file, should have “C” linkage:

extern int main(
 int argc,
 char *argv[])

The thread that is started by cyg_iso_c_start() can be manipulated directly, if you wish. For example you can suspend
it. The kernel C API needs a handle to do this, which is available by including the following in your source code.

extern cyg_handle_t cyg_libc_main_thread;

Then for example, you can suspend the thread with the line:

cyg_thread_suspend(cyg_libc_main_thread);

If you call cyg_iso_c_start() and do not provide your own main() function, the system will provide a main() for
you which will simply return immediately.

In the default configuration, cyg_iso_c_start() is invoked automatically by the cyg_package_start() function
in the infrastructure configuration. This means that in the simplest case, your program can indeed consist of simply:

int main(int argc, char *argv[])
{
 printf("Hello eCos\n");
}

If you override cyg_package_start() or cyg_start(), or disable the infrastructure configuration option
CYGSEM_START_ISO_C_COMPATIBILITY then you must ensure that you call cyg_iso_c_start() yourself if you
want to be able to have your program start at the entry point of main() automatically.

141

Chapter 10. Overview of ISO Standards
Compliance
This chapter has been prepared in order to provide an overview of the compliance of the eCos Standard C and Math libraries
against ISO C and C++ Standards, as implemented in eCosPro.

It is intended to describe functionality required by the ISO/IEC 9899:2011 C and ISO/IEC 14882:2011 C++ standards which
is missing, as well as behaviour which differs from the standards, or only meets the specification of the standards in part. This
documentation is focused on these 2011 revisions of the standards, and earlier and later revisions of these standards are not
covered.

Further details on compliance with the ISO C++ standard can be found in the documentation on eCosPro's Standard C++
support.

The general approach which will be taken is to describe standards compliance with regard to the APIs defined by each standard
header file, in turn. By examining compliance on a header by header basis, rather than looking at each standard in turn, it is
hoped to avoid confusing duplication due to the considerable overlap in headers between the C and C++ standards.

Definitions
Some terms are frequently used in this document, or only used in shorthand form, and are defined here to allow us to reference
them later more conveniently.

C90 The ISO/IEC 9899:1990 C standard, occasionally also known as C89, or informally as “ANSI C” (which differ
only in formatting with the ISO standard).

C99 The ISO/IEC 9899:1999 C standard

C11 The ISO/IEC 9899:2011 C standard

C++11 The ISO/IEC 14882:2011 C++ standard. Note that this standard does not implicitly require the C11 standard,
but the C99 standard.

GCC The GNU Compiler Collection, including C and C++ compilers. Unless otherwise described, this should be
taken as to refer to GCC 7 including patches supplied by eCosCentric in order to support use with eCosPro.
Vanilla GCC sources from the main GCC download sites are not suitable for use without the eCosPro-specific
patches.

libstdc++ The Standard C++ Library provided by GCC. It provides much of the library functionality defined by the C++
standard.

Scope
Broadly, this documentation is only intended as an overview. Although it is intended to cover as much as possible, it is not
guaranteed to be fully complete. While broad areas of non-compliance should be identified here, some elements of finer detail
not in compliance with the standards may not have been addressed. As a result, this documentation does not warrant that,
just because non-compliance has not been identified here, that that means that eCosPro and GCC are fully compliant in all
remaining areas.

At time of writing, eCosPro is currently supplied with GCC 7, which is a version of the compiler intended to be compliant
with the C11 and C++11 standards.

Although there are exceptions, in general, GCC provides language parts of standard, eCos provides runtime library parts of
standard, but GCC must interact with eCos for various abstractions. GCC also provides the Standard C++ Library (libstdc+
+). In this document, we do not cover conformance of portions provided by GCC, including the majority of the very large
Standard C++ library.

142

https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/libstdc++/

Overview of ISO Standards Compliance

For more information on GCC’s standards compliance, the webpage at https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Standard-
s.html may be informative (also note that the similarly named webpage https://gcc.gnu.org/onlinedocs/gcc/Standards.html
refers to GCC standards compliance information for the very latest version of GCC, and not necessarily the version supplied
by eCosCentric for use with eCosPro).

There is also detailed information on GCC’s ongoing compliance efforts with the various C++ standards, described at https://
www.gnu.org/software/gcc/projects/cxx-status.html.

This documentation only covers compliance against the C11 and C++11 standards. It does not cover the specifics of more
recent revisions of the standards such as C18, C++14 or C++17, even though it is understood some of the differences are well
understood, and for example in the case of C++11 versus C++14, the differences are relatively small.

General Overview
Much of the support for the runtime library portions of the standards comes from the C library suite of packages, with certain
elements also coming from the Infrastructure package. In general, the eCos C library was written to be compliant with the C90
standard, with some elements of C99 compliance added subsequently.

Particularly notable and wide-ranging omissions are in the areas of internationalization and localization, such as wide character
and multibyte character variations of functions, many of which are absent. This also affects the level of internationalization/lo-
calization functionality that libstdc++ is able to provide as well.

Standard eCos headers occasionally make use of identifiers which are not reserved by the standard, which means that these
identifiers may not be able to be used by programs which would otherwise be C11/C++11 standards-compliant. This is typically
known as “namespace pollution”, and fortunately is usually easy to work around.

Building with the GCC compiler flag -std=… may not work as intended as eCos headers do not always adapt to different
language standard requirements.

Function prototypes that are expected to use the “restrict” keyword for arguments widely do not do so.

Annex K of C11 describes bounds-checking variants of many standard functions. This is an optional part of the standard and
eCos does not implement it.

Feature-test macros such as those defined in C11 sections 6.10.8.2 and 6.10.8.3 (all of which begin with the prefix “__STDC_”)
are not defined.

Common C/C++ headers
These headers are required by both the C11 and C++11 standards, although note that strictly C++11 itself only requires C99
compliance.

In all cases, where the C++11 standard describes a C++ wrapper for the listed header files, such as <cassert> for <as-
sert.h> or <cstdlib> for <stdlib.h>, these comments apply equally to headers included via these wrappers.

<assert.h>

static_assert is not defined.

<complex.h>

This header is not provided if compiling for C11. Unusually, a compatibility header is provided by GCC if compiling for C++11
to provide an implementation of specific elements from the C++ standard.

<ctype.h>

No compliance issues noticed.

143

https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Standards.html
https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Standards.html
https://gcc.gnu.org/onlinedocs/gcc/Standards.html
https://www.gnu.org/software/gcc/projects/cxx-status.html
https://www.gnu.org/software/gcc/projects/cxx-status.html

Overview of ISO Standards Compliance

<errno.h>

No compliance issues noticed.

<fenv.h>

This header is not supported by eCos.

<float.h>

No compliance issues noticed.

<inttypes.h>

This header is provided by eCos. It includes integer type format string definitions to be used with the printf() and scanf()
families of functions. It also includes the imaxabs(), imaxdiv(), strtoimax() and strtoumax() functions. How-
ever the wide character related functions wcstoimax() and wcstoumax() are not implemented.

<iso646.h>

No compliance issues noticed.

<limits.h>

No compliance issues noticed.

<locale.h>

“struct lconv” does not contain members: int_p_cs_precedes, int_n_cs_precedes, int_p_sep_by_space,
int_n_sep_by_space, int_p_sign_posn, int_n_sign_posn.

<math.h>

The following identifiers are not defined: HUGE_VALL, INFINITY, NAN, FP_FASTFMA*, FP_ILOG*.

Error handling does not use math_errhandling to generate floating point exceptions. MATH_ERRNO, MATH_ERREX-
CEPT, math_errhandling are not defined.

No “long double” variants of any maths functions are provided. For example, sin() and sinf() are provided, but not
sinl().

None of llround(), llroundf() or llroundl() are provided. None of the nexttoward(), nexttowardf(),
nexttowardl() functions are provided.

<setjmp.h>

While in general the <setjmp.h> functionality operates as defined, it is worth noting that in line with the comments about
<signal.h>, in eCos configurations where the POSIX package is not used and where a hardware exception context is used
to handle hardware exception related signals (SIGSEGV, SIGILL, etc.) the fact that the signal handler is being called in a
non-standard CPU context means that the practice of longjmp()ing out of a signal handler must be avoided.

<signal.h>

The signal subsystem is broadly compliant. But it is worth noting that if the eCos configuration is set to use the C library
signals package (CYGPKG_LIBC_SIGNALS), then while signals generated (with raise()) by software behave normally,

144

Overview of ISO Standards Compliance

hardware-related signals such as SIGILL, SIGFPE or SIGSEGV may result in the signal handler being invoked in an unusual
CPU context such as an exception context, and the effect of returning from the signal handler or attempting to longjmp()
out of it is undefined. In an exception context, calling certain functions such as those which may interact with synchronisation
objects (mutexes etc.) or cause pre-emption are likely to misbehave.

For compliant behaviour, instead it is recommended to use the signals facility provide by the eCos POSIX compatibility package
(CYGPKG_POSIX) in place of CYGPKG_LIBC_SIGNALS.

<stdarg.h>

No compliance issues noticed.

<stdbool.h>

No compliance issues noticed.

<stddef.h>

No compliance issues noticed.

<stdint.h>

No compliance issues noticed.

<stdio.h>

None of the wide character input or output functions, nor any other definitions and functionality related to wide charac-
ter support, are provided. These include at least the functions: fgetwc(), fgetws(), getwc(), getwchar(), fws-
canf(), wscanf(), vfwscanf(), vwscanf(), fputwc(), fputws(), putwc(), putwchar(), fwprintf(),
wprintf(), vfwprintf(), vwprintf() and ungetwc(). It also includes the mbstate_t type.

freopen() will always report an error on return.

Not all format specifiers or length modifiers for the *printf() and *scanf() families of functions are supported. For
example: the ‘a’ and ‘A’ floating-point format specifiers, the ‘j’ length modifier for intmax_t / uintmax_t, or the ‘t’ length
modifier for ptrdiff_t. Also the ‘l’ length modifier where its behaviour is intended to treat the associated characters/string as
wide characters.

<stdlib.h>

The llabs() and lldiv() functions, and associated lldiv_t type are not provided.

The strtold() function is not supported.

The strtod() and strtof() functions (and implicitly atof()) do not accept input text of the form: “a 0x or 0X, then
a nonempty sequence of hexadecimal digits optionally containing a decimal-point character, then an optional binary exponent
part”. They also do not recognise the special strings INF, INFINITY, or any NAN strings.

The aligned_alloc() function is not provided.

The _Exit(), quick_exit() and at_quick_exit() functions are not provided.

As eCos is designed for embedded systems, it is not intended for its main process to exit, as there is no other process to return
to. Therefore while functions like abort(), exit(), and atexit() exist and are implemented, for that reason they may
not behave in the expected way that developers using Unix systems may expect. Depending on eCos configuration, exiting
may cause the system to halt, or only cause the main() thread to exit, allowing other threads to continue running.

145

Overview of ISO Standards Compliance

<string.h>

No compliance issues noticed.

<tgmath.h>

This header file is not supported.

<time.h>

Some conversion specifiers for strftime() are not supported, for example: %C, %F, %g, %G, %h, %n, %r, %R, %t, %u, %V,
%z. Also, the ‘E’ and ‘O’ modifiers are not supported.

<wchar.h>

This header file is not supported.

<wctype.h>

This header file is not supported.

C11 specific headers

<stdalign.h>

No compliance issues noticed.

<stdatomic.h>

Although eCosCentric has not tested this functionality, no compliance issues have been noticed.

<threads.h>

This header file is not supported.

<uchar.h>

This header file is not supported.

146

Part IV. eCosPro Standard
C++ library support package

Table of Contents
11. Introduction .. 149

Overview of features ... 149
12. Usage .. 151

Requirements ... 151
Issues to consider ... 151

Using C++ exceptions ... 151
Application size .. 152
C++ exceptions in callbacks ... 152
Licensing ... 152
Standards Compliance ... 153
Open issues ... 153

13. Testing .. 155
14. Toolchain ... 156

148

Chapter 11. Introduction
This documentation describes the eCos support for the GNU standard C++ library v3 which is a component of the GNU
Compiler Collection (GCC). This library, also known as libstdc++, has been designed to fully implement the requirements of
the ISO 14822 standard C++ specification, and also provides some of the underlying support for language features such as
C++ exceptions and run-time type identification (RTTI).

As with normal GNU toolchains, the standard C++ library is prebuilt alongside the toolchain. The library itself is not contained
in this eCos package. Instead the purpose of this package is to provide any ancillary support for the library, provide the CDL
definitions required for the correct operation of the library, provide a rigorous and broad testsuite for the library, and of course
provide this documentation.

Although the standard C++ library is part of the toolchain, some enhancements have been made to the GCC compiler specifi-
cally to support eCos, details of which are found in Chapter 14, Toolchain.

Overview of features
The GNU standard C++ library implements virtually all the library requirements of the C++ standard. Details of the status of
the library including known issues may be found on the GNU C++ Standard Library documentation pages.

In summary, the library provides support for standard C++ functionality such as:

• C++ exceptions

• Run-time type identification (RTTI) and type information

• Memory allocation routines: new, delete, allocators, etc.

• I/O streams, string streams and I/O manipulators

• C++ friendly numeric limits

• Strings and character traits

• Containers: queues, deques, lists, stacks, vectors, maps, sets and bitsets

• Iterators

• Algorithms such as sort, find, compare, count, replace, etc. that usually operate on containers and iterators

• Complex numbers

• Numeric arrays

• Numeric algorithms such as accumulate, inner product, partial sum, adjacent difference

• etc…

This eCos package for libstdc++ also provides support for thread-safe exceptions when using the eCos kernel, as well as
expressing with CDL the requirements that the C++ library has on the rest of the eCos system. This is in fact an option within
the package named CYGPKG_LIBSTDCXX_LIBRARY, which may be overridden and disabled, although this must be done
at the developer's own risk.

This package also contains a large number of tests, including some rigorous tests of core functionality such as C++ exceptions
(and in particular their thread-safety and correct operation in a multi-threaded environment), RTTI, and the main library fea-
tures. These may be found in the tests subdirectory within this package. The GNU libstdc++ v3 testsuite has also been
imported and is found in the tscpp subdirectory.

The GNU libstdc++ implementation configures itself on the basis of underlying OS support. In a few areas, where underlying
eCos support does not exist, the library configures itself to avoid the requirement for that support. This is normally of little

149

http://gcc.gnu.org/onlinedocs/libstdc++/

Introduction

consequence, for example due to libstdc++ providing an alternative implementation with a minor performance impact, or some
trivial divergence from strict C++ standard semantics. In some cases the affected functionality is optional in the first place, for
example for aspects of C99 standard support. There is one notable area which is affected however, which is that eCos contains
very little support for wide characters (wchar). As such, libstdc++ configures itself to omit its own wide character interface
that would have been implemented using the underlying OS wide character support. For example, this removes provision of
the various wstring and wstreams classes and functions.

150

Chapter 12. Usage
The easiest way to start using eCos for C++ development is to use the special configuration template included in this release
for this purpose. With command line configuration it may be used as in the following example for the Atmel EB40A target:

$ ecosconfig new eb40a libstdc++

If using the graphical tool, the template may be selected with the Build->Templates menu item.

Once the eCos libraries are configured and built, you may link your application. Be sure to append -lstdC++ to the end of
the link line. If you wish to use C++ exceptions, be sure to either remove -fno-exceptions from your compilation line,
or append -fexceptions at the end of the compilation line. Similarly, to use RTTI, either remove -fno-rtti from your
compilation line, or append -frtti to the end of the compilation line. Finally, despite what some targets may have used for
their default compiler flags it is important that the option -fvtable-gc is not used.

Requirements
As noted earlier, this package uses CDL to set constraints on the rest of the eCos system for correct and standards compliant
operation of the C++ library. By selecting with the libstdc++ configuration template, you will be able to start with a configu-
ration with all the necessary packages included and options set.

Building C++ programs, particularly those that use templates heavily (either directly, or using the templates from libstdc++),
can take a lot of memory on the build machine - figures in excess of 220Mb have been observed building the testsuite included
with this package. Be sure to have sufficient RAM to prevent extended build times.

This package requires a patched version of the GNU compiler in order to correctly support thread-safe C++ exceptions, and
avoid problems with common infrastructure underlying most standard C++ library classes. Refer to the tools building notes
below for further details.

Warning

If a compiler is used which was not supplied by eCosCentric, nor built with eCosCentric's patch, the facilities
provided by the standard C++ library will not be thread-safe. This may result in corruption, unexpected behaviour
or a crash. In particular, C++ exceptions will not be thread-safe. Even if an application does not use exceptions
directly, they may be used internally within the standard C++ library. Furthermore, certain infrastructure used by
multiple C++ library objects (such as allocators) will also not be thread-safe.

The multi-thread protection provided by the standard C++ library intentionally only extends to subsystems shared by multiple
classes. It does not mean that multiple threads can safely access individual object instances. If an individual object may be
accessed by multiple threads simultaneously, access to that object will still need to be protected separately by the user at the
application level, for example with a mutex. The thread-safety protection provided by the eCosCentric-enhanced version of
the standard C++ library only ensures that threads can safely access different instances of C++ library objects without special
protection by the user, despite many of these objects using functionality which requires shared global state. This approach is
an intentional design decision in order to avoid unnecessary locking overhead.

Due partly to this specialised toolchain support it is not possible to use this package with the synthetic target, as native toolchains
are built with specialised knowledge of the C++ runtime installed on the native OS. This is not solely due to the aforementioned
patches, but also because of direct assumptions made as part of the GNU toolchain build procedure. As such, use under the
synthetic target is unlikely ever to be possible.

It has been observed that GDB releases prior to GDB 6.1 can have difficulty debugging complex C++ applications, particularly
those that extensively include template classes containing virtual functions. GDB 6.1 or above is recommended.

Issues to consider
Using C++ exceptions
There are a number of considerations when using C++ exceptions:

151

Usage

1. Care should be taken when compiling C++ code with -fexceptions (the default). GNU C++ has been designed so that
exceptions do not necessarily add overhead to functions. However they may add overhead in the following circumstances.
Namely, when:

a. Exceptions are actually used; OR

b. i. The function (funcA) calls another function (funcB) with a non-null exception specifier or no exception specifier;
AND

ii. that function (funcA) contains an automatic object; AND

iii. that object is defined to use a destructor, and would therefore need to have the destructor called if the called function
(funcB) threw an exception through this stack frame.

2. Not all eCos API functions have null exception specifiers yet, which may lead to very small unnecessary overhead when
used from C functions in certain circumstances described earlier. Annotating all functions with null exception specifiers
throughout the entirety of eCos is a massive job beyond the scope of the work done to provide C++ support. However many
of the key APIs can be updated. In the current eCos sources, some obvious APIs have been updated such as all of the kernel
C API and much of the ISO C/POSIX APIs.

3. Exceptions thrown from signal handlers are not supported.

4. Exceptions are not supported in ISRs, DSRs, nor ASRs. It is neither feasible nor sensible to support exceptions in ISRs or
DSRs. Support for ASRs may be added at a future date, although there are no plans at present.

5. Use of C++ support from this package can increase the thread stack requirements markedly. For example, if you use C++
exceptions, you should expect to add around 4Kbytes to your stack requirements for each thread which can throw excep-
tions. Developers may find it useful to enable kernel thread stack overflow checking (CYGFUN_KERNEL_THREADS_S-
TACK_CHECKING and possibly also CYGFUN_KERNEL_ALL_THREADS_STACK_CHECKING), especially if erratic be-
haviour is observed in threads using C++ features.

Application size
It is widely acknowledged that when using C++ libraries, memory can quickly be consumed, particularly code (ROM/Flash)
space. Small targets may have difficulty running even short C++ programs. For example, it is recommended to use the
MEC01 memory extension card on the Atmel AT91 evaluation board platforms (EB40, EB40A, EB42, EB55) to provide extra
space for applications. The eCosPro AT91EB40A port can take advantage of the MEC01 if eCos is configured with CYGH-
WR_HAL_ARM_AT91_EB40A_MEC01_RAM enabled.

Similarly, because of the generally larger code size, download times can be lengthy if using a slow transfer mechanism such as
38400 bps serial. Alternative download options such as ethernet or fast JTAG emulator should be considered for an efficient
development/debug cycle.

It may be possible in future to reduce the code size overhead using linker garbage collection more fully. Currently linker
garbage collection is not performed on the GNU standard C++ library itself. However it is anticipated the savings will turn
out to be small.

C++ exceptions in callbacks
eCos itself is not built with exception support (-fexceptions) for the reasons given earlier concerning the overhead of ex-
ception support. As a consequence throwing exceptions from callbacks will not work, e.g. when using qsort(), bsearch(),
etc. eCos does not yet support a means of building individual files with differing flags - flags are manipulated only for complete
packages or by using custom build rules which would be unacceptable due to maintenance overheads.

Licensing
The GNU standard C++ library has its own license distinct from that of eCos. As a basis it uses, like eCos, the GNU General
Public License. Also like eCos it includes an exception that permits the use of the library in proprietary applications. The
exception is as follows:

152

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Usage

As a special exception, you may use this file as part of a free software library without restriction. Specifically,
if other files instantiate templates or use macros or inline functions from this file, or you compile this file
and link it with other files to produce an executable, this file does not by itself cause the resulting executable
to be covered by the GNU General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public License.

This exception is very similar to the eCos GPL exception, and is compatible with it. Further information on this license can be
found in the C++Introduction of the libstdc++ online documentation set.

Most of the test files imported from the libstdc++ testsuite are covered by the full GPL without any exception. This means
that distributing binaries of the test executables themselves gives a requirement to make available the full source code of that
binary under the terms of the GPL. This is not considered an onerous obligation as distributing test binaries for this testsuite
publically is unlikely to be a common requirement.

Standards Compliance
Versions of eCosPro which are shipped with GCC 7.3 or later are broadly compliant with the ISO/IEC 14882:2011 C++
standard (also known as C++11), albeit with some notable exceptions.

Information on GCC 7.3's standards compliance can be found at https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Standards.html,
or elsewhere on the same website for other GCC release versions.

In particular, there is more detail on the compliance efforts with the various C++ standards described at https://www.gnu.org/
software/gcc/projects/cxx-status.html.

The C++11 standard in turn assumes that the library features of the system are compliant with the ISO/IEC 9899:1999 C
standard (also known as C99). Information on eCosPro compliance with ISO C standards can be found in the relevant section
of the eCos C and Math library documentation.

Futher notes on compliance with the C++11 standard are:

• Any programs requiring C++11 library features must include the eCos package "ISO standard C++" (CYGPKG_LIBSTD-
CXX) in the eCos configuration, with the "C++ library support" (CYGPKG_LIBSTDCXX_LIBRARY) option enabled.

• As noted earlier, a particularly notable divergence of eCos from the standards is the absence of most wide character support
and functions.

• The level of functionality and standards compliance of the clocks provided for use with the <chrono> header are highly
dependent on the eCos configuration in use, such as the presence of the common clock package (CYGPKG_CLOCK_COM-
MON), POSIX clocks (CYGPKG_POSIX_CLOCKS) and/or the eCos wallclock subsystem (CYGPKG_IO_WALLCLOCK).

Additionally the “steady_clock” is not provided in the eCosPro implementation, and any use of it will result in the
normal system clock being used instead.

• Although the C11 <complex.h> is not supported, the <complex> header defined by C++11 is.

• At the time of writing, the thread support library portion of C++11 (section 30) provided by the headers <thread>, <mu-
tex>, <shared_mutex>, <condition_variable> and <future> are not yet of production quality, and despite
appearing to be usable in eCosPro, their use cannot yet be considered supportable.

• C++ destructors for global C++ objects are not run on program exit.

Open issues

GCC 3.3.x issues

At this time there are only two significant known open issues that developers should be aware of which may impact develop-
ment:

153

http://gcc.gnu.org/onlinedocs/libstd/manual/intro.html
https://gcc.gnu.org/onlinedocs/gcc-7.3.0/gcc/Standards.html
https://www.gnu.org/software/gcc/projects/cxx-status.html
https://www.gnu.org/software/gcc/projects/cxx-status.html

Usage

• GCC 3.3.x misoptimizes code in functions with complex number parameters. The workaround is to compile without -O2 (or
append -O0 to the end of the compile line). This issue has been filed with the GCC project as bug #15061. As a consequence
of this compiler bug, the complex2 test in this package is likely to fail.

• GCC 3.3.x fails to return NULL when using the std::nothrow variant of the new operator when an amount of memory
is requested beyond what the system has available. Instead of NULL, 4 is returned. This is listed with the GCC project as
bug #13215 and the problem is not going to be addressed in the GCC 3.3.x series. The problem is fixed in GCC 3.4. As a
consequence of this compiler bug, the new1 test in this package will fail with GCC 3.3.x.

GCC 3.4.x issues

The only known issue affecting the use of GCC 3.4.x is specific to M68K/Coldfire, where the software floating point emulation
is too imprecise, and causes a small number of tests within the libstdc++ package to fail, primarily those that test long double
support.

Generic issues

It is worth mentioning that, as previously mentioned above, wide character support is not included. Support for wide characters
may be developed in due course, but it would require significant development in the underlying eCos C library.

154

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=15061
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=13215

Chapter 13. Testing
As noted earlier, tests have been written to verify the operation of certain specific areas of interest in the C++ library support,
particularly the use of exceptions from multiple threads which is addressed in the throw* tests.

The GNU libstdc++ v3 testsuite has been imported into this package and may be found under the tscpp subdirectory of this
package. There are a large number of tests within the libstdc++ testsuite of varying rigour. An analysis of the coverage has
been made, and any notable gaps in the test coverage have been addressed in the custom tests in the tests subdirectory of
this package.

The testsuite is quite large and takes some time to build, and so although built by default it may disabled with the CYGP-
KG_LIBSTDCXX_OFFICIAL_TESTSUITE CDL option. Some tests contain aspects which only operate if the RAM filesys-
tem package is enabled, therefore to test the library more thoroughly developers may wish to consider enabling the RAM
filesystem.

Notes on how the libstdc++ testsuite was imported, including what types of changes were made and what the results were, are
available within this package in the tscpp/NOTES text file.

155

Chapter 14. Toolchain
To build GCC for use with this package, it is necessary to follow some additional steps compared with what would ordinarily
be required for building the compiler. These steps are required to provide the eCos header files which are used by the GCC
build, to determine properties of the run-time system and to apply a set of changes (a “patch”) to allow eCos to provide C++
exception support in a flexible and future-proof way. This patch takes particular care to ensure that the compiler and libstdc+
+ continue to behave correctly when no eCos kernel is present.

1. With eCos installed, the ECOS_REPOSITORY environment variable set and ecosconfig in your PATH variable, run the
following commands at a bash shell prompt in an empty directory, choosing a TARGET of the appropriate architecture:

$ ecosconfig new TARGET libstdc++
 $ ecosconfig tree
 $ make headers

2. Take the header tree generated under install/include and install it in the TARGET/sys-include subdirectory
where you intend to install your tools. For example if you wish to install the new tools to /opt/newtools, then place the
headers in a new directory /opt/newtools/TARGET/sys-include. (Note you must ensure you have write-access
to /opt in this example, or you can choose an alternate path).

3. A C++ exception support patch is supplied on the eCosPro Developer's Kit CD-ROM. Once the patch has been applied, it
is necessary to run the following command:

 $ contrib/gcc_update --touch

4. Configure GCC from within an empty build directory as follows, ensuring that the GNU binary utilities are at the head
of the PATH:

 $ /src/gcc-3.x.x/configure --target=TARGET \
 --prefix=/opt/newtools --enable-languages=c,C++ \
 --with-gnu-as --with-gnu-ld --with-newlib \
 --enable-threads

156

Part V. eCos Support for
Dynamic Memory Allocation

Name
malloc, calloc, realloc, free, mallinfo, operator new, operator new[], operator delete and operator delete[] — Access the System
Heap

Synopsis
#include <stdlib.h>

#include <new>

void* malloc (size);

void* calloc (nmemb, size);

void* realloc (ptr, size);

void free (ptr);

struct mallinfo mallinfo ();

void* operator new (size);

void* operator new[] (size);

void* operator new (size,);

void* operator new(nothrow)[] (size,);

void operator delete (ptr);

void operator delete[] (ptr);

void operator delete (ptr,);

void operator delete[] (ptr,);

Description
The dynamic memory allocation package CYGPKG_MEMALLOC provides support for the ISO standard C functions malloc,
calloc, realloc and free. Optionally it can provide the C++ new and delete operators. There is extensive support for
debugging various problems associated with dynamic memory allocation.

Some of the available target RAM will be needed for application code and static data. If the target uses RedBoot or another
ROM monitor for bootstrap then that may also reserve some of the available RAM. On most targets the system heap occupies
all remaining RAM, and this is used to satisfy the memory allocation requests. By default the Doug Lea memory allocator
(dlmalloc) code is used to manage the heap. This provides a good trade off between efficient use of the memory, fast operation,
and resistance to fragmentation. If the eCos configuration includes the kernel then by default the various memory allocation
routines will be thread-safe.

To complement the standard APIs the memory allocation package provides support for custom memory pools.

C library functions
The main dynamic memory allocation routines defined by standard C is malloc(): this allocates a chunk of memory from
the heap at least as large as the amount requested, satisfying any alignment restrictions imposed by the architecture. The initial
contents of the allocated chunk is undefined. If the heap cannot satisfy the allocation request then a null pointer will be returned.

The standard does not define what happens when malloc() is passed a size of 0. In eCos this is controlled by a configuration
option CYGSEM_MEMALLOC_MALLOC_ZERO_RETURNS_NULL. By default the option is disabled and an argument of 0

158

Memory Allocation

will still result in an allocation of the smallest size supported by the memory allocator. If the option is enabled then a null
pointer will be returned instead.

calloc() tries to allocate a memory chunk of at least nmemb*size bytes. If the allocation succeeds then the memory will
be filled with zeroes. Otherwise a null pointer is returned.

realloc() tries to change the size of an existing allocation while leaving the contents unchanged. This may involve resizing
the chunk in situ, or it may involve a malloc()/memcpy()/free() sequence. If the operation succeeds a valid pointer will
be returned, which may or may not be the same as the original pointer. If the operation fails then a null pointer will be returned
and the original data remains intact. There are two special cases: if the ptr argument is a null pointer then realloc() will
act like malloc(); otherwise if the size argument is 0 then realloc() will act like free().

free() takes a pointer previously returned by malloc(), calloc() or realloc() and returns the memory to the heap.

mallinfo() is not defined by the C standard but is provided for compatibility with other systems. It returns information
about the current state of the heap in the form of a mallinfo structure:

struct mallinfo {
 int arena; /* total size of memory arena */
 int ordblks; /* number of ordinary memory blocks */
 int uordblks; /* space used by ordinary memory blocks */
 int fordblks; /* space free for ordinary blocks */
 int maxfree; /* size of largest free block */
};

arena gives the total heap size. ordblks and uordblks give some information on current allocations, and fordblks
indicates how much is left. The remaining memory may be fragmented so maxfree indicates the largest allocation that is
currently possible. A mallinfo structure contains a number of other fields but those are not used by eCos and exist only for
compatibility reasons.

C++ operators
C++ applications can use the standard C library routines for dynamic memory allocation, but it is more common to use the
C++ new and delete operators. There are a number of different implementations of these:

1. The infrastructure package contains empty versions of the delete operators which do not interact with the system heap in any
way. This is necessary because of the way the g++ compiler handles certain language constructs. Whenever there is a class
with a virtual destructor the generated code always contains a reference to the delete operator. The linker is unable to
delete this. Therefore if the application uses such a class, directly or indirectly, the final executable will contain a delete
implementation - even if there is no dynamic allocation. The usual delete operator would pull in the system heap and
hence the memory allocation package, significantly increasing code size for no good reason. Providing an empty delete
avoids this.

Unfortunately this solution is imperfect. If instead the application does want to create and destroy objects on the heap, by
default the empty delete operators will still get linked in and the memory never gets freed. It is not possible to handle both
scenarios cleanly with current tools, so instead the application developer has to configure eCos appropriately. To suppress
the empty delete operators the configuration option CYGFUN_INFRA_EMPTY_DELETE_FUNCTIONS should be disabled.
If an eCos package performs dynamic memory allocation using C++ new and delete then it should automatically disable
this option via a CDL requires property.

2. The next implementation of new and delete comes in the C++ support library libsupc++.a, which is normally avail-
able as part of the GNU toolchain. These versions are straightforward, simply calling malloc() and free() to access
the system heap. When linking an application with an eCos linker script the C++ support library is searched automatically,
so application developers only need to worry about disabling CYGFUN_INFRA_EMPTY_DELETE_FUNCTIONS.

3. Finally the memory allocation package can also provide implementations of the C++ operators. These access the system heap
directly rather than going via malloc() and free() so can be marginally faster, but at the cost of some increased code
size. There is a significant difference of the system is configured for collecting memory debug data. These implementations
of new and delete integrate directly with the debug data code, so more information will be collected. This is especially
useful on architectures where the compiler only provides limited backtrace support.

159

Memory Allocation

The configuration option CYGFUN_MEMALLOC_MALLOC_CXX_OPERATORS controls whether or not the memory alloca-
tion package's versions of the C++ operators get built. By default this option is disabled, unless CYGDBG_MEMALLOC_DE-
BUG_DEBUGDATA is enabled. When linking an application with an eCos linker script these operators will automatically
be used in preference to the ones in libsupc++.a.

Debug Support
An application that uses dynamic memory allocation is often more difficult to debug than one that relies entirely on static
allocation. To assist developers the memory allocation package provides a number of debugging facilities. The main one
involves the collection of additional debug data for every memory allocation. This debug data can be transferred to the host
and analyzed using a custom tool ecosmdd. Full documentation on this is provided elsewhere.

This package also provides support for some simple debugging techniques which can help detect certain problems. The first
is memory guards: every allocated chunk is surrounded by a number of guard bytes. When the chunk is freed, using free()
or the appropriate C++ delete operator, the guards are checked and any discrepancy is treated as an assertion failure. The
head guard can detect certain buffer overflows in the previously allocated chunk. If the chunk contains a thread stack and the
architecture involves a descending stack then the head guard can also detect stack overflows. The tail guard can detect certain
overflows in the chunk being freed and underflows in the next chunk. The guards are reset during a free operation, which can
help to catch attempts to free the same chunk twice. Guard checks only happen during a free operation so a corruption may go
undetected for a long time, possibly too long, but are still better to never detecting corruption.

Memory guards are controlled by the configuration option CYGDBG_MEMALLOC_MALLOC_DEBUG_GUARDS. By default
they are enabled if system-wide debugging (CYGPKG_INFRA_DEBUG) is enabled, otherwise disabled.

The second debugging technique is to fill memory chunks when they are freed. This helps to catch some attempts to use a
pointer which is no longer valid. Such problems are particularly common in multi-threaded applications where thread A frees
a chunk that thread B is still using. When freed chunks are filled thread B will suddenly see spurious data, often resulting in
bus errors or other exceptions. The relevant configuration option is CYGDBG_MEMALLOC_MALLOC_DEBUG_FILL_FREE,
which by default is also enabled if CYGPKG_INFRA_DEBUG is enabled. The option's value determines what the freed chunk
gets filled with, usually 0xff.

160

Name
cyg_mempool_fix_*() and cyg_mempool_var_*() — Additional Memory Pools

Synopsis
#include <cyg/kernel/kapi.h>

void cyg_mempool_fix_create (base, size, blocksize, handle, fix);

void cyg_mempool_fix_delete (fixpool);

void* cyg_mempool_fix_alloc (fixpool);

void* cyg_mempool_fix_timed_alloc (fixpool, abstime);

void* cyg_mempool_fix_try_alloc (fixpool);

void cyg_mempool_fix_free (fixpool, ptr);

cyg_bool_t cyg_mempool_fix_waiting (fixpool);

void cyg_mempool_fix_get_info (fixpool, info);

void cyg_mempool_var_create (base, size, handle, var);

void cyg_mempool_var_delete (varpool);

void* cyg_mempool_var_alloc (varpool, size);

void* cyg_mempool_var_timed_alloc (varpool, size, abstime);

void* cyg_mempool_var_try_alloc (varpool, size);

void cyg_mempool_var_free (varpool, ptr);

cyg_bool_t cyg_mempool_var_waiting (varpool);

void cyg_mempool_var_get_info (varpool, info);

Description
The memory allocation package provides support for additional memory pools, to complement the system heap. These pools are
not created automatically by the system, they have to be created by application code or by other packages. There are exported
APIs for two types of pool: fixed and variable.

Allocating memory from a fixed memory pool is very fast and, more importantly, deterministic. However the size of each
allocation is fixed at the time the pool is created. This is not a problem if the required allocations are all the same size, or nearly
so, but otherwise the memory will be used inefficiently. The pool cannot become fragmented.

Variable memory pools provide essentially the same functionality as the system heap, so are rarely used. However on some
targets not all free memory is assigned automatically to the system heap. For example there may be a small area of fast on-
chip memory as well as the slower external memory. The system heap will only use the latter. A variable memory pool can be
created for the former, allowing application code to dynamically allocate fast memory where appropriate.

If the eCos configuration includes the kernel then by default the memory pool functions will be thread-safe. The pool functions
do not implement the malloc() guard and free-fill debug facilities, nor the debug data support.

Fixed Memory Pools
A fixed memory pool must be created explicitly, for example:

#define BLOCK_SIZE 1024

161

Memory Pool Functions

#define BLOCK_COUNT 64

static cyg_uint32 pool_memory[((BLOCK_COUNT * BLOCK_SIZE)+3) / 4];
static cyg_handle_t pool_handle;
static cyg_mempool_fix pool_data;

…

cyg_mempool_fix_create((void*) pool_memory,
 BLOCK_COUNT * BLOCK_SIZE,
 BLOCK_SIZE,
 &pool_handle, &pool_data);

This creates a pool of 63 1K blocks. pool_memory is normally allocated statically, but could also be a pointer to a special area
of memory such as on-chip RAM, or it could even be dynamically allocated using malloc(). The pointer should be suitably
aligned for the target architecture, usually to either a 32 or a 64 bit boundary. pool_handle can be used for subsequent pool
operations. pool_data is a small data structure providing the space needed to administer the pool.

The above pool only provides 63 blocks, not 64. The administration overhead depends on the number of blocks so cannot all
be allowed for in the pool_data structure. A small amount of the pool memory is consumed as well, effectively using up
all of the first block. To eliminate this inefficiency:

#define BLOCK_SIZE 1024
#define BLOCK_COUNT 64
#define OVERHEAD (((BLOCK_COUNT + 31) / 32) * sizeof(cyg_uint32))
#define ACTUAL_SIZE ((BLOCK_SIZE * BLOCK_COUNT) + OVERHEAD)

static cyg_uint32 pool_memory[(ACTUAL_SIZE + 3) / 4];
static cyg_handle_t pool_handle;
static cyg_mempool_fix pool_data;

…

cyg_mempool_fix_create(pool_memory,
 ACTUAL_SIZE,
 BLOCK_SIZE,
 &pool_handle, &pool_data);

There are three functions for allocating memory. cyg_mempool_fix_try_alloc() is analogous to malloc(): it at-
tempts to allocate a block from the pool, returning a null pointer if all blocks are currently in use. There is no need to speci-
fy the allocation size because all blocks are the same size. The other two functions are only available in configurations con-
taining the eCos kernel. cyg_mempool_fix_alloc() will allocate a free block if there is one available, otherwise the
current thread will be suspended until a block becomes available. A null pointer will only be returned if the thread is woken
up again via cyg_thread_release(). cyg_mempool_fix_timed_alloc() may also suspend the current thread,
but only for a number of clock ticks. If no block becomes free before the specified time is reached then a null pointer will
be returned. The abstime argument is an absolute time, typically calculated by adding a cyg_tick_count_t timeout to the
result of cyg_current_time(). In other words the pool API works in exactly the same way as kernel functions such as
cyg_semaphore_timed_wait(). cyg_mempool_fix_waiting() can be used to check whether any threads are
currently suspended waiting for a free block.

A block can be released using cyg_mempool_fix_free(). If a pool is no longer required it can be destroyed by a
call to cyg_mempool_fix_delete(). Information about the current state of a pool can be obtained with cyg_mem-
pool_fix_get_info(), in the form of a cyg_mempool_info structure:

typedef struct {
 cyg_int32 totalmem;
 cyg_int32 freemem;
 void* base;
 cyg_int32 size;
 cyg_int32 blocksize;
 cyg_int32 maxfree; // The largest free block
} cyg_mempool_info;

Variable Memory Pools
The variable memory pool API is very similar to the fixed pool API. The key differences are:

162

Memory Pool Functions

1. cyg_mempool_var_create() does not take a block size parameter since the pool supports allocations of any size.

2. There is no special need to worry about overheads when creating the pool. The overheads will be shared between the
allocations so spread throughout the pool

3. The block size is no longer implicit, so the three allocation routines need an explicit size argument.

4. Allocation operations are not deterministic and may take significantly longer than a fixed pool allocation. A variable pool
is also vulnerable to memory fragmentation.

163

Name
mdd_dump and ecosmdd — Analyze Memory Usage

Synopsis
mdd_dump

mdd_dumpnow

mdd_reset

ecosmdd stats mddout.0

ecosmdd dump [options] [exe] mddout.0

ecosmdd history [options] [exe] mddout.0 [mddout.1 ...]

ecosmdd diff [options] [exe] mddout.0 mddout.1

Description
Generally it is more difficult to debug an application that allocates memory dynamically than one that relies entirely on static
allocation. Some problems such as buffer overflows can affect both. However the locations of static variables are readily
determined from the linker map and debug information, so it is much easier to figure out which static buffer overflowed and
then find the offending code. With dynamic allocation buffer overflows can still be detected, but it is much harder to figure
out what each buffer is used for.

Another problem is excessive memory usage. A typical embedded system is designed with the smallest amount of memory
that should suffice for the application. Often the application uses more memory than expected, and it is necessary to find out
exactly where it is all going and where savings could be made. The alternative is a hardware redesign, associated delays, and
increased manufacturing costs. A linker map gives details of the static data but not of dynamic allocations.

A third problem is memory leaks. If an application allocates memory that does not get freed then the heap will eventually run
out. Usually this causes a system failure and means a reboot. It may take hours, days or even weeks, but any system failure
is at best undesirable and at worst totally unacceptable.

The memory allocation package provides a debug data facility to assist developers faced with these problems. This involves
storing additional metadata on the target for each allocated memory chunk, for example the function where the allocation
occurred and the time that it happened. Configuration options control exactly what metadata gets collected. The debug data
can be transferred from the target to the host in a gdb session, and then analyzed using the ecosmdd program. This provides a
number of sub-commands: stats, dump, history and diff. It also provides various options for filtering, sorting and formatting
the debug data.

Configuration Options
Memory debug data is not free. Collecting the debug data on the target requires extra memory and cpu cycles. To be useful
the debug data has to be transferred to the host, and this can be time-consuming. If the application developer is tracking down
problems with running out of memory then the debug data exacerbates the situation. Hence by default memory debug data is
disabled, and there are configuration options to control exactly what gets enabled.

The first option to consider is CYGDBG_MEMALLOC_DEBUG_DEBUGDATA. This has to be explicitly enabled by the developer.
If it is left disabled then no debug data functionality is available.

Once the main debug data option has been enabled the memory allocation code will collect information about all current
allocations. The minimum information needed is a pointer to the allocated data, the number of bytes involved, a 32-bit sequence
number to allow the host-side to identify and sort the allocations, plus another pointer for linked list management. This gives a
minimum overhead of 16 bytes per allocated chunk (assuming a typical 32-bit processor). However this allows for only limited
analysis. Additional fields are controlled by separate configuration options:

164

Memory Debug Data

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_ACTUAL_SIZE

When the application requests say 12 bytes of data the memory allocation code will actually allocate more than this. There
is some unavoidable overhead to keep track of the various allocations. There may be alignment restrictions. Optional
Debug guards add to the overhead. If CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_ACTUAL_SIZE is enabled then the
debug data will include the actual size of each allocation, not just the requested size. By default this option is enabled. The
cost is an extra size_t, usually four bytes, in each allocation record.

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_TIMESTAMP

Every allocation record in the debug data contains a unique sequence number, a simple 32-bit counter. Amongst other
uses this allows host-side tools to sort allocation events in time-order. However a sequence number does not give any
information about the time elapsed between allocations. More detailed time information can be very useful, for example
to associate allocations with external events. This takes the form of a cyg_tick_count_t as returned by the kernel function
cyg_current_time(). The typical cost is an extra eight bytes in each allocation record.

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_TIMESTAMP is enabled by default if the eCos kernel CYGPKG_KERNEL
is present. It cannot be enabled if the configuration does not include the kernel.

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD

In multi-threaded applications it can be useful to know which thread allocated which chunk of memory. For example if the
application is structured as a set of mostly independent subsystems operating in a separate threads then each subsystem's
memory usage can be analyzed separately. Optionally the debug data can include thread information, consisting of a unique
numerical thread id, the cyg_handle_t identifying the thread, and the thread name as passed to cyg_thread_create().
The overhead is a 32-bit integer in each allocation record, plus a small amount of extra memory to keep track of the threads
that have performed memory allocations.

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD is enabled by default if the eCos kernel CYGPKG_KERNEL is
present. It cannot be enabled if the configuration does not include the kernel.

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_BACKTRACE

Arguably the most useful information about each memory allocation is a partial backtrace, identifying the code respon-
sible for each allocation. On the target side this is implemented using the support function __builtin_return_ad-
dress() provided by the gcc compiler. On the host-side the executable can be disassembled to map a return address
onto the calling function. If the executable contains -g debug information then it may also be possible to work out the
corresponding source file name and line number, and hence the exact line of code that performed the allocation.

CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_BACKTRACE is enabled by default, with a value of 1. This means the
debug data will contain a single level of backtrace, e.g. the function that called malloc(). The backtrace level can be
increased up to a maximum of 8, giving more detailed information about each allocation. This is especially useful when
allocations occur inside library code since it gives a closer association between application actions and memory allocations.
Higher levels do involve extra memory overhead, a 32-bit integer per level per allocation record, and extra cpu cycles.

Important

On many architectures the GNU tools only provided limited backtrace functionality. Often only a single level
of backtrace is available. If CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_BACKTRACE is set to a value
greater than 1 the compiler will issue warnings when building the memory allocation package, and the extra
debug data backtrace slots will just be filled with zeroes.

Even if backtrace information is available it is not always as useful as might be thought. Because of compiler
optimizations the relation between the generated code and the original source is not always obvious, so when
the host-side tools convert a return address to a source file and line number the results may not be exactly
correct. For backtrace levels greater than 1 the results may even be completely wrong. The details will vary
from architecture to architecture. When the code involves C++ template instantiation the compiler may not
provide enough debug information to allow the backtrace pointers to be analyzed fully.

Depending on which options and how many backtrace levels are enabled, each allocation record will take up between 16 and
64 bytes of data on a 32-bit processor, and somewhat more on a 64-bit processor.

165

Memory Debug Data

By default memory debug data is collected only for current allocations. This is sufficient for many debug purposes. For example
if the problem is a buffer overflow then looking at the current allocations usually allows the developer to determine what the
buffer and the surrounding allocations are used for. A complete dump of all current allocations can be used to figure out what
all the memory is being used for. Examining two dumps separated in time can be used to track down memory leaks. However
sometimes it is necessary to know about free operations as well as current allocations. A good example is identifying which
thread freed a chunk that other threads still believe to be usable. To support this it is possible to collect historical debug data
as well as the details of all current allocations.

There is a major problem with historical debug data. The number of current allocations is limited by the memory available on
the target, so typically will be somewhere between 100 and 10000. The corresponding debug data will occupy between 2K and
640K of the available target-side memory, and there is an implicit upper bound. Historical data does not have an upper bound:
an application may make millions of malloc() and free() calls yet never have more than a 100 allocations at any one
time. Those millions of history records would occupy many megabytes of target-side memory. Typical targets do not have such
amounts of spare memory, and even if they do transferring the history to the host for analysis would be very time-consuming.
Therefore it is not practical to keep a full history. Instead the history debug data goes into a circular buffer, so only the last n
records are kept. Overflows are detected and the application developer can take action, if desired.

By default history is disabled, controlled by the configuration option CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_HISTO-
RY. If enabled the number of entries in the history circular buffer is controlled by CYGDBG_MEMALLOC_DEBUG_DEBUGDA-
TA_HISTORY_RECORDS, with a default value of 2048. Each history record stores both allocation and free debug data, so is
approximately twice the size of an allocation record. With default settings the history circular buffer will occupy approximately
100K of target-side memory.

Enabling memory debug data does not affect the memory allocation APIs: applications just call malloc() and free() as
usual. Similarly C++ applications can use the new and delete operators, but to get the maximum benefits of the backtrace
info it is desirable to enable CYGFUN_MEMALLOC_MALLOC_CXX_OPERATORS.

Dumping the Debug Data with GDB
When an application is linked with a suitable eCos configuration, the memory debug data will be collected automatically on
the target-side. This debug data needs to be transferred to the host, and a number of gdb macros are provided for this purpose.
The application is debugged in a gdb session as usual. At an appropriate time the target is halted and the appropriate gdb macro
is invoked. This will transfer the current debug data to the host, generating a file mddout.0 which can then be fed into the
ecosmdd analysis program.

The gdb macros can be found in the file mdd.gdb in the memory allocation packages' host subdirectory. Typically this
gdb script will be source'd by the user's own .gdbinit gdb initialization script, so that the macros are always available.
Alternatively the macros can be copied directly into that file, albeit at the risk of complications if the macros get updated in
a future version of this package. The host subdirectory also contains a program ecosmdd (actually a portable Tcl script).
This must be installed in an appropriate location that is on the user's PATH. The gdb macros rely on being able to execute
this program.

The main macro is mdd_dump. It does not take any arguments. Usually it will just transfer the memory debug data to the host.
However there is a problem if the target-side code was in the middle of updating the debug data: that data may not be in an
entirely consistent state. To avoid problems the mdd_dump will check a target-side busy flag. If appropriate it will report that
a dump may currently be unsafe, instead of proceeding with the dump anyway. The function cyg_memalloc_dd_done will
be called once the debug data has been updated, so an application developer can set a temporary breakpoint on that function
and let the application continue briefly. Alternatively there is a separate macro mdd_dumpnow. This will ignore the busy flag
and proceed with the dump, irrespective of what the target happened to be doing when it was halted. There is a very small
possibility that the resulting dump file will have problems.

Note

The memory allocation code treats the actual allocation and the updating of the debug info as separate steps.
Hence it is possible that a chunk of memory has just been allocated or freed, but the mddout.0 dump file will not
yet show this. Usually this temporary discrepancy is not important: it can only matter if the application developer
is analysing the debug data and the target-side state concurrently. However application developers should be
aware of the possibility. An alternative implementation involving more locking would be possible, but at the cost
of potentially significant changes in the application's behaviour.

166

Memory Debug Data

The time taken to generate a dump file will depend both on how much debug data is collected and on the debug communication
channel. It can take anywhere from several seconds to many minutes. Enabling the history circular support can significantly
increase the time needed.

Sometimes it is desirable to generate more than one mddout dump file in a single debug session. For example the user may
want to halt the application at two specific points in the run and find out what allocations have occurred between these points.
The first invocation of mdd_dump or mdd_dumpnow will produce a dump file mddout.0. Subsequent invocations will
produce dump files mddout.1, mddout.2, and so on. If desired the numbering can be reset using the mdd_reset macro.
The next debug session will again produce files mddout.0, mddout.1 and so on, overwriting the previous run's results. The
macro scripting facilities in gdb are rather limited, so the file naming is actually handled by invoking the ecosmdd program.

If the debug data includes the history circular buffer there is special support for handling overflows. This makes it possible
to collect complete history information, spread over a number of mddout dump files, which can then be analyzed together.
When an overflow occurs the target-side will call the function cyg_memalloc_dd_history_overflow(). Application
developers can set a breakpoint on this function, and use mdd_dump whenever the breakpoint is hit to generate another dump
file with a whole buffer's worth of history records. mdd_dump will automatically reset the circular buffer. CYGDBG_MEMAL-
LOC_DEBUG_DEBUGDATA_HISTORY_RECORDS can be increased to reduce the number of dump files that are needed, at
the cost of target-side memory.

A similar technique can be used for other purposes. For example the application developer may want to know the state of the
heap once it has reached approximately 80% full. One way of achieving this is to have a separate high-priority thread which
calls mallinfo at regular intervals. When it detects the desired condition it calls a special function. The developer sets a
breakpoint on that function and can then take appropriate action when the condition is satisfied.

Extracting Statistics
The ecosmdd stats command is the simplest of the available analysis tools. It just takes a single argument, an mddout dump
file:

$ ecosmdd stats mddout.0
mddout.0: statistics
Heap : 0x00097d68 to 0x01ffffff, size 32160K (32932504 bytes)
History : 132773 memory allocations, 130257 frees
Current : 1268K (1298850 bytes) used in 2516 allocations
Actual : approximately 1508K (1544784 bytes)
Overhead : approximately 240K (245934 bytes), 15%
Debugdata : approximately 107K (110280 bytes) static, 92K (94628 bytes) dynamic
 : (debug data is in addition to other overheads)
Allocators:
malloc() 1009
new(nothrow) 788
new(nothrow)[] 451
calloc() 251
realloc() 17
Threads :
 1 : handle 0x00075670, Idle Thread
 2 : handle 0x00093af8, main
 3 : handle 0x000739b0, thread_0
 4 : handle 0x00073a50, thread_1
 5 : handle 0x00073af0, thread_2
 6 : handle 0x00073b90, thread_3
Options : actual_size enabled, time stamps enabled, thread info enabled
 : backtrace enabled, 1 levels
 : history enabled, 2048 records max

The fields in the output are as follows:

1. The start and end address of the heap and its size. This example is for a development board with a generous 32MB. Ap-
proximately 600K is used for application code and static data and for RedBoot, leaving most of the memory available for
dynamic memory allocation.

2. Total numbers of past allocations and frees, with the difference corresponding to the number of current allocations. Note
that the total size of past allocations is not recorded because of the likelihood of an overflow and hence misleading data.

3. Totals for the current allocations, giving the size as requested by application code.

167

Memory Debug Data

4. The actual amount of memory used for these allocations, allowing for overhead. This information is only available if
CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_ACTUAL_SIZE is enabled. Note that the numbers are approximate: they
only count per-allocation overhead; there may be additional costs for pool data structures and the like which are not includ-
ed; usually these are sufficiently small that they can be ignored.

5. The difference between the above two fields. For this example the overhead is comparatively high. The configuration
included support for debug guards which adds an extra 12 bytes to each allocation plus whatever was needed by the allocation
code itself. Most of the allocations were small, so the guards have a disproportionate effect.

6. Additional memory needed for the debug data, both static and dynamic. The configuration included a history circular buffer
with default settings, accounting for most of the static cost. The debug data for 2516 current allocations account for most of
the dynamic costs, and is not included in the earlier figures. The results of mallinfo() will include the dynamic debug
data.

7. Counts for the various types of dynamic memory allocation.

8. A list of the various threads: unique id, a cyg_handle_t handle, and the name passed to cyg_thread_create. This
information is only available if CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD is enabled. The ids can be used
in a filter to show only allocations performed by the specified thread. The code only keeps track of threads involved with
dynamic memory allocation, not every thread in the system. It is actually unlikely that the idle thread allocated any memory.
Instead allocations during system initialization, before the scheduler was started, will usually be ascribed to the idle thread.

9. Details of the relevant configuration options. This can be useful when figuring out what filters, sort keys, or format specifiers
are permitted, as an alternative to checking the configuration options.

Dumping Current Allocations
The ecosmdd dump can be used to analyze an mddout dump file and report on all current allocations.

$ ecosmdd dump consume mddout.0
0x00097d78 : malloc() 256 bytes, actual size 272 (+16), seqno 0, time 0
 By thread 1, 0x00075670 Idle Thread
 1) backtrace 0x0004da74 function Cyg_StdioStreamBuffer::set_buffer(unsigned, unsigned char*)
 /opt/ecos/packages/language/c/libc/stdio/current/src/common/streambuf.cxx:96
 " malloced_buf = (cyg_uint8 *)malloc(size);"
0x000c0f50 : malloc() 13 bytes, actual size 32 (+19), seqno 229605, time 3960
 By thread 3, 0x000739b0 thread_0
 1) backtrace 0x00040ed8 function worker2()
 /tmp/mdd/consume.cxx:393
 " allocs[index].data.c = malloc(size);"
0x000c0f70 : new(nothrow) 1024 bytes, actual size 1040 (+16), seqno 251083, time 4329
 By thread 5, 0x00073af0 thread_2
 1) backtrace 0x00040c48 function worker1(int)
 /tmp/mdd/consume.cxx:315
 " allocs[index].data.large = new(std::nothrow) Large;"
…

consume is the executable. This output shows the first three allocation records, sorted in address order. The fields are as
follows:

1. The address of the allocated chunk. This is the pointer that would be returned by e.g. malloc(). The memory allocation
code may store some header information before this address, but that is transparent to the application. There is a big gap
between the first and second records because the application freed a large buffer just before the dump file was generated.

2. The memory allocation function that was called to get this chunk. This may be a standard C library function or a C++
operator.

3. The allocation size requested by the application.

4. The actual allocation size and, in brackets, the overhead. This is provided only if CYGDBG_MEMALLOC_DEBUG_DEBUG-
DATA_ACTUAL_SIZE is enabled.

5. A sequence number. The first record shows the very first dynamic memory allocation in this test run, performed by the
standard I/O initialization code. Sequence numbers are generated using a simple incrementing counter and are unique within

168

Memory Debug Data

a test run. The counter can overflow, but that is only likely to happen if an application makes very intensive use of malloc()
and runs for several days.

6. A timestamp. This is a kernel cyg_tick_count_t as returned by the kernel function cyg_current_time(). Usually it
corresponds to a counter running at 100Hz, so the second record is for a malloc() that occurred about 40 seconds into
the run. Timestamps are only listed if CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_TIMESTAMP is enabled.

7. A line of thread information showing the thread id, handle and name. This requires CYGDBG_MEMALLOC_DEBUG_DE-
BUGDATA_THREAD.

8. The level 1 backtrace. The first line gives the return address and the calling function. The second line gives a source code
file name and line number. The third line shows the actual source line. In the third record the source code shows a C++
Large object being created. If enabled, additional levels of backtrace will follow.

The function name is only available if the executable is specified on the command line. The file name and line number
are only available if the executable contains -g debug information for the specified function. Usually this will be true for
the application code itself and for eCos code, but not for other libraries supplied in binary format. The source line is only
available if the file name and line number are known and the relevant file can be found on the current system. Again this
may not be true for libraries supplied in binary format.

The executable does not have to be specified on the command line. Disassembling it can take considerable time, and serves
only to provide more detailed backtrace information. Typical output without an executable would look like:

$ ecosmdd dump mddout.0 | more
0x00097d78 : malloc() 256 bytes, actual size 272 (+16), seqno 0, time 0
 By thread 1, 0x00075670 Idle Thread
 1) backtrace return address 0x0004da74
…

The dump subcommand accepts the standard options for architecture, ignoring certain files, sorting the output, applying filters,
and formatting each record. For example to show only partial information for the allocations performed by thread 4 between
approximately 40 and 42 seconds into the run, sorted by size with largest first, then by allocation time earliest first, the following
can be used:

$ ecosmdd dump -Fthread=4 -Ftime_min=4000 -Ftime_max=4200 -SNs \
 -f '%p %a %n @ %T' mddout.0
0x002a43e8 malloc() 1553 @ 4079
0x000f9308 malloc() 1139 @ 4149
0x000c2a80 new(nothrow) 1024 @ 4104
0x00292428 new(nothrow)[] 388 @ 4194
0x000e0998 malloc() 240 @ 4147
0x00275678 new(nothrow) 128 @ 4013
0x00238c40 new(nothrow) 128 @ 4104
0x0023f7a8 new(nothrow) 128 @ 4194
0x000e1048 malloc() 18 @ 4014
0x0032cfe8 new(nothrow) 16 @ 4106
0x00131fa0 malloc() 8 @ 4107
0x0015d1a8 malloc() 8 @ 4125
0x002162d8 malloc() 7 @ 4129
0x001217c0 malloc() 7 @ 4190

The options should immediately follow the dump subcommand, before the executable or mddout file.

Showing the History

$ ecosmdd history consume mddout.0
Caution: history is incomplete.

malloc() 256 bytes: 0x00097d78 , actual size 272 (+16), seqno 0, time 0
 By thread 1, 0x00075670 Idle Thread
 1) backtrace 0x0004da74 function Cyg_StdioStreamBuffer::set_buffer(unsigned, unsigned char*)
 /opt/ecos/packages/language/c/libc/stdio/current/src/common/streambuf.cxx:96
 " malloced_buf = (cyg_uint8 *)malloc(size);"
malloc() 131072 bytes: 0x00097e88 (freed) , actual size 131088 (+16), seqno 1, time 0
 By thread 2, 0x00093af8 main
 1) backtrace 0x000415b4 function main

169

Memory Debug Data

 /tmp/mdd/consume.cxx:575
 " spare = malloc(128 * 1024);"
new(nothrow) 16 bytes: 0x00319270 (freed) , actual size 32 (+16), seqno 223425, time 3851
 By thread 3, 0x000739b0 thread_0
 1) backtrace 0x00040f4c function worker2()
 /tmp//consume.cxx:409
 " allocs[index].data.small = new(std::nothrow) Small;"
…
delete 16 bytes: 0x00156218 , actual size 40 (+24), seqno 258950, time 4461
 By thread 5, 0x000739b0 thread_0
 1) backtrace 0x00040cb8 function worker1(int)
 /tmp/mdd/consume.cxx:251
 " break;"
free() 347 bytes: 0x001e6b08 , actual size 368 (+21), seqno 258951, time 4461
 By thread 6, 0x000739b0 thread_0
 1) backtrace 0x000409a4 function worker1(int)
 /tmp/mdd/consume.cxx:216
 " free(allocs[index].data.c);"
…

Here ecosmdd has processed the executable and read in both the history data and the current allocation records from mdd-
out.0. The file does not contain complete history information: there have been at least 258951 allocation and free operations,
and the history buffer only stores the last 2048 frees. Each record is output in a similar format to ecosmdd dump. However
history analysis is based around the order of events rather than the current state of the heap so the allocation function is shown
before the heap.

The first record shows the first allocation in the system, and it is still allocated. Next comes the second allocation, which has
been freed. This information will have come from the history circular buffer, implying that the buffer was freed in one of the
last 2048 free operations. The third record shows another buffer that has been freed recently. There are no records between
sequence numbers 1 and 223425, so all memory that has been allocated in the interval has already been freed and the relevant
records are no longer in the history buffer.

The next two records show delete and free() operations. The format is essentially the same. The sequence number,
timestamp, thread and backtrace information correspond to the free operation, not the allocation. Note that for the delete
operation ecosmdd failed to get the source line number right: the delete invocation actually occurred a couple of lines earlier.
Unfortunately the debug information in the executable was not sufficiently precise.

By default the history records will be shown earliest first. This order can be reversed with a -r option. ecosmdd history also
accepts the standard options for architecture, ignoring certain files, applying filters, and formatting each record. The standard
sort option is not supported because history implies sorting in time order. For example:

$ ecosmdd history -r -f '%a %p, %n bytes, seqno %s' consume mddout.0
Caution: history is incomplete.

free() 0x00097e88, 131072 bytes, seqno 263029
free() 0x00302490, 11 bytes, seqno 263028
new(nothrow) 0x00182cc0, 128 bytes, seqno 263027
…

If the desired history information is spread over more than one mddout file then they can all be passed to ecosmdd history.
For example:

$ ecosmdd history -r consume mddout.0 mddout.1 mddout.2 mddout3
…

Options and the executable are handled as before. The mddout files should be listed in order of creation, and should correspond
to a single test run. ecosmdd will extract both the history circular buffer and the current allocation data for the last file, but only
the history buffers for the earlier ones - details of their current allocations can be found in later files. Obviously if eCos has
been configured with CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_HISTORY disabled then only the last file will contain
useful information.

Comparing Two mddout Files
Sometimes, especially when tracking down a memory leak, it is useful to compare two dump files taken at different times and
see what has changed. This functionality is provided by ecosmdd diff:

170

Memory Debug Data

$ ecosmdd diff consume mddout.1 mddout.2
File mddout.1 : 1496K (1532048 bytes) used in 2543 allocations.
File mddout.2 : 1488K (1523769 bytes) used in 2483 allocations.
1331 new allocations in mddout.2 but not in mddout.1
1391 allocations in mddout.1 but freed in mddout.2

New allocations in mddout.2 but not in mddout.1
0x000ba8a8 : new(nothrow)[] 228 bytes, actual size 256 (+28), seqno 11001, time 214
 By thread 3, 0x000739b0 thread_0
 1) backtrace 0x00040fc0 function worker2()
 /tmp/mdd/consume.cxx:417
 " allocs[index].data.smallv = new(std::nothrow) Small[count];"
0x000ba9a8 : new(nothrow) 128 bytes, actual size 144 (+16), seqno 11528, time 222
 By thread 5, 0x00073af0 thread_2
 1) backtrace 0x00040b78 function worker1(int)
 /tmp/mdd/consume.cxx:296
 " allocs[index].data.medium = new(std::nothrow) Medium;"
…
Allocations in mddout.1 but freed in mddout.2
0x000ba9a8 : new(nothrow) 128 bytes, actual size 144 (+16), seqno 8213, time 162
 By thread 5, 0x00073af0 thread_2
 1) backtrace 0x00040b78 function worker1(int)
 /tmp/mdd/consume.cxx:296
 " allocs[index].data.medium = new(std::nothrow) Medium;"
0x000baa68 : new(nothrow) 128 bytes, actual size 144 (+16), seqno 9539, time 185
 By thread 6, 0x00073b90 thread_3
 1) backtrace 0x00041028 function worker2()
 /tmp/mdd/consume.cxx:424
 " allocs[index].data.medium = new(std::nothrow) Medium;"
…

The output begins with some statistics about the two dump files. Next comes a list of all memory chunks allocated in the second
file but not in the first, and of all chunks allocated in the first but not the second. The diff uses the unique sequence number
so will not be fooled if a chunk is freed and then allocated again.

ecosmdd diff accepts the standard options for architecture, ignoring certain files, sorting the output, applying filters, and
formatting each record. Optionally these options can be followed by the executable, to get extended backtrace information.
Finally there should be two mddout files:

$ ecosmdd diff -Fsize_min=10240 -f '%n bytes at %p by %f1' -SN \
 consume mddout.1 mddout.2
File mddout.1 : 1496K (1532048 bytes) used in 2543 allocations.
File mddout.2 : 1488K (1523769 bytes) used in 2483 allocations.
1331 new allocations in mddout.2 but not in mddout.1
1391 allocations in mddout.1 but freed in mddout.2

New allocations in mddout.2 but not in mddout.1
19691 bytes at 0x0025d498 by worker1(int)
19233 bytes at 0x00273758 by worker2()
…

Allocations in mddout.1 but freed in mddout.2
19858 bytes at 0x0025d498 by worker2()
18085 bytes at 0x001a2bf8 by worker2()
…

Standard Options
The various ecosmdd subcommands accept a number of standard options for specifying the architecture, ignoring certain
source files, sorting and filtering the output, and formatting each record.

Specifying the Architecture

To provide extended backtrace information ecosmdd needs to disassemble the supplied executable. This involves running the
appropriate objdump command, for example arm-elf-objdump or m68k-elf-objdump. ecosmdd reads in the executable's
ELF header and uses this to work out the architecture. If it fails the architecture must instead be specified on the command
line, for example:

171

Memory Debug Data

$ ecosmdd dump -Adeepthought-elf …

ecosmdd will now try to run deepthought-elf-objdump to disassemble the executable.

Ignoring Selected Source Files

When the application involves extended use of header files with inline functions, the backtrace information can get even more
confused than usual. Consider a function tom() which invokes an inline function dick() in a header file <harry.h, and
dick() makes a memory allocation call. At run-time, because of the inlining the return address will be inside function tom().
However the debug information for the return address will usually specify the header file, not the source file containing tom().
This can make it much more difficult to interpret the backtrace.

There is no perfect solution to this problem, but ecosmdd contains an attempt at a partial solution. When disassembling an
executable by default it will ignore any debug info where the file name matches the glob pattern */include/*, if more
accurate information for the current function is already available. This should catch inline functions in eCos, gcc and libstdc+
+ headers, and hence the backtrace output should more closely match what is actually happening in the application.

The default behaviour can be suppressed using the -n option, for example:

$ ecosmdd dump -n consume mddout.0
…

Alternatively a different glob pattern can be specified with the -I option (taking care to stop the shell from expanding the
glob pattern prematurely):

$ ecosmdd dump -I*.h consume mddout.0

Sorting the Output

By default the dump and diff will output their results sorted by increasing address. A different sort can be specified using
the -S option, for example:

$ ecosmdd dump -SNs consume mddout.0

The -S should be followed by one or more sort keys. In the above example the primary sort key is N, specifying sort by
decreasing allocation size so the largest allocations come first. When two allocations are the same size the secondary sort key
(if specified) comes into play. Here the secondary key is s, meaning by increasing sequence number, so two allocations of
the same size will be shown in history order. Any number of sort keys can be specified but it does not make sense to repeat
a sort key or its inverse. Sequence numbers are unique so it also does not make sense to specify another sort key after s or
S. If two allocations remain unsorted after all the specified sort keys have been processed then the output order is undefined.
The available sort keys are:

p Sort by increasing address, so the lowest address comes first.

P Sort by decreasing address, so the highest address comes first.

n Sort by increasing allocation size, so the smallest allocations come first.

N Sort by decreasing allocation size, so the largest allocations come first.

s Sort by increasing sequence numbers, so oldest allocations come first.

S Sort by decreasing sequence number, so newest allocations come first.

a Sort by memory allocation function, so for example all realloc() allocations will be grouped together.

t Sort by increasing thread id. ecosmdd stats can be used to get details of the various threads. This sort key is only
available if CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD is enabled.

T Sort by decreasing thread id. ecosmdd stats can be used to get details of the various threads. This sort key is only
available if CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD is enabled.

Filtering out Unwanted Data

Non-trivial applications can result in very large amounts of memory debug data. ecosmdd provides a number of filters to
eliminate unwanted data. For example, to show only allocations of 1K or larger:

172

Memory Debug Data

$ ecosmdd dump -Fsize_min=1024 consume mddout.0
…

A filter takes the form -F<key>=<value>. The supported keys are:

thread=<id> Only show allocations performed by the specified thread. This filter can only be used if
CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD is enabled.

size_min=<size> Ignore any allocations smaller than the specified size.

size_max=<size> Ignore any allocations larger than the specified size.

seqno_min=<start> Only show the event identified by the sequence number and subsequent ones.

seqno_max=<end> Only show events up to and including the one identified by the sequence number.

time_min=<start> Discard any records prior to the specified time.

time_max=<end> Discard any records after the specified time.

ptr_min=<base> Filter out allocations before the specified address.

ptr_max=<limit> Filter out allocations after the specified address.

Multiple filters can be specified. For example to show only allocations performed by thread 6 which are larger than 4K and
which occurred in a certain time interval:

$ ecosmdd dump -Fthread=6 -Fsize_min=4096 -Ftime_min=4000 -Ftime_max=5000 \
 consume mddout.0

Formatting the Output

By default ecosmdd outputs all available information for each record. Sometimes it is better to see only some of the fields.
At other times a different format may be preferred, for example to feed the ecosmdd output into some other tool. Hence it is
possible to specify a custom format string, along similar lines to the C strftime and printf functions:

$ ecosmdd dump -f '%a for %n bytes -> %p'
malloc() for 256 bytes -> 0x00097d78
malloc() for 131072 bytes -> 0x00097e88
malloc() for 4 bytes -> 0x000b7e98
calloc() for 3724 bytes -> 0x000b7eb0
…

A % character introduces a conversion sequence. Other characters are just passed straight through. The supported conversion
sequences are:

%% A single % character.

%p The address of the allocated chunk.

%n The requested allocation size.

%m The actual allocation size. This requires CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_ACTUAL_SIZE.

%o The allocation overhead for this chunk. This requires CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_ACTU-
AL_SIZE.

%s The sequence number.

%a The allocating function, for example malloc()

%T A timestamp for the event. This requires CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_TIMESTAMP

%t The thread identifier. This requires CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD

%h The thread handle. This requires CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD

%N The thread name. This requires CYGDBG_MEMALLOC_DEBUG_DEBUGDATA_THREAD

%b1 to %b8 The backtrace return address for the appropriate level. It is an error to specify a level greater than what is
actually present in the mddout file.

%f1 to %f8 The backtrace function name for the appropriate level. This can only be used if the executable has been spec-
ified on the command line.

173

Memory Debug Data

%w1 to %w8 The backtrace location for the appropriate level, in the form filename:linenumber. This can only be used if the
executable has been specified on the command line, and even then the information is not always available.

%l1 to %l8 The backtrace source line for the appropriate level. This can only be used if the executable has been specified
on the command line, and even then the information is not always available.

The usual format string for a dump operation, assuming default configuration settings, is: '%p : %a %n bytes, %m (+%o),
seqno %s, time %T\n By thread %t, %h %N\n 1) backtrace %b1 function %f1\n %w1\n \"%l1\"'

174

Part VI. I/O Package (Device Drivers)

Table of Contents
15. Introduction .. 178
16. User API ... 179
17. Serial driver details .. 180

Raw Serial Driver ... 180
Runtime Configuration .. 180
API Details .. 181

TTY driver ... 183
Runtime configuration ... 183
API details .. 184

18. How to Write a Driver ... 186
How to Write a Serial Hardware Interface Driver ... 187

DevTab Entry .. 187
Serial Channel Structure .. 187
Serial Functions Structure .. 188
Callbacks ... 189

Serial testing with ser_filter .. 189
Rationale ... 189
The Protocol .. 190
The Serial Tests ... 190
Serial Filter Usage .. 191
A Note on Failures ... 192
Debugging ... 192

19. Device Driver Interface to the Kernel ... 193
Interrupt Model .. 193
Synchronization .. 193
SMP Support ... 193
Device Driver Models ... 194
Synchronization Levels .. 194
The API .. 195

cyg_drv_isr_lock .. 195
cyg_drv_isr_unlock ... 195
cyg_drv_spinlock_init .. 196
cyg_drv_spinlock_destroy .. 196
cyg_drv_spinlock_spin ... 196
cyg_drv_spinlock_clear .. 196
cyg_drv_spinlock_try .. 197
cyg_drv_spinlock_test .. 197
cyg_drv_spinlock_spin_intsave .. 197
cyg_drv_spinlock_clear_intsave ... 197
cyg_drv_dsr_lock .. 198
cyg_drv_dsr_unlock .. 198
cyg_drv_mutex_init ... 198
cyg_drv_mutex_destroy ... 198
cyg_drv_mutex_lock ... 198
cyg_drv_mutex_trylock .. 199
cyg_drv_mutex_unlock .. 199
cyg_drv_mutex_release .. 199
cyg_drv_cond_init ... 199
cyg_drv_cond_destroy ... 200
cyg_drv_cond_wait ... 200
cyg_drv_cond_signal ... 200
cyg_drv_cond_broadcast .. 200
cyg_drv_interrupt_create .. 201
cyg_drv_interrupt_delete .. 201
cyg_drv_interrupt_attach .. 201

176

I/O Package (Device Drivers)

cyg_drv_interrupt_detach ... 202
cyg_drv_interrupt_mask ... 202
cyg_drv_interrupt_mask_intunsafe ... 202
cyg_drv_interrupt_unmask .. 202
cyg_drv_interrupt_unmask_intunsafe .. 202
cyg_drv_interrupt_acknowledge .. 203
cyg_drv_interrupt_configure ... 203
cyg_drv_interrupt_level .. 203
cyg_drv_interrupt_set_cpu .. 203
cyg_drv_interrupt_get_cpu ... 204
cyg_ISR_t ... 204
cyg_DSR_t .. 204

Instrumentation ... 205

177

Chapter 15. Introduction
The I/O package is designed as a general purpose framework for supporting device drivers. This includes all classes of drivers
from simple serial to networking stacks and beyond.

Components of the I/O package, such as device drivers, are configured into the system just like all other components. Addi-
tionally, end users may add their own drivers to this set.

While the set of drivers (and the devices they represent) may be considered static, they must be accessed via an opaque “handle”.
Each device in the system has a unique name and the cyg_io_lookup() function is used to map that name onto the handle
for the device. This “hiding” of the device implementation allows for generic, named devices, as well as more flexibility. Also,
the cyg_io_lookup() function provides drivers the opportunity to initialize the device when usage actually starts.

All devices have a name. The standard provided devices use names such as “/dev/console” and “/dev/serial0”,
where the “/dev/” prefix indicates that this is the name of a device.

The entire I/O package API, as well as the standard set of provided drivers, is written in C.

Basic functions are provided to send data to and receive data from a device. The details of how this is done is left to the
device [class] itself. For example, writing data to a block device like a disk drive may have different semantics than writing
to a serial port.

Additional functions are provided to manipulate the state of the driver and/or the actual device. These functions are, by design,
quite specific to the actual driver.

This driver model supports layering; in other words, a device may actually be created “on top of” another device. For example,
the “tty” (terminal-like) devices are built on top of simple serial devices. The upper layer then has the flexibility to add features
and functions not found at the lower layers. In this case the “tty” device provides for line buffering and editing not available
from the simple serial drivers.

Some drivers will support visibility of the layers they depend upon. The “tty” driver allows information about the actual serial
device to be manipulated by passing get/set config calls that use a serial driver “key” down to the serial driver itself.

178

Chapter 16. User API
All functions, except cyg_io_lookup() require an I/O “handle”.

All functions return a value of the type Cyg_ErrNo. If an error condition is detected, this value will be negative and the absolute
value indicates the actual error, as specified in cyg/error/codes.h. The only other legal return value will be ENOERR.
All other function arguments are pointers (references). This allows the drivers to pass information efficiently, both into and
out of the driver. The most striking example of this is the “length” value passed to the read and write functions. This parameter
contains the desired length of data on input to the function and the actual transferred length on return.

// Lookup a device and return its handle
Cyg_ErrNo cyg_io_lookup(
 const char *name,
 cyg_io_handle_t *handle)

This function maps a device name onto an appropriate handle. If the named device is not in the system, then the error -ENOENT
is returned. If the device is found, then the handle for the device is returned by way of the handle pointer *handle.

// Write data to a device
Cyg_ErrNo cyg_io_write(
 cyg_io_handle_t handle,
 const void *buf,
 cyg_uint32 *len)

This function sends data to a device. The size of data to send is contained in *len and the actual size sent will be returned
in the same place.

// Read data from a device
Cyg_ErrNo cyg_io_read(
 cyg_io_handle_t handle,
 void *buf,
 cyg_uint32 *len)

This function receives data from a device. The desired size of data to receive is contained in *len and the actual size obtained
will be returned in the same place.

// Get the configuration of a device
Cyg_ErrNo cyg_io_get_config(
 cyg_io_handle_t handle,
 cyg_uint32 key,
 void * buf,
 cyg_uint32 * len)

This function is used to obtain run-time configuration about a device. The type of information retrieved is specified by the
key. The data will be returned in the given buffer. The value of *len should contain the amount of data requested, which
must be at least as large as the size appropriate to the selected key. The actual size of data retrieved is placed in *len. The
appropriate key values differ for each driver and are all listed in the file <cyg/io/config_keys.h>.

// Change the configuration of a device
Cyg_ErrNo cyg_io_set_config(
 cyg_io_handle_t handle,
 cyg_uint32 key,
 const void *buf,
 cyg_uint32 *len)

This function is used to manipulate or change the run-time configuration of a device. The type of information is specified by
the key. The data will be obtained from the given buffer. The value of *len should contain the amount of data provided,
which must match the size appropriate to the selected key. The appropriate key values differ for each driver and are all listed
in the file <cyg/io/config_keys.h>.

179

Chapter 17. Serial driver details
Two different classes of serial drivers are provided as a standard part of the eCos system. These are described as “raw seri-
al” (serial) and “tty-like” (tty).

Raw Serial Driver
Use the include file <cyg/io/serialio.h> for this driver.

The raw serial driver is capable of sending and receiving blocks of raw data to a serial device. Controls are provided to configure
the actual hardware, but there is no manipulation of the data by this driver.

There may be many instances of this driver in a given system, one for each serial channel. Each channel corresponds to a
physical device and there will typically be a device module created for this purpose. The device modules themselves are
configurable, allowing specification of the actual hardware details, as well as such details as whether the channel should be
buffered by the serial driver, etc.

Runtime Configuration
Runtime configuration is achieved by exchanging data structures with the driver via the cyg_io_set_config() and
cyg_io_get_config() functions.

typedef struct {
 cyg_serial_baud_rate_t baud;
 cyg_serial_stop_bits_t stop;
 cyg_serial_parity_t parity;
 cyg_serial_word_length_t word_length;
 cyg_uint32 flags;
} cyg_serial_info_t;

The field word_length contains the number of data bits per word (character). This must be one of the values:

CYGNUM_SERIAL_WORD_LENGTH_5
CYGNUM_SERIAL_WORD_LENGTH_6
CYGNUM_SERIAL_WORD_LENGTH_7
CYGNUM_SERIAL_WORD_LENGTH_8

The field baud contains a baud rate selection. If the configuration does not implement the CYGIN-
T_IO_SERIAL_BAUD_ARBITRARY interface support for arbitrary baud rate values then this field must be one of the values:

CYGNUM_SERIAL_BAUD_50
CYGNUM_SERIAL_BAUD_75
CYGNUM_SERIAL_BAUD_110
CYGNUM_SERIAL_BAUD_134_5
CYGNUM_SERIAL_BAUD_150
CYGNUM_SERIAL_BAUD_200
CYGNUM_SERIAL_BAUD_300
CYGNUM_SERIAL_BAUD_600
CYGNUM_SERIAL_BAUD_1200
CYGNUM_SERIAL_BAUD_1800
CYGNUM_SERIAL_BAUD_2400
CYGNUM_SERIAL_BAUD_3600
CYGNUM_SERIAL_BAUD_4800
CYGNUM_SERIAL_BAUD_7200
CYGNUM_SERIAL_BAUD_9600
CYGNUM_SERIAL_BAUD_14400
CYGNUM_SERIAL_BAUD_19200
CYGNUM_SERIAL_BAUD_38400
CYGNUM_SERIAL_BAUD_57600
CYGNUM_SERIAL_BAUD_115200
CYGNUM_SERIAL_BAUD_234000

For configurations where CYGINT_IO_SERIAL_BAUD_ARBITRARY is enabled then the manifests above define the respec-
tive baud rate, but the underlying device driver is capable of accepting arbitrary baud rate values as required. e.g. 76800.

180

Serial driver details

The field stop contains the number of stop bits. This must be one of the values:

CYGNUM_SERIAL_STOP_1
CYGNUM_SERIAL_STOP_1_5
CYGNUM_SERIAL_STOP_2

Note

On most hardware, a selection of 1.5 stop bits is only valid if the word (character) length is 5.

The field parity contains the parity mode. This must be one of the values:

CYGNUM_SERIAL_PARITY_NONE
CYGNUM_SERIAL_PARITY_EVEN
CYGNUM_SERIAL_PARITY_ODD
CYGNUM_SERIAL_PARITY_MARK
CYGNUM_SERIAL_PARITY_SPACE

The field flags is a bitmask which controls the behavior of the serial device driver. It should be built from the values
CYG_SERIAL_FLAGS_xxx defined below:

#define CYG_SERIAL_FLAGS_RTSCTS 0x0001

If this bit is set then the port is placed in “hardware handshake” mode. In this mode, the CTS and RTS pins control when data
is allowed to be sent/received at the port. This bit is ignored if the hardware does not support this level of handshake.

typedef struct {
 cyg_int32 rx_bufsize;
 cyg_int32 rx_count;
 cyg_int32 tx_bufsize;
 cyg_int32 tx_count;
} cyg_serial_buf_info_t;

The field rx_bufsize contains the total size of the incoming data buffer. This is set to zero on devices that do not support
buffering (i.e. polled devices).

The field rx_count contains the number of bytes currently occupied in the incoming data buffer. This is set to zero on devices
that do not support buffering (i.e. polled devices).

The field tx_bufsize contains the total size of the transmit data buffer. This is set to zero on devices that do not support
buffering (i.e. polled devices).

The field tx_count contains the number of bytes currently occupied in the transmit data buffer. This is set to zero on devices
that do not support buffering (i.e. polled devices).

API Details

cyg_io_write
cyg_io_write(handle, buf, len)

Send the data from buf to the device. The driver maintains a buffer to hold the data. The size of the intermediate buffer is
configurable within the interface module. The data is not modified at all while it is being buffered. On return, *len contains
the amount of characters actually consumed .

It is possible to configure the write call to be blocking (default) or non-blocking. Non-blocking mode requires both the con-
figuration option CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING to be enabled, and the specific device to be set to non-
blocking mode for writes (see cyg_io_set_config()).

In blocking mode, the call will not return until there is space in the buffer and the entire contents of buf have been consumed.

In non-blocking mode, as much as possible gets consumed from buf. If everything was consumed, the call returns ENOERR.
If only part of the buf contents was consumed, -EAGAIN is returned and the caller must try again. On return, *len contains
the number of characters actually consumed .

181

Serial driver details

The call can also return -EINTR if interrupted via the cyg_io_get_config()/ABORT key.

cyg_io_read
cyg_io_read(handle, buf, len)

Receive data into the buffer, buf, from the device. No manipulation of the data is performed before being transferred. An
interrupt driven interface module will support data arriving when no read is pending by buffering the data in the serial driver.
Again, this buffering is completely configurable. On return, *len contains the number of characters actually received.

It is possible to configure the read call to be blocking (default) or non-blocking. Non-blocking mode requires both the config-
uration option CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING to be enabled, and the specific device to be set to non-
blocking mode for reads (see cyg_io_set_config()).

In blocking mode, the call will not return until the requested amount of data has been read.

In non-blocking mode, data waiting in the device buffer is copied to buf, and the call returns immediately. If there was enough
data in the buffer to fulfill the request, ENOERR is returned. If only part of the request could be fulfilled, -EAGAIN is returned
and the caller must try again. On return, *len contains the number of characters actually received.

The call can also return -EINTR if interrupted via the cyg_io_get_config()/ABORT key.

cyg_io_get_config
cyg_io_get_config(handle, key, buf, len)

This function returns current [runtime] information about the device and/or driver.

CYG_IO_GET_CONFIG_SERIAL_INFO

Buf type: cyg_serial_info_t

Function: This function retrieves the current state of the driver and hardware. This information contains fields for
hardware baud rate, number of stop bits, and parity mode. It also includes a set of flags that control the
port, such as hardware flow control.

CYG_IO_GET_CONFIG_SERIAL_BUFFER_INFO

Buf type: cyg_serial_buf_info_t

Function: This function retrieves the current state of the software buffers in the serial drivers. For both receive and
transmit buffers it returns the total buffer size and the current number of bytes occupied in the buffer. It
does not take into account any buffering such as FIFOs or holding registers that the serial device itself
may have.

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_DRAIN

Buf type: void *

Function: This function waits for any buffered output to complete. This function only completes when there is no
more data remaining to be sent to the device.

CYG_IO_GET_CONFIG_SERIAL_OUTPUT_FLUSH

Buf type: void *

Function: This function discards any buffered output for the device.

CYG_IO_GET_CONFIG_SERIAL_INPUT_DRAIN

Buf type: void *

Function: This function discards any buffered input for the device.

182

Serial driver details

CYG_IO_GET_CONFIG_SERIAL_ABORT

Buf type: void*

Function: This function will cause any pending read or write calls on this device to return with -EABORT.

CYG_IO_GET_CONFIG_SERIAL_READ_BLOCKING

Buf type: cyg_uint32 (values 0 or 1)

Function: This function will read back the blocking-mode setting for read calls on this device. This call is only
available if the configuration option CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

CYG_IO_GET_CONFIG_SERIAL_WRITE_BLOCKING

Buf type: cyg_uint32 (values 0 or 1)

Function: This function will read back the blocking-mode setting for write calls on this device. This call is only
available if the configuration option CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

cyg_io_set_config
cyg_io_set_config(handle, key, buf,len)

This function is used to update or change runtime configuration of a port.

CYG_IO_SET_CONFIG_SERIAL_INFO

Buf type: cyg_serial_info_t

Function: This function updates the information for the driver and hardware. The information contains fields for
hardware baud rate, number of stop bits, and parity mode. It also includes a set of flags that control the
port, such as hardware flow control.

CYG_IO_SET_CONFIG_SERIAL_READ_BLOCKING

Buf type: cyg_uint32 (values 0 or 1)

Function: This function will set the blocking-mode for read calls on this device. This call is only available if the
configuration option CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

CYG_IO_SET_CONFIG_SERIAL_WRITE_BLOCKING

Buf type: cyg_uint32 (values 0 or 1)

Function: This function will set the blocking-mode for write calls on this device. This call is only available if the
configuration option CYGOPT_IO_SERIAL_SUPPORT_NONBLOCKING is enabled.

TTY driver
Use the include file <cyg/io/ttyio.h> for this driver.

This driver is built on top of the simple serial driver and is typically used for a device that interfaces with humans such as a
terminal. It provides some minimal formatting of data on output and allows for line-oriented editing on input.

Runtime configuration
Runtime configuration is achieved by exchanging data structures with the driver via the cyg_io_set_config() and
cyg_io_get_config() functions.

typedef struct {

183

Serial driver details

 cyg_uint32 tty_out_flags;
 cyg_uint32 tty_in_flags;
} cyg_tty_info_t;

The field tty_out_flags is used to control what happens to data as it is send to the serial port. It contains a bitmap comprised
of the bits as defined by the CYG_TTY_OUT_FLAGS_xxx values below.

#define CYG_TTY_OUT_FLAGS_CRLF 0x0001 // Map '\n' => '\r\n' on output

If this bit is set in tty_out_flags, any occurrence of the character "\n" will be replaced by the sequence "\r\n" before
being sent to the device.

The field tty_in_flags is used to control how data is handled as it comes from the serial port. It contains a bitmap comprised
of the bits as defined by the CYG_TTY_IN_FLAGS_xxx values below.

#define CYG_TTY_IN_FLAGS_CR 0x0001 // Map '\r' => '\n' on input

If this bit is set in tty_in_flags, the character "\r" (“return” or “enter” on most keyboards) will be mapped to "\n".

#define CYG_TTY_IN_FLAGS_CRLF 0x0002 // Map '\r\n' => '\n' on input

If this bit is set in tty_in_flags, the character sequence "\r\n" (often sent by DOS/Windows based terminals) will be
mapped to "\n".

#define CYG_TTY_IN_FLAGS_ECHO 0x0004 // Echo characters as processed

If this bit is set in tty_in_flags, characters will be echoed back to the serial port as they are processed.

#define CYG_TTY_IN_FLAGS_BINARY 0x0008 // No input processing

If this bit is set in tty_in_flags, the input will not be manipulated in any way before being placed in the user‚s buffer.

API details
cyg_io_read(handle, buf, len)

This function is used to read data from the device. In the default case, data is read until an end-of-line character ("\n" or "\r")
is read. Additionally, the characters are echoed back to the [terminal] device. Minimal editing of the input is also supported.

Note

When connecting to a remote target via GDB it is not possible to provide console input while GDB is connect-
ed. The GDB remote protocol does not support input. Users must disconnect from GDB if this functionality is
required.

cyg_io_write(handle, buf, len)

This function is used to send data to the device. In the default case, the end-of-line character "\n" is replaced by the sequence
"\r\n".

cyg_io_get_config(handle, key, buf, len)

This function is used to get information about the channel‚s configuration at runtime.

CYG_IO_GET_CONFIG_TTY_INFO

Buf type: cyg_tty_info_t

Function: This function retrieves the current state of the driver.

Serial driver keys (see above) may also be specified in which case the call is passed directly to the serial driver.

cyg_io_set_config(handle, key, buf, len)

This function is used to modify the channel‚s configuration at runtime.

184

Serial driver details

CYG_IO_SET_CONFIG_TTY_INFO

Buf type: cyg_tty_info_t

Function: This function changes the current state of the driver.

Serial driver keys (see above) may also be specified in which case the call is passed directly to the serial driver.

185

Chapter 18. How to Write a Driver
A device driver is nothing more than a named entity that supports the basic I/O functions - read, write, get config, and set
config. Typically a device driver also uses and manages interrupts from the device. While the interface is generic and device
driver independent, the actual driver implementation is completely up to the device driver designer.

That said, the reason for using a device driver is to provide access to a device from application code in as general purpose
a fashion as reasonable. Most driver writers are also concerned with making this access as simple as possible while being as
efficient as possible.

Most device drivers are concerned with the movement of information, for example data bytes along a serial interface, or packets
in a network. In order to make the most efficient use of system resources, interrupts are used. This will allow other application
processing to take place while the data transfers are under way, with interrupts used to indicate when various events have
occurred. For example, a serial port typically generates an interrupt after a character has been sent “down the wire” and the
interface is ready for another. It makes sense to allow further application processing while the data is being sent since this can
take quite a long time. The interrupt can be used to allow the driver to send a character as soon as the current one is complete,
without any active participation by the application code.

The main building blocks for device drivers are found in the include file: <cyg/io/devtab.h>

All device drivers in eCos are described by a device table entry, using the cyg_devtab_entry_t type. The entry should be created
using the DEVTAB_ENTRY() macro, like this:

DEVTAB_ENTRY(l, name, dep_name, handlers, init, lookup, priv)

Arguments

l The "C" label for this device table entry.

name The "C" string name for the device.

dep_name For a layered device, the "C" string name of the device this device is built upon.

handlers A pointer to the I/O function "handlers" (see below).

init A function called when eCos is initialized. This function can query the device, setup
hardware, etc.

lookup A function called when cyg_io_lookup() is called for this device.

priv A placeholder for any device specific data required by the driver.

The interface to the driver is through the handlers field. This is a pointer to a set of functions which implement the various
cyg_io_XXX() routines. This table is defined by the macro:

DEVIO_TABLE(l, write, read, get_config, set_config)

Arguments

l The "C" label for this table of handlers.

write The function called as a result of cyg_io_write().

read The function called as a result of cyg_io_read().

get_config The function called as a result of cyg_io_get_config().

set_config The function called as a result of cyg_io_set_config().

When eCos is initialized (sometimes called “boot” time), the init() function is called for all devices in the system. The
init() function is allowed to return an error in which case the device will be placed “off line” and all I/O requests to that
device will be considered in error.

186

How to Write a Driver

The lookup() function is called whenever the cyg_io_lookup() function is called with this device name. The lookup
function may cause the device to come “on line” which would then allow I/O operations to proceed. Future versions of the I/
O system will allow for other states, including power saving modes, etc.

How to Write a Serial Hardware Interface Driver
The standard serial driver supplied with eCos is structured as a hardware independent portion and a hardware dependent
interface module. To add support for a new serial port, the user should be able to use the existing hardware independent portion
and just add their own interface driver which handles the details of the actual device. The user should have no need to change
the hardware independent portion.

The interfaces used by the serial driver and serial implementation modules are contained in the file <cyg/io/serial.h>

Note

In the sections below we use the notation <<xx>> to mean a module specific value, referred to as “xx” below.

DevTab Entry
The interface module contains the devtab entry (or entries if a single module supports more than one interface). This entry
should have the form:

DEVTAB_ENTRY(<<module_name>>,
 <<device_name>>,
 0,
 &serial_devio,
 <<module_init>>,
 <<module_lookup>>,
 &<<serial_channel>>
);

Arguments

module_name The "C" label for this devtab entry

device_name The "C" string for the device. E.g. /dev/serial0.

serial_devio The table of I/O functions. This set is defined in the hardware independent serial driver
and should be used.

module_init The module initialization function.

module_lookup The device lookup function. This function typically sets up the device for actual use,
turning on interrupts, configuring the port, etc.

serial_channel This table (defined below) contains the interface between the interface module and the
serial driver proper.

Serial Channel Structure
Each serial device must have a “serial channel”. This is a set of data which describes all operations on the device. It also
contains buffers, etc., if the device is to be buffered. The serial channel is created by the macro:

SERIAL_CHANNEL_USING_INTERRUPTS(l, funs, dev_priv, baud,stop, parity, word_length,
 flags, out_buf, out_buflen, in_buf, in_buflen)

Arguments

l The "C" label for this structure.

187

How to Write a Driver

funs The set of interface functions (see below).

dev_priv A placeholder for any device specific data for this channel.

baud The initial baud rate value (cyg_serial_baud_t).

stop The initial stop bits value (cyg_serial_stop_bits_t).

parity The initial parity mode value (cyg_serial_parity_t).

word_length The initial word length value (cyg_serial_word_length_t).

flags The initial driver flags value.

out_buf Pointer to the output buffer. NULL if none required.

out_buflen The length of the output buffer.

in_buf pointer to the input buffer. NULL if none required.

in_buflen The length of the input buffer.

If either buffer length is zero, no buffering will take place in that direction and only polled mode functions will be used.

The interface from the hardware independent driver into the hardware interface module is contained in the funs table. This
is defined by the macro:

Serial Functions Structure
SERIAL_FUNS(l, putc, getc, set_config, start_xmit, stop_xmit)

Arguments

l The "C" label for this structure.

putc bool (*putc)(serial_channel *priv, unsigned char c)

This function sends one character to the interface. It should return true if the character
is actually consumed. It should return false if there is no space in the interface

getc unsigned char (*getc)(serial_channel *priv)

This function fetches one character from the interface. It will be only called in a non-
interrupt driven mode, thus it should wait for a character by polling the device until
ready.

set_config bool (*set_config)(serial_channel *priv,cyg_serial_info_t
*config)

This function is used to configure the port. It should return true if the hardware is
updated to match the desired configuration. It should return false if the port cannot
support some parameter specified by the given configuration. E.g. selecting 1.5 stop bits
and 8 data bits is invalid for most serial devices and should not be allowed.

start_xmit void (*start_xmit)(serial_channel *priv)

In interrupt mode, turn on the transmitter and allow for transmit interrupts.

stop_xmit void (*stop_xmit)(serial_channel *priv)

In interrupt mode, turn off the transmitter.

188

How to Write a Driver

Callbacks
The device interface module can execute functions in the hardware independent driver via chan->callbacks. These func-
tions are available:

void (*serial_init)(serial_channel *chan)

This function is used to initialize the serial channel. It is only required if the channel is being used in interrupt mode.

void (*xmt_char)(serial_channel *chan)

This function would be called from an interrupt handler after a transmit interrupt indicating that additional characters may be
sent. The upper driver will call the putc function as appropriate to send more data to the device.

void (*rcv_char)(serial_channel *chan, unsigned char c)

This function is used to tell the driver that a character has arrived at the interface. This function is typically called from the
interrupt handler.

Furthermore, if the device has a FIFO it should require the hardware independent driver to provide block transfer functionality
(driver CDL should include "implements CYGINT_IO_SERIAL_BLOCK_TRANSFER"). In that case, the following func-
tions are available as well:

bool (*data_xmt_req)(serial_channel *chan,
 int space,
 int* chars_avail,
 unsigned char** chars)
void (*data_xmt_done)(serial_channel *chan)

Instead of calling xmt_char() to get a single character for transmission at a time, the driver should call data_xmt_req()
in a loop, requesting character blocks for transfer. Call with a space argument of how much space there is available in the
FIFO.

If the call returns true, the driver can read chars_avail characters from chars and copy them into the FIFO.

If the call returns false, there are no more buffered characters and the driver should continue without filling up the FIFO.

When all data has been unloaded, the driver must call data_xmt_done().

bool (*data_rcv_req)(serial_channel *chan,
 int avail,
 int *space_avail,
 unsigned char** space)
void (*data_rcv_done)(serial_channel *chan)

Instead of calling rcv_char() with a single character at a time, the driver should call data_rcv_req() in a loop, re-
questing space to unload the FIFO to. avail is the number of characters the driver wishes to unload.

If the call returns true, the driver can copy space_avail characters to space.

If the call returns false, the input buffer is full. It is up to the driver to decide what to do in that case (callback functions for
registering overflow are being planned for later versions of the serial driver).

When all data has been unloaded, the driver must call data_rcv_done().

Serial testing with ser_filter

Rationale
Since some targets only have one serial connection, a serial testing harness needs to be able to share the connection with GDB
(however, the test and GDB can also run on separate lines).

The serial filter (ser_filter) sits between the serial port and GDB and monitors the exchange of data between GDB and the
target. Normally, no changes are made to the data.

189

How to Write a Driver

When a test request packet is sent from the test on the target, it is intercepted by the filter.

The filter and target then enter a loop, exchanging protocol data between them which GDB never sees.

In the event of a timeout, or a crash on the target, the filter falls back into its pass-through mode. If this happens due to a crash
it should be possible to start regular debugging with GDB. The filter will stay in the pass-though mode until GDB disconnects.

The Protocol
The protocol commands are prefixed with an "@" character which the serial filter is looking for. The protocol commands
include:

PING

Allows the test on the target to probe for the filter. The filter responds with OK, while GDB would just ignore the command.
This allows the tests to do nothing if they require the filter and it is not present.

CONFIG

Requests a change of serial line configuration. Arguments to the command specify baud rate, data bits, stop bits, and
parity. [This command is not fully implemented yet - there is no attempt made to recover if the new configuration turns
out to cause loss of data.]

BINARY

Requests data to be sent from the filter to the target. The data is checksummed, allowing errors in the transfer to be detected.
Sub-options of this command control how the data transfer is made:

NO_ECHO

(serial driver receive test) Just send data from the filter to the target. The test verifies the checksum and PASS/FAIL
depending on the result.

EOP_ECHO

(serial driver half-duplex receive and send test) As NO_ECHO but the test echoes back the data to the filter. The filter
does a checksum on the received data and sends the result to the target. The test PASS/FAIL depending on the result
of both checksum verifications.

DUPLEX_ECHO

(serial driver duplex receive and send test) Smaller packets of data are sent back and forth in a pattern that ensures that
the serial driver will be both sending and receiving at the same time. Again, checksums are computed and verified
resulting in PASS/FAIL.

TEXT

This is a test of the text translations in the TTY layer. Requests a transfer of text data from the target to the filter and
possibly back again. The filter treats this as a binary transfer, while the target ma be doing translations on the data. The
target provides the filter with checksums for what it should expect to see. This test is not implemented yet.

The above commands may be extended, and new commands added, as required to test (new) parts of the serial drivers in eCos.

The Serial Tests
The serial tests are built as any other eCos test. After running the make tests command, the tests can be found in in-
stall/tests/io_serial/

serial1

A simple API test.

190

How to Write a Driver

serial2

A simple serial send test. It writes out two strings, one raw and one encoded as a GDB O-packet

serial3 [requires the serial filter]

This tests the half-duplex send and receive capabilities of the serial driver.

serial4 [requires the serial filter]

This test attempts to use a few different serial configurations, testing the driver's configuration/setup functionality.

serial5 [requires the serial filter]

This tests the duplex send and receive capabilities of the serial driver.

All tests should complete in less than 30 seconds.

Serial Filter Usage
Running the ser_filter program with no (or wrong) arguments results in the following output:

Usage: ser_filter [-t -S] TcpIPport SerialPort BaudRate
 or: ser_filter -n [-t -S] SerialPort BaudRate

 -t: Enable tracing.
 -S: Output data read from serial line.
 -c: Output data on console instead of via GDB.
 -n: No GDB.

The normal way to use it with GDB is to start the filter:

$ ser_filter -t 9000 com1 38400

In this case, the filter will be listening on port 9000 and connect to the target via the serial port COM1 at 38400 baud. On a
UNIX host, replace "COM1" with a device such as "/dev/ttyS0".

The -t option enables tracing which will cause the filter to describe its actions on the console.

Now start GDB with one of the tests as an argument:

$ mips-tx39-elf-gdb -nw install/tests/io_serial/serial3

Then connect to the filter:

(gdb) target remote localhost:9000

This should result in a connection in exactly the same way as if you had connected directly to the target on the serial line.

(gdb) c

Which should result in output similar to the below:

Continuing.
INFO:<BINARY:16:1!>
PASS:<Binary test completed>
INFO:<BINARY:128:1!>
PASS:<Binary test completed>
INFO:<BINARY:256:1!>
PASS:<Binary test completed>
INFO:<BINARY:1024:1!>
PASS:<Binary test completed>
INFO:<BINARY:512:0!>
PASS:<Binary test completed>
…
PASS:<Binary test completed>
INFO:<BINARY:16384:0!>

191

How to Write a Driver

PASS:<Binary test completed>
PASS:<serial13 test OK>
EXIT:<done>

If any of the individual tests fail the testing will terminate with a FAIL.

With tracing enabled, you would also see the filter's status output:

The PING command sent from the target to determine the presence of the filter:

[400 11:35:16] Dispatching command PING
[400 11:35:16] Responding with status OK

Each of the binary commands result in output similar to:

[400 11:35:16] Dispatching command BINARY
[400 11:35:16] Binary data (Size:16, Flags:1).
[400 11:35:16] Sending CRC: '170231!', len: 7.
[400 11:35:16] Reading 16 bytes from target.
[400 11:35:16] Done. in_crc 170231, out_crc 170231.
[400 11:35:16] Responding with status OK
[400 11:35:16] Received DONE from target.

This tracing output is normally sent as O-packets to GDB which will display the tracing text. By using the -c option, the
tracing text can be redirected to the console from which ser_filter was started.

A Note on Failures
A serial connection (especially when driven at a high baud rate) can garble the transmitted data because of noise from the
environment. It is not the job of the serial driver to ensure data integrity - that is the job of protocols layering on top of the
serial driver.

In the current implementation the serial tests and the serial filter are not resilient to such data errors. This means that the test
may crash or hang (possibly without reporting a FAIL). It also means that you should be aware of random errors - a FAIL
is not necessarily caused by a bug in the serial driver.

Ideally, the serial testing infrastructure should be able to distinguish random errors from consistent errors - the former are
most likely due to noise in the transfer medium, while the latter are more likely to be caused by faulty drivers. The current
implementation of the infrastructure does not have this capability.

Debugging
If a test fails, the serial filter's output may provide some hints about what the problem is. If the option -S is used when starting
the filter, data received from the target is printed out:

[400 11:35:16] 0000 50 41 53 53 3a 3c 42 69 'PASS:<Bi'
[400 11:35:16] 0008 6e 61 72 79 20 74 65 73 'nary.tes'
[400 11:35:16] 0010 74 20 63 6f 6d 70 6c 65 't.comple'
[400 11:35:16] 0018 74 65 64 3e 0d 0a 49 4e 'ted>..IN'
[400 11:35:16] 0020 46 4f 3a 3c 42 49 4e 41 'FO:<BINA'
[400 11:35:16] 0028 52 59 3a 31 32 38 3a 31 'RY:128:1'
[400 11:35:16] 0030 21 3e 0d 0a 40 42 49 4e '!..@BIN'
[400 11:35:16] 0038 41 52 59 3a 31 32 38 3a 'ARY:128:'
[400 11:35:16] 0040 31 21 '1!'

In the case of an error during a testing command the data received by the filter will be printed out, as will the data that was
expected. This allows the two data sets to be compared which may give some idea of what the problem is.

192

Chapter 19. Device Driver Interface to the
Kernel
This chapter describes the API that device drivers may use to interact with the kernel and HAL. It is primarily concerned with
the control and management of interrupts and the synchronization of ISRs, DSRs and threads.

The same API will be present in configurations where the kernel is not present. In this case the functions will be supplied by
code acting directly on the HAL.

Interrupt Model
eCos presents a three level interrupt model to device drivers. This consists of Interrupt Service Routines (ISRs) that are invoked
in response to a hardware interrupt; Deferred Service Routines (DSRs) that are invoked in response to a request by an ISR;
and threads that are the clients of the driver.

Hardware interrupts are delivered with minimal intervention to an ISR. The HAL decodes the hardware source of the interrupt
and calls the ISR of the attached interrupt object. This ISR may manipulate the hardware but is only allowed to make a restricted
set of calls on the driver API. When it returns, an ISR may request that its DSR should be scheduled to run.

A DSR will be run when it is safe to do so without interfering with the scheduler. Most of the time the DSR will run immediately
after the ISR, but if the current thread is in the scheduler, it will be delayed until the thread is finished. A DSR is allowed to
make a larger set of driver API calls, including, in particular, being able to call cyg_drv_cond_signal() to wake up
waiting threads.

Finally, threads are able to make all API calls and in particular are allowed to wait on mutexes and condition variables.

For a device driver to receive interrupts it must first define ISR and DSR routines as shown below, and then call cyg_drv_in-
terrupt_create(). Using the handle returned, the driver must then call cyg_drv_interrupt_attach() to actu-
ally attach the interrupt to the hardware vector.

Synchronization
There are three levels of synchronization supported:

1. Synchronization with ISRs. This normally means disabling interrupts to prevent the ISR running during a critical section.
In an SMP environment, this will also require the use of a spinlock to synchronize with ISRs, DSRs or threads running
on other CPUs. This is implemented by the cyg_drv_isr_lock() and cyg_drv_isr_unlock() functions. This
mechanism should be used sparingly and for short periods only. For finer grained synchronization, individual spinlocks
are also supplied.

2. Synchronization with DSRs. This will be implemented in the kernel by taking the scheduler lock to prevent DSRs running
during critical sections. In non-kernel configurations it will be implemented by non-kernel code. This is implemented by
the cyg_drv_dsr_lock() and cyg_drv_dsr_unlock() functions. As with ISR synchronization, this mechanism
should be used sparingly. Only DSRs and threads may use this synchronization mechanism, ISRs are not allowed to do this.

3. Synchronization with threads. This is implemented with mutexes and condition variables. Only threads may lock the mutexes
and wait on the condition variables, although DSRs may signal condition variables.

Any data that is accessed from more than one level must be protected against concurrent access. Data that is accessed by ISRs
must be protected with the ISR lock, or a spinlock at all times, even in ISRs. Data that is shared between DSRs and threads
should be protected with the DSR lock. Data that is only accessed by threads must be protected with mutexes.

SMP Support
Some eCos targets contain support for Symmetric Multi-Processing (SMP) configurations, where more than one CPU may
be present. This option has a number of ramifications for the way in which device drivers must be written if they are to be
SMP-compatible.

193

Device Driver Interface to the Kernel

Since it is possible for the ISR, DSR and thread components of a device driver to execute on different CPUs, it is important
that SMP-compatible device drivers use the driver API routines correctly.

Synchronization between threads and DSRs continues to require that the thread-side code use cyg_drv_dsr_lock() and
cyg_drv_dsr_unlock() to protect access to shared data. While it is not strictly necessary for DSR code to claim the DSR
lock, since DSRs are run with it claimed already, it is good practice to do so.

Synchronization between ISRs and DSRs or threads requires that access to sensitive data be protected, in all places, by calls
to cyg_drv_isr_lock() and cyg_drv_isr_unlock(). Disabling or masking interrupts is not adequate, since the
thread or DSR may be running on a different CPU and interrupt enable/disable only work on the current CPU.

The ISR lock, for SMP systems, not only disables local interrupts, but also acquires a spinlock to protect against concurrent
access from other CPUs. This is necessary because ISRs are not run with the scheduler lock claimed. Hence they can run in
parallel with the other components of the device driver.

The ISR lock provided by the driver API is just a shared spinlock that is available for use by all drivers. If a driver needs to
implement a finer grain of locking, it can use private spinlocks, accessed via the cyg_drv_spinlock_*() functions.

Device Driver Models
There are several ways in which device drivers may be built. The exact model chosen will depend on the properties of the
device and the behavior desired. There are three basic models that may be adopted.

The first model is to do all device processing in the ISR. When it is invoked the ISR programs the device hardware directly and
accesses data to be transferred directly in memory. The ISR should also call cyg_drv_interrupt_acknowledge().
When it is finished it may optionally request that its DSR be invoked. The DSR does nothing but call cyg_drv_cond_sig-
nal() to cause a thread to be woken up. Thread level code must call cyg_drv_isr_lock(), or cyg_drv_interrup-
t_mask() to prevent ISRs running while it manipulates shared memory.

The second model is to defer device processing to the DSR. The ISR simply prevents further delivery of interrupts by either
programming the device, or by calling cyg_drv_interrupt_mask(). It must then call cyg_drv_interrupt_ac-
knowledge() to allow other interrupts to be delivered and then request that its DSR be called. When the DSR runs it
does the majority of the device handling, optionally signals a condition variable to wake a thread, and finishes by calling
cyg_drv_interrupt_unmask() to re-allow device interrupts. Thread level code uses cyg_drv_dsr_lock() to pre-
vent DSRs running while it manipulates shared memory. The eCos serial device drivers use this approach.

The third model is to defer device processing even further to a thread. The ISR behaves exactly as in the previous model and sim-
ply blocks and acknowledges the interrupt before request that the DSR run. The DSR itself only calls cyg_drv_cond_sig-
nal() to wake the thread. When the thread awakens it performs all device processing, and has full access to all kernel facili-
ties while it does so. It should finish by calling cyg_drv_interrupt_unmask() to re-allow device interrupts. The eCos
ethernet device drivers are written to this model.

The first model is good for devices that need immediate processing and interact infrequently with thread level. The second
model trades a little latency in dealing with the device for a less intrusive synchronization mechanism. The last model allows
device processing to be scheduled with other threads and permits more complex device handling.

Synchronization Levels
Since it would be dangerous for an ISR or DSR to make a call that might reschedule the current thread (by trying to lock a
mutex for example) all functions in this API have an associated synchronization level. These levels are:

Thread This function may only be called from within threads. This is usually the client code that makes calls into the device
driver. In a non-kernel configuration, this will be code running at the default non-interrupt level.

DSR This function may be called by either DSR or thread code.

ISR This function may be called from ISR, DSR or thread code.

The following table shows, for each API function, the levels at which is may be called:

194

Device Driver Interface to the Kernel

 Callable from:
Function ISR DSR Thread

cyg_drv_isr_lock X X X
cyg_drv_isr_unlock X X X
cyg_drv_spinlock_init X
cyg_drv_spinlock_destroy X
cyg_drv_spinlock_spin X X X
cyg_drv_spinlock_clear X X X
cyg_drv_spinlock_try X X X
cyg_drv_spinlock_test X X X
cyg_drv_spinlock_spin_intsave X X X
cyg_drv_spinlock_clear_intsave X X X
cyg_drv_dsr_lock X X
cyg_drv_dsr_unlock X X
cyg_drv_mutex_init X
cyg_drv_mutex_destroy X
cyg_drv_mutex_lock X
cyg_drv_mutex_trylock X
cyg_drv_mutex_unlock X
cyg_drv_mutex_release X
cyg_drv_cond_init X
cyg_drv_cond_destroy X
cyg_drv_cond_wait X
cyg_drv_cond_signal X X
cyg_drv_cond_broadcast X X
cyg_drv_interrupt_create X
cyg_drv_interrupt_delete X
cyg_drv_interrupt_attach X X X
cyg_drv_interrupt_detach X X X
cyg_drv_interrupt_mask X X X
cyg_drv_interrupt_unmask X X X
cyg_drv_interrupt_acknowledge X X X
cyg_drv_interrupt_configure X X X
cyg_drv_interrupt_level X X X
cyg_drv_interrupt_set_cpu X X X
cyg_drv_interrupt_get_cpu X X X

The API
This section details the Driver Kernel Interface. Note that most of these functions are identical to Kernel C API calls, and will
in most configurations be wrappers for them. In non-kernel configurations they will be supported directly by the HAL, or by
code to emulate the required behavior.

This API is defined in the header file <cyg/hal/drv_api.h>.

cyg_drv_isr_lock
Function: void cyg_drv_isr_lock()

Arguments: None

Result: None

Level: ISR

Description: Disables delivery of interrupts, preventing all ISRs running. This function maintains a counter of the
number of times it is called.

cyg_drv_isr_unlock
Function: void cyg_drv_isr_unlock()

Arguments: None

195

Device Driver Interface to the Kernel

Result: None

Level: ISR

Description: Re-enables delivery of interrupts, allowing ISRs to run. This function decrements the counter maintained
by cyg_drv_isr_lock(), and only re-allows interrupts when it goes to zero.

cyg_drv_spinlock_init
Function: void cyg_drv_spinlock_init(cyg_spinlock_t *lock, cyg_bool_t locked)

Arguments: lock - pointer to spinlock to initialize

locked - initial state of lock

Result: None

Level: Thread

Description: Initialize a spinlock. The locked argument indicates how the spinlock should be initialized: TRUE for
locked or FALSE for unlocked state.

cyg_drv_spinlock_destroy
Function: void cyg_drv_spinlock_destroy(cyg_spinlock_t *lock)

Arguments: lock - pointer to spinlock destroy

Result: None

Level: Thread

Description: Destroy a spinlock that is no longer of use. There should be no CPUs attempting to claim the lock at the
time this function is called, otherwise the behavior is undefined.

cyg_drv_spinlock_spin
Function: void cyg_drv_spinlock_spin(cyg_spinlock_t *lock)

Arguments: lock - pointer to spinlock to claim

Result: None

Level: ISR

Description: Claim a spinlock, waiting in a busy loop until it is available. Wherever this is called from, this operation
effectively pauses the CPU until it succeeds. This operations should therefore be used sparingly, and in sit-
uations where deadlocks/livelocks cannot occur. Also see cyg_drv_spinlock_spin_intsave().

cyg_drv_spinlock_clear
Function: void cyg_drv_spinlock_clear(cyg_spinlock_t *lock)

Arguments: lock - pointer to spinlock to clear

Result: None

Level: ISR

Description: Clear a spinlock. This clears the spinlock and allows another CPU to claim it. If there is more than one
CPU waiting in cyg_drv_spinlock_spin() then just one of them will be allowed to proceed.

196

Device Driver Interface to the Kernel

cyg_drv_spinlock_try
Function: cyg_bool_t cyg_drv_spinlock_try(cyg_spinlock_t *lock)

Arguments: lock - pointer to spinlock to try

Result: TRUE if the spinlock was claimed, FALSE otherwise.

Level: ISR

Description: Try to claim the spinlock without waiting. If the spinlock could be claimed immediately then TRUE is
returned. If the spinlock is already claimed then the result is FALSE.

cyg_drv_spinlock_test
Function: cyg_bool_t cyg_drv_spinlock_test(cyg_spinlock_t *lock)

Arguments: lock - pointer to spinlock to test

Result: TRUE if the spinlock is available, FALSE otherwise.

Level: ISR

Description: Inspect the state of the spinlock. If the spinlock is not locked then the result is TRUE. If it is locked then
the result will be FALSE.

cyg_drv_spinlock_spin_intsave
Function: void cyg_drv_spinlock_spin_intsave(cyg_spinlock_t *lock,

 cyg_addrword_t *istate)

Arguments: lock - pointer to spinlock to claim

istate - pointer to interrupt state save location

Result: None

Level: ISR

Description: This function behaves exactly like cyg_drv_spinlock_spin() except that it also disables interrupts
before attempting to claim the lock. The current interrupt enable state is saved in *istate. Interrupts
remain disabled once the spinlock had been claimed and must be restored by calling cyg_drv_spin-
lock_clear_intsave().

In general, device drivers should use this function to claim and release spinlocks rather than the
non-_intsave() variants, to ensure proper exclusion with code running on both other CPUs and this
CPU.

cyg_drv_spinlock_clear_intsave
Function: void cyg_drv_spinlock_clear_intsave(cyg_spinlock_t *lock,

 cyg_addrword_t istate)

Arguments: lock - pointer to spinlock to clear

istate - interrupt state to restore

Result: None

Level: ISR

197

Device Driver Interface to the Kernel

Description: This function behaves exactly like cyg_drv_spinlock_clear() except that it also restores an in-
terrupt state saved by cyg_drv_spinlock_spin_intsave(). The istate argument must have
been initialized by a previous call to cyg_drv_spinlock_spin_intsave().

cyg_drv_dsr_lock
Function: void cyg_drv_dsr_lock()

Arguments: None

Result: None

Level: DSR

Description: Disables scheduling of DSRs. This function maintains a counter of the number of times it has been called.

cyg_drv_dsr_unlock
Function: void cyg_drv_dsr_unlock()

Arguments: None

Result:
None

Level: DSR

Description: Re-enables scheduling of DSRs. This function decrements the counter incremented by cyg_drv_d-
sr_lock(). DSRs are only allowed to be delivered when the counter goes to zero.

cyg_drv_mutex_init
Function: void cyg_drv_mutex_init(cyg_drv_mutex_t *mutex)

Arguments: mutex - pointer to mutex to initialize

Result: None

Level: Thread

Description: Initialize the mutex pointed to by the mutex argument.

cyg_drv_mutex_destroy
Function: void cyg_drv_mutex_destroy(cyg_drv_mutex_t *mutex)

Arguments: mutex - pointer to mutex to destroy

Result: None

Level: Thread

Description: Destroy the mutex pointed to by the mutex argument. The mutex should be unlocked and there should
be no threads waiting to lock it when this call in made.

cyg_drv_mutex_lock
Function: cyg_bool cyg_drv_mutex_lock(cyg_drv_mutex_t *mutex)

198

Device Driver Interface to the Kernel

Arguments: mutex - pointer to mutex to lock

Result: TRUE it the thread has claimed the lock, FALSE otherwise.

Level: Thread

Description: Attempt to lock the mutex pointed to by the mutex argument. If the mutex is already locked by another
thread then this thread will wait until that thread is finished. If the result from this function is FALSE then
the thread was broken out of its wait by some other thread. In this case the mutex will not have been locked.

cyg_drv_mutex_trylock
Function: cyg_bool cyg_drv_mutex_trylock(cyg_drv_mutex_t *mutex)

Arguments: mutex - pointer to mutex to lock

Result: TRUE if the mutex has been locked, FALSE otherwise.

Level: Thread

Description: Attempt to lock the mutex pointed to by the mutex argument without waiting. If the mutex is already
locked by some other thread then this function returns FALSE. If the function can lock the mutex without
waiting, then TRUE is returned.

cyg_drv_mutex_unlock
Function: void cyg_drv_mutex_unlock(cyg_drv_mutex_t *mutex)

Arguments: mutex - pointer to mutex to unlock

Result: None

Level: Thread

Description: Unlock the mutex pointed to by the mutex argument. If there are any threads waiting to claim the lock,
one of them is woken up to try and claim it.

cyg_drv_mutex_release
Function: void cyg_drv_mutex_release(cyg_drv_mutex_t *mutex)

Arguments: mutex - pointer to mutex to release

Result: None

Level: Thread

Description: Release all threads waiting on the mutex pointed to by the mutex argument. These threads will return from
cyg_drv_mutex_lock() with a FALSE result and will not have claimed the mutex. This function
has no effect on any thread that may have the mutex claimed.

cyg_drv_cond_init
Function: void cyg_drv_cond_init(cyg_drv_cond_t *cond, cyg_drv_mutex_t *mutex)

Arguments: cond - condition variable to initialize

mutex - mutex to associate with this condition variable

Result: None

199

Device Driver Interface to the Kernel

Level: Thread

Description: Initialize the condition variable pointed to by the cond argument. The mutex argument must point to a
mutex with which this condition variable is associated. A thread may only wait on this condition variable
when it has already locked the associated mutex. Waiting will cause the mutex to be unlocked, and when
the thread is reawakened, it will automatically claim the mutex before continuing.

cyg_drv_cond_destroy
Function: void cyg_drv_cond_destroy(cyg_drv_cond_t *cond)

Arguments: cond - condition variable to destroy

Result: None

Level: Thread

Description: Destroy the condition variable pointed to by the cond argument.

cyg_drv_cond_wait
Function: void cyg_drv_cond_wait(cyg_drv_cond_t *cond)

Arguments: cond - condition variable to wait on

Result: None

Level: Thread

Description: Wait for a signal on the condition variable pointed to by the cond argument. The thread must have locked
the associated mutex, supplied in cyg_drv_cond_init(), before waiting on this condition variable.
While the thread waits, the mutex will be unlocked, and will be re-locked before this function returns. It
is possible for threads waiting on a condition variable to occasionally wake up spuriously. For this reason
it is necessary to use this function in a loop that re-tests the condition each time it returns. Note that this
function performs an implicit scheduler unlock/relock sequence, so that it may be used within an explicit
cyg_drv_dsr_lock()…cyg_drv_dsr_unlock() structure.

cyg_drv_cond_signal
Function: void cyg_drv_cond_signal(cyg_drv_cond_t *cond)

Arguments: cond - condition variable to signal

Result: None

Level: DSR

Description: Signal the condition variable pointed to by the cond argument. If there are any threads waiting on this
variable at least one of them will be awakened. Note that in some configurations there may not be any
difference between this function and cyg_drv_cond_broadcast().

cyg_drv_cond_broadcast
Function: void cyg_drv_cond_broadcast(cyg_drv_cond_t *cond)

Arguments: cond - condition variable to broadcast to

Result: None

Level: DSR

200

Device Driver Interface to the Kernel

Description: Signal the condition variable pointed to by the cond argument. If there are any threads waiting on this
variable they will all be awakened.

cyg_drv_interrupt_create
Function: void cyg_drv_interrupt_create(

 cyg_vector_t vector,
 cyg_priority_t priority,
 cyg_addrword_t data,
 cyg_ISR_t *isr,
 cyg_DSR_t *dsr,
 cyg_handle_t *handle,
 cyg_interrupt *intr)

Arguments: vector - vector to attach to

priority - queuing priority

data - data pointer

isr - interrupt service routine

dsr - deferred service routine

handle - returned handle

intr - put interrupt object here

Result: None

Level: Thread

Description: Create an interrupt object and returns a handle to it. The object contains information about which interrupt
vector to use and the ISR and DSR that will be called after the interrupt object is attached to the vector.
The interrupt object will be allocated in the memory passed in the intr parameter. The interrupt object
is not immediately attached; it must be attached with the cyg_interrupt_attach() call.

The data argument will be passed to both the registered ISR and DSR. Typically it will be a pointer to
some data structure.

cyg_drv_interrupt_delete
Function: void cyg_drv_interrupt_delete(cyg_handle_t interrupt)

Arguments: interrupt - interrupt to delete

Result: None

Level: Thread

Description: Detach the interrupt from the vector and free the memory passed in the intr argument to cyg_drv_in-
terrupt_create() for reuse.

cyg_drv_interrupt_attach
Function: void cyg_drv_interrupt_attach(cyg_handle_t interrupt)

Arguments: interrupt - interrupt to attach

Result: None

Level: ISR

201

Device Driver Interface to the Kernel

Description: Attach the interrupt to the vector so that interrupts will be delivered to the ISR when the interrupt occurs.

cyg_drv_interrupt_detach
Function: void cyg_drv_interrupt_detach(cyg_handle_t interrupt)

Arguments: interrupt - interrupt to detach

Result: None

Level: ISR

Description: Detach the interrupt from the vector so that interrupts will no longer be delivered to the ISR.

cyg_drv_interrupt_mask
Function: void cyg_drv_interrupt_mask(cyg_vector_t vector)

Arguments: vector - vector to mask

Result: None

Level: ISR

Description: Program the interrupt controller to stop delivery of interrupts on the given vector. On architectures which
implement interrupt priority levels this may also disable all lower priority interrupts.

cyg_drv_interrupt_mask_intunsafe
Function: void cyg_drv_interrupt_mask_intunsafe(cyg_vector_t vector)

Arguments: vector - vector to mask

Result: None

Level: ISR

Description: Program the interrupt controller to stop delivery of interrupts on the given vector. On architectures which
implement interrupt priority levels this may also disable all lower priority interrupts. This version differs
from cyg_drv_interrupt_mask() in not being interrupt safe. So in situations where, for example,
interrupts are already known to be disabled, this may be called to avoid the extra overhead.

cyg_drv_interrupt_unmask
Function: void cyg_drv_interrupt_unmask(cyg_vector_t vector)

Arguments: vector - vector to unmask

Result: None

Level: ISR

Description: Program the interrupt controller to re-allow delivery of interrupts on the given vector.

cyg_drv_interrupt_unmask_intunsafe
Function: void cyg_drv_interrupt_unmask_intunsafe(cyg_vector_t vector)

Arguments: vector - vector to unmask

202

Device Driver Interface to the Kernel

Result: None

Level: ISR

Description: Program the interrupt controller to re-allow delivery of interrupts on the given vector. This version
differs from cyg_drv_interrupt_unmask() in not being interrupt safe.

cyg_drv_interrupt_acknowledge
Function: void cyg_drv_interrupt_acknowledge(cyg_vector_t vector)

Arguments: vector - vector to acknowledge

Result: None

Level: ISR

Description: Perform any processing required at the interrupt controller and in the CPU to cancel the current interrupt
request on the vector. An ISR may also need to program the hardware of the device to prevent an
immediate re-triggering of the interrupt.

cyg_drv_interrupt_configure
Function: void cyg_drv_interrupt_configure(cyg_vector_t vector,

 cyg_bool_t level,
 cyg_bool_t up)

Arguments: vector - vector to configure

level - level or edge triggered

up - rising/falling edge, high/low level

Result: None

Level: ISR

Description: Program the interrupt controller with the characteristics of the interrupt source. The level argument
chooses between level- or edge-triggered interrupts. The up argument chooses between high and low level
for level triggered interrupts or rising and falling edges for edge triggered interrupts. This function only
works with interrupt controllers that can control these parameters.

cyg_drv_interrupt_level
Function: void cyg_drv_interrupt_level(cyg_vector_t vector,

 cyg_priority_t level)

Arguments: vector - vector to configure

level - level to set

Result: None

Level: ISR

Description: Program the interrupt controller to deliver the given interrupt at the supplied priority level. This function
only works with interrupt controllers that can control this parameter.

cyg_drv_interrupt_set_cpu
Function: void cyg_drv_interrupt_set_cpu(cyg_vector_t vector,

203

Device Driver Interface to the Kernel

 cyg_cpu_t cpu)

Arguments: vector - interrupt vector to route

cpu - destination CPU

Result: None

Level: ISR

Description: This function causes all interrupts on the given vector to be routed to the specified CPU. Subsequently,
all such interrupts will be handled by that CPU. This only works if the underlying hardware is capable of
performing this kind of routing. This function does nothing on a single CPU system.

cyg_drv_interrupt_get_cpu
Function: cyg_cpu_t cyg_drv_interrupt_set_cpu(cyg_vector_t vector)

Arguments: vector - interrupt vector to query

Result: The CPU to which this vector is routed

Level: ISR

Description: In multi-processor systems this function returns the id of the CPU to which interrupts on the given vector
are current being delivered. In single CPU systems this function returns zero.

cyg_ISR_t
Type: typedef cyg_uint32 cyg_ISR_t(

 cyg_vector_t vector,
 cyg_addrword_t data
)

Fields: vector - vector being delivered

data - data value supplied by client

Result: Bit mask indicating whether interrupt was handled and whether the DSR should be called.

Description: Interrupt Service Routine definition. A pointer to a function with this prototype is passed to cyg_inter-
rupt_create() when an interrupt object is created. When an interrupt is delivered the function will
be called with the vector number and the data value that was passed to cyg_interrupt_create().

The return value is a bit mask containing one or both of the following bits:

CYG_ISR_HANDLED indicates that the interrupt was handled by this ISR. It is a configuration option
whether this will prevent further ISR being run.

CYG_ISR_CAL-
L_DSR

causes the DSR that was passed to cyg_interrupt_create() to be
scheduled to be called.

cyg_DSR_t
Type: typedef void cyg_DSR_t(

 cyg_vector_t vector,
 cyg_ucount32 count,
 cyg_addrword_t data
)

Fields: vector - vector being delivered

204

Device Driver Interface to the Kernel

count - number of times DSR has been scheduled

data - data value supplied by client

Result: None

Description: Deferred Service Routine prototype. A pointer to a function with this prototype is passed to cyg_in-
terrupt_create() when an interrupt object is created. When the ISR requests the scheduling of its
DSR, this function will be called at some later point. In addition to the vector and data arguments,
which will be the same as those passed to the ISR, this routine is also passed a count of the number of
times the ISR has requested that this DSR be scheduled. This counter is zeroed each time the DSR actually
runs, so it indicates how many interrupts have occurred since it last ran.

Instrumentation
If the system instrumentation support is enabled then the I/O package provides support for generating instrumentation records
for various events within the general purpose I/O framework.

Instrumentation records will only be generated if the CYGIMP_IO_INSTRUMENTATION option is enabled, and then only if
the relevant individual event code sub-options are also enabled. The default state is for all the instrumentation to be disabled.
Some options will generate a lot of instrumentation records in a heavily loaded system and so care may need to be taken
regarding the instrumentation that is enabled vs the instrumentation recording mechanism being used to avoid missing events.
Depending on why the I/O framework instrumentation is being enabled (debugging, timing validation, etc.) the user can choose
which events they wish to record by enabling the specific CDL options.

205

Part VII. File System
Support Infrastructure

Table of Contents
20. Introduction .. 208
21. File System Table ... 209
22. Mount Table ... 211
23. File Table .. 212
24. Directories .. 214
25. Synchronization ... 215
26. Initialization and Mounting ... 216
27. Automounter ... 218
28. Sockets .. 219
29. Select .. 220
30. Devices .. 221
31. Writing a New Filesystem .. 222

207

Chapter 20. Introduction
This document describes the filesystem infrastructure provided in eCos. This is implemented by the FILEIO package and
provides POSIX compliant file and IO operations together with the BSD socket API. These APIs are described in the relevant
standards and original documentation and will not be described here. See the Posix Standard Support documentation for details
of which parts of the POSIX standard are supported.

This document is concerned with the interfaces presented to client filesystems and network protocol stacks.

The FILEIO infrastructure consist mainly of a set of tables containing pointers to the primary interface functions of a file
system. This approach avoids problems of namespace pollution (for example several filesystems can have a function called
read(), so long as they are static). The system is also structured to eliminate the need for dynamic memory allocation.

New filesystems can be written directly to the interfaces described here. Existing filesystems can be ported very easily by the
introduction of a thin veneer porting layer that translates FILEIO calls into native filesystem calls.

The term filesystem should be read fairly loosely in this document. Object accessed through these interfaces could equally be
network protocol sockets, device drivers, fifos, message queues or any other object that can present a file-like interface.

208

Chapter 21. File System Table
The filesystem table is an array of entries that describe each filesystem implementation that is part of the system image. Each
resident filesystem should export an entry to this table using the FSTAB_ENTRY() macro.

Note

At present we do not support dynamic addition or removal of table entries. However, an API similar to mount()
would allow new entries to be added to the table.

The table entries are described by the following structure:

struct cyg_fstab_entry
{
 const char *name; // filesystem name
 CYG_ADDRWORD data; // private data value
 cyg_uint32 syncmode; // synchronization mode

 int (*mount) (cyg_fstab_entry *fste,
 cyg_mtab_entry *mte);
 int (*umount) (cyg_mtab_entry *mte,
 cyg_bool force);
 int (*open) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name,
 int mode,
 cyg_file *fte);
 int (*unlink) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name);
 int (*mkdir) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name);
 int (*rmdir) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name);
 int (*rename) (cyg_mtab_entry *mte,
 cyg_dir dir1,
 const char *name1,
 cyg_dir dir2,
 const char *name2);
 int (*link) (cyg_mtab_entry *mte,
 cyg_dir dir1,
 const char *name1,
 cyg_dir dir2,
 const char *name2,
 int type);
 int (*opendir) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name,
 cyg_file *fte);
 int (*chdir) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name,
 cyg_dir *dir_out);
 int (*stat) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name,
 struct stat *buf);
 int (*getinfo) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name,
 int key,
 char *buf,
 int len);
 int (*setinfo) (cyg_mtab_entry *mte,
 cyg_dir dir,
 const char *name,
 int key,

209

File System Table

 char *buf,
 int len);
};

The name field points to a string that identifies this filesystem implementation. Typical values might be "romfs", "fatfs",
"ext2" etc.

The data field contains any private data that the filesystem needs, perhaps the root of its data structures.

The syncmode field contains a description of the locking protocol to be used when accessing this filesystem. It will be
described in more detail in Chapter 25, Synchronization.

The remaining fields are pointers to functions that implement filesystem operations that apply to files and directories as whole
objects. The operation implemented by each function should be obvious from the names, with a few exceptions:

The opendir() function pointer opens a directory for reading. See Chapter 24, Directories for details.

The getinfo() and setinfo() function pointers provide support for various minor control and information functions
such as pathconf() and access().

With the exception of the mount() and umount() functions, all of these functions take three standard arguments, a pointer
to a mount table entry (see later) a directory pointer (also see later) and a file name relative to the directory. These should be
used by the filesystem to locate the object of interest.

210

Chapter 22. Mount Table
The mount table records the filesystems that are actually active. These can be seen as being analogous to mount points in
Unix systems.

There are two sources of mount table entries. Filesystems (or other components) may export static entries to the table using
the MTAB_ENTRY() macro. Alternatively, new entries may be installed at run time using the mount() function. Both types
of entry may be unmounted with the umount() function.

A mount table entry has the following structure:

struct cyg_mtab_entry
{
 const char *name; // name of mount point
 const char *fsname; // name of implementing filesystem
 const char *devname; // name of hardware device
 const char *options; // mount option string
 CYG_ADDRWORD data; // private data value
 cyg_bool valid; // Valid entry?
 cyg_fstab_entry *fs; // pointer to fstab entry
 cyg_dir root; // root directory pointer
};

The name field identifies the mount point. This is used to direct rooted filenames (filenames that begin with "/") to the correct
filesystem. When a file name that begins with "/" is submitted, it is matched against the name fields of all valid mount table
entries. The entry that yields the longest match terminating before a "/", or end of string, wins and the appropriate function
from the filesystem table entry is then passed the remainder of the file name together with a pointer to the table entry and the
value of the root field as the directory pointer.

For example, consider a mount table that contains the following entries:

{ "/", "fatfs", "/dev/hd0", … }
{ "/fd", "fatfs", "/dev/fd0", … }
{ "/rom", "romfs", "", … }
{ "/tmp", "ramfs", "", … }
{ "/dev", "devfs", "", … }

An attempt to open "/tmp/foo" would be directed to the RAM filesystem while an open of "/bar/bundy" would be directed
to the hard disc FATFS filesystem. Opening "/dev/tty0" would be directed to the device management filesystem for lookup
in the device table.

Unrooted file names (those that do not begin with a '/') are passed straight to the filesystem that contains the current directory.
The current directory is represented by a pair consisting of a mount table entry and a directory pointer.

The fsname field points to a string that should match the name field of the implementing filesystem. During initialization the
mount table is scanned and the fsname entries looked up in the filesystem table. For each match, the filesystem's _mount_
function is called and if successful the mount table entry is marked as valid and the fs pointer installed.

The devname field contains the name of the device that this filesystem is to use. This may match an entry in the device table
(see later) or may be a string that is specific to the filesystem if it has its own internal device drivers.

The data field is a private data value. This may be installed either statically when the table entry is defined, or may be installed
during the mount() operation.

The valid field indicates whether this mount point has actually been mounted successfully. Entries with a false valid field
are ignored when searching for a name match.

The fs field is installed after a successful mount() operation to point to the implementing filesystem.

The root field contains a directory pointer value that the filesystem can interpret as the root of its directory tree. This is passed
as the dir argument of filesystem functions that operate on rooted filenames. This field must be initialized by the filesystem's
mount() function.

211

Chapter 23. File Table
Once a file has been opened it is represented by an open file object. These are allocated from an array of available file objects.
User code accesses these open file objects via a second array of pointers which is indexed by small integer offsets. This gives
the usual Unix file descriptor functionality, complete with the various duplication mechanisms.

A file table entry has the following structure:

struct CYG_FILE_TAG
{
 cyg_uint32 f_flag; /* file state */
 cyg_uint16 f_ucount; /* use count */
 cyg_uint16 f_type; /* descriptor type */
 cyg_uint32 f_syncmode; /* synchronization protocol */
 struct CYG_FILEOPS_TAG *f_ops; /* file operations */
 off_t f_offset; /* current offset */
 CYG_ADDRWORD f_data; /* file or socket */
 CYG_ADDRWORD f_xops; /* extra type specific ops */
 cyg_mtab_entry *f_mte; /* mount table entry */
};

The f_flag field contains some FILEIO control bits and some bits propagated from the flags argument of the open()
call (defined by CYG_FILE_MODE_MASK).

The f_ucount field contains a use count that controls when a file will be closed. Each duplicate in the file descriptor array
counts for one reference here. It is also incremented around each I/O operation to ensure that the file cannot be closed while
it has current I/O operations.

The f_type field indicates the type of the underlying file object. Some of the possible values here are
CYG_FILE_TYPE_FILE, CYG_FILE_TYPE_SOCKET or CYG_FILE_TYPE_DEVICE.

The f_syncmode field is copied from the syncmode field of the implementing filesystem. Its use is described in Chapter 25,
Synchronization.

The f_offset field records the current file position. It is the responsibility of the file operation functions to keep this field
up to date.

The f_data field contains private data placed here by the underlying filesystem. Normally this will be a pointer to, or handle
on, the filesystem object that implements this file.

The f_xops field contains a pointer to any extra type specific operation functions. For example, the socket I/O system installs
a pointer to a table of functions that implement the standard socket operations.

The f_mte field contains a pointer to the parent mount table entry for this file. It is used mainly to implement the synchro-
nization protocol. This may contain a pointer to some other data structure in file objects not derived from a filesystem.

The f_ops field contains a pointer to a table of file I/O operations. This has the following structure:

struct CYG_FILEOPS_TAG
{
 int (*fo_read) (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
 int (*fo_write) (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
 int (*fo_lseek) (struct CYG_FILE_TAG *fp, off_t *pos, int whence);
 int (*fo_ioctl) (struct CYG_FILE_TAG *fp, CYG_ADDRWORD com, CYG_ADDRWORD data);
 int (*fo_select) (struct CYG_FILE_TAG *fp, int which, CYG_ADDRWORD info);
 int (*fo_fsync) (struct CYG_FILE_TAG *fp, int mode);
 int (*fo_close) (struct CYG_FILE_TAG *fp);
 int (*fo_fstat) (struct CYG_FILE_TAG *fp, struct stat *buf);
 int (*fo_getinfo) (struct CYG_FILE_TAG *fp, int key, char *buf, int len);
 int (*fo_setinfo) (struct CYG_FILE_TAG *fp, int key, char *buf, int len);
};

It should be obvious from the names of most of these functions what their responsibilities are. The fo_getinfo() and
fo_setinfo() function pointers, like their counterparts in the filesystem structure, implement minor control and info func-
tions such as fpathconf().

212

File Table

The second argument to the fo_read() and fo_write() function pointers is a pointer to a UIO structure:

struct CYG_UIO_TAG
{
 struct CYG_IOVEC_TAG *uio_iov; /* pointer to array of iovecs */
 int uio_iovcnt; /* number of iovecs in array */
 off_t uio_offset; /* offset into file this uio corresponds to */
 ssize_t uio_resid; /* residual i/o count */
 enum cyg_uio_seg uio_segflg; /* see above */
 enum cyg_uio_rw uio_rw; /* see above */
};

struct CYG_IOVEC_TAG
{
 void *iov_base; /* Base address. */
 ssize_t iov_len; /* Length. */
};

This structure encapsulates the parameters of any data transfer operation. It provides support for scatter/gather operations and
records the progress of any data transfer. It is also compatible with the I/O operations of any BSD-derived network stacks
and filesystems.

When a file is opened (or a file object created by some other means, such as socket() or accept()) it is the responsibility
of the filesystem open operation to initialize all the fields of the object except the f_ucount, f_syncmode and f_mte
fields. Since the f_flag field will already contain bits belonging to the FILEIO infrastructure, any changes to it must be
made with the appropriate logical operations.

213

Chapter 24. Directories
Filesystem operations all take a directory pointer as one of their arguments. A directory pointer is an opaque handle managed
by the filesystem. It should encapsulate a reference to a specific directory within the filesystem. For example, it may be a
pointer to the data structure that represents that directory (such as an inode), or a pointer to a pathname for the directory.

The chdir() filesystem function pointer has two modes of use. When passed a pointer in the dir_out argument, it should
locate the named directory and place a directory pointer there. If the dir_out argument is NULL then the dir argument is
a previously generated directory pointer that can now be disposed of. When the infrastructure is implementing the chdir()
function it makes two calls to filesystem chdir() functions. The first is to get a directory pointer for the new current directory.
If this succeeds the second is to dispose of the old current directory pointer.

The opendir() function is used to open a directory for reading. This results in an open file object that can be read to return
a sequence of struct dirent objects. The only operations that are allowed on this file are read, lseek and close. Each
read operation on this file should return a single struct dirent object. When the end of the directory is reached, zero should
be returned. The only seek operation allowed is a rewind to the start of the directory, by supplying an offset of zero and a
whence specifier of SEEK_SET.

Most of these considerations are invisible to clients of a filesystem since they will access directories via the POSIX
opendir(), readdir() and closedir() functions. The struct dirent object returned by readdir() will always con-
tain d_name as required by POSIX. When CYGPKG_FILEIO_DIRENT_DTYPE is enabled it will also contain d_type, which
is not part of POSIX, but often implemented by OSes. Currently only the FATFS, RAMFS, ROMFS and JFFS2 filesystem sets
this value. For other filesystems a value of 0 will be returned in the member.

Support for the getcwd() function is provided by three mechanisms. The first is to use the FS_INFO_GETCWD getinfo key
on the filesystem to use any internal support that it has for this. If that fails it falls back on one of the two other mechanisms. If
CYGPKG_IO_FILEIO_TRACK_CWD is set then the current directory is tracked textually in chdir() and the result of that
is reported in getcwd(). Otherwise an attempt is made to traverse the directory tree to its root using ".." entries.

This last option is complicated and expensive, and relies on the filesystem supporting "." and ".." entries. This is not always
the case, particularly if the filesystem has been ported from a non-UNIX-compatible source. Tracking the pathname textually
will usually work, but might not produce optimum results when symbolic links are being used.

214

Chapter 25. Synchronization
The FILEIO infrastructure provides a synchronization mechanism for controlling concurrent access to filesystems. This allows
existing filesystems to be ported to eCos, even if they do not have their own synchronization mechanisms. It also allows new
filesystems to be implemented easily without having to consider the synchronization issues.

The infrastructure maintains a mutex for each entry in each of the main tables: filesystem table, mount table and file table. For
each class of operation each of these mutexes may be locked before the corresponding filesystem operation is invoked.

The synchronization protocol required by a filesystem is described by the syncmode field of the filesystem table entry. This
is a combination of the following flags:

CYG_SYNCMODE_FILE_FILESYSTEM

Lock the filesystem table entry mutex during all filesystem level operations.

CYG_SYNCMODE_FILE_MOUNTPOINT

Lock the mount table entry mutex during all filesystem level operations.

CYG_SYNCMODE_IO_FILE

Lock the file table entry mutex during all I/O operations.

CYG_SYNCMODE_IO_FILESYSTEM

Lock the filesystem table entry mutex during all I/O operations.

CYG_SYNCMODE_IO_MOUNTPOINT

Lock the mount table entry mutex during all I/O operations.

CYG_SYNCMODE_SOCK_FILE

Lock the file table entry mutex during all socket operations.

CYG_SYNCMODE_SOCK_NETSTACK

Lock the network stack table entry mutex during all socket operations.

CYG_SYNCMODE_NONE

Perform no locking at all during any operations.

The value of the syncmode field in the filesystem table entry will be copied by the infrastructure to the open file object after
a successful open() operation.

215

Chapter 26. Initialization and Mounting
As mentioned previously, mount table entries can be sourced from two places. Static entries may be defined by using the
MTAB_ENTRY() macro. Such entries will be automatically mounted on system startup. For each entry in the mount table that
has a non-null name field the filesystem table is searched for a match with the fsname field. If a match is found the filesystem's
mount entry is called and if successful the mount table entry marked valid and the fs field initialized. The mount() function
is responsible for initializing the root field.

The size of the mount table is defined by the configuration value CYGNUM_FILEIO_MTAB_MAX. Any entries that have not
been statically defined are available for use by dynamic mounts.

A filesystem may be mounted dynamically by calling mount(). This function has the following prototype:

int mount(const char *devname,
 const char *dir,
 const char *fsname);

The devname argument identifies a device that will be used by this filesystem and will be assigned to the devname field
of the mount table entry.

The dir argument is the mount point name, it will be assigned to the name field of the mount table entry.

The fsname argument is the name of the implementing filesystem, it will be assigned to the fsname entry of the mount table
entry. This argument may also contain options that control the mode in which the filesystem is mounted.

Since these three arguments are assigned directly to the mount table entry, the memory pointed to by these arguments must
not change for the duration of the mount. This means they must be allocated from memory that will persist unchanged until
unmounting, such as constant strings, dynamically allocated memory, or static or automatic variables that do not pass out of
scope or get their values changed before unmounting.

The options attached to the fsname argument consist of a comma separated list of single keywords or keyword=value pairs
separated from the filesystem name by a colon. For example, to mount the FAT filesystem with write-through cache synchro-
nization the string would be: "fatfs:sync=write" and to mount it read-only: "fatfs:readonly".

The process of mounting a filesystem dynamically is as follows. First a search is made of the mount table for an entry with a
NULL name field to be used for the new mount point. The filesystem table is then searched for an entry whose name matches
fsname. If this is successful then the mount table entry is initialized and the filesystem's mount() operation called. If this
is successful, the mount table entry is marked valid and the fs field initialized.

Mounting a filesystem dynamically at the current working directory name, does not in fact change the current directory to one
on the newly mounted filesystem. Instead the current working directory remains on the previous filesystem (or no filesystem
in the case of '/' with no filesystems previously mounted). This is in line with usual POSIX/UNIX behaviour. To change to
the new filesystem, a chdir() call must be made, even if it is to the current directory name as given by getcwd(). This is
especially relevant when mounting a filesystem on '/' as the current working directory is usually also '/' .

Normally you can access files and directories with both absolute paths (for example '/fs/dir1/file1.txt') or paths
relative to the current working directory (for example './dir1/file1.txt' or just 'dir1/file1.txt'). As a special
exception, you cannot use relative paths if your current working directory is the root directory '/', unless there is a filesystem
mounted directly on '/'. This is a deliberate simplification due to the fact that the current working directory is not really a valid
directory and there is no true filesystem at '/' to navigate within. Instead it is recommended to either change directory into a
filesystem after mounting using chdir(), use absolute paths, or mount a filesystem at '/'.

It should also be noted that there is no requirement for there to be a directory entry for a filesystem mount point if mounted
within another filesystem. So for example, there need not be a directory named “/dev” in the directory list of “/” even though
there is a filesystem mounted on “/dev”.

Unmounting a filesystem is done by the umount() function. This can unmount filesystems whether they were mounted
statically or dynamically.

The umount() function has the following prototype:

216

Initialization and Mounting

int umount(const char *name);

The mount table is searched for a match between the name argument and the entry name field. When a match is found the
filesystem's umount() operation, with the force argument set to false is called and if successful, the mount table entry
is invalidated by setting its valid field false and the name field to NULL.

There is also an umount_force() function with the following prototype:

int umount_force(const char *name);

The main difference between this and the standard umount() function is that it forces the filesystem to be unmounted. In
the FILEIO package this means that all open files will be forced to close, the current directory will be moved away from the
filesystem if it points to it and any threads waiting for access to the filesystem will be forced to return. In general, any buffered
data not yet written to the medium will be lost; such buffering may take place in libraries like C standard I/O, C++ streams or the
filesystem itself. If the programmer wishes for buffered data to be committed beforehand, they must use whatever mechanism
has been provided by the layers performing the buffering. This is not always the case however, such as if the reason to force
an unmounting is because the medium has been removed. When the filesystem's umount() function is called, the force
argument will be set true, and the filesystem should take steps to free all resources and detach from the underlying device.

Care must be taken if mounting a filesystem on “/” as it will not be possible to unmount the filesystem later if it is in use as
the current working directory. Instead it will be necessary to change directory to a different filesystem before unmounting.

217

Chapter 27. Automounter
Where removable media is supported by the filesystem and the hardware device driver (currently only the FAT filesystem
and the eCosPro USB mass storage device driver have this support) it is possible to configure an automounter which will
automatically mount any filesystems found on any device that is inserted. It will also automatically unmount the filesystem
when the device is removed.

The automounter is controlled by a number of configuration options:

CYGPKG_IO_FILEIO_AUTOMOUNT

This option enables the eCos automounter. It is only active if there are device drivers present that are capable of dealing
with removable media.

Default value: 0

CYGDAT_IO_FILEIO_AUTOMOUNT_ROOT

Any automounted filesystems will be mounted under this root directory.

Default value: "/auto"

CYGDAT_IO_FILEIO_AUTOMOUNT_DEVICES

This option is a list of device names of the devices that will be monitored by the automounter. Each entry is two strings
within braces, with separate entries separated by commas. The first string gives the device name, the second the stub
for making the mount point name under the automount root. The name of the filesystem root will be manufactured by
appending the disk number and partition number to the name stub, separated by underscores. For example with the default
values typical filesystem root names might be: "/auto/usb_0_1" or "/auto/usb_1_2".

Default value: { "/dev/usbmass/", "usb" }

The Automounter also defines a callback that may be used by applications to receive notifications that new filesystems have
been mounted or unmounted. The fileio.h header contains the following definitions if the automounter is enabled:

typedef void cyg_automount_handler(int event, char *mountpoint, CYG_ADDRWORD data);
#define CYG_AUTOMOUNT_MOUNT 1
#define CYG_AUTOMOUNT_UMOUNT 2

__externC int cyg_automount_register_handler(char *devname,
 cyg_automount_handler *handler,
 CYG_ADDRWORD data);

The function cyg_automount_register_handler() causes the callback handler to be registered. The devname
identifies the device to which the callback will be attached, it should match one of the device names defined in CYG-
DAT_IO_FILEIO_AUTOMOUNT_DEVICES. The handler argument is the callback function and data is a user defined
data value.

When the handler is called, the event argument indicates the event being notified, CYG_AUTOMOUNT_MOUNT or CYG_AU-
TOMOUNT_UMOUNT. The mountpoint argument is the name of the root of the filesystem being notified, it will be
composed as described above from CYGDAT_IO_FILEIO_AUTOMOUNT_ROOT and the stub part of the relevant CYG-
DAT_IO_FILEIO_AUTOMOUNT_DEVICES entry. The data argument is the data value passed in from cyg_automoun-
t_register_handler().

The handler will be called by the automounter just after the filesystem has been mounted, or just before it is unmounted.
Application code should avoid running too much code in the handler and offload long running tasks to another thread. This
is because the handler is called directly from the automounter thread and while it is executing, no other automount operations
can be run.

218

Chapter 28. Sockets
If a network stack is present, then the FILEIO infrastructure also provides access to the standard BSD socket calls.

The netstack table contains entries which describe the network protocol stacks that are in the system image. Each resident stack
should export an entry to this table using the NSTAB_ENTRY() macro.

Each table entry has the following structure:

struct cyg_nstab_entry
{
 cyg_bool valid; // true if stack initialized
 cyg_uint32 syncmode; // synchronization protocol
 char *name; // stack name
 char *devname; // hardware device name
 CYG_ADDRWORD data; // private data value

 int (*init)(cyg_nstab_entry *nste);
 int (*socket)(cyg_nstab_entry *nste, int domain, int type,
 int protocol, cyg_file *file);
};

This table is analogous to a combination of the filesystem and mount tables.

The valid field is set true if the stack's init() function returned successfully and the syncmode field contains the
CYG_SYNCMODE_SOCK_* bits described above.

The name field contains the name of the protocol stack.

The devname field names the device that the stack is using. This may reference a device under "/dev", or may be a name
that is only meaningful to the stack itself.

The init() function pointer is called during system initialization to start the protocol stack running. If it returns non-zero
the valid field is set false and the stack will be ignored subsequently.

The socket() function is called to attempt to create a socket in the stack. When the socket() API function is called the
netstack table is scanned and for each valid entry the socket() function pointer is called. If this returns non-zero then the
scan continues to the next valid stack, or terminates with an error if the end of the table is reached.

The result of a successful socket call is an initialized file object with the f_xops field pointing to the following structure:

struct cyg_sock_ops
{
 int (*bind) (cyg_file *fp, const sockaddr *sa, socklen_t len);
 int (*connect) (cyg_file *fp, const sockaddr *sa, socklen_t len);
 int (*accept) (cyg_file *fp, cyg_file *new_fp,
 struct sockaddr *name, socklen_t *anamelen);
 int (*listen) (cyg_file *fp, int len);
 int (*getname) (cyg_file *fp, sockaddr *sa, socklen_t *len, int peer);
 int (*shutdown) (cyg_file *fp, int flags);
 int (*getsockopt)(cyg_file *fp, int level, int optname,
 void *optval, socklen_t *optlen);
 int (*setsockopt)(cyg_file *fp, int level, int optname,
 const void *optval, socklen_t optlen);
 int (*sendmsg) (cyg_file *fp, const struct msghdr *m,
 int flags, ssize_t *retsize);
 int (*recvmsg) (cyg_file *fp, struct msghdr *m,
 socklen_t *namelen, ssize_t *retsize);
};

It should be obvious from the names of these functions which API calls they provide support for. The getname() function
pointer provides support for both getsockname() and getpeername() while the sendmsg() and recvmsg() func-
tion pointers provide support for send(), sendto(), sendmsg(), recv(), recvfrom() and recvmsg() as appro-
priate.

219

Chapter 29. Select
The infrastructure provides support for implementing a select mechanism. This is modeled on the mechanism in the BSD
kernel, but has been modified to make it implementation independent.

The main part of the mechanism is the select() API call. This processes its arguments and calls the fo_select() function
pointer on all file objects referenced by the file descriptor sets passed to it. If the same descriptor appears in more than one
descriptor set, the fo_select() function will be called separately for each appearance.

The which argument of the fo_select() function will either be CYG_FREAD to test for read conditions, CYG_FWRITE to
test for write conditions or zero to test for exceptions. For each of these options the function should test whether the condition
is satisfied and if so return true. If it is not satisfied then it should call cyg_selrecord() with the info argument that was
passed to the function and a pointer to a cyg_selinfo structure.

The cyg_selinfo structure is used to record information about current select operations. Any object that needs to support select
must contain an instance of this structure. Separate cyg_selinfo structures should be kept for each of the options that the object
can select on - read, write or exception.

If none of the file objects report that the select condition is satisfied, then the select() API function puts the calling thread
to sleep waiting either for a condition to become satisfied, or for the optional timeout to expire.

A selectable object must have some asynchronous activity that may cause a select condition to become true - either via interrupts
or the activities of other threads. Whenever a selectable condition is satisfied, the object should call cyg_selwakeup()
with a pointer to the appropriate cyg_selinfo structure. If the thread is still waiting, this will cause it to wake up and repeat
its poll of the file descriptors. This time around, the object that caused the wakeup should indicate that the select condition is
satisfied, and the select() API call will return.

Note that select() does not exhibit real time behaviour: the iterative poll of the descriptors, and the wakeup mechanism
mitigate against this. If real time response to device or socket I/O is required then separate threads should be devoted to each
device of interest and should use blocking calls to wait for a condition to become ready.

220

Chapter 30. Devices
Devices are accessed by means of a pseudo-filesystem, "devfs", that is mounted on "/dev". Open operations are translated
into calls to cyg_io_lookup() and if successful result in a file object whose f_ops functions translate filesystem API
functions into calls into the device API.

221

Chapter 31. Writing a New Filesystem
To create a new filesystem it is necessary to define the fstab entry and the file IO operations. The easiest way to do this is to
copy an existing filesystem: either the test filesystem in the FILEIO package, or the RAM or ROM filesystem packages.

To make this clearer, the following is a brief tour of the FILEIO relevant parts of the RAM filesystem.

First, it is necessary to provide forward definitions of the functions that constitute the filesystem interface:

//==
// Forward definitions

// Filesystem operations
static int ramfs_mount (cyg_fstab_entry *fste, cyg_mtab_entry *mte);
static int ramfs_umount (cyg_mtab_entry *mte, cyg_bool force);
static int ramfs_open (cyg_mtab_entry *mte, cyg_dir dir, const char *name,
 int mode, cyg_file *fte);
static int ramfs_unlink (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
static int ramfs_mkdir (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
static int ramfs_rmdir (cyg_mtab_entry *mte, cyg_dir dir, const char *name);
static int ramfs_rename (cyg_mtab_entry *mte, cyg_dir dir1, const char *name1,
 cyg_dir dir2, const char *name2);
static int ramfs_link (cyg_mtab_entry *mte, cyg_dir dir1, const char *name1,
 cyg_dir dir2, const char *name2, int type);
static int ramfs_opendir (cyg_mtab_entry *mte, cyg_dir dir, const char *name,
 cyg_file *fte);
static int ramfs_chdir (cyg_mtab_entry *mte, cyg_dir dir, const char *name,
 cyg_dir *dir_out);
static int ramfs_stat (cyg_mtab_entry *mte, cyg_dir dir, const char *name,
 struct stat *buf);
static int ramfs_getinfo (cyg_mtab_entry *mte, cyg_dir dir, const char *name,
 int key, void *buf, int len);
static int ramfs_setinfo (cyg_mtab_entry *mte, cyg_dir dir, const char *name,
 int key, void *buf, int len);

// File operations
static int ramfs_fo_read (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
static int ramfs_fo_write (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
static int ramfs_fo_lseek (struct CYG_FILE_TAG *fp, off_t *pos, int whence);
static int ramfs_fo_ioctl (struct CYG_FILE_TAG *fp,
 CYG_ADDRWORD com,
 CYG_ADDRWORD data);
static int ramfs_fo_fsync (struct CYG_FILE_TAG *fp, int mode);
static int ramfs_fo_close (struct CYG_FILE_TAG *fp);
static int ramfs_fo_fstat (struct CYG_FILE_TAG *fp, struct stat *buf);
static int ramfs_fo_getinfo (struct CYG_FILE_TAG *fp, int key, void *buf, int len);
static int ramfs_fo_setinfo (struct CYG_FILE_TAG *fp, int key, void *buf, int len);

// Directory operations
static int ramfs_fo_dirread (struct CYG_FILE_TAG *fp, struct CYG_UIO_TAG *uio);
static int ramfs_fo_dirlseek (struct CYG_FILE_TAG *fp, off_t *pos, int whence);

We define all of the fstab entries and all of the file IO operations. We also define alternatives for the fo_read and fo_lseek
file IO operations.

We can now define the filesystem table entry. There is a macro, FSTAB_ENTRY to do this:

//==
// Filesystem table entries

// ---
// Fstab entry.
// This defines the entry in the filesystem table.
// For simplicity we use _FILESYSTEM synchronization for all accesses since
// we should never block in any filesystem operations.

FSTAB_ENTRY(ramfs_fste, "ramfs", 0,
 CYG_SYNCMODE_FILE_FILESYSTEM|CYG_SYNCMODE_IO_FILESYSTEM,
 ramfs_mount,

222

Writing a New Filesystem

 ramfs_umount,
 ramfs_open,
 ramfs_unlink,
 ramfs_mkdir,
 ramfs_rmdir,
 ramfs_rename,
 ramfs_link,
 ramfs_opendir,
 ramfs_chdir,
 ramfs_stat,
 ramfs_getinfo,
 ramfs_setinfo);

The first argument to this macro gives the fstab entry a name, the remainder are initializers for the field of the structure.

We must also define the file operations table that is installed in all open file table entries:

// ---
// File operations.
// This set of file operations are used for normal open files.

static cyg_fileops ramfs_fileops =
{
 ramfs_fo_read,
 ramfs_fo_write,
 ramfs_fo_lseek,
 ramfs_fo_ioctl,
 cyg_fileio_seltrue,
 ramfs_fo_fsync,
 ramfs_fo_close,
 ramfs_fo_fstat,
 ramfs_fo_getinfo,
 ramfs_fo_setinfo
};

These all point to functions supplied by the filesystem except the fo_select field which is filled with a pointer to
cyg_fileio_seltrue(). This is provided by the FILEIO package and is a select function that always returns true to all
operations.

Finally, we need to define a set of file operations for use when reading directories. This table only defines the fo_read and
fo_lseek operations. The rest are filled with stub functions supplied by the FILEIO package that just return an error code.

// ---
// Directory file operations.
// This set of operations are used for open directories. Most entries
// point to error-returning stub functions. Only the read, lseek and
// close entries are functional.

static cyg_fileops ramfs_dirops =
{
 ramfs_fo_dirread,
 (cyg_fileop_write *)cyg_fileio_enosys,
 ramfs_fo_dirlseek,
 (cyg_fileop_ioctl *)cyg_fileio_enosys,
 cyg_fileio_seltrue,
 (cyg_fileop_fsync *)cyg_fileio_enosys,
 ramfs_fo_close,
 (cyg_fileop_fstat *)cyg_fileio_enosys,
 (cyg_fileop_getinfo *)cyg_fileio_enosys,
 (cyg_fileop_setinfo *)cyg_fileio_enosys
};

If the filesystem wants to have an instance automatically mounted on system startup, it must also define a mount table entry.
This is done with the MTAB_ENTRY macro. This is an example from the test filesystem of how this is used:

MTAB_ENTRY(testfs_mte1,
 "/",
 "testfs",
 "",
 "",
 0);

223

Writing a New Filesystem

The first argument provides a name for the table entry. The following arguments provide initialization for the name, fsname,
devname options and data fields respectively.

These definitions are adequate to let the new filesystem interact with the FILEIO package. The new filesystem now needs to
be fleshed out with implementations of the functions defined above. Obviously, the exact form this takes will depend on what
the filesystem is intended to do. Take a look at the RAM and ROM filesystems for examples of how this has been done.

224

Part VIII. FAT File System Support

Table of Contents
32. Introduction .. 227
33. Configuring the FAT Filesystem .. 228

Including FAT Filesystem in a Configuration .. 228
Configuring the FAT Filesystem ... 229

34. Using the FAT Filesystem .. 231
35. Removable Media Support .. 232
36. Non-ASCII Character Set Support .. 233
37. Formatting Support .. 235
38. Testing .. 236

226

Chapter 32. Introduction
This document describes the FAT filesystem provided in eCos. This is implemented by the FATFS package which uses the
facilities of the FILEIO package to present its functionality to the user.

The FAT filesystem supports FAT12, FAT16 and FAT32 disk formats.

The FAT filesystem includes optional support for long file names. This functionality is covered by patents belonging
to Microsoft in several territories, including Europe and the the USA. By default the long file name support in eCos
(CYGCFG_FS_FAT_LONG_FILE_NAMES) is disabled. If you wish to enable this feature on products that are distributed
within these territories then you may need to aquire a license from Microsoft.

227

Chapter 33. Configuring the FAT
Filesystem
This chapter shows how to include the FAT filesystem into an eCos configuration and how to configure it once installed.

Including FAT Filesystem in a Configuration
The FAT filesystem is contained in a single eCos package, CYGPKG_FS_FAT. However, it depends on the services of a
collection of other packages for complete functionality:

CYGPKG_IO_FILEIO

The File IO package. This provides the POSIX compatible API by which the FAT filesystem is accessed.

CYGPKG_IO

Device IO package. This provides all the infrastructure for the disk devices.

CYGPKG_IO_DISK

Disk device IO support. This provides the top level generic disk driver functions. It also interprets partition tables and
provides a separate access channel for each partition. This package is described in detail elsewhere.

CYGPKG_LINUX_COMPAT

Linux compatibility library. The FAT filesystem only used the list and RBtree features of this library.

CYGPKG_LIBC_STRING

Strings library. This provides the string and memory move and compare routines used by the filesystem.

CYGPKG_MEMALLOC

The FAT filesystem currently uses malloc() to allocate its memory resources, such as the node and block caches, so this
package is required.

To add the FAT filesystem to a configuration, it is necessary to add all of these packages. This is best done by using an import
file. The following file will add the FAT filesystem and all the necessary packages to any configuration:

cdl_savefile_version 1;
cdl_savefile_command cdl_savefile_version {};
cdl_savefile_command cdl_savefile_command {};
cdl_savefile_command cdl_configuration { description hardware template package };
cdl_savefile_command cdl_package { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_component { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_option { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_interface { value_source user_value wizard_value inferred_value };

cdl_configuration eCos {
 package CYGPKG_FS_FAT current ;
 package CYGPKG_IO_DISK current ;
 package CYGPKG_LINUX_COMPAT current ;
 package CYGPKG_IO_FILEIO current ;
 package CYGPKG_IO current ;
 package CYGPKG_LIBC_STRING current ;
 package CYGPKG_MEMALLOC current ;
};

In addition to these packages, hardware-specific device driver packages will be needed for the disk devices to be used. These
device drivers are usually part of the target description in the eCos database and will be enabled if the CYGPKG_IO_DISK
package is included.

228

Configuring the FAT Filesystem

Configuring the FAT Filesystem
Once added to the configuration, the FAT filesystem has a number of configuration options:

CYGNUM_FS_FAT_NODE_HASH_TABLE_SIZE

This option controls the number of slots in the hash table used to store file nodes using filenames as keys.

Default value: 32

CYGNUM_FS_FAT_NODE_POOL_SIZE

This option controls the size of the node pool used for storing file nodes. This value should be set to the maximum required
number of simultaneously open files plus the desired size of unused node cache.

Default value: CYGNUM_FILEIO_NFILE + 2

CYGNUM_FS_FAT_BLOCK_CACHE_BLOCKSIZE

This option controls the size of blocks in the block cache. This value should be a power-of-2 multiple of 512. It must be
at least as great as the underlying disk sector size (usually 512) but can be greater, allowing multiple underlying blocks
to be cached within a single cache block.

With some underlying disk devices, performance can be greatly improved by increasing the size of this option, as it may
allow multiple disk blocks to be transferred in one transaction. This is known to be particularly true with MMC or SD card
media and it is recommended to increase the size of this option with such media.

Default value: 512

CYGNUM_FS_FAT_BLOCK_CACHE_MEMSIZE

This option controls the amount of memory used for the block cache.

Default value: 20 * CYGNUM_FS_FAT_BLOCK_CACHE_BLOCKSIZE

CYGDBG_FS_FAT_NODE_CACHE_EXTRA_CHECKS

This option controls the inclusion of extra sanity checks in node cache code.

Default value: 1

CYGCFG_FS_FAT_USE_ATTRIBUTES

This option controls whether the FAT filesystem supports or honors the FAT filesystem file attributes.

Default value: 0

CYGCFG_FS_FAT_LONG_FILE_NAMES

This option controls the FAT filesystem support for long file names.

Default value: 0

CYGNUM_FS_FAT_LONG_FILE_NAME_MAX

This option defines the maximum size of long file names supported by the filesystem. The default value of 64 corresponds
to NAME_MAX, which defines the size of d_name[] in a struct dirent.

Default value: 64

CYGSEM_FS_FAT_ASYNC_IO

Normally every operation on a mounted FAT filesystem must complete before another operation can start. However some-
times a thread must block while waiting for a read or write to the underlying disk medium to complete. As a performance

229

Configuring the FAT Filesystem

improvement, this option allows other threads to perform operations on the FAT filesystem while other threads are blocked.
This can be especially beneficial when the operations can be performed entirely using the in-built file system block and
node cache.

However, a known limitation is that there is not currently sufficient protection in place to handle situations where two
threads update a directory at the same time, for example, both creating, renaming or removing files or directories (Issue
#1001183). Other operations should be safe, but for the time being care is advised if enabling this option, and eCosCentric
cannot provide support for resulting problems if it is enabled.

Default value: 0

CYGSEM_FS_FAT_FORMAT

This option enables support for formatting a FAT filesystem on the device before mounting it. Only FAT16 and FAT32
formats are supported, FAT12 is not. The variety of options supported is also limited to choosing the format, block size,
and volume label, where appropriate.

Default value: 1

Normally these options should be left as they are unless you have a specific need to change them. Once the configuration had
been created, it should be possible to compile eCos and link it with the application without any errors.

230

Chapter 34. Using the FAT Filesystem
The FAT filesystem is accessed through the FILEIO package and responds to all the standard filesystem functions such as
open(), close(), read() and write(). To use these operations the filesystem must first be mounted.

A FAT filesystem may be mounted using the mount() function. The following is an example of how to mount a FAT
filesystem:

 err = mount("/dev/hd0/1", "/disk0", "fatfs:sync=write");

This function call will mount the first partition of hard disk 0 (see the documentation on the DISKIO package for a full
description of the device name format). The root of this disk can then be accessed with the name "/disk0". The mount()
function will return zero if the mount succeeded, or -1 if it failed for any reason, for example if the partition does not exist,
or the filesystem is not in FAT format.

The options after the colon in the filesystem name are passed to the filesystem to control various aspects of the filesystem.
The options currently supported are:

sync This option controls the synchronization behaviour of the block cache. If omitted then the cache is run on an
entirely write-back basis and blocks are only written back to disk when they need to be replaced with new data,
when sync() is called, or the filesystem is unmounted. This is generally the most efficient mode, but is prone
to losing data or corrupting the filesystem if power is lost while the filesystem is mounted.

If this option is set to "write" then the cache is operated on a write-back basis and every block update is written
immediately back to disk. This is the least efficient mode since any extension to a file may result in several
blocks being written back to disk. It does, however, keep the filesystem up to date on disk.

If this option is set to "close" then the cache is only written back to disk whenever a file is closed. Note that
this causes the entire cache to be written, not just those blocks associated with the file being closed. In terms of
efficiency, this is a good compromise between performance and safety.

readonly This is a stand-alone option which causes the filesystem to be mounted read-only. The effect of this is to prevent
the filesystem writing anything back to the disk. Under normal circumstances this cannot be guaranteed for a
normal mount, even when files are only read, since the filesystem may need to update the access time for files
that have been read.

When finished with, a filesystem may be unmounted using the umount() function. The following would unmount the filesys-
tem mounted above:

 err = umount("/disk0");

Warning!

It is important to unmount any removable devices before removing them, otherwise there is no guarantee that all
cached data blocks will have been written to disk. The same is true of resetting the system before unmounting
non-removable devices.

231

Chapter 35. Removable Media Support
The FAT filesystem has support for Removable Media, which is implemented in conjunction with support in the FILEIO
package, the generic DISKIO layer and the hardware disk driver. At present, the drivers which support this include the MMC/
SD card driver in bus mode (not SPI mode), subject to the presence of underlying hardware support; and also the USB mass
storage device driver.

To support Removable media, application code, or the automounter, should register a disk event callback to capture device
insertion and removal. When an insert event is detected, an attempt to mount the filesystem should be made. If this is successful,
then the files on the device can be accessed.

When the device is removed the hardware driver will reject all IO operations with an EIO response. The filesystem will
propagate these errors back to any current file IO operations which will result in read() or write() returning an EIO error.
Application code should be ready for this to happen.

A disk event callback will also be delivered and the application should arrange to call umount_force() to force the filesys-
tem to be unmounted. The FAT filesystem handles this by releasing all resources and detaching from the disk device.

To help applications indicate to the user whether the medium may be removed (by means of a LED or an on-screen icon)
the FAT filesystem supports the filesystem callback mechanism defined in the FILEIO package. This relies on the following
definitions in fileio.h:

typedef void cyg_fs_callback(cyg_int32 event, CYG_ADDRWORD data);

struct cyg_fs_callback_info
{
 cyg_fs_callback *callback; // Callback function
 CYG_ADDRWORD data; // User data value
};

// Callback events
#define CYG_FS_CALLBACK_SAFE 1 // The filesystem is up to date on disk
#define CYG_FS_CALLBACK_UNSAFE 2 // The filesystem is not up to date

A callback function may be registered after a filesystem has been mounted by using cyg_fs_setinfo() as follows:

struct cyg_fs_callback_info callback;

…

callback.callback = fs_callback;
callback.data = my_data;
err = cyg_fs_setinfo("/disk0", FS_INFO_CALLBACK, &callback, sizeof(callback));

Following this, whenever the filesystem has dirty cache blocks that are not up to date on the disk, fs_callback() will be
called with event set to CYG_FS_CALLBACK_UNSAFE. When all blocks become up to date on disk it will be called with
CYG_FS_CALLBACK_SAFE.

232

Chapter 36. Non-ASCII Character Set
Support
If long filename support is enabled (by setting CYGCFG_FS_FAT_LONG_FILE_NAMES) then all strings passed to and from
the filesystem may be encoded using UTF-8. This allows files to be named using characters beyond the basic ASCII set.

If long filename support is disabled then file names are limited to the standard 8.3 format. However, these file names are
preserved in an 8-bit clean format, if they contain non-ASCII characters, so that any multi-byte encodings are preserved.

Filesystems created by devices that do not support long filenames may have 8.3 names that are encoded using non-ASCII
and non-Unicode character sets. Typically these will be encoded according to Microsoft code page character sets. To permit
these names to pass through the rest of the filesystem, and compare correctly during file searches, when long filename support
is enabled, these names need to be translated into Unicode. Since the filesystem has no built-in internationalization support,
beyond Unicode, it is the responsibility of the application or middleware layers to supply the translation of these values to and
from Unicode. The FILEIO package defines callbacks that may be used to do this:

typedef int cyg_fs_mbcs_to_utf16le(CYG_ADDRWORD data,
 const cyg_uint8 *mbcs,
 int size,
 cyg_uint16 *utf16le);

typedef int cyg_fs_utf16le_to_mbcs(CYG_ADDRWORD data,
 const cyg_uint16 *utf16le,
 int size,
 cyg_uint8 *mbcs);

struct cyg_fs_mbcs_translate
{
 cyg_fs_mbcs_to_utf16le *mbcs_to_utf16le;
 cyg_fs_utf16le_to_mbcs *utf16le_to_mbcs;
 CYG_ADDRWORD data;
};

These callback functions may be registered after a filesystem has been mounted by using cyg_fs_setinfo() as follows:

struct cyg_fs_mbcs_translate translate;

…

translate.mbcs_to_utf16le = my_mbcs_to_utf16le;
translate.utf16le_to_mbcs = my_utf16le_to_mbcs;
translate.data = (CYG_ADDRWORD)my_data;
err = cyg_fs_setinfo("/disk0", FS_INFO_MBCS_TRANSLATE, &translate, sizeof(translate));

Following this, whenever the filesystem encounters a short file name that contains non-ASCII characters the registered mbc-
s_to_utf16le() function will be called to translate it. In the call, the data argument will be a copy of the data field of
the cyg_fs_mbcs_translate structure. The mbcs argument points to the sequence of size bytes to be translated. The resulting
translation should be stored in utf16le and the number of 16-bit values stored returned from the function.

When the filesystem needs to encode a string into the multibyte character set, it will call the utf16le_to_mbcs() function.
In the call, the data argument will be a copy of the data field of the cyg_fs_mbcs_translate structure. The utf16le
argument points to the sequence of size 16-bit values to be translated. The resulting translation should be stored in mbcs
and the number of bytes stored returned from the function.

It is important to note that translation is to and from UTF-16LE. All 16 bit values are stored in little endian byte order and
Unicode code points outside the Basic Multilingual Plane are encoded as surrogate pairs. This is the format mandated by
Microsoft for long file names in the FAT filesystem. See IETF RFC2781 for details of the encoding.

In the current implementation the utf16le_to_mbcs() will not be called. If long filename support is disabled, then the
filesystem will store multibyte characters as they are supplied. If long filename support is enabled then new files will be created
with long names if any non-ASCII characters are present. Renamed files will be converted to the long name form automatically.

233

Non-ASCII Character Set Support

This function is present in case future enhancements require it. For now applications should install a function that simply
returns zero.

234

Chapter 37. Formatting Support
If the option CYGSEM_FS_FAT_FORMAT is enabled, the filesystem is able to format the chosen volume with a FAT filesystem
while mounting it. This is controlled by a number of options passed to the filesystem through the mount function.

format This option enables formatting. If this is present without an argument, then the volume will only be formatted if the
file system cannot be mounted. With an argument of force the volume will be formatted regardless of its current
contents. Without this option present, the following options will be ignored.

fat16 This option forces the file system to be formatted using FAT16.

fat32 This option forces the file system to be formatted using FAT32. If neither the fat16 or fat32 options are provid-
ed, the formatter will choose the format based on the size of the volume. At present, any volume less than 512MiB
in size will be formatted as FAT16, all others will be FAT32.

clsize This option takes an argument giving the size of each cluster in KiB. It should be a power of 2. If not supplied, the
formatter will choose a cluster size based on the size of the volume.

label This option takes a name which should be up to 11 characters in length. This is used to set the volume label in
the boot block and to create a volume label entry in the root directory. If not supplied a default volume label will
be set (currently "eCos DISK").

A somewhat contrived example of a mount call with the format option might be as follows:

err = mount("/dev/hd0/1", "/disk0", "fatfs:format=force,fat16,clsize=8,label=My Volume");

Under normal circumstances, just giving the format option should be sufficient for most purposes:

err = mount("/dev/hd0/1", "/disk0", "fatfs:format");

This will cause the volume to be formatted according to its size, but only if it is not already mountable.

235

Chapter 38. Testing
There are a number of tests available for the FAT filesystem. These test various aspects of the FAT file system from basic
operation to support for long file names, Unicode and code page encodings, performance, synchronization and formatting.

An important feature of these tests is that they use the format mount option to auto-format any volume that cannot be mounted.
Therefore it is advisable not to run these tests on any device that contains data that should be retained.

Testing the FAT filesystem depends on the availability of a suitable device to perform the tests on. The following configuration
options are defined in the target specific disk device driver to configure the tests for the available hardware:

CYGDAT_DEVS_DISK_TEST_DEVICE

Device name of test disk or partition. This device will be mounted on the mountpoint given in CYG-
DAT_DEVS_DISK_TEST_MOUNTPOINT and tests carried out in the directory given by CYGDAT_DE-
VS_DISK_TEST_DIRECTORY.

CYGDAT_DEVS_DISK_TEST_MOUNTPOINT

Mountpoint for test disk.

CYGDAT_DEVS_DISK_TEST_DIRECTORY

Subdirectory in test device where tests can create files and directories.

CYGDAT_DEVS_DISK_TEST_DEVICE2

Device name of optional second test disk or partition. If this is not defined then the tests will carry out any operations that
would have been executed on the second disk in the test directory on the main test disk.

CYGDAT_DEVS_DISK_TEST_MOUNTPOINT2

Mountpoint for optional second test disk. If CYGDAT_DEVS_DISK_TEST_DEVICE2 is not defined then this option is
not needed.

CYGDAT_DEVS_DISK_TEST_DIRECTORY2

Subdirectory in optional second test device where tests can create files and directories. If CYGDAT_DE-
VS_DISK_TEST_DEVICE2 is not defined then this option is not needed.

236

Part IX. Multimedia File System
Important

This eCosPro-MMFS Middleware package is STRICTLY LICENSED FOR NON-COMMERCIAL PURPOSES
ONLY. It may not be used for Commercial purposes in full or in part in any format, including source code, binary
code and object code format.

A Commercial eCosPro License version 3 (or above) which explicity includes this Middleware Package is re-
quired for Commercial use.

Table of Contents
39. Introduction .. 239
40. Disk Data Structure ... 240

Directory ... 240
Free List ... 241
Block Allocation Tables .. 241
Data Area .. 242

41. Runtime Filesystem Organization ... 243
FILEIO Interface .. 243
File and Directory Handling ... 243
Caches .. 243
Disk Interface .. 243
Scan and Format .. 243

42. Configuration .. 245
Configuration Options ... 245

General Options ... 245
Formatting Options ... 245
Footprint Options .. 245

Configuration Guidelines ... 247
Block Size ... 247
BAT Size .. 247
Directory Size .. 248
Cache Sizes ... 248

43. Usage .. 249
FILEIO Interface .. 249
MMFSLib ... 249

MMFSLib API ... 249
Example .. 251

44. Testing .. 254

238

Chapter 39. Introduction
This document describes the eCosPro Multimedia Filesystem (eCosPro-MMFS) provided with eCosPro. This is implemented
by the MMFS package which uses the facilities of the FILEIO package to present its functionality to the user.

MMFS is intended to support continuous media intensive applications such as Personal Video Recorders, Video JukeBoxes
and Video-on-Demand. It is designed to support the recording and playback of data streams at constant and variable rates.

MMFS was designed with the following goals:

• Provide PVR functionality allowing several data streams to be recorded simultaneously while also replaying a stream, which
may be one of the streams being recorded. Provide the ability to fast-forward and rewind data streams.

• Make efficient use of disk storage, access times and bandwidth.

• Automatic recovery of disk data structures on restart after a power failure or other interruption. Automatic formatting of a
new disk or one that is irretrievably corrupt.

These goals are achieved by simplifying the filesystem as much as possible. So, for example, there is only one directory that
contains all files; file metadata is permanently allocated and of fixed size; caches are small and special-purpose. Many aspects
are configurable so that the filesystem may be tuned to the application.

239

Chapter 40. Disk Data Structure
A disk consists of a linear array of 512 byte sectors addressed by a sector number. MMFS aggregates these sectors into blocks
which are typically 128, 256 or 512 KiB in size. These blocks are the basic unit of addressing and allocation for MMFS. File
data is transferred between the disk and memory in whole blocks, but metadata is accessed in smaller segments.

This disk is divided into four areas, the directory, the freelist, the block allocation tables (BATs) and the data area. The following
sections describe these in detail.

Directory
The directory occupies the first one or two blocks of the disk. It consists of an array of directory entries. Each directory entry
contains the following fields:

type Entry type:

MMFS_TYPE_EMPTY Unused entry. Available for allocation.

MMFS_TYPE_VOLUME Volume label. The data field contains a volume label that describes the format of the
filesystem.

MMFS_TYPE_FILE File. A standard data file.

MMFS_TYPE_RESERVED Reserved entry. An entry that exists only to occupy a directory slot. Used to protect
the volume label against overwriting while updating adjacent entries.

bat The block number of the Block Allocation Table for this file.

size File size in bytes. For streamed files this reflects the number of data blocks in the BAT. For random access files
this is the offset of the last byte of the last block in the BAT.

created Creation time. A timestamp in seconds since the epoch implemented by the system wallclock. If no wallclock
is present then this merely records the time since the last system restart.

state File state. This records the state of the file and aids in system recovery. The possible states are:

MMFS_STATE_CREATING: The file is open for creation and is being actively extended.

MMFS_STATE_CREATED: The file has been closed and will no longer be extendable. However, random access
files may be extended in this state.

MMFS_STATE_DELETING: The file is being deleted.

checksum Checksum over directory entry. This ensures that the directory entry is correct and consistent.

data Per-entry data. The contents of this field depend on the entry type. For the volume label it contains the filesystem
format parameters. For files it may contain user-specified data. It is unused in other entry types.

name File name. A zero terminated string naming the file. This field is 64 bytes long so, with zero termination, file-
names may be a maximum of 63 bytes. There are no limits on the characters allowed.

The data field of a volume label contains the disk format parameters. This consists of the following sub-fields:

signature1 Volume label signature. This is used, together with signature2, to ensure that this is a valid volume
label. If these two fields do no contain the expected values then the disk is presumed to be new or
corrupt and the filesystem will reformat it.

version Filesystem version number. Together with the revision number this is used to determine which version
of the filesystem formatted this disk.

240

Disk Data Structure

revision Filesystem revision number.

sector_size The size of sectors on this disk. This should match the sector size reported by the disk device itself.
At present only sectors of 512 bytes are supported.

phys_block_size Physical block size. This is the size of the physical blocks supported by this disk. This may differ
from the sector size in some cases.

block_size Size of MMFS blocks in sectors.

disk_size Total number of blocks on the disk. If the number of sectors on the disk is not an exact multiple of
the block_size then the last partial block will be unused.

rootdir_size Size of the directory in blocks.

freelist_start Block address of the first block of the freelist. This will be just after the directory.

freelist_size Size of the freelist in blocks. This is calculated from disk_size so that the freelist is large enough
to contain all the blocks on the disk.

bat_size Size of each Block Allocation Table in blocks. The number of blocks per BAT is set during the
formatting process.

bat_count Number of BATs. The number of BATs is set during the formatting process and defaults to 200.

direntry_size Size of a directory entry in bytes. This is currently fixed at 256 bytes. It is present to permit changes
to the directory entry size in the future.

name_size Size of the name field in a directory entry. This is currently fixed at 64 bytes. It is present to permit
changes to the directory entry size in the future.

data_size Size of the data field in a directory entry. This is currently fixed at 160 bytes. It is present to permit
changes to the directory entry size in the future.

signature2 Second signature word.

Free List
The free list occupies a whole number of blocks following the directory. It is viewed as an array of block numbers and is large
enough to contain the number of every block on the disk, plus enough spare to make it up to a whole number of blocks.

The free list is organized as a circular list with a head and a tail. Blocks are allocated from the head and are freed to the tail.
When they reach the top of the free list, the head and tail pointers wrap back around to zero. These pointers are not stored on
the disk but are discovered each time the filesystem is mounted by scanning the free list.

The free list is organized in this way for several reasons. First, it separates block allocation from freeing. Allocations need
to proceed at a rate determined by the streaming of data onto the disk. Blocks are only freed when a file is deleted, and can
be handled as a background task. Second, the separation makes recovery of filesystem integrity simpler, since blocks will not
get reused immediately they are freed. Third, blocks that are allocated together in a particular file will be returned to the free
list together, preserving locality.

Block Allocation Tables
The BAT area follows the free list. The size and number of BATs is defined when the filesystem is formatted. BATs are arrays
of block addresses for the blocks that contain the data of the file. The number of BATs gives a hard upper limit to the number
of files permitted. Usually this is set to equal the number of directory entries. There is little point in making it larger, but it may
be useful to set it smaller if the minimal size of the directory exceeds the desired maximum number of files.

The size of each BAT represents a hard upper limit on the size of a file. BAT size should be set to cover the expected range of
file sizes. Larger data sets can be handled at application level by splitting the data across several files.

241

Disk Data Structure

Data Area
The last, and largest, area is the file data area. This comprises the rest of the disk following the last BAT. During formatting
each block in this area is added to the free list.

242

Chapter 41. Runtime Filesystem
Organization
This section covers the organization of the file system at runtime. MMFS is divided into a number of modules, each of which
covers a specific area of functionality. The following sections cover these in detail.

FILEIO Interface
This module provides the interface to the FILEIO package to present a standard file system interface. This is achieved by ex-
porting a filesystem table entry for the "mmfs" filesystem type. In fact two filesystems are exported, "mmfs" and "mmfs.format".
These behave identically except that "mmfs.format" causes the filesystem to be reformatted as part of the mount operation.

File and Directory Handling
The directory module supports operations on the directory. It provides support for searching the directory for a given file,
creation and deletion of entries and renaming entries.

A small cache of directory entries, called dirnodes, is maintained. This allows separate opens of the same file to share the
directory entry and other information.

To allow easy location of unused directory entries, and to avoid searching free entries, the module maintains a bitmap of which
directory entries are allocated. This map is constructed during the initial scan and maintained as entries are added and removed.

The file module supports the creation, deletion, reading and writing of the contents of a file. The standard file IO operations
are supported together with streaming access. Each open file is accessed through a file object, which is also maintained
by this module.

The block freelist is also managed by the file module, as is a bitmap recording the allocation state of all the BATs.

Caches
The filesystem has two caches. The metadata cache is used to cache portions of the directory, freelist and BATs. The data cache
is used to contain blocks of file data. The two caches are identical other than that the metadata cache uses small (typically 4KiB)
segments, while the data cache operates in terms of whole filesystem blocks. The caches also cause disk transfers originated
from different caches to have different priorities.

The cache module exports a variety of functions for reading and writing directory entries in the directory, block numbers in
the freelist and BATs, and for accessing file data. These functions perform the necessary translations into sector addresses and
access the appropriate cache.

Disk Interface
The disk interface module provides support for handling transfers to and from the disk. It consists of a priority ordered queue
of block descriptors plus a thread that picks the first descriptor off the queue and submits it to the disk device driver. The block
descriptors used by the disk module are the same as those used by the caches.

Scan and Format
When a filesystem is mounted it performs a startup scan to determine the format of the disk and fix up any problems caused
by any unexpected failures. The scan goes through the following steps:

• Scan the freelist looking for the head and tail offsets. Each block seen in the freelist is also recorded as having been seen
and as being free.

243

Runtime Filesystem Organization

• Scan the directory. For each entry, check that its checksum is correct. If not, mark the entry empty and correct the checksum.
For each file, if it is in CREATING state, complete the operation by ensuring that each block in the BAT is not also in the
freelist and changing its state to CREATED. If it is in DELETING state, complete the operation by returning all the blocks
in its BAT to the freelist and deleting the directory entry.

• Scan the BATs of all files, recording that they have been seen and checking that they are not also in the freelist. Any block
that is both in the freelist and a BAT is removed from the freelist.

• If any blocks have not yet been seen, then these orphaned blocks are inserted into the freelist.

• If any of the previous steps have updated the freelist, then the on-disk data structure is rebuilt. This has the side effect of
sorting the freelist into block order, improving performance in future.

If the scan finds that the disk is corrupt or unformatted, or the filesystem has been mounted using the "mmfs.format" filesystem,
then the disk is reformatted. Formatting consists of zeroing the directory and all the BATs, and building the freelist with all
the blocks in the data area. Finally a volume label is written to the first entry in the directory.

244

Chapter 42. Configuration
Configuration Options
The format and footprint of the filesystem are controlled by a number of configuration options, described in the following
sections.

General Options
The following options define the version and revision of the filesystem.

CYGNUM_FS_MMFS_VERSION

This is the version of the filesystem supported.

Default value: 1

CYGNUM_FS_MMFS_REVISION

This is the revision of the filesystem supported.

Default value: 0

Formatting Options
These options control the formatting of an MMFS disk. They are only used when a filesystem is formatted. Under normal
circumstances the filesystem will fetch these values from the disk volume label.

CYGNUM_FS_MMFS_BLOCK_SIZE

This option defines the size of filesystem blocks. The value is defined in KiB and must be a power of 2.

Default value: 256

CYGNUM_FS_MMFS_ROOTDIR_SIZE

This option defines the size of the root directory in blocks. Since all files are contained in this directory, its size gives a
hard limit to the number of files that the filesystem may contain.

Default value: 1

CYGNUM_FS_MMFS_BAT_SIZE

This option defines the size of the Block Allocation Tables used to store the addresses of file data blocks. This gives a
hard upper limit on the size of a file.

Default value: 2

CYGNUM_FS_MMFS_BAT_COUNT

This option defines the number of BATs allocated in the filesystem. The default is to define 200 BATs.

Default value: 200

Footprint Options
These options control the memory footprint and other parameters for an active filesystem.

245

Configuration

CYGNUM_FS_MMFS_FILE_COUNT

This option defines the maximum number of open files supported by the filesystem. This depends on the expected number
of data streams, plus any random access files, that may be open simultaneously.

Default value: 4

CYGNUM_FS_MMFS_DIRNODE_COUNT

This option defines the maximum number of cached directory entries. At least one is required for each open file, plus a
few for handling other filesystem operations such as renaming or deleting.

Default value: CYGNUM_FS_MMFS_FILE_COUNT+4

CYGNUM_FS_MMFS_MULTI_BUFFER

This defines the level of per-file multi-buffering. During streaming the filesystem will read ahead and write behind by
this number of data blocks.

Default value: 2

CYGNUM_FS_MMFS_DATA_CACHE_SIZE

This defines the amount of memory occupied by the data cache. The default value is calculated from the multi-buffering
level, and the number of files.

Default value: (CYGNUM_FS_MMFS_MULTI_BUFFER+2) * CYGNUM_FS_MMFS_FILE_COUNT *
CYGNUM_FS_MMFS_BLOCK_SIZE

CYGNUM_FS_MMFS_META_CACHE_SIZE

This defines the amount of memory occupied by the metadata cache. The default value is calculated from the number of
files plus an overhead to support the freelist and directory scanning.

Default value: (CYGNUM_FS_MMFS_FILE_COUNT+6) * CYGNUM_FS_MMFS_META_BLOCK_SIZE

CYGNUM_FS_MMFS_META_BLOCK_SIZE

This defines the size of a metadata cache block. These are used to contain portions of the the directory, freelist and BATs.

Default value: 4

CYGNUM_FS_MMFS_DISKIO_PRIORITY

This defines the priority of the disk IO thread. This thread should generally run at a high priority since it does very little
but it is vital to the performance of the filesystem.

Default value: 4

CYGNUM_FS_MMFS_FLUSH_INTERVAL

This defines the interval at which metadata cache blocks are flushed. Each time this interval expires the oldest dirty block in
the cache is written to disk. This allows dirty data to be trickled out to disk without severely impacting streaming transfers.

Default value: 10

CYGNUM_FS_MMFS_FLUSH_PERIOD

This defines the cache flush period in multiples of the cache flush interval. Each time this period expires, the entire metadata
cache will be flushed to disk. The action of the flush interval will generally cause this operation to do nothing.

Default value: 6

246

Configuration

Configuration Guidelines
This section attempts to give some guidelines about how to configure MMFS and the various tradeoffs that can be made.

Block Size
The choice of block size is the most important configuration option. The filesystem uses the large block size to amortize access
time across large data transfers. The blocks also provide high locality for the data they contain, avoiding the need to implement
complex localizing allocation and access mechanisms in the filesystem. The choice of block size depends on several factors:
the access time and data transfer rate of the disk, the number and rate of the streams to be sustained.

The important disk performance factors to consider are the worst-case access time and the minimum sustained transfer rate.
Disk manufacturers generally quote the average access time for disks and keep the worst case figures under wraps since they
are often considerably higher than the average. Access time generally consists of seek time plus settling time plus rotational
delay plus command submission overhead. The worst case seek time is generally a move from one edge of the disk to the other.
Worst case rotational delay occurs when the target sector has just passed the head when it reached the destination cylinder; for
a 7200RPM disk, this is 8.3ms. Settling and command time tend to be constant, although if the access includes a head switch
then there may be a small contribution from that. As a rule of thumb, worst case access time can be taken to be about 3 times
the manufacturers quoted average access time.

The sustained transfer rate for a disk varies across the disk with the differences in recording density due to zoning. Most current
disks have 10 or more zones. The best data rate comes from the outer zones, and the worst from the inner zones and may differ
by several MiB/s. Transfer of data to or from the disk will also incur head change and single cylinder seek delays for large
multi-sector transfers. Another factor that contributes to the transfer rate is the speed with which data can be transferred across
the disk interface. This will depend on things like the DMA modes supported by the disk and the host interface, cable design,
cache and MMU factors. Embedded systems often do not have the kind of high performance interfaces that are common on
data-centre servers.

A standard definition TV stream uses a data rate of 4-10Mb/s. An HDTV stream can run up to 27Mb/s, although current systems
only run at 14 to 17 Mb/s. These are encoded using MPEG-2, which provides a highly variable data rate depending on source
and contents between 2 and 14Mb/s.

To see what effect different block sizes have on throughput, let us consider an 8.2Mb/s stream, which conveniently approxi-
mates to 1MiB/s. The disk is assumed to spin at 7200 RPM, have a worst case access time of 30ms and a worst case sustained
transfer rate of 20MiB/s. If this disk is formatted with 256KiB blocks, then the time to fetch one block is 42.5 ms (30ms worst
case access time plus 12.5ms worst case transfer time). One second's worth of data is four blocks, taking 170ms. If the disk is
formatted with 64KiB blocks, then the time to fetch one block is 33.125ms (30ms worst case access time plus 3.125ms worst
case transfer time). One second's worth of data is sixteen blocks, taking 530ms.

From this we can see that using 256KiB blocks, we have enough throughput on this disk to run five or six 1MiB/s streams,
but with 64KiB blocks there is barely the capacity for running two streams. The figures used here are worst case times, and on
average the disk will be able to sustain more streams and higher data rates. However, if guarantees are to be met for glitch-free
recording and playback, it is necessary to calculate for the most demanding scenario where seek distance, rotational delay and
stream data rate conspire to make things difficult, even if such situations are rare and transient in real life.

BAT Size
The size of the Block Allocation Tables determines the amount of data that can be recorded in a single file. If the disk is
formatted with a 256KiB block size a single block will contain 64Ki block addresses, which, at 1MiB/s, will record 16Ki
seconds of data, or about 4.5 hours. This is sufficient for most PVR applications where most recordings are 30 minutes or an
hour. It even accommodates most movies and sporting events. Increasing the BAT size to two or more blocks will allow longer
recordings to be made in a single file, but at the expense of wasting space in the common case. An alternative approach would
be to record a single stream in multiple files at the application level.

The number of BATs is also an important factor to consider, and is linked to the directory size. This relationship will be
described in the next section. However, an important factor in choosing the size and number of BATs is the time taken to
format the disk and perform filesystem startup. During formatting all the BATs must be zeroed, something that can take a long

247

Configuration

time if they are large an numerous. During filesystem startup, all BATs allocated to current files are scanned to detect orphaned
blocks. The time taken to do this is proportional to the size of the BATs and the number of files.

Directory Size
The size of the directory provides one of the limits on how many files may be stored in the filesystem. The directory occupies
a whole number of blocks, and with 256KiB blocks and 256 byte directory entries, each directory block can contain 1024
entries. This may be more than enough for most purposes: on a 160GB disk this averages to about 160MB per file, or 2m40s
at 1MiB/s. Another way of looking at this is that a 160GB disk can contain about 40 hours of recorded TV, or about 80 30
minute programs. In this context, 1024 entries is more than adequate.

The other limit on the number of files is the number of BATs. These are allocated dynamically to files as they are created.
Running out of BATs will cause file creation to fail, even if there are directory entries free. Having more BATs that directory
entries is wasteful. Even having the same number, given the calculation above, can be seen as excessive. For a 160GB disk,
about 200 BATs would be a more suitable figure.

Cache Sizes
The filesystem contains two caches: a metadata cache for the directory, freelist and BATs; and a data cache for file contents. The
number of blocks in each cache is important to the correct functioning of the filesystem. Too many blocks and the filesystem
occupies too much RAM. Too few blocks and data may be evicted from the cache too soon and result in performance problems.

The size of the metadata cache depends on the free list, the number of open files and any directory searches that are being
made. The free list requires two cache blocks, one for the head and one for the tail. Each open file needs a block to contain the
current read or write position in the BAT and, occasionally, an extra block to handle the prefetch of the next block in the BAT.
Concurrent directory searches also consume metadata cache blocks. The default size of the metadata cache is therefore set to
use two blocks for the free list, plus one for each possible open file, plus four to take up the prefetches and searches.

The size of the data cache depends only on the maximum number of open files. For each file we need a buffer for each level
of multi-buffering, plus two to support the read-ahead or write-behind.

248

Chapter 43. Usage
MMFS is accessed through the FILEIO package which presents a standard POSIX compatible IO interface through which
applications use standard open(), read(), write() and close() calls. Streaming support is provided through a small
library, mmfslib, that presents a more application-friendly interface.

FILEIO Interface
MMFS supplies most of the standard file IO functionality. However, since it is optimized for supporting streamed data, it has
a number of restrictions that mean that it does not always behave like a general-purpose filesystem.

• Files may not be resized after creation and are essentially write-once/read-many. Between the initial open() and close()
that creates a file it will be extended as requires. On subsequent opens, even those that specify O_WRITE, data may only
be written to the existing file extent.

• If an attempt is made to create a file that already exists, the open() will fail. Instead the file must be deleted first and
may then be created anew.

• Creating a file with O_EXCL will always fail.

• If an attempt is made to rename a file to a filename that already exists, the rename() will fail, rather than overwriting the
destination file. This includes attempting to rename the file to its own name. Instead the destination file must be deleted first.

MMFSLib
MMFS provides a simple library for handling streamed data. This comprises a small set of API function. The following sections
describe the API, followed by a simple example.

MMFSLib API
The following functions are supported.

int mmfs_stream_open(const char *path, int flags);

Open an MMFS file for streaming. The flags argument is either MMFS_FLAGS_READ to open an existing file for
reading or MMFS_FLAGS_WRITE to create a new file for writing. If the file doesn't exist (when opening for reading) or
it does exist (when opening for writing) -1 will be returned and errno will be set to a suitable error code. On success a
file descriptor is returned which may be used in other mmfslib calls, or in normal FILEIO calls.

The stream starts in RANDOM mode and must be set to streaming mode with a call to mmfs_stream_set_mode().

int mmfs_stream_info(int fd, mmfs_file_info *info);

This function returns information about the file. The mmfs_file_info structure contains the following fields:

buffer_size

The size of data buffers that will be exchanged using mmfs_stream_next_buffer().

multi_buffers

The number of buffers that the application may have in hand between calls to mmfs_stream_next_buffer().

file_size

The current size of the file.

249

Usage

max_size

The maximum size the file may grow to.

int mmfs_stream_set_mode(int fd, int mode, int stride);

Set the file mode. The mode may be one of the following:

MMFS_MODE_RANDOM

This is the default mode. A file in this mode should be accessed using the standard filesystem API.

MMFS_MODE_READ_FORWARD

In this mode the file is being read forward. The stride argument defines the number of buffers skipped between
each call to mmfs_stream_next_buffer(). A stride of 1 will read the whole file sequentially. A stride of 2 will read
every other buffer; a stride of 3 will read every third buffer, and so on.

MMFS_MODE_READ_BACKWARD

This is similar to MMFS_MODE_READ_FORWARD except that the file is read backwards. The stride applies in exactly
the same way except, obviously, the buffers supplied move progressively backwards through the file.

MMFS_MODE_WRITE

This sets the file up for streamed writing. The stride argument is not used and is forced to 1.

Mode changes take effect immediately and apply from the file's current location. A file only becomes capable of streaming
after mmfs_stream_set_mode() has been called for the first time. Changing file mode during streaming may incur
a performance penalty as new data blocks are fetched. A file may not be switched from a read mode to a write mode or
vice versa.

int mmfs_stream_get_mode(int fd, int *mode, int *speed);

This function returns the mode and speed previously set by a call to mmfs_stream_set_mode().

int mmfs_stream_next_buffer(int fd, void **buffer);

This function fetches the next stream buffer. The exact semantics of this function depend on the mode and the level of
multi-buffering.

If the file has been set to one of the read modes, then each call returns the next buffer full of data from the file according
to the direction and stride. The level of multi-buffering determines how many buffers the application may have in hand
at any one time. For example, with a multi-buffering level of 2, the first two calls to this routine will return the first two
buffers from the stream. The third call will return the third buffer, but will also cause the first buffer to become invalid
and be returned to the filesystem for reuse. The fourth call will return the fourth buffer but will also invalidate the second
buffer, and so on through the stream.

If the file has been set to the write mode, then each call returns an empty buffer for the application to fill with data. The
multi-buffering level determines when the buffers will be written to the file. For example, with a multi-buffering level
of 2, the first two calls will return an empty buffer each. The third call will cause the first buffer to be written to the file
and will return a new empty buffer to replace it. The fourth call will cause the second buffer to be written to the file and
a new buffer to be returned, and so on.

int mmfs_stream_set_data(int fd, void *buffer);

This function sets the per-directory entry data on the file. The buffer argument must point to MMFS_DATASIZE bytes
of data that will be written into the directory entry.

int mmfs_stream_get_data(int fd, void *buffer);

This function reads the per-directory entry data on the file. The buffer argument must point to MMFS_DATASIZE bytes
of memory that will be set to the data read from the directory entry.

250

Usage

int mmfs_stream_close(int fd);

This function closes the file. Any buffers still in possession of the application will be invalidated. If the file was open for
writing the contents of these buffers will be written to the file.

Example
The following code provides a very simple example of how MMFSLib should be used. The code presented here is somewhat
simplified and for clarity does not contain any error checking and recovery. It is assumed that the IO devices are accessed via
a simple DMA interface; clearly real devices might be more complex than this.

First, a simple routine to stream data from a device to a file for a given duration:

static void write_stream(char *name, int duration)
{
 int i;
 int fd;
 int result;
 void *buffer;
 int bufno = 0;
 int buffer_size;
 mmfs_file_info info;
 cyg_tick_count end;

 // Open the stream for writing.
 fd = mmfs_stream_open(name, MMFS_OPEN_WRITE);

 // Get stream information, we are only interested in the buffer
 // size.
 result = mmfs_stream_info(fd, &info);

 buffer_size = info.buffer_size;

 // Set the stream into streamed write mode. The filesystem in now
 // ready to stream data to this file.
 result = mmfs_stream_set_mode(fd, MMFS_MODE_WRITE, 1);

 // Convert duration from seconds to an absolute end time in system
 // ticks.
 end = cyg_current_time() + duration*ticks_per_second;

 // Prime the device with the first set of buffers, this will start
 // the DMA transfers going.
 for(i = 0; i < CYGNUM_FS_MMFS_MULTI_BUFFER; i++)
 {
 result = mmfs_stream_next_buffer(fd, &buffer);

 dma_start(&input, bufno, DMA_READ, buffer, buffer_size);

 bufno++;
 if(bufno >= CYGNUM_FS_MMFS_MULTI_BUFFER) bufno = 0;
 }

 // Wait for the first buffer to fill.
 dma_wait(&input, bufno);

 // Now stream to the file for the given duration.
 while(cyg_current_time() < end)
 {
 // Fetch a new buffer from MMFS. As a side effect this also
 // invalidates the oldest buffer, which will be the one that
 // has just finished its DMA transfer.
 result = mmfs_stream_next_buffer(fd, &buffer);

 // Set up a DMA transfer from the device
 dma_start(&input, bufno, DMA_READ, buffer, buffer_size);

 bufno++;
 if(bufno >= CYGNUM_FS_MMFS_MULTI_BUFFER) bufno = 0;

251

Usage

 // Wait for the next device buffer to complete.
 dma_wait(&input, bufno);
 }

 // Wait for remaining buffers to finish
 for(i = 0; i < CYGNUM_FS_MMFS_MULTI_BUFFER; i++)
 {
 bufno++;
 if(bufno >= CYGNUM_FS_MMFS_MULTI_BUFFER) bufno = 0;

 dma_wait(&input, bufno);
 }

 // Finally close the stream.
 result = mmfs_stream_close(fd);
}

The code to read a stream is very similar, although this time it is parameterized by the required stride rather than the duration:

static void read_stream(char *name, int stride)
{
 int i;
 int fd;
 int result;
 void *buffer;
 int bufno = 0;
 int buffer_size;
 mmfs_file_info info;

 // Open the stream for reading.
 fd = mmfs_stream_open(name, MMFS_OPEN_READ);

 // Get stream information, we are only interested in the buffer
 // size.
 result = mmfs_stream_info(fd, &info);

 buffer_size = info.buffer_size;

 // Set the stream into streamed read mode using the given
 // stride. The filesystem will start preparation for streaming by
 // prefetching the first data blocks up to the multi-buffer limit.
 result = mmfs_stream_set_mode(fd, MMFS_MODE_READ_FORWARD, stride);

 // Prime the device with the first set of buffers, this will start
 // the DMA transfers going.
 for(i = 0; i < CYGNUM_FS_MMFS_MULTI_BUFFER; i++)
 {
 result = mmfs_stream_next_buffer(fd, &buffer);

 dma_start(&output, bufno, DMA_WRITE, buffer, buffer_size);

 bufno++;
 if(bufno >= CYGNUM_FS_MMFS_MULTI_BUFFER) bufno = 0;
 }

 // Wait for the first buffer to empty.
 dma_wait(&input, bufno);

 // Now stream from the file to the device until we reach the end
 // of the file.
 for(;;)
 {
 // Fetch a new buffer full of data from MMFS. As a side effect
 // this also invalidates the oldest buffer, which will be
 // the one that has just finished its DMA transfer.
 result = mmfs_stream_next_buffer(fd, &buffer);
 if(result < 0 && errno == EEOF)
 break;

 // Set up a DMA transfer to the device
 dma_start(&output, bufno, DMA_WRITE, buffer, buffer_size);

252

Usage

 bufno++;
 if(bufno >= CYGNUM_FS_MMFS_MULTI_BUFFER) bufno = 0;

 // Wait for the next device buffer to complete.
 dma_wait(&output, bufno);
 }

 // Wait for remaining buffers to finish
 for(i = 0; i < CYGNUM_FS_MMFS_MULTI_BUFFER; i++)
 {
 bufno++;
 if(bufno >= CYGNUM_FS_MMFS_MULTI_BUFFER) bufno = 0;

 dma_wait(&output, bufno);
 }

 // Finally close the stream.
 result = mmfs_stream_close(fd);
}

The example.c test program contains versions of both of these routines.

253

Chapter 44. Testing
The MMFS package contains a number of test programs:

mmfs1 This program just tests the standard FILEIO interface of the filesystem. It is a simplified version of the filesystem
functionality tests used by FATFS and RAMFS.

stream1 This program is a simple test of the streaming support. It writes and reads streams at defined data rates and checks
that the rate is maintained and that data integrity is preserved.

pvr1 A basic emulation of a Personal Video Recorder. Two streams are written and one of them read back, after a
delay. This simulates a PVR recording one channel while using a pause-live feature on a second channel.

pvr2 This program records a large number of short streams on the disk. This checks directory handling.

pvr3 This is a variant on pvr1, which records 3 streams while replaying one.

format A simple test that uses the "mmfs.format" filesystem instead of "mmfs", thus reformatting the disk.

example This contains versions of the write_stream() and read_stream() example functions described earlier,
together with sufficient infrastructure to allow them to be run.

254

Part X. Disk IO Package

Table of Contents
45. Introduction .. 257
46. Configuring the DISK I/O Package .. 258

Including DISK I/O in a Configuration .. 258
Configuring the DISK I/O Package .. 258

47. Usage .. 259
48. Hardware Driver Interface .. 261

DevTab Entry .. 261
Disk Controller Structure ... 261
Disk Channel Structure .. 262
Disk Functions Structure .. 262
Callbacks ... 264
Putting It All Together .. 265

256

Chapter 45. Introduction
This document describes the Disk I/O subsystem provided in eCos. This is implemented by the DISKIO package. This package
presents a disk driver API to clients, interprets partition tables and provides the infrastructure in which hardware-specific disk
device drivers operate.

257

Chapter 46. Configuring the DISK I/O
Package
This chapter shows how to include the DISK I/O package an eCos configuration and how to configure it once installed.

Including DISK I/O in a Configuration
The DISK I/O subsystem is contained in a single eCos package, CYGPKG_IO_DISK. However, it depends on the services of
the following other packages for complete functionality:

CYGPKG_IO

Device IO package. Disk devices operate within the generic device infrastructure.

CYGPKG_ERROR

The error package. Disk devices need to return standard error codes when operations fail.

The DISK I/O package can be added to any configuration just by adding its package during configuration. However, it is
usually added as part of a group which also includes a filesystem implementation and hardware device drivers.

Configuring the DISK I/O Package
The option "Detect FAT boot sector" (CYGSEM_IO_DISK_DETECT_FAT_BOOT) can be used with certain types of remov-
able media which are treated undeterministically by Windows PCs, such as USB keys. These usually contain a partition table,
but if completely wiped, Windows will not recreate the partition table, and instead place a FAT filesystem directly on the
device with no partition table. Enabling this option detects this and fabricates a partition table in memory instead. This option
is usually only needed on systems which use removable media likely to be shared with Windows PCs, as indicated from low
level drivers with the CYGINT_IO_DISK_DETECT_FAT_BOOT_DEFAULT CDL interface.

The CDL option CYGSEM_IO_DISK_EFI_GPT is used to support media formatted with an Extensible Firmware Interface
(EFI) GUID Partition Table (GPT). This is limited to media presenting a single \"protective\" MBR partition entry covering the
GPT managed space. Currently the feature is limited to providing the number of partitions supported by the parent filesystem
package, and only those partitions accessible using 32-bit LBA values.

The CDL interface CYGINT_IO_DISK_ALIGN_BUFS_TO_CACHELINE indicates to the disk I/O package, and to its users,
that data transfer buffers need to be aligned to data cache line boundaries.

The CDL interface CYGINT_IO_DISK_REMOVABLE_MEDIA_SUPPORT indicates that the hardware disk driver im-
plements removable media support. This will cause the disk I/O package to implement the CYG_IO_SET_CON-
FIG_DISK_EVENT and CYG_IO_GET_CONFIG_DISK_EVENT configuration option keys.

258

Chapter 47. Usage
The user API for disk devices is the same as that for serial devices except that cyg_io_bread() and cyg_io_bwrite()
are used for data transfers instead of cyg_io_read() and cyg_io_write().

// Write data to a block device
Cyg_ErrNo cyg_io_bwrite(
 cyg_io_handle_t handle,
 const void *buf,
 cyg_uint32 *len,
 cyg_uint32 pos)

This function sends data to a device. The size of data to send is contained in *len and the actual size sent will be returned in
the same place. This value must be a count of 512 byte sectors. The pos specifies the position on the disk to which the data
will be written. It is a linear sector number.

// Read data from a block device
Cyg_ErrNo cyg_io_bread(
 cyg_io_handle_t handle,
 void *buf,
 cyg_uint32 *len,
 cyg_uint32 pos)

This function receives data from a device. The desired size of data to receive is contained in *len and the actual size obtained
will be returned in the same place. This value must be a count of 512 byte sectors. The pos specifies the position on the disk
from which the data will be read. It is a linear sector number.

Disk devices are named in the same way as other devices, thus "/dev/hd0" would name the first hard disk. The exact names
used for any disk are usually part of the configuration for the target-specific device driver.

Disk devices may be partitioned using a standard DOS partition table. If this is the case then an additional element to the device
name specifies the partition to be used. Thus "/dev/hd0/1" specifies partition 1, "/dev/hd0/2" partition 2, "/dev/hd0/3" partition
3 and "/dev/hd0/4" partition 4. The special name "/dev/hd0/0" specifies the entire disk without honoring the partition table.
This is only really useful for accessing the master boot record in sector zero, to change the partitioning. Any other kind of
access may corrupt the disk.

Application code may also install a disk event callback function. It does this using the CYG_IO_SET_CONFIG_DISK_EVENT
configuration option using the cyg_io_set_config(). The buffer should point to an instance of the following structure:

typedef void disk_channel_event_t(cyg_uint32 event, cyg_uint32 devno, CYG_ADDRWORD data);

struct cyg_disk_event_t
{
 disk_channel_event_t *event; // Event callback function
 CYG_ADDRWORD event_data; // Event callback user data
};

// Codes for disk_channel_event_t event argument.
#define CYG_DISK_EVENT_CONNECT 0x01
#define CYG_DISK_EVENT_DISCONNECT 0x02

The function should be installed on the base disk device driver (i.e. "/dev/hd0" rather than "/dev/hd0/0") and will be called
when certain events occur. At present these are restricted to CONNECT and DISCONNECT events when a new disk is attached
to, or detached from, the disk controller. Support for this depends on the ability of the underlying hardware device driver being
able to detect these events.

A successful lookup of the base disk device driver does not necessarily imply that removeable media is present at that time.
Hardware drivers supporting removeable media will typically indicate a successful lookup, irrespective of the presence of a
physical disk.

The reason for this is that the call to cyg_io_set_config() for the CYG_IO_SET_CONFIG_DISK_EVENT operation
may quite reasonably occur when no physical media is present, so the lookup must succeed in order to obtain a valid I/O handle.
That handle is, however, unusable for operations other than CYG_IO_SET_CONFIG_DISK_EVENT.

259

Usage

The context in which the callback is made depends on the implementation of the disk driver. It cannot be assumed that it will
occur in a context in which it is safe to make complex calls. It should be assumed that the call is being made from DSR context,
where blocking kernel calls may not be made. In general the function should record the details of the call and pass off control
to a worker thread. See the automounter in the FILEIO package for an example of how this can be done.

When hardware drivers notice the CYG_IO_SET_CONFIG_DISK_EVENT call, they should immediately check for the pres-
ence of a disk, in case one is already connected at the time of event registration. The event callback should be made for any
connected disk devices (and not for unconnected disks).

260

Chapter 48. Hardware Driver Interface
While the DISK I/O package provides the top level, hardware independent, part of each disk driver, the actual hardware interface
is handled by a hardware dependent interface module. To add support for a new disk device, the user should be able to use the
existing hardware independent portion and just add their own interface driver which handles the details of the actual device.
The user should have no need to change the hardware independent portion.

The interfaces used by the disk driver and disk implementation modules are contained in the file <cyg/io/disk.h>.

Note

In the sections below we use the notation <<xx>> to mean a module specific value, referred to as “xx” below.

DevTab Entry
The interface module contains the devtab entry (or entries if a single module supports more than one interface). This entry
should have the form:

BLOCK_DEVTAB_ENTRY(<<module_name>>,
 <<device_name>>,
 0,
 &cyg_io_disk_devio,
 <<module_init>>,
 <<module_lookup>>,
 &<<disk_channel>>
);

Arguments

module_name The "C" label for this devtab entry

device_name The "C" string for the device. E.g. /dev/serial0.

cyg_io_disk_devio The table of I/O functions. This set is defined in the hardware independent disk driver
and should be used exactly as shown here.

module_init The module initialization function.

module_lookup The device lookup function. This function typically sets up the device for actual use,
turning on interrupts, configuring the controller, etc.

disk_channel This table (defined below) contains the interface between the interface module and the
disk driver proper.

Disk Controller Structure
The arrangement of disk hardware usually has a number of physical disks connected to a common controller. For example,
each IDE interface connects to just two disk devices, a SCSI controller may be connected to several disks. The important
feature to consider here is that any current data transfer for any one disk on a controller prevents transfers being started on
any other disks on that controller until it is finished. Disk controllers are therefore the level at which concurrency and interrupt
controls must be implemented.

Each disk controller is created by the macro:

DISK_CONTROLLER(l, dev_priv)

Arguments

l The "C" label for this structure.

261

Hardware Driver Interface

dev_priv A placeholder for any device specific data for this controller.

Disk Channel Structure
Each physical disk connected to a controller is represented by a disk channel. Each channel is defined with the following macro:

DISK_CHANNEL(l, funs, dev_priv, controller, mbr_supp, max_part_num)

Arguments

l The "C" label for this structure.

funs The set of interface functions (see below).

dev_priv A placeholder for any device specific data for this channel.

controller Pointer to controller to which this disk channel is attached.

mbr_supp Does this disk support partitioning.

max_part_num The maximum number of partitions to be supported.

The interface from the hardware independent driver into the hardware interface module is contained in the funs table. This
is defined by the DISK_FUNS macro.

If the space for the channel has been allocated elsewhere, the following macro may be used to initialise it:

DISK_CHANNEL_INIT(dc, funs, dev_priv, controller, disk_info, part_dev_tab,
 part_chan_tab, part_tab, mbr_supp, max_part_num)

The arguments are as for DISK_CHANNEL() except for the following:

Arguments

dc The name of an object of type disk_channel. This object will be initialised by the macro.

disk_info The name of an object of type disk_info.

part_dev_tab The name of an array of objects of type struct cyg_devtab_entry. The number of array
members must equal max_part_num, plus one.

part_chan_tab The name of an array of objects of type disk_channel. The number of array members
must equal max_part_num.

part_tab The name of an array of objects of type cyg_disk_partition_t. The number of array mem-
bers must equal max_part_num.

Disk Functions Structure
DISK_FUNS(l, read, write, get_config, set_config)

Arguments

l

The "C" label for this structure.

read

Cyg_ErrNo (*read)(disk_channel *priv,
 void *buf,
 cyg_uint32 len,

262

Hardware Driver Interface

 cyg_uint32 block_num)

This function reads len sectors of data from the disk at the sector number given by block_num. The actual quantity of
data transferred depends on the disk's sector size, which can be obtained using the CYG_IO_GET_CONFIG_DISK_INFO
key.

If the read completes immediately, or the low level driver is configured to do all IO synchronously, this function will return
ENOERR, and if it fails will return a negative error code, for example -EIO. If the function returns -EWOULDBLOCK then
it has only started the transfer and will indicate its completion by calling the transfer_done callback.

write

Cyg_ErrNo (*write)(disk_channel *priv,
 void *buf,
 cyg_uint32 len,
 cyg_uint32 block_num)

This function writes len sectors of data to the disk at the block given by block_num. The actual quantity of data
transferred depends on the disk's sector size, which can be obtained using the CYG_IO_GET_CONFIG_DISK_INFO key.

If the write completes immediately, or the low level driver is configured to do all IO synchronously, this function will
return ENOERR, and if it fails will return a negative error code, for example -EIO. If the function returns -EWOULDBLOCK
then it has only started the transfer and will indicate its completion by calling the transfer_done callback.

get_config

bool (*get_config)(serial_channel *priv,
 cyg_uint32 key, const void *xbuf, cyg_uint32 *len);
)

This function is used to get configuration data from the device. The key argument defines the configuration data to be
fetched. The xbuf and *len arguments describe a buffer into which the data will be put. The function should return
true if the key type is supported and the buffer of sufficient length to contain the data. The value of *len should be
updated to actual length of the data returned. The function should return false if the driver cannot support the key value
or the buffer is of insufficient length.

The following keys may be used to get information from a disk device.

CYG_IO_GET_CONFIG_DISK_INFO

This key causes a cyg_disk_info_t structure, as defined in diskio.h to be returned.

CYG_IO_GET_CONFIG_DISK_EVENT

This key returns a copy of the cyg_disk_event_t previously set by CYG_IO_SET_CONFIG_DISK_EVENT.

set_config

bool (*set_config)(serial_channel *priv,
 cyg_uint32 key, const void *xbuf, cyg_uint32 *len);
)

This function is used to change the configuration of the device. The key argument defines the kind of configuration data
to be set. The xbuf and *len arguments describe a buffer in which the data is supplied. The function should return true
if the key type is supported and the buffer of the correct length and the data appears valid. The function should return
false if the driver cannot support the key value or the buffer is the wrong length, or the data is invalid in some other way.

The following keys can be sent to a driver:

CYG_IO_SET_CONFIG_DISK_MOUNT

This is invoked from the filesystem after locating the device driver to record that the device has been mounted. The
generic device layer records the mount against both the partition and physical disk and passes the call on down to the
driver. The xbuf and *len arguments are unused.

263

Hardware Driver Interface

CYG_IO_SET_CONFIG_DISK_UMOUNT

This is invoked from the filesystem to record that the device has been unmounted. The generic device layer records
the unmount against both the partition and physical disk and passes the call on down to the driver. If the chan-
>info->mounts counter is zero, the driver should call the disk_disconnected() callback to prepare the
generic layer for a potential media change. The xbuf and *len arguments are unused.

CYG_IO_SET_CONFIG_DISK_EVENT

This may be invoked by the application to set a disk event callback function. The generic disk layer is mostly re-
sponsible for handling this by recording the event function in the disk channel structure. The call is additionally
passed down to the hardware driver so that it may prepare the hardware, if necessary. The xbuf should point to a
cyg_disk_event_t structure.

Callbacks
The interface from the hardware specific driver to the hardware independent driver is contained in a disk_callbacks_t structure.
A pointer to this is automatically included into the disk channel structure callbacks field by the DISK_CHANNEL() macro.
The disk_callbacks_t structure contains the following function pointers:

disk_init

cyg_bool (*disk_init)(struct cyg_devtab_entry *tab);

Initialize the disk. This must be called from the disk driver's init routine to initialize the device independent driver's data
structures for this disk.

disk_connected

Cyg_ErrNo (*disk_connected)(struct cyg_devtab_entry *tab,
 cyg_disk_identify_t *ident);

This is called when a valid disk device has been recognised on the given disk channel. At this point, if the disk supports
partitioning the disk's partition table will be read and the partitions determined. This may be called either from the driver's
init routine, for fixed disks, or alternatively from the driver's lookup routine. It may also be called from other places when,
for example, disk insertion is detected. All the fields of the ident structure must be filled in by the driver before this
call is made.

disk_disconnected

Cyg_ErrNo (*disk_disconnected)(struct disk_channel *chan);

This is called when, for example, disk removal is detected. It invalidates all the existing partition and driver information
and renders the channel ready for a new disk device to be inserted.

disk_lookup

Cyg_ErrNo (*disk_lookup)(struct cyg_devtab_entry **tab,
 struct cyg_devtab_entry *sub_tab,
 const char *name);

This must be called from the driver's lookup function to complete the lookup process. It is here that the interpretation of
the partition number element of the device name is done and a new devtab entry created for the partition if necessary.

disk_transfer_done

void (*disk_transfer_done)(struct disk_channel *chan,
 Cyg_ErrNo res);

When the call to the read() or write() disk function returns -EWOULDBLOCK then the driver must indicate comple-
tion of the actual transfer by calling this function. This function should not be called from an ISR, but it may be called
from the DSR.

264

Hardware Driver Interface

In addition to these functions in disk_callbacks_t, the hardware driver is also responsible for calling the disk event callback.
The calls should be made as follows:

 disk_channel *chan = <get pointer to disk channel>;

 …

 chan->event(CYG_DISK_EVENT_CONNECT, devno, chan->event_data);

The first argument should be the event being notified: CYG_DISK_EVENT_CONNECT as shown here, or CYG_DISK_EVEN-
T_DISCONNECT. The second argument is a device number; this is needed for devices that dynamically instantiate disk de-
vices, such as USB. If the driver does not do this, then this argument should be -1. The third argument is the user data value
passed in when the callback was registered.

The driver may call this function at any time and from any context other than an ISR. Normally it will be called either from a
DSR or from a thread context. By default, the generic disk layer will install a dummy function in the disk channel structure,
so the driver can always make the call without needing to test for a NULL pointer. A CONNECT event call should be made
when the driver detects that a new device has been inserted into the drive, and an DISCONNECT event call should be made
when the device is removed.

A CONNECT event call should also be made if a disk device is already connected when the driver observes the application
registering for notification of disk events by use of the CYG_IO_SET_CONFIG_DISK_EVENT cyg_io_set_config()
operation. However, this only applies to connected disks - the driver does not indicate DISCONNECT events for unconnected
disks.

Putting It All Together
The above descriptions, while strictly useful as documentation, do not really show how it all gets put together to make a device
driver. The following example of how to create the data structures for a device driver, for a standard PC target, are derived
from the eCosPro IDE disk driver.

The first thing to do is to define the disk controllers:

static ide_controller_info_t ide_controller_info_0 = {
 ctlr: 0,
 vector: HAL_IDE_INTERRUPT_PRI
};

DISK_CONTROLLER(ide_disk_controller_0, ide_controller_info_0);

static ide_controller_info_t ide_controller_info_1 = {
 ctlr: 1,
 vector: HAL_IDE_INTERRUPT_SEC
};

DISK_CONTROLLER(ide_disk_controller_1, ide_controller_info_1);

A typical PC target has two IDE controllers, so we define two controllers. The ide_controller_info_t structure is defined by
the driver and contains information needed to access the controller. In this case this is the controller number, zero or one, and
the interrupt vector it uses. The DISK_CONTROLLER() macro generates a system defined controller structure and populates
it with a pointer to the matching controller info structure.

The next step is to define the disk functions that will be called to perform data transfers on this driver. These functions the
main part of the driver, together with the init and lookup functions and any ISR and DSR functions.

DISK_FUNS(ide_disk_funs,
 ide_disk_read,
 ide_disk_write,
 ide_disk_get_config,
 ide_disk_set_config
);

We can now start generating per-disk-channel data structures. To make this easier we define a macro, IDE_DISK_INS-
TANCE() to make this easier.

265

Hardware Driver Interface

#define IDE_DISK_INSTANCE(_number_,_ctlr_,_dev_,_mbr_supp_) \
static ide_disk_info_t ide_disk_info##_number_ = { \
 num: _number_, \
 ctlr: &ide_controller_info_##_ctlr_, \
 dev: _dev_, \
}; \
DISK_CHANNEL(ide_disk_channel##_number_, \
 ide_disk_funs, \
 ide_disk_info##_number_, \
 ide_disk_controller_##_ctlr_, \
 _mbr_supp_, \
 4 \
); \
BLOCK_DEVTAB_ENTRY(ide_disk_io##_number_, \
 CYGDAT_IO_DISK_IDE_DISK##_number_##_NAME, \
 0, \
 &cyg_io_disk_devio, \
 ide_disk_init, \
 ide_disk_lookup, \
 &ide_disk_channel##_number_ \
);

The first thing this macro does is generate an instance of the ide_disk_info_t. This is a driver-defined structure to contain any
info that does not fit in the system defined structures. In this case the important things are the number of the device on the
controller, zero or one mapping to master or slave, and a pointer to the driver-defined controller structure. The DISK_CHAN-
NEL() macro creates a disk channel object and populates it with the function list defined earlier, a pointer to the matching
local info structure just defined, and a pointer to the controller it is attached to. Finally, a device table entry is created. This
uses linker features to install an entry into the device table that allows the IO subsystem to locate this device.

Finally we need to instantiate all the channels that this driver will support.

IDE_DISK_INSTANCE(0, 0, 0, true);
IDE_DISK_INSTANCE(1, 0, 1, true);
IDE_DISK_INSTANCE(2, 1, 0, true);
IDE_DISK_INSTANCE(3, 1, 1, true);

Each invocation of IDE_DISK_INSTANCE() generates all the data structures needed to access each possible physical disk
that may be present.

266

Part XI. USB Mass Storage Support

Name
CYGPKG_DEVS_DISK_USBMS — eCosPro Support for USB Mass Storage

Description
This document describes the eCosPro USB Mass Storage class driver. This driver provides support for USB memory sticks,
Hard disks and any other devices that supports the same protocol.

Protocol support is limited to Bulk transport only, and only the SCSI transparent command set is supported. This covers most
modern devices, however very old devices may support other protocols.

Configuration Options
The CYGPKG_DEVS_DISK_USBMS package needs to be loaded in order to use the driver. In addition the CYGPKG_IO_USB
USB package must be loaded to provide generic USB functionality and the board target entry in ecos.db must contain a
Host Controller Driver package and a platform configuration package in order to access the USB hardware. This package also
depends on support from the generic disk package CYGPKG_IO_DISK. If file system support is needed, then packages like
CYGPKG_FS_FAT, CYGPKG_IO_FILEIO and CYGPKG_LINUX_COMPAT will need to be loaded along with any packages
that they may depend upon. Depending on the template used to create the initial configuration some of these may be loaded
already.

For more information on the USB subsystem and supported classes, consult the general USB documentation.

cdl_component CYGPKG_IO_USB_HOST

Ensure that the host USB package has been loaded and enabled for your target so that USB mass storage can function.

cdl_option CYGDAT_DEVS_DISK_USBMS_DISK_NAME

This is the base device name used to access the raw disk devices in eCos, for example for mount operations. Individual
mass storage devices will be named using a trailing number and partitions with a yet further trailing partition number. For
example disk 0, partition 1 would be named /dev/usbms/0/1. This is the default mount point for a standard USB memory
stick.

cdl_option CYGNUM_DEVS_DISK_USBMS_MAX_TRANSFER

This defines the maximum transfer size submitted to the device. Larger disk transfer requests will be split into smaller
transfers of this size. If the USB stack or host device drivers have reduced resources, this value should be reduced to
consume fewer resources for each transfer.

cdl_option CYGNUM_DEVS_DISK_USBMS_CONTROLLER_COUNT

This defines the number of disk controllers the USBMS driver can handle simultaneously. There is a one-to-one corre-
spondence between controllers and USB devices, so this defines the number of USB mass storage devices that can be
accessed at one time.

cdl_option CYGNUM_DEVS_DISK_USBMS_CHANNEL_COUNT

This defines the number of disk channels the USBMS driver can handle simultaneously. Each channel corresponds to a
Logical Unit Number within a controller or device. Most USB mass storage devices contain a single LUN, so the default
is to set this to the same value as the controller count. If devices with more LUNs are expected to be used regularly, then
this value should be increased.

268

Part XII. MMC, SD, SDHC and
SDIO Media Card Disk Driver

Name
CYGPKG_DEVS_DISK_MMC — eCos Support for MMC, SD, SDHC and SDIO media Cards

Description
This package provides a disk device driver for two commercial flash memory card standards: MultiMedia Cards (MMC), and
Secure Digital (SD) cards, including the high-capacity SDHC variant. The package also provides some (non-disk) basic SD
I/O (SDIO) card support.

The MMC card implementation is intended to allow operation with memory cards compliant with the MultiMediaCard Standard
version 2, as published by the MultiMediaCard Association. The SD implementation is intended to allow operation with cards
compliant with the SD Physical Layer Specification version 2, as published by the SD Card Association.

This package evolved from an MMC-only implementation and as such the naming of certain aspects such as the CDL package
name reflects that heritage. Any identifiers which reference MMC usually refer to either MMC or SD cards unless otherwise
noted. Similarly, the package provides (limited) support for SDIO cards which do NOT require the presence of the CYGP-
KG_IO_DISK infrastructure and do not present as disk (memory) devices.

An MMC/SD card provides non-volatile storage in a small footprint (24mm * 32mm * 1.4mm), and weighing less than 2
grams. Typical card sizes are 128MB to 2GB, with an upper limit of 4GB for MMC and SDv1; and 32GB for SDHC cards in
SDv2. It should be noted that these sizes are measured in millions of bytes, not 2^20. This driver provides support for 4GB
MMC and SDv1 cards, although in practice, the FAT16 filesystem layout on such cards is unusual and may not be supported
by a filesystem implementation using this driver. This problem should not occur with cards of size 2GB and less, or with
SDHC cards.

At the hardware level there are two ways of accessing an MMC card. The first it to use a custom interface frequently known as
either an an MCI (Multimedia Card Interface, although this allows supports for SD as well) or an MMC/SD bus. The second
interface is via connection to an SPI bus. A card will detect the interface in use at run-time. The custom MCI interface allows
for better performance but requires additional hardware. SPI peripheral support is more readily available on many existing
CPUs. At this time, the SPI bus mode of interface does not support SD or SDIO cards in this driver.

Theoretically an MMC/SD memory card can be used with any file system. In practice all cards are formatted for PC com-
patibility, with a partition table in the first block and a single FAT file system on the rest of the card. The SPI mode driver
always checks the format of the MMC card and will only allow access to a card if it is formatted this way. The MCI card bus
driver can adapt to a card with no partition table as long as it contains a FAT filesystem starting from the first block. This
non-standard format can sometimes be created by Windows when reformatting a corrupted card. This ability is controlled by
the CYGSEM_IO_DISK_DETECT_FAT_BOOT CDL configuration option in the generic disk device driver package CYGP-
KG_IO_DISK.

Card Insertion and Removal
An MMC or SD socket allows cards to be removed and inserted at any time. It is a common feature for such sockets to contain
a contact allowing the presence of cards to be detected. On some hardware that signal is routed to the processor allowing it to
be sampled, usually connected as a GPIO signal or to an interrupt line (or to a GPIO interrupt if available).

In such cases, the MMC/SD bus driver layer in this package is able to be informed by the hardware MMC/SD bus driver of
whether cards are present or not, and if possible, can be informed by an event callback that a card has just been inserted or
removed. The SPI mode driver in this package does not yet support this feature.

If using the MMC/SD bus driver with appropriate hardware and driver support, the MMC/SD bus driver layer in this pack-
age can plug into the removeable media support offered by the generic disk driver layer (CYGPKG_IO_DISK) if the con-
figuration option CYGFUN_DEVS_DISK_MMCSD_BUS_REMOVABLE_MEDIA_SUPPORT is enabled. This option may only
be enabled if a hardware driver indicates that support is available. This facility allows for event notification when a card is
inserted or removed from the socket. This information can be used directly by the application using the disk package APIs
(see that package's documentation), or to allow use of, for example, the automounter support provided in the File I/O package
(CYGPKG_IO_FILEIO).

If card detection by an interrupt is not possible, or if using the SPI bus driver, then the only time the device driver will detect
removal events is when the next I/O operation happens. At that point, the operation will fail, typically with an error code such

270

http://www.mmca.org
http://www.sdcard.org/

Device Driver for MMC, SD, SDHC and SDIO media Cards

as ENODEV, ETIMEDOUT or possible EIO. It is left to higher-level code to recover from this error - the MMC/SD driver is
unable to do anything since the card has gone. In the case of the eCosPro implementation of the FAT filesystem, it has been
made robust to such events such that it will always be able to force an unmount using the umount_force function instead
of the standard umount function.

Without card detection by interrupt, use of the automounter is not possible, therefore expected usage is that application code
will explicitly mount the card before attempting any file I/O.

Irrespective of card detection abilities, it is expected that the application will umount the card before it is removed. Until
unmounted, the system is likely to keep some disk blocks cached, for performance reasons. If the card is removed before the
umount then it may end up with a corrupted file system. Application design to inform users of when it is safe to remove card
media, and regular uses of the standard sync function will reduce the risk of file system corruption.

If card detection support is available, but is only pollable, rather than being connected to an interrupt, then this has limited
benefits other than to accelerate the process of determining whether a card has been removed, which otherwise necessitate
attempting operations and waiting for potential timeouts. In a future revision of this driver it may become possible to use a
polling thread to check periodically for whether cards have been inserted or removed.

Write Protection and Security

The MMC and SD specifications allow cards to be write-protected in software. The current device driver does not yet make
it possible to mark a card as write-protected, however it does respect the setting, and on mounting such a card will mark it
internally as read-only. Any attempt to write to the card will fail with the error EROFS.

SD cards additionally feature a write-protect or 'lock' switch to indicate that cards must not be written to. This is not a physical
protection however - instead it is expected that the lock switch position is detected by a contact in the socket, and it is for
software to sample the state of that contact to determine whether the card is write-protected. Therefore the lock switch may not
be respected if either the hardware or hardware driver does not support sampling the lock switch position from the socket. If
sampling is supported however, the MMC/SD bus driver will respect that and mark the card internally as read-only.

SD (and to a lesser extent MMC) support other security features such as password protection and encryption. This driver does
not yet support these features.

Configuration Options

CYGPKG_DEVS_DISK_MMC is a hardware package which should get loaded automatically when you configure for a suitable
eCos target platform. In this case suitable means that the hardware either:

a. has an MMC/SD socket connected to an SPI bus, that an SPI bus driver package exists and is also automatically loaded,
and that the platform HAL provides information on how the card is connected to the SPI bus; or

b. has an MMC/SD socket connected to a custom MCI interface's card bus and a driver package for the MCI exists and is also
automatically loaded, or exists in the HAL.

For memory card support the package depends on support from the generic disk package CYGPKG_IO_DISK. That will not
be loaded automatically: the presence of an MMC/SD socket on the board does not mean that the application has any need for
a file system. Hence by default CYGPKG_DEVS_DISK_MMC will be inactive and will not contribute any code or data to the
application's memory footprint. To activate the driver it will be necessary to add one or more packages to the configuration
using ecosconfig add or the graphical configuration tool: the generic disk support CYGPKG_IO_DISK; usually a file system,
CYGPKG_FS_FAT; support for the file I/O API CYGPKG_IO_FILEIO; and possibly additional support packages that may
be needed by the file system, for example CYGPKG_LINUX_COMPAT for FAT. Depending on the template used to create the
initial configuration some of these may be loaded already.

For non-memory SDIO cards it is possible for the package to be used without the disk I/O infrastructure. This is controlled by
the CYGFUN_DEVS_DISK_MMCSD_SDIO option, which is available when the target platform indicates that it implements
the relevant SDIO support. This allows for embedded (non-removable) SDIO device support on platforms without incurring
the cost of including the unnecessary disk I/O code.

271

Device Driver for MMC, SD, SDHC and SDIO media Cards

SPI mode operation configuration

The package provides two main configuration options when using the SPI mode of operation. CYGDAT_DEVS_DISK_MM-
C_SPI_DISK0_NAME specifies the name of the raw disk device, for example /dev/mmcdisk0. Allowing for partition
tables that makes /dev/mmcdisk0/1 the first argument that shoul be passed to a mount call. If the hardware has multiple
disk devices then each one will need a unique name. CYGIMP_DEVS_DISK_MMC_SPI_POLLED controls whether the SPI
bus will be accessed in interrupt-driven or polled mode. It will default to interrupt-driven if the application is multi-threaded,
which is assumed to be the case if the kernel is present. If the kernel is absent, for example in a RedBoot configuration, then
the driver will default to polled mode. With some hardware polled mode may significantly increase disk throughput even in a
multi-threaded application, but will consume cpu cycles that could be used by other threads.

MMC/SD card bus mode operation configuration

When using an MMC/SD card bus, there a number of CDL configuration settings to be aware of within this driver.

Number of sockets on the MMC/SD bus (CYGINT_DEVS_DISK_MMCSD_BUS_CONNECTORS)

This CDL interface indicates the number of sockets capable of being supported by the MMC/SD card bus driver. It is
usually implemented by either a hardware device driver or the platform HAL. At the present time there can only be 1
socket supported. This limitation is intended to be lifted in the future.

SD card support (CYGFUN_DEVS_DISK_MMCSD_SD)

This option is present to allow SD card support to be disabled. SD card support is considered a superset of MMC support,
and therefore it is not possible to disable MMC card support. If SD cards are not to be used, this option can be disabled
to reduce code and memory footprints, along with slightly faster execution.

SDIO card support (CYGFUN_DEVS_DISK_MMCSD_SDIO)

This option is present to allow SDIO card support to be enabled for targets that do not require memory MMC/SD card
disk support. It is enabled by default when the target platform/variant indicates the requirement, and is not normally an
option the user should need to manually configure.

Device name for the MMC/SD disk 0 device (CYGDAT_DEVS_DISK_MMCSD_BUS_DISK0_NAME)

This is the name of the raw disk or SDIO device. For disks it provides the prefix used for the separate disk device strings
which are passed to the mount call. For example, a setting of /dev/mmcsd0/ would allow the first partition on the card
to be accessed as /dev/mmcsd0/1, the second as /dev/mmcsd0/2, etc. /dev/mmcsd0/0 is a special device name
used to access the entire device (including the partition table if present. Furthermore, the /dev/mmcsd0 device can be
used for registering disk insertion/removal events with the disk layer. Consult the disk package documentation for details.
The setting of this configuration option must end with a slash character ('/').

Hardware drivers support card detection (CYGINT_DEVS_DISK_MMCSD_BUS_CARD_DETECTION)

This CDL interface is implemented by a hardware device driver or platform HAL to indicate that it is able to report the
presence or absence of cards.

Removable MMC/SD media support (CYGFUN_DEVS_DISK_MMCSD_BUS_REMOVABLE_MEDIA_SUPPORT)

This option is used to determine whether the MMC/SD bus layer will plug into the generic disk package's removeable media
support, i.e. allowing notification of insertion or removal of cards. There is no point enabling this option without hardware
and driver support, so it is not possible to enable it if CYGINT_DEVS_DISK_MMCSD_BUS_CARD_DETECTION has
not been implemented. Some code can be saved if this option is disabled.

MMC/SD debug output (CYGDBG_DEVS_DISK_MMCSD_BUS_DEBUG)

Detailed debugging output is possible via the diagnostic console. By default there is no debugging output, but setting this
option to 1 or 2 will provide increased verbosity of debugging output.

Certain MMC/SD bus device drivers may provide support for multi-sector I/O. But if you are using the
FAT filesystem, it will not take advantage of this facility unless you make a configuration change within
the FAT filesystem package (CYGPKG_FS_FAT). You may increase the value of the "FAT block cache block

272

Device Driver for MMC, SD, SDHC and SDIO media Cards

size" (CYGNUM_FS_FAT_BLOCK_CACHE_BLOCKSIZE) to a higher power of two, in order to increase the number of sec-
tors read or written in a chunk by the filesystem. This will cause multi-sector I/O to be employed within this driver. It has
been noticed that certain models of SD cards (including some made by brand-name manufacturers like Sandisk and Kingston)
perform disproportionately poorly if only using single block I/O; therefore we recommend that where possible you do adjust
this option to a higher value (e.g. 16384). Note that memory usage will go up proportionately unless you also reduce the "FAT
block cache memory size" (CYGNUM_FS_FAT_BLOCK_CACHE_MEMSIZE), which you may wish to do depending on your
memory requirements.

Additional SPI Mode Functionality
When using the SPI mode to access MMC cards, the disk driver package exports a variable cyg_mmc_spi_polled. This
defaults to true or false depending on the configuration option CYGIMP_DEVS_DISK_MMC_SPI_POLLED. If the default
mode is interrupt-driven then file I/O, including mount operations, are only allowed when the scheduler has started and inter-
rupts have been enabled. Any attempts at file I/O earlier during system initialization, for example inside a C++ static construc-
tor, will lock up. If it is necessary to perform file I/O at this time then the driver can be temporarily switched to polling mode
before the I/O operation by setting cyg_mmc_spi_polled, and clearing it again after the I/O. Alternatively the default mode
can be changed to polling by editing the configuration, and then the main() thread can change the mode to interrupt-driven
once the scheduler has started.

Porting to New Hardware

SPI mode

Assuming that the MMC connector is hooked up to a standard SPI bus and that there is already an eCos SPI bus driver, porting
the MMC disk driver package should be straightforward. Some other package, usually the platform HAL, should provide a
cyg_spi_device structure cyg_spi_mmc_dev0. That structure contains the information needed by this package to interact
with the MMC card via the usual SPI interface, for example how to activate the appropriate chip select. The platform HAL
should also implement the CDL interface CYGINT_DEVS_DISK_MMC_SPI_CONNECTORS.

When defining cyg_spi_mmc_dev0 special care must be taken with the chip select. The MMC protocol is transaction-ori-
ented. For example a read operation involves an initial command sent to the card, then a reply, then the actual data, and finally
a checksum. The card's chip select must be kept asserted for the entire operation, and there can be no interactions with other
devices on the same SPI bus during this time.

Optionally the platform HAL may define a macro HAL_MMC_SPI_INIT which will be invoked during a mount operation.
This can take any hardware-specific actions that may be necessary, for example manipulating GPIO pins. Usually no such
macro is needed because the hardware is set up during platform initialization.

On some targets there may be additional hardware to detect events such as card insertion or removal, but there is no support
for exploiting such hardware at present.

Only a single MMC socket is supported. Given the nature of SPI buses there is a problem if the MMC socket is hooked up
via an expansion connector rather than being attached to the main board. The platform HAL would not know about the socket
so would not implement the CDL interface CYGINT_DEVS_DISK_MMC_SPI_CONNECTORS, and the ecos.db target entry
would not include CYGPKG_DEVS_DISK_MMC. Because this is a hardware package it cannot easily be added by hand. Instead
this scenario would require some editing of the existing platform HAL and target entry.

Card bus mode

Creating a hardware driver for accessing a card connected via a card bus requires a large amount of detailed description
closely related to the specific code definitions. Therefore comprehensive descriptions of functionality has been provided in
the mmcsd_bus.h header file in the include directory of this package. Drivers should include this file, although before
doing so they must define the C preprocessor macro __MMCSD_DRIVER_PRIVATE in order to obtain definitions private to
card bus drivers.

It is appropriate to provide a high-level overview of the porting process however. A driver package must implement the CDL
interface CYGINT_DEVS_DISK_MMCSD_BUS_CONNECTORS to indicate the presence of a socket driven as a card bus. It
may also implement CYGINT_DEVS_DISK_MMCSD_BUS_CARD_DETECTION if appropriate.

273

Device Driver for MMC, SD, SDHC and SDIO media Cards

The driver in this package accesses the hardware driver through the abstraction of the card bus. This is done by instantiating
a bus object using the CYG_MMCSD_BUS macro. This takes as arguments an opaque word of private data which may be
useful to the hardware driver for identifying this bus or for any relevant bus state, and it also takes a function callback list.
The CYG_MMCSD_BUS instantiation must exist in a module which is always included in the program image. This is usually
performed when building the package by including it in the libextras.a library (which is converted to extras.o in the eCos build
process and forcibly included in the program image that way).

This function callback list must be instantiated using the CYG_MMCSD_BUS_FUNS macro. This provides a table identifying
driver functions to: initialise the bus at system startup time; (re-)initialise the socket when attempting to access a card in it for
the first time; shutting down a socket to conserve power; doing specialised configuration options; preparing to select a card
in a socket; sending a command to a card; and transferring data blocks to or from a card. At this point the byte and stream
operations may be left as NULL and are only present for potential future expansion. Details on the purpose and arguments to
these functions can be found in mmcsd_bus.h.

If the hardware and driver is capable of reporting card insertion/removal events, then notification of insertion or removal can
be performed by calling the MMCSD_CARD_DETECT_EVENT() macro to register this with the MMC/SD layer, which will
perform any further processing required. It must be called in DSR or thread context, not ISR context.

SDIO Support
Due to the undefined nature of SDIO card features, the package (currently) provides basic initialisation and device access
support. Custom drivers will be needed to support specific SDIO cards or embedded devices. A simple API is exposed to allow
the underlying SD commands to be passed to the SDIO card compliant with the SD Specifications Part E1 SDIO Simplified
Specification Version 3.00 document as published by the SD Card Association.

A custom driver will reference the SDIO card via an I/O handle obtained via a call to the cyg_io_lookup() function. This
handle can be used to perform MMC/SD bus driver “config” calls as well as perform SD operations via the SDIO specific
functions exposed by this package. Currently two SDIO specific functions are available.

Cyg_ErrNo cyg_sdio_transaction_direct(cyg_io_handle_t handle,
 cyg_uint32 cmd,
 cyg_uint32 arg,
 cyg_uint32 *response);

The function above can be used to send card control commands (e.g. CMD0, CMD5, etc.) or the SDIO single register read/
write CMD52 whereas the function below is an interface to the specific SDIO block data transfer CMD53 support.

Cyg_ErrNo cyg_sdio_transaction_extended(cyg_io_handle_t handle,
 cyg_uint32 arg,
 cyg_uint32 *response,
 cyg_bool read,
 cyg_uint32 block_length,
 cyg_uint32 block_count,
 cyg_uint8 *buf);

Notes

1. The current SDIO implementation is limited to platforms that define the HAL_MM-
CSD_PLF_SDIO_INIT_EARLY_EXIT macro since the detection of MMC/SD-vs-SDIO (and combo) cards
during card specific initialisation has not yet been implemented.

2. It is currently the responsibility for the custom SDIO device driver to perform card initialisation (CMD0,
CMD5, et-al) via the exposed cyg_sdio_transaction_direct() API.

274

http://www.sdcard.org/

Part XIII. MMC/SD Card Device Drivers

Table of Contents
49. Atmel SAM series Multimedia Card Interface (MCI) driver .. 277

Overview ... 278

276

Chapter 49. Atmel SAM series Multimedia
Card Interface (MCI) driver

277

Atmel SAM series Multimedia Card Interface (MCI) driver

Name
Atmel SAM series Multimedia Card Interface (MCI) driver — Using MMC/SD cards with block drivers and filesystems

Overview
The MultiMedia Card Interface (MCI) driver in the SAM MCI device driver package allows use of MultiMedia Cards (MMC
cards) and Secure Digital (SD) flash storage cards within eCos, exported as block devices. This makes them suitable for use
as the underlying devices for filesystems such as FAT.

This driver can support boards based on either the SAM9 or SAMA5 processors, where underlying platform HAL support
exists.

Configuration
This driver provides the necessary support for the generic MMC bus layer within the CYGPKG_DEVS_DISK_MMC package
to export a disk block device. The disk block device is only available if the generic disk I/O layer found in the package
CYGPKG_IO_DISK is included in the configuration.

The block device may then be used as the device layer for a filesystem such as FAT. Example devices are "/dev/mmc0/1"
to refer to the first partition on the card, or "/dev/mmc0/0" to address the whole device including potentially the partition
table at the start.

Typically, platform HALs provide an option to permit enabling or disabling MCI support.

If the driver is enabled, there are three CDL configuration options:

CYGIMP_DEVS_MMCSD_AT-
MEL_SAM_MCI_INTMODE

This indicates that the driver should operate in interrupt-driven mode if possible. This
is enabled by default if the eCos kernel is enabled. Note though that if the driver finds
that global interrupts are off when running, then it will fall back to polled mode even if
this option is enabled. This allows for use of the MCI driver in an initialisation context.

CYGNUM_DEVS_MMCSD_AT-
MEL_SAM_MCI_POW-
ERSAVE_DIVIDER

The SAM MCI peripheral allows the MCI clock to be divided down if told to enter
power saving mode. This option specifies the divider to use. The driver itself does not
implement any power saving - it is up to the application to enable power saving in the
MCI control register if it is required.

CYGHWR_DEVS_MMCSD_AT-
MEL_SAM_MCI_DEVICE

Some SAM processors have two or even three MCI interfaces. This option selects which
of these will be used by the MMC driver. The default for the SAM9263 is to select
interface 1, since the PIO lines for interface 0 are shared with SPI0, which will usually
be occupied by a dataflash device or card. On the SAM9G45 the pins are not shared,
so we select MCI0 by default. The SAMA5D3 permits three MCI devices, and these
can be selected here.

Usage notes
MMC/SD cards may only be used in a MMC/SD card slot, and not a dataflash slot. The driver will detect the appropriate card
sizes. Hotswapping of cards is supported by the driver, and in the case of eCosPro, the FAT filesystem. Although any cards
removed before explicit unmounting or a sync() call to flush filesystem buffers will likely result in a corrupted filesystem
on the removed card.

The MMC/SD bus layer will parse partition tables, although it can be configured to allow handling of cards with no partition
table.

This driver implements multi-sector I/O operations. If you are using the FAT filesystem, see the generic MMC/SD driver
documentation which describes how to exploit this feature when using FAT.

278

Part XIV. The Yaffs filesystem
Important

The Yaffs filesystem package is distributed with eCosPro under the GNU Public License (GPL). The viral
nature of the GPL license is incompatible with both the the eCosPro License, making this package suitable
for internal evaluation and testing purposes only. NO PART OF ECOSPRO IN ANY FORMAT MAY BE
REDISTRIBUTED WHEN LINKED WITH THIS PACKAGE OR ANY OTHER GPL CODE. Shipment of
prototypes, hardware or products containing eCosPro licensed code in any format that has been linked with this
package are therefore STRICTLY PROHIBITED.

A separate COMMERCIAL LICENSE for Yaffs from eCosCentric is therefore required to permit distribution
of binary forms of eCosPro with this package.

Some releases of eCosPro may not include this package. In this case, please contact eCosCentric for licensing
and availability.

Table of Contents
50. What is Yaffs? .. 281
51. Getting started with Yaffs ... 282

Licensing considerations .. 282
Installation ... 282

Installation via the eCos Configuration Tool .. 282
Installing from the command-line .. 282

Configuration and Building .. 282
Package dependencies ... 282
Configuration options .. 283

Using Yaffs ... 284
Mounting a filesystem ... 284
Data flushing ... 285
Checkpointing .. 285
Limitations .. 285

Memory requirements .. 285
Worked example ... 286

Testing .. 286
52. Using Yaffs with RedBoot .. 288

Memory considerations under RedBoot .. 288

280

Chapter 50. What is Yaffs?
Yaffs is a filesystem for NAND flash chips.

Yaffs is accessed through the FILEIO package which presents a standard POSIX compatible IO interface through which ap-
plications use standard open(), read(), write() and close() calls.

Yaffs is a journalling filesystem with wear-levelling. It is particularly suited to NAND flash parts, having been designed with
their unique properties in mind. The use of traditional filesystems (FAT, ext2, etc) which do not have these features is not
recommended on such chips because their design requires the use of fixed address on the underlying hardware. Such behaviour
causes flash sectors to wear out, the consequence of which would typically be to cause the whole device to become unbootable.

Yaffs also provides a high degree of robustness, which is usually a requirement of embedded devices. A power failure or other
crash can leave a traditional filesystem in an inconsistent state which is often difficult to repair, especially in the field.

Yaffs can also be built into RedBoot, which allows you to store application images on NAND flash and boot them with
RedBoot's usual flexible scripting system.

For more information about NAND flash chips, how they differ from NOR flash parts and other ways to access them, refer
to the documentation for the eCos NAND Flash Library.

For more information about Yaffs itself, refer to yaffs.net.

281

http://www.yaffs.net/

Chapter 51. Getting started with Yaffs
Licensing considerations
Before you can use Yaffs, you must accept its license. Yaffs is not covered by the standard eCos license. You will be reminded
of your license to use Yaffs when you install it.

Most users will only have access to Yaffs under the GNU GPL. This costs nothing to license. However this usually means that if
you ever distribute your application, you must do so under the GPL. This requires you to publish or otherwise make all of your
application, eCos and everything else you link with it available as source code. For full details refer to the text of the GPL (v2).

If you cannot accept the restrictions and obligations of the GPL, Yaffs for eCos is available under a proprietary license, for a
fee. Details are available on request from eCosCentric or Aleph One.

Installation
Yaffs is included within the standard eCosPro distribution and no additional installation of the GPL-licensed version is required.
The proprietary licensed version is supplied as an EPK (eCos Package) file which may be installed alongside the GPL-licensed
version. The remainder of this section deals with the installation of the proprietary licensed version.

Installation via the eCos Configuration Tool
1. Open up the eCos Configuration Tool.

2. Open up the Administration dialog, from the Tools menu.

3. Press the Add button.

4. A file browser windows opens. Navigate to the Yaffs EPK file.

5. The License screen shows. You must accept the license in order to install the package. Press Yes if you do.

Installing from the command-line
Advanced users may alternatively use the ecosadmin.tcl tool from the command line. You will be prompted to accept
the license at the appropriate time during the procedure.

tclsh $ECOS_REPOSITORY/ecosadmin.tcl add yaffs-v1_2_3.epk

Configuration and Building
After installing the EPK, Yaffs is added to your eCos repository and is configured and built in the normal way.

Package dependencies
To link Yaffs into your application, add CYGPKG_FS_YAFFS to your eCos configuration in the normal way, either using the
eCos Configuration Tool (Packages dialog on the Build menu), or the ecosconfig command-line tool.

You will also need to add CYGPKG_IO_NAND and CYGPKG_IO_FILEIO to your configuration if they are not already
present. Your platform HAL should supply packages for all NAND device(s) present.

If you started with a smaller template than default, you may also need to add some of the following:

• CYGPKG_LIBC_STDLIB

• CYGPKG_LIBC_STRING

282

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.ecoscentric.com/
http://www.yaffs.net/yaffs-licences

Getting started with Yaffs

• CYGPKG_MEMALLOC or something else which provides CYGINT_ISO_MALLOC

• CYGPKG_LIBC_I18N or something else which provides CYGINT_ISO_CTYPE

Configuration options
Yaffs provides a number of package options, including tuning parameters.

CYGPKG_FS_YAFFS_CFLAGS_ADD
CYGPKG_FS_YAFFS_CFLAGS_REMOVE

These settings allow specific build options to be added to or removed from the CFLAGS list when building Yaffs.

CYGSEM_FS_YAFFS_CACHE_SHORT_NAMES

If set, caches files' short names in RAM. This consumes more RAM but improves performance.

CYGPKG_FS_YAFFS_RET_DIRENT_DTYPE

Controls whether Yaffs supports setting the d_type field in a struct dirent. If you don't need this, leave it switched off
to save a little code size.

CYGNUM_FS_YAFFS_RESERVED_BLOCKS

The number of blocks to keep in reserve to allow for garbage collection and block failures. The recommended value is 5,
but you can tune it for performance. This setting is a global default and may be changed by a mount-time option.

CYGNUM_FS_YAFFS_SHORTOP_CACHES

The number of page cache entries to use. Values of 10 to 20 are recommended; increasing the number consumes more
RAM, and 0 disables it altogether. This setting is a global default and may be changed by a mount-time option.

CYGNUM_FS_YAFFS_TRACEMASK

This is a 32-bit bitfield which controls diagnostic output. The bit definitions are found in yportenv.h; they are only
useful if you are debugging Yaffs itself.

CYGNUM_FS_YAFFS_TEMP_BUFFERS

Yaffs requires temporary buffers in many places throughout the code. To avoid the overhead of a dynamic malloc every
time, a number of buffers are preallocated at mount time. This setting controls how many; should it not prove enough,
Yaffs will call malloc on demand as required. The default setting is 6; most users will not need to change it.

CYGSEM_FS_YAFFS_SMALLPAGE_MODE

This option only affects behaviour on so-called "small page" NAND devices (those whose pages are 512 bytes long).
Such devices do not have enough space in their Out Of Band area to store a full set of Yaffs metadata tags. There are
two ways to work around this:

• YAFFS2 mode - the default - uses regular tags, but at a price: it steals 16 bytes from the available space per page to
store them. This reduces the apparent available size of your filesystem by 1/32!

• YAFFS1 mode places a smaller tagset in the OOB area, but with a different side-effect: whenever a page is deleted, one
byte of the tags area has to be rewritten. Some devices forbid rewrite-without-erase in this way, so it may not be safe
for you to use this option. You must refer to the spec sheet for the chip on your board before selecting this option!

CYGSEM_FS_YAFFS_OMIT_YAFFS2_CODE

This causes all YAFFS2 code to be omitted from the build. This option only makes sense when all the devices on which
Yaffs is to be used are small-page and operating in YAFFS1 mode.

283

Getting started with Yaffs

Note

There is no corresponding option to omit YAFFS1 code, because that code is only compiled when
CYGSEM_FS_YAFFS_SMALLPAGE_MODE is set to YAFFS1.

CYGMEM_FS_YAFFS_REDBOOT_HEAP_REQUIRED

RedBoot carefully controls the amount of memory available for its heap, allocating it from a fixed-size workspace. If
Yaffs is being used with RedBoot, the heap space required is likely to go up substantially. The exact amount depends on
properties of the filesystem being mounted. Consult the eCosPro Yaffs documentation for more details of Yaffs' memory
requirements. This option ensures RedBoot's heap is increased to a more reasonable size, but it has been made an option
in order to allow developers to decrease it, if they are sure the filesystem will not require as much memory as this.

Note

However, note that even this larger amount may not be adequate for some filesystems.

Using Yaffs
Yaffs appears in the eCos filesystem table. This means that you can mount a filesystem in the standard Unix-like way, then
interact with it with calls to open, read, etc.

Mounting a filesystem
Before you can use a filesystem, it must be mounted.

A NAND device is logically organised as one or more partitions, which are usually set up by the relevant platform HAL. You
need to tell the mount command which device and partition you wish to access. In the following example, we are mounting
partition 0 of the onboard NAND device.

rv = mount("onboard/0", "/nand", "yaffs");

Note

The device argument to the mount call is a NAND-specific device name, not an entry in /dev. Refer to the
documentation for your platform HAL for details of how the NAND device(s) are named, and to the NAND
library documentation for details of how partitions are addressed.

You can, if you wish, make the filesystem mounting automatic at static constructor time with the MTAB_ENTRY macro.
(Your platform HAL may already do this; check it carefully.)

MTAB_ENTRY(my_nand, "/nand", "yaffs", "onboard/0", "", 0);

Note

This example is for eCosPro. In eCos, the MTAB_ENTRY macro takes only four arguments.

Mount-time options

eCosPro allows various options to be passed to a filesystem at mount time, by combining them with the filesystem argument
in a particular format. Yaffs understands the following options:

• reserved=<int> The number of physical NAND blocks to reserve for garbage collection and block failures (minimum
2). The default is set in CDL as CYGNUM_FS_YAFFS_RESERVED_BLOCKS.

• caches=<int> The number of page cache entries to use. Values of 10 to 20 are recommended. The default is set in CDL
as CYGNUM_FS_YAFFS_SHORTOP_CACHES.

284

Getting started with Yaffs

• skip-checkpoint-read Instructs Yaffs to not attempt to reload the filesystem from a checkpoint, if one exists. In other
words, this option forces a full filesystem scan whether or not one is necessary.

• format Instructs Yaffs to format the filesystem before it mounts it. This deletes its entire contents.

Data flushing
Yaffs operates a cacheing layer in order to save undue wear on the NAND chip if many small writes are performed. Because
of this, if you wish to ensure that any data written to a still-open file has been fully flushed, you must make a synchronisation
request. This is done with the fsync function, which takes as its argument the file descriptor of the file you wish to synchronise.

Checkpointing
When mounting a filesystem, Yaffs has to scan the NAND chip to recreate its internal state. This can be a slow process, but
is made much faster if there is a valid checkpoint.

A checkpoint is written out automatically when you unmount the filesystem. At any other time, you can manually force a
checkpoint to be written with one of the following functions:

• cyg_fs_fssync(mountpoint) synchronises a filesystem (automatically called on umount)

• sync synchronises all mounted filesystems.

Note

A checkpoint becomes invalid as soon as there have been any other writes to the filesystem. Finding a good place
to sync is necessarily dependent on your application logic.

Limitations
Although Yaffs is a Unix-compatible filesystem, the eCos port does not provide support for the full range of Unix attributes.

• eCos does not check file or directory permissions; everything it creates is given fixed user and group IDs of zero and standard
permissions (files rw-r--r--, directories rwxr-xr-x).

• It is not currently possible to change file ownership or permissions.

• It is not currently possible to create symbolic links, FIFOs (named pipes), sockets or device nodes.

• Hard links to files work in the expected way. Hard links to directories are forbidden.

• It is not possible to unlink the '.', '..' or 'lost+found' special directories.

Note

If you will be sharing a Yaffs filesystem between eCos and some other operating system, you are advised to
carefully check the other system's definitions of mode (permission) bits and whether any translation may be
required.

Memory requirements
The amount of RAM required by Yaffs to hold its in-memory data structures grows with the number of objects (files and
directories) in your filesystem. You are recommended to test your application thoroughly to ensure that sufficient memory
exists for Yaffs to operate with the most complicated filesystem it is likely to encounter.

If you wish to estimate your RAM usage, the Yaffs author provides the following calculation:

• The partition itself requires a yaffs_DeviceStruct of 3608 bytes.

• If CYGNUM_FS_YAFFS_SHORTOP_CACHES is enabled, each is the size of a NAND page plus 28 bytes.

285

Getting started with Yaffs

• Every object (file, directory or hardlink) in the filesystem takes a yaffs_Object struct, which is 124 bytes.

• Every page of every file requires a Tnode entry, but they are always allocated in groups of 16 at a time.

• The size of a single Tnode entry is the number of bits required to number all the pages in the NAND partition Yaffs is
using, numbering from one; this is rounded up to a multiple of 2, and has an absolute minimum of sixteen bits.

• For example: on a partition with 65536 pages, seventeen bits are required for the numbering, which round up to 18.
Therefore each file takes 288 bits (36 bytes) per group of Tnodes, and one group of Tnodes will cover up to sixteen pages
of data.

Note

Actual memory consumption will be slightly higher than suggested by the above. This arises from the tree structure
holding the Tnodes, overheads from the heap itself, and so on.

Yaffs calls the standard malloc function to allocate memory and free to release it. Normally, the eCos heap occupies all
spare RAM not needed for the program, its static data or the stacks. Therefore, most applications will not need to do anything
special beyond ensuring there is enough spare RAM available on the platform.

Tip

If you wish to experiment with restricted-size heaps to determine much memory your application actually uses
under Yaffs, you may find the option CYGSEM_MEMALLOC_INVOKE_OUT_OF_MEMORY of use.

Worked example
Consider a Yaffs filesystem hosted by a NAND partition with 65536 pages, each of size 2k, using the default setting of ten short-
op caches. On this filesystem we shall store 10000 files each of size 10240 bytes, hence each requires a single group of Tnodes.

Table 51.1. Yaffs RAM use worked example

Consumer RAM used (bytes)

yaffs_DeviceStruct 3,608

Short-op caches @ 10 x (2048+28) 20,760

yaffs_Objects @ 10,000 x 124 1,240,000

Tnode groups @ 10,000 x 36 (see above) 360,000

Total 1,624,368

This example is a close match to the actual consumption measured by eCosCentric during testing. (The measured consumption
as reported by mallinfo was 1,681,112 bytes, which includes the heap's own overheads.)

Testing
Yaffs is supplied with a number of test programs, some of which are have been adapted from tests for other filesystems in eCos.

fops
This was the first basic test created for the port of the filesystem. It is believed to exercise all of the code paths (filesystem
operations, file operations and directory operations) within the eCos-Yaffs adaptation layer.

This test was originally intended to run on a synthetic NAND filesystem. On real NAND chips, it deliberately omits the
more stressful routines to avoid undue wear on the hardware.

yaffs1
A number of filesystem edge-case semantic tests, including file and directory creation and deletion, invalid open and
rename operations, and removing nonexistent files and directories.

286

Getting started with Yaffs

yaffs2
Concurrent multi-threaded filesystem access and consistency checks.

yaffs4
Semantic and edge-case testing - like yaffs1 - but with long file names.

yaffs5
Tests that file reading and writing works over reasonably large files (up to 1Mbyte) with different I/O chunk sizes. Some
operation timings are collected and reported, as is the data rate on large files.

yaffs6
Semantic and edge-case testing - like yaffs1 - but with Cyrillic filenames in order to test UTF-8 correctness.

mounttime
A simple benchmark which repeatedly mounts and unmounts the filesystem and measures how long this takes. You can
optionally use the mkfiles routine - also present in the tests directory - to create many short files so you can test per-
formance on a loaded filesystem.

hammer *

A stress test designed to shake out corner cases. Repeatedly creates many files of varying sizes from multiple threads
until the filesystem fills up, then verifies their contents and removes them. From time to time, all threads pause and the
filesystem is unmounted and remounted.

This test is particularly useful when combined with the bad block injection functionality provided by the synthetic NAND
device. It has been used in this way by eCosCentric to thoroughly test this package's stability under error conditions.

*This test runs forever, until interrupted.

287

Chapter 52. Using Yaffs with RedBoot
It is possible to link Yaffs into RedBoot and use it to boot an executable image stored on a NAND array.

This is done by configuring and building RedBoot largely in the normal way. You will need to add CYGPKG_FS_YAFFS and
CYGPKG_IO_FILEIO to your configuration, plus their attendant dependencies.

The presence of CYGPKG_IO_FILEIO activates the fs series of RedBoot commands. The following (edited) transcript illus-
trates how they might be used in concert with other RedBoot commands to store an ELF image on a NAND partition, load
it back and execute:

RedBoot> fs mount -d onboard/0 -t yaffs /nand
yaffs: restored from checkpoint
RedBoot> load -r -h my.tftp.ip.address -b %{freememlo} my.image
Using default protocol (TFTP)
Raw file loaded 0xa013f000-0xa01554b3, assumed entry at 0xa013f000
RedBoot> fs write /nand/myimg.elf
RedBoot> fs list /nand
 1 drwxr-xr-x 0 size 0 .
 1 drwxr-xr-x 0 size 0 ..
 262 -rw-r--r-- 0 size 91316 myimg.elf
 2 drwxr-xr-x 0 size 0 lost+found
RedBoot> load -m file /nand/myimg.elf
RedBoot> go
Hello, NAND world!

Note

When you command RedBoot to execute an image, it first synchronises all mounted filesystems. Therefore,
provided these filesystems support the synchronisation operation (which Yaffs does), it is not always necessary
to unmount them before invoking an image.

Memory considerations under RedBoot
RedBoot traditionally has very limited requirements for memory management; the main need is for there to be free space in
RAM at the correct (physical) address to load an image before jumping to it.

Introducing Yaffs brings with it not just the need to have dynamically allocatable RAM (CYGPKG_MEMALLOC), but enough
to replay the filesystem journal. This must be balanced against the need for RAM to load images into.

When the CYGPKG_MEMALLOC package is present in RedBoot, by default a small (64k) heap is set up so that the maximum
RAM possible is available for loading images. This is not enough to support Yaffs in any circumstances, so the following
definition has been included in the yaffs.cdl file:

requires { CYGPKG_REDBOOT implies (CYGMEM_REDBOOT_WORKSPACE_HEAP_SIZE >= 0x00014000) }

Caution

This declaration only provideds the bare minimum heap required to mount a trivial Yaffs filesystem. More will be
required for all but the simplest of cases and it is recommended that you test for typical use in your environment.
Refer also to the section called “Memory requirements”.

It is recommended that, should you wish to make a filesystem usable by RedBoot, your platform HAL should make a similar
declaration in its CDL to establish an appropriate heap size. For example, the platform HAL for the EA LPC2468 OEM board
- which has a 128MB NAND chip on-board - contains the following declaration:

requires { (CYGPKG_REDBOOT && CYGPKG_FS_YAFFS) implies (CYGMEM_REDBOOT_WORKSPACE_HEAP_SIZE >= 0x20000) }

Tip

If you wish to experiment with restricted heaps to determine much memory your application actually uses under
Yaffs, you may find the option CYGSEM_MEMALLOC_INVOKE_OUT_OF_MEMORY of use.

288

Part XV. eCos NAND I/O

Table of Contents
53. eCos NAND Flash Library ... 291

Description .. 291
Structure of the library .. 291
Device support ... 292

Danger, Will Robinson! Danger! ... 292
Differences between NAND and NOR flash .. 292
Preparing for deployment ... 293

54. Using the NAND library .. 294
Configuring the NAND library ... 294
The NAND Application API .. 295

Device initialisation and lookup .. 295
NAND device addressing ... 295
Manipulating the NAND array .. 296
Ancillary NAND functions ... 298

55. Writing NAND device drivers ... 299
Planning a port ... 299

Driver structure and layout ... 299
Chip partitions ... 299
Locking against concurrent access ... 299
Required CDL declarations .. 300

High-level (chip) functions ... 300
Device initialisation .. 300
Reading, writing and erasing data .. 301
Searching for factory-bad blocks ... 302
Declaring the function set .. 302

Low-level (board) functions .. 302
Talking to the chip ... 303
Setting up the chip partition table .. 303
Putting it all together… ... 304

ECC implementation ... 304
The ECC interface .. 304

56. Tests and utilities .. 307
Unit and functional tests .. 307
Ancillary NAND utilities ... 307

57. eCos configuration store ... 308
Overview ... 308

Design limitations ... 308
Using the config store ... 308

Locking ... 309
Configuration ... 309
Storage details .. 310
Padding ... 310
Scanning ... 310

290

Chapter 53. The eCos NAND Flash Library

Description
This is a library which allows NAND flash devices to be accessed by the eCos kernel and applications. It is analogous to the
eCos FLASH library, but for NAND devices. It exists as a separate library because of the fundamental differences between
the two types of flash memory.

This library provides the following functionality:

• Interrogation to confirm that the expected device is present

• Reading from and writing to flash pages

• Erasing flash blocks

• The ability to divide a single device into multiple partitions, like those of a hard drive

• Creation and maintenance of a Bad Block Table

• Use of an Error Correcting Code to detect and correct single-bit errors, and to detect multiple-bit errors

• Packing of the ECC and application out-of-band data into the spare area on the device

Note

The spare area, ECC and bad block table have been deliberately created with the intention of compatibility with
current versions of the Linux MTD layer. For example, this would allow a single NAND device to be accessed
by RedBoot to load a Linux kernel, which could then go on to use another partition as its root filesystem.

Tip

This library is also used as glue to allow appropriate filesystems to use NAND devices. This allows more useful
higher-level access by applications and RedBoot via the File I/O and POSIX interfaces. In other words, your
application may not need to invoke this library directly, though of course you may still have to write a driver
for your chip and/or board.

Structure of the library

This library has two principal interfaces: one for applications to call into it, and another to call out to the chip-specific drivers.
(The chip drivers themselves then require support from the relevant platform HAL to allow them to access the physical chip
in an appropriate manner for the board - such as the memory-mapped I/O range to use.)

The following diagram illustrates the calls from two applications all the way to an underlying NAND device. Application 1
uses the NAND library directly, whereas application 2 is using a filesystem and the eCos File I/O layer.

291

eCos NAND Flash Library

Figure 53.1. Library layout diagram

Device support
Before this library can be used on a given board, an appropriate device driver must be created. Each driver is for a particular
NAND part or family of parts; the HAL for each board then instantiates the relevant driver(s) appropriately with board-specific
glue such as the memory-mapped I/O range to use. Full details on creating a driver are presented in Chapter 55, Writing NAND
device drivers.

There is also a Synthetic Target NAND Flash Device for testing purposes, which is present on the synth target.

Danger, Will Robinson! Danger!
Unlike nearly every other aspect of embedded system programming, getting it wrong with FLASH devices can render your
target system useless. Most targets have a boot loader in the FLASH. Without this boot loader the target will obviously not
boot. So before starting to play with this library its worth investigating a few things. How do you recover your target if you
delete the boot loader? Do you have the necessary JTAG cable? Or is specialist hardware needed? Is it even possible to recover
the target boards or must it be thrown into the rubbish bin? How does killing the board affect your project schedule?

Differences between NAND and NOR flash
Most flash devices supported by the eCos Flash library are categorised as NOR flash. These are fundamentally different from
NAND flash devices, both in terms of the storage cells deep within the chip, and how they are addressed and used by appli-
cations.

Attribute NOR NAND

Addressing of data By byte address within the device. Usu-
ally expressed as memory-mapped ad-
dresses.

By row (page) number. Pages are a pow-
er of two; commonly 512 or 2048 bytes.
Optimised for reading and writing a page
at a time. Sometimes supports column
(byte) addressing, but this library does
not expose such functionality.

Are direct reads and writes possible? a Usually Not in general, though a few special-case
exceptions exist such as OneNAND de-
vices.

292

eCos NAND Flash Library

Attribute NOR NAND

Erase block size May vary across the chip A fixed number of pages, typically 64

Out-of-band data Not supported A small number of bytes per page - typi-
cally 16 "spare" per 512 "data" bytes - are
usable by the application. They are read,
written and erased at the same time as the
"real" page data.

May factory-bad regions b exist on the
chip?

No Typically up to 20 eraseblocks are
marked as factory-bad in their OOB area.
The OS is expected to scan these to create
a Bad Block Table. c

May data be rewritten without being
erased first?

Usually (but only by resetting 1-bits to 0) Usually, on SLC NAND chips; not on
MLC chips.

Error detection and correction Not present Usually automatic. Typically this in-
volves an Error Correcting Code, auto-
matically calculated and stored in the
OOB area, then checked on read.

a In other words, can the application read flash directly as if it was RAM, or does it have to invoke the driver to copy data in and out?
bRegions which were found during manufacture to be bad and marked in some way - usually by placing a special code in the Out Of Band area.
cOnce a BBT exists it can then be used to keep track of any blocks which fail through wear during the lifetime of the device.

Since a NAND chip can in general only be read indirectly, its contents must be copied to RAM before they can be executed.
This means that the caveats in the eCos FLASH library about disabling interrupts whilst programming do not apply here, except
in special cases such as OneNAND devices.

Preparing for deployment
It is generally not recommended to hard-code physical on-NAND locations in case of factory bad blocks or block failures
in the field. 1 Instead it is preferable to set up partitions on the chip with a generous safety margin and to store data in a
location-independent way. This is commonly achieved by placing logical tags in the spare area of each page, or using a log-
structured filesystem such as YAFFS. Such strategies remove the dependence on physical addressing, at the cost of increased
complexity.

The upshot of this is that you cannot reliably create a simple binary image to bulk-program in the factory. A more complicated
programming operation is required to take account of your chip partitions, logical addressing strategy and any bad blocks which
may be encountered during write.

1Usually the first block is guaranteed to be defect free for a certain number of erase cycles. This tends to be necessary if bootstrapping the CPU off NAND,
and is an obvious exception to this rule.

293

Chapter 54. Using the NAND library
The eCos NAND library exposes two principal APIs: one for applications to use and the other to communicate with device
drivers.

Configuring the NAND library
The following configuration options are provided. They affect the library globally, i.e. across all drivers.

CYGPKG_IO_NAND_CFLAGS_ADD
CYGPKG_IO_NAND_CFLAGS_REMOVE

Allows specific build options to be added to or removed from the CFLAGS list when building this library.

CYGSEM_IO_NAND_DEBUG

This is the master switch for all debug reporting from the library.

CYGSEM_IO_NAND_DEBUG_FN_DEFAULT

This is the default function that the library will use when sending debugging output. It must behave like printf. The
default - cyg_nand_defaultprintf - is a wrapper to diag_printf.

Note

Individual drivers may override this setting in their devinit routines by overwriting the pointer in the
device struct.

CYGSEM_IO_NAND_DEBUG_LEVEL

Specifies the verbosity of the NAND library and device drivers. Ranges from 0 (off) to 9 (incredibly verbose); the default
setting is 1. (Higher values are only likely to be of use during driver development, if ever.) When enabled, messages are
printed using the per-device printf-like function (see above).

Note

Should a serious problem be encountered it will always be reported the printf-like function, regardless of this
setting. Such messages may be suppressed altogether by turning off CYGSEM_IO_NAND_DEBUG.

CYGSEM_IO_NAND_READONLY

Globally disables all code which writes to NAND devices. This may be useful during driver development.

CYGNUM_NAND_MAX_PARTITIONS

Sets a compile-time limit on the number of partitions any NAND device may have. The default is 4, which should be
enough for most purposes; unnecessarily setting this higher wastes RAM.

CYGSEM_IO_NAND_USE_BBT

Globally enables and disables the use of Bad Block Table.

Warning

This setting should not be disabled lightly! It is strongly recommended that you leave this setting enabled
unless you have a very good reason to not use it. It is provided really as a convenience for allowing developers
to recover their NAND from a confused state.

294

Using the NAND library

The NAND Application API
All of the functions described here are declared in the header file <cyg/nand/nand.h>, which should be included by all
users of the NAND library.

Note

Most of the functions in the library are declared as returning int. Unless otherwise stated, all functions return 0
for success, or a negative eCos error code if something went wrong.

Device initialisation and lookup
NAND devices are identified to the library by name. In many cases there will be only one, commonly named onboard, but this
flexibility allows for easy expansion later without cross-device confusion.

Note

The naming of NAND devices is set up by the code that instantiates their drivers. Normally this is done by the
platform HAL port.

 __externC int cyg_nand_lookup(const char *devname, cyg_nand_device **dev_o);

On success, *dev_o will be set up to point to a cyg_nand_device struct. On failure, it will not; a return code of -ENOENT
signifies that the requested device name was not found.

Applications will hardly, if ever, need to access the cyg_nand_device structs directly. The following members and convenience
macros are most likely to be of relevance:

struct _cyg_nand_device_t {
…
cyg_nand_printf pf; // Diagnostic printf-like function for this device to use. May be changed at runtime.
…
size_t page_bits; // log2 of no of regular bytes per page
size_t spare_per_page; // OOB area size in bytes
size_t block_page_bits; // log2 of no of pages per eraseblock
size_t blockcount_bits; // log2 of number of blocks
size_t chipsize_log; // log2 of total chip size in BYTES.
…
};

#define CYG_NAND_BYTES_PER_PAGE(dev) (1<<(dev)->page_bits)
#define CYG_NAND_SPARE_PER_PAGE(dev) ((dev)->spare_per_page)
#define CYG_NAND_PAGES_PER_BLOCK(dev) (1<<(dev)->block_page_bits)
#define CYG_NAND_BLOCKCOUNT(dev) (1<<(dev)->blockcount_bits)
#define CYG_NAND_PAGECOUNT(dev) (NAND_BLOCKCOUNT(dev) * NAND_PAGES_PER_BLOCK(dev))
#define CYG_NAND_CHIPSIZE(dev) (1<<(dev)->chipsize_log)
#define CYG_NAND_APPSPARE_PER_PAGE(dev) ((dev)->oob->app_size)
#define CYG_NAND_BYTES_PER_BLOCK(dev) (1<<((dev)->block_page_bits + (dev)->page_bits))

NAND device addressing
NAND devices are arranged as a series of pages and eraseblocks. The eCos NAND library numbers pages and eraseblocks
sequentially, both starting at 0 and continuing until the end of the chip. For example, eraseblock 0 might contain pages 0
through 63; eraseblock 1, pages 64 through 127; and so on.

Caution

This numbering scheme is independent of the device's addressing scheme. Take care, particularly when erasing
blocks; some devices and some applications effectively express the location to erase as a page number (or, in
NAND-speak, as the row address to erase from).

295

Using the NAND library

Warning

Most NAND chip manufacturers document restrictions on the order in which pages may be written to their device.
Typically, individual pages within an eraseblock must be written in sequential order starting from the first, and
random-order writes are prohibited or unspecified. The eCos NAND library does not attempt to police such
restrictions; if at all unsure, check the spec sheet for the part. You have been warned!

NAND devices are widely considered to be arranged as one or more partitions, and the eCos NAND library supports this.
However, there is no universal scheme for partition sizes to be supplied to the driver, unlike hard drives which encode a partition
table into their first sector. Partition arrangements are often implicitly hardcoded, such as by byte address within the device,
though they could be encoded in a "partition table", user-set, or even variable under software control by some esoteric rules.
Therefore, every device driver is responsible for configuring its partition information as appropriate for the device, and this
might for example appear as CDL options.

Tip

Be sure to read the notes associated with the device driver to understand how partitions are set up; if no notes
are provided, look in its devinit code.

NAND device partitions

After a NAND device has been initialised, its device struct contains a list of partitions. These are numbered from 0 and may
go up to CYGNUM_NAND_MAX_PARTITIONS-1. Before an application can use the NAND device, it must obtain a partition
context (pointer) with the following call:

__externC cyg_nand_partition* cyg_nand_get_partition(cyg_nand_device *dev, unsigned partno);

Note

This call returns a pointer to the partition struct, not an error code. If the given partition number is inactive or
invalid, it returns NULL.

About the spare area

Every page on the NAND array has a small number of "spare" bytes associated with it. These are used by the NAND library
to store the page's ECC; whatever is left over may be used by the application for whatever purposes may suit it.

Every page has CYG_NAND_APPSPARE_PER_PAGE(dev) bytes of spare area available to the application. (This amount is
implicit from the driver configuration and cannot change during the lifetime of a device.)

Note

Application spare bytes are not subject to the ECC. When reading the spare area data, you must be prepared to
cope with the consequences of the (unlikely) event of a bit drop-out or other failure.

Manipulating the NAND array
Now, finally, given a cyg_nand_partition*, your application can make use of the NAND array with the following functions:

Reading data
__externC int cyg_nand_read_page(cyg_nand_partition *ctx,
 cyg_nand_page_addr page,
 void * dest,
 size_t size,
 void * spare,
 size_t spare_size);

Reads a single page and its spare area. The data read from the chip will be automatically ECC-checked and
repaired if necessary. Parameters are as follows:

296

Using the NAND library

ctx The partition that data is to be read from.

page 1 The page to be read, numbered from the start of the partition. As a dou-
ble-check, the library will refuse the operation with -ENOENT if this
address is not within partition ctx.

dest Where to put the data. May be NULL, in which case the page data is
not read.

size The maximum amount of data to read. (In any event, no more than a
single page will be read, but if your application knows it doesn't need
the whole page, you can place a cap here.)

spare Where to store the application data read from the spare area. This may
be NULL if spare data is not required.

spare_size The maximum number of bytes to read from the spare area. This will not
be more than CYG_NAND_APPSPARE_PER_PAGE(dev) bytes.

An error response of -EIO means that a multiple-bit I/O error has occurred in the page data, which the ECC
could not repair. The library stores the data read from the device in *dest and *spare on a best-effort
basis; it should not be relied upon. The application should take steps to salvage what it can and erase the
block as soon as possible.

Writing data
__externC int cyg_nand_write_page(cyg_nand_partition *ctx,
 cyg_nand_page_addr page,
 const void * src,
 size_t size,
 const void * spare,
 size_t spare_size);

Writes a single page and its spare area. The ECC will be computed and stored automatically. Parameters
are as follows:

ctx The partition that data is to be written to.

page The page to be written, numbered from the start of the partition. As a
double-check, the library will refuse the operation with -ENOENT if this
address is not within partition ctx.

src Where to read the data from. May be NULL, in which case the page data
is not written.

size The amount of data to write. (In any event, no more than a single page
will be written.)

spare Where to read the data to go into the spare area; it will automatically be
packed around the ECC as necessary. Again, this may be NULL if spare
data is not required.

spare_size The number of bytes to write to the spare area. This should not be larg-
er than CYG_NAND_APPSPARE_PER_PAGE(dev); if it is, only that
many bytes will be stored.

An error response of -EIO means that the page write failed. The application should copy out any data it
wishes to keep from the rest of the eraseblock, then call cyg_nand_bbt_markbad() to put the block
beyond use.

1 This was changed in application interface v2; earlier page and block addresses were device-relative.

297

Using the NAND library

Erasing blocks
__externC int cyg_nand_erase_block(cyg_nand_partition *ctx, cyg_nand_block_addr blk);

ctx The partition that data is to be erased from.

blk The block to be erased, numbered from the start of the partition. As a
double-check, the library will refuse the operation with -ENOENT if this
address is not within partition ctx.

An error response of -EIO means that the block erase failed. In this case, the library automatically marks
the block as bad, and the application need take no further action.

Common error returns

The following common error returns may be encountered when manipulating the NAND array using the above functions:

-EIO The operation could not be completed due to an I/O error. This may require the application
to take further action; check the details provided above for the call you have just made.

-ENOENT The page or block address was not valid for the given partition.

-EINVAL The page (block) address was (within) a block that is marked bad.

Ancillary NAND functions
The following functions are provided to allow applications to interact with the Bad Block Table:

typedef enum {
 CYG_NAND_BBT_OK=0,
 CYG_NAND_BBT_WORNBAD=1,
 CYG_NAND_BBT_RESERVED=2,
 CYG_NAND_BBT_FACTORY_BAD=3
} cyg_nand_bbt_status_t;

__externC int cyg_nand_bbt_query(cyg_nand_partition *ctx, cyg_nand_block_addr blk);

__externC int cyg_nand_bbt_markbad(cyg_nand_partition *ctx, cyg_nand_block_addr blk);

To determine the status of an eraseblock, use cyg_nand_bbt_query; this returns an enum from cyg_nand_bbt_status_t or
a negative eCos error code. All blocks which return a non-0 enum value are considered inaccessible by applications.

Occasionally, it is necessary for applications to mark a block as bad. This most commonly happens when a write operation
fails (see the section called “Writing data” above). To do this, call cyg_nand_bbt_markbad; the return is 0 for success,
or a negative eCos error code. As with other calls, blocks are numbered from 0 at the start of the partition, and internally
translated for the device as appropriate.

Both of these calls may foreseeably return -ENOENT if the given block address was not valid, or -EIO if something awful
happened with the on-chip bad block table.

298

Chapter 55. Writing NAND device drivers

Planning a port
Before you start, you will need to have sight of appropriate spec sheets for both the NAND chip and the board into which it
is connected, and you need to know how the chip is to be partitioned.

Driver structure and layout
A typical NAND device driver falls into two parts:

• high-level operations specific to the NAND chip (page reads and writes); and

• board-specific plumbing (sending commands and data to the chip; reading data back from the chip).

This distinction is important in the interests of code reuse; the same part may appear on different boards, or indeed multiple
times, but connected differently. It need not be maintained if there are good reasons not to.

The NAND library device interface consists of a C struct, cyg_nand_device, comprising a number of data fields and function
pointers. Each NAND chip to be made available to the library requires exactly one instance of this struct.

Tip

The cyg_nand_device structure includes a void* priv member which is treated as opaque. The driver may use
this member as it sees fit; it is intended to provide an easy means to identify the NAND array, MMIO addresses
or function pointers to use and so on. Typically this is used by the chip driver for its own purposes, and includes
a further opaque member for the use of the HAL port.

The function pointers in the struct form the driver's high-level functions; they make use of the low-level functions to talk to
the chip. We present the high-level functions first, although there is no intrinsic reason to prefer either ordering during driver
development.

The high-level chip-specific functions are traditionally laid out as an inline file in an appropriate package in de-
vs/nand/CHIP. The board-specific functions should normally appear in the platform HAL and #include the inline.

Chip partitions
Before embarking on the port, you should determine how the NAND array will be partitioned. This is necessarily a board-
specific question, and your layout must accommodate any other software users of the array. You will need to know either the
fixed layout - converted to eraseblock addresses - or how to determine the layout at initialisation time.

Tip

It may be worthwhile to set up partitioning by way of some parameters in your platform's CDL, with sensible
defaults, instead of outright hard-coding the partition layout.

Locking against concurrent access
The eCos NAND library provides per-device locking, to guard against concurrent access during high-level operations. This
support is fully automatic; drivers need take no action to make use of it.

This strategy may not be sufficient on all target boards: sometimes, accessing a NAND chip requires mediation by CPLD or
other device, which must be shared with other NAND chips or even other peripherals. If this applies, it is the responsibility of
the driver and platform port to provide further locking as appropriate!

299

Writing NAND device drivers

Tip

When using mutexes in a driver, one should use the driver API as defined in <cyg/hal/drv_api.h> instead
of the full kernel API. This has the useful property that mutex operations are very cheaply implemented when
the eCos kernel is not present, such as when operating in RedBoot.

Required CDL declarations
An individual NAND chip driver must declare the largest page size it supports by means of CDL. This is done with a statement
like the following in its cdl_package stanza:

requires (CYGNUM_NAND_PAGEBUFFER >= 2048)

Note

This requirement is due to the internal workings of the eCos NAND library: a buffer is required for certain
operations which manipulate up to a NAND page worth of data, internally to the library. This is declared once as
a global buffer for safety under low-memory conditions; a page may be too big to use temporary storage on the
C stack, and the NAND library deliberately avoids the use of malloc.

By convention, a driver package would declare CYGPKG_IO_NAND as its parent and use cyg/devs/nand as its in-
clude_dir, but there is no intrinsic reason why this should be so.

High-level (chip) functions
The high-level functions provided by the chip driver are typically created as an inline file providing a fully-populated
cyg_nand_dev_fns_v1 struct, instantiated by the CYG_NAND_FUNS macro. The high-level driver should not directly read
or write to the hardware itself, but instead call into functions in the low-level driver.

The form the low-level functions should take is not prescribed; typically functions will be required to write commands to
the device, to read and write data, and to query any status line which may be present. The high-level driver should normally
provide a header file containing prototypes for the functions it requires from the low-level driver. (The low-level source file
would provide the low-level functions required, include the high-level include, then instantiate the combined driver using the
CYG_NAND_DEVICE macro.)

This source code layout is not intended as a prescription. It would for example be entirely in order to store pointers to the low-
level functions in a struct and set priv to point to that struct, which could be useful in some cases.

Note

The device driver must not call malloc or otherwise allocate memory; all data should be in the stack or set as
globals. This is because the driver may be required to run within a minimal eCos configuration.

These functions should all return 0 on success, or a negative eCos error code. In the event of an error, do not call back into the
NAND library; use the NAND_CHATTER macro to report, in case a human is watching, and return an error code. The library
will take care of ensuring the correct response to the application and updating the BBT as necessary.

Device initialisation
static int my_devinit (cyg_nand_device *dev);

The devinit function is the most complex, and logically one to write first. It is responsible for:

• initialising the device, typically by sending a reset command;

• interrogating the device to confirm its presence and properties;

• setting up the partition table list (see "Planning a port" above);

• setting up mutexes as necessary (see "Locking against concurrent access" above);

300

Writing NAND device drivers

• populating the other members of the cyg_nand_device struct (see below).

Interrogating the device is normally performed by sending a Read ID command and examining the result, which typically
encodes some or all of the chip parameters.

Given the similarity between many NAND parts, it may be possible to write a generic driver to cover all of one or more
manufacturer's parts, or indeed for all ONFI-compliant parts. At the time of writing, this has not yet been attempted.

The devinit function must set up the following struct members:

page_bits The size of the regular (non-spare) part of a page, expressed as the logarithm in base 2
of the number of bytes. For example, if pages are 2048 bytes long, page_bits would
be 11. Obviously, the size of a page must be an exact power of two.

spare_per_page The number of bytes of spare area available in each page.

block_page_bits The base-2 log of the number of pages per eraseblock.

blockcount_bits The total number of erase blocks in the device, expressed as a base-2 log.

chipsize_log The total size of the chip, not counting the spare areas. This is required so that the library
can double-check that the given parameters make sense by comparing with the preceding
fields. Again, this field is itself a base-2 logarithm.

bbt.data Space for the in-memory Bad Block Table for this device.

bbt.datasize This is the size of bbt.data, in bytes. At present, this should be two bits times the
number of blocks in the device; in other words, 1<<(blockcount_bits-2) bytes.

The cyg_nand_device struct has two further members ecc and oob which must be set up to point to the ECC and OOB
descriptors to use for the device. This is normally done by the CYG_NAND_DEVICE low-level instantiation macro, so will
be better described in that section, but at this level you should be aware that it is also safe to set up the descriptor block during
devinit. for example if multiple semantics might be you had included logic to detect what semantics to use.

The Bad Block Table itself is implemented in a way which intends to be compatible with the Linux MTD layer. A full parameter
struct is not currently provided, though one may be in future.

Reading, writing and erasing data
The read and write operations are divided into three phases, with the following flow:

• Begin. This is called once; the driver should lock any platform-level mutex and send the command and address.

• Stride. This is called one or more times to read the page data from the device.

Note

The reason for this is if the platform provides a NAND controller with hardware ECC: it is often necessary
to read out the ECC registers every so often.

• Finish. This is called once; it should read or write the spare area, (on programming) send a "program confirm" command
and check its status, and unlock any platform-level mutex.

Erasing is a single-shot call which should lock any platform-specific mutex, send the command, check its status and unlock
the mutex.

static int my_read_begin(cyg_nand_device *dev, cyg_nand_page_addr page);
static int my_read_stride(cyg_nand_device *dev, void * dest, size_t size);
static int my_read_finish(cyg_nand_device *dev, void * spare, size_t spare_size);

static int my_write_begin(cyg_nand_device *dev, cyg_nand_page_addr page);
static int my_write_stride(cyg_nand_device *dev, const void * src, size_t size);

301

Writing NAND device drivers

static int my_write_finish(cyg_nand_device *dev, const void * spare, size_t spare_size);

static int my_erase_block(cyg_nand_device *dev, cyg_nand_block_addr blk);

Searching for factory-bad blocks
static int my_is_factory_bad(cyg_nand_device *dev, cyg_nand_block_addr blk);

The very first time a NAND chip is used, the library has to scan it to check for factory-bad eraseblocks and build up the Bad
Block Table. This function is called repeatedly to do so, one block at a time; it should return 1 if the block is marked bad,
or 0 if the block appears to be OK.

Typically this function will invoke read_page; blocks are usually marked factory-bad by the presence of a particular signa-
ture in the out-of-band area of the first or second page of that block.

Warning

It is extremely important that you get this function right; after an eraseblock has been written to, it is no longer
possible to reliably determine whether the block was factory-bad. It is never safe to assume that the factory-bad
signature for a chip is the same as that of a similarly-sized chip or another by the same manufacturer; always
check the correct spec sheet for the actual part or part-family in use!

Tip

Because this function is critical and a subtle error could cripple your application some time later in the field when
it runs across undetected factory-bad blocks, you might find it handy to have a double-check before proceeding.
If you enable CYGSEM_IO_NAND_READONLY in your eCos configuration during early development, you
can safely fire up a test application (which calls cyg_nand_lookup) whilst watching the chatter output: the
scan will be performed, but no BBT will be written. You can then compare the number of bad blocks reported
against the manufacturer's specification of the maximum. Double-check that your is_factory_bad function
is correct before enabling read-write mode!

Declaring the function set
CYG_NAND_FUNS_V2(mydev_funs, my_devinit,
 my_read_begin, my_read_stride, my_read_finish,
 my_write_begin, my_write_stride, my_write_finish,
 my_erase_block, my_is_factory_bad);

This macro ties the above functions together into a struct whose name is given as its first argument. The name of the resulting
struct must be quoted when the driver is formally instantiated, which is normally done by the low-level functions.

Note

Earlier versions of this library used a slightly different device interface, keyed off the macro CYG_NAND_FUNS.
This interface has been retired.

Low-level (board) functions
The set and prototypes of the functions required here will necessarily depend on the board and to a lesser extent on the NAND
part itself. The following functionality is typically required:

• Very low-level hardware initialisation - for example, GPIO pin direction and interrupt config - if this has not already been
done by the platform HAL

• Set up the chip partition table (see below)

• Runtime hardware config as required, such as commanding an FPGA or CPLD to route lines to the NAND part

• Write a command (byte)

302

Writing NAND device drivers

• Write an address (handful of bytes)

• Write data, usually at the chip's full bus width (typically 8 or 16 bits)

• Read data at full bus width

• Read data at 8-bit width (if the chip has a 16 bit data bus, some commands - commonly ReadID - may return 8-bit data)

• Poll any status lines required or - if supported - set them up as interrupts to allow sleeping-wait

Talking to the chip
It is impossible to prescribe how to achieve this, as it depends entirely on how the NAND part is wired up on the board.

The ideal situation is that the NAND part is wired in via the CPU's memory controller and that the controller is set up to do most
of the hard work for you. In that case, reading and writing the device is as simple as accessing the correct memory-mapped I/
O address; usually different address ranges connect to the device's command, address and data registers respectively.

Tip

The HAL provides a number of macros in <cyg/hal/hal_io.h> to read and write memory-mapped I/O.

Note

On platforms with an MMU, MMIO may be rerouted to different addresses to those on the board spec sheet.
Check the MMU setup in the platform HAL.

On some platforms, you may have to invoke an FPGA or CPLD to be able to talk to the NAND chip. This might typically
take the form of a handful of MMIO accesses, but should hopefully be fairly straightforward once you've figured out how the
components interrelate.

The worst case is where you have no support from any sort of controller hardware and have to bit-bang GPIO lines to talk to
the chip. This is a much more involved process; you have to take great care to get the timings right with carefully tuned delays.
The result is usually quite CPU intensive, and could be clock speed sensitive too; you should check for and take account of
any CDL settings in the architecture and variant HAL which allow the CPU clock frequency to be changed.

Tip

If your low-level functions take a cyg_nand_device pointer as an argument, you can use its priv member to hold
or point to some relevant data like the MMIO addresses to use, which is preferable to hard-coding them. Indeed,
if you wish your board port to support more than one chip, you should use the priv member to distinguish
between them.

Setting up the chip partition table
It is the responsibility of the high-level devinit function to set up the device's partition table. (It may be appropriate for it
to invoke a low-level function to do this.)

The partition definition is an array of cyg_nand_partition entries in the cyg_nand_device.

struct _cyg_nand_partition_t {
 cyg_nand_device *dev;
 cyg_nand_block_addr first;
 cyg_nand_block_addr last;
};
typedef struct _cyg_nand_partition_t cyg_nand_partition;

struct _cyg_nand_device_t {
 …
 cyg_nand_partition partition[CYGNUM_NAND_MAX_PARTITIONS];
 …
};

303

Writing NAND device drivers

Application-visible partition numbers are simply indexes into this array.

• On a live partition, dev must point back to the cyg_nand_device containing it. If NULL, the partition is inactive.

• first is the number of the first block of the partition.

• last is the number of the last block of the partition (not the number of blocks, unless the partition starts at block 0).

Putting it all together…
Finally, with everything else in place, we turn to the CYG_NAND_DEVICE macro to instantiate it.

CYG_NAND_DEVICE(my_nand, "onboard", &mydev_funs, &my_priv_struct, &linux_mtd_ecc, &nand_mtd_oob_64);

In order, the arguments to this macro are:

• The name to give the resultant cyg_nand_device struct;

• the device identifier string, application-visible to be used in cyg_nand_lookup() ;

• a pointer to the device high-level function set to use, normally set up by the CYG_NAND_FUNS macro;

• the priv member to include in the struct;

• a pointer to the ECC semantics block to use. linux_mtd_ecc provides software ECC compatible with the Linux MTD
layer, but it is strongly recommended to use onboard hardware ecc support if this is present as it gives a huge speed boost.
See the section called “ECC implementation” for more details.

• a pointer to the OOB-area layout descriptor to use (see nand_oob.h : nand_mtd_oob_16 and nand_mtd_oob_64 are
Linux-compatible layouts for devices with 16 and 64 bytes of spare area per page respectively).

The macro invokes the appropriate linker magic to pull all the compiled NAND device structs into one section so the NAND
library can find them.

ECC implementation
The use of ECC is strongly recommended with NAND flash parts owing to their tendency to occasionally bit-flip. This is
usually done with a variant of a Hamming code which calculates column and line parity. The computed ECC is stored in the
spare area of the page to which it relates.

The NAND library automatically computes and stores the ECC of data as it is written to the chip. On read, the code is calculated
for the data actually read; this is compared with the stored code and the data repaired if necessary.

The NAND library comes with a software ECC implementation named linux_mtd_ecc. This is compatible with the ECC
used in the Linux MTD layer, hence its name. It calculates a 3-byte ECC on a 256-byte data block. This algorithm is adequate
for most circumstances, but it is strongly recommended to use any hardware ECC support which may be available because of
the performance gains it yields. (In testing, we observed that up to two thirds of the time taken by every page read and program
call was used in computing ECC in software.)

The ECC interface
This library draws a semantic distinction between hardware and software ECC implementations.

• A software ECC implementation will typically not require an initialisation step. The calculation function will always be
called with a pointer to the data bytes to compute.

• A hardware implementation is assumed to read and act upon the data as it goes past. Therefore, it will not be passed a pointer
to the data when its calculate step is invoked.

An ECC is defined by the following parameters:

304

Writing NAND device drivers

• The size of data block it handles, in bytes.

• The size of ECC it calculates on those blocks, in bytes.

• Whether the algorithm is hardware or software.

An ECC algorithm must provide the following functions:

/* Initialises an ECC computation. May be NULL if not required. */
void my_ecc_init(struct _cyg_nand_device_t *dev);

/* Returns the ECC for the given data block.
 * If IS_HARDWARE:
 * - dat and nbytes are ignored
 * If ! IS_HARDWARE:
 * - dat and nbytes are required
 * - if nbytes is less than the chunk size, the remainder are
 * assumed to be 0xff.
 */
void my_ecc_calc(struct _cyg_nand_device_t *dev,
 const CYG_BYTE *dat, size_t nbytes, CYG_BYTE *ecc);

/* Repairs the ECC for the given data block, if needed.
 * Call this if your read-from-chip ECC doesn't match what you computed
 * over the data block. Both *dat and *ecc_read may be corrected.
 *
 * `nbytes' is the number of bytes we're interested in; if a correction
 * is indicated outside of that range, it will be ignored.
 *
 * Returns:
 * 0 for no errors
 * 1 for a corrected single bit error in the data
 * 2 for a corrected single bit error in the ECC
 * -1 for an uncorrectable error (more than one bit)
 */
int my_ecc_repair(struct _cyg_nand_device_t *dev,
 CYG_BYTE *dat, size_t nbytes,
 CYG_BYTE *ecc_read, const CYG_BYTE *ecc_calc);

In some cases - particularly where hardware assistance is in use - it is necessary to specify different functions for calculating
the ECC depending on whether the operation at hand is a page read or a page write. In that case, two init and calc functions
may be supplied, each taking the same prototype.

The algorithm parameters and functions are then tied together with one of the following macros:

CYG_NAND_ECC_ALG_SW(my_ecc, _datasize, _eccsize, my_ecc_init, my_ecc_calc, my_ecc_repair);

CYG_NAND_ECC_ALG_HW(my_ecc, _datasize, _eccsize, my_ecc_init, my_ecc_calc, my_ecc_repair);

CYG_NAND_ECC_ALG_HW2(my_ecc, _datasize, _eccsize, my_ecc_init, my_ecc_calc_read,
 my_ecc_calc_write, my_ecc_repair);

CYG_NAND_ECC_ALG_HW3(my_ecc, _datasize, _eccsize, my_ecc_init_read, my_ecc_init_write,
 my_ecc_calc_read, my_ecc_calc_write, my_ecc_repair);

Tip

It's OK to use software ECC while getting things going, but if you do then switch to a hardware implementation,
you probably need to erase your entire NAND chip including its Bad Block Table. The nanderase utility may
come in handy for this.)

Warning

You must be sure that your ECC repair algorithm is correct. This can be quite tricky to test. However, it is often
possible to hoodwink the controller into computing ECCs for you even if the data is not going to affect the data

305

Writing NAND device drivers

stored on the NAND chip, for example if you send it data but haven't told it to program a page. A variant of the
sweccwalk test may come in handy for this purpose.

An example implementation, including an ECC calculation and repair test named eccwalk, may be found in the STM3210E
evaluation board platform HAL, packages/hal/cortexm/stm32/stm3210e_eval. The chip NAND controller has
on-board ECC calculation, but does not undertake to repair data; a repair function was written specially.

306

Chapter 56. Tests and utilities
Unit and functional tests
The NAND library includes a number of tests. The most useful to driver writers are readwrite, rwbenchmark and swec-
cwalk; the others are only likely to be of interest to library maintainers.

readwrite Performs a read-write-erase cycle on the first NAND device it finds, checking that its op-
erations have had the expected effect on the device contents. This is a potentially destruc-
tive test; do not run it on a device containing data you care about!

rwbenchmark A more involved version of readwrite, this is a timing test which performs multiple
reads, writes and erases and applies statistical techniques to the results in the same way that
tm_basic instruments the speed of various eCos kernel functions. This is a potentially
destructive test; do not run it on a device containing data you care about!

sweccwalk Repeatedly makes single-bit changes to a data buffer and checks that the software ECC
implementation correctly repairs them.

Tip

This test can be adapted to test out hardware ECC implementations. The test
outputs the raw ECC codes as it goes, which is useful in confirming that the
bits in the computed ECC are what you think they are.

nandunit Some unit tests which do not require any NAND device: ECC known answer vectors, and
OOB area packing/unpacking correctness.

readlimits Attempts to read a block outside of a partition, confirming that it doesn't work.

There are some further tests of the library which require the synthetic NAND device.

Ancillary NAND utilities
The following utilities are included with the NAND library. They are standalone eCos applications; for convenience, you can set
CYGBLD_IO_NAND_BUILD_UTILS in your eCos configuration and they will be built and placed into install/tests/
io/nand/current/utils.

Warning

It is particularly dangerous to run the utility erase_bbt_dangerous.c on a production device, as it is gen-
erally not possible to later reconstruct the list of factory-bad blocks. It is intended only as an aid to driver authors.

erasenand.c Loops over all the blocks of a partition, erasing all the blocks 1 which are not marked as
bad. The device and partition to erase are set by #define.

erase_bbt_dangerous.c2 Erases the NAND blocks comprising the primary and mirror bad-block tables of a device.
The device to erase is set by #define. (The tables are detected by the library in the usual
way. If none are present, the library will scan the device for factory-bad blocks to create
such a table, then this code will immediately erase it.)

1This will not normally erase the Bad Block Table. This is because the BBT reports its own blocks as "Reserved" when queried via cyg_nand_bbt_query,
which makes them inaccessible to applications. However, if CYGSEM_IO_NAND_USE_BBT is turned off, then any BBT present will not be detected and
hence will be erased.
2Note the warning regarding running this on a production device

307

Chapter 57. The eCos configuration store

Overview
The eCos configuration store is a simple typed key/value store which uses NAND flash for its persistent storage.

The library is aimed at applications that wish to store simple configuration data without the overhead of a fully NAND-aware
filesystem. It is also used by RedBoot to store persistent configuration data.

The following functionality is provided:

• Write data

• Read data

• Erase individual data items

• List and dump out store keys and contents (for debugging)

Design limitations
• The data which may be stored is limited to a total of one NAND block, including the store's internal metadata.

• The store is designed to be robust but simple. It is not expected to scale well; if there are a great many items in the store,
read access will be slow.

• The entire store is rewritten on every write; this means that write access to a busy store will similarly be slow.

• The store is NAND-aware and incorporates simple wear-levelling logic but excessive numbers of writes will still risk burning
out the NAND array. If the store is allocated only a small number of NAND blocks, this will exacerbate the effect. It is
recommended to allow a reasonable number of blocks (5-10) to allow for blocks wearing out over the lifetime of the device.

• Only simple locking is used to prevent corruption; all config store operations block until they are able to secure the protecting
mutex.

Using the config store
The main entry points to the config store logic are as follows:

/* From <cyg/configstore/write.h>.
 * These functions write out a key, overwriting it if it is already there.
 * They return 0 for success or a negative errno value; see the header
 * file for details.
 */
externC
int cyg_configstore_write_int(const char *key, cyg_uint32 i);
externC
int cyg_configstore_write_bool(const char *key, cyg_bool b);
externC
int cyg_configstore_write_bytes(const char *key, void *src, cyg_uint32 len);
externC
int cyg_configstore_write_string(const char *key, const char *data);

/* Erases a single key */
externC
int cyg_configstore_erase_keystr(const char *key);

/* From <cyg/configstore/read.h>.
 * These functions read out a key or header.
 * They return 0 for success or a negative errno value; see the header

308

eCos configuration store

 * file for details. */

externC
int cyg_configstore_read_int(const char *key, cyg_uint32 *i);
externC
int cyg_configstore_read_bool(const char *key, cyg_bool *b);

/* Note:
* For bytes and strings, check *len_io after read to see the actual number
* of bytes read, INCLUDING the trailing NUL. */
externC
int cyg_configstore_read_bytes(const char *key, CYG_BYTE *buf, unsigned *len_io);
externC
int cyg_configstore_read_string(const char *key, char *buf, unsigned *len_io);

/* Reading out only the header allows you to check a key's type and size. */
externC
int cyg_configstore_read_header(const char *key, cyg_configstore_header_t *hdr);

/* From <cyg/configstore/util.h>. */

/* Lists all keys in the store (to diag_printf).
 * Not really machine-readable; intended for human-read debugging. */
externC
void cyg_configstore_list(void);

/* Dumps out everything in the store (to diag_printf).
 * Intended for human-read debugging.
 * NOTE: This may emit large amounts of output, which may
 * take an excessive length of time over a slow debug channel. */
externC
void cyg_configstore_dump(void);

For more details of the types and structures used, refer to <cyg/configstore/serialise.h> and <cyg/con-
figstore/record.h> .

Note

Both store keys, and strings in the store, should not contain the ASCII NUL (0x00) character. Behaviour in this
case is undefined.

Locking
The config store uses mutexes in order to prevent corruption by concurrent access. If CYGPKG_KERNEL is loaded in your
eCos configuration, the config store automatically inherits the configured mutex behaviour.

Configuration
If the NAND array reports an error when writing or erasing a block, the config store will automatically retry the operation, up
to CYGNUM_CONFIG_STORE_RETRIES times. The default setting is 3 retries.

The config store is allocated a single NAND partition. The device and partition are configured by the CDL options CYG-
DAT_CONFIG_STORE_DEVICE and CYGNUM_CONFIG_STORE_PARTITION. Normally CYGDAT_CONFIG_S-
TORE_DEVICE is set by the platform HAL; CYGNUM_CONFIG_STORE_PARTITION may also be hard-wired, if Red-
Boot or other boot loader needs it.

To configure partition sizes, refer to the eCos HAL documents for your platform. It is recommended to allow a reasonable
number of blocks (5-10) for the config store, in order to allow for blocks wearing out over the lifetime of the device.

Caution

1. If the config store is to be shared between multiple clients - for example, RedBoot and an application - the
partition geometry must be configured identically to both of them. Be aware that changing the geometry in
CDL will not update RedBoot unless you also reconfigure, rebuild and reflash it!

309

eCos configuration store

2. If other applications write other data to the NAND array, care should be taken to not overwrite the config
store. It is recommended to give them their own partition.

Storage details
The config store uses a single NAND block, conceptually contiguous from its component NAND pages but of course read
and written a single page at a time.

The data block has the following contents:

• Magic number CYG_CONFIGSTORE_MAGIC_HEADER .

• Block serial number. These allow us to detect old versions and automatically clean them up. Serial Number Arithmetic
(RFC1982) is used to compare.

• Zero or more records, each introduced by the magic number CYG_CONFIGSTORE_MAGIC_RECORD.

• Magic number CYG_CONFIGSTORE_MAGIC_FOOTER . This allows us to detect an incompletely-written block.

Every page written by the config store also contains magic numbers CYG_CONFIGSTORE_ECOS_TAG and CYG_CON-
FIGSTORE_MAGIC_TAG in the out-of-band (spare) area identifying it as belonging to the store. This allows us to attempt to
be a tolerant neighbour and not erase data that appears to belong to another (possibly misconfigured) client of the NAND array.

Each record has the following contents:

• The key. This is a null-terminated string to the user, though the null is not stored on NAND. This is stored in the same way
as a string (see below).

• The record type. This is one of Integer, Boolean, String or Bytes.

• The length of the data.

• The length of the data including padding.

• The data itself.

• Any padding required (see below).

Padding
Everything written is padded to the nearest 4-octet boundary.

• Integers are always stored unsigned as 4 octets in host byte order.

• Booleans are stored as integers with 1 mapping to True and 0 to False.

• Strings and Bytes are stored as a tuple (data length, data, padding). The difference is that strings are null-terminated in RAM;
the trailing null is stripped on write and restored on read.

Scanning
On every access, both read and write, the config block is scanned for consistency. Any obsoleted or incompletely-written blocks
are automatically erased. When writing, the old block is only erased once the new block has been completely written.

310

Part XVI. NAND Device Drivers

Table of Contents
58. Samsung K9 family NAND chips .. 313

Overview ... 313
Using this driver in a board port ... 313

Memory usage ... 314
Low-level functions required from the platform HAL ... 314

59. ST Microelectronics NANDxxxx3a chips .. 315
Overview ... 315

Using this driver in a board port ... 315
Memory usage note ... 315
Low-level functions required from the platform HAL ... 315

60. Micron MT29F family NAND chips ... 317
Overview ... 317
Using this driver in a board port ... 317

Memory usage ... 318
Low-level functions required from the platform HAL ... 318

312

Chapter 58. Samsung K9 family NAND
chips
Overview
The CYGPKG_DEVS_NAND_SAMSUNG_K9 driver package currently provides support for the Samsung K9F1G08, K9F2G08
and K9F1208 series of NAND flash chips, and is intended to be expanded to provide support for more of the K9 family.

Most users will not need to interact with this package; it should be included as a hardware dependency on all appropriate
targets. This package provides only an inline code fragment which is intended to be instantiated by the target platform HAL
and provided with appropriate board-specific low-level functions allowing it to access the hardware.

Notes

1. The large-page parts in this family are not quite ONFI-compliant, but this code could probably be extended
to a much wider set of chips - or indeed to the ONFI specification - without too much trouble. Appropriate
definitions will be required for the chip identifier, decoding of the Read ID response, and the chip's block-
count-bits and device-size fields.

2. At the present time, this driver has the limitation that it only supports 8-bit parts. This is an area of probable
future expansion.

Using this driver in a board port
This driver's top-level chip support is currently provided as two files:

cyg/devs/nand/
k9_generic.h

Prototypes the low-level chip access functions required by the chip driver and declares a
private struct for use by the driver.

cyg/devs/nand/
k9_generic.inl

Implements high-level chip functions and exposes them via the CYG_NAND_FUNS macro.
This file is not intended to be compiled on its own, but to be included by the source file in
a platform HAL which implements the low-level functions.

A platform HAL would typically make use of this driver in a single source file with the following steps:

• Declare a local private struct with contents as appropriate,

• #include <cyg/devs/nand/k9_generic.h>

• implement the required low-level functions,

• #include <cyg/devs/nand/k9_generic.inl>

• declare a list of the supported k9_subtype which may appear on the board, terminated by K9_SUBTYPE_SENTINEL

• declare a static instance of the k9_priv struct containing pointers to that list and to an instance of the local-private struct

• finally, instantiate the chip with the CYG_NAND_DEVICE macro, selecting the ECC and OOB semantics to use.

Note

If there is more than one chip on the board, each needs its own CYG_NAND_DEVICE with a distinct name
and device name, its own instance of the k9_priv struct.

For more details about the infrastructure provided by the NAND layer and the semantics it expects of the chip driver, refer to
Chapter 53, eCos NAND Flash Library. An example driver instantiation can be found in the NAND driver for the EA LPC2468
platform.

313

Samsung K9 family NAND chips

Memory usage
As discussed in the section called “High-level (chip) functions”, the chip initialisation function must set up the bbt.data
pointer in the cyg_nand_device struct. This driver does so by including a large byte array in the k9_priv struct whose size is
controlled by CDL depending on the enabled chip support. That struct is intended to be allocated as a static struct in the data
or BSS segment (one per chip), which avoids adding a dependency on malloc.

Low-level functions required from the platform HAL
These functions are prototyped in k9_generic.h. They have no return value ("void"), except for read_data_1 which
returns the byte it has read.

write_cmd(device, command)
Writes a single command byte to the chip's command latch.

write_addrbytes(device, pointer to bytes, number of bytes)
Writes a number of address bytes in turn to the chip's address latch.

CYG_BYTE read_data_1(device), read_data_bulk(device, output pointer, number of bytes)
Reads data from the device, respectively a single byte and in bulk.

write_data_1(device, byte), write_data_bulk(device, data pointer, number of bytes)
Writes data to the device, respectively a single byte and in bulk.

wait_ready_or_time(device, initial delay, fallback time)
Wait for the chip to signal READY line or, if this line is not available, fall back to a worst-case time delay (measured
in microseconds).

wait_ready_or_status(device, mask)
Wait for the chip to signal READY line or, if this line is not available, enter a loop waiting for its Status register (ANDed
with the given mask) to be non-zero.

k9_devlock(device), k9_devunlock(device)
Hooks for any board-specific locking which may be required in addition to the NAND library's chip-level locking. (This
would be useful if, for example, access to multiple chips was mediated by a single set of GPIO lines which ought not to
be invoked concurrently.)

k9_plf_init(device)
Board-level platform initialisation hook. This is called very early on in the chip initialisation routine; it should set up any
locking required by the devlock and devunlock functions, interrupts for the driver and any further lines required to access
the chip as approprate. Once this has returned, the chip driver assumes that the platform is fully prepared for it to call
the other chip access functions.

k9_plf_partition_setup(device)
Board-level partition initialisation hook. This should set up the partition array of the device struct in a way which is
appropriate to the platform. For example, the partitions may be set as fixed ranges of blocks, or by CDL. This is called
at the end of the chip initialisation routine and may, for example, call into the chip to read out a "partition table" if one
is present on the board. If you do not set up partitions, applications will not be able to use the high-level chip access
functions provided the NAND library.

314

Chapter 59. ST Microelectronics
NANDxxxx3a chips
Overview
The CYGPKG_DEVS_NAND_ST_NANDXXXX3A driver package provides support for the NANDxxxx3A chip family by ST
Microelectronics.

Most users will only need to add this package to their eCos configuration and not need to interact with it further. This package
provides only an inline code fragment which is intended to be instantiated by the target platform HAL and provided with
appropriate board-specific low-level functions allowing it to access the hardware.

Using this driver in a board port
This driver's chip support is currently provided as two files:

cyg/devs/nand/nandxxxx3a.h
Prototypes the low-level chip access functions required by the chip driver, declares a private struct for use by the driver
and provides a NANDXXXX3A_DEVICE macro for convenience.

cyg/devs/nand/nandxxxx3a.inl
Implements high-level chip functions and exposes them via the CYG_NAND_FUNS macro. This file is not intended to be
compiled on its own.

A platform HAL would typically make use of this driver in a single source file with the following steps:

• Declare a private struct and one or more static instances of it as appropriate,

• #include <cyg/devs/nand/nandxxxx3a.h>

• implement the required low-level functions,

• #include <cyg/devs/nand/nandxxxx3a.inl>

• finally, instantiate the chip with the NANDXXXX3A_DEVICE macro the appropriate number of times, giving each chip an
appropriate name and its own private struct if need be, declaring its size, and selecting the ECC and OOB semantics to use.

For more details about the infrastructure provided by the NAND layer and the semantics it expects of the chip driver, refer
to Chapter 53, eCos NAND Flash Library. An example driver instantiation can be found in the platform HAL for the ST-
M3210E-EVAL board.

Memory usage note
As discussed in the section called “High-level (chip) functions”, the chip initialisation function must set up the bbt.da-
ta pointer in the cyg_nand_device struct. This driver does so by including pointer to a sufficiently large byte array in the
nandxxx3a_priv struct. That struct is intended to be allocated as a static struct in the data or BSS segment (one per chip), which
avoids adding a dependency on malloc.

Low-level functions required from the platform HAL
These functions are prototyped in nandxxxx3a.h. They have no return value ("void"), except where indicated.

write_cmd(device,command)
Writes a single command byte to the chip's command latch.

315

ST Microelectronics NANDxxxx3a chips

write_addrbytes(device, pointer to bytes, number of bytes)
Writes a number of address bytes in turn to the chip's address latch.

CYG_BYTEread_data_1(device), read_data_bulk(device, output pointer, number of bytes)
Reads data from the device, respectively a single byte and in bulk.

write_data_1(device, byte), write_data_bulk(device, data pointer, number of bytes)
Writes data to the device, respectively a single byte and in bulk.

wait_ready_or_time(device, initial delay, fallback time)
Wait for the chip to signal READY or, if this line is not available, fall back to a worst-case time delay (measured in
microseconds).

wait_ready_or_status(device, mask)
Wait for the chip to signal READY or, if this line is not available, enter a loop waiting for its Status register (ANDed
with the given mask) to be non-zero.

nandxxxx3a_devlock(device), nandxxxx3a_devunlock(device)
Hooks for any board-specific locking which may be required in addition to the NAND library's chip-level locking. (This
would be useful if, for example, access to multiple chips was mediated by a single set of GPIO lines which ought not to
be invoked concurrently.)

int nandxxxx3a_plf_init(device)
Board-level platform initialisation hook. This is called very early on in the chip initialisation routine; it should set up any
locking required by the devlock and devunlock functions, interrupts for the driver and any further lines required to access
the chip as approprate. Once this has returned, the chip driver assumes that the platform is fully prepared for it to call
the other chip access functions.

int nandxxxx3a_plf_partition_setup(device)
Board-level partition initialisation hook. This should set up the partition array of the device struct in a way which is
appropriate to the platform. For example, the partitions may be set as fixed ranges of blocks, or by CDL. This is called
at the end of the chip initialisation routine and may, for example, call into the chip to read out a "partition table" if one
is present on the board. If you do not set up partitions, applications will not be able to use the high-level chip access
functions provided the NAND library.

316

Chapter 60. Micron MT29F family NAND
chips
Overview
The CYGPKG_DEVS_NAND_MICRON_MT29F driver package currently provides support for the Micron MT29F2G08 NAND
flash chip, and is intended to be expanded to provide support for more of the MT29F family.

Most users will not need to interact with this package; it should be included as a hardware dependency on all appropriate targets.
This package provides only inline code fragments which are intended to be included and instantiated by the target platform
HAL and provided with appropriate board-specific low-level functions allowing it to access the hardware.

Notes

1. The large-page parts in this family are not quite ONFI-compliant, but this code could probably be extended
to a much wider set of chips - or indeed to the ONFI specification - without too much trouble. Appropriate
definitions will be required for the chip identifier, decoding of the Read ID response, and the chip's block-
count-bits and device-size fields.

2. At the present time, this driver has the limitation that it only supports 8-bit parts. This is an area of probable
future expansion.

Using this driver in a board port
This driver's top-level chip support is currently provided as three files:

cyg/devs/nand/mt29f_generic.h
Prototypes the low-level chip access functions required by the chip driver and declares a private struct for use by the driver.

cyg/devs/nand/mt29f_generic.inl
Implements high-level chip functions and includes mt29f_generic_lp.inl. This file is not intended to be compiled on its
own, but to be included by the source file in a platform HAL which implements the low-level functions.

cyg/devs/nand/mt29f_generic_lp.inl
Implements those high-level chip functions which are specific to large-page chips, completing the driver and exposing it
via the CYG_NAND_FUNS macro. This file is not intended to be compiled or included directly by platform code.

A platform HAL would typically make use of this driver in a single source file with the following steps:

• Declare a local private struct with contents as appropriate,

• #include <cyg/devs/nand/mt29f_generic.h>

• implement the required low-level functions,

• #include <cyg/devs/nand/mt29f_generic.inl>

• declare a list of the supported mt29f_subtype which may appear on the board, terminated by MT29F_SUBTYPE_SEN-
TINEL

• declare a static instance of the mt29f_priv struct containing pointers to that list and to an instance of the local-private struct

• finally, instantiate the chip with the CYG_NAND_DEVICE macro, selecting the ECC and OOB semantics to use.

Note

If there is more than one chip available on the board, each needs its own CYG_NAND_DEVICE with a distinct
name and device name, its own instance of the mt29f_priv struct.

317

Micron MT29F family NAND chips

For more details about the infrastructure provided by the NAND layer and the semantics it expects of the chip driver, refer
to Chapter 53, eCos NAND Flash Library.

Memory usage
As discussed in the section called “High-level (chip) functions”, the chip initialisation function must set up the bbt.data
pointer in the cyg_nand_device struct. This driver does so by including a large byte array in the mt29f_priv struct whose size
is controlled by CDL depending on the enabled chip support. That struct is intended to be allocated as a static struct in the data
or BSS segment (one per chip), which avoids adding a dependency on malloc.

Low-level functions required from the platform HAL
These functions are prototyped in mt29f_generic.h. They have no return value ("void"), except for read_data_1 which
returns the byte it has read.

write_cmd(device, command)
Writes a single command byte to the chip's command latch.

write_addrbytes(device, pointer to bytes, number of bytes)
Writes a number of address bytes in turn to the chip's address latch.

CYG_BYTE read_data_1(device), read_data_bulk(device, output pointer, number of bytes)
Reads data from the device, respectively a single byte and in bulk.

write_data_1(device, byte), write_data_bulk(device, data pointer, number of bytes)
Writes data to the device, respectively a single byte and in bulk.

wait_ready_or_time(device, initial delay, fallback time)
Wait for the chip to signal READY line or, if this line is not available, fall back to a worst-case time delay (measured
in microseconds).

wait_ready_or_status(device, mask)
Wait for the chip to signal READY line or, if this line is not available, enter a loop waiting for its Status register (ANDed
with the given mask) to be non-zero.

mt29f_devlock(device), mt29f_devunlock(device)
Hooks for any board-specific locking which may be required in addition to the NAND library's chip-level locking. (This
would be useful if, for example, access to multiple chips was mediated by a single set of GPIO lines which ought not to
be invoked concurrently.)

mt29f_plf_init(device)
Board-level platform initialisation hook. This is called very early on in the chip initialisation routine; it should set up any
locking required by the devlock and devunlock functions, interrupts for the driver and any further lines required to access
the chip as approprate. Once this has returned, the chip driver assumes that the platform is fully prepared for it to call
the other chip access functions.

mt29f_plf_partition_setup(device)
Board-level partition initialisation hook. This should set up the partition array of the device struct in a way which is
appropriate to the platform. For example, the partitions may be set as fixed ranges of blocks, or by CDL. This is called
at the end of the chip initialisation routine and may, for example, call into the chip to read out a "partition table" if one
is present on the board. If you do not set up partitions, applications will not be able to use the high-level chip access
functions provided the NAND library.

318

Name
Synthetic Target NAND Flash Device — Emulate NAND flash hardware in the synthetic target

Overview
The device driver CYGPKG_DEVS_NAND_SYNTH emulates NAND flash hardware inside the eCos synthetic target. In addition
it provides a number of debug facilities which cannot readily be implemented on real embedded hardware, including:

1. The emulated NAND contents are held on a file in the Linux host. This makes it easy to archive and restore NAND images,
allowing test runs to be repeated with the exact same state each time.

2. The device driver can log details of all NAND I/O to a separate logfile in the Linux host. This makes it easier to work out
exactly what is happening in the application, and more importantly it can help with figuring out what went wrong when.
For extended runs it is possible to limit the disk space used for logging. It is also possible to generate checkpoints, where
the current NAND image is saved to a separate file.

3. It is possible to inject bad blocks at run-time, to check how the application would cope on real hardware if and when a
NAND erase block developed a fault. These can be made to affect random blocks or specific blocks, for example ones
holding filesystem metadata.

Some of the functionality is always available and uses compile-time configuration via CDL. This allows applications to be
run stand-alone. The more advanced functionality such as logging and bad block injection is only available when running in
conjunction with the synthetic target I/O auxiliary, when --io is used on the command line. The settings for logging and bad
block injection usually come from the default.tdf target definition file. These can be changed on a per-run basis by adding
--nanddebug to the command line, which will cause a suitable dialog box to pop up during NAND driver initialization.

Compile-time Configuration
This package CYGPKG_DEVS_NAND_SYNTH will automatically be loaded when creating a new eCos configuration for the
Linux synthetic target. However the package will be inactive until the generic NAND support is added to the configuration.

The synthetic target NAND driver has been designed to be functional both when running stand-alone and when used with the
I/O auxiliary. Hence some of the basic parameters of the emulated NAND device must be specified at compile-time, and this
is handled via CDL configuration options.

CYGDAT_NAND_SYNTH_FILENAME specifies the host-side file that will be used to hold the NAND data. The default is
synth_nand.dat in the current directory. If the file does not exist then the driver will create it during initialization. All
data in a newly-created image file will be set to 0xFF, corresponding to an erased device. Hence deleting the current image
file makes it possible to start a test run with a blank NAND device.

A NAND device consists of some number of erase blocks: erase operations affect all data in an erase block. Erase
blocks are made up of some number of pages, and write operations typically affect a page at a time. Each page con-
sists of a main data block plus some spare bytes, also known as out of band or OOB data. There are four CDL config-
uration options controlling the size and layout of the emulated flash device: CYGNUM_NAND_SYNTH_BLOCK_COUNT,
CYGNUM_NAND_SYNTH_PAGES_PER_BLOCK, CYGNUM_NAND_SYNTH_PAGESIZE, and CYGNUM_NAND_SYNTH_S-
PARE_PER_PAGE. The default settings are 1024 erase blocks, 32 pages per block, 2K of data per page, and 64 bytes of OOB
data per page. This gives an emulated device size of 64MB plus 2M OOB.

The size and layout parameters are encoded in each NAND image file. If these configuration options are changed then existing
image files will be incompatible and the device driver will report a fatal error at run-time. This avoids compatibility problems
with higher-level code: if a file system has formatted the NAND device for a 2K page size then it is likely to get very confused
if the page size suddenly changes to 512 bytes.

The NAND device can be partitioned manually by enabling the component CYGSEM_DE-
VS_NAND_SYNTH_PARTITION_MANUAL_CONFIG and manipulating the options below this. The default is for a single
partition occupying the entire NAND device.

Option CYGSEM_NAND_SYNTH_RANDOMLY_LOSE activates code in the driver which triggers frequent bit errors during read
operations. These should be handled by error correcting codes within the generic NAND layer so should be transparent to
higher-level code. The option exists mainly as an easy way of testing the automatic error correction support.

319

Synthetic Target NAND Flash Device

Run-time Customization

Logging and bad block injection are controlled by run-time customization via the synthetic target I/O auxiliary, not by com-
pile-time CDL options. This allows the same test executable to be run with and without logging or with different sequences
of injected bad blocks. If the executable is run without the I/O auxiliary, without the --io command line option, then both
logging and bad block injection will be disabled.

The main way of customizing both logging and bad block injection is via the target definition file, usually default.tdf.
The driver comes with a file nand.tdf holding the various options and explanatory text. This file should be incorporated into
default.tdf and edited as appropriate. Note that all NAND-related settings should be inside a synth_device nand
section.

Logging

The target definition file settings related to logging are as follows:

logfile "/tmp/synthnand.log"
log read write erase error
max_logfile_size 16M
number_of_logfiles 4
generate_checkpoint_images

The logfile setting controls the location of the logfile. The default is to add a suffix .log to the CYG-
DAT_NAND_SYNTH_FILENAME setting, thus creating logfiles in the same directory as the NAND image file.

The log setting specifies which events should be logged. It is followed by a list of some or all of the following: read, READ,
write, WRITE, erase, and error. read logs all calls to the driver's page read function, but not the data actually read.
READ is like read but logs the actual data as well as the event. Similarly write and WRITE log calls to the driver's page
write function, without or with the data being written. erase logs calls to the driver's block erase function. error logs any
bad block injection events.

Logging can quickly generate very large files, especially when READ or WRITE debugging is enabled. This can have unfortu-
nate side effects, for example an overnight stress test can fail because the logfile has filled all available disk space. To avoid
this it is possible to limit the size of each logfile using the max_logfile_size setting. This is simply a number followed
by a unit K, M or G.

When max_logfile_size is exceeded the NAND driver takes appropriate action. The default behaviour is just to delete
the current logfile and create a new one, with the same name as before. This can be unfortunate if some particularly interesting
event happened just before the maximum logfile size was exceeded because all logging information related to that event
will have been lost. To avoid this it is possible to have multiple logfiles, limited by the number_of_logfiles setting.
Assume a logfile name of /tmp/synthnand.log, a maximum logfile size of 16M and four logfiles. After the first 16MB
of logging data has been written to /tmp/synthnand.log that file will be renamed to /tmp/synthnand.log.0 and
a new current logfile /tmp/synthnand.log will be created. After another 16MB the current logfile will be renamed to /
tmp/synthnand.log.1, and so on. After 64MB the maximum allowed number of logfiles has been created, so /tmp/
synthnand.log.0 will be deleted and then /tmp/synthnand.log will be renamed to /tmp/synthnand.log.3.
Hence the maximum disk space used will be between 48MB and 64MB, plus a small amount of overflow for each logfile. All
logfiles are in plain text, one event per line, and a single event will not be spread over multiple logfiles.

In addition to the logfiles the NAND driver will generate image checkpoint files if generate_checkpoint_im-
ages is enabled. At the start of the test run the driver will copy the current NAND image to a new file /tmp/synth-
nand.log.checkpoint, using the same base filename as for logfiles. If support for multiple logfiles is enabled then the
current checkpoint file will be renamed in the same way and at the same time as the current logfile, and a new checkpoint file
will be created using the current image data. Hence for any logfile it is possible to examine both the starting image and the
final image (which may be the current one).

Bad Block Injection

There are two settings related to bad block injection: factory_bad and inject. The former is straightforward:

320

Synthetic Target NAND Flash Device

factory_bad 17 42 256 1019

This setting is used only when the NAND image file does not yet exist and the driver has to create a new one. The specified
erase blocks are marked as factory-bad and hence unusable. The setting consists simply of one or more numbers, each in the
range 0 to CYGNUM_NAND_SYNTH_BLOCK_COUNT-1. A maximum of 32 blocks can be marked factory bad.

Bad block injection is rather more complicated, in an attempt to make it sufficiently flexible for a variety of uses. The target
definition file can contain one or more inject settings. There is a limit of eight erase definitions and eight write definitions,
giving a maximum of sixteen bad block injection definitions. However some of these can use repeat, so the number of bad
blocks injected during a test run is limited only by the size of the emulated device. Example settings are:

inject erase current after rand% 1024 erases
inject write current after rand% 100000 calls repeat
inject erase block 1 after 3 block_erases
inject write page 9860 after 1000 writes

The inject keyword should be followed by either erase or write. If erase then the bad block injection happens during
a call to the driver's erase function, otherwise it happens during a call to write. This is followed by a block or page definition,
the keyword after, an event counter, and a couple of optional flags.

The simplest block or page definition is the keyword current. This simply means that whichever block is being erased, or
whichever block contains the page being written, will be marked bad. Typically this will be used for injecting random faults.
If a given block is the subject of an above-average number of erase or write operations then it is more likely to be the current
block in one of these definitions, so heavily-used blocks are more likely to fail.

The alternative to current is to list a specific block for an erase definition, or a specific page for a write definition. Blocks
go from 0 to CYGNUM_NAND_SYNTH_BLOCK_COUNT - 1. Pages go from 0 to (CYGNUM_NAND_SYNTH_BLOCK_COUNT
* CYGNUM_NAND_SYNTH_PAGES_PER_BLOCK) - 1. This can be particularly useful when testing higher-level code that
uses certain blocks specially, for example for storing filesystem metadata. It can also be useful when attempting to repeat a
test run using information from a logfile.

The fields immediately following the after keyword specify when the bad block injection should trigger. They consist of the
optional keyword rand%, a count, and an event identifier. If rand% is not specified then exactly the specified number of events
must occur before the bad block injection triggers. Otherwise some number between 0 and count-1 events must occur. The
event identifier can be one of erases, writes, calls, block_erases, or page_writes. erases means the number
of calls to the driver's block erase function. writes means the number of calls to the page write function. calls means the
total number of read, write or erase calls. block_erases means erase calls for a specific block. Similarly page_writes
means write calls for a specific page. block_erases and page_writes cannot be used together with current, only
with a specific block or page.

So, consider the first example again:

inject erase current after rand% 1024 erases

The driver will calculate a random number between 0 and 1023, say 427. Once there have been at least 427 erase calls the bad
block injection will trigger. Since the definition is for erase current, the injection can happen immediately. Hence whichever
block is specified during the 427th erase call will be marked bad and that erase call will fail with error code EIO.

Suppose that the definition used write current instead of erase current. The definition will still trigger during erase
call 427, but it will not take effect immediately. Instead whichever page is the subject of the next write operation will be marked
bad. Alternatively, suppose that the definition was for erase block 42 but call 427 was for block 512 instead. If some
time after call 427 there was another erase call for block 42, that later erase call will fail and cause the block to be marked bad.

Now consider the next definition:

inject write current after rand% 100000 calls repeat

This event will trigger after between 0 and 99999 calls into the driver. These calls can be reads, writes, or erases. If the triggering
call is a write then the block affected will be the one containing the page being written. Otherwise whichever page is the subject
of the next write operation will be the one affected.

inject erase block 1 after 3 block_erases

321

Synthetic Target NAND Flash Device

This definition will only ever affect block 1. The first two calls to erase block 1 will succeed. The third call will fail. Erase
calls for any other block have no effect on this definition.

inject write page 9860 after 1000 writes

This definition will only ever affect page 9860. The definition will trigger after 1000 writes to any page. If the thousandth
write happens to be for page 9860, it will fail. Otherwise the next write for page 9860 will fail, whenever that happens. If
the definition specified event type page_writes instead of writes it would trigger only after 1000 writes to page 9860
instead of 1000 writes to any page.

Trigger definitions can be followed by two optional keywords. The first is repeat and indicates that the definition should
trigger multiple times, not just once. repeat can only be used for block or page current, not for a specific block or page,
since any given block can only fail once. The second keyword is disabled. This can be used to create a bad block injection
definition which is not active by default but which can be enabled in the GUI interface.

All bad block injection definitions operate in parallel, not sequentially. It is possible for multiple definitions to trigger during
a single call but a given block can only fail once.

Interactive Dialog

Although it is possible to change the logging and other settings between test runs by editing the target definition file, the
package also provides a way of changing these during driver initialization time. If the command line option --nanddebug
is used in addition to --io then the I/O auxiliary will pop up a dialog box allowing the various settings to be edited.

Figure 2. I/O auxiliary Dialog, Files

The dialog consists of a tabbed notebook with separate tabs for Files, Logging, and Errors. The default tab is Files. This shows
the NAND device settings as configured via CDL options. If a current NAND image file exists then it can be deleted with a
single click, allowing the test run to proceed with a new blank NAND device. The current image file can be saved away to an
archive, either using a default name based on the current image name or by letting the user select a file. It is also possible to
restore a previously-saved archive, again using the default name if that archive exists, or by selecting an alternative file. If any
of the relevant files are changed outside this dialog then the refresh button forces the dialog to check the filesystem again. The
various operations will be reported at the bottom of the dialog.

If the Logging tab is selected then the dialog changes to the following:

322

Synthetic Target NAND Flash Device

Figure 3. I/O auxiliary Dialog, Logging

There are separate checkbuttons for the six types of events that can be logged. It is also possible to change the current logfile
and to edit the other settings related to logfiles.

The Errors tab is not yet implemented.

The dialog can be dismissed using the OK button or by hitting the ESC key. At that point the eCos application will resume
running with the selected settings.

File Formats
A NAND image is a binary file with six sections: a 64-byte header block; an array of erase counts; an array of write counts; an
array of the factory-bad blocks; a bitmap of the good and bad blocks; and the actual data. The header consists of the following
data structure:

struct header {
 cyg_uint32 magic; // 0xEC05A11F
 cyg_uint32 page_size; // CYGNUM_DEVS_NAND_SYNTH_PAGESIZE
 cyg_uint32 spare_size; // CYGNUM_DEVS_NAND_SYNTH_SPARE_PER_PAGE
 cyg_uint32 pages_per_block; // CYGNUM_DEVS_NAND_SYNTH_PAGES_PER_BLOCK
 cyg_uint32 number_of_blocks;// CYGNUM_DEVS_NAND_SYNTH_BLOCK_COUNT
 cyg_uint32 tv_sec;
 cyg_uint32 tv_usec;
 cyg_uint32 spare[9];
};

All integers in the header and in the following three sections are stored in bigendian format. The magic field is used to check
that a file really holds a NAND image. The next four fields specify the emulated device size and layout, as per the corresponding
CDL options. The tv_sec and tv_usec fields are filled in with the result of a gettimeofday() system call during
driver initialization. These fields also appear in logfiles, so code can check that a logfile and an image file correspond to the
same test run.

Following the header is an array of BLOCK_COUNT integers holding the number of erase calls for each block. Next is an
array of (BLOCK_COUNT * PAGES_PER_BLOCK) integers holding the number of write calls for each page. These arrays
can be used to check that higher-level code is performing wear levelling.

The array of factory-bad blocks consists of 32 integers holding the settings of the target definition's file factory_bad setting
at the time that the image file was created.

323

Synthetic Target NAND Flash Device

The bitmap following the factory-bad block array holds the current state of each erase block. Bit 0 of byte 0 corresponds to
erase block 0, bit 0 of byte 1 corresponds to erase block 8, and so on. If a bit is set then the erase block is ok. If a bit is clear
then the erase block is bad, either factory-bad or because it has failed subsequently due to a bad block injection.

The bad block bitmap is followed by the actual data. This consists of all erase blocks concatenated without padding, starting
with erase block 0. Each erase block is stored starting from page 0 within that block, and again all the pages are concatenated
without padding. For each page the actual data is stored first, followed by the spare (OOB) data.

A logfile is a plain text file, not a binary file. It holds one log event per line. Some of these lines can be rather long if READ
or WRITE logging is enabled. The fields within each line are separated by a single space. The first field indicates the type of
record. The next two fields are call counts, one for the event in question and one for the total number of calls into the driver.
The remaining fields depend on the record type.

I 0 0 1247514233 562000 synth_nand.dat 2048 64 32 1024

This is an initialization record when the logfile is created. There have been no calls to the driver yet so the two counts are 0.
The next two fields are the tv_sec and tv_usec timestamp values which are also written into the NAND image file. This
allows logfiles and image files to be matched up. The remaining fields identify the page size, the spare size, the number of
pages per erase block, and the number of erase blocks.

F 2 4 43 0

This is a call into the driver's factorybad function. It is the second such call, and the fourth call into the driver. The query
is for erase block 42, and that block has not been marked as factory-bad.

 r 5 12 32736 0x0200f0c0 2048 0x0200eeb0 64

This is a read event. It is the fifth page read into the driver and the 12th call. The request is for page number 32736. 2048
bytes of data should be read into a buffer at location 0x0200f0c0, and 64 bytes of OOB data should be read into 0x0200eeb0.

Rd 5 12 32736 0x0200f0c0 2048 FFFFFFFFFFFF…
Ro 5 12 32736 0x0200eeb0 64 FFFFFFFFFFFF…

These are two READ log events corresponding to the previous read. The first line Rd is for the data part, and the final field
consists of 4096 bytes of hexadecimal data. The second line Ro is for the OOB part and the final field consists of 128 bytes
of hexadecimal data.

w 1 1030 32736 0x0200f0c0 2048 0x0200eed0 64
Wd 1 1030 32736 0x0200f0c0 2048 FFFFFFFFF3FFFFFFFFFFCF…
Wo 1 1030 32736 0x0200eed0 64 FFFFFFFFFFFFFFFF426274…

These lines show a write log event and a WRITE log event for the same call into the driver. The fields are the same as for
read and READ.

E 2 1031 1022

This logs an erase call into the library for block 1022. It is the second erase call, and by this time there have been 1031 calls
into the driver.

Bb 1 2857 631
…
Bp 2 4012 3189 99

These lines show bad block injections. The first is for an erase operation for block 631. That erase call is about to fail with
EIO and the block will be marked bad. The second is for a write operation for page 3189, which is part of erase block 99. That
write operation is about to fail and all of erase block 99 will be marked bad.

Installation
Before a synthetic target eCos application can use a NAND device it is necessary to build and install host-side support. The
relevant code resides in the host subdirectory of the synthetic target NAND package and building it involves the standard
configure, make and make install steps. The implementation of the NAND support does not require any executables, just a
Tcl script nand.tcl and some support files, so the make step is a no-op.

324

Synthetic Target NAND Flash Device

There are two main ways of building the host-side software. It is possible to build both the generic host-side software and all
package-specific host-side software, including the NAND support, in a single build tree. This involves using the configure
script at the toplevel of the eCos repository. For more information on this, see the README.host file at the top of the
repository. Note that if you have an existing build tree which does not include the synthetic target NAND support then it will
be necessary to rerun the toplevel configure script: the search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This requires a separate build directory, building directly in the
source tree is disallowed. The configure options are much the same as for a build from the toplevel, and the README.host
file can be consulted for more details. It is essential that the NAND support be configured with the same --prefix option
as other eCos host-side software, especially the I/O auxiliary provided by the synthetic target architectural HAL package,
otherwise the I/O auxiliary will be unable to locate the NAND support.

Test programs
bbt Bad Block Table unit test. Finds a readable block, then fiddles with its status in the BBT

confirming expected behaviour. Requires the synthetic NAND device.

multipagebbt As for bbt but insists that the device parameters mean that the BBT spans multiple pages
on-chip. (This is perhaps a contrived case, but might crop up in future with larger devices,
so needed to be tested.)

eccdamage An ECC error fuzzing exercise. Requires CYGSEM_NAND_SYNTH_RANDOMLY_LOSE,
which induces pseudo-random bit errors; after 1,000 runs, the number of errors corrected
is reported.

325

Part XVII. Journalling Flash
File System v2 (JFFS2)

Name
CYGPKG_FS_JFFS2 — Provides Journalling file system for Flash

Description
The Journalling Flash File System version 2 (JFFS2) provides a robust file system to allow reliable use of NOR Flash devices
as data storage. The eCos implementation is greatly shared with the Linux kernel implementation, thus ensuring compatibility
and encouraging development.

JFFS2 was designed from the outset for embedded devices. It allows recovery when the system has failed abnormally, without
the file system itself being left in an unusable state, even if power is disconnected at the moment the Flash device is in the
middle of being written to. It also offers features such as compression for efficient data storage, and garbage collection to
improve capacity. Most importantly it is fully integrated into the eCos file I/O infrastructure as a plug-in filesystem.

External references
There are a number of external resources containing information about JFFS2 on the internet, other than the usual eCos-specific
general resources. The key site is the Linux MTD website which, although clearly having a Linux focus, contains lots of useful
documentation on JFFS2 as well as a mailing list with searchable archives. The mailing list welcomes questions on using JFFS2
on eCos. Note that the eCos JFFS2 port does not use the MTD layer itself.

Another useful site is the Red Hat JFFS2 website, which contains a very useful paper presented to a Linux symposium covering
the internals and some of the design of JFFS2.

327

http://www.linux-mtd.infradead.org/
http://sources.redhat.com/jffs2/

Name
JFFS2 usage — Description of how to use JFFS2

Mounting
A JFFS2 filesystem can be mounted just like any normal eCos filesystem, using the mount() function from the POSIX file
I/O package (CYGPKG_FILEIO). You must choose an appropriate Flash I/O block device to use. Documentation on Flash I/
O block devices can be found in the Generic Flash package documentation.

Example 1. Mounting and unmounting a JFFS2 filesystem

#include <cyg/fileio/fileio.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
 …
 int rc;
 rc = mount("/dev/flash/fis/jffs2test", "/fs", "jffs2");
 if (rc < 0)
 printf("mount returned error: %s\n", strerror(errno));
 …
 rc = umount("/fs");
 if (rc < 0)
 printf("umount returned error: %s\n", strerror(errno));
 …

No file system needs to be created in advance for JFFS2. A new file system image will be instantiated if JFFS2 is pointed at
an erased Flash area. Similarly if JFFS2 is pointed at a non-erased Flash area that does not contain valid JFFS2 markers, it
will refuse to mount it to prevent destruction of data.

If the Flash device supports locking, you should ensure that the flash region for the JFFS2 filesystem is unlocked before mount-
ing, otherwise it will not be possible to write to the Flash. Alternatively, enabled the CDL option CYGSEM_FS_JFFS2_UN-
LOCK_FLASH to unlock Flash on mounting. This option is disabled by default for safety reasons — if Flash has been locked,
it may be for an important reason.

If mounting an existing JFFS2 filesystem, the mount procedure will search for any unused blocks that have not already been
erased, and erase them. This can result in an extended mount time, and so this feature can be disabled with the CDL option
CYGOPT_FS_JFFS2_ERASE_PENDING_ON_MOUNT.

Normally it is sufficient to prepare a clean JFFS2 partition as above, and load files into it using RedBoot or an eCos application.
But if you do wish to use a pregenerated file system image generated on your host PC, there is a utility named mkfs.jffs2 which
can be used to generate an image. On Ubuntu, Fedora and Red Hat-based distributions of Linux it can be found in a package
named mtd-utils; in Windows with Cygwin, in the mtd package. Be sure to use the -l or -b options to select the endianness
so it corresponds with your target, and you may need to set other options according to the requirements of your Flash hardware
such as erase block size. The erase block size to use on the mkfs.jffs2 command line should be the largest flash block size used
by your JFFS2 partition on the flash device. Note that the -s or --pagesize options are unrelated to the flash block size,
and instead control JFFS2's view of the page size - see here for information on changing the value. Use the --help option
for a complete list of mkfs.jffs2 parameters.

Note that JFFS2's memory requirements are not static, and so they may increase over time before stabilising. Larger Flash
partitions may require non-trivial amounts of memory, especially at mount time. Memory use may be controlled by removing
features such as compression, or by constraining the size of the Flash partition. Configuration options controlling optional
features may be found in the JFFS2 package CDL configuration.

JFFS2 has built-in tolerance of Flash errors when erasing and should adapt and work around bit errors that arise as Flash reaches
the end of its working life. Obviously this comes at the expense of device capacity.

Garbage collection
By default, JFFS2 performs garbage collection on an as-needed basis. This means that when there are insufficient spare clean
flash blocks remaining, JFFS2 will perform repeated garbage collection until a block can be erased and then used for future
writes.

328

Using JFFS2

Garbage collection involves scanning a flash block and determining which nodes are still used for valid data and which are
obsolete - valid data is then relocated to a new alternative block, until only obsolete data remains, at which point the block can
be erased. The algorithms which choose which block is nominated for garbage collection do so to ensure wear levelling over
the life of the flash device. Nodes representing individual file fragments are able to be coalesced and merged with adjacent
file fragments leading to reduced flash use overall due to eliminating some of the overhead caused by node metadata on the
Flash. There will also be a consequent simplification in the internal filesystem data structures, resulting in reduced memory
consumption and fewer data structures which JFFS2 needs to trawl through when locating data. It will also greatly augment
the benefit of compression: when compressing, nodes are considered in isolation, and so small nodes are unlikely to compress
well, whereas larger coalesced nodes are more likely to occupy less flash space.

Garbage collection thread

As a result of only performing garbage collection when needed, it can mean that individual writes to files may occasionally
take a lengthy period of time to run if a new flash block is required - a whole flash block may need to be garbage collected
from scratch, have its live data written to a new block, and be erased, the latter in particular being a very lengthy procedure. As
such, JFFS2 offers the option of using a garbage collection thread, which can run in the background to advance the garbage
collection process when the filesystem is not otherwise being used.

Of course if a filesystem is going to change too rapidly, or the application is CPU bound by higher priority threads, then the
garbage collection thread may not be able to keep up. But for the majority of applications, it can considerably reduce or even
virtually eliminate the delays caused by the requirement for occasional garbage collection.

The garbage collection thread can be enabled in the JFFS2 package's configuration using the "Garbage collection background
thread" CDL option (CYGOPT_FS_JFFS2_GC_THREAD). The priority of that thread defaults to the lowest possible - 1
above that of the idle thread, but this can be changed with the CYGNUM_JFFS2_GC_THREAD_PRIORITY option. The thread
of course requires a stack for execution, the value of which can be optimised with the CYGNUM_JFFS2_GC_THREAD_S-
TACK_SIZE option. Note that one garbage collection thread is started for each mounted JFFS2 filesystem, and so one thread
stack is allocated for each.

Usually the garbage collection thread will gradually garbage collect nodes from erase blocks until the block is completely
unused by valid data. However it would not actually erase it, leaving that to the usual code path that erases blocks only at
the point they are needed. This is because otherwise the Flash system may get locked for the duration of the erase process,
preventing any threads, including high priority threads, access to it at that time. Yet the garbage collection thread is intended to
be a low priority background thread. Nevertheless, enabling the option CYGSEM_JFFS2_GC_THREAD_CAN_ERASE allows
the garbage collection thread to erase blocks as well, if blocks are available for erasure.

Finally, the garbage collection thread may run continuously but does not have to run constantly. By default, the thread will
be inactive unless the amount of free space in the filesystem is beginning to run low. The filesystem code makes a judgement
based on a myriad of factors to decide when to activate this background GC thread (although its low thread priority may result
in it not running in practice, so choose its thread priority wisely in relation to the other running threads). Once active, the
garbage collection thread will run until sufficient free space is now available, even if more garbage collection may be possible.

As a variation on this behaviour, it is possible to periodically wake the GC thread to advance garbage collection even when the
available free space is not yet low; thus preventing it getting close to running out in the first place. This feature is controlled
with the CYGNUM_JFFS2_GC_THREAD_TICKS configuration option, which gives the number of ticks between garbage
collection passes, even when space is not low.

How ticks corresponds to real time is unspecified and depends on the HAL and kernel clock configuration (although most ports
have traditionally defaulted to 10ms ticks). The value of this option can even be set to 0. Note though, that garbage collection
is never considered "done" - the thread will run continuously until the filesystem is unmounted, therefore making it run too
frequently may in fact cause unnecessary flash operations, increasing flash wear (even though it will be levelled wear). The
value should be chosen according to the expected write pattern.

The number of ticks between garbage collection passes can also be set at runtime, by invoking a cyg_fs_setinfo() call
on a filesystem object. There is a corresponding cyg_fs_getinfo() call to retrieve the current delay ticks. For example:

#include <cyg/fs/jffs2/jffs2.h>
 …
 {
 int err;
 cyg_tick_count_t old_delay_ticks;

329

Using JFFS2

 cyg_tick_count_t new_delay_ticks;

 err = cyg_fs_getinfo("/jffs2",
 FS_INFO_JFFS2_GET_GC_THREAD_TICKS,
 &old_delay_ticks,
 sizeof(cyg_tick_count));
 assert(err == 0);
 new_delay_ticks = old_delay_ticks*10; // slow down GC
 err = cyg_fs_setinfo("/jffs2",
 FS_INFO_JFFS2_SET_GC_THREAD_TICKS,
 &new_delay_ticks,
 sizeof(cyg_tick_count));
 assert(err == 0);
 }

One application of dynamically setting the wakeup delay for the garbage collection thread is so that the thread is more active
in times of relative system activity, but operates more slowly when quiescent. This may improve flash life, while still retaining
benefits of the garbage collection thread.

The value of the wakeup delay can be set to a special value of (cyg_tick_count_t)-1, which indicates that the
thread should not wake up periodically any more, but only when space is running low (the behaviour when CYGNUM_JF-
FS2_GC_THREAD_TICKS is disabled). Similarly retrieving the current wakeup tick value with cyg_fs_getinfo() may
return this special value.

Efficiency

Write size

JFFS2 does not guarantee 100% optimal use of Flash space due to its journalling nature, and the granularity of Flash blocks. It is
possible for it to fill up even when not all file space appears to have been used, especially if files have had many small operations
performed on them and the Flash partition is small compared to the size of the Flash blocks. It is strongly recommended to have
at least 5 or 6 Flash blocks spare, over and above space requirements for data, in order to allow the JFFS2 garbage collector
to operate.

It is certainly the case that JFFS2 will work very inefficiently if using many small writes. Unless and until garbage collected,
each write will occupy its own JFFS2 node on Flash, and so will incur overhead from the node header. A filesystem is likely
to "fill" quickly if written a few bytes at a time, rather than in large chunks, so caution in advised, and more space reserved if
that write pattern is anticipated. A common application that can do this is logging. Small writes can also remove the benefits
of compression, as there is too little data to compress effectively.

Garbage collection

Use of the garbage collection thread will provide a level of continuous garbage collection. As indicated above, garbage collec-
tion can reduce flash usage and memory consumption, and improve performance. Therefore doing so on a continuous basis
is a wise idea.

Extra spare space is required in order to allow the JFFS2 garbage collector to operate, over and above space requirements for
data. A rule of thumb is to use the following formula:

Recommended overhead == 2 + ((flashsize/50) + (flashsectors*100) + (sectorsize-1)) / sectorsize

So for example, a 16Mbyte flash with 64Kbyte blocks given over entirely to JFFS2 would actually require an overhead of
6 blocks. Or to look at it another way, trying to write data when you have used up all but 6 blocks worth may result in an
ENOSPC error being reported. Due to metadata and write characteristics (e.g. lots of 1 byte writes) it's not possible to easily
calculate what that actually translates to in terms of maximum file size. Even the above formula is only a rule of thumb, and it
has not been proven to be guaranteed to work in all circumstances. It is recommended to be conservative if possible.

Compression

JFFS2 will default to trying to compress files. However, it may be more memory efficient to disable JFFS2 compression
entirely in the CDL configuration, and instead ensure that images are stored compressed when they are downloaded, and use
the standard RedBoot mechanism to decompress the files upon loading.

330

Using JFFS2

Maximum data node size

By default JFFS2 will operate on chunks of files up to 4 kilobytes in size, but larger chunks may be able to be compressed
more efficiently, and have lower metadata overheads. To increase the size, you must change JFFS2's view of the machine
page size - the eCos JFFS2 port's view of the page size does not actually need to reflect any real underlying page size of the
memory management system, and the notion of the page size is a hangover from the Linux origins of JFFS2 which would be
too disruptive to remove. Changing the page size can be performed by changing the page size exponent configuration option
(CYGNUM_LINUX_COMPAT_PAGE_SIZE_EXPONENT) in the Linux compatibility layer package (CYGPKG_LINUX_COM-
PAT). A value of 12 indicates 212 which is 4 kilobytes. For example this could be changed to 16, corresponding to 216 which
is 64 kilobytes. If using mkfs.jffs2, make sure that its value for the page size, using the -s or --pagesize options, is the
same or lower than the page size given by CYGNUM_LINUX_COMPAT_PAGE_SIZE_EXPONENT.

Configuration dependencies
JFFS2 has a number of package dependencies. As such it may be helpful to use the below eCos minimal configuration (.ecm)
file and import it into your configuration to satisfy most dependencies quickly without conflict. This minimal configuration
file is usable for building both eCos and RedBoot with JFFS2 included. Note you may need to modify the package versions
from current to the version of your release, e.g. v2_0_64.

cdl_configuration eCos {
 package CYGPKG_IO_FLASH current ;
 package CYGPKG_MEMALLOC current ;
 package CYGPKG_COMPRESS_ZLIB current ;
 package CYGPKG_IO_FILEIO current ;
 package CYGPKG_FS_JFFS2 current ;
 package CYGPKG_ERROR current ;
 package CYGPKG_LINUX_COMPAT current ;
 package CYGPKG_IO current ;
 package CYGPKG_CRC current ;
 package CYGPKG_LIBC_STRING current ;
};

cdl_option CYGPKG_IO_FILEIO_DEVFS_SUPPORT {
 user_value 1
};
cdl_component CYGPKG_IO_FLASH_BLOCK_DEVICE {
 user_value 1
};

For example:

$ ecosconfig new adderII
$ ecosconfig import jffs2.ecm
$ ecosconfig tree
$ make tests

Use with RedBoot
JFFS2 support can be built into RedBoot using the above minimal configuration file. In most cases, the configuration settings
will then make all the adjustments necessary.

However note that a build of RedBoot which includes JFFS2 with RedBoot, is likely to require more Flash space for its own
image, as well as much more RAM space to run. The latter is particularly important to note given that this can reduce the size
of the program image which can be loaded into RAM from a JFFS2 filesystem.

Particularly large JFFS2 filesystems, or filesystems with a large number of nodes, require more RAM to be used for JFFS2's
in-memory data structures. As such, the value of the configuration option controlling the size of the RedBoot heap (CYG-
MEM_REDBOOT_WORKSPACE_HEAP_SIZE) may need to be increased in such cases. JFFS2 will already make the default
size of this heap occupy 192KiB of RAM.

Secure Erase
The eCosPro® port of JFFS2 includes a Secure Erase feature. This feature allows the application to ensure that when a file
is deleted, its contents are fully erased from the flash.

331

Using JFFS2

Usually deleted files persist in Flash for an indeterminate period of time, marked as obsolete. The possible solution taken with
other filesystems of trying to overwrite the file data before deletion does not work with JFFS2, as JFFS2 will still retain the
old file data in Flash, but writes additional nodes with a higher node version number, and rendering the previous data obsolete.
Therefore the Secure Erase functionality can be used to guarantee that a deleted file will have its past contents wiped from
the Flash.

Methodology

Because obsolete data for a file could exist in any block, the only way to achieve this is to ensure that every block (other
than bad or completely free blocks) is wiped, taking care to relocate live data. This effectively means methodically garbage
collecting and erasing every flash block used by the filesystem.

Operation time

For a filesystem which almost completely consists of used flash blocks the secure erase process could take a considerable
amount of time during which the filesystem cannot be used for other operations. Therefore it is strongly recommended that
the garbage collection thread support is enabled with an appropriate value for CYGNUM_JFFS2_GC_THREAD_TICKS. With
the garbage collection thread running, more blocks are likely to be completely clean, or at least partially garbage collected,
thus reducing the time for secure erasure.

Usage

Support for the secure erase functionality must first be enabled with a CDL configuration option - CYGOPT_FS_JFFS2_SE-
CERASE.

Then a secure erase operation can be performed on the filesystem with a cyg_fs_setinfo() function call using the
FS_INFO_SECURE_ERASE config key. This call can be invoked specifying any file or directory within the filesystem in-
cluding its mount point, although the operation itself will take place on the entire filesystem.

Example 2. Secure erase usage

#include <cyg/fileio/fileio.h>
#include <errno.h>
#include <stdio.h>
 …
 int err;
 err = cyg_fs_setinfo("/fs", FS_INFO_SECURE_ERASE, NULL, 0);

 if (ENOERR != err)
 {
 printf("Secure erase failed: %d\n", strerror(err));
 …

Testing JFFS2
JFFS2 comes with a number of tests that may be run as normal eCos test applications. If you are running the tests under the
RedBoot ROM monitor, you should create a FIS partition in RedBoot named “jffs2test”.

Alternatively, for standalone applications, if the platform HAL defines the CYG_HAL_IO_FLASH_TEST_DEVICES macro,
the code will step through the vector entries supplied by that macro using the referenced flash device entry in conjunction with
the offset and size values supplied.

Without the “jffs2test” named FIS partition, or a platform supplied vector, you must set the CDL configuration options
CYGNUM_FS_JFFS2_TEST_OFFSET and CYGNUM_FS_JFFS2_TEST_LENGTH. In this case the first valid flash device
(“/dev/flash/0”) will be used.

The tests will attempt to use the region identified by the offset/length combination, but will first check if the area is blank,
and will report a test failure if it is not.

When the tests run, they will erase the Flash test area (usually the “jffs2test” FIS partition) in its entirety, so do not use an
existing JFFS2 partition in this space.

332

Using JFFS2

The tests are designed to test both general features of JFFS2, as well as do a limited stress-test JFFS2 in the presence of multiple
threads.

More specifically, the jffs2-fileio1 test checks a wide variety of file system operations including creating and removing
files and directories, scanning directories, and reading and writing file contents. It also repeats to verify that unmounting and
remounting works.

The jffs2-fseek1 test verifies file seek operations on JFFS2 files, using standard I/O C library calls.

Test files with names of the form jffs2-NtNf verify operation with varying numbers of threads, and varying numbers of files.

The test jffs2_3 is specifically to verify operation of the garbage collection code, and performs a small set of operations
repeatedly to do so. It also gives an opportunity for the garbage collection thread to be tested, if enabled.

The test jffs2-secerase1 is specifically to verify operation of the secure erase facility, if the CYGOPT_FS_JFFS2_SE-
CERASE CDL configuration option has been enabled. It also provides further testing of the garbage collection code and the
garbage collection thread.

333

Part XVIII. NOR Flash Support

Table of Contents
61. The eCos NOR FLASH Library .. 337

Notes on using the NOR FLASH library .. 337
Danger, Will Robinson! Danger! ... 337

62. The Version 2 eCos FLASH API ... 338
FLASH user API .. 338

Initializing the FLASH library .. 338
Retrieving information about FLASH devices .. 338
Reading from FLASH ... 338
Erasing areas of FLASH .. 339
Programming the FLASH .. 339
Locking and unlocking blocks .. 339
Locking FLASH mutexes ... 339
Configuring diagnostic output ... 339
Return values and errors .. 340

FLASH device API ... 340
The FLASH device Structure .. 340

63. The legacy Version 1 eCos FLASH API ... 342
FLASH user API .. 342

Initializing the FLASH library .. 342
Retrieving information about the FLASH .. 342
Reading from FLASH ... 342
Erasing areas of FLASH .. 343
Programming the FLASH .. 343
Locking and unlocking blocks .. 343
Return values and errors .. 343
Notes on using the FLASH library ... 344

FLASH device API ... 344
The flash_info structure ... 344
Initializing the device driver ... 344
Querying the FLASH .. 344
Erasing a block of FLASH ... 344
Programming a region of FLASH .. 344
Reading a region from FLASH ... 345
Locking and unlocking FLASH blocks ... 345
Mapping FLASH error codes to FLASH IO error codes .. 345
Determining if code is in FLASH .. 345
Implementation Notes .. 345

64. FLASH I/O devices ... 346
Overview and CDL Configuration ... 346
Using FLASH I/O devices ... 346

65. Common SPI Flash Memory Device Driver ... 349
eCos Common Support for SPI Flash Memory Devices ... 350
Common SPI Memory Device Hardware Driver .. 352

66. AMD AM29xxxxx Flash Device Driver .. 360
eCos Support for AMD AM29xxxxx Flash Devices and Compatibles .. 361
Instantiating an AM29xxxxx Device .. 362

67. Atmel AT45xxxxxx DataFlash Device Driver .. 369
Overview ... 370
Instantiating a DataFlash Device ... 371

68. Freescale MCFxxxx CFM Flash Device Driver .. 374
Freescale MCFxxxx CFM Flash Support .. 375

69. Intel Strata Flash Device Driver ... 377
Overview ... 378
Instantiating a Strata Device ... 379
Strata-Specific Functions .. 386

335

NOR Flash Support

70. SST 39VFXXX Flash Device Driver .. 387
Overview ... 388
Instantiating an 39vfxxx Device .. 389

336

Chapter 61. The eCos NOR FLASH Library
The NOR FLASH library is an optional part of eCos, and is only applicable to some platforms.

The eCos NOR FLASH library provides the following functionality:

1. Identifying installed device of a FLASH family.

2. Read, erasing and writing to FLASH blocks.

3. Validating an address is within the FLASH.

4. Determining the number and size of FLASH blocks.

There are two APIs with the flash library. The old API is retained for backwards compatibility reasons, but should slowly be
replaced with the new API which is much more flexible and does not pollute the name space as much.

Notes on using the NOR FLASH library
FLASH devices cannot be read from when an erase or write operation is active. This means it is not possible to execute code
from flash while an erase or write operation is active. It is possible to use the library when the executable image is resident
in FLASH. The low level drivers are written such that the linker places the functions that actually manipulate the flash into
RAM. However the library may not be interrupt safe. An interrupt must not cause execution of code that is resident in FLASH.
This may be the image itself, or RedBoot. In some configurations of eCos, ^C on the serial port or debugging via Ethernet may
cause an interrupt handler to call RedBoot. If RedBoot is resident in FLASH this will cause a crash. Similarly, if another thread
invokes a virtual vector function to access RedBoot, eg to perform a diag_printf() a crash could result.

Thus with a ROM based image or a ROM based Redboot it is recommended to disable interrupts while erasing or programming
flash. Using both a ROMRAM or RAM images and a ROMRAM or RAM RedBoot are safe and there is no need to disable
interrupts.

Danger, Will Robinson! Danger!
Unlike nearly every other aspect of embedded system programming, getting it wrong with FLASH devices can render your
target system useless. Most targets have a boot loader in the FLASH. Without this boot loader the target will obviously not
boot. So before starting to play with this library its worth investigating a few things. How do you recover your target if you
delete the boot loader? Do you have the necessary JTAG cable? Or is specialist hardware needed? Is it even possible to recover
the target boards or must it be thrown into the rubbish bin? How does killing the board affect your project schedule?

337

Chapter 62. The Version 2 eCos FLASH
API
There are two APIs described here. The first is the application API which programs should use. The second API is that between
the FLASH IO library and the device drivers.

FLASH user API
All of the functions described below are declared in the header file <cyg/io/flash.h> which all users of the FLASH
library should include.

Initializing the FLASH library
The FLASH library needs to be initialized before other FLASH operations can be performed. This only needs to be done once.
The following function will only do the initialization once so it's safe to call multiple times:

__externC int cyg_flash_init(cyg_flash_printf *pf);

The parameter pf must always be set to NULL. It exists solely for backward compatibility and other settings are deprecated and
obsolete. Past use of this parameter has now been replaced with use of the cyg_flash_set_global_printf function.

Retrieving information about FLASH devices
The following five functions return information about the FLASH.

__externC int cyg_flash_get_info(cyg_uint32 devno, cyg_flash_info_t * info);
__externC int cyg_flash_get_info_addr(cyg_flashaddr_t flash_base, cyg_flash_info_t * info);
__externC int cyg_flash_verify_addr(const flashaddr_t address);
__extern size_t cyg_flash_block_size(const cyg_flashaddr_t flash_base);
typedef struct cyg_flash_block_info
{
 size_t block_size;
 cyg_uint32 blocks;
} cyg_flash_block_info_t;

typedef struct {
 cyg_flashaddr_t start; // First address
 cyg_flashaddr_t end; // Last address
 cyg_uint32 num_block_infos;// Number of entries
 const cyg_flash_block_info_t *block_info; // Info about one block size
} cyg_flash_info_t;

cyg_flash_get_info() is the main function to get information about installed flash devices. Parameter devno is used
to iterate over the available flash devices, starting from 0. If the devno'th device exists, the structure pointed to by info is filled
in and CYG_FLASH_ERR_OK is returned, otherwise CYG_FLASH_ERR_INVALID. cyg_flash_get_info_addr() is
similar, but returns the information about the flash device at the given address. cyg_flash_block_size() returns the size
of the block at the given address. cyg_flash_verify_addr() tests if the target addresses is within one of the FLASH
devices, returning CYG_FLASH_ERR_OK if so.

Reading from FLASH
There are two methods for reading from FLASH. The first is to use the following function.

__externC int cyg_flash_read(cyg_flashaddr_t flash_base, void *ram_base, size_t len, cyg_flashaddr_t *err_address);

flash_base is where in the flash to read from. ram_base indicates where the data read from flash should be placed into
RAM. len is the number of bytes to be read from the FLASH and err_address is used to return the location in FLASH
that any error occurred while reading.

338

The Version 2 eCos FLASH API

The second method is to simply memcpy() directly from the FLASH. This is not recommended since some types of device
cannot be read in this way, eg NAND FLASH. Using the FLASH library function to read the FLASH will always work so
making it easy to port code from one FLASH device to another.

Erasing areas of FLASH
Blocks of FLASH can be erased using the following function:

__externC int cyg_flash_erase(cyg_flashaddr_t flash_base,
 size_t len,
 cyg_flashaddr_t *err_address);

flash_base is where in the flash to erase from. len is the minimum number of bytes to erase in the FLASH and err_ad-
dress is used to return the location in FLASH that any error occurred while erasing. It should be noted that FLASH devices are
block oriented when erasing. It is not possible to erase a few bytes within a block, the whole block will be erased. flash_base
may be anywhere within the first block to be erased and flash_base+len may be anywhere in the last block to be erased.

Programming the FLASH
Programming of the flash is achieved using the following function.

__externC int cyg_flash_program(cyg_flashaddr_t flash_base,
 void *ram_base,
 size_t len,
 cyg_flashaddr_t *err_address);

flash_base is where in the flash to program from. ram_base indicates where the data to be programmed into FLASH
should be read from in RAM. len is the number of bytes to be program into the FLASH and err_address is used to return
the location in FLASH that any error occurred while programming.

Locking and unlocking blocks
Some flash devices have the ability to lock and unlock blocks. A locked block cannot be erased or programmed without it first
being unlocked. For devices which support this feature and when CYGHWR_IO_FLASH_BLOCK_LOCKING is enabled then
the following two functions are available:

__externC int cyg_flash_lock(const cyg_flashaddr_t flash_base,
 size_t len,
 cyg_flashaddr_t *err_address);

__externC int cyg_flash_unlock(const cyg_flashaddr_t flash_base,
 size_t len,
 cyg_flashaddr_t *err_address);

For some devices the granularity will be at the whole device level, where the code will lock or unlock all of the blocks at
the same time.

Locking FLASH mutexes
When the eCos kernel package is included in the eCos configuration, the FLASH IO library will perform mutex locking on
FLASH operations. This makes the API defined here thread safe. However applications may wish to directly access the contents
of the FLASH. In order for this to be thread safe it is necessary for the application to use the following two functions to inform
the FLASH IO library that the FLASH devices are being used and other API calls should be blocked.

__externC int cyg_flash_mutex_lock(const cyg_flashaddr_t from, size_t len);
__externC int cyg_flash_mutex_unlock(const cyg_flashaddr_t from, size_t len);

Configuring diagnostic output
Each FLASH device can have an associated function which is called to perform diagnostic output. The function to be used
can be configured with the following functions:

339

The Version 2 eCos FLASH API

__externC int cyg_flash_set_printf(const cyg_flashaddr_t flash_base,
 cyg_flash_printf *pf);
__externC void cyg_flash_set_global_printf(cyg_flash_printf *pf);
typedef int cyg_flash_printf(const char *fmt, …);

The parameter pf is a pointer to a function which is to be used for diagnostic output. Typically the function diag_printf()
will be passed. Normally this function is not used by the higher layer of the library unless CYGSEM_IO_FLASH_CHATTER
is enabled. Passing a NULL causes diagnostic output from lower level drivers to be discarded.

cyg_flash_set_printf is used to set a diagnostic output function which will be used specifically when diagnostic output
is attempted from the FLASH device driver associated with the base address of flash_base. An error will be returned if no
FLASH device is found for this address, or the FLASH subsystem has not yet been initialised with cyg_flash_init.

cyg_flash_set_global_printf sets a diagnostic output function for all available FLASH devices. Any previous set-
ting of a diagnostic output function (including with cyg_flash_set_printf) will be discarded. This function may be
called prior to cyg_flash_init.

Return values and errors
All the functions above return one of the following return values.

CYG_FLASH_ERR_OK No error - operation complete
CYG_FLASH_ERR_INVALID Invalid FLASH address
CYG_FLASH_ERR_ERASE Error trying to erase
CYG_FLASH_ERR_LOCK Error trying to lock/unlock
CYG_FLASH_ERR_PROGRAM Error trying to program
CYG_FLASH_ERR_PROTOCOL Generic error
CYG_FLASH_ERR_PROTECT Device/region is write-protected
CYG_FLASH_ERR_NOT_INIT FLASH info not yet initialized
CYG_FLASH_ERR_HWR Hardware (configuration?) problem
CYG_FLASH_ERR_ERASE_SUSPEND Device is in erase suspend mode
CYG_FLASH_ERR_PROGRAM_SUSPEND Device is in program suspend mode
CYG_FLASH_ERR_DRV_VERIFY Driver failed to verify data
CYG_FLASH_ERR_DRV_TIMEOUT Driver timed out waiting for device
CYG_FLASH_ERR_DRV_WRONG_PART Driver does not support device
CYG_FLASH_ERR_LOW_VOLTAGE Not enough juice to complete job

To turn an error code into a human readable string the following function can be used:

__externC const char *cyg_flash_errmsg(const int err);

FLASH device API
This section describes the API between the FLASH IO library the FLASH device drivers.

The FLASH device Structure
This structure keeps all the information about a single driver.

struct cyg_flash_dev {
 const struct cyg_flash_dev_funs *funs; // Function pointers
 cyg_uint32 flags; // Device characteristics
 cyg_flashaddr_t start; // First address
 cyg_flashaddr_t end; // Last address
 cyg_uint32 num_block_infos; // Number of entries
 const cyg_flash_block_info_t *block_info; // Info about one block size
 const void *priv; // Devices private data
 // The following are only written to by the FLASH IO layer.
 cyg_flash_printf *pf; // Pointer to diagnostic printf
 bool init; // Device has been initialised
#ifdef CYGPKG_KERNEL
 cyg_mutex_t mutex; // Mutex for thread safeness
#endif
#if (CYGHWR_IO_FLASH_DEVICE > 1)
 struct cyg_flash_dev *next; // Pointer to next device
#endif

340

The Version 2 eCos FLASH API

};

struct cyg_flash_dev_funs {
 int (*flash_init) (struct cyg_flash_dev *dev);

 size_t (*flash_query) (struct cyg_flash_dev *dev,
 void *data,
 size_t len);

 int (*flash_erase_block) (struct cyg_flash_dev *dev,
 cyg_flashaddr_t block_base);

 int (*flash_program) (struct cyg_flash_dev *dev,
 cyg_flashaddr_t base,
 const void *data,
 size_t len);

 int (*flash_read) (struct cyg_flash_dev *dev,
 const cyg_flashaddr_t base,
 void *data,
 size_t len);
#ifdef CYGHWR_IO_FLASH_BLOCK_LOCKING
 int (*flash_block_lock) (struct cyg_flash_dev *dev,
 const cyg_flashaddr_t block_base);

 int (*flash_block_unlock) (struct cyg_flash_dev *dev,
 const cyg_flashaddr_t block_base);
#endif
};

The FLASH IO layer will only pass requests for operations on a single block.

341

Chapter 63. The legacy Version 1 eCos
FLASH API
The library has a number of limitations:

1. Only one family of FLASH device may be supported at once.

2. Multiple devices of one family are supported, but they must be contiguous in memory.

3. The library is not thread or interrupt safe under some conditions.

4. The library currently does not use the eCos naming convention for its functions. This may change in the future but backward
compatibility is likely to be kept.

There are two APIs described here. The first is the application API which programs should use. The second API is that between
the FLASH io library and the device drivers.

FLASH user API
All of the functions described below are declared in the header file <cyg/io/flash.h> which all users of the FLASH
library should include.

Initializing the FLASH library
The FLASH library needs to be initialized before other FLASH operations can be performed. This only needs to be done once.
The following function will only do the initialization once so it's safe to call multiple times:

externC int flash_init(_printf *pf);
typedef int _printf(const char *fmt, …);

The parameter pf is a pointer to a function which is to be used for diagnostic output. Typically the function diag_printf()
will be passed. Normally this function is not used by the higher layer of the library unless CYGSEM_IO_FLASH_CHATTER
is enabled. Passing a NULL is not recommended, even when CYGSEM_IO_FLASH_CHATTER is disabled. The lower lay-
ers of the library may unconditionally call this function, especially when errors occur, probably resulting in a more serious
error/crash!.

Retrieving information about the FLASH
The following four functions return information about the FLASH.

externC int flash_get_block_info(int *block_size, int *blocks);
externC int flash_get_limits(void *target, void **start, void **end);
externC int flash_verify_addr(void *target);
externC bool flash_code_overlaps(void *start, void *end);

The function flash_get_block_info() returns the size and number of blocks. When the device has a mixture of block
sizes, the size of the "normal" block will be returned. Please read the source code to determine exactly what this means.
flash_get_limits() returns the lower and upper memory address the FLASH occupies (NOTE: For the upper memory
address this is the last valid FLASH location, and not the first memory address after the FLASH). The target parameter is
currently unused. flash_verify_addr() tests if the target addresses is within the flash, returning FLASH_ERR_OK if
so. Lastly, flash_code_overlaps() checks if the executing code is resident in the section of flash indicated by start
and end. If this function returns true, erase and program operations within this range are very likely to cause the target to
crash and burn horribly. Note the FLASH library does allow you to shoot yourself in the foot in this way.

Reading from FLASH
There are two methods for reading from FLASH. The first is to use the following function.

342

The legacy Version 1 eCos FLASH API

externC int flash_read(void *flash_base, void *ram_base, int len, void **err_address);

flash_base is where in the flash to read from. ram_base indicates where the data read from flash should be placed into
RAM. len is the number of bytes to be read from the FLASH and err_address is used to return the location in FLASH
that any error occurred while reading.

The second method is to simply memcpy() directly from the FLASH. This is not recommended since some types of device
cannot be read in this way, eg NAND FLASH. Using the FLASH library function to read the FLASH will always work so
making it easy to port code from one FLASH device to another.

Erasing areas of FLASH
Blocks of FLASH can be erased using the following function:

externC int flash_erase(void *flash_base, int len, void **err_address);

flash_base is where in the flash to erase from. len is the minimum number of bytes to erase in the FLASH and err_ad-
dress is used to return the location in FLASH that any error occurred while erasing. It should be noted that FLASH devices are
block oriented when erasing. It is not possible to erase a few bytes within a block, the whole block will be erased. flash_base
may be anywhere within the first block to be erased and flash_base+len may be anywhere in the last block to be erased.

Programming the FLASH
Programming of the flash is achieved using the following function.

externC int flash_program(void *flash_base, void *ram_base, int len, void **err_address);

flash_base is where in the flash to program from. ram_base indicates where the data to be programmed into FLASH
should be read from in RAM. len is the number of bytes to be program into the FLASH and err_address is used to return
the location in FLASH that any error occurred while programming.

Locking and unlocking blocks
Some flash devices have the ability to lock and unlock blocks. A locked block cannot be erased or programmed without it first
being unlocked. For devices which support this feature and when CYGHWR_IO_FLASH_BLOCK_LOCKING is enabled then
the following two functions are available:

externC int flash_lock(void *flash_base, int len, void **err_address);
externC int flash_unlock(void *flash_base, int len, void **err_address);

Return values and errors
All the functions above, except flash_code_overlaps() return one of the following return values.

FLASH_ERR_OK No error - operation complete
FLASH_ERR_INVALID Invalid FLASH address
FLASH_ERR_ERASE Error trying to erase
FLASH_ERR_LOCK Error trying to lock/unlock
FLASH_ERR_PROGRAM Error trying to program
FLASH_ERR_PROTOCOL Generic error
FLASH_ERR_PROTECT Device/region is write-protected
FLASH_ERR_NOT_INIT FLASH info not yet initialized
FLASH_ERR_HWR Hardware (configuration?) problem
FLASH_ERR_ERASE_SUSPEND Device is in erase suspend mode
FLASH_ERR_PROGRAM_SUSPEND Device is in program suspend mode
FLASH_ERR_DRV_VERIFY Driver failed to verify data
FLASH_ERR_DRV_TIMEOUT Driver timed out waiting for device
FLASH_ERR_DRV_WRONG_PART Driver does not support device
FLASH_ERR_LOW_VOLTAGE Not enough juice to complete job

To turn an error code into a human readable string the following function can be used:

externC char *flash_errmsg(int err);

343

The legacy Version 1 eCos FLASH API

Notes on using the FLASH library
The FLASH library evolved from the needs and environment of RedBoot rather than being a general purpose eCos component.
This history explains some of the problems with the library.

The library is not thread safe. Multiple simultaneous calls to its library functions will likely fail and may cause a crash. It is
the callers responsibility to use the necessary mutex's if needed.

FLASH device API
This section describes the API between the FLASH IO library the FLASH device drivers.

The flash_info structure
The flash_infostructure is used by both the FLASH IO library and the device driver.

struct flash_info {
 int block_size; // Assuming fixed size "blocks"
 int blocks; // Number of blocks
 int buffer_size; // Size of write buffer (only defined for some devices)
 unsigned long block_mask;
 void *start, *end; // Address range
 int init; // FLASH API initialised
 _printf *pf; // printf like function for diagnostics
};

block_mask is used internally in the FLASH IO library. It contains a mask which can be used to turn an arbitrary address in
flash to the base address of the block which contains the address.

There exists one global instance of this structure with the name flash_info. All calls into the device driver makes use of
this global structure to maintain state.

Initializing the device driver
The FLASH IO library will call the following function to initialize the device driver:

externC int flash_hwr_init(void);

The device driver should probe the hardware to see if the FLASH devices exist. If it does it should fill in start, end,
blocks and block_size.If the FLASH contains a write buffer the size of this should be placed in buffer_size.
On successful probing the function should return FLASH_ERR_OK. When things go wrong it can be assumed that pf points
to a printf like function for outputting error messages.

Querying the FLASH
FLASH devices can be queried to return there manufacture ID, size etc. This function allows this information to be returned.

int flash_query(unsigned char *data);

The caller must know the size of data to be returned and provide an appropriately sized buffer pointed to be parameter data.
This function is generally used by flash_hwr_init().

Erasing a block of FLASH
So that the FLASH IO layer can erase a block of FLASH the following function should be provided.

int flash_erase_block(volatile flash_t *block, unsigned int block_size);

Programming a region of FLASH
The following function must be provided so that data can be written into the FLASH.

344

The legacy Version 1 eCos FLASH API

int flash_program_buf(volatile flash_t *addr, flash_t *data, int len,
unsigned long block_mask, int buffer_size);

The device will only be asked to program data in one block of the flash. The FLASH IO layer will break longer user requests
into a smaller writes.

Reading a region from FLASH
Some FLASH devices are not memory mapped so it is not possible to read there contents directly. The following function
read a region of FLASH.

int flash_read_buf(volatile flash_t* addr, flash_t* data, int len);

As with writing to the flash, the FLASH IO layer will break longer user requests for data into a number of reads which are
at maximum one block in size.

A device which cannot be read directy should set CYGSEM_IO_FLASH_READ_INDIRECT so that the IO layer makes use
of the flash_read_buf()function.

Locking and unlocking FLASH blocks
Some flash devices allow blocks to be locked so that they cannot be written to. The device driver should provide the following
functions to manipulate these locks.

int flash_lock_block(volatile flash_t *block);
int flash_unlock_block(volatile flash_t *block, int block_size, int blocks);

These functions are only used if CYGHWR_IO_FLASH_BLOCK_LOCKING

Mapping FLASH error codes to FLASH IO error codes
The functions flash_erase_block(), flash_program_buf(), flash_read_buf(),
flash_lock_block() and flash_unlock_block() return an error code which is specific to the flash device. To
map this into a FLASH IO error code, the driver should provide the following function:

int flash_hwr_map_error(int err);

Determining if code is in FLASH
Although a general function, the device driver is expected to provide the implementation of the function
flash_code_overlaps().

Implementation Notes
The FLASH IO layer will manipulate the caches as required. The device drivers do not need to enable/disable caches when
performing operations of the FLASH.

Device drivers should keep all chatter to a minimum when CYGSEM_IO_FLASH_CHATTER is not defined. All output should
use the print function in the pf in flash_info and not diag_printf()

Device driver functions which manipulate the state of the flash so that it cannot be read from for program execute need to
ensure there code is placed into RAM. The linker will do this if the appropriate attribute is added to the function. e.g:

int flash_program_buf(volatile flash_t *addr, flash_t *data, int len,
 unsigned long block_mask, int buffer_size)
__attribute__ ((section (".2ram.flash_program_buf")));

345

Chapter 64. FLASH I/O devices
It can be useful to be able to access FLASH devices using the generic I/O infrastructure found in CYGPKG_IO, and the
generic FLASH layer provides an optional ability to do so. This allows the use of functions like cyg_io_lookup(),
cyg_io_read(), cyg_io_write() etc.

Additionally it means that, courtesy of the “devfs” pseudo-filesystem in the file I/O layer (CYGPKG_IO_FILEIO), functions
like open(), read(), write() etc. can even be used directly on the FLASH devices.

Overview and CDL Configuration
This package implements support for FLASH as an I/O device by exporting it as if it is a block device. To enable this support,
the CDL option titled “Provide /dev block devices”, also known as CYGPKG_IO_FLASH_BLOCK_DEVICE, must be enabled.
(There is also a legacy format alternative which is now deprecated).

There are two methods of addressing FLASH as a block device:

1. Using the FLASH Information System (FIS) - this is a method of defining and naming FLASH partitions, usually in RedBoot.
This option is only valid if RedBoot is resident and was used to boot the application. To reference FLASH partitions in this
way, you would use a device name of the form /dev/flash/fis/partition-name , for example /dev/flash/
fis/jffs2 to reference a FIS partition named JFFS2.

The CDL option CYGFUN_IO_FLASH_BLOCK_FROM_FIS must be enabled for this support.

2. Referencing by device number, offset and length - this method extracts addressing information from the name itself. The
form of the device would be /dev/flash/device-number/offset[,length]

device-number This is a fixed number allocated to identify each FLASH region in the system. The
first region is numbered 0, the second 1, and so on. If you have only one FLASH
device, it will be numbered 0.

offset This is the index into the FLASH region in bytes to use. It may be specified as deci-
mal, or if prefixed with 0x, then hexadecimal.

length This field is optional and defaults to the remainder of the FLASH region. Again it
may be specified in decimal or hexadecimal.

Some examples:

/dev/flash/0/0 This defines a block device that uses the entirety of FLASH region 0.

/dev/flash/1/0x20000,65536 This defines a block device which points inside FLASH region 1, starting at offset
0x20000 (128Kb) and extending for 64Kb.

/dev/flash/0/65536 This defines a block device which points inside FLASH region 0, starting at offset
64Kb and continuing up to the end of the device.

Obviously great care is required when constructing the device names as using the wrong specification may subsequently
overwrite important areas of FLASH, such as RedBoot. Using the alternative via FIS names is preferable as these are less
error-prone to configure, and also allows for the FLASH region to be relocated without requiring program recompilation.

Using FLASH I/O devices
The FLASH I/O block devices can be accessed, read and written using the standard interface supplied by the generic
I/O (CYGPKG_IO) package. These include the functions: cyg_io_lookup() to access the device and get a handle,
cyg_io_read() and cyg_io_write() for sequential read and write operations, cyg_io_bread() and cyg_io_b-
write() for random access read and write operations, and cyg_io_get_config() and cyg_io_setconfig() for
run-time configuration inspection and control.

346

FLASH I/O devices

However there are two aspects that differ from some other I/O devices accessed this way:

1. The first is that the lookup operation uses up resources which must be subsequently freed when the last user of the I/
O handle is finished. The number of FLASH I/O devices that may be simultaneously opened is configured with the
CYGNUM_IO_FLASH_BLOCK_DEVICES CDL option. After the last user is finished, the device may be closed using
cyg_io_setconfig() with the CYG_IO_SET_CONFIG_CLOSE key. Reference counting to ensure that it is only the
last user that causes a close, is left to higher layers.

2. The second is that write operations assume that the flash is already erased. Attempting to write to Flash that has already
been written to may result in errors. Instead FLASH must be erased before it may be written.

FLASH block devices can also be read and written using the standard POSIX primitives, open(), close(), read(),
write(), lseek(), and so on if the POSIX file I/O package (CYGPKG_FILEIO) is included in the configuration. As with
the eCos generic I/O interface you must call close() to ensure resources are freed when the device is no longer used.

Other configuration keys are provided to perform FLASH erase operations, and to retrieve device sizes, and FLASH block
sizes at a particular address. These operations are accessed with cyg_io_get_config() (or if using the POSIX file I/O
API, cyg_fs_getinfo()) with the following keys:

CYG_IO_GET_CONFIG_FLASH_ERASE

This erases a region of FLASH. cyg_io_get_config() must be passed a structure defined as per the following,
which is also supplied in <cyg/io/flash.h>:

typedef struct {
 CYG_ADDRESS offset;
 size_t len;
 int flasherr;
 cyg_flashaddr_t err_address;
} cyg_io_flash_getconfig_erase_t;

In this structure, offset specifies the offset within the block device to erase, len specifies the amount to address,
flasherr is set on return to specify an error with the FLASH erase operation itself, and err_address is used if there
was an error to specify at which address the error happened.

CYG_IO_GET_CONFIG_FLASH_LOCK

This protects a region of FLASH using the locking facilities available on the card, if provided by the underlying driver.
cyg_io_get_config() must be passed a structure defined as per the following:

typedef struct {
 CYG_ADDRESS offset;
 size_t len;
 int flasherr;
 cyg_flashaddr_t err_address;
} cyg_io_flash_getconfig_lock_t;

In this structure, offset specifies the offset within the block device to lock, len specifies the amount to address, flash-
err is set on return to specify an error with the FLASH lock operation itself, and err_address is used if there was an
error to specify at which address the error happened. If locking support is not available -EINVAL will be returned from
cyg_io_get_config().

CYG_IO_GET_CONFIG_FLASH_UNLOCK

This disables protection for a region of FLASH using the unlocking facilities available on the card, if provided by the
underlying driver. cyg_io_get_config() must be passed a structure defined as per the following:

typedef struct {
 CYG_ADDRESS offset;
 size_t len;
 int flasherr;
 cyg_flashaddr_t err_address;
} cyg_io_flash_getconfig_unlock_t;

In this structure, offset specifies the offset within the block device to unlock, len specifies the amount to address,
flasherr is set on return to specify an error with the FLASH unlock operation itself, and err_address is used if

347

FLASH I/O devices

there was an error to specify at which address the error happened. If unlocking support is not available -EINVAL will be
returned from cyg_io_get_config().

CYG_IO_GET_CONFIG_FLASH_DEVSIZE

This returns the size of the FLASH block device. The cyg_io_get_config() function must be passed a structure
defined as per the following, which is also supplied in <cyg/io/flash.h>:

typedef struct {
 size_t dev_size;
} cyg_io_flash_getconfig_devsize_t;

In this structure, dev_size is used to return the size of the FLASH device.

CYG_IO_GET_CONFIG_FLASH_DEVADDR

This returns the address in the virtual memory map that the generic flash layer has been informed that this FLASH device is
mapped to. Note that some flash devices such as dataflash are not truly memory mapped, and so this function only returns
useful information when used with a true memory mapped FLASH device. The cyg_io_get_config() function must
be passed a structure defined as per the following, which is also supplied in <cyg/io/flash.h>:

typedef struct {
 cyg_flashaddr_t dev_addr;
} cyg_io_flash_getconfig_devaddr_t;

In this structure, dev_addr is used to return the address corresponding to the base of the FLASH device in the virtual
memory map.

CYG_IO_GET_CONFIG_FLASH_BLOCKSIZE

This returns the size of a FLASH block at a supplied offset in the FLASH block device. The cyg_io_get_config()
function must be passed a structure defined as per the following, which is also supplied in <cyg/io/flash.h>:

typedef struct {
 CYG_ADDRESS offset;
 size_t block_size;
} cyg_io_flash_getconfig_blocksize_t;

In this structure, offset specifies the address within the block device of which the FLASH block size is required - a
single FLASH device may contain blocks of differing sizes. The block_size field is used to return the block size at
the specified offset.

348

Chapter 65. Common SPI Flash Memory
Device Driver

349

Common SPI Flash Memory Device Driver

Name
eCos Common Support for SPI Flash Memory Devices — Overview

Description
The CYGPKG_DEVS_FLASH_SPI_COMMON package provides an abstraction layer between the standard eCos I/O Flash API
package (CYGPKG_IO_FLASH) and hardware specific xSPI controller drivers. This allows for serial memory device support
to be shared across architectures and platforms, avoiding the need for the H/W specific device drivers to duplicate manufacturer
or device specific information in each H/W xSPI driver implementation.

Note

Many eCos targets will still use the older driver model where the architecture specific device driver will implement
direct support for a specific subset of SPI memory devices. Only newer ports, and some ports that have been
explicitly updated, will reference this common approach. The goal is to bring as much support as is relevant for
SPI memory devices into this single package, to aid maintenance and porting, with a simpler H/W device driver
implementation for the platform specific component.

This common package presents as a Flash V2 device driver to the Flash I/O layer.

The package allows for JEDEC Serial Flash Discoverable Parameters (SFDP) device supplied parameter tables to be used to
configure the required device access. The package currently supports JESD216D.01 and earlier devices. It will work with
devices that implement newer versions of the standard, but will be limited to the backwards compatible features .

Caution

At the time of writing not all of the SFDP table declared configurations have been tested.

The following table is not an exhaustive list of tested platforms/devices, but an example set:

Platform Device xSPI Notes

mimxrt1050_evk IS25WP064AJBLE Quad 64-Mbit

samv71_xult S25FL116K Quad 16-Mbit

stm32h735_disco MX25LM51245GXDI00 Octal 512-Mbit

- W25Q32JV Quad 32-Mbit

- W25Q512JV-DTR Quad 512-Mbit

Configuration Options
The common SPI memory driver package will be loaded automatically when configuring eCos for a target with suitable hard-
ware. However the driver will be inactive unless the generic flash package CYGPKG_IO_FLASH is loaded. It may be necessary
to add the generic CYGPKG_IO_FLASH package to the configuration explicitly before the driver functionality becomes avail-
able. There should never be any requirement to load or unload the CYGPKG_DEVS_FLASH_SPI_COMMON driver package.

The flash driver provides a small number of configuration options which application developers may use to control features
provided by the package.

CYGFUN_DEVS_FLASH_SPI_COMMON_MEMMAPPED

If this option is enabled then the flash device is configured for memory mapped mode when the underlying H/W driver
and platform HAL support such use.

Memory mapped access allows the CPU to directly read data or execute code from the flash area. The default is for the
feature to be enabled, which is desired for most configurations. However, in some situations, indirect (e.g. DMA) access
may be preferred for performance reasons, in which case this feature can be disabled.

350

https://www.jedec.org/standards-documents/docs/jesd216b

Common SPI Flash Memory Device Driver

When the option is enabled some further configuration options are presented:

CYGIMP_DEVS_FLASH_SPI_COMMON_MEMMAPPED_XIPISR

This option should be enabled if ISRs or DSRs are to execute from the memory mapped xSPI space.

Note

This will adversely affect the interrupt latency of the system, since certain xSPI operations will need to
disable interrupts when switching out of memory mapped mode (e.g. erasing). So this feature should
only be enabled if actually required.

CYGIMP_DEVS_FLASH_SPI_COMMON_MEMMAPPED_DRIVER

If the eCos application providing the xSPI flash driver is executing from the flash device (using memory mapped
mode) then some critical functionality must execute from a different memory space (e.g. SRAM).

CYGFUN_DEVS_FLASH_SPI_COMMON_SOFTRESET

This option controls whether support for device soft reset is enabled. The developer is not normally required to modify
this option

Fixed settings
If the target system needs to support devices without SFDP tables, or where the tables provide inconsistent or incomplete infor-
mation, then a hook mechanism is provided based on the standard RDID command (0x9F). The flash_csm_fixedset.h
provides the CYG_CSM_FIXEDSET(localname, mask, id, init_function) macro to allow an instantation of
a cyg_csm_family_t structure to be added to the table scanned by this common flash driver.

This provides a mechanism for partially or completely updating the internal context used to describe a device to the common
flash code and the underlying H/W driver layer.

Currently SFDP fix-up support is provided for the Winbond W25Q512JV parts when the CYGINT_DE-
VS_FLASH_SPI_COMMON_HARDWIRED_W25Q512 interface is implemented. Normally the required implements is per-
formed by the target platform CDL as required, and should not need to be managed by application developers.

351

Common SPI Flash Memory Device Driver

Name
Common SPI Memory Device Hardware Driver — Interface to a hardware device driver

Description

Note

Application developers should not normally need to concern themselves with the internal API between this com-
mon layer and the H/W specific device drivers. The following information is primarily for H/W device driver
developers.

In most cases the platform (PLF) declares the individual flash driver instances. The top-level descriptor as used with the flash
API (CYGPKG_IO_FLASH) should reference the flash API functions provided by this package (cyg_devs_flash_com-
mon_funs) as well as provide a per-instance cyg_flash_csm_context_t structure initialised with a reference to the
instance-specific hardware driver descriptor in the p_hwdriver field.

The driver instance specific cyg_spi_common_hwdriver_t descriptor is used to describe the hardware driver specific
features to this common layer.

Flash API Common H/W Driver
(struct cyg_flash_dev).priv -> (cyg_flash_csm_context_t).p_hwdriver -> (cyg_spi_common_hwdriver_t)

All architecture/platform/HAL eCos xSPI device drivers using the CYGPKG_DEVS_FLASH_SPI_COMMON package must
implement a standard interface defined by the header <cyg/io/flash_csm_dev.h>. The interface descriptor structure
includes a private pointer for the H/W driver context, a “features” set and a set of function pointers for various operations:
initialization, memory operation, memory-mapped access and general configuration.

struct cyg_spi_common_hwdriver {
 // H/W driver private (opaque) context:
 const void *p_io; // H/W driver specific I/O information

 // H/W driver feature set descriptor:
 const cyg_flash_csm_features_t * const p_features;

 // Common H/W driver API
 cyg_spi_common_hwdriver_init *init; // initialisation function
 cyg_spi_common_hwdriver_op *op; // single command operation function
 cyg_spi_common_hwdriver_mm_start *mm_start; // memory-mapped start/enable
 cyg_spi_common_hwdriver_mm_stop *mm_stop; // memory-mapped stop/disable
 cyg_spi_common_hwdriver_config *config; // get/set config+control
};

Hardware Driver Features
The p_features structure provides fixed information used to describe to this common layer the features and settings of
the H/W driver instance:

typedef struct cyg_flash_csm_features {
 cyg_uint32 avail; // bitmask of H/W driver available features
 cyg_uint32 mmaddr; // if MM capable, base address for MM region
 // Since early JESD216 standards do not provide a mechanism for the device
 // to report its maximum frequency we allow the platform/variant HAL to be
 // configured with maximum rates.
 cyg_uint32 max_sdr; // if non-zero platform/variant HAL provided maximum SDR baudrate
 cyg_uint32 max_ddr; // if non-zero platform/variant HAL provided maximum DDR baudrate
 cyg_uint32 nmodes; // number of modes present in modes vector
 const cyg_uint32 * const p_modes; // pointer to vector of FLASH_CSM_OP_MODE_MASK
 // covered bitmasks for available modes
} cyg_flash_csm_features_t;

The p_features structure allows the H/W driver to report the SPI modes capable by the device driver. This can, for example,
be used in conjunction with information gathered from the device using SFDP to select the common subset of supported access
methods: e.g. Quad (QSPI) vs Octal (OSPI).

The current set of available feature flags indicating H/W driver support is:

352

Common SPI Flash Memory Device Driver

Flag Description

FLASH_CSM_FEATURE_ADDR3 3-byte addressing supported

FLASH_CSM_FEATURE_ADDR4 4-byte addressing supported

FLASH_CSM_FEATURE_ADDR5 5-byte addressing supported

FLASH_CSM_FEATURE_MODEBITS Driver supports writing mode bits (sometimes referred to as OPT or Alter-
nate) bits

FLASH_CSM_FEATURE_CMD8 8-bit commands supported

FLASH_CSM_FEATURE_CMD16 16-bit commands supported

FLASH_CSM_FEATURE_MM Memory mapped access supported

FLASH_CSM_FEATURE_MM_XIP eXecute-In-Place supported

FLASH_CSM_FEATURE_MM_SM Driver can memory-map serial-memory as well as data-memory

FLASH_CSM_FEATURE_MM_SM_RA Random Access supported for memory mapped serial-memory

FLASH_CSM_FEATURE_CR Continuous Read supported

FLASH_CSM_FEATURE_DS Data Strobe signalling available

The p_modes pointer references the nmodes deep vector of access modes supported, encoded using the same OP bitmask
encoding as used for the individual memory operations. For example an Octal (OSPI) capable driver might define:

// List of possible modes for this driver:
static const cyg_uint32 cyg_hwdriver_modes[] = {
 // 8-line Octal (OSPI)
 FLASH_CSM_OP_MODE_1S1S8S, // 0
 FLASH_CSM_OP_MODE_1S8S8S, // 1
 FLASH_CSM_OP_MODE_8S8S8S, // 2
 FLASH_CSM_OP_MODE_8D8D8D, // 3
 // 4-line QSPI
 FLASH_CSM_OP_MODE_1S1S4S, // 4
 FLASH_CSM_OP_MODE_1S4S4S, // 5
 FLASH_CSM_OP_MODE_4S4S4S, // 6
 FLASH_CSM_OP_MODE_4S4D4D, // 7
 // 2-line
 FLASH_CSM_OP_MODE_1S1S2S, // 8
 FLASH_CSM_OP_MODE_1S2S2S, // 9
 FLASH_CSM_OP_MODE_2S2S2S, // 10
 // 1-line
 FLASH_CSM_OP_MODE_1S1S1S, // 11
};

Referencing the vector in its feature descriptor:

static const cyg_flash_csm_features_t hwdriver1_features = {
 ..elided..
 .nmodes = NUMOF_(cyg_hwdriver_modes),
 .p_modes = &cyg_hwdriver_modes[0]
};

Hardware Driver-Specific Structure
The p_io pointer allows the H/W device driver to hold per-instance private data as needed for the operation of the driver.

Normally the driver context would be split into read-only, constant, data that could be held in the code with only the truly
dynamic context occupying RAM space. See the Hardware Example below for an outline.

Functions
The H/W driver provides its common driver API via the cyg_spi_common_hwdriver_t descriptor. For the function
pointers the NULL value can be used to indicate that the relevant support is not required. Only the op function must be provided,
though it is unlikely that the driver would not require a init function to be called at startup.

353

Common SPI Flash Memory Device Driver

Initialization
typedef int cyg_spi_common_hwdriver_init(const void *p_info, cyg_bool do_reset, cyg_uint32 baudrate);

This function allows the H/W driver to complete the run-time initialisation of any dynamic context needed, along with setting
up the controller in preperation for the first operation.

This can consist of attaching any ISR/DSR or DMA handlers needed, setting up I/O pin configurations (if the platform/archi-
tecture uses pin multiplexing), etc.

The reset parameter indicates whether the upper layer requires the hardware to be “reset” back to a known state.

The baudrate is the clock frequency that will be used for the initial operations. Normally (for SFDP devices) this will be
50MHz.

The function call should return standard flash API status code. e.g. CYG_FLASH_ERR_OK to indicate success.

Memory Operation
typedef cyg_bool cyg_spi_common_hwdriver_op(const void *p_info, const cyg_flash_csm_op_t *p_op);

This is the core operation of the H/W driver interface. The referenced cyg_flash_csm_op_t pointer p_op describes the
basic operation to be performed on the serial memory device.

The p_info pointer is a reference to the H/W driver specific context supplied when declaring the flash descriptor.

The function should return a simple boolean true success indication, or false if an error occurred.

The <cyg/io/flash_csm_dev.h> header defines the referenced p_op structure:

typedef struct cyg_flash_csm_op {
 cyg_uint32 mode; // Encoded bus information and control
 cyg_uint32 cmdflags; // Instruction CMD and extra control flags
 cyg_uint32 address; // Device relative address
 cyg_uint32 opt; // Upto 32-bits of OPT (mode-bits; alternate) data
 cyg_uint32 timeout; // Millisecond timeout for operation
 cyg_uint32 nbytes; // Non-zero is number of valid bytes from p_buff
 cyg_uint8 *p_buff; // Pointer to data buffer for transfer
} cyg_flash_csm_op_t;

The mode and cmdflags fields define whether the other fields are used/required. For example, a simple device operation
to enable the write-latch will not normally require any data to be written (or read) and so the nbytes and p_buff fields
would not be referenced for that operation.

The <cyg/io/flash_csm_dev.h> header is the definitive source for the bitmask use for the mode and cmdflags fields
and should be examined by the developer writing a H/W driver. The header contains helper manifests and macros to aid the
decoding of the fields.

mode

The mode bitmask encodes the operation. It contains some single-bit boolean flags as well as some multi-bit values with
specific encodings.

The value 0x00000000 (CSM_OP_INVALID) is never a valid descriptor since we should always have at least one of the
instruction, address, opt or data phases defined.

An operation compromises one or more phases in the order: Instruction, Address, Mode and Data. The mode bitmask encodes
which phases are enabled, and hence their associated bitmask flags and values are valid, as well as some general operation
control flags.

1. Instruction phase

If an instruction phase is required then the FLASH_CSM_OP_IP mask will have the value FLASH_CSM_OP_IP_AC-
TIVE, otherwise the flag will have the value FLASH_CSM_OP_IP_NONE.

354

Common SPI Flash Memory Device Driver

If FLASH_CSM_OP_IP_ACTIVE then the FLASH_CSM_OP_IW_MASK bits encode the number of lines to be used for
the instruction phase:

Value Description

FLASH_CSM_OP_IW_LINE1 1-line (SPI)

FLASH_CSM_OP_IW_LINE2 2-lines (Dual)

FLASH_CSM_OP_IW_LINE4 4-lines (Quad)

FLASH_CSM_OP_IW_LINE8 8-lines (Octal)

If FLASH_CSM_OP_IP_ACTIVE then the p_op field cmdflags holds the command instruction.

The command length is encoded by the FLASH_CSM_OP_CL mask. The value should be FLASH_CSM_OP_CL_8BIT
for 8-bit commands, and FLASH_CSM_OP_CL_16BIT for 16-bit commands.

If FLASH_CSM_OP_IP_ACTIVE then the FLASH_CSM_OP_IP_IR mask encodes whether the instruction phase is Sin-
gle-Data-Rate (FLASH_CSM_OP_IR_SDR) or Dual-Data-Rate (FLASH_CSM_OP_IR_DDR).

2. Address phase

If an address phase is required then the FLASH_CSM_OP_AP mask will have the value FLASH_CSM_OP_AP_ACTIVE,
otherwise the flag will have the value FLASH_CSM_OP_AP_NONE.

If FLASH_CSM_OP_AP_ACTIVE then the FLASH_CSM_OP_AB_MASK bits encode the number of bytes used for an
address:

Value Description

FLASH_CSM_OP_AB_3BYTE 3-byte (24-bit) address

FLASH_CSM_OP_AB_4BYTE 4-byte (32-bit) address

FLASH_CSM_OP_AB_5BYTE 5-byte (40-bit) address (not currently supported)

If FLASH_CSM_OP_AP_ACTIVE then the FLASH_CSM_OP_AW_MASK bits encode the number of lines to be used for
the address phase:

Value Description

FLASH_CSM_OP_AW_LINE1 1-line (SPI)

FLASH_CSM_OP_AW_LINE2 2-lines (Dual)

FLASH_CSM_OP_AW_LINE4 4-lines (Quad)

FLASH_CSM_OP_AW_LINE8 8-lines (Octal)

If FLASH_CSM_OP_AP_ACTIVE then the p_op field address should define the device relative address for the oper-
ation.

If FLASH_CSM_OP_AP_ACTIVE then the FLASH_CSM_OP_AR mask encodes whether the address phase is Single-Da-
ta-Rate (FLASH_CSM_OP_AR_SDR) or Dual-Data-Rate (FLASH_CSM_OP_AR_DDR).

3. Mode phase

Different hardware implementations support OPT/Alternate bytes of differing sizes and limitations. The JESD216D.01
standard describes these as “mode bits” and are sent after the address phase.

If a mode phase is required then the FLASH_CSM_OP_MP mask will have the value FLASH_CSM_OP_MP_ACTIVE,
otherwise the flag will have the value FLASH_CSM_OP_MP_NONE.

If FLASH_CSM_OP_MP_ACTIVE then the FLASH_CSM_OP_MB_MASK bits encode the number of bits (range 1..32). The
mode bits are signalled on the same number of SPI lines as the address phase.

355

Common SPI Flash Memory Device Driver

If FLASH_CSM_OP_MP_ACTIVE then the p_op field opt holds the mode bits value.

If FLASH_CSM_OP_MP_ACTIVE then the FLASH_CSM_OP_MR mask encodes whether the mode bits phase is Single-Da-
ta-Rate (FLASH_CSM_OP_MR_SDR) or Dual-Data-Rate (FLASH_CSM_OP_MR_DDR).

4. Data phase

If an data phase is required then the FLASH_CSM_OP_DP mask will have the value FLASH_CSM_OP_DP_ACTIVE,
otherwise the flag will have the value FLASH_CSM_OP_DP_NONE.

If FLASH_CSM_OP_DP_ACTIVE then the FLASH_CSM_OP_DW_MASK bits encode the number of lines to be used for
the data phase:

Value Description

FLASH_CSM_OP_DW_LINE1 1-line (SPI)

FLASH_CSM_OP_DW_LINE2 2-lines (Dual)

FLASH_CSM_OP_DW_LINE4 4-lines (Quad)

FLASH_CSM_OP_DW_LINE8 8-lines (Octal)

If FLASH_CSM_OP_DP_ACTIVE then the p_op field nbytes should define the number of valid memory bytes refer-
enced by the p_buff pointer.

If FLASH_CSM_OP_DP_ACTIVE then the FLASH_CSM_OP_DR mask encodes whether the address phase is Single-Da-
ta-Rate (FLASH_CSM_OP_DR_SDR) or Dual-Data-Rate (FLASH_CSM_OP_DR_DDR).

The mode field also encodes other information that may be required by the H/W driver.

The FLASH_CSM_OP_SD mask has the value FLASH_CSM_OP_SD_DATA when the operation is accessing the data-memory
of the flash device, and the value FLASH_CSM_OP_SD_DEVICE if accessing device-internal “memory” (e.g. SFDP tables,
unique IDs, etc.).

The FLASH_CSM_OP_TD mask encodes the Transfer Direction, whether the operation is a read (FLASH_CSM_OP_T-
D_READ) or a write (FLASH_CSM_OP_TD_WRITE).

The FLASH_CSM_OP_DA indicates whether the transfer should be undertaken by the operation call directly
(FLASH_CSM_OP_DA_XFER) or should be deferred for subsequent memory-mapped access (FLASH_CSM_OP_DA_DE-
FER).

When reading the FLASH_CSM_OP_CR mask indicates that the device is configured for Continuous Read. If
FLASH_CSM_OP_CR_NONE then continuous read is not configured. If FLASH_CSM_OP_CR_ACTIVE then it indicates that
the controller can setup access for continuous read mode.

The FLASH_CSM_OP_DS encodes whether the operation requires the Data Strobe signal (FLASH_CSM_OP_DS_ACTIVE)
or the signal is not required (FLASH_CSM_OP_DS_NONE).

cmdflags

When required by the mode bitmask the cmdflags field encodes the command code (8- or 16-bit), the number of Delay
Cycles and whether the timeout is valid.

timeout

The timeout value is only valid if the cmdflag flag FLASH_CSM_CMD_TO_VALID is set, otherwise the field is ignored.

The timeout field is a millisecond operation timeout, or one of the special values: CYG_FLASH_CSM_TO_NOWAIT or
CYG_FLASH_CSM_TO_INFINITY. The ...NOWAIT value is for an immediate, polled, return without waiting, operation.
The ...INFINITY value is for when the operation should block indefinately until completion (success or error indicated).

356

Common SPI Flash Memory Device Driver

Memory Mapped
typedef cyg_bool cyg_spi_common_hwdriver_mm_start(const void *p_info);

typedef cyg_bool cyg_spi_common_hwdriver_mm_stop(const void *p_info);

The optional mm_start and mm_stop functions are used to notify the H/W driver when memory-mapped state is being
changed.

Since most devices cannot continue to provide memory-mapped access whilst being erased or programmed the common driver
layer allows the H/W driver to perform any controller operations needed to ensure the hardware is in the correct mode. For
example, this may include changing the cached/uncached state for the memory covered by flash device, or require specific
controller operations to abort any active memory-mapped pre-fetching that may be occurring.

Configuration
typedef cyg_bool cyg_spi_common_hwdriver_config(const void *p_info,
 cyg_uint32 key, void *p_buff, cyg_uint32 *p_len);

The optional H/W driver supplied config function is used with specific configuration key values to interact with the H/W
driver:

CYG_CSM_CFG_SET_BAUDRATE
CYG_CSM_CFG_GET_BAUDRATE

Used by the common layer to control the clock frequency (normally named SCK) of the H/W driver instance. The max_sdr
and max_ddr fields of the H/W driver supplied (cyg_flash_csm_features_t) descriptor allow the H/W driver
to limit the upper frequency to that supported by the specific controller, with the common layer device support being used
for the actual flash memory device maximum rates possible.

The frequency setting is a simple 32-bit unsigned integer (e.g. cyg_uint32).

CYG_CSM_CFG_SET_MEMTYPE
CYG_CSM_CFG_GET_MEMTYPE

If required, for OCTOSPI devices, these options provide common layer control of the memory type as used by the H/
W driver.

The memory type setting is currently a simple 32-bit unsigned integer (e.g. cyg_uint32):

CYG_CSM_MEMTYPE_DTR_D0D1

This option indicates Micron style byte-ordering.

CYG_CSM_MEMTYPE_DTR_D1D0

This option indicates Macronix style byte-ordering.

CYG_CSM_MEMTYPE_STANDARD

Indicates normal SPI access.

CYG_CSM_MEMTYPE_UNDEFINED

This value indicates that no specific memory type has been set.

CYG_CSM_CFG_SET_DATASTROBE
CYG_CSM_CFG_GET_DATASTROBE

For configurarions that use a data strobe signal (DQS) these config options provide the mechanism for informing the H/
W driver of the device data strobe timing.

The data strobe settings are a simple 32-bit unsigned integer (e.g. cyg_uint32):

357

Common SPI Flash Memory Device Driver

CYG_CSM_DATASTROBE_START

Start of first data bit aligned with the first rising edge of DQS.

CYG_CSM_DATASTROBE_MIDDLE

First rising edge of DQS in the middle of the first data bit.

CYG_CSM_DATASTROBE_HALF

First rising edge of DQS is half a clock cycle before the start of the first data bit.

CYG_CSM_DATASTROBE_UNDEFINED

This setting is used to indicate that the data strobe timing is not defined or unknown.

Example
The following section provides an example skeleton of how a H/W driver instance can be declared.

Since device drivers normally have a requirement for some fixed (constant) information describing the hardware configuration
as well as possibly some dynamic state to hold run-time information (e.g. ISR or DSR state) the example below shows a simple
framework. The example hw_driver_ctx_t structure used for the dynamic context and the hw_driver_io_t structure
holding the constant/fixed information are specific to the H/W driver implementation and the underlying H/W controller re-
quirements.

For our example instance in the H/W driver source we can provide a RAM based private context for the dynamic state:

static hw_driver_ctx_t hw_dynamic1 = {};

This can then be referenced from a constant (normally placed in read-only memory by the linker) structure with the fixed
information for the driver along with a pointer to the RAM based dynamic run-time context structure:

static const hw_driver_io_t hw_context1 {
 .p_ctx = &hw_driver_dynamic1, // dynamic H/W driver state
 // The fixed information needed by the H/W driver
 .intr_vec = <HAL_INTERRUPT_NUMBER>
 .pin_sclk = <HAL/PLF_SCLK_PIN_DESCRIPTOR>
 ..elided..
};

The driver can then provide a per-instance common H/W driver API structure referencing the H/W driver context and the
features and functions provided by the driver:

const cyg_spi_common_hwdriver_t cyg_dev_flash_csm_example1= {
 .p_io = &hw_context1,
 .p_features = &hw_features,
 .init = hw_init,
 .op = hw_op,
 .mm_start = NULL, // op interface sufficient for this driver
 .mm_stop = NULL, // op interface sufficient for this driver
 .config = hw_config
};

With the H/W driver providing the cyg_spi_common_hwdriver_t structure the platform specific sources would then
reference the H/W driver instance when declaring the flash object in the platform/HAL specific source file:

static struct cyg_flash_block_info cyg_flash_common_block_info;

static cyg_flash_csm_context_t cyg_flash_common_ctx = {
 .p_hwdriver = &cyg_dev_flash_csm_example1, // reference H/W instance
};

CYG_FLASH_DRIVER(cyg_common_device,
 &cyg_devs_flash_common_funs,
 0,

358

Common SPI Flash Memory Device Driver

 <BASE_ADDR>, // start (normally same as p_features.mmaddr field
 <BASE_ADDR>, // end (depends on detected device, so filled in at run-time)
 1, // number of flash block info structures
 &cyg_flash_common_block_info,
 &cyg_flash_common_ctx);

After successful flash device initialisation the struct cyg_flash_dev field end will hold the end address for the flash
area. The start and end addresses are used by the flash API to select the relevant device descriptor when accessing a flashg area.

When called, the common layer code can use the p_hwdriver field to access the specific H/W instance used to access the
actual flash device for the area, with the H/W driver subsequently de-referencing its own structures to access the fixed and
dynamic portions of its context.

359

Chapter 66. AMD AM29xxxxx Flash Device
Driver

360

AMD AM29xxxxx Flash Device Driver

Name
eCos Support for AMD AM29xxxxx Flash Devices and Compatibles — Overview

Description
The CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2 AMD AM29xxxxx V2 flash driver package implements support for
the AM29xxxxx family of flash devices and compatibles. Normally the driver is not accessed directly. Instead application code
will use the API provided by the generic flash driver package CYGPKG_IO_FLASH, for example by calling functions like
cyg_flash_program.

The driver imposes one restriction on application code which developers should be aware of: when programming the flash the
destination addresses must be aligned to a bus boundary. For example if the target hardware has a single flash device attached
to a 16-bit bus then program operations must involve a multiple of 16-bit values aligned to a 16-bit boundary. Note that it is the
bus width that matters, not the device width. If the target hardware has two 16-bit devices attached to a 32-bit bus then program
operations must still be aligned to a 32-bit boundary, even though in theory a 16-bit boundary would suffice. In practice this
is rarely an issue, and requiring the larger boundary greatly simplifies the code and improves performance.

Note

Many eCos targets with AM29xxxxx or compatible flash devices will still use the older driver package CYGP-
KG_DEVS_FLASH_AMD_AM29XXXXX. Only newer ports and some older ports that have been converted will
use the V2 driver. This documentation only applies to the V2 driver.

Configuration Options
The AM29xxxxx flash driver package will be loaded automatically when configuring eCos for a target with suitable hardware.
However the driver will be inactive unless the generic flash package CYGPKG_IO_FLASH is loaded. It may be necessary to
add this generic package to the configuration explicitly before the driver functionality becomes available. There should never
be any need to load or unload the AM29xxxx driver package.

The driver contains a small number of configuration options which application developers may wish to tweak. CYGNUM_DE-
VS_FLASH_AMD_AM29XXXXX_V2_PROGRAM_BURST_SIZE controls the program operation. On typical hardware pro-
gramming the flash requires disabling interrupts and the cache for an extended period of time. Some or all of the flash hardware
will be unusable while each word is programmed, and disabling interrupts is the only reliable way of ensuring that no interrupt
handler or other thread will try to access the flash in the middle of an operation. This can have a major impact on the real-time
responsiveness of the typical applications. To ameliorate this the driver wil perform writes in small bursts, briefly re-enabling
the cache and interrupts between each burst. The number of words written per burst is controlled by this configuration opera-
tion: reducing the value will improve real-time response but will add overhead, so the actual flash program operation will take
longer; conversely more writes per burst will worsen response times but reduce overhead.

Similarly erasing a block of flash safely requires disabling interrupts and the cache. Erasing a block can easily take a sec-
ond or so, and disabling interrupts for such a long period of time is usually undesirable. Hence the driver can also perform
the erase in bursts, using the hardware's suspend and resume capabilities. CYGNUM_DEVS_FLASH_AM29XXXXX_V2_ER-
ASE_BURST_DURATION controls the number of polling loops during which interrupts are disabled. Reducing its value im-
proves responsiveness at the cost of performance, and increasing its value has the opposite effect. Note that too low a value
may prevent the erase operation from working at all: the chip will be spending its time suspending and resuming, rather than
actually performing the erase. The minimum value will depend on the specific hardware.

There are a number of other options, relating mostly to hardware characteristics. It is very rare that application developers need
to change any of these. For example the option CYGNUM_DEVS_FLASH_AMD_AM29XXXXX_V2_ERASE_REGIONS may
need a non-default value if the flash devices used on the target have an unusual boot block layout. If so the platform HAL will
impose a requires constraint on this option and the configuration system will resolve the constraint. The only time it might
be necessary to change the value manually is if the actual board being used is a variant of the one supported by the platform
HAL and uses a different flash chip.

361

AMD AM29xxxxx Flash Device Driver

Name
Instantiating — including the driver in an eCos target

Synopsis

#include <cyg/io/am29xxxxx_dev.h>

int cyg_am29xxxxx_init_check_devid_XX(device);

int cyg_am29xxxxx_init_cfi_XX(device);

int cyg_am29xxxxx_erase_XX(device, addr);

int cyg_am29xxxxx_program_XX(device, addr, data, len);

int cyg_at49xxxx_softlock(device, addr);

int cyg_at49xxxx_hardlock(device, addr);

int cyg_at49xxxx_unlock(device, addr);

int cyg_am29xxxxx_read_devid_XX(device);

Description
The AM29xxxxx family contains some hundreds of different flash devices, all supporting the same basic set of operations
but with various common or uncommon extensions. The devices vary in capacity, performance, boot block layout, and width.
There are also platform-specific issues such as how many devices are actually present on the board and where they are mapped
in the address space. The AM29xxxxx driver package cannot know the details of every chip and every platform. Instead it is
the responsibility of another package, usually the platform HAL, to supply the necessary information by instantiating some
data structures. Two pieces of information are especially important: the bus configuration and the boot block layout.

Flash devices are typically 8-bits, 16-bits, or 32-bits wide (64-bit devices are not yet in common use). Most 16-bit devices will
also support 8-bit accesses, but not all. Similarly 32-bit devices can be accessed 16-bits at a time or 8-bits at a time. A board
will have one or more of these devices on the bus. For example there may be a single 16-bit device on a 16-bit bus, or two 16-
bit devices on a 32-bit bus. The processor's bus logic determines which combinations are possible, and there will be a trade
off between cost and performance: two 16-bit devices in parallel can provide twice the memory bandwidth of a single device.
The driver supports the following combinations:

8 A single 8-bit flash device on an 8-bit bus.

16 A single 16-bit flash device on a 16-bit bus.

32 A single 32-bit flash device on an 32-bit bus.

88 Two parallel 8-bit devices on an 16-bit bus.

8888 Four parallel 8-bit devices on a 32-bit bus.

1616 Two parallel 16-bit devices on a 32-bit bus, with one device providing the bottom two bytes of each 32-bit datum
and the other device providing the top two bytes.

16as8 A single 16-bit flash device connected to an 8-bit bus.

32as16 A single 32-bit flash device connected to a 16-bit bus.

These configuration all require slightly different code to manipulate the hardware. The AM29xxxxx driver package pro-
vides separate functions for each configuration, for example cyg_am29xxxxx_erase_16 and cyg_am29xxxxx_pro-
gram_1616.

362

AMD AM29xxxxx Flash Device Driver

Caution

At the time of writing not all the configurations have been tested.

The second piece of information is the boot block layout. Flash devices are subdivided into blocks (also known as sectors -
both terms are in common use). Some operations such as erase work on a whole block at a time, and for most applications a
block is the smallest unit that gets updated. A typical block size is 64K. It is inefficient to use an entire 64K block for small bits
of configuration data and similar information, so many flash devices also support a number of smaller boot blocks. A typical
2MB flash device could have a single 16K block, followed by two 8K blocks, then a 32K block, and finally 31 full-size 64K
blocks. The boot blocks may appear at the bottom or the top of the device. So-called uniform devices do not have boot blocks,
just full-size ones. The driver needs to know the boot block layout. With modern devices it can work this out at run-time, but
often it is better to provide the information statically.

Example
In most cases flash support is specific to a platform. Even if two platforms happen to use the same flash device there are likely
to be differences such as the location in the address map. Hence there is little possibility of re-using the platform-specific code,
and this code should be placed in the platform HAL rather than in a separate package. Typically this involves a separate file
and a corresponding compile property in the platform HAL's CDL:

cdl_package CYGPKG_HAL_M68K_ALAIA {
 …
 compile -library=libextras.a alaia_flash.c
 …
}

The contents of this file will not be accessed directly, only indirectly via the generic flash API, so normally it would be removed
by link-time garbage collection. To avoid this the object file has to go into libextras.a.

The actual file alaia_flash.c will look something like:

#include <pkgconf/system.h>
#ifdef CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2

#include <cyg/io/flash.h>
#include <cyg/io/flash_dev.h>
#include <cyg/io/am29xxxxx_dev.h>

static const CYG_FLASH_FUNS(hal_alaia_flash_amd_funs,
 &cyg_am29xxxxx_init_check_devid_16,
 &cyg_flash_devfn_query_nop,
 &cyg_am29xxxxx_erase_16,
 &cyg_am29xxxxx_program_16,
 (int (*)(struct cyg_flash_dev*, const cyg_flashaddr_t, void*, size_t))0,
 &cyg_flash_devfn_lock_nop,
 &cyg_flash_devfn_unlock_nop);

static const cyg_am29xxxxx_dev hal_alaia_flash_priv = {
 .devid = 0x45,
 .block_info = {
 { 0x00004000, 1 },
 { 0x00002000, 2 },
 { 0x00008000, 1 },
 { 0x00010000, 63 }
 }
};

CYG_FLASH_DRIVER(hal_alaia_flash,
 &hal_alaia_flash_amd_funs,
 0,
 0xFFC00000,
 0xFFFFFFFF,
 4,
 hal_alaia_flash_priv.block_info,
 &hal_alaia_flash_priv
);

363

AMD AM29xxxxx Flash Device Driver

#endif

The bulk of the file is protected by an #ifdef for the AM29xxxxx flash driver. That driver will only be active if the generic
flash support is enabled. Without that support there will be no way of accessing the device so instantiating the data structures
would serve no purpose. The rest of the file is split into three structure definitions. The first supplies the functions which will
be used to perform the actual flash accesses, using a macro provided by the generic flash code in cyg/io/flash_dev.h.
The relevant ones have an _16 suffix, indicating that on this board there is a single 16-bit flash device on a 16-bit bus. The
second provides information specific to AM29xxxxx flash devices. The third provides the cyg_flash_dev structure needed by
the generic flash code, which contains pointers to the previous two.

Functions
All eCos flash device drivers must implement a standard interface, defined by the generic flash code CYGPKG_IO_FLASH.
This interface includes a table of seven function pointers for various operations: initialization, query, erase, program, read,
locking and unlocking. The query operation is optional and the generic flash support provides a dummy implementation
cyg_flash_devfn_query_nop. AM29xxxxx flash devices are always directly accessible so there is no need for a sepa-
rate read function. The remaining functions are more complicated.

Usually the table can be declared const. In a ROM startup application this avoids both ROM and RAM copies of the table,
saving a small amount of memory. const should not be used if the table may be modified by a platform-specific initialization
routine.

Initialization

There is a choice of three main initialization functions. The simplest is cyg_flash_devfn_init_nop, which does noth-
ing. It can be used if the cyg_am29xxxxx_dev and cyg_flash_dev structures are fully initialized statically and the flash will
just work without special effort. This is useful if it is guaranteed that the board will always be manufactured using the same
flash chip, since the nop function involves the smallest code size and run-time overheads.

The next step up is cyg_am29xxxxx_init_check_devid_XX, where XX will be replaced by the suffix appropriate for
the bus configuration. It is still necessary to provide all the device information statically, including the devid field in the
cyg_am29xxxxx_dev structure. This initialization function will attempt to query the flash device and check that the provided
device id matches the actual hardware. If there is a mismatch the device will be marked uninitialized and subsequent attempts
to manipulate the flash will fail.

If the board may end up being manufactured with any of a number of different flash chips then the driver can perform run-time
initialization, using a cyg_am29xxxxx_init_cfi_XX function. This queries the flash device as per the Common Flash
Memory Interface Specification, supported by all current devices (although not necessarily by older devices). The block_in-
fo field in the cyg_am29xxxxx_dev structure and the end and num_block_infos fields in the cyg_flash_dev structure
will be filled in. It is still necessary to supply the start field statically since otherwise the driver will not know how to access
the flash device. The main disadvantage of using CFI is that it increases the code size.

Caution

If CFI is used then the cyg_am29xxxxx_dev structure must not be declared const. The CFI code will attempt
to update the structure and will fail if the structure is held in read-only memory. This would leave the flash driver
non-functional.

A final option is to use a platform-specific initialization function. This may be useful if the board may be manufactured with
one of a small number of different flash devices and the platform HAL needs to adapt to this. The AM29xxxxx driver provides
a utility function to read the device id, cyg_am29xxxxx_read_devid_XX:

static int
alaia_flash_init(struct cyg_flash_dev* dev)
{
 int devid = cyg_am29xxxxx_read_devid_1616(dev);
 switch(devid) {
 case 0x0042 :
 …
 case 0x0084 :
 …

364

AMD AM29xxxxx Flash Device Driver

 default:
 return CYG_FLASH_ERR_DRV_WRONG_PART;
 }
}

There are many other possible uses for a platform-specific initialization function. For example initial prototype boards might
have only supported 8-bit access to a 16-bit flash device rather than 16-bit access, but this problem was fixed in the next
revision. The platform-specific initialization function can figure out which model board it is running on and replace the default
16as8 functions with faster 16 ones.

Erase and Program

The AM29xxxxx driver provides erase and program functions appropriate for the various bus configurations. On most targets
these can be used directly. On some targets it may be necessary to do some extra work before and after the erase and program
operations. For example if the hardware has an MMU then the part of the address map containing the flash may have been
set to read-only, in an attempt to catch spurious memory accesses. Erasing or programming the flash requires write-access, so
the MMU settings have to be changed temporarily. As another example some flash device may require a higher voltage to be
applied during an erase or program operation. or a higher voltage may be desirable to make the operation proceed faster. A
typical platform-specific erase function would look like this:

static int
alaia_flash_erase(struct cyg_flash_dev* dev, cyg_flashaddr_t addr)
{
 int result;
 … // Set up the hardware for an erase
 result = cyg_am29xxxxx_erase_32(dev, addr);
 … // Revert the hardware change
 return result;
}

There are two configurations which affect the erase and program functions, and which a platform
HAL may wish to change: CYGNUM_DEVS_FLASH_AMD_AM29XXXXX_V2_ERASE_TIMEOUT and CYGNUM_DE-
VS_FLASH_AMD_AM29XXXXX_V2_PROGRAM_TIMEOUT. The erase and program operations both involve polling for com-
pletion, and these timeout impose an upper bound on the polling loop. Normally these operations should never take anywhere
close to the timeout period, so a timeout indicates a catastrophic failure that should really be handled by a watchdog reset. A
reset is particularly appropriate because there will be no clean way of aborting the flash operation. The main reason for the
timeouts is to help with debugging when porting to new hardware. If there is a valid reason why a particular platform needs
different timeouts then the platform HAL's CDL can require appropriate values for these options.

Locking

There is no single way of implementing the block lock and unlock operations on all AM29xxxxx devices. If these operations
are supported at all then usually they involve manipulating the voltages on certain pins. This would not be able to be handled
by generic driver code since it requires knowing how these pins can be manipulated via the processor's GPIO lines. There-
fore the AM29xxxxx driver does not usually provide lock and unlock functions, and instead the generic dummy functions
cyg_flash_devfn_lock_nop and cyg_flash_devfn_unlock_nop should be used. An exception exists for the
AT49xxxx family of devices which are sufficiently AMD compatible in other respects. Otherwise, if a platform does provide
a way of implementing the locking then this can be handled by platform-specific functions.

static int
alaia_lock(struct cyg_flash_dev* dev, const cyg_flashaddr_t addr)
{
 …
}

static int
alaia_unlock(struct cyg_flash_dev* dev, const cyg_flashaddr_t addr)
{
 …
}

If real locking functions are implemented then the platform HAL's CDL script should implement the CDL interface CYGH-
WR_IO_FLASH_BLOCK_LOCKING. Otherwise the generic flash package may believe that none of the flash drivers in the
system provide locking functionality and disable the interface functions.

365

AMD AM29xxxxx Flash Device Driver

AT49xxxx locking

As locking is standardised across the AT49xxxx family of AMD AM29xxxxx compatible Flash parts, a method supporting
this is included within this driver. cyg_at49xxxx_softlock_XX provides a means of locking a Flash sector such that it
may be subsequently unlocked. cyg_at49xxxx_hardlock_XX locks a sector such that it cannot be unlocked until after
reset or a power cycle. cyg_at49xxxx_unlock_XX unlocks a sector that has previously been softlocked. At power on or
Flash device reset, all sectors default to being softlocked.

Other

The driver provides a set of functions cyg_am29xxxxx_read_devid_XX, one per supported bus configuration. These
functions take a single argument, a pointer to the cyg_flash_dev structure, and return the chip's device id. For older devices this
id is a single byte. For more recent devices the id is a 3-byte value, 0x7E followed by a further two bytes that actually identify
the device. cyg_am29xxxxx_read_devid_XX is usually called only from inside a platform-specific driver initialization
routine, allowing the platform HAL to adapt to the actual device present on the board.

Device-Specific Structure
The cyg_am29xxxxx_dev structure provides information specific to AM29xxxxx flash devices, as opposed to the more generic
flash information which goes into the cyg_flash_dev structure. There are only two fields: devid and block_info.

devid is only needed if the driver's initialization function is set to cyg_am29xxxxx_init_check_devid_XX. That
function will extract the actual device info from the flash chip and compare it with the devid field. If there is a mismatch
then subsequent operations on the device will fail.

The block_info field consists of one or more pairs of the block size in bytes and the number of blocks of that size. The
order must match the actual hardware device since the flash code will use the table to determine the start and end locations of
each block. The table can be initialized in one of three ways:

1. If the driver initialization function is set to cyg_flash_devfn_init_nop or cyg_am29xxxxx_init_check_de-
vid_XX then the block information should be provided statically. This is appropriate if the board will also be manufactured
using the same flash chip.

2. If cyg_am29xxxxx_init_cfi_XX is used then this will fill in the block info table. Hence there is no need for static
initialization.

3. If a platform-specific initialization function is used then either this should fill in the block info table, or the info should
be provided statically.

The size of the block_info table is determined by the configuration option CYGNUM_DE-
VS_FLASH_AMD_AM29XXXXX_V2_ERASE_REGIONS. This has a default value of 4, which should suffice for nearly all
AM29xxxxx flash devices. If more entries are needed then the platform HAL's CDL script should require a larger value.

If the cyg_am29xxxxx_dev structure is statically initialized then it can be const. This saves a small amount of memory
in ROM startup applications. If the structure is updated at run-time, either by cyg_am29xxxxx_init_cfi_XX or by a
platform-specific initialization routine, then it cannot be const.

Flash Structure
Internally the generic flash code works in terms of cyg_flash_dev structures, and the platform HAL should define one of these.
The structure should be placed in the cyg_flashdev table. The following fields need to be provided:

funs This should point at the table of functions.

start The base address of the flash in the address map. On some board the flash may be mapped
into memory several times, for example it may appear in both cached and uncached parts
of the address space. The start field should correspond to the cached address.

end The address of the last byte in the flash. It can either be statically initialized, or
cyg_am29xxxxx_init_cfi_XX will calculate its value at run-time.

366

AMD AM29xxxxx Flash Device Driver

num_block_infos This should be the number of entries in the block_info table. It can either be statically
initialized or it will be filled in by cyg_am29xxxxx_init_cfi_XX.

block_info The table with the block information is held in the cyg_am29xxxxx_dev structure, so
this field should just point into that structure.

priv This field is reserved for use by the device driver. For the AM29xxxxx driver it should
point at the appropriate cyg_am29xxxxx_dev structure.

The cyg_flash_dev structure contains a number of other fields which are manipulated only by the generic flash code. Some of
these fields will be updated at run-time so the structure cannot be declared const.

Multiple Devices
A board may have several flash devices in parallel, for example two 16-bit devices on a 32-bit bus. It may also have several
such banks to increase the total amount of flash. If each device provides 2MB, there could be one bank of 2 parallel flash
devices at 0xFF800000 and another bank at 0xFFC00000, giving a total of 8MB. This setup can be described in several ways.
One approach is to define two cyg_flash_dev structures. The table of function pointers can usually be shared, as can the
cyg_am29xxxxx_dev structure. Another approach is to define a single cyg_flash_dev structure but with a larger block_info
table, covering the blocks in both banks of devices. The second approach makes more efficient use of memory.

Many variations are possible, for example a small slow flash device may be used for initial bootstrap and holding the config-
uration data, while there is also a much larger and faster device to hold a file system. Such variations are usually best described
by separate cyg_flash_dev structures.

If more than one cyg_flash_dev structure is instantiated then the platform HAL's CDL script should implement the CDL
interface CYGHWR_IO_FLASH_DEVICE once for every device past the first. Otherwise the generic code may default to the
case of a single flash device and optimize for that.

Platform-Specific Macros
The AM29xxxxx driver source code includes the header files cyg/hal/hal_arch.h and cyg/hal/hal_io.h, and
hence indirectly the corresponding platform header files (if defined). Optionally these headers can define macros which are
used inside the driver, thus giving the HAL limited control over how the driver works.

Cache Management
By default the AM29xxxxx driver assumes that the flash can be accessed uncached, and it will use the HAL CYGARC_UN-
CACHED_ADDRESS macro to map the cached address in the start field of the cyg_flash_dev structure into an uncached
address. If for any reason this HAL macro is inappropriate for the flash then an alternative macro HAL_AM29XXXXX_UN-
CACHED_ADDRESS can be defined instead. However fixing the CYGARC_UNCACHED_ADDRESS macro is normally the
better solution.

If there is no way of bypassing the cache then the platform HAL should implement the CDL interface CYGHWR_DE-
VS_FLASH_AMD_AM29XXXXX_V2_CACHED_ONLY. The flash driver will now disable and re-enable the cache as required.
For example a program operation will involve the following:

AM29_INTSCACHE_STATE;
AM29_INTSCACHE_BEGIN();
while (! finished) {
 write a burst of CYGNUM_DEVS_FLASH_AMD_AM29XXXXX_V2_PROGRAM_BURST_SIZE
 AM29_INTSCACHE_SUSPEND();
 AM29_INTSCACHE_RESUME();
}
AM29_INTSCACHE_END();

The default implementations of these INTSCACHE macros are as follows: STATE defines any local variables that may be
needed, e.g. to save the current interrupt state; BEGIN disables interrupts, synchronizes the data caches, disables it, and inval-
idates the current contents; SUSPEND re-enables the data cache and then interrupts; RESUME disables interrupts and the data
cache; END re-enables the cache and then interrupts. The cache is only disabled when interrupts are disabled, so there is no

367

AMD AM29xxxxx Flash Device Driver

possibility of an interrupt handler running or a context switch occurring while the cache is disabled, potentially leaving the
system running very slowly. The data cache synchronization ensures that there are no dirty cache lines, so when the cache is
disabled the low-level flash write code will not see stale data in memory. The invalidate ensures that at the end of the operation
higher-level code will not pick up stale cache contents instead of the newly written flash data. The SUSPEND and RESUME
macros only re-enable and disable the data cache. An interrupt and possibly a context switch may occur between these macros
and use the cache normally. It is assumed that any code which runs at this time will not touch the memory being used by the
flash operation, so as far as the low-level program code is concerned it can just continue to use the uncached memory contents as
set up by the BEGIN macro. If any code modifies the const data currently being written to a flash block or tries to read the flash
block being modified then the system's behaviour is undefined. Theoretically a more robust approach is possible, synchronizing
and invalidating the cache again in every RESUME. However these cache operations can be expensive and RESUME may get
invoked some thousands of times for every flash block, so this alternative approach would cripple the driver's performance.

Some implementations of the HAL cache macros may not provide the exact semantics required by the flash driver. For
example HAL_DCACHE_DISABLE may have an unwanted side effect, or it may do more work than is needed here. The driver
will check for alternative macros HAL_AM29XXXXX_INTSCACHE_STATE, HAL_AM29XXXXX_INTSCACHE_BEGIN,
HAL_AM29XXXXX_INTSCACHE_SUSPEND, HAL_AM29XXXXX_INTSCACHE_RESUME and
HAL_AM29XXXXX_INTSCACHE_END, using these instead of the defaults.

368

Chapter 67. Atmel AT45xxxxxx DataFlash
Device Driver

369

Atmel AT45xxxxxx DataFlash Device Driver

Name
Overview — eCos Support for Atmel AT45xxxxxx DataFlash Devices and Compatibles

Description
The CYGPKG_DEVS_FLASH_ATMEL_DATAFLASH Atmel AT45xxxxxx V2 flash driver package implements support for
the AT45xxxxxx family of flash devices and compatibles. The driver is not normally accessed directly. Instead application
code will use the API provided by the generic flash driver package CYGPKG_IO_FLASH, for example by calling functions
like cyg_flash_program.

DataFlash devices are accessed via the SPI bus. Therefore, any platform on which this driver is to be used must also have an
SPI driver. The DataFlash driver accesses the driver via the standard SPI API calls defined in the CYGPKG_IO_SPI package.

Configuration
The DataFlash flash driver package will be loaded automatically when configuring eCos for a target with suitable hardware.
However the driver will be inactive unless the generic flash package CYGPKG_IO_FLASH is loaded. It may be necessary to
add this generic package to the configuration explicitly before the driver functionality becomes available. There should never
be any need to load or unload the DataFlash driver package.

370

Atmel AT45xxxxxx DataFlash Device Driver

Name
Instantiating — including the driver in an eCos target

Synopsis
#include <cyg/io/dataflash.h>

CYG_DATAFLASH_FLASH_DRIVER (name, sdev, addr, start, end);

Description
The DataFlash family contains several different flash devices, all supporting the same basic set of operations The devices vary in
capacity, performance and sector layout. There are also platform-specific issues such as which SPI bus the device is connected
to, and which chip select it uses. The DataFlash driver package cannot know all this information. Instead it is the responsibility
of another package, either the platform HAL or a flash configuration package, to instantiate some DataFlash device structures.

The definition of the parameters is split between two data structures. The first is an SPI specific data structure describing
the SPI bus, chip select and signalling characteristics for the device. This is usually defined in an SPI specific configuration
package or the platform HAL. The reader is referred to the SPI documentation for details of the contents of this structure, but
see later for an example.

The second data structure defines the characteristics of the DataFlash device for use by the flash subsystem. For convenience a
macro, CYG_DATAFLASH_FLASH_DRIVER, has been defined to automate the generation of this structure. This macro takes
a number of arguments:

name This provides a name fragment for distinguishing this DataFlash device from any others.
It is concatenated with cyg_dataflash_priv_ to form a static variable name. Any
unique string that obeys the rules of C variable names is sufficient.

sdev A pointer to the SPI device object that describes this flash device. If the SPI device has
been declared with the name spi_dataflash_dev0 then this argument should be
(&spi_dataflash_dev0.spi_device).

addr SPI DataFlash devices do not have a physical address in the system memory space.
However, the flash subsystem expects all flash devices to have an address. This argu-
ment gives the DataFlash device a virtual address in the memory space. This should be
allocated to a location that contains no other flash devices, and to avoid confusion, no
other memory or devices. Subsequently, the DataFlash may be accessed by performing
flash system accesses starting at this address.

start This parameter defines the sector at which the flash device mapping starts. The begin-
ning of this sector is mapped to the virtual address given in the addr argument. This
value will usually be zero, but may be non-zero if there is reserved data at the beginning
of the DataFlash.

end This parameter defines the sector at which the flash device mapping ends. The end of
this sector defines the maximum extent in the address space that the DataFlash occupies.
The exact size of the mapping will depend on the number and sizes of the flash sectors
covered. This value will usually be the number of sectors in the device, but may be less
if there is reserved data at the end of the DataFlash.

Example
DataFlash support is usually specific to each platform. Even if two platforms happen to use the same flash device there are likely
to be differences such as the SPI bus, chip select and location in the address map. Hence there is little possibility of re-using
the platform-specific code, and this code is generally placed in the platform HAL or in a separate platform specific package.

The code to declare a DataFlash device might appear as follows:

371

Atmel AT45xxxxxx DataFlash Device Driver

#include <cyg/io/spi.h>
#include <cyg/io/spi_at91.h>
#include <cyg/io/dataflash.h>

__externC cyg_spi_at91_device_t spi_dataflash_dev0;

CYG_DATAFLASH_FLASH_DRIVER(eb55_dataflash,
 (&spi_dataflash_dev0.spi_device),
 0x08000000,
 0,
 16);

Here, we are defining a dataflash device that is mapped to virtual address 0x08000000. The start and end sectors cover the
entire flash device, 17 sectors. In addition to a DataFlash specific structure, this macro also creates a cyg_flash_dev structure
which supplies the driver interface to the flash subsystem. The SPI device structure is defined elsewhere, in an SPI specific
package, and has the following format:

#include <cyg/infra/cyg_type.h>
#include <cyg/io/spi.h>
#include <cyg/io/spi_at91.h>

// AT45DB321B DataFlash
cyg_spi_at91_device_t spi_dataflash_dev0 CYG_SPI_DEVICE_ON_BUS(0) =
{
 .spi_device.spi_bus = &cyg_spi_at91_bus.spi_bus,

 .dev_num = 0, // Device number
 .cl_pol = 1, // Clock polarity (0 or 1)
 .cl_pha = 0, // Clock phase (0 or 1)
 .cl_brate = 8192000, // Clock baud rate
 .cs_up_udly = 1, // Delay in usec between CS up and transfer start
 .cs_dw_udly = 1, // Delay in usec between transfer end and CS down
 .tr_bt_udly = 1 // Delay in usec between two transfers
};

The parameters here attach the device to the only SPI bus in the hardware, use chip select 0 to access it, and set the communi-
cation parameters for the clock polarity, phase, baud rate and delays.

Device Info
The exact DataFlash device attached to the SPI bus is discovered by the driver by querying it and matching the device ID
against an internal table of supported devices. If a particular device is not currently supported, it must be added to the table in
devs_flash_atmel_dataflash.c. A typical entry in this table appears as follows:

{ // AT45DB321B
 device_id: 0x0D,
 page_size: 528,
 page_count: 8192,
 baddr_bits: 10,
 block_size: 8,
 sector_sizes: { 1, 63, 64, 64, 64, 64, 64, 64,
 64, 64, 64, 64, 64, 64, 64, 64, 64 },
 sector_count: 17
},

The fields of this structure are:

device_id This defines the device ID returned as part of the status register. This is the field that is
matched to select this DataFlash device.

page_size This gives the size of pages in this flash device.

page_size This gives the total number of pages in this device.

baddr_bits This gives the number of bits used in the SPI command address format for specifying
a byte address within a page.

block_size This gives the number of pages in a block.

372

Atmel AT45xxxxxx DataFlash Device Driver

sector_sizes This is an array giving the size, in blocks, of each sector of the DataFlash.

sector_count This gives the number of entries in the sector_sizes array.

373

Chapter 68. Freescale MCFxxxx CFM
Flash Device Driver

374

Freescale MCFxxxx CFM Flash Device Driver

Name
CYGPKG_DEVS_FLASH_M68K_MCFxxxx_CFM — eCos Flash Driver for MCFxxxx CFM On-chip Flash

Description
Some members of the Freescale MCFxxxx family, for example the MCF5213, come with on-chip flash in the form of a ColdFire
Flash Module or CFM. This package CYGPKG_DEVS_FLASH_M68K_MCFxxxx_CFM provides an eCos flash device driver
for CFM hardware. Normally the driver is not accessed directly. Instead application code will use the API provided by the
generic flash driver package CYGPKG_IO_FLASH, for example by calling functions like cyg_flash_program.

Configuration Options
The CFM flash driver package will be loaded automatically when configuring eCos for a target with suitable hardware. However
the driver will be inactive unless the generic flash package CYGPKG_IO_FLASH is loaded. It may be necesary to add this
generic package to the configuration explicitly before the driver functionality becomes available. There should never be any
need to load or unload the CFM driver package.

The driver contains a small number of configuration options which application developers may wish to tweak.

Misaligned Writes

The CFM hardware only supports writes of a whole 32-bit integer at a time. For most applications this is not a problem
and the driver imposes this restriction on higher-level code, so when calling cyg_flash_program the destination address
must be on a 32-bit boundary and the length must be a multiple of four bytes. If this restriction is unacceptable then sup-
port for misaligned writes of arbitrary lengths can be enabled via configuration option CYGIMP_DEVS_FLASH_M68K_M-
CFxxxx_CFM_MISALIGNED_WRITES. The implementation involves reading in the existing flash contents and or'ing in
the new data. The default behaviour is to leave this disabled since most applications do not require the functionality and it
just adds to the code size.

Locking

CFM has a somewhat unusual approach to implementing lock and unlock support. The first 1K of on-chip flash is normally
reserved for the M68K exception vectors, on the assumption that the processor will or may boot from here. This is immediately
followed by a hal_mcfxxxx_cfm_security_settings data structure at offset 0x400. The structure has a 32-bit field cfm_prot
which determines the initial locking status. The whole CFM flash array is split into 32 sectors. Each bit in cfm_prot deter-
mines the initial locked state of all blocks within that sector, with 1 for locked and 0 for unlocked. Locking and unlocking
can only affect a whole sector at a time, not individual flash blocks (unless of course the flash is organized such that there
exactly 32 flash blocks).

In typical usage the on-chip flash will be used for bootstrap and hence the security settings are part of the boot image. The
default security settings are supplied by the processor or platform HAL and will be such that all flash sectors are unlocked.
This is the most convenient setting when developing software. However an application can override this and thus lock part
or all of the flash.

The driver provides two configuration options related to flash locking. CYGIMP_DEVS_FLASH_M68K_M-
CFxxxx_CFM_AUTO_UNLOCK causes all of flash to be unlocked automatically during driver initialization. This
gives simple and deterministic behaviour irrespective of the current contents of the flash security settings struc-
ture. However it leaves the flash more vulnerable to accidental corruption by an errant application. CYGIMP_DE-
VS_FLASH_M68K_MCFxxxx_CFM_SUPPORT_LOCKING enables support for fine-grained locking using the generic func-
tions cyg_flash_lock and cyg_flash_unlock. This provides more protection against errant applications, at the cost
of increased application complexity.

RAM Functions and Interrupts

When performing a flash erase or program operation part or all of the flash may become inaccessible. The exact details of
this vary between ColdFire processors. Obviously this means that the low-level functions which manipulate the flash cannot
reside in the same area of flash as any blocks that may get erased or programmed. Worse, if an interrupt happens during an

375

Freescale MCFxxxx CFM Flash Device Driver

erase or program operation and the interrupt handler involves code or data in the same area of flash, or may cause a higher
priority thread to wake up which accesses that area of flash, then the system is likely to fail. To avoid problems the flash driver
takes two precautions by default:

1. The low-level flash functions are located in RAM. If necessary they are copied from ROM from RAM during system
initialization.

2. The low-level flash functions disable interrupts around any code which may leave parts of the flash inaccessible.

This combination avoids problems but at the cost of increased RAM usage and often increased interrupt latency. In some
circumstances these precautions are unnecessary. For example suppose there is 512K of flash split into two logical blocks of
256K each, such that an erase or program operation affects all of one logical block but not the other. If the application has
been arranged such that all code and constant data resides in the bottom 256K and flash operations are only performed on
the remaining 256K then there is no need to place the low-level flash functions in RAM. The configuration option CYGIM-
P_DEVS_FLASH_M68K_MCFxxxx_CFM_FUNCTIONS_IN_RAM can then be disabled. In a similar scenario, if the top
256K of flash are only ever accessed via the flash API then there is no need to disable interrupts: the generic flash layer en-
sures only one thread can perform flash operations on a given device via a mutex. The configuration option CYGIMP_DE-
VS_FLASH_M68K_MCFxxxx_CFM_LEAVE_INTERRUPTS_ENABLED can then be enabled.

Additional Functionality
The driver exports two functions which offer functionality not accessible via the standard flash API:

#include <cyg/io/mcfxxxx_cfm_dev.h>

externC void cyg_mcfxxxx_cfm_unlockall(void);
externC cyg_bool cyg_mcfxxxx_cfm_is_locked(const cyg_flashaddr_t addr);

The first can be used to unlock all flash sectors, effectively bypassing any locking set by the hal_mcfxxxx_cfm_security_set-
tings structure. The second can be used to query whether or not the block containing the specified address is currently locked.
Both functions should be called only after flash has been initialized.

Instantiating a CFM Flash device
The CFM package only provides the device driver functions needed for manipulating CFM flash. It does not actually create
a device instance. The amount of on-chip flash varies between ColdFire processors and the driver package does not maintain
any central repository about the characteristics of each processor. Instead it is left to other code, usually the processor HAL, to
instantiate the flash device. That makes it possible to add support for new processors simply by adding a new processor HAL,
with no need to change the flash driver package.

The CFM package provides a utility macro for instantiating a device. Typical usage would be:

#include <cyg/io/mcfxxxx_cfm_dev.h>

CYG_MCFxxxx_CFM_INSTANCE(0x00000000, 0x0003FFFF, 2048);

The first two arguments specify the base and end address of the flash in the memory map. In this example there is 256K of flash
mapped to location 0. Typically the base address is set via the FLASHBAR system register and the size is of course determined
by the specific ColdFire processor being used. The final argument is the size of a flash block, in other words the unit of erase
operations. This will have to obtained from the processor documentation.

The CYG_MCFxxxx_CFM_INSTANCE macro may instantiate a device with or without software locking support, as deter-
mined by the driver configuration option CYGIMP_DEVS_FLASH_M68K_MCFxxxx_CFM_SUPPORT_LOCKING .

If for some reason the CYG_MCFxxxx_CFM_INSTANCE is inappropriate for a specific processor then the
mcfxxxx_cfm_dev.h header file exports all the device driver functions, so code can create a flash device instance explicitly.

376

Chapter 69. Intel Strata Flash Device
Driver

377

Intel Strata Flash Device Driver

Name
Overview — eCos Support for Intel Strata Flash Devices and Compatibles

Description
The CYGPKG_DEVS_FLASH_STRATA_V2 flash driver package implements support for the Intel Strata family of flash de-
vices and compatibles. The driver is not normally accessed directly. Instead application code will use the API provided by the
generic flash driver package CYGPKG_IO_FLASH, for example by calling functions like cyg_flash_program. There are
a small number of additional functions specific to Strata devices.

The driver imposes one restriction on application code which developers should be aware of: when programming the flash the
destination addresses must be aligned to a bus boundary. For example if the target hardware has a single flash device attached
to a 16-bit bus then program operations must involve a multiple of 16-bit values aligned to a 16-bit boundary. Note that it is the
bus width that matters, not the device width. If the target hardware has two 16-bit devices attached to a 32-bit bus then program
operations must still be aligned to a 32-bit boundary, even though in theory a 16-bit boundary would suffice. In practice this
is rarely an issue, and requiring the larger boundary greatly simplifies the code and improves performance.

Note

Many eCos targets with Strata or compatible flash devices will still use the older driver package CYGPKG_DE-
VS_FLASH_STRATA. Only newer ports and some older ports that have been converted will use the V2 driver.
This documentation only applies to the V2 driver.

Configuration Options
The Strata flash driver package will be loaded automatically when configuring eCos for a target with suitable hardware. How-
ever the driver will be inactive unless the generic flash package CYGPKG_IO_FLASH is loaded. It may be necessary to add
this generic package to the configuration explicitly before the driver functionality becomes available. There should never be
any need to load or unload the Strata driver package.

The Strata flash driver package contains a small number of configuration options which application developers may wish to
tweak. CYGNUM_DEVS_FLASH_STRATA_V2_PROGRAM_BURST_SIZE controls the program operation. On typical hard-
ware programming the flash requires disabling interrupts and possibly the cache for an extended period of time. If the hardware
does not provide any way of bypassing the cache when writing to the flash then the cache must be disabled or the commands
written to the flash may get stuck inside the cache instead of going directly to the flash chip. Some or all of the flash hardware
will be unusable while each word is programmed, and disabling interrupts is the only reliable way of ensuring that no interrupt
handler or other thread will try to access the flash in the middle of an operation. This can have a major impact on the real-time
responsiveness of the typical applications. To ameliorate this the driver will perform writes in small bursts, briefly re-enabling
the cache and interrupts between each burst. The number of words written per burst is controlled by this configuration opera-
tion: reducing the value will improve real-time response but will add overhead, so the actual flash program operation will take
longer; conversely more writes per burst will worsen response times but reduce overhead. For flash devices which support
buffered writes the driver will always try to use a full buffer so there is no point in reducing the burst size to less than the buffer
size, but setting the burst size to a larger value is permitted.

Similarly erasing a block of flash safely requires disabling interrupts and possibly the cache. Erasing a block can easily take
a second or so, and disabling interrupts for such a long period of time is usually undesirable. Hence the driver can also per-
form the erase in bursts, using the hardware's suspend and resume capabilities. CYGNUM_DEVS_FLASH_STRATA_V2_ER-
ASE_BURST_DURATION controls the number of polling loops during which interrupts are disabled. Reducing its value im-
proves responsiveness at the cost of performance, and increasing its value has the opposite effect. Note that too low a value
may prevent the erase operation from working at all: the chip will be spending its time suspending and resuming, rather than
actually performing the erase. The minimum value will depend on the specific hardware.

There are a number of other options, relating mostly to hardware characteristics. It is very rare that application developers
need to change any of these. For example the option CYGNUM_DEVS_FLASH_STRATA_V2_ERASE_REGIONS may need
a non-default value if the flash devices used on the target have an unusual boot block layout. If so the platform HAL will
impose a requires constraint on this option and the configuration system will resolve the constraint. The only time it might
be necessary to change the value manually is if the actual board being used is a variant of the one supported by the platform
HAL and uses a different flash chip.

378

Intel Strata Flash Device Driver

Name
Instantiating — including the driver in an eCos target

Synopsis
#include <cyg/io/strata_dev.h>

int cyg_strata_init_nop(device);

int cyg_strata_init_check_devid_XX(device);

int cyg_strata_init_cfi_XX(device);

int cyg_strata_erase_XX(device, addr);

int cyg_strata_program_XX(device, addr, data, len);

int cyg_strata_bufprogram_XX(device, addr, data, len);

int cyg_strata_lock_j3_XX(device, addr);

int cyg_strata_unlock_j3_XX(device, addr);

int cyg_strata_lock_k3_XX(device, addr);

int cyg_strata_unlock_k3_XX(device, addr);

Description
The Strata family contains a number of different devices, all supporting the same basic set of operations but with various
common or uncommon extensions. The range includes:

28FxxxB3 Boot Block These support 8 8K boot blocks as well as the usual 64K blocks. There is no buffered write
capability. The only locking mechanism available involves manipulating voltages on certain
pins.

28FxxxC3 These also have boot blocks. There is no buffered write capability. Individual blocks can be
locked and unlocked in software.

28FxxxJ3 These are uniform devices where all blocks are 128K. Buffered writes are supported. Blocks
can be locked individually, but the only unlock operation is a global unlock-all.

28FxxxK3 These are also uniform devices with 128K blocks. Buffered writes are supported. Individual
blocks can be locked and unlocked in software.

Each of these comes in a range of sizes and bus widths. There are also platform-specific issues such as how many devices
are actually present on the board and where they are mapped in the address space. The Strata driver package cannot know all
this information. Instead it is the responsibility of another package, usually the platform HAL, to instantiate some flash device
structures. Two pieces of information are especially important: the bus configuration and the boot block layout.

Flash devices are typically 8-bits, 16-bits, or 32-bits wide (64-bit devices are not yet in common use). Most 16-bit devices will
also support 8-bit accesses, but not all. Similarly 32-bit devices can be accessed 16-bits at a time or 8-bits at a time. A board
will have one or more of these devices on the bus. For example there may be a single 16-bit device on a 16-bit bus, or two 16-
bit devices on a 32-bit bus. The processor's bus logic determines which combinations are possible, and usually there will be a
trade off between cost and performance. For example two 16-bit devices in parallel can provide twice the memory bandwidth
of a single device. The driver supports the following combinations:

8 A single 8-bit flash device on an 8-bit bus.

16 A single 16-bit flash device on a 16-bit bus.

379

Intel Strata Flash Device Driver

32 A single 32-bit flash device on an 32-bit bus.

88 Two parallel 8-bit devices on an 16-bit bus.

8888 Four parallel 8-bit devices on a 32-bit bus.

1616 Two parallel 16-bit devices on a 32-bit bus, with one device providing the bottom two bytes of each 32-bit datum
and the other device providing the upper two bytes.

16as8 A single 16-bit flash device connected to an 8-bit bus.

These configuration all require slightly different code to manipulate the hardware. The Strata driver package provides separate
functions for each configuration, for example cyg_strata_erase_16 and cyg_strata_program_1616.

Caution

At the time of writing not all the configurations have been tested.

The second piece of information is the boot block layout. Flash devices are subdivided into blocks (also known as sectors, both
terms are in common use). Some operations such as erase work on a whole block at a time, and for most applications a block
is the smallest unit that gets updated. A typical block size is 64K. It is inefficient to use an entire 64K block for small bits of
configuration data and similar information, so some flash devices also support a number of smaller boot blocks. A typical 2MB
flash device could have eight 8K blocks and 31 full-size 64K blocks. The boot blocks may appear at the bottom or the top of
the device. So-called uniform devices do not have boot blocks, just full-size ones. The driver needs to know the boot block
layout. With modern devices it can work this out at run-time, but often it is better to provide the information statically.

Example
Flash support is usually specific to each platform. Even if two platforms happen to use the same flash device there are likely to
be differences such as the location in the address map. Hence there is little possibility of re-using the platform-specific code,
and this code is generally placed in the platform HAL rather than in a separate package. Typically this involves a separate file
and a corresponding compile property in the platform HAL's CDL:

cdl_package CYGPKG_HAL_M68K_KIKOO {
 …
 compile -library=libextras.a kikoo_flash.c
 …
}

The contents of this file will not be accessed directly, only indirectly via the generic flash API, so normally it would be removed
by link-time garbage collection. To avoid this the object file has to go into libextras.a.

The actual file kikoo_flash.c will look something like:

#include <pkgconf/system.h>
#ifdef CYGPKG_DEVS_FLASH_STRATA_V2

#include <cyg/io/flash.h>
#include <cyg/io/strata_dev.h>

static const CYG_FLASH_FUNS(hal_kikoo_flash_strata_funs,
 &cyg_strata_init_check_devid_16,
 &cyg_flash_devfn_query_nop,
 &cyg_strata_erase_16,
 &cyg_strata_bufprogram_16,
 (int (*)(struct cyg_flash_dev*, const cyg_flashaddr_t, void*, size_t))0,
 &cyg_strata_lock_j3_16,
 &cyg_strata_unlock_j3_16);

static const cyg_strata_dev hal_kikoo_flash_priv = {
 .manufacturer_code = CYG_FLASH_STRATA_MANUFACTURER_INTEL,
 .device_code = 0x0017,
 .bufsize = 16,
 .block_info = {

380

Intel Strata Flash Device Driver

 { 0x00020000, 64 } // 64 * 128K blocks
 }
};

CYG_FLASH_DRIVER(hal_kikoo_flash,
 &hal_kikoo_flash_strata_funs,
 0,
 0x60000000,
 0x601FFFFF,
 1,
 hal_kikoo_flash_priv.block_info,
 &hal_kikoo_flash_priv
);
#endif

The bulk of the file is protected by an ifdef for the Strata flash driver. That driver will only be active if the generic flash
support is enabled. Without that support there will be no way of accessing the device so there is no point in instantiating the
device. The rest of the file is split into three definitions. The first supplies the functions which will be used to perform the
actual flash accesses, using a macro provided by the generic flash code in cyg/io/flash_dev.h. The relevant ones have
an _16 suffix, indicating that on this board there is a single 16-bit flash device on a 16-bit bus. The second definition provides
information specific to Strata flash devices. The third provides the cyg_flash_dev structure needed by the generic flash code,
which contains pointers to the previous two.

Functions
All eCos flash device drivers must implement a standard interface, defined by the generic flash code CYGPKG_IO_FLASH.
This interface includes a table of 7 function pointers for various operations: initialization, query, erase, program, read,
locking and unlocking. The query operation is optional and the generic flash support provides a dummy implementation
cyg_flash_devfn_query_nop. Strata flash devices are always directly accessible so there is no need for a separate read
function. The remaining functions are more complicated.

Usually the table can be declared const. In a ROM startup application this avoids both ROM and RAM copies of the table,
saving a small amount of memory. const should not be used if the table may be modified by a platform-specific initialization
routine.

Initialization

There is a choice of three main initialization functions. The simplest is cyg_flash_devfn_init_nop, which does noth-
ing. It can be used if the cyg_strata_dev and cyg_flash_dev structures are fully initialized statically and the flash will just work
without special effort. This is useful if it is guaranteed that the board will always be manufactured using the same flash chip,
since the nop function involves the smallest code size and run-time overheads.

The next step up is cyg_strata_init_check_devid_XX, where XX will be replaced by the suffix appropriate for
the bus configuration. It is still necessary to provide all the device information statically, including the devid field in the
cyg_strata_dev structure. However this initialization function will attempt to query the flash device and check that the provided
manufacturer and device codes matches the actual hardware. If there is a mismatch the device will be marked uninitialized and
subsequent attempts to manipulate the flash will fail.

If the board may end up being manufactured with any of a number of different flash chips then the driver can perform run-time
initialization, using a cyg_strata_init_cfi_XX function. This queries the flash device as per the Common Flash Mem-
ory Interface Specification, supported by all current devices (although not necessarily by older devices). The block_info
field in the cyg_strata_dev structure and the end and num_block_infos fields in the cyg_flash_dev structure will be filled
in. It is still necessary to supply the start field statically since otherwise the driver will not know how to access the flash
device. The main disadvantage of using CFI is that it will increase the code size.

A final option is to use a platform-specific initialization function. This may be useful if the board may be manufactured with
one of a small number of different flash devices and the platform HAL needs to adapt to this. The Strata driver provides a
utility function to read the device id, cyg_strata_read_devid_XX:

static int
kikoo_flash_init(struct cyg_flash_dev* dev)
{

381

Intel Strata Flash Device Driver

 int manufacturer_code, device_code;
 cyg_strata_read_devid_1616(dev, &manufacturer_code, &device_code);
 if (manufacturer_code != CYG_FLASH_STRATA_MANUFACTURER_STMICRO) {
 return CYG_FLASH_ERR_DRV_WRONG_PART;
 }
 switch(device_code) {
 case 0x0042 :
 …
 case 0x0084 :
 …
 default:
 return CYG_FLASH_ERR_DRV_WRONG_PART;
 }
}

There are many other possible uses for a platform-specific initialization function. For example initial prototype boards might
have only supported 8-bit access to a 16-bit flash device rather than 16-bit access, but this was fixed in the next revision. The
platform-specific initialization function could figure out which model board it is running on and replace the default 16as8
functions with 16 ones.

Erase and Program

The Strata driver provides erase and program functions appropriate for the various bus configurations. On most targets these
can be used directly. On some targets it may be necessary to do some extra work before and after the erase and program
operations. For example if the hardware has an MMU then the part of the address map containing the flash may have been
set to read-only, in an attempt to catch spurious memory accesses. Erasing or programming the flash requires write-access, so
the MMU settings have to be changed temporarily. For another example some flash device may require a higher voltage to be
applied during an erase or program operation. or a higher voltage may be desirable to make the operation proceed faster. A
typical platform-specific erase function would look like this:

static int
kikoo_flash_erase(struct cyg_flash_dev* dev, cyg_flashaddr_t addr)
{
 int result;
 … // Set up the hardware for an erase
 result = cyg_strata_erase_32(dev, addr);
 … // Revert the hardware change
 return result;
}

There are two versions of the program function. cyg_strata_bufprogram_xx uses the buffered write capability of some
strata chips. This allows the flash chip to perform the writes in parallel, thus greatly improving performance. It requires that
the bufsize field of the cyg_strata_dev structure is set correctly to the number of words in the write buffer. The usual value
for this is 16, corresponding to a 32-byte write buffer. The alternative cyg_strata_program_xx writes the data one word
at a time so is significantly slower. It should be used only with strata chips that do not support buffered writes, for example
the b3 and c3 series.

There are two configuration options which affect the erase and program functions, and which a platform HAL may wish
to change: CYGNUM_DEVS_FLASH_STRATA_V2_ERASE_TIMEOUT and CYGNUM_DEVS_FLASH_STRATA_V2_PRO-
GRAM_TIMEOUT. The erase and program operations both involve polling for completion, and these timeout impose an upper
bound on the polling loop. Normally these operations should never take anywhere close to the timeout period, and hence a
timeout probably indicates a catastrophic failure that should really be handled by a watchdog reset. A reset is particularly
appropriate because there will be no clean way of aborting the flash operation. The main reason for the timeouts is to help with
debugging when porting to new hardware. If there is a valid reason why a particular platform needs different timeouts then the
platform HAL's CDL can require appropriate values for these options.

Locking

Current Strata devices implement locking in three different ways, requiring different sets of functions:

28FxxxB3 There is no software locking support. The cyg_flash_devfn_lock_nop and cyg_flash_devfn_un-
lock_nop functions should be used.

28FxxxC3 These support locking and unlocking individual blocks. The cyg_strata_lock_k3_XX and cyg_stra-
ta_unlock_k3_XX functions should be used. All blocks are locked following power-up or reset, so the un-

382

Intel Strata Flash Device Driver

28FxxxK3 lock function must be used before any erase or program operation. Theoretically the lock function is optional
and cyg_flash_devfn_lock_nop can be used instead, saving a small amount of code space.

28FxxxJ3 Individual blocks can be locked using cyg_strata_lock_j3_XX, albeit using a slightly different algorithm
from the C3 and K3 series. However the only unlock support is a global unlock of all blocks. Hence the only way
to unlock a single block is to check the locked status of every block, unlock them all, and relock the ones that
should still be locked. This time-consuming operation is implemented by cyg_strata_unlock_j3_XX.
Worse, unlocking all blocks can take approximately a second. During this time the flash is unusable so normally
interrupts have to be disabled, affecting real-time responsiveness. There is no way of suspending this operation.

Unlike the C3 and K3 chips, on a J3 blocks are not automatically locked following power-up or reset. Hence
lock and unlock support is optional, and cyg_flash_devfn_lock_nop and cyg_flash_devfn_un-
lock_nop can be used.

If real locking functions are used then the platform HAL's CDL script should implement the CDL interface CYGH-
WR_IO_FLASH_BLOCK_LOCKING. Otherwise the generic flash package may believe that none of the flash drivers in the
system provide locking functionality and disable the interface functions.

Device-Specific Structure
The cyg_strata_dev structure provides information specific to Strata flash devices, as opposed to the more generic flash infor-
mation which goes into the cyg_flash_dev structure. There are only two fields: devid and block_info.

manufacturer_code and device_code are needed only if the driver's initialization function is set to cyg_stra-
ta_init_check_devid_XX. That function will extract the actual device info from the flash chip and compare it with these
fields. If there is a mismatch then subsequent operations on the device will fail. Definitions of CYG_FLASH_STRATA_MAN-
UFACTURER_INTEL and CYG_FLASH_STRATA_MANUFACTURER_STMICRO are provided for convenience.

The bufsize field is needed only if a buffered program function cyg_strata_bufprogram_XX is used. It should give
the size of the buffer in words. Typically Strata devices have a 32-byte buffer, so when attached to an 8-bit bus bufsize
should be 32 and when attached to a 16-bit bus it should be 16.

The block_info field consists of one or more pairs of the block size in bytes and the number of blocks of that size. The
order must match the actual hardware device since the flash code will use the table to determine the start and end locations of
each block. The table can be initialized in one of three ways:

1. If the driver initialization function is set to cyg_strata_init_nop or cyg_strata_init_check_devid_XX
then the block information should be provided statically. This is appropriate if the board will also be manufactured using
the same flash chip.

2. If cyg_strata_init_cfi_XX is used then this will fill in the block info table. Hence there is no need for static ini-
tialization.

3. If a platform-specific initialization function is used then either this should fill in the block info table, or the info should
be provided statically.

The size of the block_info table is determined by the configuration option CYGNUM_DEVS_FLASH_STRATA_V2_ER-
ASE_REGIONS. This has a default value of 2, which should suffice for nearly all Strata flash devices. If more entries are
needed then the platform HAL's CDL script should require a larger value.

If the cyg_strata_dev structure is statically initialized then it can be const. This saves a small amount of memory in ROM start-
up applications. If the structure may be updated at run-time, either by cyg_strata_init_cfi_XX or by a platform-spe-
cific initialization routine, then it cannot be const.

Flash Structure
Internally the flash code works in terms of cyg_flash_dev structures, and the platform HAL should define one of these. The
structure should be placed in the cyg_flashdev table. The following fields need to be provided:

funs This should point at the table of functions.

383

Intel Strata Flash Device Driver

start The base address of the flash in the address map. On some board the flash may be mapped
into memory several times, for example it may appear in both cached and uncached parts
of the address space. The start field should correspond to the cached address.

end The address of the last byte in the flash. It can either be statically initialized, or cyg_s-
trata_init_cfi_XX will calculate its value at run-time.

num_block_infos This should be the number of entries in the block_info table. It can either be statically
initialized or it will be filled in by cyg_strata_init_cfi_XX.

block_info The table with the block information is held in the cyg_strata_dev structure, so this field
should just point into that structure.

priv This field is reserved for use by the device driver. For the Strata driver it should point
at the appropriate cyg_strata_dev structure.

The cyg_flash_dev structure contains a number of other fields which are manipulated only by the generic flash code. Some of
these fields will be updated at run-time so the structure cannot be declared const.

Multiple Devices
A board may have several flash devices in parallel, for example two 16-bit devices on a 32-bit bus. It may also have several
such banks to increase the total amount of flash. If each device provides 2MB, there could be one bank of 2 parallel flash
devices at 0xFF800000 and another bank at 0xFFC00000, giving a total of 8MB. This setup can be described in several ways.
One approach is to define two cyg_flash_dev structures. The table of function pointers can usually be shared, as can the
cyg_strata_dev structure. Another approach is to define a single cyg_flash_dev structure but with a larger block_info table,
covering the blocks in both banks of devices. The second approach makes more efficient use of memory.

Many variations are possible, for example a small slow flash device may be used for initial bootstrap and holding the config-
uration data, while there is also a much larger and faster device to hold a file system. Such variations are usually best described
by separate cyg_flash_dev structures.

If more than one cyg_flash_dev structure is instantiated then the platform HAL's CDL script should implement the CDL
interface CYGHWR_IO_FLASH_DEVICE once for every device past the first. Otherwise the generic code may default to the
case of a single flash device and optimize for that.

Platform-Specific Macros
The Strata driver source code includes the header files cyg/hal/hal_arch.h and cyg/hal/hal_io.h, and hence
indirectly the corresponding platform header files (if defined). Optionally these headers can define macros which are used
inside the driver, thus giving the HAL limited control over how the driver works.

Cache Management
By default the strata driver assumes that the flash can be accessed uncached, and it will use the HAL CYGARC_UN-
CACHED_ADDRESS macro to map the cached address in the start field of the cyg_flash_dev structure into an uncached
address. If for any reason this HAL macro is inappropriate for the flash then an alternative macro HAL_STRATA_UN-
CACHED_ADDRESS can be defined instead. However fixing the CYGARC_UNCACHED_ADDRESS macro is normally the
better solution.

If there is no way of bypassing the cache then the platform HAL should implement the CDL interface CYGHWR_DE-
VS_FLASH_STRATA_V2_CACHED_ONLY. The flash driver will now disable and re-enable the cache as required. For ex-
ample a program operation will involve the following:

STRATA_INTSCACHE_STATE;
STRATA_INTSCACHE_BEGIN();
while (! finished) {
 write a burst of CYGNUM_DEVS_FLASH_STRATA_V2_PROGRAM_BURST_SIZE
 STRATA_INTSCACHE_SUSPEND();
 STRATA_INTSCACHE_RESUME();

384

Intel Strata Flash Device Driver

}
STRATA_INTSCACHE_END();

The default implementations of these INTSCACHE macros are as follows: STATE defines any local variables that may be
needed, e.g. to save the current interrupt state; BEGIN disables interrupts, synchronizes the data caches, disables it, and inval-
idates the current contents; SUSPEND re-enables the data cache and then interrupts; RESUME disables interrupts and the data
cache; END re-enables the cache and then interrupts. The cache is only disabled when interrupts are disabled, so there is no
possibility of an interrupt handler running or a context switch occurring while the cache is disabled, potentially leaving the
system running very slowly. The data cache synchronization ensures that there are no dirty cache lines, so when the cache is
disabled the low-level flash write code will not see stale data in memory. The invalidate ensures that at the end of the operation
higher-level code will not pick up stale cache contents instead of the newly written flash data. The SUSPEND and RESUME
macros only re-enable and disable the data cache. An interrupt and possibly a context switch may occur between these macros
and use the cache normally. It is assumed that any code which runs at this time will not touch the memory being used by the
flash operation, so as far as the low-level program code is concerned it can just continue to use the uncached memory contents as
set up by the BEGIN macro. If any code modifies the const data currently being written to a flash block or tries to read the flash
block being modified then the system's behaviour is undefined. Theoretically a more robust approach is possible, synchronizing
and invalidating the cache again in every RESUME. However these cache operations can be expensive and RESUME may get
invoked some thousands of times for every flash block, so this alternative approach would cripple the driver's performance.

Some implementations of the HAL cache macros may not provide the exact semantics required by the flash driver. For
example HAL_DCACHE_DISABLE may have an unwanted side effect, or it may do more work than is needed here.
The driver will check for alternative macros HAL_STRATA_INTSCACHE_STATE, HAL_STRATA_INTSCACHE_BEGIN,
HAL_STRATA_INTSCACHE_SUSPEND, HAL_STRATA_INTSCACHE_RESUME and HAL_STRATA_INTSCACHE_END,
using these instead of the defaults.

Polling Support
On some platforms it may be necessary to perform some additional action in the middle of a lengthy erase or program operation.
For example, consider a platform with a watchdog device that cannot be disabled: when running in a polled environment such
as RedBoot the flash operation run will run to completion, and there will be no opportunity for higher-level code to reset
the watchdog; if the flash operation takes long enough the watchdog will trigger. To avoid problems in such scenarios, the
platform HAL can define a macro HAL_STRATA_POLL. The macro is optional: if absent then the driver will automatically
substitute a no-op.

385

Intel Strata Flash Device Driver

Name
Strata — driver-specific functions

Synopsis
#include <cyg/io/strata_dev.h>

void cyg_strata_read_devid_XX(device, manufacturer, device);

int cyg_strata_unlock_all_j3_XX(device);

Description
The driver provides two sets of functions specific to Strata devices and not accessible via the standard eCos flash API. Both
may be used safely before the flash subsystem is initialized using cyg_flash_init.

cyg_strata_read_devid_XX can be used to get the manufacturer and device codes. Typically it is called from a plat-
form-specific driver initialization routine, allowing the platform HAL to adapt to the actual device present on the board. This
may be useful if a board may get manufactured with several different and somewhat incompatible chips, although usually
cyg_strata_init_cfi is the better approach. It may also be used during testing and porting to check that the chip is
working correctly.

cyg_strata_unlock_all_j3_XX is only useful with 28FxxxJ3 chips and compatibles. These do not allow individual
blocks to be unlocked. Hence the standard block unlock functionality is expensive: it requires checking the locked state of
every block, unlocking every block, and then relocking all the blocks that should still be blocked. Worse, unlocking every
block is a time-consuming operation, taking approximately a second, that needs to run with interrupts disabled. For many
applications it is better to just ignore the chip's locking capabilities and run with all blocks permanently unlocked. Invoking
cyg_strata_unlock_all_j3_XX during manufacture or when the board is commissioned achieves this.

386

Chapter 70. SST 39VFXXX Flash Device
Driver

387

SST 39VFXXX Flash Device Driver

Name
Overview — eCos Support for SST 39VFXXX Flash Devices and Compatibles

Description
The CYGPKG_DEVS_FLASH_SST_39VFXXX_V2 SST 39VFXXX V2 flash driver package implements support for the
39VFXXX family of flash devices and compatibles. Normally the driver is not accessed directly. Instead application code
will use the API provided by the generic flash driver package CYGPKG_IO_FLASH, for example by calling functions like
cyg_flash_program.

The driver imposes one restriction on application code which developers should be aware of: when programming the flash the
destination addresses must be aligned to a bus boundary. For example if the target hardware has a single flash device attached
to a 16-bit bus then program operations must involve a multiple of 16-bit values aligned to a 16-bit boundary. Note that it is the
bus width that matters, not the device width. If the target hardware has two 16-bit devices attached to a 32-bit bus then program
operations must still be aligned to a 32-bit boundary, even though in theory a 16-bit boundary would suffice. In practice this
is rarely an issue, and requiring the larger boundary greatly simplifies the code and improves performance.

Note

Many eCos targets with 39vfxxx or compatible flash devices will still use the older driver package CYGPKG_DE-
VS_FLASH_SST_39VFXXX. Only newer ports and some older ports that have been converted will use the V2
driver. This documentation only applies to the V2 driver.

Configuration Options
The 39vfxxx flash driver package will be loaded automatically when configuring eCos for a target with suitable hardware.
However the driver will be inactive unless the generic flash package CYGPKG_IO_FLASH is loaded. It may be necessary to
add this generic package to the configuration explicitly before the driver functionality becomes available. There should never
be any need to load or unload the AM29xxxx driver package.

The driver contains a small number of configuration options which application developers may wish to tweak. CYGNUM_DE-
VS_FLASH_SST_39VFXXX_V2_PROGRAM_BURST_SIZE controls the program operation. On typical hardware program-
ming the flash requires disabling interrupts and the cache for an extended period of time. Some or all of the flash hardware
will be unusable while each word is programmed, and disabling interrupts is the only reliable way of ensuring that no interrupt
handler or other thread will try to access the flash in the middle of an operation. This can have a major impact on the real-time
responsiveness of the typical applications. To ameliorate this the driver wil perform writes in small bursts, briefly re-enabling
the cache and interrupts between each burst. The number of words written per burst is controlled by this configuration opera-
tion: reducing the value will improve real-time response but will add overhead, so the actual flash program operation will take
longer; conversely more writes per burst will worsen response times but reduce overhead.

Similarly erasing a block of flash safely requires disabling interrupts and the cache. Erasing a block can easily take a second or
so, and disabling interrupts for such a long period of time is usually undesirable. Hence the driver can also perform the erase in
bursts, using the hardware's suspend and resume capabilities. CYGNUM_DEVS_FLASH_STRATA_V2_ERASE_BURST_DU-
RATION controls the number of polling loops during which interrupts are disabled. Reducing its value improves responsive-
ness at the cost of performance, and increasing its value has the opposite effect. Note that too low a value may prevent the erase
operation from working at all: the chip will be spending its time suspending and resuming, rather than actually performing the
erase. The minimum value will depend on the specific hardware.

There are a number of other options, relating mostly to hardware characteristics. It is very rare that application developers
need to change any of these. For example the option CYGNUM_DEVS_FLASH_SST_39VFXXX_V2_ERASE_REGIONS may
need a non-default value if the flash devices used on the target have an unusual boot block layout. If so the platform HAL will
impose a requires constraint on this option and the configuration system will resolve the constraint. The only time it might
be necessary to change the value manually is if the actual board being used is a variant of the one supported by the platform
HAL and uses a different flash chip.

388

SST 39VFXXX Flash Device Driver

Name
Instantiating — including the driver in an eCos target

Synopsis
#include <cyg/io/39vfxxx_dev.h>

int cyg_39vfxxx_init_check_devid_XX(device);

int cyg_39vfxxx_init_cfi_XX(device);

int cyg_39vfxxx_erase_XX(device, addr);

int cyg_39vfxxx_program_XX(device, addr, data, len);

int cyg_at49xxxx_softlock(device, addr);

int cyg_at49xxxx_hardlock(device, addr);

int cyg_at49xxxx_unlock(device, addr);

int cyg_39vfxxx_read_devid_XX(device);

Description
The 39VFXXX family contains several different flash devices, all supporting the same basic set of operations but with various
common or uncommon extensions. The devices vary in capacity, performance, boot block layout, and width. There are also
platform-specific issues such as how many devices are actually present on the board and where they are mapped in the address
space. The 39vfxxx driver package cannot know the details of every chip and every platform. Instead it is the responsibility
of another package, usually the platform HAL, to supply the necessary information by instantiating some data structures. Two
pieces of information are especially important: the bus configuration and the boot block layout.

Flash devices are typically 8-bits, 16-bits, or 32-bits wide (64-bit devices are not yet in common use). Most 16-bit devices will
also support 8-bit accesses, but not all. Similarly 32-bit devices can be accessed 16-bits at a time or 8-bits at a time. A board
will have one or more of these devices on the bus. For example there may be a single 16-bit device on a 16-bit bus, or two 16-
bit devices on a 32-bit bus. The processor's bus logic determines which combinations are possible, and there will be a trade
off between cost and performance: two 16-bit devices in parallel can provide twice the memory bandwidth of a single device.
The driver supports the following combinations:

8 A single 8-bit flash device on an 8-bit bus.

16 A single 16-bit flash device on a 16-bit bus.

32 A single 32-bit flash device on an 32-bit bus.

88 Two parallel 8-bit devices on an 16-bit bus.

8888 Four parallel 8-bit devices on a 32-bit bus.

1616 Two parallel 16-bit devices on a 32-bit bus, with one device providing the bottom two bytes of each 32-bit datum
and the other device providing the top two bytes.

16as8 A single 16-bit flash device connected to an 8-bit bus.

These configuration all require slightly different code to manipulate the hardware. The 39vfxxx driver package provides sep-
arate functions for each configuration, for example cyg_39vfxxx_erase_16 and cyg_39vfxxx_program_1616.

Caution

At the time of writing not all the configurations have been tested.

389

SST 39VFXXX Flash Device Driver

The second piece of information is the boot block layout. Flash devices are subdivided into blocks (also known as sectors -
both terms are in common use). Some operations such as erase work on a whole block at a time, and for most applications a
block is the smallest unit that gets updated. A typical block size is 64K. It is inefficient to use an entire 64K block for small bits
of configuration data and similar information, so many flash devices also support a number of smaller boot blocks. A typical
2MB flash device could have a single 16K block, followed by two 8K blocks, then a 32K block, and finally 31 full-size 64K
blocks. The boot blocks may appear at the bottom or the top of the device. So-called uniform devices do not have boot blocks,
just full-size ones. The driver needs to know the boot block layout. With modern devices it can work this out at run-time, but
often it is better to provide the information statically.

Example
In most cases flash support is specific to a platform. Even if two platforms happen to use the same flash device there are likely
to be differences such as the location in the address map. Hence there is little possibility of re-using the platform-specific code,
and this code should be placed in the platform HAL rather than in a separate package. Typically this involves a separate file
and a corresponding compile property in the platform HAL's CDL:

cdl_package CYGPKG_HAL_M68K_ALAIA {
 …
 compile -library=libextras.a alaia_flash.c
 …
}

The contents of this file will not be accessed directly, only indirectly via the generic flash API, so normally it would be removed
by link-time garbage collection. To avoid this the object file has to go into libextras.a.

The actual file alaia_flash.c will look something like:

#include <pkgconf/system.h>
#ifdef CYGPKG_DEVS_FLASH_SST_39VFXXX_V2

#include <cyg/io/flash.h>
#include <cyg/io/flash_dev.h>
#include <cyg/io/39vfxxx_dev.h>

static const CYG_FLASH_FUNS(hal_alaia_flash_amd_funs,
 &cyg_39vfxxx_init_check_devid_16,
 &cyg_flash_devfn_query_nop,
 &cyg_39vfxxx_erase_16,
 &cyg_39vfxxx_program_16,
 (int (*)(struct cyg_flash_dev*, const cyg_flashaddr_t, void*, size_t))0,
 &cyg_flash_devfn_lock_nop,
 &cyg_flash_devfn_unlock_nop);

static const cyg_39vfxxx_dev hal_alaia_flash_priv = {
 .devid = 0x45,
 .block_info = {
 { 0x00004000, 1 },
 { 0x00002000, 2 },
 { 0x00008000, 1 },
 { 0x00010000, 63 }
 }
};

CYG_FLASH_DRIVER(hal_alaia_flash,
 &hal_alaia_flash_amd_funs,
 0,
 0xFFC00000,
 0xFFFFFFFF,
 4,
 hal_alaia_flash_priv.block_info,
 &hal_alaia_flash_priv
);
#endif

The bulk of the file is protected by an #ifdef for the 39vfxxx flash driver. That driver will only be active if the generic
flash support is enabled. Without that support there will be no way of accessing the device so instantiating the data structures
would serve no purpose. The rest of the file is split into three structure definitions. The first supplies the functions which will

390

SST 39VFXXX Flash Device Driver

be used to perform the actual flash accesses, using a macro provided by the generic flash code in cyg/io/flash_dev.h.
The relevant ones have an _16 suffix, indicating that on this board there is a single 16-bit flash device on a 16-bit bus. The
second provides information specific to 39vfxxx flash devices. The third provides the cyg_flash_dev structure needed by the
generic flash code, which contains pointers to the previous two.

Functions

All eCos flash device drivers must implement a standard interface, defined by the generic flash code CYGPKG_IO_FLASH.
This interface includes a table of seven function pointers for various operations: initialization, query, erase, program, read,
locking and unlocking. The query operation is optional and the generic flash support provides a dummy implementation
cyg_flash_devfn_query_nop. 39vfxxx flash devices are always directly accessible so there is no need for a separate
read function. The remaining functions are more complicated.

Usually the table can be declared const. In a ROM startup application this avoids both ROM and RAM copies of the table,
saving a small amount of memory. const should not be used if the table may be modified by a platform-specific initialization
routine.

Initialization

There is a choice of three main initialization functions. The simplest is cyg_flash_devfn_init_nop, which does noth-
ing. It can be used if the cyg_39vfxxx_dev and cyg_flash_dev structures are fully initialized statically and the flash will just
work without special effort. This is useful if it is guaranteed that the board will always be manufactured using the same flash
chip, since the nop function involves the smallest code size and run-time overheads.

The next step up is cyg_39vfxxx_init_check_devid_XX, where XX will be replaced by the suffix appropriate for
the bus configuration. It is still necessary to provide all the device information statically, including the devid field in the
cyg_39vfxxx_dev structure. This initialization function will attempt to query the flash device and check that the provided
device id matches the actual hardware. If there is a mismatch the device will be marked uninitialized and subsequent attempts
to manipulate the flash will fail.

If the board may end up being manufactured with any of a number of different flash chips then the driver can perform run-time
initialization, using a cyg_39vfxxx_init_cfi_XX function. This queries the flash device as per the Common Flash Mem-
ory Interface Specification, supported by all current devices (although not necessarily by older devices). The block_info
field in the cyg_39vfxxx_dev structure and the end and num_block_infos fields in the cyg_flash_dev structure will be
filled in. It is still necessary to supply the start field statically since otherwise the driver will not know how to access the
flash device. The main disadvantage of using CFI is that it increases the code size.

Caution

If CFI is used then the cyg_39vfxxx_dev structure must not be declared const. The CFI code will attempt to
update the structure and will fail if the structure is held in read-only memory. This would leave the flash driver
non-functional.

A final option is to use a platform-specific initialization function. This may be useful if the board may be manufactured with
one of a small number of different flash devices and the platform HAL needs to adapt to this. The 39vfxxx driver provides a
utility function to read the device id, cyg_39vfxxx_read_devid_XX:

static int
alaia_flash_init(struct cyg_flash_dev* dev)
{
 int devid = cyg_39vfxxx_read_devid_1616(dev);
 switch(devid) {
 case 0x0042 :
 …
 case 0x0084 :
 …
 default:
 return CYG_FLASH_ERR_DRV_WRONG_PART;
 }
}

391

SST 39VFXXX Flash Device Driver

There are many other possible uses for a platform-specific initialization function. For example initial prototype boards might
have only supported 8-bit access to a 16-bit flash device rather than 16-bit access, but this problem was fixed in the next
revision. The platform-specific initialization function can figure out which model board it is running on and replace the default
16as8 functions with faster 16 ones.

Erase and Program

The 39vfxxx driver provides erase and program functions appropriate for the various bus configurations. On most targets these
can be used directly. On some targets it may be necessary to do some extra work before and after the erase and program
operations. For example if the hardware has an MMU then the part of the address map containing the flash may have been
set to read-only, in an attempt to catch spurious memory accesses. Erasing or programming the flash requires write-access, so
the MMU settings have to be changed temporarily. As another example some flash device may require a higher voltage to be
applied during an erase or program operation. or a higher voltage may be desirable to make the operation proceed faster. A
typical platform-specific erase function would look like this:

static int
alaia_flash_erase(struct cyg_flash_dev* dev, cyg_flashaddr_t addr)
{
 int result;
 … // Set up the hardware for an erase
 result = cyg_39vfxxx_erase_32(dev, addr);
 … // Revert the hardware change
 return result;
}

There are two configurations which affect the erase and program functions, and which a platform
HAL may wish to change: CYGNUM_DEVS_FLASH_SST_39VFXXX_V2_ERASE_TIMEOUT and CYGNUM_DE-
VS_FLASH_SST_39VFXXX_V2_PROGRAM_TIMEOUT. The erase and program operations both involve polling for com-
pletion, and these timeout impose an upper bound on the polling loop. Normally these operations should never take anywhere
close to the timeout period, so a timeout indicates a catastrophic failure that should really be handled by a watchdog reset. A
reset is particularly appropriate because there will be no clean way of aborting the flash operation. The main reason for the
timeouts is to help with debugging when porting to new hardware. If there is a valid reason why a particular platform needs
different timeouts then the platform HAL's CDL can require appropriate values for these options.

Locking

There is no single way of implementing the block lock and unlock operations on all 39vfxxx devices. If these operations
are supported at all then usually they involve manipulating the voltages on certain pins. This would not be able to be han-
dled by generic driver code since it requires knowing how these pins can be manipulated via the processor's GPIO lines.
Therefore the 39vfxxx driver does not usually provide lock and unlock functions, and instead the generic dummy functions
cyg_flash_devfn_lock_nop and cyg_flash_devfn_unlock_nop should be used. An exception exists for the
AT49xxxx family of devices which are sufficiently SST compatible in other respects. Otherwise, if a platform does provide a
way of implementing the locking then this can be handled by platform-specific functions.

static int
alaia_lock(struct cyg_flash_dev* dev, const cyg_flashaddr_t addr)
{
 …
}

static int
alaia_unlock(struct cyg_flash_dev* dev, const cyg_flashaddr_t addr)
{
 …
}

If real locking functions are implemented then the platform HAL's CDL script should implement the CDL interface CYGH-
WR_IO_FLASH_BLOCK_LOCKING. Otherwise the generic flash package may believe that none of the flash drivers in the
system provide locking functionality and disable the interface functions.

AT49xxxx locking

As locking is standardised on across the AT49xxxx family of SST 39vfxxx compatible Flash parts, a method is supporting this
is included within this driver. cyg_at49xxxx_softlock_XX provides a means of locking a Flash sector such that it may

392

SST 39VFXXX Flash Device Driver

be subsequently unlocked. cyg_at49xxxx_hardlock_XX locks a sector such that it cannot be unlocked until after reset
or a power cycle. cyg_at49xxxx_unlock_XX unlocks a sector that has previously been softlocked. At power on or Flash
device reset, all sectors default to being softlocked.

Other

The driver provides a set of functions cyg_39vfxxx_read_devid_XX, one per supported bus configuration. These func-
tions take a single argument, a pointer to the cyg_flash_dev structure, and return the chip's device id. For older devices this id
is a single byte. For more recent devices the id is a 3-byte value, 0x7E followed by a further two bytes that actually identify the
device. cyg_39vfxxx_read_devid_XX is usually called only from inside a platform-specific driver initialization routine,
allowing the platform HAL to adapt to the actual device present on the board.

Device-Specific Structure
The cyg_39vfxxx_dev structure provides information specific to 39vfxxx flash devices, as opposed to the more generic flash
information which goes into the cyg_flash_dev structure. There are only two fields: devid and block_info.

devid is only needed if the driver's initialization function is set to cyg_39vfxxx_init_check_devid_XX. That func-
tion will extract the actual device info from the flash chip and compare it with the devid field. If there is a mismatch then
subsequent operations on the device will fail.

The block_info field consists of one or more pairs of the block size in bytes and the number of blocks of that size. The
order must match the actual hardware device since the flash code will use the table to determine the start and end locations of
each block. The table can be initialized in one of three ways:

1. If the driver initialization function is set to cyg_flash_devfn_init_nop or cyg_39vfxxx_init_check_dev-
id_XX then the block information should be provided statically. This is appropriate if the board will also be manufactured
using the same flash chip.

2. If cyg_39vfxxx_init_cfi_XX is used then this will fill in the block info table. Hence there is no need for static
initialization.

3. If a platform-specific initialization function is used then either this should fill in the block info table, or the info should
be provided statically.

The size of the block_info table is determined by the configuration option CYGNUM_DE-
VS_FLASH_SST_39VFXXX_V2_ERASE_REGIONS. This has a default value of 4, which should suffice for nearly all
39vfxxx flash devices. If more entries are needed then the platform HAL's CDL script should require a larger value.

If the cyg_39vfxxx_dev structure is statically initialized then it can be const. This saves a small amount of memory in ROM
startup applications. If the structure is updated at run-time, either by cyg_39vfxxx_init_cfi_XX or by a platform-spe-
cific initialization routine, then it cannot be const.

Flash Structure
Internally the generic flash code works in terms of cyg_flash_dev structures, and the platform HAL should define one of these.
The structure should be placed in the cyg_flashdev table. The following fields need to be provided:

funs This should point at the table of functions.

start The base address of the flash in the address map. On some board the flash may be mapped
into memory several times, for example it may appear in both cached and uncached parts
of the address space. The start field should correspond to the cached address.

end The address of the last byte in the flash. It can either be statically initialized, or
cyg_39vfxxx_init_cfi_XX will calculate its value at run-time.

num_block_infos This should be the number of entries in the block_info table. It can either be statically
initialized or it will be filled in by cyg_39vfxxx_init_cfi_XX.

393

SST 39VFXXX Flash Device Driver

block_info The table with the block information is held in the cyg_39vfxxx_dev structure, so this
field should just point into that structure.

priv This field is reserved for use by the device driver. For the 39vfxxx driver it should point
at the appropriate cyg_39vfxxx_dev structure.

The cyg_flash_dev structure contains a number of other fields which are manipulated only by the generic flash code. Some of
these fields will be updated at run-time so the structure cannot be declared const.

Multiple Devices
A board may have several flash devices in parallel, for example two 16-bit devices on a 32-bit bus. It may also have several
such banks to increase the total amount of flash. If each device provides 2MB, there could be one bank of 2 parallel flash
devices at 0xFF800000 and another bank at 0xFFC00000, giving a total of 8MB. This setup can be described in several ways.
One approach is to define two cyg_flash_dev structures. The table of function pointers can usually be shared, as can the
cyg_39vfxxx_dev structure. Another approach is to define a single cyg_flash_dev structure but with a larger block_info
table, covering the blocks in both banks of devices. The second approach makes more efficient use of memory.

Many variations are possible, for example a small slow flash device may be used for initial bootstrap and holding the config-
uration data, while there is also a much larger and faster device to hold a file system. Such variations are usually best described
by separate cyg_flash_dev structures.

If more than one cyg_flash_dev structure is instantiated then the platform HAL's CDL script should implement the CDL
interface CYGHWR_IO_FLASH_DEVICE once for every device past the first. Otherwise the generic code may default to the
case of a single flash device and optimize for that.

Platform-Specific Macros
The 39vfxxx driver source code includes the header files cyg/hal/hal_arch.h and cyg/hal/hal_io.h, and hence
indirectly the corresponding platform header files (if defined). Optionally these headers can define macros which are used
inside the driver, thus giving the HAL limited control over how the driver works.

Cache Management
By default the 39vfxxx driver assumes that the flash can be accessed uncached, and it will use the HAL CYGARC_UN-
CACHED_ADDRESS macro to map the cached address in the start field of the cyg_flash_dev structure into an uncached
address. If for any reason this HAL macro is inappropriate for the flash then an alternative macro HAL_39VFXXX_UN-
CACHED_ADDRESS can be defined instead. However fixing the CYGARC_UNCACHED_ADDRESS macro is normally the
better solution.

If there is no way of bypassing the cache then the platform HAL should implement the CDL interface CYGHWR_DE-
VS_FLASH_SST_39VFXXX_V2_CACHED_ONLY. The flash driver will now disable and re-enable the cache as required.
For example a program operation will involve the following:

AM29_INTSCACHE_STATE;
AM29_INTSCACHE_BEGIN();
while (! finished) {
 write a burst of CYGNUM_DEVS_FLASH_SST_39VFXXX_V2_PROGRAM_BURST_SIZE
 AM29_INTSCACHE_SUSPEND();
 AM29_INTSCACHE_RESUME();
}
AM29_INTSCACHE_END();

The default implementations of these INTSCACHE macros are as follows: STATE defines any local variables that may be
needed, e.g. to save the current interrupt state; BEGIN disables interrupts, synchronizes the data caches, disables it, and inval-
idates the current contents; SUSPEND re-enables the data cache and then interrupts; RESUME disables interrupts and the data
cache; END re-enables the cache and then interrupts. The cache is only disabled when interrupts are disabled, so there is no
possibility of an interrupt handler running or a context switch occurring while the cache is disabled, potentially leaving the
system running very slowly. The data cache synchronization ensures that there are no dirty cache lines, so when the cache is
disabled the low-level flash write code will not see stale data in memory. The invalidate ensures that at the end of the operation

394

SST 39VFXXX Flash Device Driver

higher-level code will not pick up stale cache contents instead of the newly written flash data. The SUSPEND and RESUME
macros only re-enable and disable the data cache. An interrupt and possibly a context switch may occur between these macros
and use the cache normally. It is assumed that any code which runs at this time will not touch the memory being used by the
flash operation, so as far as the low-level program code is concerned it can just continue to use the uncached memory contents as
set up by the BEGIN macro. If any code modifies the const data currently being written to a flash block or tries to read the flash
block being modified then the system's behaviour is undefined. Theoretically a more robust approach is possible, synchronizing
and invalidating the cache again in every RESUME. However these cache operations can be expensive and RESUME may get
invoked some thousands of times for every flash block, so this alternative approach would cripple the driver's performance.

Some implementations of the HAL cache macros may not provide the exact semantics required by the flash driver. For
example HAL_DCACHE_DISABLE may have an unwanted side effect, or it may do more work than is needed here. The
driver will check for alternative macros HAL_39VFXXX_INTSCACHE_STATE, HAL_39VFXXX_INTSCACHE_BEGIN,
HAL_39VFXXX_INTSCACHE_SUSPEND, HAL_39VFXXX_INTSCACHE_RESUME and
HAL_39VFXXX_INTSCACHE_END, using these instead of the defaults.

395

Part XIX. ecoflash Flash
Programming Utility

Name
ecoflash — Flash Programming Utility

Synopsis

ecoflash ---help [subcommand]ecoflash [(1) options] boards ecoflash [(1) options] info ecoflash [(1) options]
program [[-r] | [--raw]] [[-n] | [--no-erase]] { file } [address]ecoflash [(1) options] dump [[-a] | [--append]] { file
} [address] [length]ecoflash [(1) options] erase { address } [length]ecoflash [(1) options] write [[-n] | [--
no-erase]] [[-o offset] | [--offset=offset]] { file } { address } [length]ecoflash [(1) options] lock { address
} [length]ecoflash [(1) options] unlock { address } [length]
(1)
[[-h] | [--help]]
[--version]
[--dry-run]
[[-q] | [--quiet]]
[[-v] | [--verbose]]
[[-b board] | [--board=board]]
[[-g gdb executable] | [--gdb=gdb executable]]
[[-o objcopy executable] | [--objcopy=objcopy executable]]
[[-t target command] | [--target=target command]]

Description

ecoflash is a utility for programming on-board flash via BDM, jtag, or similar hardware debug technology. There is nothing
particularly original about this. Most manufacturers will provide similar utilities, and in fact those are likely to offer better
performance because they operate at a lower level. The main advantages of ecoflash are: it provides a common user experience
across a range of hardware; it is designed to work within a typical eCos development environment; and it has some built-in
knowledge of how eCos systems work.

ecoflash works by running a suitable version of gdb on the host machine and running gdb commands. That version of gdb
must either be able to drive the hardware debug technology directly, or more commonly it will in turn interact with some
stub or daemon that knows how to drive the debug hardware. The target is initialized and a small target-side executable, for
example m5213evb_flash.elf, is then loaded on to the target. The target-side executable is a simple eCos application
that is linked with the eCos flash driver support, so it can be readily ported to any target for which a suitable flash driver is
available. Manipulating the flash involves setting target-side variables used gdb commands, letting the target-side executable
run until a breakpoint is hit, and then examining more target-side variables to determine the status.

The basic syntax is: ecoflash [standard options] subcommand [options] args [optional args]. The standard options provide
information such as the target board, and most of these can be specified instead using environment variables. The subcommands
specify the exact operation to be performed, for example to program an executable at the default location within the flash.
Some subcommands take additional options, for example to suppress automatic erasure of flash blocks. These are followed by
required arguments such as the executable filename, and possibly optional arguments. ecoflash -h with no additional argument
provides help information for the utility as a whole. Additional information for a specific subcommand can be obtained using
e.g. ecoflash -h program.

Standard Options

ecoflash accepts a number of standard options, for example the target board can be specified using -b board. These options
will be used by several but not all of the subcommands.

-h Obtain help information about ecoflash or one of its subcommands.

397

ecoflash Flash Programming Utility

--help

--version Display the ecoflash version string.

--dry-run This suppresses the low-level block erase and write operations so the flash state does
not actually change, but otherwise ecoflash operates normally including initializing the
board, downloading the target-side executable, and having the latter initialize the eCos
flash driver. It can be used to verify that the hardware is operating correctly.

-q
--quiet
-v
--verbose

These can be used to reduce or increase the amount of feedback generated by ecoflash.
-v can be specified several times for increased verbosity.

-b <board>
--board=<board>

ecoflash needs to know which target board it should access, so that it can perform ap-
propriate initialization and download the right target-side executable. ecoflash boards
can be used to get a list of supported boards. It is possible to set an environment variable
ECOFLASH_BOARD as an alternative to specifying this option on the command line
every time:

$ export ECOFLASH_BOARD=m5213evb

The board name has two effects. It causes ecoflash to load a configuration file
<board>.ecf with hardware-specific information, for example how to initial-
ize the board using gdb commands. It also determines the target-side executable
<board>_flash.elf. For both files ecoflash will first look in the current directory.
If an ECOFLASH_DIR environment variable is defined then it will look in that directo-
ry. Finally it will look in the directory ../share/ecos/ecoflash relative to the
ecoflash executable.

-g <gdb executable>
--gdb=<gdb executable>

All subcommands except boards involve starting a gdb session on the host and down-
loading a target-side executable. Usually the gdb executable, for example m68k-elf-
gdb, is specified in the board .ecf configuration file and found in the current PATH,
so there is no need to use this option. However an alternative gdb can be specified if
desired, for example when building and debugging an experimental version of gdb. The
environment variable ECOFLASH_GDB can also be used instead of the command line
option.

-o <objcopy executable>
--objcopy=<objcopy executable>

The program subcommand can take an eCos executable in ELF format and automati-
cally convert it to raw binary to program into flash. This involves running the appropri-
ate host-side objcopy utility, for example m68k-elf-objcopy. By default ecoflash will
munge the gdb file name to generate the objcopy name and will look for it on the PATH,
so there is no need to use this option. An alternative objcopy can be specified on the
command line or via the ECOFLASH_OBJCOPY environment variable.

-t <target command>
--target=<target command

ecoflash needs to know how to get gdb to interact with the debug hardware. The exact
details of this depend not just on the hardware but also on the developer's setup, so
cannot be provided by the board .ecf configuration file. Instead it must be provided
by the user, in the form of a gdb target command. For example, if the debug hardware
is accessed via a daemon on the local machine and that daemon listens on TCP/IP port
9000 for gdb remote protocol traffic then the gdb command to connect to the target
hardware would be: target remote localhost:9000. The ecoflash -t option
should consist of everything after target, for example:

$ ecoflash -b alaia -t 'remote localhost:9000' info

Note the use of quote marks to make the shell treat it as a single argument, even though
it contains spaces, and to prevent any processing of special characters like $ and |. The
ECOFLASH_TARGET environment variable can be set instead:

$ export ECOFLASH_TARGET='remote localhost:9000'

398

ecoflash Flash Programming Utility

Supported Boards

ecoflash boards can be used to get the names of the boards supported in the current installation, in other words what -b
options are valid. A board is considered supported if ecoflash can find a <board>.ecf configuration file and a target-side
executable <board>_flash.elf. It will search in the current directory, in the directory specified by the ECOFLASH_DIR
environment variable if that is defined, and in a directory relative to the ecoflash executable. For example if ecoflash is installed
in /usr/local/ecos/bin then it will search in /usr/local/ecos/share/ecos/ecoflash.

Note that ecoflash boards only examines the file system and does not attempt to start gdb or interact in any way with target
hardware.

Board Information

ecoflash info can be used to get information about a particular board, and also to verify that everything is working correctly.

% ecoflash -b m5213evb -t 'remote localhost:9000' info
Target board is m5213evb.
 gdb is "m68k-elf-gdb", gdb target is "remote localhost:9000"
 Target-side executable is version 1.
 Detected 1 bank of flash.
 Start 0x00000000, end 0x0003ffff -> 256K.
 128 blocks of 2K.
 Flash block locking is not supported.
 Default program location for executables is 0x00000000.
 Target-side buffer for read and write operation is 16K.

This shows the gdb command and the target string, which can be useful if that information comes from environment variables
rather than the command line. ecoflash will run gdb and download the target-side executable, which reports itself as version
1. The target-side executable initializes the eCos flash driver and has detected the amount of flash reported and that lock and
unlock operations are not supported. By default executables will be programmed at location 0x0, and transfers between host
and target use a 16k buffer (the M5213EVB only has a small amount of RAM, usually a larger buffer will be used).

Programming an Executable

ecoflash program can be used to install an eCos executable at the boot location within the flash. The executable should be
linked against an eCos configuration with a suitable startup type, usually ROM or ROMRAM although this may vary between
platforms. In its simplest form the subcommand just takes a single argument, a filename for the executable:

$ ecoflash program redboot.elf
Erasing 0x00000000 - 0x0000be57
Writing 0x00000000 - 0x00003fff (16384 bytes) from file "/tmp/redboot.1495", offset 0
Writing 0x00004000 - 0x00007fff (16384 bytes) from file "/tmp/redboot.1495", offset 16384
Writing 0x00008000 - 0x0000be57 (15960 bytes) from file "/tmp/redboot.1495", offset 32768

This assumes the ECOFLASH_BOARD and ECOFLASH_TARGET environment variables are set. ecoflash will examine the
specified file. ELF executables will be automatically converted to a temporary raw binary file before being programmed into
flash, using the objcopy utility. The default address within the flash is supplied by the target-side executable. Usually this will
be the processor's boot location but the exact boot mechanism varies widely between processors and platforms.

ecoflash program takes two options. -r or --raw can be used to suppress the detection of ELF format files. Instead the file
will be treated as a raw binary and no conversion is performed. This may be useful if the board has its own primary bootloader
which expects to find an ELF executable at a particular address within the flash. -n or --no-erase can be used to suppress
the automatic erase of the flash blocks prior to programming the flash. This may be useful on hardware where flash erase is
optional, or if ecoflash is used in a batch environment where a previous step will have already erased the required amount
of flash.

ecoflash program takes an optional additional argument, an alternative address within the flash. This may be useful if for
example the board can boot from one of two locations depending on the state of a jumper.

399

ecoflash Flash Programming Utility

Dumping Flash Contents
ecoflash dump can be used to read part or all of the flash and dump the data to a file on the host. This can be particularly
useful when saving a known working image prior to replacing it with an experimental version. The default behaviour is to
dump the entire flash contents:

$ ecoflash dump /tmp/working.bin
Dumping 0x00000000 - 0x00003fff (16384 bytes) to file "/tmp/working.bin"
Dumping 0x00004000 - 0x00007fff (16384 bytes) to file "/tmp/working.bin"
…

Optionally the starting address and the length can be specified:

$ ecoflash dump /tmp/working.bin 0xFFF00000 128K

Lengths can be specified in bytes, kilobytes using a K suffix, megabytes using an M suffix, or flash blocks using a B suffix.
Note that some flash devices have boot blocks of varying sizes so specifying a size in terms of blocks can be confusing.

ecoflash dump takes a single option, -a or --append. This causes ecoflash to append to the specified file instead of over-
writing it.

Erasing Flash Blocks
ecoflash erase can be used to erase one or more flash blocks. This command is rarely needed since both the program and
write subcommands will erase the required number of flash blocks by default, but may prove useful if the flash contains data
other than an eCos executable and that data should be reset to uninitialized. In its simplest form the erase subcommand just
takes an address:

$ ecoflash erase 0x40000

This causes ecoflash to erase the single flash block containing the specified address. Optionally a length can be specified, for
example to erase 8 flash blocks:

$ ecoflash erase 0x40000 8B

The length can be specified in bytes, in kilobytes using a K suffix, in megabytes using an M suffix, or in flash blocks using a
B suffix. Care must be taken if the specified address is not at the start of a flash block. For example if the address is 0x48000,
the length is 128K, and flash blocks are 64K, then this is treated as a request to erase flash from 0x48000 to 0x67FFF. Since
erase operations always involve whole flash blocks the actual erase affects all memory from 0x40000 to 0x6FFFF, so a total
of 192K gets erased.

The erase subcommand does not have any options of its own, just the standard ones for all subcommands.

Writing Raw Data
ecoflash write can be used to write a raw data file to an arbitrary location within the flash. It is intended for installing additional
data rather than the main executable, since the program subcommand is more appropriate for the latter. At least a filename
and an address within the flash should be specified:

$ ecoflash write data.bin 0x00040000
Erasing 0x00040000 - 0x0004297c
Writing 0x00040000 - 0x0004297c (10621 bytes) from file "data.bin", offset 0

Optionally a length can be specified, for example:

$ ecoflash write data.bin 0x00040000 64K

This will write only the first 64K of data.bin rather than the whole file. The length can be specified in bytes, in kilobytes using
a K suffix, in megabytes using an M suffix, or in flash blocks using a B suffix.

ecoflash write takes two options. -n or --no-erase can be used to suppress the automatic erase before the data is written
to flash. This can be useful if a single flash block should contain data from more than one file: ecoflash erase would be used

400

ecoflash Flash Programming Utility

to erase the whole flash black, then two ecoflash write -n commands would program the two files at the appropriate locations;
alternatively the erase step can be skipped in subsumed by the first write, with only the second write using a -n option.

-o <offset> or -offset=<offset> can be used to skip part of a file. For example the following writes 12K of a file
starting at a 4K offset:

$ ecoflash write --offset=4096 data.bin 12K

The offset can be specified in bytes, kilobytes using a K suffix, or megabytes using an M suffix.

Locking and Unlocking
On targets where the hardware and the flash driver support locking, the lock and unlock subcommands can be used to manip-
ulate the locked status of one or more flash blocks. Both subcommands take an address and an optional length:

$ ecoflash lock 0x40000
…
$ ecoflash unlock 0x50000 256K

If no length is specified then just a single flash block is affected, unless the hardware implements locking at a coarser grain than
individual flash blocks. The length can be specified in bytes, in kilobytes using a K suffix, in megabytes using an M suffix,
or in flash blocks using a B suffix.

With some flash hardware locking is not persistent. Instead the locks are set to a default state when the flash chips are powered
up or reset, usually locked. On such hardware the ecoflash lock and unlock subcommands are of little use since the locks would
revert to their default state when ecoflash exits. Instead the target-side executable will either unlock all flash blocks during
initialization or take whatever action is needed at run-time to handle erase and write operations.

Installation
Depending on your eCos distribution ecoflash may already be installed on your system. If not, installation is straightforward.
The host-side consists of a single executable ecoflash in the package's host subdirectory. This is actually a platform-in-
dependent script written in the expect scripting language. It needs to be installed in a suitable location on the user's search
PATH. The file can just be copied manually, or alternatively the host subdirectory contains a suitable configure script and
support files:

$ <package path>/host/configure --prefix=/usr/local
$ make
$ make install

This will install ecoflash in the directory /usr/local/bin. Note that eCos also has a top-level configure script which
will find subsidiary configure scripts inside the individual packages. A top-level configure/make/make install sequence
will automatically install ecoflash as well as host-side support from other packages.

The ecoflash package contains only the generic support. It should be complemented by a .ecf configuration file and a
_flash.elf target-side executable for every supported platform. The platform HAL's misc subdirectory usually holds a
suitable .ecf file. The target-side executable will need to be rebuilt:

$ ecosconfig new <target> minimal
$ ecosconfig import <path>/ecoflash.ecm
$ ecosconfig tree
$ make

For an existing port there should be an ecoflash.ecm file in the platform HAL's misc subdirectory. Importing this will
add the ecoflash package and any necessary support packages, set any platform-specific configuration options, and resolve any
conflicts. After the make there should be a file install/bin/flash.elf, the target-side executable, and this should get
renamed to <board>_flash.elf and installed in a location where ecoflash will find it.

Porting
Typically the only hard part of porting ecoflash to a new platform is to get gdb to interact with the jtag or BDM hardware and
initialize the board. The porting process involves three steps: adding appropriate definitions to the platform HAL; building the
target-side executable <board>_flash.elf; and writing the platform configuration file <board>.ecf.

401

ecoflash Flash Programming Utility

The platform HAL must supply a single #define'd symbol corresponding to the default base address for ecoflash program
operations. Usually this symbol gets defined in cyg/hal/plf_io.h, but the details may vary between architectures.

#define HAL_ECOFLASH_PROGRAM_BASE 0x00000000

Optionally the platform HAL can define a buffer size using HAL_ECOFLASH_BUFLEN, an additional header file to include
using HAL_ECOFLASH_HEADER, and an initialization macro HAL_ECOFLASH_EXTRA_INIT(). The latter may perform
operations such as unlocking all flash blocks on hardware where locks are transient.

The target-side executable is a very simple eCos application that uses the generic flash driver support to interact with the the
hardware. Hence it assumes that a suitable flash driver is already available. Code and data sizes are both of the order of 4K,
although obviously that will depend on the processor architecture. Usually the code will be RAM-resident and linked with a
JTAG or RAM startup configuration. In addition a buffer is needed for transferring data between host and target. By default
that buffer is 64K, corresponding to typical flash block sizes, but can be smaller if there is not enough RAM for a buffer that
size. Building the target-side executable is straightforward:

$ ecosconfig new <target> minimal
$ ecosconfig add CYGPKG_IO_FLASH CYGPKG_LIBC_STRING CYGPKG_ECOFLASH
$ ecosconfig resolve
$ ecosconfig tree
$ make

It may be necessary to tweak the configuration data before generating the build tree, for example to change the startup type to
JTAG or RAM. Adding the ecoflash package will result in one conflict related to the global compiler flags: by default ecoflash
is built with no eCos debugging information, except for the ecoflash application itself. The target-side executable may get
checked into the source code control system as a binary, so avoiding debug information helps to keep the size down. Stripping
out all debug information after the build is not possible because it would interfere with some of the gdb commands that ecoflash
uses to interact with the target.

The result of the make is an executable flash.elf in the install/bin subdirectory. This should get renamed to <tar-
get>_flash.elf and installed to a directory where ecoflash will find it. Optionally an ecoflash.ecm file containing
the configuration settings can be exported to facilitate future rebuilding.

Next it is necessary to write the configuration file <target>.ecf. This is a straightforward expect script that gets included
by the main ecoflash executable. It should set variables ::gdb_executable and ::command_prefix. Optionally it
may also define procedures target_init0, target_init1, and target_kill. target_init0 is invoked after
gdb has been started but before the gdb target command has been issued. target_init1 is invoked after the gdb target
command has been issued, and typically takes care of initializing the board via a sequence of gdb commands. To facilitate this
the main ecoflash script provides procedures gdb_run_command and gdb_run_quiet_command which will do the hard work.
target_kill is invoked just before shutting down the gdb session. The <target>.ecf file is typically placed in the
platform HAL's misc subdirectory.

402

Part XX. Flash Safe

Name
CYGPKG_FLASHSAFE — provide safe storage for data in flash memory

Description
The Flash Safe package provides a robust and simple mechanism for storing data in flash memory. It is intended for relatively
small quantities of data such as configuration and customization data. For larger amounts of data, the JFFS2 flash filesystem
is available.

The Flash Safe operates by dividing a region of the flash into a number of equal sized blocks. Each block is given a sequence
number and is checksummed. A header containing these is stored at the start and end of each block. At startup the Flash Safe
searches the available blocks for one with the latest sequence number and a valid checksum. The application can now retrieve
data stored in the Flash Safe against a numeric key.

To store new data, the application opens a block, which will cause the block with the oldest sequence number to be erased
and prepared for writing. Data can now be written to the block with a numeric key identifying each write. When all the data
has been written, the block is committed, which will cause the headers to be written with valid checksums. This block now
becomes the source of all subsequent data retrieval, freeing the original valid block for reuse.

This approach provides a simple transactional mechanism for storing data across power failures and crashes. At any time at least
one committed block is valid and is released only after a new valid block has been committed to replace it. Any interruption
during the creation of a new block will leave it invalid and data retrieval will fall back to the last committed block. The use of
keys to identify data makes retrieval independent of the order in which the items are stored, of any change in size of the data
and of any alignment requirements of the underlying flash device and driver.

The Flash Safe needs a minimum of two blocks to be defined, which must each be a multiple of the block size of the underlying
flash device. A single Flash Safe block per flash device block would be the normal approach. More Flash Safe blocks may
be used to implement a crude wear levelling mechanism, since under normal circumstances the Flash Safe will use the blocks
in a round-robin manner.

Configuration
The flashsafe is mostly configured at runtime. The following CDL configuration options are present:

CYGNUM_FLASHSAFE_BUFFER_SIZE

This option defines the size of the buffer that the flashsafe uses to store data prior to writing it to disk. Different flash
devices have different alignment and minimum sizes for writes to the flash. This buffer collects data items into segments
that can be written in single operations.

A flashsafe block can be viewed as an array of segments of CYGNUM_FLASHSAFE_BUFFER_SIZE bytes each. The
first and last segments are reserved for the flashsafe system's use, and the rest are available for data storage. So the buffer
size may be at most one third the size of the block. The buffer size should also be chosen to be an integer fraction of the
block size. It is not possible to change the buffer size once a flashsafe has been initialized, since it plays a part in defining
the format of the stored data.

CYGPKG_FLASHSAFE_TESTS

This lists the set of test programs. At present there is only one test, which runs on the synthetic target.

Interaction with RedBoot
The Flash Safe is mainly targetted at small systems where a FIS directory or JFFS2 would not be appropriate. Consequently it
does not try to look up a named entry in the FIS or work via the flash IO device. Instead it uses raw flash block addresses. The
flashsafe parameters can be set up at runtime by the application querying the RedBoot FIS interface, and the flash subsystem.
The following code extract demonstrates how this might be done.

cyg_flashsafe flashsafe;

404

Flash Safe

cyg_flash_info_t flashinfo;
cyg_uint32 size;
int err;

// Initialize flash system
err = cyg_flash_init(diag_printf);
if(err != CYG_FLASH_ERR_OK) …

// Fetch flashsafe region base and size from FIS directory.
err = CYGACC_CALL_IF_FLASH_FIS_OP(CYGNUM_CALL_IF_FLASH_FIS_GET_FLASH_BASE,
 "flashsafe",
 &flashsafe.base);
if(err == 0) …

err = CYGACC_CALL_IF_FLASH_FIS_OP(CYGNUM_CALL_IF_FLASH_FIS_GET_SIZE,
 "flashsafe",
 &size);
if(err == 0) …

// Fetch flash device info from flash system
err = cyg_flash_get_info_addr(flashsafe.base, &flashinfo);
if(err != CYG_FLASH_ERR_OK) …

// Calculate block number and size.
flashsafe.block_size = flashinfo.block_info[0].block_size;
flashsafe.block_count = size/flashsafe.block_size;

err = cyg_flashsafe_init(&flashsafe);
if(err != CYG_FLASHSAFE_ERR_OK) …

405

Name
Flash Safe — API Details

Synopsis
#include <cyg/flashsafe/flashsafe.h>

int cyg_flashsafe_init(*flashsafe);

int cyg_flashsafe_data(*flashsafe, key, **data);

int cyg_flashsafe_read(*flashsafe, key, *data, *len);

int cyg_flashsafe_open(*flashsafe);

int cyg_flashsafe_write(*flashsafe, key, *data, len);

int cyg_flashsafe_commit(*flashsafe);

const char *cyg_flashsafe_errmsg(err);

Description
The flash safe is accessed through this API. The flashsafe is initialized by calling cyg_flashsafe_init() passing it a
pointer to a cyg_flashsafe structure. Within this structure the base, block_count and block_size fields must have been
initialized to describe the area of flash to be managed. Typically, the structure would be defined statically as follows:

cyg_flashsafe flashsafe =
{
 .base = 0x40000000,
 .block_count = 3,
 .block_size = 0x2000
};

If the flashsafe already contains data, then items may be retrieved using cyg_flashsafe_data(). The key argument
identifies the data item to be retrieved. The data argument is a pointer to a location where a pointer to the data will be
stored. Typically the pointer returned will refer directly to the flash device, and will thus be read-only. No size is returned, the
application should either know what size the data is (e.g a structure or fixed sized array), or arrange for the data to be self-
sized (e.g. a zero terminated string or contains a size field).

The function cyg_flashsafe_read() performs a similar job to cyg_flashsafe_data() except that the data is
copied out of the flash memory. The data argument points to a buffer into which the data will be copied, and the len points
to a location where the size of the buffer is stored when the call is made, and will contain the size of data copied in on return.
This function is useful where it is intended to update the data read from the flashsafe, possibly to write it back to flashsafe.
cyg_flashsafe_data() is useful where the data only needs to be read, and saves valuable RAM space.

To open a flashsafe block for update the function cyg_flashsafe_open() should be called. This will select the oldest
block in the safe, erase it and prepare it for writing.

The function cyg_flashsafe_write() is used to write new data to the current open block. The key argument should be
an application selected 16 bit value that is used to identify this data item. This value should be unique for each item, otherwise
the behaviour is undefined. The data and len arguments describe a buffer containing the data to be written. The size of the
data written must be less than or equal to the value of CYGNUM_FLASHSAFE_BUFFER_SIZE.

The function cyg_flashsafe_commit() causes the current open block to be committed to the flash. This involves cal-
culating the checksum and writing the header and trailer with the current sequence number.

Each of these functions may return one of a number of error codes. These may include the following:

CYG_FLASHSAFE_ERR_OK

This is returned when the operation succeeded.

406

Flash Safe Programmer Interface

CYG_FLASHSAFE_ERR_FLASH

This is returned when the flash device failed to initialize.

CYG_FLASHSAFE_ERR_MISMATCH

This is returned when there is a mismatch between the size any layout of the flashsafe described in the initialized cyg_flash-
safe structure and the flashsafe found in flash.

CYG_FLASHSAFE_ERR_FLASH_PROG

This is returned when the flash driver reports a programming error.

CYG_FLASHSAFE_ERR_FLASH_ERASE

This is returned when the flash driver reports a block erase error.

CYG_FLASHSAFE_ERR_NO_DATA

This is returned when there is no current valid block in the flashsafe. This will usually only happen when the flashsafe
is new.

CYG_FLASHSAFE_ERR_BAD_KEY

This is returned when a given key cannot be found in the flashsafe.

CYG_FLASHSAFE_ERR_NOT_OPEN

This is returned when a cyg_flashsafe_write() or cyg_flashsafe_commit() are called before making a
call to cyg_flashsafe_open().

CYG_FLASHSAFE_ERR_NO_SPACE

This is returned when the size of data is too large for either the buffer or the flashsafe block as a whole.

The function cyg_flashsafe_errmsg(), if given one of these error codes, will return a string describing the error.

407

Part XXI. PCI Library

Table of Contents
71. The eCos PCI Library .. 410

PCI Library ... 410
PCI Overview .. 410
Initializing the bus .. 410
Scanning for devices ... 410
Generic config information ... 411
Specific config information .. 411
Allocating memory ... 412
Interrupts ... 413
Activating a device ... 413
Links .. 413

PCI Library reference .. 413
PCI Library API ... 414
Definitions ... 414
Types and data structures ... 414
Functions ... 414
Resource allocation ... 416
PCI Library Hardware API ... 417
HAL PCI support ... 417

409

Chapter 71. The eCos PCI Library
The PCI library is an optional part of eCos, and is only applicable to some platforms.

PCI Library
The eCos PCI library provides the following functionality:

1. Scan the PCI bus for specific devices or devices of a certain class.

2. Read and change generic PCI information.

3. Read and change device-specific PCI information.

4. Allocate PCI memory and IO space to devices.

5. Translate a device's PCI interrupts to equivalent HAL vectors.

Example code fragments are from the pci1 test (see io/pci/<release>/tests/pci1.c).

All of the functions described below are declared in the header file <cyg/io/pci.h> which all clients of the PCI library
should include.

PCI Overview
The PCI bus supports several address spaces: memory, IO, and configuration. All PCI devices must support mandatory config-
uration space registers. Some devices may also present IO mapped and/or memory mapped resources. Before devices on the bus
can be used, they must be configured. Basically, configuration will assign PCI IO and/or memory address ranges to each device
and then enable that device. All PCI devices have a unique address in configuration space. This address is comprised of a bus
number, a device number, and a function number. Special devices called bridges are used to connect two PCI busses together.
The PCI standard supports up to 255 busses with each bus having up to 32 devices and each device having up to 8 functions.

The environment in which a platform operates will dictate if and how eCos should configure devices on the PCI bus. If the
platform acts as a host on a single PCI bus, then devices may be configured individually from the relevant device driver. If
the platform is not the primary host, such as a PCI card plugged into a PC, configuration of PCI devices may be left to the PC
BIOS. If PCI-PCI bridges are involved, configuration of all devices is best done all at once early in the boot process. This is
because all devices on the secondary side of a bridge must be evaluated for their IO and memory space requirements before
the bridge can be configured.

Initializing the bus
The PCI bus needs to be initialized before it can be used. This only needs to be done once - some HALs may do it as part of the
platform initialization procedure, other HALs may leave it to the application or device drivers to do it. The following function
will do the initialization only once, so it's safe to call from multiple drivers:

void cyg_pci_init(void);

Scanning for devices
After the bus has been initialized, it is possible to scan it for devices. This is done using the function:

cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
 cyg_pci_device_id *next_devid);

It will scan the bus for devices starting at cur_devid. If a device is found, its devid is stored in next_devid and the
function returns true.

410

The eCos PCI Library

The pci1 test's outer loop looks like:

cyg_pci_init();
if (cyg_pci_find_next(CYG_PCI_NULL_DEVID, &devid)) {
 do {
 <use devid>
 } while (cyg_pci_find_next(devid, &devid));
}

What happens is that the bus gets initialized and a scan is started. CYG_PCI_NULL_DEVID causes cyg_pci_find_nex-
t() to restart its scan. If the bus does not contain any devices, the first call to cyg_pci_find_next() will return false.

If the call returns true, a loop is entered where the found devid is used. After devid processing has completed, the next device
on the bus is searched for; cyg_pci_find_next() continues its scan from the current devid. The loop terminates when
no more devices are found on the bus.

This is the generic way of scanning the bus, enumerating all the devices on the bus. But if the application is looking for a device
of a given device class (e.g., a SCSI controller), or a specific vendor device, these functions simplify the task a bit:

cyg_bool cyg_pci_find_class(cyg_uint32 dev_class,
 cyg_pci_device_id *devid);

cyg_bool cyg_pci_find_device(cyg_uint16 vendor, cyg_uint16 device,
 cyg_pci_device_id *devid);

They work just like cyg_pci_find_next(), but only return true when the dev_class or vendor/device qualifiers match
those of a device on the bus. The devid serves as both an input and an output operand: the scan starts at the given device, and
if a device is found devid is updated with the value for the found device.

The <cyg/io/pci_cfg.h> header file (included by pci.h) contains definitions for PCI class, vendor and device codes
which can be used as arguments to the find functions. The list of vendor and device codes is not complete: add new codes
as necessary. If possible also register the codes at the PCI Database (http://www.pcidatabase.com) which is where the eCos
definitions are generated from.

Generic config information
When a valid device ID (devid) is found using one of the above functions, the associated device can be queried and controlled
using the functions:

void cyg_pci_get_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);

void cyg_pci_set_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);

The cyg_pci_device structure (defined in pci.h) primarily holds information as described by the PCI specification [1]. The
pci1 test prints out some of this information:

// Get device info
cyg_pci_get_device_info(devid, &dev_info);
diag_printf("\n Command 0x%04x, Status 0x%04x\n",
 dev_info.command, dev_info.status);

The command register can also be written to, controlling (among other things) whether the device responds to IO and memory
access from the bus.

Specific config information
The above functions only allow access to generic PCI config registers. A device can have extra config registers not specified
by the PCI specification. These can be accessed with these functions:

void cyg_pci_read_config_uint8(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint8 *val);

void cyg_pci_read_config_uint16(cyg_pci_device_id devid,

411

http://www.pcidatabase.com

The eCos PCI Library

 cyg_uint8 offset, cyg_uint16 *val);

void cyg_pci_read_config_uint32(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint32 *val);

void cyg_pci_write_config_uint8(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint8 val);

void cyg_pci_write_config_uint16(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint16 val);

void cyg_pci_write_config_uint32(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint32 val);

The write functions should only be used for device-specific config registers since using them on generic registers may invalidate
the contents of a previously fetched cyg_pci_device structure.

Allocating memory
A PCI device ignores all IO and memory access from the PCI bus until it has been activated. Activation cannot happen until
after device configuration. Configuration means telling the device where it should map its IO and memory resources. This is
done with one of the following functions::

cyg_bool cyg_pci_configure_device(cyg_pci_device *dev_info);

cyg_bool cyg_pci_configure_bus(cyg_uint8 bus, cyg_uint8 *next_bus);

The cyg_pci_configure_device handles all IO and memory regions that need configuration on non-bridge devices. On
platforms with multiple busses connected by bridges, the cyg_pci_configure_bus function should be used. It will re-
cursively configure all devices on the given bus and all subordinate busses. cyg_pci_configure_bus will use cyg_p-
ci_configure_device to configure individual non-bridge devices.

Each region is represented in the PCI device's config space by BARs (Base Address Registers) and is handled individually
according to type using these functions:

cyg_bool cyg_pci_allocate_memory(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS64 *base);

cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS32 *base);

The memory bases (in two distinct address spaces) are increased as memory regions are allocated to devices. Allocation will
fail (the function returns false) if the base exceeds the limits of the address space (IO is 1MB, memory is 2^32 or 2^64 bytes).

These functions can also be called directly by the application/driver if necessary, but this should not be necessary.

The bases are initialized with default values provided by the HAL. It is possible for an application to override these using the
following functions:

void cyg_pci_set_memory_base(CYG_PCI_ADDRESS64 base);

void cyg_pci_set_io_base(CYG_PCI_ADDRESS32 base);

When a device has been configured, the cyg_pci_device structure will contain the physical address in the CPU's address space
where the device's memory regions can be accessed.

This information is provided in base_map[] - there is a 32 bit word for each of the device's BARs. For 32 bit PCI memory
regions, each 32 bit word will be an actual pointer that can be used immediately by the driver: the memory space will normally
be linearly addressable by the CPU.

However, for 64 bit PCI memory regions, some (or all) of the region may be outside of the CPUs address space. In this case the
driver will need to know how to access the region in segments. This functionality may be adopted by the eCos HAL if deemed
useful in the future. The 2GB available on many systems should suffice though.

412

The eCos PCI Library

Interrupts
A device may generate interrupts. The HAL vector associated with a given device on the bus is platform specific. This function
allows a driver to find the actual interrupt vector for a given device:

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info,
 CYG_ADDRWORD *vec);

If the function returns false, no interrupts will be generated by the device. If it returns true, the CYG_ADDRWORD pointed
to by vec is updated with the HAL interrupt vector the device will be using. This is how the function is used in the pci1 test:

if (cyg_pci_translate_interrupt(&dev_info, &irq))
 diag_printf(" Wired to HAL vector %d\n", irq);
else
 diag_printf(" Does not generate interrupts.\n");

The application/drive should attach an interrupt handler to a device's interrupt before activating the device.

Activating a device
When the device has been allocated memory space it can be activated. This is not done by the library since a driver may have
to initialize more state on the device before it can be safely activated.

Activating the device is done by enabling flags in its command word. As an example, see the pci1 test which can be configured
to enable the devices it finds. This allows these to be accessed from GDB (if a breakpoint is set on cyg_test_exit):

#ifdef ENABLE_PCI_DEVICES
 {
 cyg_uint16 cmd;

 // Don't use cyg_pci_set_device_info since it clears
 // some of the fields we want to print out below.
 cyg_pci_read_config_uint16(dev_info.devid,
 CYG_PCI_CFG_COMMAND, &cmd);
 cmd |= CYG_PCI_CFG_COMMAND_IO|CYG_PCI_CFG_COMMAND_MEMORY;
 cyg_pci_write_config_uint16(dev_info.devid,
 CYG_PCI_CFG_COMMAND, cmd);
 }
 diag_printf(" **** Device IO and MEM access enabled\n");
#endif

Note

The best way to activate a device is actually through cyg_pci_set_device_info(), but in this particular
case the cyg_pci_device structure contents from before the activation is required for printout further down in
the code.

Links
See these links for more information about PCI:

1. http://www.pcisig.com/ - information on the PCI specifications

2. http://www.yourvote.com/pci/ - list of vendor and device IDs

3. http://www.picmg.org/ - PCI Industrial Computer Manufacturers Group

PCI Library reference
This document defines the PCI Support Library for eCos.

The PCI support library provides a set of routines for accessing the PCI bus configuration space in a portable manner. This
is provided by two APIs. The high level API is used by device drivers, or other code, to access the PCI configuration space

413

http://www.pcisig.com/
http://www.yourvote.com/pci/
http://www.picmg.org/

The eCos PCI Library

portably. The low level API is used by the PCI library itself to access the hardware in a platform-specific manner, and may
also be used by device drivers to access the PCI configuration space directly.

Underlying the low-level API is HAL support for the basic configuration space operations. These should not generally be used
by any code other than the PCI library, and are present in the HAL to allow low level initialization of the PCI bus and devices
to take place if necessary.

PCI Library API
The PCI library provides the following routines and types for accessing the PCI configuration space.

The API for the PCI library is found in the header file <cyg/io/pci.h>.

Definitions
The header file contains definitions for the common configuration structure offsets and specimen values for device, vendor
and class code.

Types and data structures
The following types are defined:

typedef CYG_WORD32 cyg_pci_device_id;

This is comprised of the bus number, device number and functional unit numbers packed into a single word. The macro
CYG_PCI_DEV_MAKE_ID(), in conjunction with the CYG_PCI_DEV_MAKE_DEVFN() macro, may be used to con-
struct a device id from the bus, device and functional unit numbers. Similarly the macros CYG_PCI_DEV_GET_BUS(),
CYG_PCI_DEV_GET_DEVFN(), CYG_PCI_DEV_GET_DEV(), and CYG_PCI_DEV_GET_FN() may be used to extract
the constituent parts of a device id. It should not be necessary to use these macros under normal circumstances. The following
code fragment demonstrates how these macros may be used:

// Create a packed representation of device 1, function 0
cyg_uint8 devfn = CYG_PCI_DEV_MAKE_DEVFN(1,0);

// Create a packed devid for that device on bus 2
cyg_pci_device_id devid = CYG_PCI_DEV_MAKE_ID(2, devfn);

diag_printf("bus %d, dev %d, func %d\n",
 CYG_PCI_DEV_GET_BUS(devid),
 CYG_PCI_DEV_GET_DEV(CYG_PCI_DEV_GET_DEVFN(devid)),
 CYG_PCI_DEV_GET_FN(CYG_PCI_DEV_GET_DEVFN(devid));

typedef struct cyg_pci_device;

This structure is used to contain data read from a PCI device's configuration header by cyg_pci_get_device_info().
It is also used to record the resource allocations made to the device.

typedef CYG_WORD64 CYG_PCI_ADDRESS64;
typedef CYG_WORD32 CYG_PCI_ADDRESS32;

Pointers in the PCI address space are 32 bit (IO space) or 32/64 bit (memory space). In most platform and device configurations
all of PCI memory will be linearly addressable using only 32 bit pointers as read from base_map[].

The 64 bit type is used to allow handling 64 bit devices in the future, should it be necessary, without changing the library's API.

Functions
void cyg_pci_init(void);

Initialize the PCI library and establish contact with the hardware. This function is idempotent and can be called either by all
drivers in the system, or just from an application initialization function.

414

The eCos PCI Library

cyg_bool cyg_pci_find_device(cyg_uint16 vendor,
 cyg_uint16 device,
 cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device with the given vendor and device ids. The search starts at the device
pointed to by devid, or at the first slot if it contains CYG_PCI_NULL_DEVID. *devid will be updated with the ID of the
next device found. Returns true if one is found and false if not.

cyg_bool cyg_pci_find_class(cyg_uint32 dev_class,
 cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device with the given dev_class class code. The search starts at the device
pointed to by devid, or at the first slot if it contains CYG_PCI_NULL_DEVID.

*devid will be updated with the ID of the next device found. Returns true if one is found and false if not.

cyg_bool cyg_pci_find_next(cyg_pci_device_id cur_devid,
 cyg_pci_device_id *next_devid);

Searches the PCI configuration space for the next valid device after cur_devid. If cur_devid is given the value
CYG_PCI_NULL_DEVID, then the search starts at the first slot. It is permitted for next_devid to point to cur_devid.
Returns true if another device is found and false if not.

cyg_bool cyg_pci_find_matching(cyg_pci_match_func *matchp,
 void *match_callback_data,
 cyg_pci_device_id *devid);

Searches the PCI bus configuration space for a device whose properties match those required by the caller supplied cyg_p-
ci_match_func. The search starts at the device pointed to by devid, or at the first slot if it contains CYG_PCI_NUL-
L_DEVID. The devid will be updated with the ID of the next device found. This function returns true if a matching device
is found and false if not.

The match_func has a type declared as:

typedef cyg_bool (cyg_pci_match_func)(cyg_uint16 vendor,
 cyg_uint16 device,
 cyg_uint32 class,
 void * user_data);

The vendor, device, and class are from the device configuration space. The user_data is the callback data passed
to cyg_pci_find_matching.

void cyg_pci_get_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);

This function gets the PCI configuration information for the device indicated in devid. The common fields of the cyg_p-
ci_device structure, and the appropriate fields of the relevant header union member are filled in from the device's configuration
space. If the device has not been enabled, then this function will also fetch the size and type information from the base address
registers and place it in the base_size[] array.

void cyg_pci_set_device_info (cyg_pci_device_id devid,
 cyg_pci_device *dev_info);

This function sets the PCI configuration information for the device indicated in devid. Only the configuration space registers
that are writable are actually written. Once all the fields have been written, the device info will be read back into *dev_info,
so that it reflects the true state of the hardware.

void cyg_pci_read_config_uint8(cyg_pci_device_id devid,
 cyg_uint8 offset,
 cyg_uint8 *val);

void cyg_pci_read_config_uint16(cyg_pci_device_id devid,
 cyg_uint8 offset,
 cyg_uint16 *val);

void cyg_pci_read_config_uint32(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint32 *val);

415

The eCos PCI Library

These functions read registers of the appropriate size from the configuration space of the given device. They should mainly
be used to access registers that are device specific. General PCI registers are best accessed through cyg_pci_get_de-
vice_info().

void cyg_pci_write_config_uint8(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint8 val);

void cyg_pci_write_config_uint16(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint16 val);

void cyg_pci_write_config_uint32(cyg_pci_device_id devid,
 cyg_uint8 offset, cyg_uint32 val);

These functions write registers of the appropriate size to the configuration space of the given device. They should mainly
be used to access registers that are device specific. General PCI registers are best accessed through cyg_pci_get_de-
vice_info(). Writing the general registers this way may render the contents of a cyg_pci_device structure invalid.

Resource allocation
These routines allocate memory and I/O space to PCI devices.

cyg_bool cyg_pci_configure_device(cyg_pci_device *dev_info)

Allocate memory and IO space to all base address registers using the current memory and IO base addresses in the library.
The allocated base addresses, translated into directly usable values, will be put into the matching base_map[] entries in
*dev_info. If *dev_info does not contain valid base_size[] entries, then the result is false. This function will also
call cyg_pci_translate_interrupt() to put the interrupt vector into the HAL vector entry.

cyg_bool cyg_pci_configure_bus(cyg_uint8 bus, cyg_uint8 *next_bus)

Allocate memory and IO space to all base address registers on all devices on the given bus and all subordinate busses. If a
PCI-PCI bridge is found on bus, this function will call itself recursively in order to configure the bus on the other side of the
bridge. Because of the nature of bridge devices, all devices on the secondary side of a bridge must be allocated memory and IO
space before the memory and IO windows on the bridge device can be properly configured. The next_bus argument points
to the bus number to assign to the next subordinate bus found. The number will be incremented as new busses are discovered.
If successful, true is returned. Otherwise, false is returned.

cyg_bool cyg_pci_translate_interrupt(cyg_pci_device *dev_info,
 CYG_ADDRWORD *vec);

Translate the device's PCI interrupt (INTA#-INTD#) to the associated HAL vector. This may also depend on which slot the
device occupies. If the device may generate interrupts, the translated vector number will be stored in vec and the result is
true. Otherwise the result is false.

cyg_bool cyg_pci_allocate_memory(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS64 *base);

cyg_bool cyg_pci_allocate_io(cyg_pci_device *dev_info,
 cyg_uint32 bar,
 CYG_PCI_ADDRESS32 *base);

These routines allocate memory or I/O space to the base address register indicated by bar. The base address in *base will
be correctly aligned and the address of the next free location will be written back into it if the allocation succeeds. If the base
address register is of the wrong type for this allocation, or dev_info does not contain valid base_size[] entries, the
result is false. These functions allow a device driver to set up its own mappings if it wants. Most devices should probably
use cyg_pci_configure_device().

void cyg_pci_set_memory_base(CYG_PCI_ADDRESS64 base);

void cyg_pci_set_io_base(CYG_PCI_ADDRESS32 base);

These routines set the base addresses for memory and I/O mappings to be used by the memory allocation routines. Normally
these base addresses will be set to default values based on the platform. These routines allow these to be changed by application
code if necessary.

416

The eCos PCI Library

PCI Library Hardware API
This API is used by the PCI library to access the PCI bus configuration space. Although it should not normally be necessary,
this API may also be used by device driver or application code to perform PCI bus operations not supported by the PCI library.

void cyg_pcihw_init(void);

Initialize the PCI hardware so that the configuration space may be accessed.

void cyg_pcihw_read_config_uint8(cyg_uint8 bus,
 cyg_uint8 devfn,
 cyg_uint8 offset,
 cyg_uint8 *val);

void cyg_pcihw_read_config_uint16(cyg_uint8 bus,
 cyg_uint8 devfn,
 cyg_uint8 offset,
 cyg_uint16 *val);

void cyg_pcihw_read_config_uint32(cyg_uint8 bus,
 cyg_uint8 devfn,
 cyg_uint8 offset,
 cyg_uint32 *val);

These functions read a register of the appropriate size from the PCI configuration space at an address composed from the bus,
devfn and offset arguments.

void cyg_pcihw_write_config_uint8(cyg_uint8 bus,
 cyg_uint8 devfn,
 cyg_uint8 offset,
 cyg_uint8 val);

void cyg_pcihw_write_config_uint16(cyg_uint8 bus,
 cyg_uint8 devfn,
 cyg_uint8 offset,
 cyg_uint16 val);

void cyg_pcihw_write_config_uint32(cyg_uint8 bus,
 cyg_uint8 devfn,
 cyg_uint8 offset,
 cyg_uint32 val);

These functions write a register of the appropriate size to the PCI configuration space at an address composed from the bus,
devfn and offset arguments.

cyg_bool cyg_pcihw_translate_interrupt(cyg_uint8 bus,
 cyg_uint8 devfn,
 CYG_ADDRWORD *vec);

This function interrogates the device and determines which HAL interrupt vector it is connected to.

HAL PCI support
HAL support consists of a set of C macros that provide the implementation of the low level PCI API.

HAL_PCI_INIT()

Initialize the PCI bus.

HAL_PCI_READ_UINT8(bus, devfn, offset, val)
HAL_PCI_READ_UINT16(bus, devfn, offset, val)
HAL_PCI_READ_UINT32(bus, devfn, offset, val)

Read a value from the PCI configuration space of the appropriate size at an address composed from the bus, devfn and
offset.

HAL_PCI_WRITE_UINT8(bus, devfn, offset, val)
HAL_PCI_WRITE_UINT16(bus, devfn, offset, val)

417

The eCos PCI Library

HAL_PCI_WRITE_UINT32(bus, devfn, offset, val)

Write a value to the PCI configuration space of the appropriate size at an address composed from the bus, devfn and offset.

HAL_PCI_TRANSLATE_INTERRUPT(bus, devfn, *vec, valid)

Translate the device's interrupt line into a HAL interrupt vector.

HAL_PCI_ALLOC_BASE_MEMORY
HAL_PCI_ALLOC_BASE_IO

These macros define the default base addresses used to initialize the memory and I/O allocation pointers.

HAL_PCI_PHYSICAL_MEMORY_BASE
HAL_PCI_PHYSICAL_IO_BASE

PCI memory and IO range do not always correspond directly to physical memory or IO addresses. Frequently the PCI address
spaces are windowed into the processor's address range at some offset. These macros define offsets to be added to the PCI
base addresses to translate PCI bus addresses into physical memory addresses that can be used to access the allocated memory
or IO space.

Note

The chunk of PCI memory space directly addressable though the window by the CPU may be smaller than the
amount of PCI memory actually provided. In that case drivers will have to access PCI memory space in segments.
Doing this will be platform specific and is currently beyond the scope of the HAL.

HAL_PCI_IGNORE_DEVICE(bus, dev, fn)

This macro, if defined, may be used to limit the devices which are found by the bus scanning functions. This is sometimes
necessary for devices which need special handling. If this macro evaluates to true, the given device will not be found by
cyg_pci_find_next or other bus scanning functions.

HAL_PCI_IGNORE_BAR(dev_info, bar_num)

This macro, if defined, may be used to limit which BARs are discovered and configured. This is sometimes necessary for
platforms with limited PCI windows. If this macro evaluates to true, the given BAR will not be discovered by cyg_p-
ci_get_device_info and therefore not configured by cyg_pci_configure_device.

418

Part XXII. SPI Support
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
72. SPI Support .. 421

Overview ... 422
SPI Interface .. 424
Porting to New Hardware .. 428

73. Freescale MCFxxxx ColdFire QSPI Bus Driver .. 430
Freescale MCFxxxx Coldfire QSPI Bus Driver .. 431

74. Microchip (Atmel) USART-as-SPI Bus Driver ... 436
Microchip (Atmel) SAM E70/S70/V70/V71 USART-as-SPI Bus Driver ... 437

420

Chapter 72. SPI Support

421

SPI Support

Name
Overview — eCos Support for SPI, the Serial Peripheral Interface

Description
The Serial Peripheral Interface (SPI) is one of a number of serial bus technologies. It can be used to connect a processor to one
or more peripheral chips, for example analog-to-digital convertors or real time clocks, using only a small number of pins and
PCB tracks. The technology was originally developed by Motorola but is now also supported by other vendors.

A typical SPI system might look like this:

At the start of a data transfer the master cpu asserts one of the chip select signals and then generates a clock signal. During
each clock tick the cpu will output one bit on its master-out-slave-in line and read one bit on the master-in-slave-out line. Each
device is connected to the clock line, the two data lines, and has its own chip select. If a device's chip select is not asserted then
it will ignore any incoming data and will tristate its output. If a device's chip select is asserted then during each clock tick it
will read one bit of data on its input pin and output one bit on its output pin.

The net effect is that the cpu can write an arbitrary amount of data to one of the attached devices at a time, and simultaneously
read the same amount of data. Some devices are inherently uni-directional. For example an LED unit would only accept data
from the cpu: it will not send anything meaningful back; the cpu will still sample its input every clock tick, but this should
be discarded.

A useful feature of SPI is that there is no flow control from the device back to the cpu. If the cpu tries to communicate with a
device that is not currently present, for example an MMC socket which does not contain a card, then the I/O will still proceed.
However the cpu will read random data. Typically software-level CRC checksums or similar techniques will be used to allow
the cpu to detect this.

SPI communication is not fully standardized. Variations between devices include the following:

1. Many devices involve byte transfers, where the unit of data is 8 bits. Others use larger units, up to 16 bits.

2. Chip selects may be active-high or active-low. If the attached devices use a mixture of polarities then this can complicate
things.

3. Clock rates can vary from 128KHz to 20MHz or greater. With some devices it is necessary to interrogate the device using
a slow clock, then use the obtained information to select a faster clock for subsequent transfers.

4. The clock is inactive between data transfers. When inactive the clock's polarity can be high or low.

5. Devices depend on the phase of the clock. Data may be sampled on either the rising edge or the falling edge of the clock.

6. A device may need additional delays, for example between asserting the chip select and the first clock tick.

422

SPI Support

7. Some devices involve complicated transactions: perhaps a command from cpu to device; then an initial status response from
the device; a data transfer; and a final status response. From the cpu's perspective these are separate stages and it may be
necessary to abort the operation after the initial status response. However the device may require that the chip select remain
asserted for the whole transaction. A side effect of this is that it is not possible to do a quick transfer with another device
in the middle of the transaction.

8. Certain devices, for example MMC cards, depend on a clock signal after a transfer has completed and the chip select has
dropped. This clock is used to finish some processing within the device.

Inside the cpu the clock and data signals are usually managed by dedicated hardware. Alternatively SPI can be implemented
using bit-banging, but that approach is normally used for other serial bus technologies such as I²C. The chip selects may also
be implemented by the dedicated SPI hardware, but often GPIO pins are used instead.

eCos Support for SPI
The eCos SPI support for any given platform is spread over a number of different packages:

• This package, CYGPKG_IO_SPI, exports an API for accessing devices attached to an SPI bus. This API handles issues
such as locking between threads. The package does not contain any hardware-specific code, instead it will call into an SPI
bus driver package.

In future this package may be extended with a bit-banging implementation of an SPI bus driver. This would depend on
lower-level code for manipulating the GPIO pins used for the clock, data and chip select signals, but timing and framing
could be handled by generic code.

• There will be a bus driver package for the specific SPI hardware on the target hardware, for example CYGPKG_DE-
VS_SPI_MCFxxxx_QSPI. This is responsible for the actual I/O. A bus driver may be used on many different boards,
all with the same SPI bus but with different devices attached to that bus. Details of the actual devices should be supplied
by other code.

• The generic API depends on cyg_spi_device data structures. These contain the information needed by a bus driver, for
example the appropriate clock rate and the chip select to use. Usually the data structures are provided by the platform HAL
since it is that package which knows about all the devices on the board.

On some development boards the SPI pins are brought out to expansion connectors, allowing end users to add extra devices.
In such cases the platform HAL may not know about all the devices on the board. Data structures for the additional devices
can instead be supplied by application code.

• Some types of SPI devices may have their own driver package. For example the CYGPKG_DEVS_FLASH_SPI_COMMON
package provides an abstraction layer to the standard eCos I/O Flash API package (CYGPKG_IO_FLASH) for SFDP com-
pliant flash devices. Another common use for SPI buses is to provide MultiMediaCard (MMC/SD) support. The CYGP-
KG_DEVS_DISK_MMC package provides a block device interface for higher-level code such as file systems. Other SPI
devices such as analog-to-digital converters are much simpler and come in many varieties. There are no dedicated packages
to support each such device: the chances are low that another board would use the exact same device, so there are no op-
portunities for code re-use. Instead the devices may be accessed directly by application code or by extra functions in the
platform HAL.

Typically all appropriate packages will be loaded automatically when you configure eCos for a given target. If the application
does not use any of the SPI I/O facilities, directly or indirectly, then linker garbage collection should eliminate all unnecessary
code and data. All necessary initialization should happen automatically. However the exact details may depend on the target,
so the platform HAL documentation should be checked for further details.

There is one important exception to this: if the SPI devices are attached to an expansion connector then the platform HAL will
not know about these devices. Instead more work will have to be done by application code.

423

SPI Support

Name
SPI Functions — allow applications and other packages to access SPI devices

Synopsis
#include <cyg/io/spi.h>

CYG_SPI_OP_RETURN_TYPE cyg_spi_transfer(device, polled, count, tx_data, rx_data);

CYG_SPI_OP_RETURN_TYPE cyg_spi_tick(device, polled, count);

int cyg_spi_get_config(device, key, buf, len);

int cyg_spi_set_config(device, key, buf, len);

CYG_SPI_OP_RETURN_TYPE cyg_spi_transaction_begin(device);

cyg_bool cyg_spi_transaction_begin_nb(device);

CYG_SPI_OP_RETURN_TYPE cyg_spi_transaction_transfer(device, polled, count, tx_data,
rx_data, drop_cs);

CYG_SPI_OP_RETURN_TYPE cyg_spi_transaction_tick(device, polled, count);

CYG_SPI_OP_RETURN_TYPE cyg_spi_transaction_end(device);

Description
All SPI functions take a pointer to a cyg_spi_device structure as their first argument. This is an opaque data structure, usually
provided by the platform HAL. It contains the information needed by the SPI bus driver to interact with the device, for example
the required clock rate and polarity.

An SPI transfer involves the following stages:

1. Perform thread-level locking on the bus. Only one thread at a time is allowed to access an SPI bus. This eliminates the need
to worry about locking at the bus driver level. If a platform involves multiple SPI buses then each one will have its own
lock. Prepare the bus for transfers to the specified device, for example by making sure it will tick at the right clock rate.

2. Assert the chip select on the specified device, then transfer data to and from the device. There may be a single data transfer
or a sequence. It may or may not be necessary to keep the chip select asserted throughout a sequence.

3. Optionally generate some number of clock ticks without asserting a chip select, for those devices which need this to complete
an operation.

4. Return the bus to a quiescent state. Then unlock the bus, allowing other threads to perform SPI operations on devices
attached to this bus.

The simple functions cyg_spi_transfer and cyg_spi_tick perform all these steps in a single call. These are suitable
for simple I/O operations. The alternative transaction-oriented functions each perform just one of these steps. This makes it
possible to perform multiple transfers while only locking and unlocking the bus once, as required for more complicated devices.

With the exception of cyg_spi_transaction_begin_nb all the functions will block until completion. The type of the
return values depends on whether the underlying hardware driver can return error conditions or not. If it can, this will be indi-
cated with the C preprocessor define CYGINT_IO_SPI_DRV_REPORTS_ERRORS, and the return type CYG_SPI_OP_RE-
TURN_TYPE will be a standard error code as defined in the C/POSIX header <errno.h>. Alternatively for drivers which
do not return errors, the return value's type will be void, or in other words, no return value. If there are any errors, they would
be generated by an SPI bus peripheral, and not by the attached SPI device. The SPI bus does not receive any feedback from a
device about possible errors, instead those have to be handled by software at a higher level.

If a driver is capable of indicating errors, and an error value is returned, this may imply the SPI operation requested may not
have started, may not have completed, or may only have partially completed. The exact interpretation will depend on both

424

SPI Support

hardware properties and low-level driver implementation. SPI API users are free to ignore all return values, in which case the
usage of the SPI API will be identical, irrespective of the setting of CYGINT_IO_SPI_DRV_REPORTS_ERRORS.

An SPI transfer will always take a predictable amount of time, depending on the transfer size and the clock rate. If a thread
cannot afford the time it will take to perform a complete large transfer then a number of smaller transfers can be used instead.

SPI operations should always be performed at thread-level or during system initialization, and not inside an ISR or DSR. This
greatly simplifies locking. Also a typical ISR or DSR should not perform a blocking operation such as an SPI transfer.

SPI transfers can happen in either polled or interrupt-driven mode. Typically polled mode should be used during system ini-
tialization, before the scheduler has been started and interrupts have been enabled. Polled mode should also be used in sin-
gle-threaded applications such as RedBoot. A typical multi-threaded application should normally use interrupt-driven mode
because this allows for more efficient use of cpu cycles. Polled mode may be used in a multi-threaded application but this is
generally undesirable: the cpu will spin while waiting for a transfer to complete, wasting cycles; also the current thread may
get preempted or timesliced, making the timing of an SPI transfer much less predictable. On some hardware interrupt-driven
mode is impossible or would be very inefficient. In such cases the bus drivers will only support polled mode and will ignore
the polled argument.

Simple Transfers
cyg_spi_transfer can be used for SPI operations to simple devices. It takes the following arguments:

cyg_spi_device* device This identifies the SPI device that should be used.

cyg_bool polled Polled mode should be used during system initialization and in a single-threaded appli-
cation. Interrupt-driven mode should normally be used in a multi-threaded application.

cyg_uint32 count This identifies the number of data items to be transferred. Usually each data item is a
single byte, but some devices use a larger size up to 16 bits.

const cyg_uint8* tx_data The data to be transferred to the device. If the device will only output data and ignore
its input then a null pointer can be used. Otherwise the array should contain count
data items, usually bytes. For devices where each data item is larger than one byte the
argument will be interpreted as an array of shorts instead, and should be aligned to a 2-
byte boundary. The bottom n bits of each short will be sent to the device. The buffer
need not be aligned to a cache-line boundary, even for SPI devices which use DMA
transfers, but some bus drivers may provide better performance if the buffer is suitably
aligned. The buffer will not be modified by the transfer.

cyg_uint8* rx_data A buffer for the data to be received from the device. If the device does not generate any
output then a null pointer can be used. The same size and alignment rules apply as for
tx_data.

cyg_spi_transfer performs all the stages of an SPI transfer: locking the bus; setting it up correctly for the specified
device; asserting the chip select and transferring the data; dropping the chip select at the end of the transfer; returning the bus
to a quiescent state; and unlocking the bus.

Additional Clock Ticks
Some devices require a number of clock ticks on the SPI bus between transfers so that they can complete some internal pro-
cessing. These ticks must happen at the appropriate clock rate but no chip select should be asserted and no data transfer will
happen. cyg_spi_tick provides this functionality. The device argument identifies the SPI bus, the required clock rate
and the size of each data item. The polled argument has the usual meaning. The count argument specifies the number of
data items that would be transferred, which in conjunction with the size of each data item determines the number of clock ticks.

Transactions
A transaction-oriented API is available for interacting with more complicated devices. This provides separate functions for
each of the steps in an SPI transfer.

425

SPI Support

cyg_spi_transaction_begin must be used at the start of a transaction. This performs thread-level locking on the bus,
blocking if it is currently in use by another thread. Then it prepares the bus for transfers to the specified device, for example
by making sure it will tick at the right clock rate.

cyg_spi_transaction_begin_nb is a non-blocking variant, useful for threads which cannot afford to block for an
indefinite period. If the bus is currently locked the function returns false immediately. If the bus is not locked then it acts as
cyg_spi_transaction_begin and returns true.

Once the bus has been locked it is possible to perform one or more data transfers by calling cyg_spi_transac-
tion_transfer. This takes the same arguments as cyg_spi_transfer, plus an additional one drop_cs. A non-zero
value specifies that the device's chip select should be dropped at the end of the transfer, otherwise the chip select remains
asserted. It is essential that the chip select be dropped in the final transfer of a transaction. If the protocol makes this difficult
then cyg_spi_transaction_tick can be used to generate dummy ticks with all chip selects dropped.

If the device requires additional clock ticks in the middle of a transaction without being selected, cyg_spi_transac-
tion_tick can be used. This will drop the device's chip select if necessary, then generate the appropriate number of ticks.
The arguments are the same as for cyg_spi_tick.

cyg_spi_transaction_end should be called at the end of a transaction. It returns the SPI bus to a quiescent state, then
unlocks it so that other threads can perform I/O.

A typical transaction might involve the following. First a command should be sent to the device, consisting of four bytes. The
device will then respond with a single status byte, zero for failure, non-zero for success. If successful then the device can accept
another n bytes of data, and will generate a 2-byte response including a checksum. The device's chip select should remain
asserted throughout. The code for this would look something like:

#include <cyg/io/spi.h>
#include <cyg/hal/hal_io.h> // Defines the SPI devices
…
 cyg_spi_transaction_begin(&hal_spi_eprom);
 // Interrupt-driven transfer, four bytes of command
 cyg_spi_transaction_transfer(&hal_spi_eprom, 0, 4, command, NULL, 0);
 // Read back the status
 cyg_spi_transaction_transfer(&hal_spi_eprom, 0, 1, NULL, status, 0);
 if (!status[0]) {
 // Command failed, generate some extra ticks to drop the chip select
 cyg_spi_transaction_tick(&hal_spi_eprom, 0, 1);
 } else {
 // Transfer the data, then read back the final status. The
 // chip select should be dropped at the end of this.
 cyg_spi_transaction_transfer(&hal_spi_eprom, 0, n, data, NULL, 0);
 cyg_spi_transaction_transfer(&hal_spi_eprom, 0, 2, NULL, status, 1);
 // Code for checking the final status should go here
 }
 // Transaction complete so clean up
 cyg_spi_transaction_end(&hal_spi_eprom);

A number of variations are possible. For example the command and status could be packed into the beginning and end of two
5-byte arrays, allowing a single transfer.

Device Configuration
The functions cyg_spi_get_config and cyg_spi_set_config can be used to examine and change parameters as-
sociated with SPI transfers. The only keys that are defined for all devices are CYG_IO_GET_CONFIG_SPI_CLOCKRATE
and CYG_IO_SET_CONFIG_SPI_CLOCKRATE. Some types of device, for example MMC cards, support a range of clock
rates. The cyg_spi_device structure will be initialized with a low clock rate. During system initialization the device will be
queried for the optimal clock rate, and the cyg_spi_device should then be updated. The argument should be a clock rate in
Hertz. For example the following code switches communication to 1Mbit/s:

cyg_uint32 new_clock_rate = 1000000;
cyg_uint32 len = sizeof(cyg_uint32);
if (cyg_spi_set_config(&hal_mmc_device,
 CYG_IO_SET_CONFIG_SPI_CLOCKRATE,
 (const void *)&new_clock_rate, &len)) {
 // Error recovery code

426

SPI Support

}

If an SPI bus driver does not support the exact clock rate specified it will normally use the nearest valid one. SPI bus drivers
may define additional keys appropriate for specific hardware. This means that the valid keys are not known by the generic code,
and theoretically it is possible to use a key that is not valid for the SPI bus to which the device is attached. It is also possible that
the argument used with one of these keys is invalid. Hence both cyg_spi_get_config and cyg_spi_set_config
can return error codes. The return value will be 0 for success, non-zero for failure. The SPI bus driver's documentation should
be consulted for further details.

Both configuration functions will lock the bus, in the same way as cyg_spi_transfer. Changing the clock rate in the
middle of a transfer or manipulating other parameters would have unexpected consequences.

427

SPI Support

Name
Porting — Adding SPI support to new hardware

Description
Adding SPI support to an eCos port can take two forms. If there is already an SPI bus driver for the target hardware then
both that driver and this generic SPI package CYGPKG_IO_SPI should be included in the ecos.db target entry. Typically
the platform HAL will need to supply some platform-specific information needed by the bus driver. In addition the platform
HAL should provide cyg_spi_device structures for every device attached to the bus. The exact details of this depend on the
bus driver so its documentation should be consulted for further details. If there is no suitable SPI bus driver yet then a new
driver package will have to be written.

Adding a Device
The generic SPI package CYGPKG_IO_SPI defines a data structure cyg_spi_device. This contains the information needed
by the generic package, but not the additional information needed by a bus driver to interact with the device. Each bus driver
will define a larger data structure, for example cyg_mcf52xx_qspi_device, which contains a cyg_spi_device as its first field.
This is analogous to C++ base and derived classes, but without any use of virtual functions. The bus driver package should
be consulted for the details.

During initialization an SPI bus driver may need to know about all the devices attached to that bus. For example it may need to
know which cpu pins should be configured as chip selects rather than GPIO pins. To achieve this all device definitions should
specify the particular bus to which they are attached, for example:

struct cyg_mcf52xx_qspi_device hal_spi_atod CYG_SPI_DEVICE_ON_BUS(0) =
{
 .spi_common.spi_bus = &cyg_mcf52xx_qspi_bus,
 …
};

The CYG_SPI_DEVICE_ON_BUS macro adds information to the structure which causes the linker to group all such structures
in a single table. The bus driver's initialization code can then iterate over this table.

Adding Bus Support
An SPI bus driver usually involves a new hardware package. This needs to perform the following:

1. Define a device structure which contains a cyg_spi_device as its first element. This should contain all the information needed
by the bus driver to interact with a device on that bus.

2. Provide functions for the following operations:

spi_transaction_begin
spi_transaction_transfer
spi_transaction_tick
spi_transaction_end
spi_get_config
spi_set_config

These correspond to the main API functions, but can assume that the bus is already locked so no other thread will be
manipulating the bus or any of the attached devices. Some of these operations may be no-ops.

3. Define a bus structure which contains a cyg_spi_bus as its first element. This should contain any additional information
needed by the bus driver.

4. Optionally, instantiate the bus structure. The instance should have a well-known name since it needs to be referenced by the
device structure initializers. For some drivers it may be best to create the bus inside the driver package. For other drivers it
may be better to leave this to the platform HAL or the application. It depends on how much platform-specific knowledge
is needed to fill in the bus structure.

428

SPI Support

5. Create a HAL table for the devices attached to this bus.

6. Arrange for the bus to be initialized early on during system initialization. Typically this will happen via a prioritized
static constructor with priority CYG_INIT_BUS_SPI. As part of this initialization the bus driver should invoke the
CYG_SPI_BUS_COMMON_INIT macro on its cyg_spi_bus field.

7. Provide the appropriate documentation, including details of how the SPI device structures should be initialized.

There are no standard SPI testcases. It is not possible to write SPI code without knowing about the devices attached to the bus,
and those are inherently hardware-specific.

429

Chapter 73. Freescale MCFxxxx ColdFire
QSPI Bus Driver

430

Freescale MCFxxxx ColdFire QSPI Bus Driver

Name
CYGPKG_DEVS_SPI_MCFxxxx_QSPI — eCos Support for the Freescale Coldfire QSPI Bus

Description
Several processors in the Freescale ColdFire family come with an on-chip SPI device, also known as QSPI. This package pro-
vides an eCos bus driver for that device. It implements the functionality defined by the generic SPI package CYGPKG_IO_SPI.
The driver supports both polled and interrupt-driven transfers. Typical supported transfer rates range from 128KHz to 33MHz,
although the exact details depend on the specific ColdFire processor being used and on the processor's clock speed. The hard-
ware does not support DMA so large transfers at high transfer rates will consume much of the available cpu time.

This bus driver package does not instantiate any cyg_spi_bus structures. It is possible for a processor to have more than
one SPI bus, so it is better to leave it to the processor HAL to define the bus or buses. Instead the bus driver package just
provides functions and utility macros for use by the processor HAL. Similarly the bus driver package does not provide any
cyg_spi_device structures. Exactly which devices are attached to the SPI bus is a characteristic of the platform so usually it
is the platform HAL which provides the device instances.

Configuration Options
This SPI bus driver package should be loaded automatically when selecting a target containing a ColdFire processor with
QSPI hardware, and it should never be necessary to load the package explicitly. If the application does not use any of the SPI
functionality then all the SPI support code should be removed at link-time and the application does not suffer any overheads.

The package contains a single configuration option CYGHWR_DEVS_SPI_MCFxxxx_QSPI_MULTIPLE_BUSES. Usually
this option should not be manipulated by application developers, instead it is set by the processor HAL. When the option is
disabled the driver will optimize for the common case of a single bus.

The only other configuration options provided by this package relate to compiler flags.

Defining Buses
The header file cyg/io/mcfxxxx_qspi.h provides a utility macro CYG_MCFxxxx_QSPI_BUS to allow processor
HALs to instantiate a bus. Existing HALs such as the MCF521x's will show how to use this macro.

Defining Devices
For most boards the platform HAL will create cyg_spi_device instances for all attached SPI devices, and will initialize the
system so that the SPI-related processor pins are connected appropriately. Some development boards may not have any SPI
devices but instead export the relevant signals to expansion connectors. In those cases it will be the responsibility of application
code to create the device instances and manipulate the GPIO pins appropriately.

Device instances should take the form of a cyg_mcfxxxx_qspi_device structure, which contains a cyg_spi_device as its first
field.

#include <cyg/io/mcfxxxx_qspi.h>
…
cyg_mcfxxxx_qspi_device hal_spi_atod CYG_SPI_DEVICE_ON_BUS(mcfxxxx_qspi) = {
 .qspi_common.spi_bus = &cyg_mcfxxxx_qspi_bus,
 …
};

This defines a variable hal_spi_atod which can be used by other packages or by application code as an argument to the
I/O functions provided by the generic SPI package CYGPKG_IO_SPI. A gcc extension, designated initializers, is used to
fill in the qspi_common.spi_bus structure field. The structure contains a further seven fields which define exactly how
to interact with the SPI device. Most of these fields are simply hardware register values, and the appropriate ColdFire User
Manual should be consulted for full details of these registers. The header file cyg/hal/hal_io.h will provide #define's
for the various bits, for example HAL_MCFxxxx_QSPIx_QMR_MSTR for the master mode bit of the QMR register.

431

Freescale MCFxxxx ColdFire QSPI Bus Driver

qspi_qmr

When performing a transfer to this SPI device the bus driver will use the qspi_qmr field for the QSPI hardware's QMR
register. The main fields in this register are:

MSTR This bit specifies that the QSPI hardware should operate in master mode. It must always be set.

BITS The data items transferred can range from 8 to 16 bits. For example, to specify 12-bit data items the qspi_qmr
field should include HAL_MCFxxxx_QSPIx_QMR_BITS_12.

CPOL Clock polarity. The default is inactive-low, active-high. If the device requires the opposite polarity then HAL_M-
CFxxxx_QSPIx_QMR_CPOL should be specified.

CPHA Clock phase. The default is to capture data on the leading clock edge. If the device captures data on the trailing
edge instead then HAL_MCFxxxx_QSPIx_QMR_CPHA should be specified.

BAUD Baud rate divider. This should be a small number, usually between 1 and 255, which controls the clock rate. The
value to be used depends on the device's maximum clock rate, the specific processor used, and the processor's
clock speed.

qspi_qdlyr

This field is used to set the QSPI delay register QDLYR when performing transfers to this device. It contains two delay
fields, QCD and DTL, which can be used in conjunction with qspi_qcr for fine control over bus timing. Most devices
do not have any special requirements here so a value of 0 can be used. The register also contains an SPE bit to start a
transfer, but that bit is used by the bus driver and should not be set in the device structure.

qspi_qwr

This field is used to set the QWR register. Only one bit, CSIV, in this register may be defined. The other fields in the
register are manipulated by the bus driver. Usually if the device has an active-low chip select then the CSIV bit should
be set, otherwise the structure field should be 0. If a custom chip select control function is used then that may require
different CSIV behaviour.

qspi_qcr

This is used to fill in the command RAM registers during a data transfer. It contains five fields. The CONT bit is not
normally required but can provide additional control over the chip select. Note that some versions of the various ColdFire
User Manuals give an incomplete description of this bit and the errata sheets should be consulted as well. The BITSE bit
should be set if transfers involve data items which are not 8 bits. The DT and DSCK bits can be used to enable one or both
delays in the QDLYR register. The QSPI_CS field consists of four bits for the four QSPI chip select pins. If all the devices
connected to the SPI bus are active-high and each is connected directly to a chip select, then only of these bits should be
set. If all the devices are active-low then only one of the bits should be clear.

With some hardware the QSPI_CS bits can be more complicated. For example consider an SPI bus with an active-high
device attached to QSPI chip selects 0 and 1, and active-low devices attached to the other two chip selects. The device
definition for the CS0 device should have the QWR CSIV bit clear. The QCR QSPI_CS bits should have bits 0, 2 and
3 set. Between transfers all chip select pins will be low. This will activate the devices on CS2 and CS3, but since there
is no clock signal this is harmless. When a transfer happens CS0, CS2 and CS3 will all be high, and CS1 will remain
low. This will activate the device on CS0, but leave the other three devices inactive. Hence only the specified device is
active during a transfer.

If the hardware requires further control over the chip selects then the device definition can include a custom qspi_c-
s_control function.

There is no support for using different QCR values for different parts of a transfer, for example the first data item versus
the rest of the transfer. Such functionality is rarely useful and would require extra complexity in the bus driver, including
performance-critical parts.

qspi_qcr_tick

This is used to fill in the command RAM registers during a tick operation, when none of the devices should be active.
Some devices need to see a certain number of clock signals even when their chip select is not active, or they will not

432

Freescale MCFxxxx ColdFire QSPI Bus Driver

operate correctly. The hardware fields are the same as for qspi_qcr. Usually the QSPI_CS bits will be all 0 or all 1,
but some hardware may require a more complicated value.

qspi_tick_data

When performing a tick operation this field will be used as the data to be transferred. Usually the value will not matter
because, by the definition of an SPI tick, none of the SPI devices will be selected.

qspi_cs_control

Some hardware may have chip select requirements which cannot be satisfied simply by setting the QWR CSIV and the QCR
QSPI_CS bits. For example if there are more than four SPI devices then the surplus may have their chip selects connected
to GPIO pins. Also some devices may require that the chip select remain asserted for the duration of a multi-transfer
transaction, and that is not supported directly by the QSPI hardware. To cope with such cases it is possible to define a
custom chip select control function.

Consider a simple SPI device on a board with a 64MHz MCF5282 processor. The device uses 8-bit data, default clock polarity
and phase, can be driven at up to 10 MHz, does not require any special delays, has an active-high chip select, and is connected
to the processor's QSPI CS0 pin. There are no other devices on the bus.

#include <cyg/io/mcfxxxx_qspi.h>
…
cyg_mcfxxxx_qspi_device hal_spi_dev0 CYG_SPI_DEVICE_ON_BUS(mcfxxxx_qspi) = {
 .qspi_common.spi_bus = &cyg_mcfxxxx_qspi_bus,
 .qspi_qmr = HAL_MCFxxxx_QSPIx_QMR_MSTR |
 HAL_MCFxxxx_QSPIx_QMR_BITS_8 |
 0x04,
 .qspi_qdlyr = 0,
 .qspi_qwr = 0,
 .qspi_qcr = HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS0,
 .qspi_qcr_tick = 0,
 .qspi_tick_data = 0xFF,
 .qspi_cs_control = (void (*)(cyg_mcfxxxx_qspi_device*, int)) 0
};

For a more complicated example, consider a board with an MCF5272 processor and an SPI device that involves 12-bit data
items, uses inverted clock polarity and phase, can only be driven at the slowest clock rate, does not require any special delays
or chip select logic, has an active-low chip select, and is connected to the processor's QSPI CS2 pin:

#include <cyg/io/mcfxxxx_qspi.h>
…
cyg_mcfxxxx_qspi_device hal_spi_dev2 CYG_SPI_DEVICE_ON_BUS(mcfxxxx_qspi) = {
 .qspi_common.spi_bus = &cyg_mcfxxxx_qspi_bus,
 .qspi_qmr = HAL_MCFxxxx_QSPIx_QMR_MSTR |
 HAL_MCFxxxx_QSPIx_QMR_BITS_12 |
 HAL_MCFxxxx_QSPIx_QMR_CPOL |
 HAL_MCFxxxx_QSPIx_QMR_CPHA |
 0xFF,
 .qspi_qdlyr = 0,
 .qspi_qwr = HAL_MCFxxxx_QSPIx_QWR_CSIV,
 .qspi_qcr = HAL_MCFxxxx_QSPIx_QCRn_BITSE |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS0 |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS1 |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS3,
 .qspi_qcr_tick = HAL_MCFxxxx_QSPIx_QCRn_BITSE |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS0 |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS1 |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS2 |
 HAL_MCFxxxx_QSPIx_QCRn_QSPI_CS_CS3,
 .qspi_tick_data = 0xFF,
 .qspi_cs_control = (void (*)(cyg_mcfxxxx_qspi_device*, int)) 0
};

This definition assumes that there are no attached SPI devices with an active-high chip select. If there are such devices then
the qspi_qcr and qspi_qcr_tick fields should be modified so that these devices are not activated at the wrong time.

The header file cyg/io/mcfxxxx_qspi.h provides a utility macro CYG_MCFxxxx_QSPI_DEVICE which can be used
to instantiate a device. Essentially the macro just expands to a structure definition as above.

433

Freescale MCFxxxx ColdFire QSPI Bus Driver

Advanced Chip Select Control
The ColdFire QSPI hardware provides support for controlling the chip select signals of up to four SPI devices. In many situa-
tions this support is adequate, but there are exceptions:

1. The QSPI chip select outputs may share processor pins with other on-chip ColdFire devices. For example on the mcf5272
the QSPI CS2 signal uses the same pin as the uart1 CTS signal, so if the application needs uart1 and hardware flow-control
then that QSPI CS2 pin is no longer available.

2. If the hardware has more than four SPI devices then additional chip selects are needed.

3. With most SPI devices the chip select signal only needs to be asserted while I/O is taking place, but there are exceptions.
For example interactions with an MMC card involve a sequence of transfers, and the chip select must remain asserted in
between these transfers. Depending on thread priorities and other factors there may be a considerable delay between these
transfers and the QSPI hardware does not provide any way of keeping a chip select asserted indefinitely.

The issue of insufficient chip selects can usually be handled by adding extra hardware, for example an external decoder chip
possibly complemented by inverters if there is a mixture of active-high and active-low devices. This approach can be supported
simply by programming the right values for qspi_qcr and qspi_qcr_tick, but the cost of the extra hardware may be
unacceptable. An alternative approach is to use one or more of the processor's GPIO pins to control the extra devices.

The issue of persistent chip selects can be handled in one of two main ways. A GPIO pin can be used to control the chip select,
bypassing the QSPI support. Alternatively the QWR CSIV bit can be used in an inverted sense, to activate an SPI device rather
than to define the inactive state.

To support these variations an arbitrary chip select control function can be specified for a device. Such a function takes two
arguments. The first is a pointer to the SPI device, possibly allowing the function to be shared between multiple devices. The
second is one of the following:

CYG_MCFxxxx_QSPI_CS_INIT

During system initialization the QSPI bus driver will iterate over all the attached SPI devices. If a device has a qspi_c-
s_control function then this will be invoked. A typical action would be to configure a GPIO pin. Note that these calls
happen quite early during system initialization so other subsystems like standard I/O may not be set up yet.

CYG_MCFxxxx_QSPI_CS_ASSERT

This is used to assert the chip select, in other words to set the chip select to low for an active-low device or high for an
active-high device. It will be called at the start of any transfer, unless the previous transfer has left the chip select asserted.

CYG_MCFxxxx_QSPI_CS_DROP

This is used to deassert the chip select. It will be called at the end of any transfer that specifies drop_cs. It will also
be called at the start of a tick operation.

To support persistent chip selects via the CSIV signal the bus driver package provides two chip control functions
cyg_mcfxxxx_qspi_csiv_cs_control_active_high and cyg_mcfxxxx_qspi_csiv_cs_control_ac-
tive_low. To use these with say an active-low device:

1. The qspi_qwr field should be set to HAL_MCFxxxx_QSPIx_QWR_CSIV, so the chip select is high when there is no
I/O taking place.

2. The qspi_cs_control field should be set to &cyg_mcfxxxx_qspi_csiv_cs_control_active_low. This
function will be invoked by the bus driver to assert or drop the signal (initialization is a no-op).

3. The QSPI_CS bits in the qspi_qcr field still have the usual meaning.

4. At the start of a transfer cyg_mcfxxxx_qspi_csiv_cs_control_active_low will clear the QWR CSIV bit.
There is no I/O taking place yet so all chip select outputs will switch to low, activating all active-low devices. This is
generally harmless since there is no clock signal.

434

Freescale MCFxxxx ColdFire QSPI Bus Driver

5. When the I/O actually starts the qspi_qcr field will be used, deactivating all devices except the current one.

6. At the end of each individual transfer the chip selects will revert to their inactive state, which because of the CSIV setting
means low. Again this will activate all active-low devices, but there is no clock signal so no I/O takes place.

7. For the last transfer of a transaction or for a tick operation cyg_mcfxxxx_qspi_cs_control_active_low will be
invoked again with a DROP argument. It will reset the QWR CSIV bit to 1, deactivating all devices.

The overall effect is a persistent chip select with the desired polarity, using just the QSPI hardware facilities rather than a
GPIO pin.

435

Chapter 74. Microchip (Atmel) USART-as-
SPI Bus Driver

436

Microchip (Atmel) USART-as-SPI Bus Driver

Name
CYGPKG_DEVS_SPI_ATMEL_USPI — eCos Support for the Microchip (Atmel) USART-as-SPI Bus

Description
The Microchip (previously Atmel) SAM E70, S70, V70 and V71 processors do come with on-chip SPI controllers, but also
with the ability to configure the on-chip USART controllers as SPI masters. This package provides an eCos bus driver for those
USART-as-SPI interfaces. The CYGPKG_DEVS_SPI_ARM_AT91 package provides the bus driver support for the standard
SPI controllers.

This package implements the functionality defined by the generic SPI package CYGPKG_IO_SPI. The driver supports both
polled and DMA-driven transfers. Typical supported transfer rates range from 3KHz to 25MHz, although the exact details
depend on the specific processor configuration.

This bus driver package does not instantiate any cyg_spi_device structures. Exactly which devices are attached to the SPI bus
is a characteristic of the platform so usually it is the platform HAL which provides the device instances.

Configuration Options
This SPI bus driver package should be loaded automatically when selecting a target containing a suitable SAM processor with
USART-as-SPI hardware, and it should never be necessary to load the package explicitly. If the application does not use any
of the SPI functionality then all the SPI support code will be removed at link-time and the application does not suffer any
overheads.

The package contains a single configuration option CYGNUM_DEVS_SPI_ATMEL_USPI_BAUD_RATE_MAX. Usually this
option will not need to be manipulated by application developers, since it purely sets an upper bound on the acceptable device
baudrate that will be accepted, though may not be achievable depending on the CPU configuration.

The only other configuration options provided by this package relate to compiler flags.

Instantiating Buses
In the platform CDL, when this CYGPKG_DEVS_SPI_ATMEL_USPI is configured, an implements entry should be pro-
vided for the USART-as-SPI bus to instantiate.

Note

Currently the CYGPKG_HAL_CORTEXM_SAM HAL allows for the dedicated SPI buses numbered 0 and 1, and
the USART-as-SPI buses numbered 2..4.

For example, the samx70_ek platform CDL provides for SPI bus#2 by declaring:

implements CYGINT_HAL_CORTEXM_SAM_SPI2

When a bus is implemented the Chip-Select GPIOs associated with the bus (at least one) should be provided by the platform
CDL defining a corresponding CYGHWR_HAL_CORTEXM_SAM_SPIx_CS_GPIOS definition for the bus in question.

For the SPI bus#2 example above the platform CDL would also define CYGHWR_HAL_CORTEXM_SAM_SPI2_CS_GPIOS
option and provide the list of chip-select pins, e.g.:

default_value { "SPI_CS(B,3)" }

Defining Devices
For most boards the platform HAL will create cyg_spi_device instances for all attached SPI devices, and will initialize the
system so that the SPI-related processor pins are connected appropriately.

Device instances should take the form of a cyg_spi_atmel_device_t structure, which contains a cyg_spi_device as its first field.
For example, for a device on bus#2:

437

Microchip (Atmel) USART-as-SPI Bus Driver

#include <cyg/io/spi_atmel_uspi.h>
…
cyg_spi_atmel_device_t hal_spi_example CYG_SPI_DEVICE_ON_BUS(2) = {
 .spi_device.spi_bus = &cyg_spi_atmel_uspi_bus2,
 …
};

This defines a variable hal_spi_example which can be used by other packages or by application code as an argument to
the I/O functions provided by the generic SPI package CYGPKG_IO_SPI. A gcc extension, designated initializers, is used
to fill in the spi_device.spi_bus structure field. The structure contains a further seven fields which define exactly how
to interact with the specific SPI device.

dev_num

This is the index into the CYGHWR_HAL_CORTEXM_SAM_SPIx_CS_GPIOS list of GPIOs for the specific Chip-Select
GPIO used to select access to the device on the relevant SPI bus.

cl_pol

The clock polarity (0 or 1).

cl_pha

The clock phase (0 or 1).

cl_brate

The SCK baudrate used when communicating with the device.

cs_up_udly

Required microsecond delay between CS active and the transfer starting.

cs_dw_udly

Required microsecond delay between transfer ending and CS going inactive.

tr_bt_udly

Minimum microsecond delay between two transfers (between CS inactive to active again).

For example, the following instantaties a AT25080 serial EEPROM memory device on SPI bus#2:

#include <cyg/io/spi_atmel_uspi.h>
…
cyg_spi_atmel_device_t cyg_aardvark_at25080 CYG_SPI_DEVICE_ON_BUS(2) = {
 .spi_device.spi_bus = &cyg_spi_atmel_uspi_bus2,
 .dev_num = 0, // CS#0
 .cl_pol = 0, // Clock polarity
 .cl_pha = 1, // Clock phase
 .cl_brate = 2000000, // Clock baud rate 2MHz. At 3.3v 2.1MHz is allowed for this part.
 .cs_up_udly = 1, // Tcss (CS setup time) for this part at 3.3V is 250ns.
 .cs_dw_udly = 1, // Tcsh (CS hold time) for this part at 3.3V is 250ns.
 .tr_bt_udly = 1 // Tcs (CS high time) for this part at 3.3V is 250ns.
};

438

Part XXIII. I²C Support
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
75. I²C Support .. 441

Overview ... 442
I²C Interface .. 444
Porting to New Hardware .. 447

76. Freescale MCFxxxx ColdFire I2C Bus Driver .. 451
Freescale MCFxxxx Coldfire I2C Bus Driver .. 452

440

Chapter 75. I²C Support

441

I²C Support

Name
Overview — eCos Support for I²C, the Inter IC Bus

Description
The Inter IC Bus (I²C) is one of a number of serial bus technologies. It can be used to connect a processor to one or more
peripheral chips, for example analog-to-digital convertors or real time clocks, using only a small number of pins and PCB
tracks. The technology was originally developed by Philips Semiconductors but is supported by many other vendors. The bus
specification is freely available.

In a typical I²C system the processor acts as the I²C bus master. The peripheral chips act as slaves. The bus consists of just two
wires: SCL carries a clock signal generated by the master, and SDA is a bi-directional data line. The normal clock frequency
is 100KHz. Each slave has a 7-bit address. With some chips the address is hard-wired, and it is impossible to have two of these
chips on the same bus. With other chips it is possible to choose between one of a small number of addresses by connecting
spare pins to either VDD or GND.

An I²C data transfer involves a number of stages:

1. The bus master generates a start condition, a high-to-low transition on the SDA line while SCL is kept high. This signalling
cannot occur during data transfer.

2. The bus master clocks the 7-bit slave address onto the SDA line, followed by a direction bit to distinguish between reads
and writes.

3. The addressed device acknowledges. If the master does not see an acknowledgement then this suggests it is using the wrong
address for the slave device.

4. If the master is transmitting data to the slave then it will send this data one byte at a time. The slave acknowledges each
byte. If the slave is unable to accept more data, for example because it has run out of buffer space, then it will generate a
nack and the master should stop sending.

5. If the master is receiving data from the slave then the slave will send this data one byte at a time. The master should
acknowledge each byte, until the last one. When the master has received all the data it wants it should generate a nack
and the slave will stop sending. This nack is essential because it causes the slave to stop driving the SDA line, releasing
it back to the master.

6. It is possible to switch direction in a single transfer, using what is known as a repeated start. This involves generating another
start condition, sending the 7-bit address again, followed by a new direction bit.

7. At the end of a transfer the master should generate a stop condition, a low-to-high transition on the SDA line while SCL
is kept high. Again this signalling does not occur at other times.

There are a number of extensions. The I²C bus supports multiple bus masters and there is an arbitration procedure to allow a
master to claim the bus. Some devices can have 10-bit addresses rather than 7-bit addresses. There is a fast mode operating
at 400KHz instead of the usual 100KHz, and a high-speed mode operating at 3.4MHz. Currently most I²C-based systems do
not involve any of these extensions.

At the hardware level I²C bus master support can be implemented in one of two ways. Some processors provide a dedicated
I²C device, with the hardware performing much of the work. On other processors the I²C device is implemented in software,
by bit-banging some GPIO pins. The latter approach can consume a significant number of cpu cycles, but is often acceptable
because only occasional access to the I²C devices is needed.

eCos Support for I²C
The eCos I²C support for any given platform is spread over a number of different packages:

• This package, CYGPKG_IO_I2C, exports a generic API for accessing devices attached to an I²C bus. This API handles
issues such as locking between threads. The package does not contain any hardware-specific code. Instead it will use a

442

I²C Support

separate I²C bus driver to handle the hardware, and it defines the interface that such bus drivers should provide. The package
only provides support for a bus master, not for acting as a slave device.

CYGPKG_IO_I2C also provides the hardware-independent portion of a bit-banged bus implementation. This needs to be
complemented by a hardware-specific function that actually manipulates the SDA and SCL lines.

• If the processor has a dedicated I²C device then there will be a bus driver package for that hardware. The processor may
be used on many different platforms and the same bus driver can be used on each one. The actual I²C devices attached to
the bus will vary from one platform to the next.

• The generic API depends on cyg_i2c_device data structures. These contain the information needed by a bus driver, for
example the device address. Usually the data structures are provided by the platform HAL since it is that package which
knows about all the devices on the platform.

On some development boards the I²C lines are brought out to expansion connectors, allowing end users to add extra devices.
In such cases the platform HAL may not know about all the devices on the board. Data structures for the additional devices
can instead be supplied by application code.

• If the board uses a bit-banged bus then typically the platform HAL will also instantiate the bus instance, providing the
function that handles the low-level SDA and SCL manipulation. Usually this code cannot be shared because each board may
use different GPIO pins for driving SCL and SDA, so the code belongs in the platform HAL rather than in a separate package.

• Some types of I²C devices may have their own driver package. For example a common type of I²C device is a battery-backed
wallclock, and eCos defines how these devices should be supported. Such an I²C device will have its own wallclock device
driver and the device will not be accessed directly by application code. For other types of device eCos does not define an
API and there will not be separate device driver packages. Instead application code is expected to use the cyg_i2c_device
structures directly to access the hardware.

Typically all appropriate packages will be loaded automatically when you configure eCos for a given platform. If the application
does not use any of the I²C I/O facilities, directly or indirectly, then linker garbage collection should eliminate all unnecessary
code and data. All necessary initialization should happen automatically. However the exact details may depend on the platform,
so the platform HAL documentation should be checked for further details.

There is one important exception to this: if the I²C devices are attached to an expansion connector then the platform HAL will
not know about these devices. Instead more work will have to be done by application code.

443

I²C Support

Name
I²C Functions — allow applications and other packages to access I²C devices

Synopsis

#include <cyg/io/i2c.h>

cyg_uint32 cyg_i2c_tx(device, tx_data, count);

cyg_uint32 cyg_i2c_rx(device, rx_data, count);

void cyg_i2c_transaction_begin(device);

cyg_bool cyg_i2c_transaction_begin_nb(device);

cyg_uint32 cyg_i2c_transaction_tx(device, send_start, tx_data, count, send_stop);

cyg_uint32 cyg_i2c_transaction_rx(device, send_start, rx_data, count, send_nack,
send_stop);

void cyg_i2c_transaction_stop(device);

void cyg_i2c_transaction_end(device);

Description
All I²C functions take a pointer to a cyg_i2c_device structure as their first argument. These structures are usually provided
by the platform HAL. They contain the information needed by the I²C bus driver to interact with the device, for example the
device address.

An I²C transaction involves the following stages:

1. Perform thread-level locking on the bus. Only one thread at a time is allowed to access an I²C bus. This eliminates the need
to worry about locking at the bus driver level. If a platform involves multiple I²C buses then each one will have its own lock.

2. Generate a start condition, send the address and direction bit, and wait for an acknowledgement from the addressed device.

3. Either transmit data to or receive data from the addressed device.

4. The previous two steps may be repeated several times, allowing data to move in both directions during a single transfer.

5. Generate a stop condition, ending the current data transfer. It is now possible to start another data transfer while the bus
is still locked, if desired.

6. End the transaction by unlocking the bus, allowing other threads to access other devices on the bus.

The simple functions cyg_i2c_tx and cyg_i2c_rx perform all these steps in a single call, making them suitable for
many I/O operations. The alternative transaction-oriented functions provide greater control when appropriate, for example if
a repeated start is necessary for a bi-directional data transfer.

With the exception of cyg_i2c_transaction_begin_nb all the functions will block until completion. The tx routines
will return 0 if the specified device does not respond to its address, or the number of bytes actually transferred. This may be
less than the number requested if the device sends an early nack, for example because it has run out of buffer space. The rx
routines will return 0 or the number of bytes received. Usually this will be the same as the count parameter. A slave device
has no way of indicating to the master that no more data is available, so the rx operation cannot complete early.

I²C operations should always be performed at thread-level or during system initialization, and not inside an ISR or DSR. This
greatly simplifies locking. Also a typical ISR or DSR should not perform a blocking operation such as an I²C transfer.

444

I²C Support

Simple Transfers
cyg_i2c_tx and cyg_i2c_rx can be used for simple data transfers. They both go through the following steps: lock the
bus, generate the start condition, send the device address and the direction bit, either send or receive the data, generate the stop
condition, and unlock the bus. At the end of a transfer the bus is back in its idle state, ready for the next transfer.

cyg_i2c_tx returns the number of bytes actually transmitted. This may be 0 if the device does not respond when its address
is sent out. It may be less than the number of bytes requested if the device generates an early nack, typically because it has
run out of buffer space.

cyg_i2c_rx returns 0 if the device does not respond when its address is sent out, or the number of bytes actually received.
Usually this will be the number of bytes requested because an I²C slave device has no way of aborting an rx operation early.

Transactions
To allow multiple threads to access devices on the I²C some locking is required. This is encapsulated inside transactions. The
cyg_i2c_tx and cyg_i2c_rx functions implicitly use such transactions, but the functionality is also available directly
to application code. Amongst other things transactions can be used for more complicated interactions with I²C devices, in
particular ones involving repeated starts.

cyg_i2c_transaction_begin must be used at the start of a transaction. This performs thread-level locking on the bus,
blocking if it is currently in use by another thread.

cyg_i2c_transaction_begin_nb is a non-blocking variant, useful for threads which cannot afford to block for an
indefinite period. If the bus is currently locked the function returns false immediately. If the bus is not locked then it acts as
cyg_i2c_transaction_begin and returns true.

Once the bus has been locked it is possible to perform one or more data transfers by calling cyg_i2c_transaction_tx,
cyg_i2c_transaction_rx and cyg_i2c_transaction_stop. Code should ensure that a stop condition has been
generated by the end of a transaction.

Once the transaction is complete cyg_i2c_transaction_end should be called. This unlocks the bus, allowing other
threads to perform I²C I/O to devices on the same bus.

As an example consider reading the registers in an FS6377 programmable clock generator. The first step is to write a byte 0
to the device, setting the current register to 0. Then a repeated start condition should be generated and it is possible to read the
16 byte-wide registers, starting with the current one. Typical code for this might look like:

cyg_uint8 tx_data[1];
cyg_uint8 rx_data[16];

cyg_i2c_transaction_begin(&hal_alaia_i2c_fs6377);
tx_data[0] = 0x00;
cyg_i2c_transaction_tx(&hal_alaia_i2c_fs6377,
 true, tx_data, 1, false);
cyg_i2c_transaction_rx(&hal_alaia_i2c_fs6377,
 true, rx_data, 16, true, true);
cyg_i2c_transaction_end(&hal_alaia_i2c_fs6377);

Here hal_alaia_i2c_fs6377 is a cyg_i2c_device structure provided by the platform HAL. A transaction is begun, lock-
ing the bus. Then there is a transmit for a single byte. This transmit involves generating a start condition and sending the address
and direction bit, but not a stop condition. Next there is a receive for 16 bytes. This also involves a start condition, which the
device will interpret as a repeated start because it has not yet seen a stop. The start condition will be followed by the address
and direction bit, and then the device will start transmitting the register contents. Once all 16 bytes have been received the rx
routine will send a nack rather than an ack, halting the transfer, and then a stop condition is generated. Finally the transaction
is ended, unlocking the bus.

The arguments to cyg_i2c_transaction_tx are as follows:

const cyg_i2c_device* device This identifies the I²C device that should be used.

445

I²C Support

cyg_bool send_start If true, generate a start condition and send the address and direction bit. If false, skip
those steps and go straight to transmitting the actual data. The latter can be useful if
the data to be transmitted is spread over several buffers. The first tx call will involve
generating the start condition but subsequent tx calls can skip this and just continue from
the previous one.

send_start must be true if the tx call is the first operation in a transaction, or if the
previous call was an rx or stop.

const cyg_uint8* tx_data
cyg_uint32 count

These arguments specify the data to be transmitted to the device.

cyg_bool send_stop If true, generate a stop condition at the end of the transmit. Usually this is done only if
the transmit is the last operation in a transaction.

The arguments to cyg_i2c_transaction_rx are as follows:

const cyg_i2c_device* device This identifies the I²C device that should be used.

cyg_bool send_start If true, generate a start condition and send the address and direction bit. If false, skip
those steps and go straight to receiving the actual data. The latter can be useful if the
incoming data should be spread over several buffers. The first rx call will involve gen-
erating the start condition but subsequent rx calls can skip this and just continue from the
previous one. Another use is for devices which can send variable length data, consisting
of an initial length and then the actual data. The first rx will involve generating the start
condition and reading the length, a subsequent rx will then just read the data.

send_start must be true if the rx call is the first operation in a transaction, if the
previous call was a tx or stop, or if the previous call was an an rx and the send_nack
flag was set.

cyg_uint8* rx_data
cyg_uint32 count

These arguments specify how much data should be received and where it should be
placed.

cyg_bool send_nack If true generate a nack instead of an ack for the last byte received. This causes the slave
to end its transmit. The next operation should either involve a repeated start or a stop.
send_nack should be set to false only if send_stop is also false, the next operation
will be another rx, and that rx does not specify send_start.

cyg_bool send_stop If true, generate a stop condition at the end of the transmit. Usually this is done only if
the transmit is the last operation in a transaction.

The final transaction-oriented function is cyg_i2c_transaction_stop. This just generates a stop condition. It should
be used if the previous operation was a tx or rx that, for some reason, did not set the send_stop flag. A stop condition must
be generated before the transaction is ended.

Initialization
The generic package CYGPKG_IO_I2C arranges for all I²C bus devices to be initialized via a single prioritized C++
static constructor. This constructor will run early on during system startup, before any application code, with priority
CYG_INIT_BUS_I2C. Other code should not try to access any of the I²C devices until after the buses have been initialized.

446

I²C Support

Name
Porting — Adding I²C support to new hardware

Description
Adding I²C support to an eCos port involves a number of steps. The generic I²C package CYGPKG_IO_I2C should be included
in the appropriate ecos.db target entry or entries. Next cyg_i2c_device structures should be provided for every device on the
bus. Usually this is the responsibility of the platform HAL. In the case of development boards where the I²C SDA and SCL lines
are accessible via an expansion connector, more devices may have been added and it will be the application's responsibility to
provide the structures. Finally there is a need for one or more cyg_i2c_bus structures. Amongst other things these structures
provide functions for actually driving the bus. If the processor has dedicated I²C hardware then this structure will usually be
provided by a device driver package. If the bus is implemented by bit-banging then the bus structure will usually be provided
by the platform HAL.

Adding a Device
The eCos I²C API works in terms of cyg_i2c_device structures, and these provide the information needed to access the hard-
ware. A cyg_i2c_device structure contains the following fields:

cyg_i2c_bus* i2c_bus This specifies the bus which the slave device is connected to. Most boards will only
have a single I²C bus, but multiple buses are possible.

cyg_uint16 i2c_address For most devices this will be the 7-bit I²C address the device will respond to. There is
room for future expansion, for example to support 10-bit addresses.

cyg_uint16 i2c_flags This field is not used at present. It exists for future expansion, for example to allow for
fast mode or high-speed mode, and incidentally pads the structure to a 32-bit boundary.

cyg_uint32 i2c_delay This holds the clock period which should be used when interacting with the device,
in nanoseconds. Usually this will be 10000 ns, corresponding to a 100KHz clock, and
the header cyg/io/i2c.h provides a #define CYG_I2C_DEFAULT_DELAY for
this. Sometimes it may be desirable to use a slower clock, for example to reduce noise
problems.

The normal way to instantiate a cyg_i2c_device structure uses the CYG_I2C_DEVICE macro, also provided by cyg/
io/i2c.h:

#include <cyg/io/i2c.h>

CYG_I2C_DEVICE(cyg_i2c_wallclock_ds1307,
 &hal_alaia_i2c_bus,
 0x68,
 0x00,
 CYG_I2C_DEFAULT_DELAY);

CYG_I2C_DEVICE(hal_alaia_i2c_fs6377,
 &hal_alaia_i2c_bus,
 0x58,
 0x00,
 CYG_I2C_DEFAULT_DELAY);

The arguments to the macro are the variable name, an I²C bus pointer, the device address, the flags field, and the delay field. The
above code fragment defines two I²C device variables, cyg_i2c_wallclock_ds1307 and hal_alaia_i2c_fs6377,
which can be used for the first argument to the cyg_i2c_ functions. Both devices are on the same bus. The device addresses
are 0x68 and 0x58 respectively, and the devices do not have any special requirements.

When the platform HAL provides these structures it should also export them for use by the application and other packages.
Usually this involves an entry in cyg/hal/plf_io.h, which gets included automatically via one of the main exported HAL
header files cyg/hal/hal_io.h. Unfortunately exporting the structures directly can be problematical because of circular
dependencies between the I²C header and the HAL headers. Instead the platform HAL should define a macro HAL_I2C_EX-
PORTED_DEVICES:

447

I²C Support

define HAL_I2C_EXPORTED_DEVICES \
 extern cyg_i2c_bus hal_alaia_i2c_bus; \
 extern cyg_i2c_device cyg_i2c_wallclock_ds1307; \
 extern cyg_i2c_device hal_alaia_i2c_fs6377;

This macro gets expanded automatically by cyg/io/i2c.h once the data structures themselves have been defined, so ap-
plication code can just include that header and all the buses and devices will be properly exported and usable.

There is no single convention for naming the I²C devices. If the device will be used by some other package then typically
that specifies the name that should be used. For example the DS1307 wallclock driver expects the I²C device to be called
cyg_i2c_wallclock_ds1307, so failing to observe that convention will lead to compile-time and link-time errors. If the
device will not be used by any other package then it is up to the platform HAL to select the name, and as long as reasonable
care is taken to avoid name space pollution the exact name does not matter.

Bit-banged Bus

Some processors come with dedicated I²C hardware. On other hardware the I²C bus involves simply connecting some GPIO
pins to the SCL and SDA lines and then using software to implement the I²C protocol. This is usually referred to as bit-banging
the bus. The generic I²C package CYGPKG_IO_I2C provides the main code for a bit-banged implementation, requiring one
platform-specific function that does the actual GPIO pin manipulation. This function is usually hardware-specific because
different boards will use different pins for the I²C bus, so typically it is left to the platform HAL to provide this function and
instantiate the I²C bus object. There is no point in creating a separate package for this because the code cannot be re-used
for other platforms.

Instantiating a bit-banged I²C bus requires the following:

#include <cyg/io/i2c.h>

static cyg_bool
hal_alaia_i2c_bitbang(cyg_i2c_bus* bus, cyg_i2c_bitbang_op op)
{
 cyg_bool result = 0;
 switch(op) {
 …
 }
 return result;
}

CYG_I2C_BITBANG_BUS(hal_alaia_i2c_bus, &hal_alaia_i2c_bitbang);

This gives a structure hal_alaia_i2c_bus which can be used when defining the cyg_i2c_device structures. The
second argument specifies the function which will do the actual bit-banging. It takes two arguments. The first identifies the
bus, which can be useful if the hardware has multiple I²C buses. The second specifies the bit-bang operation that should be
performed. To understand these operations consider how I²C devices should be wired up according to the specification:

Figure 75.1. I²C wiring specification

448

I²C Support

Master and slave devices are interfaced to the bus in exactly the same way. The default state of the bus is to have both lines
high via the pull-up resistors. Any device on the bus can lower either line, when allowed to do so by the protocol. Usually
the SDA line only changes while SCL is low, but the start and stop conditions involve SDA changing while SCL is high. All
devices have the ability to both read and write both lines. In reality not all bit-banged hardware works quite like this. Instead
just two GPIO pins are used, and these are switched between input and output mode as required.

The bitbang function should support the following operations:

CYG_I2C_BITBANG_INIT

This will be called during system initialization, as a side effect of a prioritized C++ static constructor. The bitbang function
should ensure that both SCL and SDA are driven high.

CYG_I2C_BITBANG_SCL_HIGH
CYG_I2C_BITBANG_SCL_LOW
CYG_I2C_BITBANG_SDA_HIGH
CYG_I2C_BITBANG_SDA_LOW

These operations simply set the appropriate lines high or low.

CYG_I2C_BITBANG_SCL_HIGH_CLOCKSTRETCH

In its simplest form this operation should simply set the SCL line high, indicating that the data on the SDA line is stable.
However there is a complication: if a device is not ready yet then it can throttle back the master by keeping the SCL line
low. This is known as clock-stretching. Hence for this operation the bitbang function should allow the SCL line to float
high, then poll it until it really has become high. If a single pin is used for the SCL line then this pin should be turned
back into a high output at the end of the call.

CYG_I2C_BITBANG_SCL_LOW_SDA_INPUT

This is used when there is a change of direction and the slave device is about to start driving the SDA line. This can be
significant if a single pin is used to handle both input and output of SDA, to avoid a situation where both the master and
the slave are driving the SDA line for an extended period of time. The operation combines dropping the SCL line and
switching SDA to an input in an atomic or near-atomic operation.

CYG_I2C_BITBANG_SDA_READ

The SDA line is currently set as an input and the bitbang function should sample and return the current state.

The bitbang function returns a boolean. For most operations this return value is ignored. For CYG_I2C_BITBANG_S-
DA_READ it should be the current level of the SDA line.

Depending on the hardware some care may have to be taken when manipulating the GPIO pins. Although the I²C subsystem
performs the required locking at the bus level, the device registers controlling the GPIO pins may get used by other subsystems
or by the application. It is the responsibility of the bitbang function to perform appropriate locking, whether via a mutex or by
briefly disabling interrupts around the register accesses.

Full Bus Driver
If the processor has dedicated I²C hardware then usually this will involve a separate device driver package in the devs/i2c
hierarchy of the eCos component repository. That package should also be included in the appropriate ecos.db target entry or
entries. The device driver may exist already, or it may have to be written from scratch.

A new I²C driver basically involves creating an cyg_i2c_bus structure. The device driver should supply the following fields:

i2c_init_fn This function will be called during system initialization to set up the I²C hardware. The
generic I²C code creates a static object with a prioritized constructor, and this constructor
will invoke the init functions for the various I²C buses in the system.

i2c_tx_fn These functions implement the core I²C functionality. The arguments and re-
sults are the same as for the transaction functions cyg_i2c_transaction_tx,
cyg_i2c_transaction_rx and cyg_i2c_transaction_stop.

449

I²C Support

i2c_rx_fn
i2c_stop_fn

void* i2c_extra This field holds any extra information that may be needed by the device driver. Typically
it will be a pointer to some driver-specific data structure.

To assist with instantiating a cyg_i2c_bus object the header file cyg/io/i2c.h provides a macro. Typical usage would be:

struct xyzzy_data {
 …
} xyzzy_object;

static void
xyzzy_i2c_init(struct cyg_i2c_bus* bus)
{
 …
}

static cyg_uint32
xyzzy_i2c_tx(const cyg_i2c_device* dev,
 cyg_bool send_start,
 const cyg_uint8* tx_data, cyg_uint32 count,
 cyg_bool send_stop)
{
 …
}

static cyg_uint32
xyzzy_i2c_rx(const cyg_i2c_device* dev,
 cyg_bool send_start,
 cyg_uint8* rx_data, cyg_uint32 count,
 cyg_bool send_nack, cyg_bool send_stop)
{
 …
}

static void
xyzzy_i2c_stop(const cyg_i2c_device* dev)
{
 …
}

CYG_I2C_BUS(cyg_i2c_xyzzy_bus,
 &xyzzy_i2c_init,
 &xyzzy_i2c_tx,
 &xyzzy_i2c_rx,
 &xyzzy_i2c_stop,
 (void*) &xyzzy_object);

The generic I²C code contains these functions for a bit-banged I²C bus device. It can be used as a starting point for new drivers.
Note that the bit-bang code uses the i2c_extra field to hold the hardware-specific bitbang function rather than a pointer
to some data structure.

450

Chapter 76. Freescale MCFxxxx ColdFire
I2C Bus Driver

451

Freescale MCFxxxx ColdFire I2C Bus Driver

Name
CYGPKG_DEVS_I2C_MCFxxxx — eCos Support for the Freescale Coldfire I2C Bus

Description
Several processors in the Freescale ColdFire family come with one or more on-chip I2C bus devices. This package provides
an eCos I2C bus driver. It was originally developed on an MCF5280 but should work with any ColdFire processor that uses a
compatible bus device. The driver implements the functionality defined by the generic I2C package CYGPKG_IO_I2C.

Caution

The hardware does not support DMA or fifos, so usually a transfer will involve an interrupt for every byte trans-
ferred. Since the I2C bus typically runs at 100KHz large transfers will consume much of the available cpu time.

This package does not provide any cyg_i2c_bus structures. The number of I2C buses varies between ColdFire processors. If
multiple buses are available then exactly which one(s) are in use on a given hardware platform depends entirely on that platform.
The desired I2C bus speed also depends on the platform, and there may be other issues such as how the processor pins should be
set up. Hence it is left to other code, usually the processor HAL, to instantiate the bus structure(s). This driver package supplies
the necessary functions and utility macros. Similarly this package does not provide any cyg_i2c_device structures. Which I2C
devices are hooked up to which I2C bus is entirely a characteristic of the hardware platform, so it is up to the platform HAL
to instantiate the necessary structures.

The driver will operate in interrupt-driven mode if interrupts are enabled when a transfer is initiated. Otherwise it will operate
in polled mode. This allows the driver to be used in a variety of configurations including inside RedBoot.

Configuration Options
The I2C bus driver package should be loaded automatically when selecting a target containing a suitable ColdFire processor,
and it should never be necessary to load the package explicitly. If the application does not use any of the I2C functionality,
directly or indirectly, then all the I2C code should be removed at link-time and the application does not suffer any overheads.

By default the driver assumes a single I2C bus and optimizes for that case. For example options like the ISR vector and pri-
ority are handled by compile-time #define's in the platform HAL's exported header files rather than by per-bus structure
fields. This helps to reduce both code and data overheads. If the driver should support multiple I2C buses then CYGHWR_DE-
VS_I2C_MCFxxxx_MULTIPLE_BUSES should be enabled. Typically this will be done by the processor HAL using a CDL
requires property. If bus instantiation happens outside the processor HAL and hence the HAL's header files do not provide the
appropriate definitions, then this configuration option should also be defined.

The only other configuration options in this package provide control over the compiler flags used to build the driver code.

Defining the Bus and Devices
For most hardware targets the processor HAL will instantiate the cyg_i2c_bus and the platform HAL will instantiate the
cyg_i2c_device structures. Between them they will also initialize the hardware so that the I2C-related pins are connected
appropriately. Some development boards have no I2C devices, but the I2C bus signals are accessible via an expansion connector
and I2C devices can be put on a daughter board. In such cases it may be necessary for the application to instantiate the device
structures.

To facilitate bus instantiation the header file cyg/io/i2c_mcfxxxx.h provides a utility macro CYG_M-
CFxxxx_I2C_BUS. This takes six parameters:

1. The name of the bus, for example hal_dnp5280_i2c_bus. This name will be used when instantiating the I2C devices.

2. An initialization function. If no platform-specific initialization is needed then this can be the cyg_mcfxxxx_i2c_init
function exported by this driver. Otherwise it can be a platform-specific function which, for example, sets up the relevant
pins appropriately and then chains into cyg_mcfxxxx_i2c_init.

452

Freescale MCFxxxx ColdFire I2C Bus Driver

3. The base address of the I2C bus. For example on an MCF5282 with the IPSBAR set to its usual value of 0x40000000, the
I2C bus is at location 0x40000300.

4. The interrupt vector, for example CYGNUM_HAL_ISR_I2C_IIF on an MCF5282.

5. The interrupt priority. Typically this will be a configurable option within the platform HAL.

6. A value for the I2C bus's I2FDR register. That register controls the bus speed. Typical bus speeds are 100KHz and 400KHz,
depending on the capabilities of the attached devices. There is no simple relationship between the system clock speed, the
desired bus speed, and the FDR register. Although the driver could determine the FDR setting using a lookup table and
appropriate code, it is better to determine the correct value once during the porting process and avoid unnecessary run-
time overheads.

For the common case where only a single I2C bus should be supported (CYGHWR_DEVS_I2C_MCFxxxx_MULTI-
PLE_BUSES is disabled), the last four parameters should be provided by preprocessor #define's, typically in cyg/
hal/plf_io.h which gets #include'd automatically via cyg/hal/hal_io.h. This header can also define the
HAL_I2C_EXPORTED_DEVICES macro as per the generic I2C package:

#include <pkgconf/hal_m68k_dnp5280.h>
…
#ifdef CYGHWR_HAL_M68K_DNP5280_I2C
#define HAL_MCFxxxx_I2C_SINGLETON_BASE (HAL_MCFxxxx_MBAR+HAL_MCF5282_I2C0_BASE)
#define HAL_MCFxxxx_I2C_SINGLETON_ISRVEC CYGNUM_HAL_ISR_I2C_IIF
#define HAL_MCFxxxx_I2C_SINGLETON_ISRPRI CYGNUM_HAL_M68K_DNP5280_I2C_ISRPRI
#define HAL_MCFxxxx_I2C_SINGLETON_FDR CYGNUM_HAL_M68K_DNP5280_I2C_FDR

#define HAL_I2C_EXPORTED_DEVICES \
 extern cyg_i2c_bus hal_dnp5280_i2c_bus;
#endif

On this particular platform the I2C bus is only accessible on an expansion connector so the support is conditional on a configu-
ration option CYGHWR_HAL_M68K_DNP5280_I2C. The interrupt priority and I2FDR values are also controlled by configu-
ration options. On other platforms the I2C support may not be conditional and the priority and/or FDR values may be hard-wired.

The I2C bus instantiation should happen in an ordinary C or C++ file, typically in the platform HAL. The corresponding object
file should go into libtarget.a and the file should only contain I2C-related code to get the maximum benefit of linker
garbage collection.

#include <cyg/infra/cyg_type.h>
#include <cyg/hal/hal_io.h>
#include <cyg/io/i2c.h>
#include <cyg/io/i2c_mcfxxxx.h>

CYG_MCFxxxx_I2C_BUS(hal_dnp5280_i2c_bus,
 &cyg_mcfxxxx_i2c_init,
 HAL_MCFxxxx_I2C_SINGLETON_BASE,
 HAL_MCFxxxx_I2C_SINGLETON_ISRVEC,
 HAL_MCFxxxx_I2C_SINGLETON_ISRPRI,
 HAL_MCFxxxx_I2C_SINGLETON_FDR);

Obviously if CYGHWR_DEVS_I2C_MCFxxxx_MULTIPLE_BUSES is enabled then the singleton macros may not be defined
and the appropriate numbers should be used directly. This example assumes no special initialization is needed. If there are
special initialization requirements then a custom function can be used instead of cyg_mcfxxxx_i2c_init, and the custom
function should chain to the latter.

I2C device structures can be instantiated in the usual way, for example:

CYG_I2C_DEVICE(cyg_i2c_wallclock_ds1307,
 &hal_dnp5280_i2c_bus,
 0x68,
 0x00,
 CYG_I2C_DEFAULT_DELAY);

453

Part XXIV. ADC Support
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
77. ADC Support .. 456

eCos Support for Analog/Digital Converters .. 457
ADC Device Drivers ... 461

78. STM32 ADC Driver .. 465
STM32 ADC Driver ... 466

79. STR7XX ADC Driver .. 468
STR7XX ADC Driver ... 469

80. TSC ADC Driver .. 470
TSC ADC Driver ... 471

81. Atmel AFEC (ADC) Driver .. 472
Atmel AFEC ADC Driver .. 473

82. NXP i.MX RT ADC Driver .. 474
NXP i.MX RT ADC Driver ... 475

455

Chapter 77. ADC Support

456

ADC Support

Name
eCos Support for Analog/Digital Converters — Overview

Introduction
ADC support in eCos is based around the standard character device interface. Hence all device IO function, or file IO functions
may be used to access ADC devices.

ADC devices are presented as read-only serial channels that generate samples at a given rate. The size of each sample is
hardware specific and is defined by the cyg_adc_sample_t type. The sample rate may be set at runtime by the application. Most
ADC devices support several channels which are all sampled at the same rate. Therefore setting the rate for one channel will
usually change the rate for all channels on that device.

Examples
The use of the ADC devices is best shown by example. The following is a simple example of using the eCos device interface
to access the ADC:

int res;
cyg_io_handle_t handle;

// Get a handle for ADC device 0 channel 0
res = cyg_io_lookup("/dev/adc00", &handle);

if(res != ENOERR)
 handle_error(err);

for(;;)
{
 cyg_adc_sample_t sample;
 cyg_uint32 len = sizeof(sample);

 // read a sample from the channel
 res = cyg_io_read(handle, &sample, &len);

 if(res != ENOERR)
 handle_error(err);

 use_sample(sample);
}

In this example, the required channel is looked up and a handle on it acquired. Conventionally ADC devices are named "/
dev/adcXY" where X is the device number and Y the channel within that device. Following this, samples are read from the
device sequentially.

ADC devices may also be accessed using FILEIO operations. These allow more sophisticated usage. The following example
shows select() being used to gather samples from several devices.

int fd1, fd2;

// open channels, non-blocking
fd1 = open("/dev/adc01", O_RDONLY|O_NONBLOCK);
fd2 = open("/dev/adc02", O_RDONLY|O_NONBLOCK);

if(fd1 < 0 || fd2 < 0)
 handle_error(errno);

for(;;)
{
 fd_set rd;
 int maxfd = 0;
 int err;
 cyg_adc_sample_t samples[128];
 int len;

 FD_ZERO(&rd);

457

ADC Support

 FD_SET(fd1, &rd);
 FD_SET(fd2, &rd);
 maxfd = max(fd1,fd2);

 // select on available data on each channel.
 err = select(maxfd+1, &rd, NULL, NULL, NULL);

 if(err < 0)
 handle_error(errno);

 // If channel 1 has data, handle it
 if(FD_ISSET(fd1, &rd))
 {
 len = read(fd1, &samples, sizeof(samples));

 if(len > 0)
 handle_samples_chan1(&samples, len/sizeof(sample[0]));
 }

 // If channel 2 has data, handle it
 if(FD_ISSET(fd2, &rd))
 {
 len = read(fd2, &samples, sizeof(samples));

 if(len > 0)
 handle_samples_chan2(&samples, len/sizeof(sample[0]));
 }

}

This test uses FILEIO operations to access ADC channels. It starts by opening two channels for reading only and with blocking
disabled. It then falls into a loop using select to wake up whenever either channel has samples available.

Details
As indicated, the main interface to ADC devices is via the standard character device interface. However, there are a number
of aspects that are ADC specific.

Sample Type

Samples can vary in size depending on the underlying hardware and is often a non-standard number of bits. The actual number
of bits is defined by the hardware driver package, and the generic ADC package uses this to define a type cyg_adc_sample_t
which can contain at least the required number of bits. All reads from an ADC channel should be expressed in multiples of
this type, and actual bytes read will also always be a multiple.

Sample Rate

The sample rate of an ADC device can be varied by calling a set_config function, either at the device IO API level or at
the FILEIO level. The following two functions show how this is done at each:

int set_rate_io(cyg_io_handle_t handle, int rate)
{
 cyg_adc_info_t info;
 cyg_uint32 len = sizeof(info);

 info.rate = rate;

 return cyg_io_set_config(handle,
 CYG_IO_SET_CONFIG_ADC_RATE,
 &info,
 &len);
}

int set_rate_fileio(int fd, int rate)
{
 cyg_adc_info_t info;

458

ADC Support

 info.rate = rate;

 return cyg_fs_fsetinfo(fd,
 CYG_IO_SET_CONFIG_ADC_RATE,
 &info,
 sizeof(info));
}

Enabling a Channel

Channels are initialized in a disabled state and generate no samples. When a channel is first looked up or opened, then it is
automatically enabled and samples start to accumulate. A channel may then be disable or re-enabled via a set_config
function:

int disable_io(cyg_io_handle_t handle)
{
 return cyg_io_set_config(handle,
 CYG_IO_SET_CONFIG_ADC_DISABLE,
 NULL,
 NULL);
}

int enable_io(cyg_io_handle_t handle)
{
 return cyg_io_set_config(handle,
 CYG_IO_SET_CONFIG_ADC_DISABLE,
 NULL,
 NULL);
}

Flushing a channel

After any run-time channel re-configuration it may desirable (depending on the application) to flush any buffered data that
may be present from prior to the channel config update. For example, this can be done at the IO API level by using the
CYG_IO_SET_CONFIG_ADC_FLUSH config key:

int flush_io(cyg_io_handle_t handle)
{
 return cyg_io_set_config(handle,
 CYG_IO_SET_CONFIG_ADC_FLUSH,
 NULL,
 NULL);
}

Configuration
The ADC package defines a number of generic configuration options that apply to all ADC implementations:

cdl_component CYGPKG_IO_ADC_DEVICES

This option enables the hardware device drivers for the current platform. ADC devices will only be enabled if this option
is itself enabled.

cdl_option CYGNUM_IO_ADC_SAMPLE_SIZE

This option defines the sample size for the ADC devices. Given in bits, it will be rounded up to 8, 16 or 32 to define the
cyg_adc_sample_t type. This option is usually set by the hardware device driver.

cdl_option CYGPKG_IO_ADC_SELECT_SUPPORT

This option enables support for the select() API function on all ADC devices. This option can be disabled if the
select() is not used, saving some code and data space.

cdl_component CYGIMP_IO_ADC_INSTRUMENTATION

If the system instrumentation support is enabled for the active configuration then this option can be used to enable the
ADC I/O specific instrumentation support.

459

ADC Support

Instrumentation records will only be generated if this option is itself enabled, and if the relevant individual event code
sub-options are enabled. The default state is for all the instrumentation to be disabled. Some options will generate a lot
of instrumentation records in a heavily loaded system and so care may need to be taken regarding the instrumentation
enabled vs the instrumentation recording mechanism. Depending on why the ADC I/O driver instrumentation is being
enabled (debugging, timing validation, etc.) the user can choose which events they wish to record by enabling the specific
CDL option.

In addition to the generic options, each hardware device driver defines some parameters for each device and channel. The exact
names of the following option depends on the hardware device driver, but options of this form should be available in all drivers.

cdl_option CYGDAT_IO_ADC_EXAMPLE_CHANNELN_NAME

This option specifies the name of the device for an ADC channel. Channel names should be of the form "/dev/adcXY"
where X is the device number and Y the channel within that device.

cdl_option CYGNUM_IO_ADC_EXAMPLE_CHANNELN_BUFSIZE

This option specifies the buffer size for an ADC channel. The value is expressed in multiples of cyg_adc_sample_t rather
than bytes. The default value is 128.

cdl_option CYGNUM_IO_ADC_EXAMPLE_DEFAULT_RATE

This option defines the initial default sample rate for all channels. The hardware driver may place constraints on the range
of values this option may take.

460

ADC Support

Name
Overview — ADC Device Drivers

Introduction

This section describes how to write an ADC hardware device. While users of ADC devices do not need to read it, it may
provide added insight into how the devices work.

Data Structures

An ADC hardware driver is represented by a number of data structures. These are generic device and channel data struc-
tures, a driver private device data structure, a generic character device table entry and a driver function table. Most of these
structures are instantiated using macros, which will be described here.

The data structure instantiation for a typical single device, four channel ADC would look like this:

//==
// Instantiate data structures

// ---
// Driver functions:

CYG_ADC_FUNCTIONS(example_adc_funs,
 example_adc_enable,
 example_adc_disable,
 example_adc_set_rate);

// ---
// Device instance:

static example_adc_info example_adc_info0 =
{
 .base = CYGARC_HAL_EXAMPLE_ADC_BASE,
 .vector = CYGNUM_HAL_INTERRUPT_ADC
};

CYG_ADC_DEVICE(example_adc_device,
 &example_adc_funs,
 &example_adc_info0,
 CYGNUM_IO_ADC_EXAMPLE_DEFAULT_RATE);

// ---
// Channel instances:

#define EXAMPLE_ADC_CHANNEL(__chan) \
CYG_ADC_CHANNEL(example_adc_channel##__chan, \
 __chan, \
 CYGNUM_IO_ADC_EXAMPLE_CHANNEL##__chan##_BUFSIZE, \
 &example_adc_device); \
 \
DEVTAB_ENTRY(example_adc_channel##__chan##_device, \
 CYGDAT_IO_ADC_EXAMPLE_CHANNEL##__chan##_NAME, \
 0, \
 &cyg_io_adc_devio, \
 example_adc_init, \
 example_adc_lookup, \
 &example_adc_channel##__chan);

EXAMPLE_ADC_CHANNEL(0);
EXAMPLE_ADC_CHANNEL(1);
EXAMPLE_ADC_CHANNEL(2);
EXAMPLE_ADC_CHANNEL(3);

The macro CYG_ADC_FUNCTIONS() instantiates a function table called example_adc_funs and populates it with the
ADC driver functions (see later for details).

461

ADC Support

Then an instance of the driver private device data structure is instantiated. In addition to the device base address and interrupt
vector shown here, this structure should contain the interrupt object and handle for attaching to the vector. It may also contain
any other variables needed to manage the device.

The macro CYG_ADC_DEVICE() instantiates a cyg_adc_device structure, named example_adc_device which will con-
tain pointers to the function table and private data structure. The initial sample rate is also supplied here.

For each channel, an ADC channel structure and a device table entry must be created. The macro EXAMPLE_ADC_CHAN-
NEL() is defined to simplify this process. The macro CYG_ADC_CHANNEL defines a cyg_adc_channel structure, which con-
tains the channel number, the buffer size, and a pointer to the device object defined earlier. The call to DEVTAB_ENTRY()
generates a device table entry containing the configured channel name, a pointer to a device function table defined in the generic
ADC driver, pointers to init and lookup functions implemented here, and a pointer to the channel data structure just defined.

Finally, four channels, numbered 0 to 3 are created.

Functions
There are several classes of function that need to be defined in an ADC driver. These are those function that go into the channel's
device table, those that go into the ADC device's function table, calls that the driver makes into the generic ADC package,
and interrupt handling functions.

Device Table Functions

These functions are placed in the standard device table entry for each channel and handle initialization and location of the
device within the generic driver infrastructure.

static bool example_adc_init(struct cyg_devtab_entry *tab) This function is called from the device
IO infrastructure to initialize the device. It should perform any work needed to start up the device, short of actually starting
the generation of samples. This function will be called for each channel, so if there is initialization that only needs to be done
once, such as creating an interrupt object, then care should be taken to do this. This function should also call cyg_adc_de-
vice_init() to initialize the generic parts of the driver.

static Cyg_ErrNo example_adc_lookup(struct cyg_devtab_entry **tab, struct cyg_de-
vtab_entry *sub_tab, const char *name) This function is called when a client looks up or opens a channel. It
should call cyg_adc_channel_init() to initialize the generic part of the channel. It should also perform any operations
needed to start the channel generating samples.

Driver Functions

These are the functions installed into the driver function table by the CYG_ADC_FUNCTIONS() macro.

static void example_adc_enable(cyg_adc_channel *chan) This function is called from the generic
ADC package to enable the channel in response to a CYG_IO_SET_CONFIG_ADC_ENABLE config operation. It should take
any steps needed to start the channel generating samples.

static void example_adc_disable(cyg_adc_channel *chan) This function is called from the generic
ADC package to enable the channel in response to a CYG_IO_SET_CONFIG_ADC_DISABLE config operation. It should
take any steps needed to stop the channel generating samples.

static void example_adc_set_rate(cyg_adc_channel *chan, cyg_uint32 rate) This function
is called from the generic ADC package to enable the channel in response to a CYG_IO_SET_CONFIG_ADC_RATE config
operation. It should take any steps needed to change the sample rate of the channel, or of the entire device.

Generic Package Functions

These functions are called by a hardware ADC device driver to perform operations in the generic ADC package.

__externC void cyg_adc_device_init(cyg_adc_device *device) This function is called from the
driver's init function and is used to initialize the cyg_adc_device object.

462

ADC Support

__externC void cyg_adc_channel_init(cyg_adc_channel *chan) This function is called from the driver's
lookup function and is used to initialize the cyg_adc_channel object.

__externC cyg_uint32 cyg_adc_receive_sample(cyg_adc_channel *chan, cyg_adc_sample_t
sample) This function is called from the driver's ISR to add a new sample to the buffer. The return value will be either zero,
or CYG_ISR_CALL_DSR and should be ORed with the return value of the ISR.

__externC void cyg_adc_wakeup(cyg_adc_channel *chan) This function is called from the driver's DSR
to cause any threads waiting for data to wake up when a new sample is available. It should only be called if the wakeup field
of the channel object is true.

Interrupt Functions

These functions are internal to the driver, but make calls on generic package functions. Typically an ADC device will have a
single interrupt vector with which it signals available samples on the channels and any error conditions such as overruns.

static cyg_uint32 example_adc_isr(cyg_vector_t vector, cyg_addrword_t data) This function
is the ISR attached to the ADC device's interrupt vector. It is responsible for reading samples from the channels and passing
them on to the generic layer. It needs to check each channel for data, and call cyg_adc_receive_sample() for each new
sample available, and then ready the device for the next interrupt. It's activities are best explained by example:

static cyg_uint32 example_adc_isr(cyg_vector_t vector, cyg_addrword_t data)
{
 cyg_adc_device *example_device = (cyg_adc_device *) data;
 example_adc_info *example_info = example_device->dev_priv;
 cyg_uint32 res = 0;
 int i;

 // Deal with errors if necessary
 DEVICE_CHECK_ERRORS(example_info);

 // Look for all channels with data available
 for(i = 0; i < CHANNEL_COUNT; i++)
 {
 if(CHANNEL_SAMPLE_AVALIABLE(i))
 {
 // Fetch data from this channel and pass up to higher
 // level.

 cyg_adc_sample_t data = CHANNEL_GET_SAMPLE(i);

 res |= CYG_ISR_HANDLED | cyg_adc_receive_sample(example_info->channel[i], data);
 }
 }

 // Clear any interrupt conditions
 DEVICE_CLEAR_INTERRUPTS(example_info);

 cyg_drv_interrupt_acknowledge(example_info->vector);

 return res;
}

static void example_adc_dsr(cyg_vector_t vector, cyg_ucount32 count, cyg_addrword_t
data) This function is the DSR attached to the ADC device's interrupt vector. It is called by the kernel if the ISR return value
contains the CYG_ISR_HANDLED bit. It needs to call cyg_adc_wakeup() for each channel that has its wakeup field set.
Again, and example should make it all clear:

static void example_adc_dsr(cyg_vector_t vector, cyg_ucount32 count, cyg_addrword_t data)
{
 cyg_adc_device *example_device = (cyg_adc_device *) data;
 example_adc_info *example_info = example_device->dev_priv;
 int i;

 // Look for all channels with pending wakeups
 for(i = 0; i < CHANNEL_COUNT; i++)
 {

463

ADC Support

 if(example_info->channel[i]->wakeup)
 cyg_adc_wakeup(example_info->channel[i]);
 }
}

464

Chapter 78. STM32 ADC Driver

465

STM32 ADC Driver

Name
STM32 — ADC Driver

Description
This driver supports the ADC devices available in some variants of the ST STM32 family of microprocessors.

Sample Size
The STM32 ADC on F1 series devices produces 12-bit samples. The F2/F4/F7/L4 series devices can produce 12-, 10-, 8- or 6-
bit samples and the H7 family can additionally produce 14- and 16-bit samples. The CYGNUM_DEVS_ADC_CORTEXM_ST-
M32_WIDTH CDL configuration option allows the sample width to be set for suitable variants. The default is for 12-bit sam-
ples, which will cause the generic layer to define cyg_adc_sample_t as a 16-bit value.

Sample Rates
The ADC hardware is limited to a maximum of 2K samples per channel. Since up to 16 channels are sampled on a round-robin
basis, this means that the total sample rate can be 16K samples per second.

Configuration
The option CYGNUM_DEVS_ADC_CORTEXM_STM32_CLOCK_DIV specifies the divider used to control the ADC system
clock supplied by the RCC.

If system instrumentation is enabled then the CYGIMP_DEVS_ADC_CORTEXM_STM32_INSTRUMENTATION option is
made available, and can be enabled to allow the ADC device driver to generate instrumentation. When enabed the sub-
options CYGDBG_DEVS_ADC_CORTEXM_STM32_INSTRUMENT_CONTROL and CYGDBG_DEVS_ADC_CORTEXM_ST-
M32_INSTRUMENT_DMA control which events are generated.

Each ADC device is controlled by a CDL component, CYGHWR_DEVS_ADC_CORTEXM_STM32_ADCX for each device X,
which must be enabled to initialize the device. For STM32F1 devices only ADC devices 1 and 3 are available, since ADC2
shares GPIO lines and an interrupt with ADC1. For STM32F2/F4/F7/H7 devices ADC devices 1, 2 and 3 are available.

For STM32F2/F4/F7/L4/H7 devices the selection of the timer TRGO event to be used for the specific ADC device is controlled
by a CDL component, CYGHWR_DEVS_ADC_CORTEXM_STM32_ADCX_TIM for each device X.

For STM32F2/F4/F7/L4/H7 devices the selection of the DMA stream interrupt to be used for the specific ADC device is
controlled by a CDL component, CYGHWR_DEVS_ADC_CORTEXM_STM32_ADCX_DMA for each device X, which must be
configured to avoid clashes with other peripherals that may share the same DMA stream.

The option CYGNUM_DEVS_ADC_CORTEXM_STM32_ADCX_SAMPLE_TIME defines the duration over which each sample
is taken for each channel, in microseconds.

The option CYGNUM_DEVS_ADC_CORTEXM_STM32_ADCX_DEFAULT_RATE defines the default sample rate for all chan-
nels attached to device X.

The option CYGNUM_DEVS_ADC_CORTEXM_STM32_ADCX_DMA_INT_PRI defines the DMA interrupt prioirity for this
device. The default of 0x80 sets it in the middle of the prioirity range.

For each channel X in ADC device Y the CDL script provides the following configuration options:

cdl_component CYGHWR_DEVS_ADC_CORTEXM_STM32_ADCY_CHANNELX

If the application needs to access the on-chip ADC channel X via an eCos ADC driver then this option should be enabled.

cdl_option CYGDAT_DEVS_ADC_CORTEXM_STM32_ADCT_CHANNELX_NAME

This option controls the name that an eCos application should use to access this device via cyg_io_lookup(), open(), or
similar calls.

466

STM32 ADC Driver

cdl_option CYGDAT_DEVS_ADC_CORTEXM_STM32_ADCY_CHANNELX_BUFSIZE

This defines the size of the channel's sample buffer, in samples.

467

Chapter 79. STR7XX ADC Driver

468

STR7XX ADC Driver

Name
STR7XX — ADC Driver

Description
This driver supports the ADC devices available in some variants of the ST STR7XX family of microprocessors.

Sample Size
The STR7XX ADC produces 12 bit samples. Therefore this driver sets CYGNUM_IO_ADC_SAMPLE_SIZE to 12. This will
cause the generic layer to define cyg_adc_sample_t as a 16 bit value.

Sample Rates
The ADC hardware is limited to a maximum of 1K samples per channel. Since channels are sampled on a round-robin basis
at 4 times this rate, this means that the total sample rate is 4K samples per second.

The option CYGNUM_DEVS_ADC_ARM_STR7XX_DEFAULT_RATE defines a default sample rate and is initially set to 500.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_component CYGPKG_DEVS_ADC_ARM_STR7XX_CHANNELX

This defines whether the channel is included.

cdl_option CYGDAT_DEVS_ADC_ARM_STR7XX_CHANNELN_NAME

This defines the name of the channel.

cdl_option CYGNUM_DEVS_ADC_ARM_STR7XX_CHANNELX_BUFSIZE

This defines the size of the channel's sample buffer, in samples.

469

Chapter 80. TSC ADC Driver

470

TSC ADC Driver

Name
TSC — ADC Driver

Description
This driver supports the Touch Screen Controller device available in some variants of the Freescale i.MXxx family of micro-
processors.

In addition to the TSC device itself, this driver uses GPT1 to provide the data rate clock.

Sample Size
The TSC ADC produces 12 bit samples. Therefore this driver sets CYGNUM_IO_ADC_SAMPLE_SIZE to 12. This will cause
the generic layer to define cyg_adc_sample_t as a 16 bit value.

Sample Rates
The ADC collects samples from the inputs sequentially. For the three inputs this driver currently supports (INAUX0, INAUX1
and INAUX2) it takes about 40us to collect all samples. Therefore the hardware is limited to a maximum rate of about 25KHz.

The option CYGNUM_DEVS_ADC_ARM_TSC_DEFAULT_RATE defines a default sample rate and is initially set to 500.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_component CYGPKG_DEVS_ADC_ARM_TSC_CHANNELX

This defines whether the channel N is included.

cdl_option CYGDAT_DEVS_ADC_ARM_TSC_CHANNELN_NAME

This defines the name of the channel N. By default the channels are named "/dev/inauxN".

cdl_option CYGNUM_DEVS_ADC_ARM_TSC_CHANNELX_BUFSIZE

This defines the size of the channel's sample buffer, in samples.

471

Chapter 81. Atmel AFEC (ADC) Driver

472

Atmel AFEC (ADC) Driver

Name
Atmel — ADC Driver

Description
This driver supports the AFE (Analog Front-End) Controller available in some Atmel microprocessor variants, e.g. the SAM4E
family.

Sample Size
The Atmel AFEC natively supports 12-bit samples, but via digital averaging 13-, 14-, 15- and 16-bit samples are supported.
The controller also supports “low-resolution” 10-bit samples, but at the same sampling rate as the native 12-bit samples. When
higher resolution, averaged, samples are used the maximum achievable sample rate will be lower than the native resolution. The
per-controller CYGNUM_DEVS_ADC_ATMEL_AFECx_RESOLUTION configuration option specifies the sample resolution
to be used.

This driver left-aligns results so that the full-range of the ADC I/O generic layer defined cyg_adc_sample_t type is used
regardless of the resolution configured for this driver. The default generic layer CYGNUM_IO_ADC_SAMPLE_SIZE definition
of 16 should be sufficient for most applications.

Configuration
If system instrumentation is enabled then the CYGIMP_DEVS_ADC_ATMEL_AFEC_INSTRUMENTATION option is made
available, and can be enabled to allow the ADC device driver to generate instrumentation. When enabed the sub-options
CYGDBG_DEVS_ADC_ATMEL_AFEC_INSTRUMENT_CONTROL and CYGDBG_DEVS_ADC_ATMEL_AFEC_INSTRU-
MENT_DMA control which events are generated.

Each ADC device is controlled by a CDL component, CYGHWR_DEVS_ADC_ATMEL_AFECx for each device x, which must
be enabled to initialize the device. The number of channels available to a controller instance is defined by the relevant variant
or platform HAL as required.

The option CYGNUM_DEVS_ADC_ATMEL_AFECx_RESOLUTION defines the internal sample size.

The option CYGNUM_DEVS_ADC_ATMEL_AFECx_OFFSET defines the channel offset compensation applied to all channels..

The option CYGNUM_DEVS_ADC_ATMEL_AFECx_DEFAULT_RATE defines the default samples-per-second rate for all
channels attached to device x. This default can be over-ridden at run-time using the generic ADC I/O layer provided support
as required.

For each channel x in an AFEC device y the CDL script provides the following configuration options:

CYGHWR_DEVS_ADC_ATMEL_AFECy_CHANNELx

If the application needs to access the on-chip ADC channel x via an eCos ADC driver then this option should be enabled.

CYGDAT_DEVS_ADC_ATMEL_AFECy_CHANNELx_NAME

This option controls the name that an eCos application should use to access this device via cyg_io_lookup(), open(), or
similar calls. This allows meaningful names to be assigned if required, rather than the default “/dev/adcyx” style.

CYGDAT_DEVS_ADC_ATMEL_AFECy_CHANNELx_INPUT

By default input channels are configured in single-ended mode, which is the normal acquisition mode. This option allows
individual channels to be configured in Differential mode, where the input is generated against an adjacent “paired”
channel.

CYGDAT_DEVS_ADC_ATMEL_AFECy_CHANNELx_BUFSIZE

This defines the size of the channel's sample buffer, in cyg_adc_sample_t samples.

473

Chapter 82. NXP i.MX RT ADC Driver

474

NXP i.MX RT ADC Driver

Name
NXP — ADC Driver

Description
This driver supports the ADC (Analog-to-Digital Converter) Controller of the NXP i.MX RT microprocessor variants, e.g.
the i.MX RT105x family.

Sample Size
The i.MX ADC natively supports 12-bit samples. The controller also supports “low-resolution” 10-bit and 8-bit samples. When
higher resolution, averaged, samples are used the maximum achievable sample rate will be lower than the native resolution. The
per-controller CYGNUM_DEVS_ADC_NXP_IMX_ADCx_RESOLUTION configuration option specifies the hardware sample
resolution to be used.

This driver left-aligns results so that the full-range of the ADC I/O generic layer defined cyg_adc_sample_t type is used
regardless of the resolution configured for this driver. The default generic layer CYGNUM_IO_ADC_SAMPLE_SIZE definition
of 16 should be sufficient for most applications. However, it should be noted that the underlying cyg_adc_sample_t type is
signed, whereas the returned data should be interpreted as an unsigned value (0..MAX) for this controller.

Configuration
Each ADC device is controlled by a CDL component, CYGHWR_DEVS_ADC_NXP_IMX_ADCx for each controller device x,
which must be enabled to initialize the device. The number of channels is currently fixed to 16 for each controller instance, to
support the external signals 0..15 as defined by the Processor Reference Manual.

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_RESOLUTION defines the internal hardware sample size.

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_CLOCK allows the selection of the conversion clock as either the internal
asynchronous ADACK clock (default) or the system IPG clock. The Processor Reference Manual (PRM) ADC section should
be consulted for the pro's and con's of the clock selection, frequency, averaging, etc.

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_SPEED allows the selection of whether the Normal (default) or High-
Speed internal ADACK clock is used.

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_SAMPLE_PERIOD defines the sample period for a conversion as the
number of ADC clock cycles.

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_AVG controls whether the hardware averaging is enabled. When enabled
the optionCYGNUM_DEVS_ADC_NXP_IMX_ADCx_AVG_SAMPLES specifies the number of samples that are averaged to
provide a single reading.

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_OFFSET defines the channel offset compensation applied to all chan-
nels..

The option CYGNUM_DEVS_ADC_NXP_IMX_ADCx_DEFAULT_RATE defines the default samples-per-second rate for all
channels attached to device x. This default can be over-ridden at run-time using the generic ADC I/O layer provided support
as required.

If system instrumentation is enabled then the CYGIMP_DEVS_ADC_NXP_IMC_ADC_INSTRUMENTATION option is made
available, and can be enabled to allow the ADC device driver to generate instrumentation. When enabed there are sub-options
available to further control which events are recorded.

For each channel x in an ADC device y the CDL script provides the following configuration options:

CYGHWR_DEVS_ADC_NXP_IMX_ADCy_CHANNELx

If the application needs to access the on-chip ADC channel x via an eCos ADC driver then this option should be enabled.

475

NXP i.MX RT ADC Driver

CYGDAT_DEVS_ADC_NXP_IMX_ADCy_CHANNELx_NAME

This option controls the name that an eCos application should use to access this device via cyg_io_lookup(), open(), or
similar calls. This allows meaningful names to be assigned if required, rather than the default “/dev/adcycx” style.

CYGDAT_DEVS_ADC_NXP_IMX_ADCy_CHANNELx_BUFSIZE

This defines the size of the channel's sample buffer, in multiples of cyg_adc_sample_t samples.

476

Part XXV. Pulse Width
Modulation (PWM) Support

Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
83. PWM Support ... 479

Overview ... 480

478

Chapter 83. PWM Support

479

PWM Support

Name
Overview — eCos Support for PWM, the Inter IC Bus

Synopsis
#include <cyg/io/pwm.h>

cyg_pwm_device *cyg_pwm_find(char *name);

int cyg_pwm_set(cyg_pwm_device *device, cyg_uint32 channel, cyg_pwm_period period,
cyg_pwm_period width);

int cyg_pwm_get(cyg_pwm_device *device, cyg_uint32 channel, cyg_pwm_period *period,
cyg_pwm_period *width);

int cyg_pwm_polarity(cyg_pwm_device *device, cyg_uint32 channel, cyg_uint32 polari-
ty);

int cyg_pwm_pin_enable(cyg_pwm_device *device, cyg_uint32 channel, cyg_uint32 pin);

int cyg_pwm_pin_disable(cyg_pwm_device *device, cyg_uint32 channel, cyg_uint32 pin);

int cyg_pwm_start(cyg_pwm_device *device, cyg_uint32 channel);

int cyg_pwm_stop(cyg_pwm_device *device, cyg_uint32 channel);

Description
This API provided access to very basic PWM (Pulse Width Modulation) functionality where supported by underlying hardware.
The functionality simply allows one or more external pins to be programmed to generate a square wave of a fixed period with
a fixed duty cycle. Features of more advanced PWM devices are not supported.

The model for PWM devices allows a single device to contain several independent channels which may be programmed
separately. Each channel may have several output pins which may be enabled separately but which all generate the same signal
programmed into the channel. Channels within a device, and pins within a channel are all numbered from zero.

The function cyg_pwm_find() looks for a PWM device by name and returns a pointer to it. The PWM device is typically
defined in the platform HAL and may be given a platform specific name. Typical names may be "pwm0" or "pwm1".

The function cyg_pwm_set() sets the square wave parameters for the selected channel. Both period and width are
specified in nanoseconds. For example setting period to 100000 and width to 25000 sets up a square wave with a 100us (10KHz)
period and a 25% duty cycle. The function cyg_pwm_get() returns the current settings.

The function cyg_pwm_polarity() sets the polarity of the signal. By default the width defines the high portion of the
wave. Setting polarity to CYG_PWM_POLARITY_INVERTED means it defines the low part.

The function cyg_pwm_pin_enable() enables the selected channel output pin and cyg_pwm_pin_disable() dis-
ables it. While is is unusual, it is permitted to enable any number of channel pins.

The function cyg_pwm_pin_start() starts the PWM channel generating the square wave and cyg_pwm_pin_stop()
stops it. The channel configuration functions may all be called before starting the channel, they may also be called after it started
and will immediately affect it. If none are called before starting the channel then default values, defined in the platform HAL
will be used. There is no need to stop a channel to reconfigure it, unless this is required by the application or attached hardware.

480

Part XXVI. Framebuffer Support

Table of Contents
84. Framebuffer Support .. 483

Overview ... 484
Framebuffer Parameters ... 487
Framebuffer Control Operations .. 491
Framebuffer Colours ... 496
Framebuffer Drawing Primitives ... 500
Framebuffer Pixel Manipulation .. 505
Writing a Framebuffer Device Driver ... 508

85. CSB337/900 Framebuffer Device Driver ... 513
CSB337/900 Framebuffer Device Driver .. 514

86. i.MXxx Framebuffer Device Driver .. 515
i.MXxx Framebuffer Device Driver ... 516

87. iPAQ Framebuffer Device Driver ... 517
iPAQ Framebuffer Device Driver .. 518

88. PC VGA Framebuffer Device Driver .. 519
PC VGA Framebuffer Device Driver ... 520

89. Synthetic Target Framebuffer Device .. 521
Synthetic Target Framebuffer Device ... 522

482

Chapter 84. Framebuffer Support

483

Framebuffer Support

Name
Overview — eCos Support for Framebuffer Devices

Description
Framebuffer devices are the most common way for a computer system to display graphical output to users. There are immense
variations in the implementations of such devices. CYGPKG_IO_FRAMEBUF provides an abstraction layer for use by applica-
tion code and other packages. It defines an API for manipulating framebuffers, mapping this API on to functionality provided
by the appropriate device driver. It also defines the interface which such device drivers should implement. For simple hardware
it provides default implementations of much of this interface, greatly reducing the effort needed to write a device driver.

This package does not constitute a graphics library. It does not implement functionality like drawing text or arbitrary lines,
let alone any kind of windowing system. Instead it operates at the lower level of individual pixels and blocks of pixels, in
addition to control operations such as hardware initialization. Some applications may use the framebuffer API directly. Others
will instead use a higher-level graphics library, and it is that library which uses the framebuffer API.

It is assumed that users are already familiar with the fundamentals of computer graphics, and no attempt is made here to explain
terms like display depth, palette or pixel.

Note

This package is work-in-progress. The support for 1bpp, 2bpp and 4bpp display depths is incomplete. For dou-
ble-buffered displays the code does not yet maintain a bounding box of the updated parts of the display. The
package has also been designed to allow for expansion with new functionality.

Configuration
CYGPKG_IO_FRAMEBUF only contains hardware-independent code. It should be complemented by one or more framebuffer
device drivers appropriate for the target platform. These drivers may be specific to the platform, or they may be more generic
with platform-specific details such as the framebuffer memory base address provided by the platform HAL. When creating a
configuration for a given target the device driver(s) will always be included automatically (assuming one has been written or
ported). However by default this driver will be inactive and will not get built, so does not add any unnecessary size overhead for
applications which do not require graphics. To activate the device driver CYGPKG_IO_FRAMEBUF must be added explicitly
to the configuration, for example using ecosconfig add framebuf. After this the full framebuffer API will be available to other
packages and to application code.

This package contains very few configuration options. Instead it is left to device drivers or higher-level code to provide appro-
priate configurability. One option, CYGFUN_IO_FRAMEBUF_INSTALL_DEFAULT_PALETTE, relates to the initialization
of paletted displays.

There are a number of calculated and inferred configuration options and a number of interfaces. These provide information
such as whether or not there is a backlight. The most important one is CYGDAT_IO_FRAMEBUF_DEVICES, which holds a list
of framebuffer identifiers for use with the macro-based API. If there is a single framebuffer device driver which supports one
display in either landscape or portrait mode, the configuration option may hold a value like 240x320x8 320x240x8r90.

Application Programmer Interfaces
Framebuffer devices require a difficult choice between flexibility and performance. On the one hand the API should be able
to support multiple devices driving separate displays, or a single device operating in different modes at different times. On the
other hand graphics tends to involve very large amounts of I/O: even something as simple as drawing a background image can
involve setting many thousands of pixels. Efficiency requires avoiding all possible overheads including function calls. Instead
the API should make extensive use of macros or inline functions. Ideally details of the framebuffer device such as the stride
would be known constants at compile-time, giving the compiler as much opportunity as possible to optimize the code. Clearly
this is difficult if multiple framebuffer devices are in use or if the device mode may get changed at run-time.

To meet the conflicting requirements the generic framebuffer package provides two APIs: a fast macro API which requires
selecting a single framebuffer device at compile or configure time; and a slower function API without this limitation. The two
are very similar, for example:

484

Framebuffer Support

#include <cyg/io/framebuf.h>

void
clear_screen(cyg_fb* fb, cyg_fb_colour colour)
{
 cyg_fb_fill_block(fb, 0, 0,
 fb->fb_width, fb->fb_height,
 colour);
}

or the equivalent macro version:

#include <cyg/io/framebuf.h>

#define FRAMEBUF 240x320x8

void
clear_screen(cyg_fb_colour colour)
{
 CYG_FB_FILL_BLOCK(FRAMEBUF, 0, 0,
 CYG_FB_WIDTH(FRAMEBUF), CYG_FB_HEIGHT(FRAMEBUF),
 colour);
}

The function-based API works in terms of cyg_fb structures, containing all the information needed to manipulate the device.
Each framebuffer device driver will export one or more of these structures, for example cyg_alaia_fb_240x320x8, and
the driver documentation should list the variable names. The macro API works in terms of identifiers such as 240x320x8,
and by a series of substitutions the main macro gets expanded to the appropriate device-specific code, usually inline. Again the
device driver documentation should list the supported identifiers. In addition the configuration option CYGDAT_IO_FRAME-
BUF_DEVICES will contain the full list. By convention the identifier will be specified by a #define'd symbol such as
FRAMEBUF, or in the case of graphics libraries by a configuration option.

If a platform has multiple framebuffer devices connected to different displays then there will be separate cyg_fb structures
and macro identifiers for each one. In addition some devices can operate in multiple modes. For example a PC VGA card can
operate in a monochome 640x480 mode, an 8bpp 320x200 mode, and many other modes, but only one of these can be active
at a time. The different modes are also represented by different cyg_fb structures and identifiers, effectively treating the modes
as separate devices. It is the responsibility of higher-level code to ensure that only one mode is in use at a time.

It is possible to use the macro API with more than one device, basically by compiling the code twice with different values
of FRAMEBUF, taking appropriate care to avoid identifier name clashes. This gives the higher performance of the macros at
the cost of increased code size.

All of the framebuffer API, including exports of the device-specific cyg_fb structures, is available through a single header file
<cyg/io/framebuf.h>. The API follows a number of conventions. Coordinates (0,0) correspond to the top-left corner of
the display. All functions and macros which take a pair of coordinates have x first, y second. For block operations these coor-
dinates are followed by width, then height. Coordinates and dimensions use cyg_ucount16 variables, which for any processor
should be the most efficient unsigned data type with at least 16 bits - usually plain unsigned integers. Colours are identified
by cyg_fb_colour variables, again usually unsigned integers.

To allow for the different variants of the English language, the API allows for a number of alternate spellings. Colour
and color can be used interchangeably, so there are data types cyg_fb_colour and cyg_fb_color, and functions cyg_f-
b_make_colour and cyg_fb_make_color. Similarly gray is accepted as a variant of grey so the predefined colours
CYG_FB_DEFAULT_PALETTE_LIGHTGREY and CYG_FB_DEFAULT_PALETTE_LIGHTGRAY are equivalent.

The API is split into the following categories:

parameters getting information about a given framebuffer device such as width, height and depth.
Colours management is complicated so has its own category.

control operations such as switching the display on and off, and more device-specific ones such
as manipulating the backlight.

colours determining the colour format (monochrome, paletted, …), manipulating the palette, or
constructing true colours.

485

Framebuffer Support

drawing primitives for manipulating pixels and blocks of pixels.

iteration efficiently iterating over blocks of pixels.

Thread Safety
The framebuffer API never performs any locking so is not thread-safe. Instead it assumes that higher-level code such as a
graphics library performs any locking that may be needed. Adding a mutex lock and unlock around every drawing primitive,
including pixel writes, would be prohibitively expensive.

It is also assumed that the framebuffer will only be updated from thread context. With most hardware it will also be possible
to access a framebuffer from DSR or ISR context, but this should be avoided in portable code.

486

Framebuffer Support

Name
Parameters — determining framebuffer capabilities

Synopsis
#include <cyg/io/framebuf.h> typedef struct cyg_fb { cyg_ucount16 fb_depth; cyg_ucount16 fb_format; cyg_ucount16
fb_width; cyg_ucount16 fb_height; #ifdef CYGHWR_IO_FRAMEBUF_FUNCTIONALITY_VIEWPORT cyg_ucount16
fb_viewport_width; cyg_ucount16 fb_viewport_height; #endif void* fb_base; cyg_ucount16 fb_stride; cyg_uint32 fb_flags0;
… } cyg_fb;

cyg_fb* CYG_FB_STRUCT(FRAMEBUF);

cyg_ucount16 CYG_FB_DEPTH(FRAMEBUF);

cyg_ucount16 CYG_FB_FORMAT(FRAMEBUF);

cyg_ucount16 CYG_FB_WIDTH(FRAMEBUF);

cyg_ucount16 CYG_FB_HEIGHT(FRAMEBUF);

cyg_ucount16 CYG_FB_VIEWPORT_WIDTH(FRAMEBUF);

cyg_ucount16 CYG_FB_VIEWPORT_HEIGHT(FRAMEBUF);

void* CYG_FB_BASE(FRAMEBUF);

cyg_ucount16 CYG_FB_STRIDE(FRAMEBUF);

cyg_uint32 CYG_FB_FLAGS0(FRAMEBUF);

Description
When developing an application for a specific platform the various framebuffer parameters such as width and height are known,
and the code can be written accordingly. However when writing code that should work on many platforms with different
framebuffer devices, for example a graphics library, the code must be able to get these parameters and adapt.

Code using the function API can extract the parameters from the cyg_fb structures at run-time. The macro API provides
dedicated macros for each parameter. These do not follow the usual eCos convention where the result is provided via an extra
argument. Instead the result is returned as normal, and is guaranteed to be a compile-time constant. This allows code like the
following:

#if CYG_FB_DEPTH(FRAMEBUF) < 8
 …
#else
 …
#endif

or alternatively:

 if (CYG_FB_DEPTH(FRAMEBUF) < 8) {
 …
 } else {
 …
 }

or:

 switch (CYG_FB_DEPTH(FRAMEBUF)) {
 case 1 : … break;
 case 2 : … break;
 case 4 : … break;
 case 8 : … break;
 case 16 : … break;
 case 32 : … break;
 }

487

Framebuffer Support

In terms of the code actually generated by the compiler these approaches have much the same effect. The macros expand to
a compile-time constant so unnecessary code can be easily eliminated.

The available parameters are as follows:

depth The number of bits per pixel or bpp. The common depths are 1, 2, 4, 8, 16 and 32.

format How the pixel values are mapped on to visible colours, for example true colour or paletted or greyscale.

width
height

The number of framebuffer pixels horizontally and vertically.

viewport width
viewport height

With some devices the framebuffer height and/or width are greater than what the display can actually
show. The display is said to offer a viewport into the larger framebuffer. The number of visible pixels
is determined from the viewport width and height. The position of the viewport is controlled via an
ioctl. Within a cyg_fb structure these fields are only present if CYGHWR_IO_FRAMEBUF_FUNC-
TIONALITY_VIEWPORT is defined, to avoid wasting data space on fields that are unnecessary
for the current platform. For the macro API the viewport macros should only be used if CYG_F-
B_FLAGS0_VIEWPORT is set for the framebuffer:

#if (CYG_FB_FLAGS0(FRAMEBUF) & CYG_FB_FLAGS0_VIEWPORT)
 …
#endif

base
stride

For linear framebuffers these parameters provide the information needed to access framebuffer mem-
ory. The stride is in bytes.

flags0 This gives further information about the hardware capabilities. Some of this overlaps with other pa-
rameters, especially when it comes to colour, because it is often easier to test for a single flag than
for a range of colour modes. The current flags are:

CYG_FB_FLAGS0_LINEAR_FRAMEBUFFER

Framebuffer memory is organized in a conventional fashion and can be accessed directly by
higher-level code using the base and stride parameters.

CYG_FB_FLAGS0_LE

This flag is only relevant for 1bpp, 2bpp and 4bpp devices and controls how the pixels are orga-
nized within each byte. If the flag is set then the layout is little-endian: for a 1bpp device pixel
(0,0) occupies bit 0 of the first byte of framebuffer memory. The more common layout is big-
endian where pixel (0,0) occupies bit 7 of the first byte.

CYG_FB_FLAGS0_TRUE_COLOUR

The framebuffer uses a true colour format where the value of each pixel directly encodes the red,
green and blue intensities. This is common for 16bpp and 32bpp devices, and is occasionally
used for 8bpp devices.

CYG_FB_FLAGS0_PALETTE

The framebuffer uses a palette. A pixel value does not directly encode the colours, but instead
acts as an index into a separate table of colour values. That table may be read-only or read-write.
Paletted displays are common for 8bpp and some 4bpp displays.

CYG_FB_FLAGS0_WRITEABLE_PALETTE

The palette is read-write.

CYG_FB_FLAGS0_DELAYED_PALETTE_UPDATE

Palette updates can be synchronized to a vertical blank, in other words a brief time period when the
display is not being updated, by using CYG_FB_UPDATE_VERTICAL_RETRACE as the last ar-

488

Framebuffer Support

gument to cyg_fb_write_palette or CYG_FB_WRITE_PALETTE. With some hardware
updating the palette in the middle of a screen update may result in visual noise.

CYG_FB_FLAGS0_VIEWPORT

The framebuffer contains more pixels than can be shown on the display. Instead the display
provides a viewport into the framebuffer. An ioctl can be used to move the viewport.

CYG_FB_FLAGS0_DOUBLE_BUFFER

The display does not show the current contents of the framebuffer, so the results of drawing
into the framebuffer are not immediately visible. Instead higher-level code needs to perform an
explicit synch operation to update the display.

CYG_FB_FLAGS0_PAGE_FLIPPING

The hardware supports two or more pages, each of width*height pixels, only one of which is
visible on the display. This allows higher-level code to update one page without disturbing what
is currently visible. An ioctl is used to switch the visible page.

CYG_FB_FLAGS0_BLANK

The display can be blanked without affecting the framebuffer contents or settings.

CYG_FB_FLAGS0_BACKLIGHT

There is a backlight which can be switched on or off. Some hardware provides finer-grained
control over the backlight intensity.

CYG_FB_FLAGS0_MUST_BE_ON

Often it is desirable to perform some initialization such as clearing the screen or setting the palette
before the display is switched on, to avoid visual noise. However not all hardware allows this.
If this flag is set then it is possible to access framebuffer memory and the palette before the
cyg_fb_on or CYG_FB_ON operation. It may also be possible to perform some other operations
such as activating the backlight, but that is implementation-defined.

To allow for future expansion there are also flags1, flags2, and flags3 fields. These may get used for encoding additional
ioctl functionality, support for hardware acceleration, and similar features.

Linear Framebuffers
There are drawing primitives for writing and reading individual pixels. However these involve a certain amount of arithmetic
each time to get from a position to an address within the frame buffer, plus function call overhead if the function API is used,
and this will slow down graphics operations.

When the framebuffer device is known at compile-time and the macro API is used then there are additional macros specifically
for iterating over parts of the frame buffer. These should prove very efficient for many graphics operations. However if the
device is selected at run-time then the macros are not appropriate and code may want to manipulate framebuffer memory
directly. This is possible if two conditions are satisfied:

1. The CYG_FB_FLAGS0_LINEAR_FRAMEBUFFER flag must be set. Otherwise framebuffer memory is either not directly
accessible or has a non-linear layout.

2. The CYG_FB_FLAGS0_DOUBLE_BUFFER flag must be clear. An efficient double buffer synch operation requires know-
ing what part of the framebuffer have been updated, and the various drawing primitives will keep track of this. If higher-level
code then starts manipulating the framebuffer directly the synch operation may perform only a partial update.

The base, stride, depth, width and height parameters, plus the CYG_FB_FLAGS0_LE flag for 1bpp, 2bpp and 4bpp devices,
provide all the information needed to access framebuffer memory. A linear framebuffer has pixel (0,0) at the base address.
Incrementing y means adding stride bytes to the pointer.

489

Framebuffer Support

The base and stride parameters may be set even if CYG_FB_FLAGS0_LINEAR_FRAMEBUFFER is clear. This can be useful
if for example the display is rotated in software from landscape to portrait mode. However the meaning of these parameters
for non-linear framebuffers is implementation-defined.

490

Framebuffer Support

Name
Control Operations — managing a framebuffer

Synopsis
#include <cyg/io/framebuf.h>

int cyg_fb_on(fbdev);

int cyg_fb_off(fbdev);

int cyg_fb_ioctl(fbdev, key, data, len);

int CYG_FB_ON(FRAMEBUF);

int CYG_FB_OFF(FRAMEBUF);

int CYG_FB_IOCTL(FRAMEBUF, key, data, len);

Description
The main operations on a framebuffer are drawing and colour management. However on most hardware it is also necessary to
switch the display on before the user can see anything, and application code should be able to control when this happens. There
are also miscellaneous operations such as manipulating the backlight or moving the viewpoint. These do not warrant dedicated
functions, especially since the functionality will only be available on some hardware, so an ioctl interface is used.

Switching the Display On or Off
With most hardware nothing will be visible until there is a call to cyg_fb_on or an invocation of the CYG_FB_ON macro.
This will initialize the framebuffer control circuitry, start sending the data signals to the display unit, and switch on the display if
necessary. The exact initialization semantics are left to the framebuffer device driver. In some cases the hardware may already
be partially or fully initialized by a static constructor or by boot code that ran before eCos.

There are some circumstances in which initialization can fail, and this is indicated by a POSIX error code such as ENODEV.
An example would be plug and play hardware where the framebuffer device is not detected at run-time. Another example is
hardware which can operate in several modes, with separate cyg_fb structures for each mode, if the hardware is already in use
for a different mode. A return value of 0 indicates success.

Some but not all hardware allows the framebuffer memory and, if present, the palette to be manipulated before the de-
vice is switched on. That way the user does not see random noise on the screen during system startup. The flag CYG_F-
B_FLAGS0_MUST_BE_ON should be checked:

static void
init_screen(cyg_fb_colour background)
{
 int result;

#if (! (CYG_FB_FLAGS0(FRAMEBUF) & CYG_FB_FLAGS0_MUST_BE_ON))
 CYG_FB_FILL_BLOCK(FRAMEBUF, 0, 0,
 CYG_FB_WIDTH(FRAMEBUF), CYG_FB_HEIGHT(FRAMEBUF),
 background);
#endif

 result = CYG_FB_ON(FRAMEBUF);
 if (0 != result) {
 <handle unusual error condition>
 }

#if (CYG_FB_FLAGS0(FRAMEBUF) & CYG_FB_FLAGS0_MUST_BE_ON)
 CYG_FB_FILL_BLOCK(FRAMEBUF, 0, 0,
 CYG_FB_WIDTH(FRAMEBUF), CYG_FB_HEIGHT(FRAMEBUF),
 background);

491

Framebuffer Support

#endif
}

Obviously if the application has already manipulated framebuffer memory or the palette but then the cyg_fb_on operation
fails, the system is left in an undefined state.

It is also possible to switch a framebuffer device off, using the function cyg_fb_off or the macro CYG_FB_OFF, although
this functionality is rarely used in embedded systems. The exact semantics of switching a device off are implementation-defined,
but typically it involves shutting down the display, stopping the data signals to the display, and halting the control circuitry.
The framebuffer memory and the palette are left in an undefined state, and application code should assume that both need full
reinitializing when the device is switched back on. Some hardware may also provide a blank operation which typically just
manipulates the display, not the whole framebuffer device. Normally cyg_fb_on returns 0. The API allows for a POSIX
error code as with cyg_fb_on, but switching a device off is not an operation that is likely to fail.

If a framebuffer device can operate in several modes, represented by several cyg_fb structures and macro identifiers, then
switching modes requires turning the current device off before turning the next one one.

Miscellaneous Control Operations
Some hardware functionality such as an LCD panel backlight is common but not universal. Supporting these does not warrant
dedicated functions. Instead a catch-all ioctl interface is provided, with the arguments just passed straight to the device driver.
This approach also allows for future expansion and for device-specific operations. cyg_fb_ioctl and CYG_FB_IOCTL
take four arguments: a cyg_fb structure or framebuffer identifier; a key that specifies the operation to be performed; an arbitrary
pointer, which should usually be a pointer to a data structure specific to the key; and a length field. Key values from 0 to 0x7fff
are generic. Key values from 0x8000 onwards are reserved for the individual framebuffer device drivers, for device-specific
functionality. The length field should be set to the size of the data structure, and may get updated by the device driver.

With most ioctl operations the device can indicate whether or not it supports the functionality by one of the flags, for example:

void
backlight_off(cyg_fb* fb)
{
 if (fb->fb_flags0 & CYG_FB_FLAGS0_BACKLIGHT) {
 cyg_fb_ioctl_backlight new_setting;
 size_t len = sizeof(cyg_fb_ioctl_backlight);
 int result;

 new_setting.fbbl_current = 0;
 result = cyg_fb_ioctl(fb, CYG_FB_IOCTL_BACKLIGHT_SET,
 &new_setting, &len);
 if (0 != result) {
 …
 }
 }
}

The operation returns zero for success or a POSIX error code on failure, for example ENOSYS if the device driver does not
implement the requested functionality.

Viewport
define CYG_FB_IOCTL_VIEWPORT_GET_POSITION 0x0100
define CYG_FB_IOCTL_VIEWPORT_SET_POSITION 0x0101

typedef struct cyg_fb_ioctl_viewport {
 cyg_ucount16 fbvp_x; // position of top-left corner of the viewport within
 cyg_ucount16 fbvp_y; // the framebuffer
 cyg_ucount16 fbvp_when; // set-only, now or vert retrace
} cyg_fb_ioctl_viewport;

On some targets the framebuffer device has a higher resolution than the display. Only a subset of the pixels, the viewport,
is currently visible. Application code can exploit this functionality to achieve certain effects, for example smooth scrolling.
Framebuffers which support this functionality will have the CYG_FB_FLAGS0_VIEWPORT flag set. The viewport dimensions
are available as additional parameters to the normal framebuffer width and height.

492

Framebuffer Support

The current position of the viewport can be obtained using an CYG_FB_IOCTL_VIEWPORT_GET_POSITION ioctl opera-
tion. The data argument should be a pointer to a cyg_fb_ioctl_viewport structure. On return the fbvp_x and fbvp_y fields
will be filled in. To move the viewport use CYG_FB_IOCTL_VIEWPORT_SET_POSITION with fbvp_x and fbvp_y set
to the top left corner of the new viewport within the framebuffer, and fbvp_when set to either CYG_FB_UPDATE_NOW or
CYG_FB_UPDATE_VERTICAL_RETRACE. If the device driver cannot easily synchronize to a vertical retrace period then
this last field is ignored.

void
move_viewport(cyg_fb* fb, int dx, int dy)
{
#ifdef CYGHWR_IO_FRAMEBUF_FUNCTIONALITY_VIEWPORT
 cyg_fb_ioctl_viewport viewport;
 int len = sizeof(cyg_fb_ioctl_viewport);
 int result;

 result = cyg_fb_ioctl(fb, CYG_FB_IOCTL_VIEWPORT_GET_POSITION,
 &viewport, &len);
 if (result != 0) {
 …
 }
 if (((int)viewport.fbvp_x + dx) < 0) {
 viewport.fbvp_x = 0;
 } else if ((viewport.fbvp_x + dx + fb->fb_viewport_width) > fb->fb_width) {
 viewport.fbvp_x = fb->fb_width - fb->fb_viewport_width;
 } else {
 viewport.fbvp_x += dx;
 }
 if (((int)viewport.fbvp_y + dy) < 0) {
 viewport.fbvp_y = 0;
 } else if ((viewport.fbvp_y + dy + fb->fb_viewport_height) > fb->fb_height) {
 viewport.fbvp_y = fb->fb_height - fb->fb_viewport_height;
 } else {
 viewport.fbvp_y += dy;
 }
 result = cyg_fb_ioctl(fb, CYG_FB_IOCTL_VIEWPORT_SET_POSITION,
 &viewport, &len);
 if (result != 0) {
 …
 }
#else
 CYG_UNUSED_PARAM(cyg_fb*, fb);
 CYG_UNUSED_PARAM(int, dx);
 CYG_UNUSED_PARAM(int, dy);
#endif
}

If an attempt is made to move the viewport beyond the boundaries of the framebuffer then the resulting behaviour is undefined.
Some hardware may behave reasonably, wrapping around as appropriate, but portable code cannot assume this. The above
code fragment is careful to clip the viewport to the framebuffer dimensions.

Page Flipping
define CYG_FB_IOCTL_PAGE_FLIPPING_GET_PAGES 0x0200
define CYG_FB_IOCTL_PAGE_FLIPPING_SET_PAGES 0x0201

typedef struct cyg_fb_ioctl_page_flip {
 cyg_uint32 fbpf_number_pages;
 cyg_uint32 fbpf_visible_page;
 cyg_uint32 fbpf_drawable_page;
 cyg_ucount16 fbpf_when; // set-only, now or vert retrace
} cyg_fb_ioctl_page_flip;

On some targets the framebuffer has enough memory for several pages, only one of which is visible at a time. This allows the
application to draw into one page while displaying another. Once drawing is complete the display is flipped to the newly drawn
page, and the previously displayed page is now available for updating. This technique is used for smooth animation, especially
in games. The flag CYG_FB_FLAGS0_PAGE_FLIPPING indicates support for this functionality.

CYG_FB_IOCTL_PAGE_FLIPPING_GET_PAGES can be used to get the current settings of the page flipping support. The
data argument should be a pointer to a cyg_fb_ioctl_page_flip structure. The resulting fbpf_number_pages field indicates

493

Framebuffer Support

the total number of pages available: 2 is common, but more pages are possible. fbpf_visible_page gives the page that
is currently visible to the user, and will be between 0 and (fbpf_number_pages - 1). Similarly fbpf_drawable_page
gives the page that is currently visible. It is implementation-defined whether or not the visible and drawable page can be the
same one.

CYG_FB_IOCTL_PAGE_FLIPPING_SET_PAGES can be used to change the visible and drawable page. The fbpf_num-
ber_pages field is ignored. fbpf_visible_page and fbpf_drawable_page give the new settings. fbpf_when
should be one of CYG_FB_UPDATE_NOW or CYG_FB_UPDATE_VERTICAL_RETRACE, but may be ignored by some de-
vice drivers.

#if !(CYG_FB_FLAGS0(FRAMEBUF) & CYG_FB_FLAGS0_PAGE_FLIPPING)
error Current framebuffer device does not support page flipping
#endif

static cyg_uint32 current_visible = 0;

static void
page_flip_init(cyg_fb_colour background)
{
 cyg_fb_ioctl_page_flip flip;
 size_t len = sizeof(cyg_fb_ioctl_page_flip);

 flip.fbpf_visible_page = current_visible;
 flip.fbpf_drawable_page = 1 - current_visible;
 flip.fbpf_when = CYG_FB_UPDATE_NOW;
 CYG_FB_IOCTL(FRAMEBUF, CYG_FB_IOCTL_PAGE_FLIPPING_SET_PAGES,
 &flip, &len);
 CYG_FB_FILL_BLOCK(FRAMEBUF, 0, 0,
 CYG_FB_WIDTH(FRAMEBUF), CYG_FB_HEIGHT(FRAMEBUF),
 background);
 flip.fbpf_visible_page = 1 - current_visible;
 flip.fbpf_drawable_page = current_visible;
 CYG_FB_IOCTL(FRAMEBUF, CYG_FB_IOCTL_PAGE_FLIPPING_SET_PAGES,
 &flip, &len);
 CYG_FB_FILL_BLOCK(FRAMEBUF, 0, 0,
 CYG_FB_WIDTH(FRAMEBUF), CYG_FB_HEIGHT(FRAMEBUF),
 background);
 current_visible = 1 - current_visible;
}

static void
page_flip_toggle(void)
{
 cyg_fb_ioctl_page_flip flip;
 size_t len = sizeof(cyg_fb_ioctl_page_flip);

 flip.fbpf_visible_page = 1 - current_visible;
 flip.fbpf_drawable_page = current_visible;
 CYG_FB_IOCTL(FRAMEBUF, CYG_FB_IOCTL_PAGE_FLIPPING_SET_PAGES,
 &flip, &len);
 current_visible = 1 - current_visible;
}

A page flip typically just changes a couple of pointers within the hardware and device driver. No attempt is made to synchronize
the contents of the pages, that is left to higher-level code.

Blanking the Screen
define CYG_FB_IOCTL_BLANK_GET 0x0300
define CYG_FB_IOCTL_BLANK_SET 0x0301

typedef struct cyg_fb_ioctl_blank {
 cyg_bool fbbl_on;
} cyg_fb_ioctl_blank;

Some hardware allows the display to be switched off or blanked without shutting down the entire framebuffer device, greatly
reducing power consumption. The current blanking state can be obtained using CYG_FB_IOCTL_BLANK_GET and the state
can be updated using CYG_FB_IOCTL_BLANK_SET. The data argument should be a pointer to a cyg_fb_ioctl_blank struc-
ture. Support for this functionality is indicated by the CYG_FB_FLAGS0_BLANK flag.

494

Framebuffer Support

static cyg_bool
display_blanked(cyg_fb_* fb)
{
 cyg_fb_ioctl_blank blank;
 size_t len = sizeof(cyg_fb_ioctl_blank);

 if (! (fb->fb_flags0 & CYG_FB_FLAGS0_BLANK)) {
 return false;
 }
 (void) cyg_fb_ioctl(fb, CYG_FB_IOCTL_BLANK_GET, &blank, &len);
 return !blank.fbbl_on;
}

Controlling the Backlight
define CYG_FB_IOCTL_BACKLIGHT_GET 0x0400
define CYG_FB_IOCTL_BACKLIGHT_SET 0x0401

typedef struct cyg_fb_ioctl_backlight {
 cyg_ucount32 fbbl_current;
 cyg_ucount32 fbbl_max;
} cyg_fb_ioctl_backlight;

Many LCD panels provide some sort of backlight, making the display easier to read at the cost of increased power consumption.
Support for this is indicated by the CYG_FB_FLAGS0_BACKLIGHT flag. CYG_FB_IOCTL_BACKLIGHT_GET can be used
to get both the current setting and the maximum value. If the maximum is 1 then the backlight can only be switched on or off.
Otherwise it is possible to control the intensity.

static void
set_backlight_50_percent(void)
{
#if (CYG_FB_FLAGS0(FRAMEBUF) & CYG_FB_FLAGS0_BACKLIGHT)
 cyg_fb_ioctl_backlight backlight;
 size_t len = sizeof(cyg_fb_ioctl_backlight);

 CYG_FB_IOCTL(FRAMEBUF, CYG_FB_IOCTL_BACKLIGHT_GET, &backlight, &len);
 backlight.fbbl_current = (backlight.fbbl_max + 1) >> 1;
 CYG_FB_IOCTL(FRAMEBUF, CYG_FB_IOCTL_BACKLIGHT_SET, &backlight, &len);
#endif
}

495

Framebuffer Support

Name
Colours — formats and palette management

Synopsis
#include <cyg/io/framebuf.h>

typedef struct cyg_fb {
 cyg_ucount16 fb_depth;
 cyg_ucount16 fb_format;
 cyg_uint32 fb_flags0;
 …
} cyg_fb;

extern const cyg_uint8 cyg_fb_palette_ega[16 * 3];
extern const cyg_uint8 cyg_fb_palette_vga[256 * 3];

#define CYG_FB_DEFAULT_PALETTE_BLACK 0x00
#define CYG_FB_DEFAULT_PALETTE_BLUE 0x01
#define CYG_FB_DEFAULT_PALETTE_GREEN 0x02
#define CYG_FB_DEFAULT_PALETTE_CYAN 0x03
#define CYG_FB_DEFAULT_PALETTE_RED 0x04
#define CYG_FB_DEFAULT_PALETTE_MAGENTA 0x05
#define CYG_FB_DEFAULT_PALETTE_BROWN 0x06
#define CYG_FB_DEFAULT_PALETTE_LIGHTGREY 0x07
#define CYG_FB_DEFAULT_PALETTE_LIGHTGRAY 0x07
#define CYG_FB_DEFAULT_PALETTE_DARKGREY 0x08
#define CYG_FB_DEFAULT_PALETTE_DARKGRAY 0x08
#define CYG_FB_DEFAULT_PALETTE_LIGHTBLUE 0x09
#define CYG_FB_DEFAULT_PALETTE_LIGHTGREEN 0x0A
#define CYG_FB_DEFAULT_PALETTE_LIGHTCYAN 0x0B
#define CYG_FB_DEFAULT_PALETTE_LIGHTRED 0x0C
#define CYG_FB_DEFAULT_PALETTE_LIGHTMAGENTA 0x0D
#define CYG_FB_DEFAULT_PALETTE_YELLOW 0x0E
#define CYG_FB_DEFAULT_PALETTE_WHITE 0x0F

cyg_ucount16 CYG_FB_FORMAT(framebuf);

void cyg_fb_read_palette(fb, first, count, data);

void cyg_fb_write_palette(fb, first, count, data, when);

cyg_fb_colour cyg_fb_make_colour(fb, r, g, b);

void cyg_fb_break_colour(fb, colour, r, g, b);

void CYG_FB_READ_PALETTE(FRAMEBUF, first, count, data);

void CYG_FB_WRITE_PALETTE(FRAMEBUF, first, count, data, when);

cyg_fb_colour CYG_FB_MAKE_COLOUR(FRAMEBUF, r, g, b);

void CYG_FB_BREAK_COLOUR(FRAMEBUF, colour, r, g, b);

Description
Managing colours can be one of the most difficult aspects of writing graphics code, especially if that code is intended to be
portable to many different platforms. Displays can vary from 1bpp monochrome, via 2bpp and 4bpp greyscale, through 4bpp
and 8bpp paletted, and up to 16bpp and 32bpp true colour - and those are just the more common scenarios. The various drawing
primitives like cyg_fb_write_pixel work in terms of cyg_fb_colour values, usually an unsigned integer. Exactly how
the hardware interprets a cyg_fb_colour depends on the format.

Colour Formats
There are a number of ways of finding out how these values will be interpreted by the hardware:

496

Framebuffer Support

1. The CYG_FB_FLAGS0_TRUE_COLOUR flag is set for all true colour displays. The format parameter can be examined for
more details but this is not usually necessary. Instead code can use cyg_fb_make_colour or CYG_FB_MAKE_COLOUR
to construct a cyg_fb_colour value from red, green and blue components.

2. If the CYG_FB_FLAGS0_WRITEABLE_PALETTE flag is set then a cyg_fb_colour value is an index into a lookup table
known as the palette, and this table contains red, green and blue components. The size of the palette is determined by the
display depth, so 16 entries for a 4bpp display and 256 entries for an 8bpp display. Application code or a graphics library
can install its own palette so can control exactly what colour each cyg_fb_colour value corresponds to. Alternatively there
is support for installing a default palette.

3. If CYG_FB_FLAGS0_PALETTE is set but CYG_FB_FLAGS0_WRITEABLE_PALETTE is clear then the hardware uses
a fixed palette. There is no easy way for portable software to handle this case. The palette can be read at run-time, allowing
the application's desired colours to be mapped to whichever palette entry provides the best match. However normally it will
be necessary to write code specifically for the fixed palette.

4. Otherwise the display is monochrome or greyscale, depending on the depth. There are still variations, for example on a
monochrome display colour 0 can be either white or black.

As an alternative or to provide additional information, the exact colour format is provided by the fb_format field of the
cyg_fb structure or by the CYG_FB_FORMAT macro. It can be one of the following (more entries may be added in future):

CYG_FB_FORMAT_1BPP_MONO_0_BLACK

simple 1bpp monochrome display, with 0 as black or the darker of the two colours, and 1 as white or the ligher colour.

CYG_FB_FORMAT_1BPP_MONO_0_WHITE

simple 1bpp monochrome display, with 0 as white or the lighter of the two colours, and 1 as black or the darker colour.

CYG_FB_FORMAT_1BPP_PAL888

a 1bpp display which cannot easily be described as monochrome. This is unusual and not readily supported by portable
code. It can happen if the framebuffer normally runs at a higher depth, for example 4bpp or 8bpp paletted, but is run at
only 1bpp to save memory. Hence only two of the palette entries are used, but can be set to arbitrary colours. The palette
may be read-only or read-write.

CYG_FB_FORMAT_2BPP_GREYSCALE_0_BLACK

a 2bpp display offering four shades of grey, with 0 as black or the darkest of the four shades, and 3 as white or the lightest.

CYG_FB_FORMAT_2BPP_GREYSCALE_0_WHITE

a 2bpp display offering four shades of grey, with 0 as white or the lightest of the four shades, and 3 as black or the darkest.

CYG_FB_FORMAT_2BPP_PAL888

a 2bpp display which cannot easily be described as greyscale, for example providing black, red, blue and white as the four
colours. This is unusual and not readily supported by portable code. It can happen if the framebuffer normally runs at a
higher depth, for example 4bpp or 8bpp paletted, but is run at only 2bpp to save memory. Hence only four of the palette
entries are used, but can be set to arbitrary colours. The palette may be read-only or read-write.

CYG_FB_FORMAT_4BPP_GREYSCALE_0_BLACK

a 4bpp display offering sixteen shades of grey, with 0 as black or the darkest of the 16 shades, and 15 as white or the lighest.

CYG_FB_FORMAT_4BPP_GREYSCALE_0_WHITE

a 4bpp display offering sixteen shades of grey, with 0 as white or the lightest of the 16 shades, and 15 as black or the darkest.

CYG_FB_FORMAT_4BPP_PAL888

a 4bpp paletted display, allowing for 16 different colours on screen at the same time. The palette may be read-only or
read-write.

497

Framebuffer Support

CYG_FB_FORMAT_8BPP_PAL888

an 8bpp paletted display, allowing for 256 different colours on screen at the same time. The palette may be read-only
or read-write.

CYG_FB_FORMAT_8BPP_TRUE_332

an 8bpp true colour display, with three bits (eight levels) of red and green intensity and two bits (four levels) of blue
intensity.

CYG_FB_FORMAT_16BPP_TRUE_565

a 16bpp true colour display with 5 bits each for red and blue and 6 bits for green.

CYG_FB_FORMAT_16BPP_TRUE_555

a 16bpp true colour display with five bits each for red, green and blue, and one unused bit.

CYG_FB_FORMAT_32BPP_TRUE_0888

a 32bpp true colour display with eight bits each for red, green and blue and eight bits unused.

For the true colour formats the format does not define exactly which bits in the pixel are used for which colour. Instead the
cyg_fb_make_colour and cyg_fb_break_colour functions or the equivalent macros should be used to construct
or decompose pixel values.

Paletted Displays
Palettes are the common way of implementing low-end colour displays. There are two variants. A read-only palette provides
a fixed set of colours and it is up to application code to use these colours appropriately. A read-write palette allows the ap-
plication to select its own set of colours. Displays providing a read-write palette will have the CYG_FB_FLAGS0_WRITE-
ABLE_PALETTE flag set in addition to CYG_FB_FLAGS0_PALETTE.

Even if application code can install its own palette, many applications do not exploit this functionality and instead stick with
a default. There are two standard palettes: the 16-entry PC EGA for 4bpp displays; and the 256-entry PC VGA, a superset of
the EGA one, for 8bpp displays. This package provides the data for both, in the form of arrays cyg_fb_palette_ega and
cyg_fb_palette_vga, and 16 #define's such as CYG_FB_DEFAULT_PALETTE_BLACK for the EGA colours and the
first 16 VGA colours. By default device drivers for read-write paletted displays will install the appropriate default palette, but
this can be suppressed using configuration option CYGFUN_IO_FRAMEBUF_INSTALL_DEFAULT_PALETTE. If a custom
palette will be used then installing the default palette involves wasting 48 or 768 bytes of memory.

It should be emphasized that displays vary widely. A colour such as CYG_FB_DEFAULT_PALETTE_YELLOW may appear
rather differently on two different displays, although it should always be recognizable as yellow. Developers may wish to fine-
tune the palette for specific hardware.

The current palette can be retrieved using cyg_fb_read_palette or CYG_FB_READ_PALETTE. The first and count
arguments control which palette entries should be retrieved. For example, to retrieve just palette entry 12 first should be
set to 12 and count should be set to 1. To retrieve all 256 entries for an 8bpp display, first should be set to 0 and count
should be set to 256. The data argument should point at an array of bytes, allowing three bytes for every entry. Byte 0 will
contain the red intensity for the first entry, byte 1 green and byte 2 blue.

For read-write palettes the palette can be updated using cyg_fb_write_palette or CYG_FB_WRITE_PALETTE. The
first and count arguments are the same as for cyg_fb_read_palette, and the data argument should point at a
suitable byte array packed in the same way. The when argument should be one of CYG_FB_UPDATE_NOW or CYG_FB_UP-
DATE_VERTICAL_RETRACE. With some displays updating the palette in the middle of an update may result in visual noise,
so synchronizing to the vertical retrace avoids this. However not all device drivers will support this.

There is an assumption that palette entries use 8 bits for each of the red, green and blue colour intensities. This is not always
the case, but the device drivers will perform appropriate adjustments. Some hardware may use only 6 bits per colour, and the
device driver will ignore the bottom two bits of the supplied intensity values. Occasionally hardware may use more than 8 bits,

498

Framebuffer Support

in which case the supplied 8 bits are shifted left appropriately and zero-padded. Device drivers for such hardware may also
provide device-specific routines to manipulate the palette in a non-portable fashion.

True Colour displays
True colour displays are often easier to manage than paletted displays. However this comes at the cost of extra memory. A
16bpp true colour display requires twice as much memory as an 8bpp paletted display, yet can offer only 32 or 64 levels of
intensity for each colour as opposed to the 256 levels provided by a palette. It also requires twice as much video memory
bandwidth to send all the pixel data to the display for every refresh, which may impact the performance of the rest of the system.
A 32bpp true colour display offers the same colour intensities but requires four times the memory and four times the bandwidth.

Exactly how the colour bits are organized in a cyg_fb_colour pixel value is not defined by the colour format. Instead code should
use the cyg_fb_make_colour or CYG_FB_MAKE_COLOUR primitives. These take 8-bit intensity levels for red, green and
blue, and return the corresponding cyg_fb_colour. When using the macro interface the arithmetic happens at compile-time,
for example:

#define BLACK CYG_FB_MAKE_COLOUR(FRAMEBUF, 0, 0, 0)
#define WHITE CYG_FB_MAKE_COLOUR(FRAMEBUF, 255, 255, 255)
#define RED CYG_FB_MAKE_COLOUR(FRAMEBUF, 255, 0, 0)
#define GREEN CYG_FB_MAKE_COLOUR(FRAMEBUF, 0, 255, 0)
#define BLUE CYG_FB_MAKE_COLOUR(FRAMEBUF, 0, 0, 255)
#define YELLOW CYG_FB_MAKE_COLOUR(FRAMEBUF, 255, 255, 80)

Displays vary widely so the numbers may need to be adjusted to give the exact desired colours.

For symmetry there are also cyg_fb_break_colour and CYG_FB_BREAK_COLOUR primitives. These take a cyg_f-
b_colour value and decompose it into its red, green and blue components.

499

Framebuffer Support

Name
Drawing Primitives — updating the display

Synopsis
#include <cyg/io/framebuf.h>

void cyg_fb_write_pixel(fbdev, x, y, colour);

cyg_fb_colour cyg_fb_read_pixel(fbdev, x, y);

void cyg_fb_write_hline(fbdev, x, y, len, colour);

void cyg_fb_write_vline(fbdev, x, y, len, colour);

void cyg_fb_fill_block(fbdev, x, y, width, height, colour);

void cyg_fb_write_block(fbdev, x, y, width, height, data, offset, stride);

void cyg_fb_read_block(fbdev, x, y, width, height, data, offset, stride);

void cyg_fb_move_block(fbdev, x, y, width, height, new_x, new_y);

void cyg_fb_synch(fbdev, when);

void CYG_FB_WRITE_PIXEL(FRAMEBUF, x, y, colour);

cyg_fb_colour CYG_FB_READ_PIXEL(FRAMEBUF, x, y);

void CYG_FB_WRITE_HLINE(FRAMEBUF, x, y, len, colour);

void CYG_FB_WRITE_VLINE(FRAMEBUF, x, y, len, colour);

void CYG_FB_FILL_BLOCK(FRAMEBUF, x, y, width, height, colour);

void CYG_FB_WRITE_BLOCK(FRAMEBUF, x, y, width, height, data, offset, stride);

void CYG_FB_READ_BLOCK(FRAMEBUF, x, y, width, height, data, offset, stride);

void CYG_FB_MOVE_BLOCK(FRAMEBUF, x, y, width, height, new_x, new_y);

void CYG_FB_SYNCH(FRAMEBUF, when);

Description
The eCos framebuffer infrastructure defines a small number of drawing primitives. These are not intended to provide full
graphical functionality like multiple windows, drawing text in arbitrary fonts, or anything like that. Instead they provide build-
ing blocks for higher-level graphical toolkits. The available primitives are:

1. Manipulating individual pixels.

2. Drawing horizontal and vertical lines.

3. Block fills.

4. Moving blocks between the framebuffer and main memory.

5. Moving blocks within the framebuffer.

6. For double-buffered devices, synchronizing the framebuffer contents with the actual display.

There are two versions for each primitive: a macro and a function. The macro can be used if the desired framebuffer device
is known at compile-time. Its first argument should be a framebuffer identifier, for example 320x240x16, and must be one

500

Framebuffer Support

of the entries in the configuration option CYGDAT_IO_FRAMEBUF_DEVICES. In the examples below it is assumed that
FRAMEBUF has been #define'd to a suitable identifier. The function can be used if the desired framebuffer device is selected
at run-time. Its first argument should be a pointer to the appropriate cyg_fb structure.

The pixel, line, and block fill primitives take a cyg_fb_colour argument. For details of colour handling see Framebuffer Colours.
This argument should have no more bits set than are appropriate for the display depth. For example on a 4bpp only the bottom
four bits of the colour may be set, otherwise the behaviour is undefined.

None of the primitives will perform any run-time error checking, except possibly for some assertions in a debug build. If
higher-level code provides invalid arguments, for example trying to write a block which extends past the right hand side of
the screen, then the system's behaviour is undefined. It is the responsibility of higher-level code to perform clipping to the
screen boundaries.

Manipulating Individual Pixels
The primitives for manipulating individual pixels are very simple: a pixel can be written or read back. The following example
shows one way of drawing a diagonal line:

void
draw_diagonal(cyg_fb* fb,
 cyg_ucount16 x, cyg_ucount16 y, cyg_ucount16 len,
 cyg_fb_colour colour)
{
 while (len--) {
 cyg_fb_write_pixel(fb, x++, y++, colour);
 }
}

The next example shows how to draw a horizontal XOR line on a 1bpp display.

void
draw_horz_xor(cyg_ucount16 x, cyg_ucount16 y, cyg_ucount16 len)
{
 cyg_fb_colour colour;
 while (len--) {
 colour = CYG_FB_READ_PIXEL(FRAMEBUF, x, y);
 CYG_FB_WRITE_PIXEL(FRAMEBUF, x++, y, colour ^ 0x01);
 }
}

The pixel macros should normally be avoided. Determining the correct location within framebuffer memory corresponding
to a set of coordinates for each pixel is a comparatively expensive operation. Instead there is direct support for iterating over
parts of the display, avoiding unnecessary overheads.

Drawing Simple Lines
Higher-level graphics code often needs to draw single-pixel horizontal and vertical lines. If the application involves multiple
windows then these will usually have thin borders around them. Widgets such as buttons and scrollbars also often have thin
borders.

cyg_fb_draw_hline and CYG_FB_DRAW_HLINE draw a horizontal line of the specified colour, starting at the x and
y coordinates and extending to the right (increasing x) for a total of len pixels. A 50 pixel line starting at (100,100) will
end at (149,100).

cyg_fb_draw_vline and CYG_FB_DRAW_VLINE take the same arguments, but the line extends down (increasing y).

These primitives do not directly support drawing lines more than one pixel thick, but block fills can be used to achieve those.
There is no generic support for drawing arbitrary lines, instead that is left to higher-level graphics toolkits.

Block Fills
Filling a rectangular part of the screen with a solid colour is another common requirement for higher-level code. The simplest
example is during initialization, to set the display's whole background to a known value. Block fills are also often used when

501

Framebuffer Support

creating new windows or drawing the bulk of a simple button or scrollbar widget. cyg_fb_fill_block and CYG_F-
B_FILL_BLOCK provide this functionality.

The x and y arguments specify the top-left corner of the block to be filled. The width and height arguments specify the
number of pixels affected, a total of width * height. The following example illustrates part of the process for initializing
a framebuffer, assumed here to have a writeable palette with default settings.

int
display_init(void)
{
 int result = CYG_FB_ON(FRAMEBUF);
 if (result) {
 return result;
 }
 CYG_FB_FILL_BLOCK(FRAMEBUF, 0, 0,
 CYG_FB_WIDTH(FRAMEBUF), CYG_FB_HEIGHT(FRAMEBUF),
 CYG_FB_DEFAULT_PALETTE_WHITE);
 …
}

Copying Blocks between the Framebuffer and Main Memory
The block transfer primitives serve two main purposes: drawing images. and saving parts of the current display to be restored
later. For simple linear framebuffers the primitives just implement copy operations, with no data conversion of any sort. For
non-linear ones the primitives act as if the framebuffer memory was linear. For example, consider a 2bpp display where the
two bits for a single pixel are split over two separate bytes in framebuffer memory, or two planes. For a block write operation
the source data should still be organized with four full pixels per byte, as for a linear framebuffer of the same depth. and the
block write primitive will distribute the bits over the framebuffer memory as required. Similarly a block read will combine
the appropriate bits from different locations in framebuffer memory and the resulting memory block will have four full pixels
per byte.

Because the block transfer primitives perform no data conversion, if they are to be used for rendering images then those images
should be pre-formatted appropriately for the framebuffer device. For small images this would normally happen on the host-
side as part of the application build process. For larger images it will usually be better to store them in a compressed format
and decompress them at run-time, trading off memory for cpu cycles.

The x and y arguments specify the top-left corner of the block to be transferred, and the width and height arguments
determine the size. The data, offset and stride arguments determine the location and layout of the block in main
memory:

data The source or destination for the transfer. For 1bpp, 2bpp and 4bpp devices the data will
be packed in accordance with the framebuffer device's endianness as per the CYG_F-
B_FLAGS0_LE flag. Each row starts in a new byte so there may be some padding on
the right. For 16bpp and 32bpp the data should be aligned to the appropriate boundary.

offset Sometimes only part of an image should be written to the screen. A vertical offset can be
achieved simply by adjusting data to point at the appropriate row within the image in-
stead of the top row. For 8bpp, 16bpp and 32bpp displays an additional horizontal offset
can also be achieved by adjusting data. However for 1bpp, 2bpp and 4bpp displays the
starting position within the image may be in the middle of a byte. Hence the horizontal
pixel offset can instead be specified with the offset argument.

stride This indicates the number of bytes between rows. Usually it will be related to the width,
but there are exceptions such as when drawing only part of an image.

The following example fills a 4bpp display with an image held in memory and already in the right format. If the image is
smaller than the display it will be centered. If the image is larger then the center portion will fill the entire display.

void
draw_image(const void* data, int width, int height)
{
 cyg_ucount16 stride;
 cyg_ucount16 x, y, offset;

502

Framebuffer Support

#if (4 != CYG_FB_DEPTH(FRAMEBUF))
error This code assumes a 4bpp display
#endif

 stride = (width + 1) >> 1; // 4bpp to byte stride

 if (width < CYG_FB_WIDTH(FRAMEBUF)) {
 x = (CYG_FB_WIDTH(FRAMEBUF) - width) >> 1;
 offset = 0;
 } else {
 x = 0;
 offset = (width - CYG_FB_WIDTH(FRAMEBUF)) >> 1;
 width = CYG_FB_WIDTH(FRAMEBUF);
 }
 if (height < CYG_FB_HEIGHT(FRAMEBUF)) {
 y = (CYG_FB_HEIGHT(FRAMEBUF) - height) >> 1;
 } else {
 y = 0;
 data = (const void*)((const cyg_uint8*)data +
 (stride * ((height - CYG_FB_HEIGHT(FRAMEBUF)) >> 1));
 height = CYG_FB_HEIGHT(FRAMEBUF);
 }
 CYG_FB_WRITE_BLOCK(FRAMEBUF, x, y, width, height, data, offset, stride);
}

Moving Blocks with the Framebuffer
Sometimes it is necessary to move a block of data around the screen, especially when using a higher-level graphics toolkit that
supports multiple windows. Block moves can be implemented by a read into main memory followed by a write block, but this
is expensive and imposes an additional memory requirement. Instead the framebuffer infrastructure provides a generic block
move primitive. It will handle all cases where the source and destination positions overlap. The x and y arguments specify the
top-left corner of the block to be moved, and width and height determine the block size. new_x and new_y specify the
destination. The source data will remain unchanged except in areas where it overlaps the destination.

Synchronizing Double-Buffered Displays
Some framebuffer devices are double-buffered: the framebuffer memory that gets manipulated by the drawing primitives is
separate from what is actually displayed, and a synch operation is needed to update the display. In some cases this may be
because the actual display memory is not directly accessible by the processor, for example it may instead be attached via an SPI
bus. Instead drawing happens in a buffer in main memory, and then this gets transferred over the SPI bus to the actual display
hardware during a synch. In other cases it may be a software artefact. Some drawing operations, especially ones involving
complex curves, can take a very long time and it may be considered undesirable to have the user see this happening a few pixels
at a time. Instead the drawing happens in a separate buffer in main memory and then a double buffer synch just involves a block
move to framebuffer memory. Typically that block move is much faster than the drawing operation. Obviously there is a cost:
an extra area of memory, and the synch operation itself can consume many cycles and much of the available memory bandwidth.

It is the responsibility of the framebuffer device driver to provide the extra main memory. As far as higher-level code is
concerned the only difference between an ordinary and a double-buffered display is that with the latter changes do not become
visible until a synch operation has been performed. The framebuffer infrastructure provides support for a bounding box, keeping
track of what has been updated since the last synch. This means only the updated part of the screen has to be transferred to
the display hardware.

The synch primitives take two arguments. The first identifies the framebuffer device. The second should be one of CYG_F-
B_UPDATE_NOW for an immediate update, or CYG_FB_UPDATE_VERTICAL_RETRACE. Some display hardware involves
a lengthy vertical retrace period every 10-20 milliseconds during which nothing gets drawn to the screen, and performing
the synch during this time means that the end user is unaware of the operation (assuming the synch can be completed in the
time available). When the hardware supports it, specifying CYG_FB_UPDATE_VERTICAL_RETRACE means that the synch
operation will block until the next vertical retrace takes place and then perform the update. This may be an expensive operation,
for example it may involve polling a bit in a register. In a multi-threaded environment it may also be unreliable because the
thread performing the synch may get interrupted or rescheduled in the middle of the operation. When the hardware does not
involve vertical retraces, or when there is no easy way to detect them, the second argument to the synch operation will just be
ignored and the update will always happen immediately.

503

Framebuffer Support

It is up to higher level code to determine when a synch operation is appropriate. One approach for typical event-driven code is
to perform the synch at the start of the event loop, just before waiting for an input or timer event. This may not be optimal. For
example if there two small updates to opposite corners of the screen then it would be better to make two synch calls with small
bounding boxes, rather than a single synch call with a a large bounding box that requires most of the framebuffer memory
to be updated.

Leaving out the synch operations leads to portability problems. On hardware which does not involve double-buffering the synch
operation is a no-op, usually eliminated at compile-time, so invoking synch does not add any code size or cpu cycle overhead.
On double-buffered hardware, leaving out the synch means the user cannot see what has been drawn into the framebuffer.

504

Framebuffer Support

Name
Pixel Manipulation — iterating over the display

Synopsis
#include <cyg/io/framebuf.h>

CYG_FB_PIXEL0_VAR (FRAMEBUF);

void CYG_FB_PIXEL0_SET(FRAMEBUF, x, y);

void CYG_FB_PIXEL0_GET(FRAMEBUF, x, y);

void CYG_FB_PIXEL0_ADDX(FRAMEBUF, incr);

void CYG_FB_PIXEL0_ADDY(FRAMEBUF, incr);

void CYG_FB_PIXEL0_WRITE(FRAMEBUF, colour);

cyg_fb_colour CYG_FB_PIXEL0_READ(FRAMEBUF);

void CYG_FB_PIXEL0_FLUSHABS(FRAMEBUF, x0, y0, width, height);

void CYG_FB_PIXEL0_FLUSHREL(FRAMEBUF, x0, y0, dx, dy);

Description
A common requirement for graphics code is to iterate over parts of the framebuffer. Drawing text typically involves iterating
over a block of pixels for each character, say 8 by 8, setting each pixel to either a foreground or background colour. Drawing
arbitrary lines typically involves moving to the start position and then adjusting the x and y coordinates until the end position
is reached, setting a single pixel each time around the loop. Drawing images which are not in the frame buffer's native format
typically involves iterating over a block of pixels, from top to bottom and left to right, setting pixels as the image is decoded.

Functionality like this can be implemented in several ways. One approach is to use the pixel write primitive. Typically this
involves some arithmetic to get from the x and y coordinates to a location within framebuffer memory so it is fairly expensive
compared with a loop which just increments a pointer. Another approach is to write the data first to a separate buffer in memory
and then use a block write primitive to move it to the framebuffer, but again this involves overhead. The eCos framebuffer
support provides a third approach: a set of macros specifically for iterating over the frame buffer. Depending on the operation
being performed and the details of the framebuffer implementation, these macros may be optimal or near-optimal. Obviously
there are limitations. Most importantly the framebuffer device must be known at compile-time: the compiler can do a better job
optimizing the code if information such as the frame buffer width are constant. Also each iteration must be performed within
a single variable scope: it is not possible to do some of the iteration in one function, some in another.

The Pixel Macros
All the pixel macros take a framebuffer identifier as their first argument. This is the same identifier that can be used with
the other macros like CYG_FB_WRITE_HLINE and CYG_FB_ON, one of the entries in the configuration option CYG-
DAT_IO_FRAMEBUF_DEVICES. Using an invalid identifier will result in numerous compile-time error messages which may
bear little resemblance to the original code. In the examples below it is assumed that FRAMEBUF has been #define'd to a
suitable identifier.

Typical use of the pixel macros will look like this:

 CYG_FB_PIXEL0_VAR(FRAMEBUF);
 …
 CYG_FB_PIXEL0_FLUSHABS(FRAMEBUF, x, y, width, height);

The VAR macro will define one or more local variables to keep track of the current pixel position, as appropriate to the frame-
buffer device. The other pixel macros will then use these variables. For a simple 8bpp linear framebuffer there will be just

505

Framebuffer Support

a byte pointer. For a 1bpp display there may be several variables: a byte pointer, a bit index within that byte, and possibly a
cached byte; using a cached value means that the framebuffer may only get read and written once for every 8 pixels, and the
compiler may well allocate a register for the cached value; on some platforms framebuffer access will bypass the processor's
main cache, so reading from or writing to framebuffer memory will be slow; reducing the number of framebuffer accesses
may greatly improve performance.

Because the VAR macro defines one or more local variables it is normally placed at the start of a function or block, alongside
other local variable definitions.

One the iteration has been completed there should be a FLUSHABS or FLUSHREL macro. This serves two purposes. First, if the
local variables involve a dirty cached value or similar state then this will be written back. Second, for double-buffered displays
the macro sets a bounding box for the part of the screen that has been updated. This allows the double buffer synch operation
to update only the part of the display that has been modified, without having to keep track of the current bounding box for
every updated pixel. For FLUSHABS the x0 and y0 arguments specify the top-left corner of the bounding box, which extends
for width by height pixels. For FLUSHREL x0 and y0 still specify the top-left corner, but the bottom-right corner is now
determined from the current pixel position offset by dx and dy. More specifically, dx should move the current horizontal
position one pixel to the right of the right-most pixel modified, such that (x + dx) - x0 gives the width of the bounding
box. Similarly dy should move the current vertical position one pixel below the bottom-most pixel modified. In typical code
the current pixel position will already correspond in part or in whole to the bounding box corner, as a consequence of iterating
over the block of memory.

If a pixel variable has been used only for reading framebuffer memory, not for modifying it, then it should still be flushed.
A FLUSHABS with a width and height of 0 can be used to indicate that the bounding box is empty. If it is known that the
framebuffer device being used does not support double-buffering then again it is possible to specify an empty bounding box.
Otherwise portable code should specify a correct bounding box. If the framebuffer device that ends up being used does not
support double buffering then the relevant macro arguments are eliminated at compile-time and do not result in any unnecessary
code. In addition if there is no cached value or other state then the whole flush operation will be a no-op and no code will
be generated.

Failure to perform the flush may result in strange drawing artefacts on some displays which can be very hard to debug. A
FLUSHABS or FLUSHREL macro only needs to be invoked once, at the end of the iteration.

The SET macro sets the current position within the framebuffer. It can be used many times within an iteration. However it
tends to be somewhat more expensive than ADDX or ADDY, so usually SET is only executed once at the start of an iteration.

 CYG_FB_PIXEL0_VAR(FRAMEBUF);
 CYG_FB_PIXEL0_SET(FRAMEBUF, x, y);
 …
 CYG_FB_PIXEL0_FLUSHREL(FRAMEBUF, x, y, 0, 0);

The GET macro retrieves the x and y coordinates corresponding to the current position. It is provided mainly for symmetry,
but can prove useful for debugging.

 CYG_FB_PIXEL0_VAR(FRAMEBUF);
 CYG_FB_PIXEL0_SET(FRAMEBUF, x, y);
 …
#ifdef DEBUG
 CYG_FB_PIXEL0_GET(FRAMEBUF, new_x, new_y);
 diag_printf("Halfway through: x now %d, y now %d\n", new_x, new_y);
#endif
 …
 CYG_FB_PIXEL0_FLUSHREL(FRAMEBUF, x, y, 0, 0);

The ADDX and ADDY macros adjust the current position. The most common increments are 1 and -1, moving to the next or
previous pixel horizontally or vertically, but any increment can be used.

 CYG_FB_PIXEL0_VAR(FRAMEBUF);
 CYG_FB_PIXEL0_SET(FRAMEBUF, x, y);
 for (rows = height; rows; rows--) {
 for (columns = width; columns; columns--) {
 <perform operation>
 CYG_FB_PIXEL0_ADDX(FRAMEBUF, 1);
 }
 CYG_FB_PIXEL0_ADDX(FRAMEBUF, -1 * width);
 CYG_FB_PIXEL0_ADDY(FRAMEBUF, 1);

506

Framebuffer Support

 }
 CYG_FB_PIXEL0_FLUSHREL(FRAMEBUF, x, y, width, 0);

Here the current position is moved one pixel to the right each time around the inner loop. In the outer loop the position is first
moved back to the start of the current row, then moved one pixel down. For the final flush the current x position is off by
width, but the current y position is already correct.

The final two macros READ and WRITE can be used to examine or update the current pixel value.

 CYG_FB_PIXEL0_VAR(FRAMEBUF);
 CYG_FB_PIXEL0_SET(FRAMEBUF, x, y);
 for (rows = height; rows; rows--) {
 for (columns = width; columns; columns--) {
 cyg_fb_colour colour = CYG_FB_PIXEL0_READ(FRAMEBUF);
 if (colour == colour_to_replace) {
 CYG_FB_PIXEL0_WRITE(FRAMEBUF, replacement);
 }
 CYG_FB_PIXEL0_ADDX(FRAMEBUF, 1);
 }
 CYG_FB_PIXEL0_ADDX(FRAMEBUF, -1 * width);
 CYG_FB_PIXEL0_ADDY(FRAMEBUF, 1);
 }
 CYG_FB_PIXEL0_FLUSHREL(FRAMEBUF, x, y, width, 0);

Concurrent Iterations
Although uncommon, in some cases application code may need to iterate over two or more blocks. An example might be an
advanced block move where each copied pixel requires some processing. To support this there are PIXEL1, PIXEL2 and
PIXEL3 variants of all the PIXEL0 macros. For example:

 CYG_FB_PIXEL0_VAR(FRAMEBUF);
 CYG_FB_PIXEL1_VAR(FRAMEBUF);

 CYG_FB_PIXEL0_SET(FRAMEBUF, dest_x, dest_y_);
 CYG_FB_PIXEL1_SET(FRAMEBUF, source_x, source_y);
 for (rows = height; rows; rows--) {
 for (columns = width; columns; columns--) {
 colour = CYG_FB_PIXEL1_READ(FRAMEBUF);
 <do some processing on colour>
 CYG_FB_PIXEL0_WRITE(FRAMEBUF, colour);
 CYG_FB_PIXEL0_ADDX(FRAMEBUF, 1);
 CYG_FB_PIXEL1_ADDX(FRAMEBUF, 1);
 }
 CYG_FB_PIXEL0_ADDX(FRAMEBUF, -100);
 CYG_FB_PIXEL0_ADDY(FRAMEBUF, 1);
 CYG_FB_PIXEL1_ADDX(FRAMEBUF, -100);
 CYG_FB_PIXEL1_ADDY(FRAMEBUF, 1);
 }

 CYG_FB_PIXEL0_FLUSHABS(FRAMEBUF, source_x, source_y, width, height);
 CYG_FB_PIXEL1_FLUSHABS(FRAMEBUF, 0, 0, 0, 0); // Only used for reading

The PIXEL0, PIXEL1, PIXEL2 and PIXEL3 macros all use different local variables so there are no conflicts. The variable
names also depend on the framebuffer device. If the target has two displays and two active framebuffer devices then the pixel
macros can be used with the two devices without conflict:

 CYG_FB_PIXEL0_VAR(FRAMEBUF0);
 CYG_FB_PIXEL0_VAR(FRAMEBUF1);
 …

507

Framebuffer Support

Name
Porting — writing a new framebuffer device driver

Description
As with most device drivers, the easiest way to write a new framebuffer package is to start with an existing one. Suitable ones
include the PC VGA mode13 driver, an 8bpp paletted display, and the ARM iPAQ driver, a 16bpp true colour display. This
document only outlines the process.

Before writing any code it is necessary to decide how many framebuffer devices should be provided by the device driver. Each
such device requires a cyg_fb structure and appropriate functions, and an identifier for use with the macro API plus associated
macros. There are no hard rules here. Some device drivers may support just a single device, others may support many devices
which drive the hardware in different modes or orientations. Optional functionality such as viewports and page flipping may
be supported by having different cyg_fb devices, or by a number of configuration options which affect a single cyg_fb device.
Usually providing multiple cyg_fb structures is harmless because the unused ones will get eliminated at link-time.

Configuration
The CDL for a framebuffer package is usually straightforward. A framebuffer package should be a hardware package and
reside in the devs/framebuf hierarchy, further organized by architecture. Generic framebuffer packages, if any, can go
into a generic subdirectory, and will normally rely on the platform HAL to provide some platform-specific information
such as base addresses. The package should be part of the target definition and hence loaded automatically, but should be
active_if CYGPKG_IO_FRAMEBUF so that the driver only gets built if the generic framebuffer support is explicitly added
to the configuration.

The configuration option CYGDAT_IO_FRAMEBUF_DEVICES should hold all the valid identifiers which can be used as the
first argument for the macro API. This helps application developers to select the appropriate identifier, and allows higher-level
graphics library packages to check that they have been configured correctly. This is achieved using something like the following,
where mode13_320x200x8 is a valid identifier for the PC VGA driver:

 requires { is_substr(CYGDAT_IO_FRAMEBUF_DEVICES, " mode13_320x200x8 ") }

The spaces ensure that the CDL inference engine keeps the identifiers separate.

CYGPKG_IO_FRAMEBUF contains a number of interfaces which should be implemented by individual device drivers when
appropriate. This is used to eliminate some code or data structure fields at compile-time, keeping down memory require-
ments. The interfaces are CYGHWR_IO_FRAMEBUF_FUNCTIONALITY_32BPP, CYGHWR_IO_FRAMEBUF_FUNCTION-
ALITY_TRUE_COLOUR, CYGHWR_IO_FRAMEBUF_FUNCTIONALITY_PALETTE, CYGHWR_IO_FRAMEBUF_FUNC-
TIONALITY_WRITEABLE_PALETTE, CYGHWR_IO_FRAMEBUF_FUNCTIONALITY_DOUBLE_BUFFER, and CYGH-
WR_IO_FRAMEBUF_FUNCTIONALITY_VIEWPORT. For example if a device driver provides a true colour display but fails
to implement the relevant interface then functions like cyg_fb_make_colour will be no-ops.

Device drivers for paletted displays should observe the generic configuration option CYGFUN_IO_FRAMEBUF_INSTAL-
L_DEFAULT_PALETTE and install either cyg_fb_palette_ega or cyg_fb_palette_vga as part of their cyg_f-
b_on implementation.

Exported Header File(s)
Each framebuffer device driver should export one or more header files to cyg/io/framebufs. A custom build step in
CYGPKG_IO_FRAMEBUF ensures that application code can just #include cyg/io/framebuf.h and this will automat-
ically include the device-specific headers. Drivers may export one header per cyg_fb device or a single header for all devices,
without affecting any code outside the device driver.

Each exported header serves two purposes. First it defines the parameters, drawing primitive macros, and iteration macros for
each device. Second it declares the cyg_fb structure.

Parameters

The parameter section should resemble the following:

508

Framebuffer Support

#define CYG_FB_320x240x16_STRUCT cyg_ipaq_fb_320x240x16
#define CYG_FB_320x240x16_DEPTH 16
#define CYG_FB_320x240x16_FORMAT CYG_FB_FORMAT_16BPP_TRUE_565
#define CYG_FB_320x240x16_WIDTH 320
#define CYG_FB_320x240x16_HEIGHT 240
#define CYG_FB_320x240x16_VIEWPORT_WIDTH 320
#define CYG_FB_320x240x16_VIEWPORT_HEIGHT 240
#define CYG_FB_320x240x16_FLAGS0 (CYG_FB_FLAGS0_LINEAR_FRAMEBUFFER | \
 CYG_FB_FLAGS0_TRUE_COLOUR | \
 CYG_FB_FLAGS0_BLANK | \
 CYG_FB_FLAGS0_BACKLIGHT)
#define CYG_FB_320x240x16_FLAGS1 0
#define CYG_FB_320x240x16_FLAGS2 0
#define CYG_FB_320x240x16_FLAGS3 0
#define CYG_FB_320x240x16_BASE ((void*)0x01FC0020)
#define CYG_FB_320x240x16_STRIDE 640

Here 320x240x16 is the framebuffer identifier for use with the macro API. Application code like:

#define FRAMEBUF 320x240x16
cyg_ucount16 width = CYG_FB_WIDTH(FRAMEBUF);

will end up using the CYG_FB_320x240x16_WIDTH definition. To allow for efficient portable code all parameters must
be compile-time constants. If the hardware may allow some of the parameters to be varied, for example different resolutions,
then this should be handled either by defining separate devices for each resolution or by configuration options.

The viewport width and height should always be defined. If the device driver does not support a viewport then these will be
the same as the standard width and height.

To allow for future expansion there are FLAGS1, FLAGS2 and FLAGS3 parameters. No flags are defined for these at present,
but device drivers should still define the parameters.

Drawing Primitives

For each device the exported header file should define macros for the drawing primitives, using the same naming convention as
for parameters. In the case of true colour displays there should also be macros for the make-colour and break-colour primitives:

#define CYG_FB_320x240x16_WRITE_PIXEL(_x_, _y_, _colour_) …
#define CYG_FB_320x240x16_READ_PIXEL(_x_, _y_) …
#define CYG_FB_320x240x16_WRITE_HLINE(_x_, _y_, _len_, _colour_) …
#define CYG_FB_320x240x16_WRITE_VLINE(_x_, _y_, _len_, _colour_) …
#define CYG_FB_320x240x16_FILL_BLOCK(_x_, _y_, _w_, _h_, _colour_) …
#define CYG_FB_320x240x16_WRITE_BLOCK(_x_, _y_, _w_, _h_, _data_, _off_, _s_) …
#define CYG_FB_320x240x16_READ_BLOCK(_x_, _y_, _w_, _h_, _data_, _off_, _s_) …
#define CYG_FB_320x240x16_MOVE_BLOCK(_x_, _y_, _w_, _h_, _new_x_, _new_y_) …
#define CYG_FB_320x240x16_MAKE_COLOUR(_r_, _g_, _b_) …
#define CYG_FB_320x240x16_BREAK_COLOUR(_colour_, _r_, _g_, _b_) …

For typical linear framebuffers there are default implementations of all of these primitives in the generic framebuffer package,
held in the exported header cyg/io/framebuf.inl. Hence the definitions will typically look something like:

#include <cyg/io/framebuf.inl>
…
#define CYG_FB_320x240x16_WRITE_PIXEL(_x_, _y_, _colour_) \
 CYG_MACRO_START \
 cyg_fb_linear_write_pixel_16_inl(CYG_FB_320x240x16_BASE, \
 CYG_FB_320x240x16_STRIDE, \
 x, _y_, _colour_); \
 CYG_MACRO_END
#define CYG_FB_320x240x16_READ_PIXEL(_x_, _y_) \
 ({ cyg_fb_linear_read_pixel_16_inl(CYG_FB_320x240x16_BASE, \
 CYG_FB_320x240x16_STRIDE, \
 x, _y_); })
…

All of the drawing primitives have variants for the common display depths and layouts: 1le, 1be, 2le, 2be, 4le, 4be, 8, 16 and
32. The inlines take the framebuffer memory base address as the first argument, and the stride in bytes as the second. Similarly

509

Framebuffer Support

there are default definitions of the true colour primitives for 8BPP_TRUE_332, 16BPP_TRUE_565, 16BPP_TRUE_555,
and 32BPP_TRUE_0888:

#define CYG_FB_320x240x16_MAKE_COLOUR(_r_, _g_, _b_) \
 ({ CYG_FB_MAKE_COLOUR_16BPP_TRUE_565(_r_, _g_, _b_); })
#define CYG_FB_320x240x16_BREAK_COLOUR(_colour_, _r_, _g_, _b_) \
 CYG_MACRO_START \
 CYG_FB_BREAK_COLOUR_16BPP_TRUE_565(_colour_, _r_, _g_, _b_); \
 CYG_MACRO_END

These default definitions assume the most common layout of colours within a pixel value, so for example CYG_F-
B_MAKE_COLOUR_16BPP_TRUE_565 assumes bits 0 to 4 hold the blue intensity, bits 5 to 10 the green, and bits 11 to
15 the red.

If the hardware does not implement a linear framebuffer then obviously writing the device driver will be significantly more
work. The macros will have to perform the operations themselves instead of relying on generic implementations. The required
functionality should be obvious, and the generic implementations can still be consulted as a reference. For complicated hardware
it may be appropriate to map the macros onto function calls, rather than try to implement everything inline.

Note

At the time of writing the support for linear framebuffers is incomplete. Only 8bpp, 16bpp and 32bpp depths have
full support. There may also be future extensions, for example r90, r180 and r270 variants to support rotation
in software, and db variants to support double-buffered displays.

Iteration Macros

In addition to the drawing primitives the exported header file should define iteration macros:

#define CYG_FB_320x240x16_PIXELx_VAR(_fb_, _id_) …
#define CYG_FB_320x240x16_PIXELx_SET(_fb_, _id_, _x_, _y_) …
#define CYG_FB_320x240x16_PIXELx_GET(_fb_, _id_, _x_, _y_) …
#define CYG_FB_320x240x16_PIXELx_ADDX(_fb_, _id_, _incr_) …
#define CYG_FB_320x240x16_PIXELx_ADDY(_fb_, _id_, _incr_) …
#define CYG_FB_320x240x16_PIXELx_WRITE(_fb_, _id_, _colour_) …
#define CYG_FB_320x240x16_PIXELx_READ(_fb_, _id_)…
#define CYG_FB_320x240x16_PIXELx_FLUSHABS(_fb_, _id_, _x0_, _y0_, _w_, _h_) …
#define CYG_FB_320x240x16_PIXELx_FLUSHREL(_fb_, _id_, _x0_, _y0_, _dx_, _dy_) …

The _fb_ argument will be the identifier, in this case 320x240x16, and the _id_ will be a small number, 0 for a PIXEL0
iteration, 1 for PIXEL1, and so on. Together these two should allow unique local variable names to be constructed. Again
there are default definitions of the macros in cyg/io/framebuf.inl for linear framebuffers:

#define CYG_FB_320x240x16_PIXELx_VAR(_fb_, _id_) \
 CYG_FB_PIXELx_VAR_16(_fb_, _id_)
#define CYG_FB_320x240x16_PIXELx_SET(_fb_, _id_, _x_, _y_) \
 CYG_MACRO_START \
 CYG_FB_PIXELx_SET_16(_fb_, _id_, \
 CYG_FB_320x240x16_BASE, \
 320, _x_, _y_); \
 CYG_MACRO_END

The linear SET and GET macros take base and stride information. The ADDX and ADDY macros only need the stride. By
convention most of the macros are wrapped in CYG_MACRO_START/CYG_MACRO_END or ({/}) pairs, allowing debug code
to be inserted if necessary. However the _VAR macro must not be wrapped in this way: its purpose is to define one or more
local variables; wrapping the macro would declare the variables in a new scope, inaccessible to the other macros.

Again for non-linear framebuffers it will be necessary to implement these macros fully rather than rely on generic implemen-
tations, but the generic versions can be consulted as a reference.

The cyg_fb declaration

Finally there should be an export of the cyg_fb structure or structures. Typically this uses the _STRUCT parameter, reducing
the possibility of an accidental mismatch between the macro and function APIs:

510

Framebuffer Support

extern cyg_fb CYG_FB_320x240x16_STRUCT;

Driver-Specific Source Code
Exporting parameters and macros in a header file is not enough. It is also necessary to actually define the cyg_fb structure
or structures, and to provide hardware-specific versions of the control operations. For non-linear framebuffers it will also
be necessary to provide the drawing functions. There is a utility macro CYG_FB_FRAMEBUFFER for instantiating a cyg_fb
structure. Drivers may ignore this macro and do the work themselves, but at an increased risk of compatibility problems with
future versions of the generic code.

CYG_FB_FRAMEBUFFER(CYG_FB_320x240x16_STRUCT,
 CYG_FB_320x240x16_DEPTH,
 CYG_FB_320x240x16_FORMAT,
 CYG_FB_320x240x16_WIDTH,
 CYG_FB_320x240x16_HEIGHT,
 CYG_FB_320x240x16_VIEWPORT_WIDTH,
 CYG_FB_320x240x16_VIEWPORT_HEIGHT,
 CYG_FB_320x240x16_BASE,
 CYG_FB_320x240x16_STRIDE,
 CYG_FB_320x240x16_FLAGS0,
 CYG_FB_320x240x16_FLAGS1,
 CYG_FB_320x240x16_FLAGS2,
 CYG_FB_320x240x16_FLAGS3,
 0, 0, 0, 0, // fb_driver0 -> fb_driver3
 &cyg_ipaq_fb_on,
 &cyg_ipaq_fb_off,
 &cyg_ipaq_fb_ioctl,
 &cyg_fb_nop_synch,
 &cyg_fb_nop_read_palette,
 &cyg_fb_nop_write_palette,
 &cyg_fb_dev_make_colour_16bpp_true_565,
 &cyg_fb_dev_break_colour_16bpp_true_565,
 &cyg_fb_linear_write_pixel_16,
 &cyg_fb_linear_read_pixel_16,
 &cyg_fb_linear_write_hline_16,
 &cyg_fb_linear_write_vline_16,
 &cyg_fb_linear_fill_block_16,
 &cyg_fb_linear_write_block_16,
 &cyg_fb_linear_read_block_16,
 &cyg_fb_linear_move_block_16,
 0, 0, 0, 0 // fb_spare0 -> fb_spare3
);

The first 13 arguments to the macro correspond to the device parameters. The next four are arbitrary CYG_ADDRWORD
values for use by the device driver. Typically these are used to share on/off/ioctl functions between multiple cyg_fb structure.
They are followed by function pointers: on/off/ioctl control; double buffer synch; palette management; true colour support; and
the drawing primitives. nop versions of the on, off, ioctl, synch, palette management and true colour functions are provided
by the generic framebuffer package, and often these arguments to the CYG_FB_FRAMEBUFFER macro will be discarded at
compile-time because the relevant CDL interface is not implemented. The final four arguments are currently unused and should
be 0. They are intended for future expansion, with a value of 0 indicating that a device driver does not implement non-core
functionality.

As with the macros there are default implementations of the true colour primitives for 8bpp_true_332, 16bp-
p_true_565, 16bpp_true_555 and 32bpp_true_0888, assuming the most common layout for these colour modes.
There are also default implementations of the drawing primitives for linear framebuffers, with variants for the common display
depths and layouts. Obviously non-linear framebuffers will need rather more work.

Typically a true colour or grey scale framebuffer device driver will have to implement just three hardware-specific functions:

int
cyg_ipaq_fb_on(cyg_fb* fb)
{
 …
}

int
cyg_ipaq_fb_off(cyg_fb* fb)

511

Framebuffer Support

{
 …
}

int
cyg_ipaq_fb_ioctl(cyg_fb* fb, cyg_ucount16 key, void* data, size_t* len)
{
 int result;

 switch(key) {
 case CYG_FB_IOCTL_BLANK_GET: …
 …
 default: result = ENOSYS; break;
 }
 return result;
}

These control operations are entirely hardware-specific and cannot be implemented by generic code. Paletted displays will
need two more functions, again hardware-specific:

void
cyg_pcvga_fb_read_palette(cyg_fb* fb, cyg_ucount32 first, cyg_ucount32 len,
 void* data)
{
 …
}

void
cyg_pcvga_fb_write_palette(cyg_fb* fb, cyg_ucount32 first, cyg_ucount32 len,
 const void* data, cyg_ucount16 when)
{
 …
}

Future Expansion
As has been mentioned before framebuffer hardware varies widely. The design of a generic framebuffer API requires compli-
cated trade-offs between efficiency, ease of use, ease of porting, and still supporting a very wide range of hardware. To some
extent this requires a lowest common denominator approach, but the design allows for some future expansion and optional
support for more advanced features like hardware acceleration.

The most obvious route for expansion is the ioctl interface. Device drivers can define their own keys, values 0x8000 and
higher, for any operation. Alternatively a device driver does not have to implement just the interface provided by the generic
framebuffer package: additional functions and macros can be exported as required.

Currently there are only a small number of ioctl operations. Additional ones may get added in future, for example to support a
hardware mouse cursor, but only in cases where the functionality is likely to be provided by a significant number of framebuffer
devices. Adding new generic functionality adds to the maintenance overhead of both code and documentation. When a new
generic ioctl operation is added there will usually also be one or more new flags, so that device drivers can indicate they
support the functionality. At the time of writing only 12 of the 32 FLAGS0 flags are used, and a further 96 are available in
FLAGS1, FLAGS2 and FLAGS3.

Another route for future expansion is the four spare arguments to the CYG_FB_FRAMEBUFFER macro. As an example of how
these may get used in future, consider support for 3d hardware acceleration. One of the spare fields would become another
table of function pointers to the various accelerators, or possibly a structure. A FLAGS0 flag would indicate that the device
driver implements such functionality.

Other forms of expansion such as defining a new standard drawing primitive would be more difficult, since this would nor-
mally involve changing the CYG_FB_FRAMEBUFFER macro. Such expansion should not be necessary because the existing
primitives provide all reasonable core functionality. Instead other packages such as graphics libraries can work on top of the
existing primitives.

512

Chapter 85. CSB337/900 Framebuffer
Device Driver

513

CSB337/900 Framebuffer Device Driver

Name
CYGPKG_DEVS_FRAMEBUF_ARM_CSB337900 — eCos framebuffer support for a CSB337/900

Description
This package provides an eCos framebuffer device driver for a Cogent CSB337 board with a CSB900 add-on to provide the
LCD panel. It has dependencies on both pieces of hardware so cannot be used with any other combination. The driver is a
hardware package and is loaded automatically when configuring eCos for a csb337900 target, but not when configuring for
a vanilla csb337 target. By default it is inactive and does not add any code size or data overheads. To activate the driver the
generic framebuffer package CYGPKG_IO_FRAMEBUF should be added to the configuration. The driver's functionality is only
accessible via the API defined by the generic package.

There are a number of design issues with this hardware combination. The framebuffer memory cannot be accessed in the
conventional linear way, Instead the driver contains custom drawing code which will be significantly slower than the equivalent
linear framebuffer routines. There are also problems with the colour handling: only three bits of control are available for each
of red, green and blue intensity,

The driver supports four cyg_fb structures: cyg_csb337900_fb_240x320x8, cyg_csb337900_f-
b_320x240x8r90, cyg_csb337900_fb_240x320x8r180, and cyg_csb337900_fb_320x240x8r270. These
all run the hardware in the same resolution but in the four different orientations, using hardware to perform the rotation. The
corresponding identifiers for the macro API are 240x320x8, 320x240x8r90, 240x320x8r180 and 320x240x8r270.
Obviously only one of these framebuffer devices can be used at a time. All the devices implement 8bpp non-linear displays with
a writeable palette. The supported ioctl operations are CYG_FB_IOCTL_BLANK_GET, CYG_FB_IOCTL_BLANK_SET,
CYG_FB_IOCTL_BACKLIGHT_GET and CYG_FB_IOCTL_BACKLIGHT_SET. The backlight can only be switched on or
off, there is no support for different levels of intensity.

514

Chapter 86. i.MXxx Framebuffer Device
Driver

515

i.MXxx Framebuffer Device Driver

Name
CYGPKG_DEVS_FRAMEBUF_ARM_IMX — eCos Support for the i.MXxx framebuffer

Description
CYGPKG_DEVS_FRAMEBUF_ARM_IMX provides an eCos framebuffer device driver for the LCD panel on the i.MXxx family
of processors. The driver is a hardware package and is loaded automatically when configuring eCos for an i.MXxx target.
By default it is inactive and does not add any code size or data overheads. To activate the driver the generic framebuffer
package CYGPKG_IO_FRAMEBUF should be added to the configuration. The driver's functionality is only accessible via the
API defined by the generic package.

The driver supports a single framebuffer device, driving the LCD panel in 565 true colour mode with a resolution of
640x480 pixels at 16bpp. The cyg_fb structure for this is cyg_imx_fb_640x480x16, and the identifier for use with the
framebuffer macro API is 640x480x16. The ioctl operations supported are CYG_FB_IOCTL_BLANK_GET, CYG_F-
B_IOCTL_BLANK_SET, CYG_FB_IOCTL_BACKLIGHT_GET and CYG_FB_IOCTL_BACKLIGHT_SET. The backlight
supports 256 levels of intensity.

The driver must be configured for the LCD panel attached using the CYGPKG_DEVS_FRAMEBUF_ARM_IMX_LCD option.
Normally this would be set by the platform HAL package using a requires statement. At present only one panel type is supported:
the Chunghwa CLAA057VA01CT.

516

Chapter 87. iPAQ Framebuffer Device
Driver

517

iPAQ Framebuffer Device Driver

Name
CYGPKG_DEVS_FRAMEBUF_ARM_IPAQ — eCos Support for the iPAQ framebuffer

Description
CYGPKG_DEVS_FRAMEBUF_ARM_IPAQ provides an eCos framebuffer device driver for the LCD panel on an iPAQ. The
driver is a hardware package and is loaded automatically when configuring eCos for an iPAQ target. By default it is inactive and
does not add any code size or data overheads. To activate the driver the generic framebuffer package CYGPKG_IO_FRAMEBUF
should be added to the configuration. The driver's functionality is only accessible via the API defined by the generic package.

The driver supports a single framebuffer device, driving the LCD panel in 565 true colour mode with a resolution of
320x240 pixels at 16bpp. The cyg_fb structure for this is cyg_ipaq_fb_320x240x16, and the identifier for use with the
framebuffer macro API is 320x240x16. The ioctl operations supported are CYG_FB_IOCTL_BLANK_GET, CYG_F-
B_IOCTL_BLANK_SET, CYG_FB_IOCTL_BACKLIGHT_GET and CYG_FB_IOCTL_BACKLIGHT_SET. The backlight
supports 32 levels of intensity.

518

Chapter 88. PC VGA Framebuffer Device
Driver

519

PC VGA Framebuffer Device Driver

Name
CYGPKG_DEVS_FRAMEBUF_I386_PCVGA — eCos Support for PC VGA Cards

Description
This package provides an eCos framebuffer device driver for a VGA graphics card in a standard PC. Although VGA is now very
old technology, more recent PC graphics hardware usually still provides compatibility. The device driver works by interacting
directly with the hardware, not via the video BIOS, so the level of compatibility must be very high. Hence the driver cannot
be guaranteed to work with all PC graphics cards and should be used with care.

CYGPKG_DEVS_FRAMEBUF_I386_PCVGA is a hardware package and is loaded automatically when configuring eCos for a
PC target. By default it is inactive and does not add any code size or data overheads. To activate the driver the generic frame-
buffer package CYGPKG_IO_FRAMEBUF should be added to the configuration. The driver's functionality is only accessible
via the API defined by the generic package.

The driver supports just one of the VGA graphics modes, mode 13. This provides an 8bpp linear framebuffer with a resolu-
tion of 320x200 pixels, and uses a writeable palette for colour management. The cyg_fb structure for this is cyg_pcvga_f-
b_mode13_320x200x8, and the identifier for use with the framebuffer macro API is mode13_320x200x8. The only
ioctl operations supported are CYG_FB_IOCTL_BLANK_GET and CYG_FB_IOCTL_BLANK_SET.

There is one configuration option specific to the PC VGA hardware. Some of the documentation for these cards recommends
a delay after every VGA register access because not all graphics cards can keep up with full-speed I/O. By default the driver
implements such a delay, but obviously this slows down certain operations. If the graphics card actually being used does not
require this delay then the configuration option CYGHWR_DEVS_FRAMEBUF_I386_PCVGA_REGISTER_ACCESS_DE-
LAY can be disabled.

520

Chapter 89. Synthetic Target Framebuffer
Device

521

Synthetic Target Framebuffer Device

Name
Synthetic Target Framebuffer Device — Emulate framebuffer hardware in the synthetic target

Overview
This package CYGPKG_DEVS_FRAMEBUF_SYNTH provides a framebuffer device driver for the eCos synthetic target.

Figure 89.1. Synthetic Target Framebuffer X Window

The driver supports up to four framebuffer devices fb0, fb1, fb2 and fb3. The width, height, depth, and display format
of each framebuffer can be controlled via configuration options. It is also possible to set a viewport for each device and to
enable page flipping.

To use the framebuffer support the eCos application must run inside an X session, not from the console, and it must be started
with --io to enable the I/O auxiliary. The I/O auxiliary will start a separate instance of a host-side utility framebuf for each
target-side framebuffer device. The framebuf utility can access the eCos framebuffer data via a shared memory region and
draw it to the screen using X library calls. It needs the X server to run with a TrueColor visual and a display of depth of 24
or 32 bits per pixel.

Installation
The synthetic target framebuffer driver depends on host-side support which must be built and installed. The relevant code
resides in the host subdirectory of the synthetic target framebuffer package, and building it involves the standard configure,
make and make install steps. This will build and install a utility program framebuf that does the actual drawing of the eCos
framebuffer contents to the host-side X display. It will also install a Tcl script and some support files. framebuf is an X11
application so can only be built on Linux systems with the appropriate X11 development package or packages.

There are two main ways of building the host-side software. It is possible to build both the generic host-side software and all
package-specific host-side software, including the framebuffer support, in a single build tree. This involves using the configure
script at the toplevel of the eCos repository. For more information on this, see the README.host file at the top of the
repository. Note that if you have an existing build tree which does not include the synthetic target framebuffer support then it
will be necessary to rerun the toplevel configure script: the search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This requires a separate build directory, building directly in the
source tree is disallowed. The configure options are much the same as for a build from the toplevel, and the README.host
file can be consulted for more details. It is essential that the framebuffer support be configured with the same --prefix
option as other eCos host-side software, especially the I/O auxiliary provided by the architectural synthetic target HAL package,
otherwise the I/O auxiliary will be unable to locate the framebuffer support.

522

Synthetic Target Framebuffer Device

Configuration
The package is loaded automatically when creating a configuration for the synthetic target. However it is inactive unless the
generic framebuffer support CYGPKG_IO_FRAMEBUF is also added to the configuration, for example by ecosconfig add
framebuf.

By default the package enables a single framebuffer device fb0 with a corresponding cyg_fb data structure cyg_synth_f-
b0. The default settings for this device are 320 by 240 pixels, a depth of 8 bits per pixel, a paletted display, no viewport
support, and no page flipping. All of these settings can be changed by configuration options inside the CDL component CYG-
PKG_DEVS_FRAMEBUF_SYNTH_FB0. The supported display formats are: 8 bpp paletted; 8bpp true colour 332; 16bpp true
565; 16bpp true 555; and 32bpp 0888. This allows the synthetic target to match the actual display capabilities of the hardware
that is being emulated. If the actual hardware has more than one framebuffer device then this can be emulated by enabling
additional components CYGPKG_DEVS_FRAMEBUF_SYNTH_FB1 …, and setting the appropriate options.

Customization
In addition to the target-side configurability it is possible to customize the host-side behaviour. For example, the default be-
haviour is for fb0 to be drawn inside the I/O auxiliary's main window, if it is not too large. fb1, fb2 and fb3 will be drawn
inside separate toplevel windows, as will fb0 if that has been configured too large for embedding in the main window. This
behaviour can be changed by providing a custom Tcl/Tk procedure that creates the containing frame for the framebuffer device.

Customization involves adding a synth_device framebuf section to the .tdf target definition file, usually default.tdf
or ~/.ecos/synth/default.tdf.

proc my_framebuf_create_frame { … } {
 …
}

synth_device framebuf {
 fb2_magnification 2
 create_frame_proc my_framebuf_create_frame
}

The pixel size on the host display may be rather smaller than on the final hardware, causing a serious mismatch between the
application's appearance when using synthetic target emulation and when using real hardware. To reduce this problem the host-
side can magnify the target-side framebuffer devices. In the example above each target-side pixel in device fb2 will be drawn
using 2*2 pixels on the host side. Valid magnifications are 1, 2, 3 and 4. With a magnification of 4 an eCos framebuffer device
of 320*240 pixels will be drawn in an X window of 1280*960 pixels.

The create_frame_proc entry can be used to specify a custom Tcl/Tk procedure that will create the containing Tk frames
for the host-side displays. This procedure can be written for a specific configuration, but it is supplied with all the parameters
associated with the framebuffer device so can be more generic. An example is supplied in the package's misc subdirectory:

1. Create a configuration for the synthetic target with the default template.

2. Import the example.ecm configuration fragment from the misc subdirectory. This will add the generic framebuffer
support package, enable all four framebuffer devices, and configure each device. Build the resulting configuration.

3. Compile the example.c program and link it against the eCos configuration.

4. Incorporate the example.tdf fragment into the appropriate target definition file, typically default.tdf or
~/.ecos/synth/default.tdf.

5. Run the example executable. The four framebuffer devices should get instantiated in a separate window in a single column.
FB0 just contains a static display. FB1 supports two pages, one with vertical stripes and one with horizontal stripes, and the
two pages are flipped at regular intervals. FB2 has a static display similar to FB0, but is drawn in a viewport of only 160x120
pixels. However example.tdf magnifies this by 2 so it appears the same size as the other devices. The application moves
the viewport around the underlying framebuffer device. FB3 is also a static display, a simple set of vertical stripes. However
this framebuffer is paletted and the palette is changed at regular intervals, causing apparent movement.

523

Part XXVII. CAN Support
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Important

The eCosPro-CAN package and its associated device drivers are STRICTLY LICENSED FOR INTERNAL
EVALUATION AND TESTING PURPOSES ONLY for a maximum period of THREE months from the initial
delivery of your eCosPro release. It may not be used for production purposes nor redistributed in full or in part
in any format, including source code, binary code and object code format. Shipment of prototypes, hardware or
products containing the package in any format is STRICTLY PROHIBITED.

A separate COMMERCIAL LICENSE for this package from eCosCentric is required to receive technical support
for the package as well as permit distribution of binary forms of this package.

Some releases of eCosPro may not include evaluation copies of this package. In this case, please contact eCosCen-
tric for licensing and availability. You must obtain written permission from eCosCentric to exceed the evaluation
period.

Table of Contents
90. CAN Support .. 526

Overview ... 527
CAN Interface .. 529
Configuration ... 535
Device Drivers ... 536

91. NXP FlexCAN CAN Driver .. 545
NXP FlexCAN CAN Driver ... 546

92. FlexCAN CAN Driver ... 547
FlexCAN CAN Driver ... 548

93. MSCAN CAN Driver .. 549
MSCAN CAN Driver .. 550

94. LPC2XXXX CAN Driver ... 551
LPC2XXX CAN Driver ... 552

95. Atmel SAM CAN Driver .. 553
Atmel SAM CAN Driver ... 554

96. Atmel MCAN CAN Driver ... 555
Atmel MCAN CAN Driver .. 556

97. SJA1000 CAN Driver .. 558
SJA1000 CAN Driver ... 559

98. BXCAN CAN Driver ... 560
BXCAN CAN Driver .. 561

99. STR7XX CAN Driver .. 562
STR7XX CAN Driver ... 563

525

Chapter 90. CAN Support
Important

This eCosPro-CAN Middleware package is STRICTLY LICENSED FOR NON-COMMERCIAL PURPOSES
ONLY. It may not be used for Commercial purposes in full or in part in any format, including source code, binary
code and object code format.

A Commercial eCosPro License version 3 (or above) which explicity includes this Middleware Package is re-
quired for Commercial use.

526

CAN Support

Name
Overview — eCos Support for CAN, the Controller Area Network

Description
The Controller Area Network, CAN, was originally designed for use in automotive systems where many small sensors report
small values frequently. Consequently, CAN uses small messages of up to 8 bytes payload, which permits many messages to
be passed each second and also reduces packet transmission latency.

CAN is a simple broadcast network carried on a twisted pair. It uses CSMA/CD, like Ethernet, to access the medium, however
the signal levels and messages format are designed to resolve collisions in favour of the highest priority packet, rather than
the jam and random retry of Ethernet. This yields a priority-based approach to contention that is better suited to real time
applications.

CAN messages contain an 11 bit message ID, up to 8 bytes of data, a 15 data, a 15 bit CRC and assorted control bits. The
message ID is also the priority used to resolve collisions, and has to be unique. Since the network is broadcast, and there are
no fixed node addresses, receivers need to have hardware acceptance filters to avoid having to process every packet.

There are two very distinct operational modes for CAN devices. The first of these is BasicCAN. This is the approach familiar
from Ethernet controllers. Packets to be transmitted are fed one at a time into an output FIFO and are sent on the wire when it
appears to be idle. Received packets are pulled off the wire and are compared against one or more acceptance filters. If they
match they are placed into an input FIFO ready for the CPU to collect them.

The second approach is FullCAN. Here, the controller contains a number of packet buffers which are used for transmission
or reception. To transmit, the packet is put into a buffer and the buffer state changed to "transmit" and the packet goes out
when the controller and the line are ready. Received packets are compared against an acceptance filter on each buffer that is
marked "receive" and copied into whichever buffer matches first. The clear intention here is that specific buffers are statically
dedicated to particular communication channels.

The eCos CAN subsystem currently supports the BasicCAN mode only. FullCAN devices are driven in such a way as to provide
BasicCAN functionality. FullCAN functionality can always be emulated using software.

You can find more information at the CAN in Automation website.

eCos Support for CAN
The eCos CAN support for any given platform is spread over a number of different packages:

• This package, CYGPKG_IO_CAN, exports a generic API for accessing devices attached to a CAN network. This API handles
issues such as locking between threads. The package does not contain any hardware-specific code. Instead it uses a separate
CAN device driver to handle the hardware and defines the interface that such network drivers should provide.

• Each CAN device has its own device driver, which is implemented as a separate package. For devices that may be attached
to a variety of different boards, the device driver will be generic and a second platform specific package will be used to
customize it to each platform. For devices that are associated with a specific chipset, only a single package may be present.

Typically all appropriate packages will be loaded automatically when you configure eCos for a given platform. If the application
does not use any of the CAN I/O facilities, directly or indirectly, then linker garbage collection should eliminate all unnecessary
code and data. All necessary initialization should happen automatically. However the exact details may depend on the platform,
so the platform HAL documentation should be checked for further details.

There is an important exception to this: if the CAN devices are attached to an expansion connector, such as PCI, then the
platform HAL will not know about these devices. Instead the necessary packages will need to be added explicitly during
configuration.

Support for CAN-FD
The eCos CAN subsystem also provides support for CAN-FD messages. CAN-FD messages mainly looks similar to standard
CAN messages except that the length field can specify packet sizes up to 64 bytes, and there is an option to transmit the data
part of a message at a higher baud rate than the rest.

527

http://www.can-cia.org/

CAN Support

CAN-FD support is only enabled if a driver capable of supporting the protocol is present. Otherwise CAN-FD is not present.

CAN-FD support mainly consist of some extra fields in the CAN message structure and some additional API functions. Both
standard CAN and CAN-FD messages may be sent and received using the common structure.

528

CAN Support

Name
CAN Functions — allow applications and other packages to access CAN devices

Synopsis
#include <cyg/io/can.h>

int cyg_can_init();

int cyg_can_open(devname, dev);

int cyg_can_close(dev);

cyg_can_msg* cyg_can_msg_alloc();

void cyg_can_msg_free(msg);

int cyg_can_send(dev, msg);

int cyg_can_send_nowait(dev, msg);

int cyg_can_recv(dev, msg);

int cyg_can_recv_poll(dev, msg);

int cyg_can_recv_timeout(dev, msg, timeout);

void cyg_can_poll();

int cyg_can_filter_set(dev, ide, match, mask);

int cyg_can_filter_get(dev, ide, match, mask);

int cyg_can_filter_ext_set(dev, *filters, len);

int cyg_can_filter_ext_get(dev, *filters, *len);

int cyg_can_baud_set(dev, baud);

int cyg_can_baud_get(dev, baud);

int cyg_can_baud_fd_set(dev, baud);

int cyg_can_baud_fd_get(dev, baud);

int cyg_can_autobaud(dev);

const char cyg_can_error_string(code);

Initialization and Device Access
Before performing any CAN system operations, the application must call cyg_can_init(). This function initializes the
CAN subsystem and causes all the configured devices to initialize themselves. Only the first call to this function will initialize
the subsystem, subsequent calls will do nothing, so libraries and independent systems may call it in their initialization routines
without needing to ensure it is called only once.

To gain access to a specific CAN channel, the application must call cyg_can_open(). Channel names are defined in the
configuration and are typically "can0" "can1" and so on. If the channel is not found this function will return CYG_CAN_NOT-
FOUND; it may also return errors generated by the device driver. If the channel is found the call will return CYG_CAN_NO-
ERROR and the location pointed to by the dev parameter will be initialized with a handle on the channel. This handle must
be used in all subsequent calls to access this channel.

529

CAN Support

When the application has finished with a channel it must call cyg_can_close() on the handle.

Buffer Management
The CAN subsystem uses buffers to pass messages between the application and the CAN subsystem. These buffers are allocated
and managed by the CAN subsystem. The exact number of buffers is controllable in the configuration.

Each buffer contains the following fields:

cyg_can_msg * next This field is used within the CAN subsystem to link this message buffer into lists. When
the buffer is in the possession of the user (state is CYG_CAN_MSG_STATE_USER)
then this may be used for application purposes.

unsigned int rtr Remote Transmission Request. If this field is set in a transmitted message buffer, then
the RTR bit on the message will be set and the data field will be ignored. On reception
this field reflects the state of the RTR bit in the received message.

unsigned int ide Extended ID. If this field is set then the id field contains a 29 bit extended ID. If it is
clear then the ID is 11 bits.

unsigned int state This field is used within the CAN subsystem to track the current state of the buffer. The
following states are supported:

CYG_CAN_MSG_STATE_FREE

The message buffer is not currently being used and is on the CAN subsystem's free
list.

CYG_CAN_MSG_STATE_USER

The message buffer is currently in the possession of the application code and is
outside the control of the CAN subsystem.

CYG_CAN_MSG_STATE_TX

The message buffer is either currently being transmitted, or is in a queue of buffers
awaiting transmission.

CYG_CAN_MSG_STATE_RX

The message buffer is the current pending receive buffer for a CAN channel. The
next message from that channel will be received into this buffer.

CYG_CAN_MSG_STATE_RXQ

The message buffer is currently on a channel's receive queue. A message has been
received into it but not yet been passed on to the user.

unsigned int len The length of the data carried in the message. This can range from zero to 8. In a message
with the RTR field set, this indicates the size of data being requested.

int result An error code. For normal successful receptions of messages this will be
CYG_CAN_NOERROR. Message buffers are also used to report special events on the
channel such as transitions to passive error and bus off states. In these cases, the event
will be reported using a message buffer with this field set to the appropriate error code.

cyg_uint32 timestamp Some CAN channels contain a timer that can be used to timestamp received packets.
If that is the case, then the timestamp will be stored in this field. If the channel does
not have any hardware timing facility, this field will not be used. This field is used for
internal purposes during message transmission.

530

CAN Support

cyg_uint32 id Message ID. This is the ID to be transmitted with the message, or the ID received. If the
ide field is set, then this will contain a 29 bit ID, otherwise it will contain an 11 bit ID.

cyg_uint8 data[8] Message data. Only the first len bytes of data are valid. If the rtr field is set, then the
contents of this field are ignored.

A message buffer may be allocated by calling cyg_can_msg_alloc() and freed by calling cyg_can_msg_free().

CAN-FD Buffers

When CAN-FD is enabled the message buffer contains some extra and modified fields:

unsigned int fdf FD Format. This marks a message as being in FD format. If this field is set in a trans-
mitted message then it will be sent in CAN-FD format. A message with a len value
of more than 8 will also be considered to be in FD format regardless of the state of this
field. On reception this field reflects the state of the FDF bit in the received message.

unsigned int brs Bit Rate Switch. This indicates whether the message is transmitted with a higher bit rate
for the data portion. This field is only valid for FD format messages. If this field is set
in a transmitted message then its data bytes will be transmitted at the FD bit rate. On
reception this field reflects the state of the BRS bit in the received message.

unsigned int esi Error State Indicator. This field indicates the error state of the transmitting node, 0 for
error active and 1 for error passive. This field is only valid for FD format messages. If
this field is set in a transmitted message then the ESI bit on the message will be set. On
reception this field reflects the state of the ESI bit in the received message.

unsigned int len This field is expanded for FD messages to permit any value between 0 and 64. The CAN-
FD protocol only permits a limited selection of message sizes: 0 to 8, 12, 16, 20, 24, 32,
48 and 64, encoded into a 4 bit field. This encoding is not used in this field, instead the
actual number of bytes are used, with the translation being done in the device driver.

On transmission if this value is greater than 8 then the message is sent in FD format,
regardless of the value of fdf. If the supplied value is not one of the protocol-permitted
sizes it will be increased to the next greater size.

On reception this field will be translated from the protocol encoding into the correct
number of bytes.

cyg_uint8 data[64] When CAN-FD is enabled, this field is increased to 64 bytes. Only the first len bytes
will be valid. If, on transmission, the length has been increased to the next supported size,
some extra bytes at the end of the supplied data in the buffer may be sent. On reception,
bytes beyond the end of the specified length may have been written by the driver.

Transmit and Receive
To transmit a message an application must acquire a message buffer from the CAN subsystem, fill it in with the message to
be sent and call cyg_can_send(). Following a successful call the buffer becomes the property of the CAN subsystem and
will be returned to the free pool when the message has been transmitted. If an error is detected then the call will return an error
code and the message buffer will be returned to the user for reuse or retransmission.

To send a message without waiting for it to complete, the application can call cyg_can_send_nowait().

To receive a message the application calls cyg_can_recv(). If there is a message waiting, then a pointer to the message
buffer will be installed in the location pointed to by the msg argument and CYG_CAN_NOERROR is returned.

If the application does no want to wait for a message to arrive, it can call cyg_can_recv_poll() which will just test for
a message and return. If a message is present then CYG_CAN_NOERROR is returned and the msg filled in with a pointer to a
message buffer. If no message is present then the function will return CYG_CAN_AGAIN.

531

CAN Support

The application can also wait for a defined length of time for a message to arrive by calling cyg_can_recv_timeout().
The additional timeout argument supplies an absolute timeout in system ticks. If a message is present then CYG_CAN_NO-
ERROR is returned and the msg filled in with a pointer to a message buffer. If no message arrives before the timeout expires
then the function will return CYG_CAN_TIMEOUT.

Regardless of which receive function is used, a successful return results in a message buffer being passed back to the caller.
The result field of this message buffer will either contain CYG_CAN_NOERROR for a normal message, or it will contain
an error code indicating an event that has occurred on the channel. When the application has finished with the buffer it must
return it to the CAN subsystem by calling cyg_can_msg_free().

The function cyg_can_poll() may be called to force all channels to check for transmission completion or pending recep-
tions. When using interrupt driven devices it is unnecessary to call this. However, if there are any polled devices, this is the only
way to ensure timely processing of received messages. This function should therefore be called from the application main loop,
or from a separate timer driven thread, or by any other appropriate means to ensure communication proceeds in a timely fashion.

Basic Filtering
The functions cyg_can_filter_set() and cyg_can_filter_get() allow the basic hardware filter to be set and
queried. The basic filter model consists of a match value, such that if an ID when bitwise ANDed with the mask equals mask
equals the match value ANDed with the mask, then the message is accepted. If the hardware does not support a filter that
conforms to this model then no hardware filtering is done, but the filter will still be applied by the CAN subsystem to all
incoming packets.

In cyg_can_filter_set(), the match and mask arguments define the filter. The ide indicates whether the filter is
for normal or extended IDs. It is hardware dependent what happens when the filter ID size does not match the ID size being
used on the network.

Extended Filtering
The functions cyg_can_filter_ext_set() and cyg_can_filter_ext_get() implement an extended filtering
mechanism. In this case the application can submit an array of filters which will accept a message if any one of them matches
the received ID. If it is possible, extended filtering will be implemented in the CAN controller hardware. Otherwise it will be
implemented in software. Setting the extended filters will invalidate the basic filter and vice versa.

The filters are an array of cyg_can_filter structures. Each filter consists of a mask and a match field. For each filter, if the
received ID bitwise ANDed with the mask equals the match field ANDed with the mask, then the message is accepted. In
addition to the 11 or 29 bits of the ID, the mask and match fields can contain two extra bits: CYG_CAN_FILTER_IDE matches
the message IDE bit for 29 bit addressing, and CYG_CAN_FILTER_RTR matches the message RTR bit.

Some care should be taken in setting the IDE and RTR bits in the filters. In general, if the intention is to match on either bit,
then it should be set in both fields. Setting the bit only in the mask field will match packets that have the bit clear, which is
unlikely to be what it wanted. Incoming message IDs are only matched against similarly sized filters: a message with a 29 bit
ID is only matched against filters that have the IDE bits set, and 11 bit ID are only matched against filters with IDE clear. This
approach is to ensure consistency between software and hardware filters, and between different hardware filters.

In cyg_can_filter_ext_set() the filters argument is the address of the filter array, and len defines the number
of elements. An error will be returned if the filters are invalid or the list is too long. In cyg_can_filter_ext_get(), the
*len argument is a pointer to the length; it should be set to the size of the filters array before the call and will be updated
with the number of actual filters returned. If the filters argument is NULL, the number of filters set will be returned in
*len. If the number of filters set is larger than the value of *len, or if no extended filters are set, then an error will be returned.

The configuration option CYGNUM_IO_CAN_FILTER_MAX describes the maximum number of extended filters than can be
stored. Usually controller drivers will set this value according to the amount of hardware resource available in the filter system.

Baud Rate
The functions cyg_can_baud_set() and cyg_can_baud_get() allow the channel baud rate to be set and queried.
Baud rates from 10kb/s to 1Mb/s may be set, although not all device drivers will necessarily support all rates, many will only

532

CAN Support

support a subset. Also, due to interactions between the input clock to the device and the divider granularity, it may not be
possible to set some baud rates accurately at some system clock rates; it may be necessary to alter the system clock speed to
enable communication.

The functions cyg_can_baud_fd_set() and cyg_can_baud_fd_get() allow the channel FD baud rate to be set
and queried. When an FD format message is sent or received, the data bytes will be transmitted at this rate rather than the
standard rate.

Autobaud Support
The function cyg_can_autobaud() supports automatic baud rate detection. This will only be present if the controller
driver supports autobaud or listen-only mode. It indicates this by implementing the CYGINT_IO_CAN_AUTOBAUD interface.
If the driver does no support this feature then this function will not be defined.

The approach for baud detection is to switch the controller to listen-only mode, where it cannot affect the bus state. Each of a
set of candidate baud rates are set and the function waits for a period of time for a valid packet to arrive. If no packet is seen,
then attention moves to the next baud rate. If a packet is received, then that baud rate is selected and set in the controller in
non-listen-mode. If no packets are seen at any baud rate, the original rate is restored to the controller.

There are two configuration options that control the behaviour of the autobaud mechanism:

CYGPKG_IO_CAN_AUTOBAUD_RATES

This is the set of baud rates tested when autobaud is enabled. It is a comma separated list of rates used to initialize an array
in the CAN subsystem. The default value contains all the standard CANOpen rates, but for specific applications only the
subset of rates that might be used should be listed.

CYGNUM_IO_CAN_AUTOBAUD_TIMEOUT

Maximum time in ticks that the autobaud code will wait for bus activity at each baud rate. If no packet is received or an
error reported in this time, it will move on to the next baud rate. The default 50 ticks equals half a second at the default
100Hz clock frequency. If this option is set to zero, then the autobaud code will wait indefinitely at each baud rate for
either a packet or an error. This is useful during testing when traffic is initiated by hand.

Autobaud support comes with a number of caveats. Baud detection depends on traffic being present on the CAN bus and being
frequent enough for packets to be seen during the timeout period for each candidate baud rate. Some baud rates may not be
supportable by the controller. If there is only one other node in the network sending packets, the lack of acknowledgements
may cause it to move into Error Passive or Bus Off mode and stop transmitting. Consequently autobaud detection cannot be
considered to be a fully reliable operation and it is quite possible for cyg_can_autobaud() to terminate without detecting
the baud rate. The length of time taken to detect the baud rate may be as long as the number of candidate rates multiplied
by the timeout period.

Errors
Many of the CAN API calls return error codes. The result field of the message buffer structure may also contain an error
code from this set. The following error codes may be returned by API calls:

CYG_CAN_NOERROR

No error, the operation completed successfully.

CYG_CAN_NOTFOUND

When returned from cyg_can_open() this error code means that the named CAN channel could not be found.

CYG_CAN_INVALID

When returned from cyg_can_filter_set() this error code means that the filter is invalid. When returned from
cyg_can_baud_get() this error code means that the baud rate is invalid, or the hardware cannot support it with
sufficient accuracy in the current system configuration.

533

CAN Support

CYG_CAN_TIMEOUT

When returned from cyg_can_recv_timeout() this error code means that the timeout has expired with no message
being received.

The following error codes may be passed back in the result field of a message buffer acquired from one of the receive functions.
Refer to the CAN specification for details of what these events actually mean.

CYG_CAN_NOERROR

The message buffer contains a CAN message that was received from the channel.

CYG_CAN_WARN_TX

This error code indicates that the CAN channel's transmit error counter has exceeded its warning limit, which is usually 96.

CYG_CAN_WARN_RX

This error code indicates that the CAN channel's receive error counter has exceeded its warning limit, which is usually 96.

CYG_CAN_PASSIVE

This error code indicates that the CAN channel has gone into "error passive" mode.

CYG_CAN_BUSOFF

This error code indicates that the CAN channel had gone into "bus off" mode.

CYG_CAN_OVERRUN

This error code indicates that the CAN channel has lost one or more CAN messages due to all the hardware buffers being
full.

CYG_CAN_RXERROR

This error code indicates that the controller has detected one or more low level error conditions. Support for detecting these
errors may only be enabled when driver autobaud support is enabled. It may not be generated during normal operation.

The cyg_can_error_string() function translates these error codes into strings for diagnostic purposes.

534

CAN Support

Name
Configuration — CAN subsystem configuration

Description
The CAN subsystem has a number of configuration options:

cdl_interface CYGINT_IO_CAN_DRIVER

This CDL interface counts the number of CAN channels present in the system. Each driver must have an implements
command for this interface for each channel it supports.

cdl_option CYGNUM_IO_CAN_MSG_COUNT_BASE

This CDL option defines the base number of message buffers allocated regardless of the number of channels available.

Default value: 10

cdl_option CYGNUM_IO_CAN_MSG_COUNT_DRIVER

This CDL option defines the number of message buffers allocated per CAN channel. The total number of message buffers
allocated is CYGNUM_IO_CAN_MSG_COUNT_BASE plus CYGNUM_IO_CAN_MSG_COUNT_DRIVER times CYGIN-
T_IO_CAN_DRIVER.

Default value: 10

cdl_option CYGNUM_IO_CAN_FILTER_MAX

This option defines the number of extended filters that can be stored. Drivers may use a requires statement to increase this
number to reflect the availability of hardware filters. If hardware filtering is not supported, then this defines the number
of software filters that can be stored.

Default value: 10

cdl_option CYGDBG_IO_CAN_DEBUG

This CDL option enables diagnostic output to be generated by the CAN subsystem. This is mostly useful in debugging
problems with the CAN subsystem or in the development of device drivers.

Default value: 0

535

CAN Support

Name
Device Drivers — Writing new CAN device drivers

Description
Adding CAN support for a new device to eCos involves a number of steps. First a new package for the driver must be created
and added to ecos.db. This package must contain CDL, headers and sources for implementing the driver. If the driver can apply
to devices on different platforms, then a further package that configures the generic device to each platform will also be needed.

Device Driver Data Structures

Each CAN device is represented by a cyg_can_device structure. Most of the fields of this structure are private to the CAN
subsystem and it needs to be defined in such a way that it is included in a table of all the CAN devices. To make this simple
for the driver writer a macro has been defined to create this structure for each channel.

CYG_CAN_DEVICE(tag, chan, name, priv);

The arguments to this macro are:

tag This is a general name for the device driver as a whole, it should usually be the name of the device chip or interface
type. Typical values might be sja1000 or flexcan. This tag is used to ensure that the data structures declared by
this macro are unique to this driver.

chan This distinguishes between separate channels supported by the driver. Typical values might be can0 or can1.

name This is the name of the channel as used in the cyg_can_open() function. It is a string constant and is usually
defined by the driver's CDL. Typical CAN channel names are "can0" and "can1". However this argument will usually
be a CDL option such as CYGPKG_DEVS_CAN_CHANNEL0_NAME or CYGPKG_DEVS_CAN_CHANNEL1_NAME.

priv This is a pointer to a private data structure that contains device specific information such as its base address and
interrupt vector. The CAN subsystem does not interpret the contents of this in any way. Typical values for this might
be cyg_can_flexcan_drv_0 or cyg_can_sja1000_drv[1].

The interface to each driver is via a table of function calls that is pointed to by the cyg_can_device structure. This structure
has the following definition:

struct cyg_can_device_calls {
 int (*init) (cyg_can_device *dev);
 int (*open) (cyg_can_device *dev);
 int (*close) (cyg_can_device *dev);
 int (*send) (cyg_can_device *dev, cyg_can_msg *msg);
 int (*poll) (cyg_can_device *dev);
 int (*filter)(cyg_can_device *dev, cyg_bool ide, cyg_uint32 match, cyg_uint32 mask);
 int (*baud) (cyg_can_device *dev, cyg_uint32 baud);
 int (*filter_ext)(cyg_can_device *dev, cyg_can_filter *filters, int len);
};

init() This is called to initialize the channel when cyg_can_init() is called. It should
locate the channel and initialize it ready for communication. It should also install any
interrupts and initialize the fields of the private data structure.

open() This is called if the name of this channel matches the device name passed to
cyg_can_open(). There is no requirement for the driver to do anything here, but
possible things it might do is to allocate per-client resources in the hardware, or just
keep count of the number of users.

close() This is called when cyg_can_close() is called. As with the open() function, there
is no required behaviour here, but if open() allocated resources, then this is where
they should be released.

536

CAN Support

send() This function is called to transmit a message by cyg_can_send() and is passed a
pointer to a message buffer. This function should return one of several return codes
depending on the state of the channel:

CYG_CAN_BUSY

The channel is busy and cannot transmit the message at this point. The CAN subsys-
tem will add the message to its pending queue until the channel is available, at which
point the buffer will be passed back to the driver by the cyg_can_tx_done()
function.

CYG_CAN_WAIT

The channel has started the transmission of the message, but it is not yet complete.
The CAN subsystem will cause the sending thread to wait until the driver calls
cyg_can_tx_done(). This is usually used by interrupt driven drivers to make
the sender wait for the transmit completion interrupt.

CYG_CAN_NOERROR

The channel has transmitted the message immediately, and has also called
cyg_can_tx_done() to complete the process. This is mainly used by polled
drivers, which don't use interrupts.

CYG_CAN_*

Any other error code indicates a hardware error of some sort and will be passed
back to the caller by the CAN subsystem.

poll() This is usually called from the driver's DSR routine to handle any events that have oc-
curred on the channel. It may also be called from the CAN subsystem at various times,
and may be called from application code calling cyg_can_poll().

filter() This function is called to set the hardware ID filter. Not all hardware supports a filter
mechanism that matches the model implemented by the CAN subsystem. This function
should return CYG_CAN_NOERROR whether it can set the hardware filter or not. The
CAN subsystem will always apply the filter in software to all received messages, so
setting the hardware filter is an optimization to reduce the number of messages received.
There is no function to return the filter since the CAN subsystem records the filter itself.

baud() This function is called to set the network baud rate. The driver is at liberty to support only
a subset of the possible baud rates, and return CYG_CAN_INVALID for those it cannot.
It is also possible for certain baud rates not be supported for certain system clock speeds
due to limitations in the clock divider. It may not be possible for the driver to detect this.

filter_ext() This function is called to set the extended hardware ID filters. Not all hardware sup-
ports the extended filter mechanism and this function pointer may be NULL, in which
case the CAN subsystem will apply the filters in software. If not NULL then the dri-
ver should return CYG_CAN_NOERROR if all the extended filters can be handled, and
CYG_CAN_INVALID if not. Partial implementation of the filters is not supported; ei-
ther all the filters are installed into the hardware or none are.

The CAN subsystem defines a macro to create this function table:

CYG_CAN_DEVICE_CALLS(tag);

That macro creates a function table with filter_ext() set to NULL. If extended filters are supported, the driver should
use the following macro:

CYG_CAN_DEVICE_CALLS_EXT(tag);

The tag argument should match the tag argument of the CYG_CAN_DEVICE() macro. This macro does two things.
First it declares static function prototypes for all the driver functions of the form cyg_can_<tag>_<function>

537

CAN Support

(e.g. cyg_can_sja1000_init() or cyg_can_flexcan_send()). Second, it defines a function table called
cyg_can_<tag>_calls. The CYG_CAN_DEVICE() macro assumes that a function table of this name is defined.

Device Driver API Calls
In addition to the standard device driver API calls defined by the kernel, there are a number of additional CAN specific API
calls that a device driver must use to interact with the CAN subsystem. These functions may only be called from thread level
with the DSR lock claimed, or from a DSR. They cannot be called from an ISR.

cyg_can_msg *cyg_can_tx_done(cyg_can_device *can_dev, cyg_can_msg *msg);

This must be called when a transmission is completed. For polled drivers it should be called from the send() function while
for interrupt driven drivers it should be called from the poll() routine invoked from the driver's DSR. The function is called
with a pointer to the transmitted message buffer and following this call the message buffer will become the property of the
CAN subsystem and may be returned to the free pool. The return value from this function will a pointer be another message
buffer to transmit, or NULL. The driver should use the resources recently freed by the completion of the previous transmission
to start transmission of this message.

cyg_can_msg *cyg_can_rx_buffer(void);

This is called by the driver to acquire a message buffer in to which a message will be received. The normal approach is to
allocate a buffer during driver initialization and to keep at least one pending buffer available at all times. New buffers will
usually be passed back to the running driver by the cyg_can_rx_done() function.

cyg_can_msg *cyg_can_rx_done(cyg_can_device *can_dev, cyg_can_msg *msg);

This must be called when a driver has a completed message buffer to return to the user. This buffer may either contain a
received message, or may be reporting a channel event. This call is made with a pointer to the message buffer to be returned.
Following this call the message buffer becomes the property of the CAN subsystem. The return value of this function will be
a pointer to a message buffer to replace the one just passed back. Thus with one call the driver both gives up an old buffer
and gets a new one to use in its place.

It is possible for cyg_can_rx_done() to return a NULL pointer if there are currently no more buffers available. The driver
must therefore be able to handle this. The usual approach is to check, just before it is needed, for a current pending buffer.
If no buffer is present then call cyg_can_rx_buffer() and if this returns NULL then take action to, for example, throw
the message away.

typedef struct
{
 cyg_uint8 tseg1_min; // Time segment 1 = prop+phase1
 cyg_uint8 tseg1_max;
 cyg_uint8 tseg2_min; // Time segment 2 = phase2
 cyg_uint8 tseg2_max;
 cyg_uint16 divider_min; // Clock quantum divider
 cyg_uint16 divider_max;
} cyg_can_bitrate_param;

typedef struct
{
 // Input parameters
 cyg_uint32 clock; // System input clock in Hz

 // Input/Output parameters
 cyg_uint32 bitrate; // Target bit rate in Hz
 // Must be set on input
 // Updated with actual rate set

 cyg_uint16 sample; // Sample point in tenths of a percent
 // If zero, CIA recommended value used
 // Updated with actual sample point

 // Output calculated values
 cyg_uint8 prop; // Propogation segment in quanta
 cyg_uint8 phase1; // Phase segment 1 in quanta
 cyg_uint8 phase2; // Phase segment 2 in quanta
 cyg_uint16 divider; // Clock divider

538

CAN Support

} cyg_can_bitrate;

int cyg_can_calculate_bitrate(const cyg_can_bitrate_param *param,
 cyg_can_bitrate *bitrate);

The function cyg_can_calculate_bitrate may be called from the driver to calculate the timing values for a given
bit rate.

The param argument contains details of the bit timing hardware in the device, mainly derived from the field widths in the
timing register(s). These details comprise minimum and maximum values for tseg1 (propogation segment plus phase segment
one), tseg2 (phase segment two) and the quantum clock divider.

The bitrate argument must have the input clock and target bitrate set. The sample point must either be set, or zeroed
for a CIA recommended value to be chosen. On return the fields prop, phase1 and phase2 will be set to the quantum
counts calculated for each segment. The divider field will set to the calculated divider. The bitrate and sample fields
will be updated with the actual bit rate and sample point.

This function will either return CYG_CAN_NOERROR if a valid set of timing values have been calculated, or CYG_CAN_IN-
VALID if no values could be found. The routine will attempt to find values that give the closest match to the bitrate and sample
point requested. If an exact match is found for both, that setting is returned. If no exact match is found, success is only reported
if the calculated bitrate is within 5% of the requested rate.

Most drivers should be able to use the values returned by this routine directly. Most CAN devices have one or two registers that
contain fields that are directly analogous to these values. All that is needed is for them to be shifted in to position. Quanta are
divided more or less equally between prop and phase1. However, some hardware may combine these values into a single
field or have different sized fields for each. In these cases then the driver may need to add them together, or move some quanta
from one to another to match the hardware.

Configuration
The only direct configuration requirement on device drivers is that for each channel supported, the driver should have an
"implements CYGINT_IO_CAN_DRIVER" statement to ensure that the correct number of message buffers are available. The
name of the channels should also be defined in the CDL. A minimal CDL file for the XYZZY driver would be as follows:

cdl_package CYGPKG_DEVS_CAN_XYZZY {
 display "XYZZY CAN driver"
 description "XYZZY CAN driver."

 parent CYGPKG_IO_CAN
 active_if CYGPKG_IO_CAN

 include_dir cyg/devs/can

 compile -library=libextras.a xyzzy.c

 cdl_component CYGPKG_DEVS_CAN_CHANNEL0 {
 display "CAN channel 0 configuration"
 default_value 1
 implements CYGINT_IO_CAN_DRIVER

 cdl_option CYGPKG_DEVS_CAN_CHANNEL0_NAME {
 display "CAN channel 0 name"
 flavor data
 default_value { "\"can0\"" }
 description "Name of CAN channel 0"
 }
 }

 cdl_component CYGPKG_DEVS_CAN_CHANNEL1 {
 display "CAN channel 1 configuration"
 default_value 1
 implements CYGINT_IO_CAN_DRIVER

 cdl_option CYGPKG_DEVS_CAN_CHANNEL1_NAME {
 display "CAN channel 1 name"

539

CAN Support

 flavor data
 default_value { "\"can1\"" }
 description "Name of CAN channel 1"
 }

 }

 # Further entries for extra channels would go here

}

If the driver is multi-platform, then the channel configurations should go into the second platform specific package which may
also need to define suitable configuration options to customize the generic driver.

Driver Template
The following example show the general structure of a CAN device driver for a fictional XYZZY device.

The first thing we need to do is to define the data structures that interface the device to the CAN subsystem:

#include <pkgconf/hal.h>
#include <pkgconf/io_can.h>
#include <pkgconf/devs_can_xyzzy.h>

#include <cyg/io/can_dev.h>

//===
// Define private data structure. At the very least this needs to
// contain the base address of the device and the interrupt vector.
// If this is an interrupt driven device, then it will also need to
// contain the data structures to manage the interrupt.

struct cyg_can_xyzzy_priv
{
 cyg_uint32 devno; // device number
 CYG_ADDRESS base; // base address
 cyg_vector_t vector; // vector number

 cyg_can_msg *tx_msg; // current tx message buffer
 cyg_can_msg *rx_msg; // pending rx message buffer

 cyg_handle_t interrupt_handle;
 cyg_interrupt interrupt_object;

 // Further device fields here
};

//===
// Define device function call table. This should be done before the
// CYG_CAN_DEVICE() macro is called.

CYG_CAN_DEVICE_CALLS(xyzzy);

//===
// Define driver-private structures for each of the channels. For this
// example we define just two.

#ifdef CYGPKG_DEVS_CAN_CHANNEL0
struct cyg_can_xyzzy_priv cyg_can_xyzzy_drv_0 =
 { 0, CYGARC_HAL_XYZZY_BASE_CAN_0, CYGNUM_HAL_INTERRUPT_CAN_0 };
#endif
#ifdef CYGPKG_DEVS_CAN_CHANNEL1
struct cyg_can_xyzzy_priv cyg_can_xyzzy_drv_1 =
 { 1, CYGARC_HAL_XYZZY_BASE_CAN_1, CYGNUM_HAL_INTERRUPT_CAN_1 };
#endif

//===
// Define CAN device table entries.

#ifdef CYGPKG_DEVS_CAN_CHANNEL0

540

CAN Support

CYG_CAN_DEVICE(xyzzy, can0, CYGPKG_DEVS_CAN_CHANNEL0_NAME, cyg_can_xyzzy_drv_0);
#endif
#ifdef CYGPKG_DEVS_CAN_CHANNEL1
CYG_CAN_DEVICE(xyzzy, can1, CYGPKG_DEVS_CAN_CHANNEL1_NAME, cyg_can_xyzzy_drv_1);
#endif

The first thing that needs writing is the initialization routine:

static int cyg_can_xyzzy_init(cyg_can_device *dev)
{
 int result = CYG_CAN_NOERROR;
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;

 // Locate, validate and initialize the channel hardware. This
 // may include setting up the acceptance filter to accept all IDs
 // and setting the baud rate to a default (100kHz say).

 // Install interrupt handlers

 cyg_drv_interrupt_create(priv->vector,
 0,
 (CYG_ADDRWORD)dev,
 cyg_can_xyzzy_isr,
 cyg_can_xyzzy_dsr,
 &priv->interrupt_handle,
 &priv->interrupt_object);
 cyg_drv_interrupt_attach(priv->interrupt_handle);
 cyg_drv_interrupt_unmask(priv->vector);

 // Perform any final initialization, for example clearing and then
 // enabling interrupts in the channel.

 // Allocate a pending buffer for message receive.
 priv->rx_msg = cyg_can_rx_buffer();

 return result;
}

The open and close routines come next. Most drivers don't need to do much here so these examples are the minimum necessary:

static int cyg_can_xyzzy_open(cyg_can_device *dev)
{
 return CYG_CAN_NOERROR;
}

static int cyg_can_xyzzy_close(cyg_can_device *dev)
{
 return CYG_CAN_NOERROR;
}

The send routine is responsible for actually transmitting a message:

static int cyg_can_xyzzy_send(cyg_can_device *dev, cyg_can_msg *msg)
{
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;

 // If there is still a current tx message or the transmit hardware
 // is still busy, return busy so that the upper levels will
 // queue this request.
 if(priv->tx_msg != NULL || xyzzy_tx_busy(priv))
 return CYG_CAN_BUSY;

 // Record current transmit packet
 priv->tx_msg = msg;

 // Write the message header and ID to be sent into the channel
 // transmit buffer, ensuring that the length and the IDE bit is
 // set correctly, and the ID is correct.

 // If the RTR flag is not set, install the data in the transmit
 // buffer. If the RTR flag is set, do not install the data and set

541

CAN Support

 // the RTR bit in the frame info.

 // Start the transmission.

 // Return CYG_CAN_WAIT to cause the sending thread to wait for completion.

 return CYG_CAN_WAIT;
}

The following routine is internal to the driver, it is called from the poll() routine to actually receive a message into a buffer:

static int cyg_can_xyzzy_recv(cyg_can_device *dev, cyg_can_msg *msg)
{
 int result = CYG_CAN_NOERROR;
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;
 cyg_ucount8 ide, rtr, len;
 cyg_uint32 id = 0;

 // Get the message frame header and decode it into some locals:
 // ide, rtr, len and id.

 // If we have a message buffer, move the message out into it.

 if(msg != NULL)
 {
 msg->ide = ide;
 msg->rtr = rtr;
 msg->len = len;
 msg->id = id;

 if(!rtr)
 {
 // Copy data from receive frame into message buffer.
 }
 }
 else
 {
 // Do whatever is needed to throw the message away since
 // there is no buffer available.
 }

 // Do whatever is needed to release the receive buffer and ready
 // it for a new message and/or cancel the interrupt.

 return result;
}

The poll() handles most of the asynchronous events:

static int cyg_can_xyzzy_poll(cyg_can_device *dev)
{
 int result = CYG_CAN_NOERROR;
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;

 // If there is a pending transmission and the hardware channel
 // indicates that it is finished, then call cyg_can_tx_done().

 if(priv->tx_msg != NULL && xyzzy_tx_done(priv))
 {
 cyg_can_msg *msg = priv->tx_msg;

 priv->tx_msg = NULL;
 msg = cyg_can_tx_done(dev, msg);

 // If we have been passed a new message to transmit, send it.
 if(msg != NULL)
 cyg_can_xyzzy_send(dev, msg);
 }

 // While there are messages available in the receive buffer or
 // FIFO, pull them out and pass them back to the CAN subsystem.

542

CAN Support

 while(xyzzy_rx_done(priv))
 {
 // If there is no current rx buffer, try to allocate one here.
 if(priv->rx_msg == NULL)
 priv->rx_msg = cyg_can_rx_buffer();

 // Either receive the message, or clear the channel.
 cyg_can_xyzzy_recv(dev, priv->rx_msg);

 // If we have a buffer, pass it back.
 if(priv->rx_msg != NULL)
 priv->rx_msg = cyg_can_rx_done(dev, priv->rx_msg);
 }

 // See if any other CAN channel events have occurred.

 if(xyzzy_event(priv))
 {
 // Decode the event and set result to an appropriate error
 // code.

 // Return a message buffer recording this event. As above, we
 // may need to allocate a fresh buffer if none is available.

 if(result != CYG_CAN_NOERROR)
 {
 if(priv->rx_msg == NULL)
 priv->rx_msg = cyg_can_rx_buffer();

 if(priv->rx_msg != NULL)
 {
 priv->rx_msg->result = result;
 priv->rx_msg = cyg_can_rx_done(dev, priv->rx_msg);
 }
 result = CYG_CAN_NOERROR;
 }
 }

 return result;
}

The simplest form for the ISR is for it to just mask the channel's interrupt vector and cause the DSR to run. The DSR can then
simply call cyg_can_xyzzy_poll() to handle the channel events. Alternatively, the ISR could handle the hardware, but
the DSR still needs to be run to call cyg_can_tx_done(), cyg_can_rx_done() and cyg_can_rx_buffer().

static cyg_uint32 cyg_can_xyzzy_isr(cyg_vector_t vector,
 cyg_addrword_t data)
{
 cyg_can_device *dev = (cyg_can_device *)data;

 // Block interrupts from this device until the DSR is run
 cyg_drv_interrupt_mask(vector);

 // Ack the interrupt in the system interrupt controller
 cyg_drv_interrupt_acknowledge(vector);

 // Pass handling on to DSR
 return (CYG_ISR_HANDLED|CYG_ISR_CALL_DSR);
}

static void cyg_can_xyzzy_dsr(cyg_vector_t vector,
 cyg_ucount32 count,
 cyg_addrword_t data)
{
 cyg_can_device *dev = (cyg_can_device *)data;

 // Poll hardware for pending events
 cyg_can_xyzzy_poll(dev);

 // Re-allow device interrupts
 cyg_drv_interrupt_unmask(vector);
}

543

CAN Support

Finally, the filter and baud rate functions are very simple:

static int cyg_can_xyzzy_filter(cyg_can_device *dev,
 cyg_bool ide,
 cyg_uint32 match,
 cyg_uint32 mask)
{
 int result = CYG_CAN_NOERROR;
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;

 // Set the hardware filter to match the parameters. If the
 // hardware filter cannot be used, return CYG_CAN_NOERROR anyway,
 // since filtering will also be done in the CAN subsystem.

 return result;
}

static int cyg_can_xyzzy_filter_ext(cyg_can_device *dev,
 cyg_can_filter *filter,
 int len)
{
 int result = CYG_CAN_NOERROR;
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;

 // Set the extended filters to match the parameters. If the
 // hardware filter cannot be used, return CYG_CAN_INVALID, only
 // return CYG_CAN_NOERROR if all filters can be installed.

 return result;
}

static int cyg_can_xyzzy_baud(cyg_can_device *dev,
 cyg_uint32 baud)
{
 int result = CYG_CAN_NOERROR;
 struct cyg_can_xyzzy_priv *priv = (struct cyg_can_xyzzy_priv *)dev->private;

 // Set the baud rate, which may involve checking that the
 // requested rate is supported. If not the return
 // CYG_CAN_INVALID.

 result = cyg_can_xyzzy_set_baudrate(priv, baud);

 return result;
}

544

Chapter 91. NXP FlexCAN CAN Driver

545

NXP FlexCAN CAN Driver

Name
FlexCAN — CAN Driver

Description
This driver supports the FlexCAN CAN devices available in some NXP i.MXRT microprocessors.

Filter
The device provides filtering support that is compatible with the filter model defined by the CAN subsystem, and therefore
hardware filtering is employed.

Baud Rates
The following baud rates are supported: 1Mb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s, and 20kb/s.

Configuration
This driver requires an external package to configure it for the particular microcontroller, normally the platform (PLF) or
variant (VAR) HAL. Each CAN channel is then implemented by a controller instance as specified.

For each channel # supported the CDL script in this package will provide the following configuration options:

cdl_component CYGPKG_DEVS_CAN_CHANNEL#

This defines whether the channel is included. It depends on the associated FLEXCAN controller being implemented for
the platform.

Note

The CAN channels are numbered logically from 0, whereas the physical FLEXCAN controllers are numbered
from 1. So if the platform supports the FLEXCAN2 controller the correspoding CAN channel device name
will be “can1” by default.

cdl_option CYGPKG_DEVS_CAN_CHANNEL#_NAME

This defines the name of the channel. This is the name that an eCos application should use to access the device via the
I/O API.

cdl_option CYGPKG_DEVS_CAN_CHANNEL#_INTERRUPT_PRI

This option defines the interrupt priority for the FLEXCAN controller interrupts.

cdl_option CYGPKG_DEVS_CAN_CHANNEL#_MB_RX

This option defines the number of MailBox (MB) slots available for use as RX buffers. The minimum acceptable setting
allowed being 2 dedicated RX buffers. However, for normal application configurations it is expected that more RX buffers
will be required than TX buffers, so the default reflects such “normal” ratio.

The number of available TX mailboxes (CYGPKG_DEVS_CAN_CHANNEL#_MB_TX) is calculated as the number of
remaining mailboxes after the RX allocation.

cdl_option CYGPKG_DEVS_CAN_CHANNEL#_BITRATE

This option defines the start-of-day (default) bitrate for the CAN channel.

546

Chapter 92. FlexCAN CAN Driver

547

FlexCAN CAN Driver

Name
FlexCAN — CAN Driver

Description
This driver supports the FlexCAN CAN devices available in some Freescale Coldfire and PowerPC microprocessors.

Filter
The device provides filtering support that is compatible with the filter model defined by the CAN subsystem, and therefore
hardware filtering is employed.

Baud Rates
The following baud rates are supported: 1Mb/s, 800kb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s, 20kb/s, 10kb/s.

Configuration
This driver requires an additional package to configure it to the particular microcontroller. For each channel X supported the
CDL script in this package must provide the following configuration options:

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is included.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

cdl_option CYGNUM_DEVS_CAN_CHANNELX_BASE

This defines the base address of the CAN channel controller in the memory map. It will typically be an expression involving
HAL-defined constants which resolves to the address of the the device.

cdl_option CYGNUM_DEVS_CAN_CHANNELX_VECTOR

This defines the interrupt vector associated with buffer 0. It is assumed that the vectors for buffers 1..15 follow this, and
that the error and bus off interrupt vectors follow these. This will typically be a HAL-defined constant.

548

Chapter 93. MSCAN CAN Driver

549

MSCAN CAN Driver

Name
Mscan — CAN Driver

Description
This driver supports the MSCAN CAN devices available in some Freescale Coldfire and PowerPC microprocessors.

Filter
The device provides filtering support that is compatible with the filter model defined by the CAN subsystem, and therefore
hardware filtering is employed.

Baud Rates
The following baud rates are supported: 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s, 20kb/s, 10kb/s.

Configuration
This driver requires an additional package to configure it to the particular microcontroller. For each channel X supported the
CDL script in this package must provide the following configuration options:

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is included.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

cdl_option CYGNUM_DEVS_CAN_CHANNELX_BASE

This defines the base address of the CAN channel controller in the memory map. It will typically be an expression involving
HAL-defined constants which resolves to the address of the the device.

cdl_option CYGNUM_DEVS_CAN_CHANNELX_VECTOR

This defines the interrupt vector associated with buffer 0. It is assumed that the vectors for buffers 1..15 follow this, and
that the error and bus off interrupt vectors follow these. This will typically be a HAL-defined constant.

550

Chapter 94. LPC2XXXX CAN Driver

551

LPC2XXXX CAN Driver

Name
LPC2XXX — CAN Driver

Description
This driver supports the CAN devices available in some variants of the Philips LPC2XXX family of microprocessors. The
device itself is similar to the the SJA1000, but is sufficiently different that the drivers cannot be shared.

Filter
The filter mechanism present in the LPC2XXX CAN devices is not compatible with the filter model adopted by the CAN
subsystem. Consequently the hardware filter is not used and only software filtering is applied.

Baud Rates
The following baud rates are supported: 1Mb/s, 800kb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s, 20kb/s, 10kb/s.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is included. For channels 2 and 3 the default value is conditional on the LPC2XXX
variant.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

552

Chapter 95. Atmel SAM CAN Driver

553

Atmel SAM CAN Driver

Name
Atmel SAM — CAN Driver

Description
This driver supports the CAN devices available in some variants of Atmel's SAM4, SAM7, SAM9 and SAMA5 microprocessor
families.

Filter
The filter mechanism present in the SAM4/7/9 and SAMA5 CAN devices is not compatible with the filter model adopted by
the CAN subsystem. Consequently the hardware filter is not used and only software filtering is applied.

Baud Rates
The following baud rates are supported: 1Mb/s, 800kb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s, 20kb/s and 10kb/s.
However, the accuracy of baud rates that can be supported at any particular MCLK frequency depend on the resolution of
the baud rate divisor.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_interface CYGINT_DEVS_CAN_CHANNELX

This determines whether the given channel is available on the board. It is usually implemented by the platform HAL.

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is active. It will default to active for all channels whose corresponding interface is
implemented, but may be disabled by the user.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_MBOX_COUNT

This defines the number of mailboxes supported by the device. This is usually eight or sixteen. The HAL for the micro-
processor variant will usually set this value during configuration.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_EXT

If set this option configures this channel to receive extended, 29 bit, identifiers as well as standard, 11 bit, identifiers.
Otherwise it receives only 11 bit identifiers. The default is to receive both message types.

At present there is support for up to two channels.

554

Chapter 96. Atmel MCAN CAN Driver

555

Atmel MCAN CAN Driver

Name
Atmel MCAN — CAN Driver

Description
This driver supports the CAN devices available in some variants of Atmel's SAMX70 microprocessor families.

In addition to standard CAN messages, this device is capable of handling CAN-FD messages.

Filter
At present the hardware filter is not used and only software filtering is applied.

Baud Rates
All standard baud rates are supported. However, the accuracy of baud rates that can be supported at any particular MCLK
frequency depend on the resolution of the baud rate divisor.

At present autobaud is not supported.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_interface CYGINT_DEVS_CAN_CHANNELX

This determines whether the given channel is available on the board. It is usually implemented by the platform HAL.

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is active. It will default to active for all channels whose corresponding interface is
implemented, but may be disabled by the user.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_BITRATE

This defines the default bitrate at which the channel will start.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_BITRATE_FD

This defines the default fast data bitrate at which the channel will start.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_RX_FIFO_SIZE

This defines the number of receive buffers in RX FIFO 0. Only FIFO 0 is currently used.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_TX_BUF_COUNT

This defines the number of transmit buffers and the number of entries in the transmit event FIFO.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_

cdl_option CYGPKG_DEVS_CAN_CHANNELX_EXT

If set this option configures this channel to receive extended, 29 bit, identifiers as well as standard, 11 bit, identifiers.
Otherwise it receives only 11 bit identifiers. The default is to receive both message types.

556

Atmel MCAN CAN Driver

At present there is support for up to two channels.

557

Chapter 97. SJA1000 CAN Driver

558

SJA1000 CAN Driver

Name
SJA1000 — CAN Driver

Description
This driver supports the Philips SJA1000 CAN device. As a stand-alone device, the SJA1000 may be connected to the target
system by a variety of mechanisms, including direct connection, PCI bus, ISA bus or USB. This driver is structured to support
any of these methods, although not all are currently implemented.

Access Methods
At present only Peak PCAN-PCI boards are supported by this driver. As a consequence only the PCI access method is currently
implemented and within that, only PCAN-PCI boards are recognised and initialized. New access methods and boards will be
added as they become available.

Filter
The device provides filtering support that is compatible with the filter model defined by the CAN subsystem, and therefore
hardware filtering is employed.

Baud Rates
The following baud rates are supported: 1Mb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s, 20kb/s, 10kb/s.

Configuration
This driver requires an additional package to configure it to the particular microcontroller. For each channel X supported the
CDL script in this package must provide the following configuration options:

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is included. For channels 2 and 3 the default value is conditional on the SJA1000 variant.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

In addition to the above options, each channel should contain the following implements or requires commands, as appropriate:

implements CYGINT_DEVS_CAN_SJA1000_REQUIRED

This adds to the count of SJA1000 devices implemented by the driver.

implements CYGINT_DEVS_CAN_SJA1000_PCI

This adds to the count of SJA1000 PCI-based devices implemented by the driver. If the SJA1000 is accessed through a
PCI device then this interface should be implemented.

559

Chapter 98. BXCAN CAN Driver

560

BXCAN CAN Driver

Name
BXCAN — CAN Driver

Description
This driver supports the BXCAN devices available in some variants of the ST STM32 family of microprocessors.

Filter
Hardware filtering is used to provide the standard CAN subsystem filtering semantics.

Baud Rates
The following baud rates are supported: 1Mb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s, 50kb/s. However, the accuracy of baud
rates that can be supported at any particular PCLK1 frequency depend on the resolution of the baud rate divisor.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_component CYGINT_DEVS_CAN_CHANNELX

This interface should be implemented by the platform HAL for each channel that is connected to a CAN bus or socket
on the board.

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is initialized. By default this depends on CYGINT_DEVS_CAN_CHANNELX.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

561

Chapter 99. STR7XX CAN Driver

562

STR7XX CAN Driver

Name
STR7XX — CAN Driver

Description
This driver supports the CAN devices available in some variants of the ST STR7XX family of microprocessors.

Filter
The filter mechanism present in the STR7XX CAN devices is not compatible with the filter model adopted by the CAN
subsystem. Consequently the hardware filter is not used and only software filtering is applied.

Baud Rates
The following baud rates are supported: 1Mb/s, 500kb/s, 250kb/s, 125kb/s, 100kb/s. However, the accuracy of baud rates that
can be supported at any particular PCLK1 frequency depend on the resolution of the baud rate divisor.

Configuration
For each channel X supported the CDL script provides the following configuration options:

cdl_component CYGPKG_DEVS_CAN_CHANNELX

This defines whether the channel is included. For channels 2 and 3 the default value is conditional on the STR7XX variant.

cdl_option CYGPKG_DEVS_CAN_CHANNELX_NAME

This defines the name of the channel.

At present, only one channel, 0, is supported.

563

Part XXVIII. Coherent Connection Bus

Table of Contents
100. Coherent Connection Bus overview .. 566

Introduction ... 566
101. Configuration .. 567

Configuration Overview ... 567
Quick Start .. 567
Configuring the CCB memory footprint .. 567
Configuring the CCB control thread .. 567
Configuring the CCB master server ... 568

102. API Overview ... 569
Application support API .. 570
I/O Device Driver Interface .. 572

103. Internals ... 573
104. Debug and Test ... 574

Debugging ... 574
Asserts .. 574
Diagnostic Output ... 574

Testing .. 574
ccb_ut ... 574
ccb_master ... 575

565

Chapter 100. Coherent Connection Bus
overview
Introduction
The CYGPKG_COHERENT_CCB package implements support for Coherent Connection Bus (CCB) communications. This
enables eCos-based systems to communicate with and control compatible members of Coherent's range of laser products.

The package provides an API for applications to send and receive messages from an eCos-based master to slave devices over
the CCB. Familiarity with CCB and the relevant specifications is assumed in the following documentation.

The implementation is based on the relevant sections of the Coherent's “Integrator's Guide Coherent OBIS“ document (Part
No. 1215508 Rev. AB - CoherentOBIS_IntegratorsGuide_1215508RevAB.pdf).

The CCB package features:

• CCB packet driver interface support

• Master device support

• Example applications

The eCos CCB backend interface is transport agnostic, though CCB is normally routed over an RS-485 connection. The con-
figured target must provide a suitable platform/variant hardware package implementing the necessary low-level hardware I/O
support. The CCB support relies on the platform specific CDL forcing any per-device configuration to ensure a 921600 baud
8N1 connection for the underlying serial (RS-485) communications.

566

http://coherent.com/

Chapter 101. Configuration
This chapter shows how to incorporate the CCB support into an eCos configuration, and how to configure it once included.

Configuration Overview
The CCB support is contained in a single eCos package CYGPKG_IO_CCB. However, it depends on the services of a col-
lection of other packages for complete functionality. For example, the CYGPKG_KERNEL, CYGPKG_ERROR and CYGP-
KG_IO_FILEIO packages.

Quick Start
Incorporating the CCB support into your application is straightforward. The essential starting point is to incorporate the CCB
eCos package (CYGPKG_COHERENT_CCB) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Depending on the CCB package configuration other packages may be required (e.g. UART device driver support). The package
requires that the CYGPKG_KERNEL and CYGPKG_ERROR packages are included in the eCos application configuration.

It is recommended to include the CYGPKG_IO_FILEIO package for select() functionality to allow client-applications
to avoid having to use a busy message read loop.

Configuring the CCB memory footprint
CYGNUM_IO_CCB_SIZE_MSG

This option defines the maximum size of message that can be received, and should include space for the standard message
header. The default value caters for the maximum possible message size. For low-memory targets or where the maximum
message sizes are fixed and known for all bus nodes, then this option can be tuned to minimise the memory footprint. Any
messages that exceed this configured size will be dropped.

The value of this option is used to define the buffer sizes required by the low-level I/O driver to accept packets.

CYGNUM_IO_CCB_RECV_PKTS

This option defines the maximum number of pending received messages that can be queued for the client application.
As per the Coherent Connection Bus Protocol “Only complete messages are buffered; if there is not enough buffer space
remaining for a new message, the message will be discarded”. This option can be tuned to reflect the ability of the client
application to read and process messages, against the memory footprint required for each descriptor.

Configuring the CCB control thread
CYGNUM_COHERENT_CCB_CONTROL_STACK_SIZE

The CCB subsystem uses an internal thread to handle asynchronous actions and to process packet reception. This option
defines the ADDITIONAL size that is added to the variant CYGNUM_HAL_STACK_SIZE_TYPICAL setting to define
the stack size for this thread.

CYGNUM_COHERENT_CCB_CONTROL_PRIORITY

The CCB subsystem uses an internal thread to handle asynchronous actions. This option defines the priority at which this
thread is scheduled. To avoid resource starvation issues it should normally be a higher priority than the thread implementing
the CCB client-application.

567

Configuration

Configuring the CCB master server
The common CCB server support is enabled by the CYGPKG_IO_CCB_MASTER option. When enabled it provides access to
the following relevant options.

CYGNUM_IO_CCB_MASTER_NUM_SLAVES

This option specifies the maximum number of slave devices supported across all of the physical CCB ports present.
This is used to avoid the need for dynamic allocation, but does mean that the value may need to be tuned to reflect the
application and variant/platform usage. The maximum of 253 reflects the total unit bus limit. The master will ignore
address acquisition requests when the pool of slave descriptors is exhausted.

The default value of 1 reflects the expected use case of a single physical interface (port) with only a single slave device
connected to that RS-485 bus. If the implementation provides multiple hardware ports, or expects multiple slaves per
hardware port then this configuration option should be updated accordingly.

CYGNUM_IO_CCB_MASTER_MAX_SLAVEID_LEN

This option specifies the maximum length of the per-slave unique identifiers supported. The default is to accept all slaves by
using the maximum possible length (this option includes space for the NUL-terminator). For targets with limited memory
resources, or where the application is limited to a known set of device identifier lengths, this value can be tuned to save
on the run-time memory footprint. Slave devices with identifiers longer than this option will be ignored.

CYGNUM_IO_CCB_MASTER_SLAVE_POLL

If a message has not been received from an assigned address for the period of time (in seconds) specified by this option
then the master CCB stack will issue a PING request to the slave. After the fixed number of retries (CYGNUM_IO_C-
CB_MASTER_SLAVE_POLL_ATTEMPTS) without a response a slave is considered disconnected.

Note

An eCos CCB package extension disables the slave polling if this option is set to zero (0). Such a configu-
ration would not be conformant with the CCB protocol definition.

CYGNUM_IO_CCB_MASTER_SLAVE_POLL_WAIT

This option defines the period (in seconds) that the master CCB stack will wait between PING requests. A slave is declared
disconnected if no response is received after CYGNUM_IO_CCB_MASTER_SLAVE_POLL_ATTEMPTS.

568

Chapter 102. API Overview
The main client-application access to CCB functionality is via the common named device /dev/ccb. It is the responsibility
of the client-application to open a handle onto this common device, and then to read and write messages as appropriate.

The common layer will automatically start the protocol control thread and use the standard eCos cyg_io interface connection
to the specific CCB interface (hardware port) device drivers.

For CYGPKG_IO_FILEIO configurations the client-application can use the open(), write(), read() and select()
functions. If CYGPKG_IO_FILEIO is not configured then the standard cyg_io_lookup(), cyg_io_read() and
cyg_io_write() function interface is used.

Note

The client-application writes to the CCB are always blocking. The read operations can be configured as non-
blocking if required, and if CYGPKG_FILEIO select() support is configured will default to non-blocking
operation.

The common and driver-specific CCB packages also provide access to some GET/SET operations that can be accessed via
the relevant cyg_fs_fgetinfo/cyg_fs_fsetinfo or cyg_io_get_config/cyg_io_set_config functions.
The “key” values supported are:

CYG_IO_GET_CONFIG_PENDING_MESSAGES

This key allows a snapshot view of the number of pending client-application RX messages.

Note

As packet reception might occur during calls to this config operation, the information returned may already
be stale. If the thread reading this count is the only thread reading messages then this value can be viewed
as the minimum number of messages pending. i.e. the client-application should always be able to read the
returned number of messages.

A client-application using select() to do a non-busy wait for a message should not normally need to worry about the
number of pending messages. This config key support is provided to correspond with the functionality described by the
CCB protocol documentation.

CYG_IO_GET_CONFIG_CCB_STATISTICS

This option allows, where provided by the underlying hardware interface port driver, sets of statistics to be monitored.
The <cyg/io/ccb_port.h> header file defines the cyg_ccb_devio_stats_t structure used to hold RX and TX
information for a specific device driver. This config key functionality uses the <cyg/io/ccb.h> header file defined
cyg_ccb_io_stats_t structure to step through the available interface statistics.

The initial cyg_ccb_io_stats_t.priv_ctx field should be initialised to NULL, and then this key config call
repeated until the common CCB support returns cyg_ccb_io_stats_t.priv_ctx == NULL (indicating no more
data). As per the following pseudocode example:

cyg_ccb_io_stats_t stats;
cyg_bool moredata = true;

stats.priv_ctx = NULL; // start

do {
 int res = cyg_fs_fgetinfo(pcapp->fd,CYG_IO_GET_CONFIG_CCB_STATISTICS,&stats,sizeof(stats));
 if (res < 0) {
 diag_printf("FAIL:<Get statistics error %d \"%s\">\n",res,strerror(errno));
 moredata = false;
 }
 if (moredata) {
 moredata = (stats.priv_ctx != NULL);

569

API Overview

 if (moredata) {
 diag_printf("Device \"%s\" : RX pkts=%u (bytes=%llu) dropped=%u : TX pkts=%u (bytes=%llu) retrans=%u failed=%u>n",
 stats.dname,
 stats.dstats.rx_pkts,
 stats.dstats.rx_bytes,
 stats.dstats.rx_pkts_dropped,
 stats.dstats.tx_pkts,
 stats.dstats.tx_bytes,
 stats.dstats.tx_pkts_retrans,
 stats.dstats.tx_pkts_failed);
 }
 }
} while (moredata);

When using a cyg_io_handle_t reference to the common CCB layer then the example above would use the corre-
sponding cyg_io interface:

 Cyg_ErrNo res = cyg_io_get_config(pcapp->handle,CYG_IO_GET_CONFIG_CCB_STATISTICS,&stats,&slen);

CYG_IO_SET_CONFIG_CCB_BUS_RESET

Normally the client-application should not need to force a global bus reset. The common CCB layer performs a bus reset as
part of the normal application startup. This config “key” may be useful during testing/development, or if an unrecoverable
error is detected.

There is also a minimal function call API providing some “stateless“ message helper routines.

Application support API
These functions are available for the client-application to aid in message processing.

See the Testing section's ccb_master test client-application for an example of access to the /dev/ccb and use of these
functions.

570

API Overview

Name
cyg_ccb_build_message — Construct message

Synopsis
#include <cyg/io/ccb.h>

cyg_uint32 cyg_ccb_build_message(msg, slave_addr, tag, cmdreq);

Description

This function allows a standard client-application message to be constructed. The msg parameter is used to reference a mes-
sage object to be filled. The slave_addr and tag parameters describe the destination address and client-application “mes-
sage tracking number” respectively. The final parameter cmdreq is the NUL-terminated ASCII command or request. The
passed cmdreq string should NOT contain a terminating CR (Carriage-Return). Any command/request terminators needed
are added by this function.

The following pseudocode example shows the use of the function to construct a message and then send this message via the
write function to a previously opened CCB handle.

cyg_uin32 mlen = cyg_ccb_build_message(msg,slave_addr,tag,"*IDN0?");
if (mlen) {
 write(fd,msg,mlen);
} else {
 raise_error();
}

Return value

The function returns the total number of bytes written to the passed msg buffer, or zero (0) if an error is detected.

571

API Overview

Name
cyg_ccb_check_response — Check response

Synopsis
#include <cyg/io/ccb.h>

cyg_bool cyg_ccb_check_response(response, rlen, ecode);

Description

This helper function allows standard CCB client-application message responses to be parsed. The response is a pointer to
the response data to be processed, with the rlen specifying the number of bytes (characters) of data valid in the supplied
response buffer.

Responses are expected to be either the non-error “OK\r” or an error number indicated “ERR#\r” form (where # is either a
positive or negative decimal number).

If non-NULL then the ecode parameter references the location updated with the “ERR” response error number, or the value
0 if an “OK”: response is given.

Return value

The boolean true result indicates that a valid response string was supplied. The return value of false indicates that the
string was malformed (possibly a data reply and not a response string after all).

I/O Device Driver Interface
The header file <cyg/io/ccb_devio.h> defines the interface between the common CCB support and the target specific
device drivers. The device drivers provide the physical CCB packet communication support.

Physical connections are supplied to the common layer via the relevant target/platform defining a cyg_ccb_port_in-
stance_t structure (via the CCB_PORT() macro), which provides the mapping to the relevant low-level hardware I/O dri-
ver via the supplied named device.

The cyg_ccb_devio_port_t structure defines a hardware port instance (i.e. a physical RS-485 hardware interface) driver
in conjunction with a standard I/O driver device descriptor DEVTAB_ENTRY() definition. A driver normally instantiates itself
via the CCB_DEVIO_PORT() macro to populate a cyg_ccb_devio_port_t structure.

The device drivers interface with the CCB common layer via the cyg_ccb_devio_funs_t and cyg_ccb_call-
backs_t structures implemented by the src/ccb_devio.c support.

The device drivers fundamentally provide a per-port blocking transmit function, and asynchronous packet reception. The dri-
ver calls back into the common CCB layer via the (DSR context) cyg_ccb_callbacks_t functions tx_done() and
rx_pkt().

572

Chapter 103. Internals
The main CCB protocol control thread is provided by the package's src/ccb_protocol.c source file. The control thread
loops waiting for event flags indicating that some CCB processing is required.

The main tasks of the control loop are monitoring slave packet reception timing and polling slaves as configured, to ensure
they are still connected, and processing asynchronous RX packets from any of the available hardware ports. The CCB bus
management messages are handled by this control loop; and validated client-application messages are forwarded to the client-
application via a RX message queue for the client-application to use via the relevant read interface. The bus management code
can also inject locally generated slave connect/disconnect messages into this RX queue for processing by the client-application
(as per the CCB design).

The src/ccb_protocol.c source also implements the I/O driver layer used to present the “/dev/ccb” named device, used
by the client-application to allow messages to be sent and received. This works in conjunction with the src/ccb_devio.c
source that provides the basic message<->packet framing/deframing support.

573

Chapter 104. Debug and Test
Debugging

Asserts
If the target platform resources allow, then the first step in debugging should be to enable ASSERTs. The inclusion of assert
checking will increase the code footprint and lower the performance, but does allow the code to catch internal errors from
unexpected data values. e.g. when the application/client is not able to guarantee the validity of data passed into the CCB code.

The CCB asserts are controlled via the standard eCos Infrastructure CYGPKG_INFRA package CYGDBG_USE_ASSERTS
option. If enabled then run-time assertion checks are performed by the CCB package.

If assertions are enabled and a debugger is being used, it is normally worthwhile setting a breakpoint at start-up on the cyg_as-
sert_fail symbol. The debugger will then stop prior to entering the default busy-loop assert processing.

Diagnostic Output
In conjuction with the CYGDBG_COHERENT_CCB_DEBUG CDL configuration setting and its sub-options, the header-file
src/ccb_diag.h implements the CCB I/O package specific debug control.

When CYGDBG_COHERENT_CCB_DEBUG is enabled a set of individually selectable sub-systems are available to control the
diagnostic output generated.

However, when developing or debugging the CCB implementation it may be simpler (with less build side-effects) to control
the debugging output via direct uncommenting of the necessary manifests at the head of the src/ccb_diag.h source file,
than re-configuring the complete eCos configuration via the CDL. This approach will limit rebuilding to just the CCB package.

Note

When enabled, some diagnostic output may adversely affect the operation of the CCB support as seen by 3rd-
party code. For example, “slow” serial diagnostic output of the packet parsing and response generation could
mean that a significant amount of time passes, such that the CCB support no longer adheres to the timeout limits
imposed by external code.

Testing
The configuration option CYGPKG_IO_CCB_TESTS defines a set of tests that are built.

By default the package will only build the deterministic, automatic, tests. However, the option CYGPKG_IO_C-
CB_TESTS_MANUAL can be defined to build extra tests that may require manual user-intervention, or are more realistic re-
al-world example applications.

ccb_ut
The ccb_ut test application performs some unit-testing of the CCB implementation. The test assumes specific features of the
tests/ccb_master.c example client-application to perform a variety of fixed tests.

The ccb_ut implements a software driver which can be used to simulate a bus, without the requirement for the configuration
to have access to a physical RS-485 bus. This is used to test core MASTER CCB client-application functionality.

Note

It is recommended that before executing this test that you disconnect any physical hardware.

574

Debug and Test

Currently not all aspects of the CCB protocol are exercised by the test.

ccb_master
The ccb_master is a simple example client-application that could form the basis of an actual customer implementation. The
test does not automatically exit (and hence is unsuitable for the eCosCentric automated test farm).

The application currently just waits for a slave to connect, and then issues a fixed set of queries to the slave.

575

Part XXIX. STM32 Coherent
Connection Bus Driver

Table of Contents
105. STM32 Coherent Connection Bus Driver overview .. 578

Introduction ... 578
106. Configuration .. 579

Configuration Overview ... 579
Configuring the STM32 CCB driver .. 579

107. Debug and Test ... 581
Debugging ... 581

Asserts .. 581
Diagnostic Output ... 581

577

Chapter 105. STM32 Coherent Connection
Bus Driver overview
Introduction
The CYGPKG_DEVS_CCB_CORTEXM_STM32 package provides a low-level bus driver implementation for use by the Co-
herent Connection Bus (CCB) CYGPKG_IO_CCB communication package. It provides the device-level API to implement the
actual hardware interface support as required. Familiarity with CCB and the relevant specifications is assumed in the following
documentation.

The implementation is based on the relevant sections of the Coherent's “Integrator's Guide Coherent OBIS“ document (Part
No. 1215508 Rev. AB - CoherentOBIS_IntegratorsGuide_1215508RevAB.pdf).

This driver package provides the I/O connection via the STM32 U(S)ART interfaces. Normally CCB is routed over a half-
duplex RS-485 connection. This driver provides software collision detection, with the corresponding TX auto-retry (up to to
an optional configuration limit if required).

578

Chapter 106. Configuration
This chapter shows how to incorporate the CCB support into an eCos configuration, and how to configure it once included.

Configuration Overview
The common CCB support is contained in the eCos package CYGPKG_IO_CCB. However, it depends on the services of a
collection of other packages for complete functionality, with this CYGPKG_DEVS_CCB_CORTEXM_STM32 package provid-
ing specific I/O functionality.

Normally this package should not need to be manually added, since it will be automatically provided as part of suitable target
configurations.

The functionality of this driver package itself relies on some platform/variant provided configuration. For platforms that require
software control of the transceiver Device Enable (DE) signal for any of the CCB ports they will need to implement the feature
CYGINT_DEVS_CCB_CORTEXM_STM32_TXCTRL.

Configuring the STM32 CCB driver
CCB use of the underlying STM32 U(S)ART interfaces is only enabled if the serial driver support for the specific hardware
interface is disabled.

Common configuration options applicable to all configured U(S)ART interfaces:

CYGPKG_DEVS_CCB_CORTEXM_STM32_TIMER

This option is used to select the STM32 timer block assigned to this CCB I/O driver. It is used to ensure correct bus
operation timing. The sub-option CYGNUM_DEVS_CCB_CORTEXM_STM32_TIMER_INTR_PRI is used to configure
the relative interrupt priority for the timer handler.

CYGNUM_DEVS_CCB_CORTEXM_STM32_RETRIES

This option enables support for abandoning a transmission after the configured number of retry attempts. The default of 0
disables the retry limit check, with a colliding transmission being retried infinitely. NOTE: The Coherent OBIS Integrators
Guide Part# 11215508 Rev. AB (dated 4/2012) has conflicting descriptions re. transmission. The “Random Delay” section
is explicit in stating “… there is no provision for discarding a message after many collisions; message transmission will
retry until it succeeds”. This however is counter to the Figure 5-6 “Outbound Message Transmission Flow” diagram, which
implements a retry counter and terminates the transmission attempt after a number of retries. This configuration option
allows the developer to choose the model required by their application. A value of 0 will disable the retry support and a
colliding TX will be retried until it is successful (no collision detected). A non-zero value will be treated as a count of the
number of attempts to be made before abandoning the transmission and indicating a TX BUSY error.

CYGIMP_DEVS_CCB_CORTEXM_STM32_STATISTICS

This option is normally disabled by default since it has a (minor) memory footprint and performance hit. If enabled then the
driver will track counts of packet transfers and errors. This may be useful to client applications to ascertain bus performance
and “quality”.

For the following CDL option names the # character in the option names indicates the port number for a specific hardware
interface.

If the underlying platform/variant provides access to a STM32 U(S)ART interface, via implementing CYGINT_DEVS_C-
CB_CORTEXM_STM32_UART#, then the following per-interface configuration options are available:

CYGPKG_DEVS_CCB_CORTEXM_STM32_UART#

This is the main option to control use of an interface as a CCB port. Access to the options described below are dependant
on this option being enabled.

579

Configuration

CYGDAT_DEVS_CCB_CORTEXM_STM32_UART#_NAME

This option specifies the name of the CCB port for the corresponding STM32 U(S)ART. This is the name that an eCos
application should use to access this device via cyg_io_lookup(), open(), or similar calls.

Note

Normally for CCB use the client-application should NOT need to directly interact with this named device
driver, since the common CYGPKG_IO_CCB support will automatically access the target platform config-
ured devices declared via CCB_PORT() definitions.

CYGNUM_DEVS_CCB_CORTEXM_STM32_UART#_INT_PRI

Interrupt handler priority for U(S)ART events.

CYGNUM_DEVS_CCB_CORTEXM_STM32_UART#_TXINTR_PRI

TX DMA interrupt handler priority.

CYGNUM_DEVS_CCB_CORTEXM_STM32_UART#_RXINTR_PRI

RX DMA interrupt handler priority.

CYGHWR_DEVS_CCB_CORTEXM_STM32_UART#_ONEBIT

This option controls the configuration of the STM32 hardware serial bit sampling. The (default) NOISY selection is suited
to off-board interfaces where noise/glitches may occur, but is less tolerant of clock differences. The CLOCK selection is
more tolerant of clock deviation between the transmitted and receiver. Use of CLOCK may be more suited to on-board
high bitrate connections.

580

Chapter 107. Debug and Test
Debugging

Asserts
If the target platform resources allow, then the first step in debugging should be to enable ASSERTs. The inclusion of assert
checking will increase the code footprint and lower the performance, but does allow the code to catch internal errors from
unexpected data values. e.g. when the application/client is not able to guarantee the validity of data passed into the CCB code.

The CCB driver asserts are controlled via the standard eCos Infrastructure CYGPKG_INFRA package
CYGDBG_USE_ASSERTS option. If enabled then run-time assertion checks are performed by the CCB driver package.

If assertions are enabled and a debugger is being used, it is normally worthwhile setting a breakpoint at start-up on the cyg_as-
sert_fail symbol. The debugger will then stop prior to entering the default busy-loop assert processing.

Diagnostic Output
The STM32 CCB driver provides the ability for some diagnostic output to be manually enabled by editing the src/stm32_c-
cb.c directly. However, in normal application development the low-level diagnostics for this driver should not be required.

Note

The diagnostics within this package are to aid driver development and debug, and will adversely affect the oper-
ation of the CCB support as seen by 3rd-party code. For example, “slow” serial diagnostic output of the packet
parsing and response generation could mean that a significant amount of time passes, such that the CCB support
no longer adheres to the timeout limits imposed by external code.

Similar to the diagnostic output, the source can be edited to manually enable support for software driven signals that can be
sampled by a suitable Logic State Analyser (LSA) setup. This can be used to track time critical events.

Warning

Any STM32 I/O pins chosen for LSA signalling should be carefully chosen to avoid adverse operation of the
target platform in use.

581

Part XXX. MODBUS
Important

This eCosPro-MODBUS package is STRICTLY LICENSED FOR INTERNAL EVALUATION AND
TESTING PURPOSES ONLY for a maximum period of THREE months from the initial delivery of your eCosPro
release. It may not be used for production purposes nor redistributed in full or in part in any format, including
source code, binary code and object code format. Shipment of prototypes, hardware or products containing the
package in any format is STRICTLY PROHIBITED.

A separate COMMERCIAL LICENSE for this package from eCosCentric is required to receive technical support
for the package as well as permit distribution of binary forms of this package.

Some releases of eCosPro may not include evaluation copies of this package. In this case, please contact eCosCen-
tric for licensing and availability. You must obtain written permission from eCosCentric to exceed the evaluation
period.

Table of Contents
108. MODBUS overview ... 584

Introduction ... 584
109. Configuration .. 585

Configuration Overview ... 585
Quick Start .. 585
Configuring the MODBUS server .. 585
Configuring the ModbusTCP Server .. 586

110. API Overview ... 587
Application API ... 587
Backend API ... 589
ModbusTCP specific API ... 594
MODBUS Exceptions ... 596
Backend Interface ... 597
Example backend .. 613

111. Internals ... 614
112. Debug and Test ... 615

Debugging ... 615
Asserts .. 615
Diagnostic Output ... 615

Testing .. 615
modbus_ut ... 615
modbus_server ... 616

583

Chapter 108. MODBUS overview
Introduction
eCosPro-MODBUS is eCosCentric's commercial name for the CYGPKG_MODBUS package. The CYGPKG_MODBUS package
implements a MODBUS server and a ModbusTCP transport layer, and provides an API to enable applications to implement
the actual hardware interaction as required.

The implementation is based on the following documents available from the MODBUS www.modbus.org website:

• “MODBUS Application Protocol Specification V1.1b3”

• “MODBUS Messaging on TCP/IP Implementation Guide V1.0b”

Familiarity with MODBUS, and ModbusTCP, and the relevant specifications is assumed in the following eCosPro-MODBUS
specific documentation.

The MODBUS package features:

• MODBUS server

Generic MODBUS request processing. This parses MODBUS function code requests, passing validated requests to the
relevant backend handler function as appropriate.

• ModbusTCP transport

TCP/IP (Ethernet) transaction support. This accepts ModbusTCP client requests, passing valid requests to the MODBUS
server for processing.

• Example applications

For MODBUS server applications the user-supplied code registers a backend driver, which will implement the actual hardware
operations as defined by the supported MODBUS function codes.

The backend interface is transport agnostic. MODBUS over serial or TCP share the same PDU format structure within requests,
with the transport layer wrapping requests and responses as appropriate for the medium being used:

ModbusTCP | MBAP Header | FuncCode | Data…. |
MODBUS Serial | Address | FuncCode | Data…. | Checksum |
 \ /
 _____identical_____/

The CYGPKG_MODBUS package currently only implements a ModbusTCP transport layer. There is no MODBUS client API,
or serial (MODBUS-RTU, MODBUS-ASCII) transport support.

584

http://www.modbus.org

Chapter 109. Configuration
This chapter shows how to incorporate the MODBUS support into an eCos configuration, and how to configure it once included.

Configuration Overview
The MODBUS support is contained in a single eCos package CYGPKG_MODBUS. However, it depends on the services of a
collection of other packages for complete functionality. For example, the ModbusTCP server implementation is tightly bound
with the eCos networking stack support.

Quick Start
Incorporating the MODBUS support into your application is straightforward. The essential starting point is to incorporate the
MODBUS eCos package (CYGPKG_MODBUS) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Depending on the MODBUS package configuration other packages may be required (e.g. network stack support). The package
requires that the CYGPKG_KERNEL, CYGPKG_ERROR and CYGPKG_MEMALLOC packages are included in the eCos appli-
cation configuration.

Configuring the MODBUS server
The common MODBUS server support is enabled by the CYGFUN_MODBUS_SERVER option. When enabled it provides
access to the following relevant options.

CYGNUM_MODBUS_SERVER_MAXSERVER

This option defines the maximum number of client connections supported by the server. This is the number of individual,
active, concurrent, socket connections allowed.

CYGNUM_MODBUS_SERVER_TRANSACTIONS

This option specifies the maximum number of active, simultaneous, MODBUS transactions per client connection.

CYGNUM_MODBUS_SERVER_TRANSPORTS

This option defines the maximum number of active transports the MODBUS server will support. If the end application
configuration provides more than this number then not all transports may be instantiated. For most applications only a
single transport will ever be provided and needed. For example, ModbusTCP for Ethernet based systems.

CYGNUM_MODBUS_SERVER_MESSAGES_API

Depending on the other configuration options the package will define a base number of message descriptors needed in
CYGNUM_MODBUS_SERVER_MESSAGES. This option extends the size of the message pool over and above the explicit
active MODBUS transaction message requirement. This can be tuned to reflect the requirements of the user application
implementing the backend.

CYGNUM_MODBUS_SERVER_THREAD_STACK_SIZE

This option is used to increase the size of the main MODBUS control thread. This value is added to the platform defined
CYGNUM_HAL_STACK_SIZE_TYPICAL.

CYGNUM_MODBUS_SERVER_THREAD_PRIORITY

This option defines the scheduler priority of the main MODBUS control thread.

585

Configuration

Configuring the ModbusTCP Server
The CYGPKG_MODBUS_TRANSPORT_TCP provides the transport implementation for ModbusTCP. When enabled the con-
figuration must include a suitable network stack (BSD or lwIP).

CYGNUM_MODBUS_SERVER_PORT

This option defines the port that the ModbusTCP server will listen to for client requests. The default of 502 is the standard
ModbusTCP port, and normally would not need to be re-configured.

CYGIMP_MODBUS_TRANSPORT_TCP_ACM

Enabling this option allows a set of client network addresses to be configured at run-time via the ACM API. When addresses
have been configured only connections from those registered hosts will be accepted.

• The Disabled mode configures the ModbusTCP transport to ignore ACM API operations, and to accept connections
from any host.

• The Insecure mode will accept any connection UNTIL at least one explicit address has been registered via the ACM
API, and then host addresses will be checked for acceptance.

• The Secure mode will NOT accept any connections unless the address has been explicitly registered via the ACM API.

The setting of this option will depend on how the server device will be deployed and accessed in the field. For testing
it may be acceptable to have any client host interact with the device, in which case Disabled or Insecure should
be selected. Selecting Insecure allows for start-of-day acceptance of any client host address, but for some application
control, configuration, to subsequently limit the acceptable addresses. The Secure mode ensures that only application
configured client host addresses are ever supported, which requires suitable run-time application configuration to setup
the required ACM pools to allow access.

Warning

Using Secure mode means that if the application does NOT call the cyg_modbus_acm_add() to reg-
ister an address then NO connections can be established to the MODBUS server.

CYGNUM_MODBUS_TRANSPORT_TCP_IDLE_TIMEOUT

This option specifies the number of seconds before idle connections to the ModbusTCP server are closed. The default
setting of 0 disables the feature. Normally connections from clients are held open until the client explicitly closes them.
This option allows for an “idle” timeout to be specified that will close the connection at the server end if no MODBUS
requests are received from a client connection within this configured timeout.

Note

If ACM support is configured then only non-priority connections will be closed by the ModbusTCP server.

CYGNUM_MODBUS_TRANSPORT_TCP_THREAD_STACK_SIZE

This option is used to increase the size of the ModbusTCP internal thread. This value is added to the platform defined
CYGNUM_HAL_STACK_SIZE_TYPICAL.

CYGNUM_MODBUS_TRANSPORT_TCP_THREAD_PRIORITY

This option defines the scheduler priority of the ModbusTCP internal thread.

586

Chapter 110. API Overview
The main MODBUS API provides a serialisation layer between the low-level MODBUS operations and user-application
threads.

For MODBUS server configurations the main server control loop thread interacts with a transport layer, for example Mod-
busTCP, and an application specific backend layer.

The transport layer provides the physical communication support for the selected medium. For ModbusTCP this will normally
be Ethernet, and for MODBUS ASCII/RTU a RS232 or RS485 connection. The transport medium layer wraps the common
MODBUS PDU request and response messages for transmission.

The server control thread processes the MODBUS PDU encapsulated requests, calling the provided backend routines as ap-
propriate.

The application supplied backend descriptor provides the support for the specific hardware I/O present on the device
being implemented.

Application API
These functions are used by the user application to configure the server operation.

587

API Overview

Name
cyg_modbus_server_start — Start MODBUS server

Synopsis
#include <cyg/modbus.h>

cyg_handle_t cyg_modbus_server_start(descriptor, backend_private);

Description

Initialise the server from the CDL configured state, and start the transport layers listening for client requests. The supplied
descriptor specifies the backend driver to be used to handle requests. The backend_private parameter can be used
to reference any context required by the specific backend descriptor.

The call will block until all the configured transports are ready to accept connections from remote clients.

Return value

A handle onto the server instance, or 0 on failure.

588

API Overview

Name
cyg_modbus_server_stop — Stop MODBUS server

Synopsis
#include <cyg/modbus.h>

Cyg_ErrNo cyg_modbus_server_stop(server);

Description

Stop the referenced server from accepting any new requests. The call may block until any “pending” transactions are com-
pleted by the backend-handlers/user-application, or such pending transactions have been timed-out by the main MODBUS
server control loop. This means the function may block for a maximum of the active transaction timeout (as specified by the
backend supplied timeout field).

Return value

The function will return ENOERR on success. If the stop event cannot be delivered to the MODBUS control thread due to
the communication mailbox being full, then EAGAIN is returned. If the server parameter is invalid then EINVAL will be
returned.

Backend API
These functions are provided for the user application attached backend handler routines. They are used to provide respons-
es back to the remote client, with the necessary control thread and transport layer information referenced by the opaque
cyg_handle_t ctx parameter passed to the backend handler function.

For handlers that can provide immediate responses the functions can be called directly from the handler function (in the main
MODBUS control thread context). If the handler cannot provide an immediate response, then the processing should be deferred
to another thread which can then subsequently use the same API to deliver a response.

Note

For valid responses it is the responsibility of the handler function to return a correctly formatted PDU object to
the client.

589

API Overview

Name
cyg_modbus_response — Provide MODBUS response

Synopsis
#include <cyg/modbus.h>

Cyg_ErrNo cyg_modbus_response(ctx, len, data);

Description

Provide the MODBUS server with a valid PDU response for a request handed to the relevant backend handler. The data
allows the backend application to reference its own data buffer, which may be in read-only memory.

Return value

Currently only ENOERR is returned.

590

API Overview

Name
cyg_modbus_raw_pdu — Access raw PDU buffer

Synopsis
#include <cyg/modbus.h>

void cyg_modbus_raw_pdu(ctx, len, data);

Description

This function provides low-level access to the request PDU buffer for the backend handler code. Before calling the backend
handler function the MODBUS server will have already parsed the request and will pass the relevant request data as parameters
to the handler function. However, for some backend implementations it may be useful to re-use the request memory space as
the holding location for the response. This can avoid the backend having to manage its own dynamic memory allocations.

The example packages/services/modbus/current/tests/backend_dummy.c source file provided with the
package provides examples of using this cyg_modbus_raw_pdu() function in conjunction with cyg_modbus_re-
sponse_nocopy() to re-use the transaction PDU buffer. For example:

 {
 cyg_uint8 len;
 cyg_uint8 *pdata;
 cyg_modbus_raw_pdu(ctx,&len,&pdata);
 … code to fill pdata buffer …;
 len = response_length;
 cyg_modbus_response_nocopy(ctx,len);
 }

591

API Overview

Name
cyg_modbus_response_nocopy — Provide MODBUS response (no copy)

Synopsis
#include <cyg/modbus.h>

cyg_bool cyg_modbus_response_nocopy(ctx, len);

Description

Like the cyg_modbus_response() call this function is used to provide the MODBUS server with a valid response to a
request handed to the backend for processing. This call assumes that the original PDU buffer (as referenced through the opaque
ctx handle) contains the response data.

This “PDU buffer” re-use can simplify the backend processing, since it no longer needs to dynamically manage buffers that
are handed-off to the main MODBUS server control.

Return value

Currently only ENOERR is returned.

592

API Overview

Name
cyg_modbus_response_exception — Provide MODBUS exception response

Synopsis
#include <cyg/modbus.h>

cyg_bool cyg_modbus_response_exception(ctx, ecode);

Description

If the backend handler detects an error, or needs to notify the remote client of an exceptional result, this function is used to
provide such a MODBUS exception response.

Return value

Currently only ENOERR is returned.

593

API Overview

Name
cyg_modbus_get_uid — Read “Unit ID” of request

Synopsis
#include <cyg/modbus.h>

Cyg_ErrNo cyg_modbus_get_uid(ctx, uid);

Description

This function provides access to the underlying “Unit ID” value for the passed ctx request handle parameter. The passed uid
parameter references the location to be written with the relevant identifier value.

Return value

On success ENOERR is returned, and if non-NULL then the referenced uid location is updated with the “Unit ID”. If the
underlying transport does not provide access to a suitable identifier value then the ENOENT error code is returned.

ModbusTCP specific API
These functions are used by the user application to configure features of the ModbusTCP specific transport layer.

594

API Overview

Name
cyg_modbus_acm_add — Add client address to Access Control Mechanism pool

Synopsis
#include <cyg/modbus.h>

Cyg_ErrNo cyg_modbus_acm_add(server, ptype, ipaddr, addrlen);

Description

Depending on the CYGPKG_MODBUS and user application configuration, the ModbusTCP transport layer may provide support
for an Access Control Mechanism (ACM) based on client (remote host) network addresses. This function allows addresses to
be registered, so that subsequent connections from the remote host will be allowed.

The ptype defines which of the ModbusTCP ACM pools the supplied client address will be registered with:

• MODBUS_CONNPOOL_PRI

The priority pool is for addresses for which the server should never close the socket connection.

• MODBUS_CONNPOOL_NONPRI

The non-priority pool is for addresses where the server may close the socket connection.

Currently the ipaddr can describe either a AF_INET (for IPv4) or AF_INET6 (for IPv6) family address, with addrlen
being the size of the relevant address family.

Return value

A standard Cyg_ErrNo error code is returned, with ENOERR indicating success. If the ModbusTCP ACM is not provided by
the attached transport layer then ENOENT is returned. The error EIO indicates a failure to communicate with the server control
thread. The transport specific implementation may return further error indications as appropriate.

595

API Overview

Name
cyg_modbus_acm_remove — Remove ACM registered client address

Synopsis
#include <cyg/modbus.h>

Cyg_ErrNo cyg_modbus_acm_remove(server, ipaddr, addrlen);

Description

This function will remove the supplied remote host address from all ACM pools that have a matching entry. If ACM is being
used then this may stop future requests from the remote host being processed.

Currently the ipaddr can describe either a AF_INET (for IPv4) or AF_INET6 (for IPv6) family address, with addrlen
being the size of the relevant address family.

Return value

A standard Cyg_ErrNo error code is returned, with ENOERR indicating success. If the ModbusTCP ACM is not provided by
the attached transport layer then ENOENT is returned. The error EIO indicates a failure to communicate with the server control
thread. The transport specific implementation may return further error indications as appropriate.

MODBUS Exceptions
The MODBUS standard defines a fixed set of exception codes, with implicit interpretations. These should be used in conjunc-
tion with the cyg_modbus_exception() function by backend handlers to notify the requesting client of an error.

MODBUS_EXCEPTION_ILLEGAL_FUNCTION

The function code received in the request is not an allowable action for the server. This may be because the function code
is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server is
in the wrong state to process a request of this type, for example because it is unconfigured and is being asked to return
register values.

MODBUS_EXCEPTION_ILLEGAL_ADDRESS

The data address supplied in the request is not an allowable starting address for the server when taken into account with
the number of items to be accessed. For example, for a device with 100 registers (accessed as addresses 0 thru 99) then the
PDU supplied address 96 is valid when a request for 4 or fewer items is made, but invalid if 5 or more items are requested.

MODBUS_EXCEPTION_ILLEGAL_VALUE

A value suppled in the request is not valid for the server. This normally indicates a fault in the structure of a request
PDU (e.g. unexpected length). It should be noted that it does NOT indicate that a supplied data item is outside of the set
acceptable for a specific register. The MODBUS protocol does not interpret or apply any significance of any particular
data values for any particular registers.

MODBUS_EXCEPTION_DEVICE_FAIL

Indicates an unrecoverable error occurred whilst the server was performing the requestion MODBUS function.

MODBUS_EXCEPTION_ACKNOWLEDGE

This is a specialized response used with specific programming commands. This is where the server has accepted a request,
and is processing it, but where the action will take a long time to complete. This response is returned to the client to prevent
a client timeout error waiting for a standard response. It is expected that the client will periodically issue the specific
“Poll Program Complete” request to check if the processing has completed.

596

API Overview

Note

The eCosPro-MODBUS server does not explcitly support this functionality, since it would be a feature of
the user-application supplied backend driver.

MODBUS_EXCEPTION_DEVICE_BUSY

This is a specialized response used with specific programming commands. This is used to indicate to the client that the
server is busy processing a long-duration command. The client should re-attempt the request in the future.

MODBUS_EXCEPTION_MEMORY_PARITY_ERROR

This exception is specific to the MODBUS_FUNC_READ_FILE_RECORD (20) and MOD-
BUS_FUNC_WRITE_FILE_RECORD (21) functions, when using with reference type 6. It is used to indicate that the
extended file area failed to pass a consistency check. i.e. the server attempted to read the record file, but detected a parity
error in the memory. The client may retry the request, but maintenance of the server device may be required.

MODBUS_EXCEPTION_GW_PATH_UNAVAILABLE

This is a specialized exception returned in conjunction with gateway support. It indicates that the gateway was unable
to allocate an internal communication path to the requested UID. This exception usually indicates the gateway device is
misconfigured or overloaded.

MODBUS_EXCEPTION_GW_TARGET_FAILED

This is a specialized exception returned in conjuction with gateway support. It indicates that no response was obtained
from the target device. This usually indicates that the target device is not present on the MODBUS network.

Backend Interface
The cyg_modbus_backend_t structure defines the set of handler functions used to implement the support for the relevant
MODBUS operation. A simple NUL terminated ASCII name can be provided as a human-readable description of the backend.
The application attaches the backend descriptor structure via the cyg_modbus_server_start() function.

Note

To avoid blocking the main MODBUS server processing loop the attached handler functions should NEVER
block. The handlers should be written to return control as quickly as possible. If a hardware operation required
by the specific MODBUS function then the handler should schedule suitable code, which will asynchronously
respond to the request when the required data is available or action has been performed. The provided tests/
modbus_ut.c example application provides one possible implementation of such “deferred” support.

If a particular MODBUS function is not supported (or required) by the backend implementation then a NULL pointer can be
used, with the server support returning a CYG_MB_EXCEPTION_ILLEGAL_FUNCTION equivalent error to the calling client.

The backend structure is defined in the <cyg/modbus.h> header, which also provides the function prototypes for the indi-
vidual handlers as detailed over the following pages. The cyg_mbop_ prefix is used for the prototypes to indicate a MODBUS
Backend OPeration.

Each handler is passed the parameters ctx and private. The ctx value is an opaque context descriptor for the main server
loop, and is used to identify individual transactions via the API. The private parameter is the private context value
specified when the backend is registered, and can be the hook for the user application hardware support.

The backend descriptor also provides the BASIC (mandatory) and REGULAR (optional) NUL terminated ASCII identification
strings accessed via the MEI Type 14 function code.

The timeout descriptor field is used to force a timely “exception” response back to a client when the backend does not
provide a response within the configured number of seconds. This MODBUS control generated timeout exception replaces any
subsequent response made by the user-application for the relevant ctx handle.

597

API Overview

Other than the device idread function the handlers do not return any error state. The handlers are passed validated requests,
and are expected to return a valid response or exception via the provided MODBUS API.

598

API Overview

Name
cyg_mbop_read_discrete_inputs — Read discrete inputs

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_read_discrete_inputs(ctx, private, addr, numinputs);

Description

Discrete inputs are read-only status bits.

599

API Overview

Name
cyg_mbop_read_coils — Read coils

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_read_coils(ctx, private, addr, numcoils);

Description

Coils are read/write single-bits.

600

API Overview

Name
cyg_mbop_write_single_coil — Write single coil

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_write_single_coil(ctx, private, addr, outval);

Description

Coils are read/write single-bits.

601

API Overview

Name
cyg_mbop_write_multiple_coils — Write multiple coils

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_write_multiple_coils(ctx, private, addr, numout, outputs);

Description

Coils are read/write single-bits.

602

API Overview

Name
cyg_mbop_read_input_regs — Read input registers

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_read_input_regs(ctx, private, addr, numin);

Description

Input registers are 16-bit read-only registers.

603

API Overview

Name
cyg_mbop_read_holding_regs — Read holding registers

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_read_holding_regs(ctx, private, addr, numregs);

Description

Holding registers are 16-bit read/write registers.

604

API Overview

Name
cyg_mbop_write_single_reg — Write single holding register

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_write_single_reg(ctx, private, addr, value);

Description

Holding registers are 16-bit read/write registers.

605

API Overview

Name
cyg_mbop_write_multiple_regs — Write multiple holding registers

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_write_multiple_regs(ctx, private, addr, numregs, outputs);

Description

Holding registers are 16-bit read/write registers.

606

API Overview

Name
cyg_mbop_rw_multiple_regs — Read and/or write multiple holding registers

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_rw_multiple_regs(ctx, private, raddr, rnum, waddr, wnum, outputs);

Description

Holding registers are read/write 16-bit registers.

Note

The MODBUS standard dictates that the write is performed BEFORE the read.

607

API Overview

Name
cyg_mbop_mask_reg — Mask holding register

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_mask_reg(ctx, private, addr, and, or);

Description

Holding registers are read/write 16-bit registers.

608

API Overview

Name
cyg_mbop_read_fifo_queue — Read FIFO contents

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_read_fifo_queue(ctx, private, addr);

Description

FIFO queues are sets of 16-bit registers. This operation should not empty the queue.

609

API Overview

Name
cyg_mbop_read_file_record — Read file records

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_read_file_record(ctx, private, numrec, records);

Description

Read one or more file records.

610

API Overview

Name
cyg_mbop_write_file_record — Write file records

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_write_file_record(ctx, private, numrec, records);

Description

Write one or more file records.

611

API Overview

Name
cyg_mbop_read_id — Return specific extended device ID

Synopsis
#include <cyg/modbus.h>

Cyg_ErrNo cyg_mbop_read_id(private, objectid, nextid, len, buffer);

Description

This function does not provide a response, but purely supplies “Extended” ObjectID data to the common MEI Type 14
request handler.

The objectid parameter specifies the object to be returned. The caller supplies an optional data buffer pointer in the buffer
parameter, with the value referenced by the len pointer being the space available in the buffer. If the objectid is supported
then the buffer is filled, and len is updated with the actual length of the object. The use of a NULL buffer allows a caller
to ascertain the length of an object prior to calling again with a supplied buffer of the required size.

If the nextid pointer is supplied then the next available object ID after objectid is written, or 0 if no more objects are
available.

Return value

On success ENOERR is returned and the len and nextid values updated accordingly. If the handler does not recognise the
passed objectid then ENOENT is returned and *len is NOT updated. If the passed *len is not large enough for the object
then EAGAIN is returned and *len is update with the required length.

612

API Overview

Name
cyg_mbop_canopen — Perform CANOPEN operation

Synopsis
#include <cyg/modbus.h>

void cyg_mbop_canopen(ctx, private, len, data);

Description

The CYGPKG_MODBUS does not implement any specific CANOPEN support, but does pass through the raw request to the
backend driver which may implement support as required.

Note

Please refer to the MODBUS website or the CiA (CAN in Automation) website for a copy and terms of use that
cover Function Code 32 MEI Type 13.

Example backend
The packages/services/modbus/current/tests/backend_dummy.c source file provides an example of the
backend support required for a MODBUS server implementation. It can form the starting point for a customer hardware so-
lution.

The source as provided implements a very basic system to allow verification of the MODBUS server support. The backend
does not provide real hardware I/O interaction, but “simulates” responses.

613

Chapter 111. Internals
The main MODBUS control thread serialises MODBUS backend processing by accepting requests from a mailbox. It parses
the request data, and where valid (and supported by the user-application supplied backend) will pass the data to the relevant
handler function for processing.

Note

Since the backend handler functions are called from the main MODBUS control thread context they should
NEVER block. This limits the operations that can be performed within the specific handler functions. If scheduling
is required to complete an operation then control should be passed to a suitable user-application thread.

The MODBUS requests are posted to the main MODBUS control thread from the transport listener code. The transports are
responsible for the specific communication layer wrapping of the MODBUS PDU packets.

Multiple transport layers can be configured and the main control loop will handle requests from all, directing responses back
to the original requesting transport layer. This allows a single application (for example) to provide ModbusTCP support as
well as serial line server support. Normally transport implementations would be limited to ModbusTCP, MODBUS-RTU or
MODBUS-ASCII however the user could provide support for arbitrary transport mechanisms, e.g. a MODBUS-LOCALTEST
special transport for doing internal memory-based loopback messaging for unit-testing.

614

Chapter 112. Debug and Test

Debugging

Asserts
If the target platform resources allow then the first step in debugging should be to enable ASSERTs. The inclusion of assert
checking will increase the code footprint and lower the performance, but does allow the code to catch internal errors from
unexpected data values. e.g. when the application/client is not able to guarantee the validity of data passed into the MODBUS
code.

The MODBUS asserts are controlled via the standard eCos Infrastructure CYGPKG_INFRA package
CYGDBG_USE_ASSERTS option. If enabled then run-time assertion checks are performed by the MODBUS package.

If assertions are enabled, and a debugger is being used it is normally worthwhile setting a breakpoint at start-up on the cyg_as-
sert_fail symbol, so that the debugger will stop prior to entering the default busy-loop assert processing.

Diagnostic Output
In conjuction with the CYGDBG_MODBUS_DEBUG CDL configuration setting and sub-options, the header-file src/mod-
bus_diag.h implements the MODBUS specific debug control.

When CYGDBG_MODBUS_DEBUG is enabled a set of individually selectable sub-systems are available to control the diagnostic
output generated.

However, when developing or debugging the MODBUS implementation it may be simpler (with less build side-effects) to
control the debugging output via direct uncommenting of the necessary manifests at the head of the src/modbus_diag.h
source file, than re-configuring the complete eCos configuration via the CDL. That way only the MODBUS package will be
re-built.

Note

Some diagnostic output if enabled may adversely affect the operation of the MODBUS support as seen by 3rd-
party code. For example, “slow” serial diagnostic output of the packet parsing and response generation could
mean that a significant amount of time passes, such that the MODBUS support no longer adheres to the timeout
limits imposed by external code.

Testing
The configuration option CYGPKG_MODBUS_TESTS defines a set of tests that are built.

By default the package will only build the deterministic, automatic, tests. However, the option CYGPKG_MOD-
BUS_TESTS_MANUAL can be defined to build extra tests that may required manual user-intervention, or are more realistic
real-world example applications.

modbus_ut
The modbus_ut test application performs some unit-testing of the ModbusTCP server implementation. The test assumes specific
features of the tests/backend_dummy.c backend implementation to perform a variety of fixed tests.

Since the backend handler funtions can NEVER block the test code will explicitly test pending responses to simulate application
situations where hardware responses may take arbitrary periods of time, and hence are passed to other user-application threads
for processing.

615

Debug and Test

Note

When configured against the lwIP network stack the unit-testing relies on lwIP being configured with CYG-
FUN_LWIP_NETIF_LOOPBACK. This is required to allow the test code to connect to the ModbusTCP server
running on the same network interface.

modbus_server
The modbus_server is only built when CYGPKG_MODBUS_TESTS_MANUAL is configured. It uses the tests/back-
end_dummy.c as the backend for a simple example server.

The application just runs for a fixed period of time before terminating, and can be used with external ModbusTCP clients.

616

Part XXXI. Direct Memory Access
Controller (DMAC) Device Drivers

Documentation for drivers of this type may also be integrated into the eCos board support documentation. You should review
the documentation for your target board for details. Standalone and more generic drivers are documented in the following
sections.

Table of Contents
113. Atmel DMA Controller (DMAC) ... 619

Atmel DMAC Driver .. 620
114. Atmel DMA Controller (XDMAC) ... 622

Atmel XDMAC Driver .. 623

618

Chapter 113. Atmel DMA Controller
(DMAC)

619

Atmel DMA Controller (DMAC)

Name
DMAC — eCos Support for the Atmel DMA Controller

Synopsis

#include CYGBLD_DEV_DMA_H

ch = atmel_dmac_chan_alloc(cyg_uint32 descriptor, atmel_dmac_callback *cb, CYG_ADDR-
WORD priv);

void atmel_dmac_chan_config(atmel_dmac_channel *ch, cyg_uint32 extended);

void atmel_dmac_chan_free(atmel_dmac_channel *ch);

void atmel_dmac_start(atmel_dmac_channel *ch, CYG_ADDRWORD src, CYG_ADDRWORD dst,
cyg_uint32 size);

void atmel_dmac_stop(atmel_dmac_channel *ch);

void atmel_dmac_dma_poll(atmel_dmac_channel *ch);

Description
This package provides access to the Atmel DMAC (DMA Controller) devices. This support is not intended to expose the full
functionality of these devices. It is mainly limited to supporting peripheral DMA (e.g. USART, SPI, etc.). It is currently limited
to single DMA transfers.

There is currently no cross-platform/variant standardised eCos DMA I/O interface package, since DMA features and function-
ality vary greatly between architectures, and event within variants of an architecture. This stand-alone device package allows
common DMA support to be shared between devices that implement Atmel DMA Controllers.

The user is directed towards the relevant Atmel documentation for a full description of the DMAC devices, and to the variant
device drivers for examples of the use of this API. This documentation only gives a brief description of the functions available.

A DMAC instance is defined by a controller number (0 or 1), and each controller has support for a number of (variant defined)
channels. The API uses a simple 32-bit encoding to describe how a specific DMA channel should be used, with this package
providing helper macros to combine the necessary information into a unique descriptor. These descriptors may be stored with
a device driver as required.

The following are examples of how definitions can be made:

// USART0 TX on controller 0, 8-bit mem-to-peripheral transfers using AHB_IF2
#define AT91_SERIAL0_DMA_TX CYGHWR_ATMEL_DMA_M2P(0,USART0_TX,8,IF2)

// USART0 RX on controller 0, 8-bit peripheral-to-mem transfers using AHB_IF2
#define AT91_SERIAL0_DMA_RX CYGHWR_ATMEL_DMA_P2M(0,USART0_RX,8,IF2)

Before DMA transfers can be performed, a DMA channel must be claimed. This is done by calling atmel_dmac_chan_al-
loc(). The descriptor argument describes the majority of the DMA transfer configuration that will be used. As shown
in the examples above the passed descriptor not only encodes the source and destination interfaces, but also the transfer sizes.
Also, depending on the descriptor construction macros used, it is possible to control the direction and modification of addresses
during transfers. The cb argument is used to register a client function that will be called when a requested transfer completes.
The priv argument is a client specified value that will be passed to the callback function, and can be used to reference client
driver specific data.

If DMA chunk transfers of more than one item per transaction are required then an “extension” 32-bit configuration descriptor
can be specifed using the atmel_dmac_chan_config() function. The extended descriptor allows for non-default FIFO
configurations and transfer chunk sizes to be specified. The <cyg/hal/sama5d3.h> header file contains examples of
defining extended descriptors. For example, see the ATMEL_AES_DMA_TX_EXT manifest.

620

Atmel DMA Controller (DMAC)

Most drivers will allocate a DMA channel object and keep it active throughout the system lifetime. However, if it is necessary
to share a channel, or otherwise disable the use of a stream, the driver may call atmel_dmac_chan_free() to return
a channel to an unused state. It will be necessary to call atmel_dmac_chan_alloc() before specific DMA descriptor
operations can be performed again.

The register callback function has the following prototype:

typedef void atmel_dmac_callback(atmel_dmac_channel *ch,
 cyg_uint32 cbid,
 cyg_uint32 count,
 CYG_ADDRWORD data);

The ch is the channel structure describing the transfer. The cbid argument is a completion identifier:

Table 113.1. Completion Codes

CYGHWR_ATMEL_DMA_COMPLETE A valid transfer completion. The count argument should match the size
passed to the atmel_dmac_start() call.

CYGHWR_ATMEL_DMA_AHBERR This code indicates that the DMA Controller has detected an AHB read or write
access error. This may indicate invalid memory addresses have been passed, or in-
valid AHB_IF mappings have been used.

CYGHWR_ATMEL_DMA_DICERR For configurations where Descriptor Integrity Check support is available, and en-
abled, then if an error is detected in a referenced memory-based transfer structure
this result will be raised.

The count argument is the number of data items successfully transferred. The data argument is the client private data
registered for the callback.

A transfer is configured and started by calling atmel_dmac_start(). The ch argument describes the DMA channel, with
the descriptor used when allocating the channel defining how the other arguments are used. The src argument defines the
peripheral or memory address from which the transfer will be made. The dst argument supplies the peripheral or memory
address to which the transfer will write. The size argument defines the number of data items to be transferred. Once this
function call completes the channel is operational and will transfer data once the relevant peripheral starts triggering transfers.

When the transfer completes the registered callback is called from DSR mode.

Notes:

1. Since the callback function is executed as a DSR, only a subset of eCos operations are valid.

2. It is expected that the client driver will perform any necessary CACHE operations within either its supplied
callback handler functions, or before calling atmel_dmac_start() as required.

621

Chapter 114. Atmel DMA Controller
(XDMAC)

622

Atmel DMA Controller (XDMAC)

Name
XDMAC — eCos Support for the Atmel XDMAC Controller

Synopsis
#include CYGBLD_DEV_DMA_H

ch = atmel_dmac_chan_alloc(cyg_uint32 descriptor, atmel_dmac_callback *cb, CYG_ADDR-
WORD priv);

void atmel_dmac_chan_config(atmel_dmac_channel *ch, cyg_uint32 extended);

void atmel_dmac_chan_free(atmel_dmac_channel *ch);

void atmel_dmac_start(atmel_dmac_channel *ch, CYG_ADDRWORD src, CYG_ADDRWORD dst,
cyg_uint32 size);

void atmel_dmac_stop(atmel_dmac_channel *ch);

void atmel_dmac_dma_poll(atmel_dmac_channel *ch);

Description
This package provides access to the Atmel XDMAC (Extended DMA Controller) devices. This support is not intended to
expose the full functionality of these devices. It is mainly limited to supporting peripheral DMA (e.g. USART, SPI, etc.). It
is currently limited to single DMA transfers.

There is currently no cross-platform/variant standardised eCos DMA I/O interface package, since DMA features and function-
ality vary greatly between architectures, and event within variants of an architecture. This stand-alone device package allows
common DMA support to be shared between devices that implement Atmel DMA Controllers.

The user is directed towards the relevant Atmel documentation for a full description of the XDMAC devices, and to the variant
device drivers for examples of the use of this API. This documentation only gives a brief description of the functions available.

The API of this controller is designed to be compatible with that for the Atmel DMAC controller and is a drop-in replacement
for it. Thus the API refers to the DMAC in its naming, not the XDMAC.

A XDMAC instance is defined by a controller number (0 or 1), and each controller has support for a number of (variant defined)
channels. The API uses a simple 32-bit encoding to describe how a specific DMA channel should be used, with this package
providing helper macros to combine the necessary information into a unique descriptor. These descriptors may be stored with
a device driver as required.

The following are examples of how definitions can be made:

// USART0 TX on controller 0, 8-bit mem-to-peripheral transfers using default memory interfaces
#define AT91_SERIAL0_DMA_TX CYGHWR_ATMEL_DMA_M2P(0,USART0_TX,8)

// USART0 RX on controller 0, 8-bit peripheral-to-mem transfers using default memory interfaces
#define AT91_SERIAL0_DMA_RX CYGHWR_ATMEL_DMA_P2M(0,USART0_RX,8)

Before DMA transfers can be performed, a DMA channel must be claimed. This is done by calling atmel_dmac_chan_al-
loc(). The descriptor argument describes the majority of the DMA transfer configuration that will be used. As shown
in the examples above the passed descriptor not only encodes the source and destination interfaces, but also the transfer sizes.
Also, depending on the descriptor construction macros used, it is possible to control the direction and modification of addresses
during transfers. The cb argument is used to register a client function that will be called when a requested transfer completes.
The priv argument is a client specified value that will be passed to the callback function, and can be used to reference client
driver specific data.

The atmel_dmac_chan_config() function is present for compatibility with the DMAC driver. It is not currently needed,
but device drivers that may use both drivers may call this with not effect.

623

Atmel DMA Controller (XDMAC)

Most drivers will allocate a DMA channel object and keep it active throughout the system lifetime. However, if it is necessary
to share a channel, or otherwise disable the use of a stream, the driver may call atmel_dmac_chan_free() to return
a channel to an unused state. It will be necessary to call atmel_dmac_chan_alloc() before specific DMA descriptor
operations can be performed again.

The register callback function has the following prototype:

typedef void atmel_dmac_callback(atmel_dmac_channel *ch,
 cyg_uint32 cbid,
 cyg_uint32 count,
 CYG_ADDRWORD data);

The ch is the channel structure describing the transfer. The cbid argument is a completion identifier:

Table 114.1. Completion Codes

CYGHWR_ATMEL_DMA_COMPLETE A valid transfer completion. The count argument should match the size
passed to the atmel_dmac_start() call.

CYGHWR_ATMEL_DMA_AHBERR This code indicates that the DMA Controller has detected an AHB read or write
access error. This may indicate invalid memory addresses have been passed, or in-
valid AHB_IF mappings have been used.

CYGHWR_ATMEL_DMA_DICERR For configurations where Descriptor Integrity Check support is available, and en-
abled, then if an error is detected in a referenced memory-based transfer structure
this result will be raised.

The count argument is the number of data items successfully transferred. The data argument is the client private data
registered for the callback.

A transfer is configured and started by calling atmel_dmac_start(). The ch argument describes the DMA channel, with
the descriptor used when allocating the channel defining how the other arguments are used. The src argument defines the
peripheral or memory address from which the transfer will be made. The dst argument supplies the peripheral or memory
address to which the transfer will write. The size argument defines the number of data items to be transferred. Once this
function call completes the channel is operational and will transfer data once the relevant peripheral starts triggering transfers.

When the transfer completes the registered callback is called from DSR mode.

Notes:

1. Since the callback function is executed as a DSR, only a subset of eCos operations are valid.

2. It is expected that the client driver will perform any necessary CACHE operations within either its supplied
callback handler functions, or before calling atmel_dmac_start() as required.

624

Part XXXII. RPMSG Support

Name
Overview — eCosPro Support for RPMSG

Description
This package provides support for RPMSG communications between separate CPU, microcontrollers or virtual machines. It
provides an implementation of the OpenAMP RPMSG API for application use as well as an interface for hardware drivers
of communication devices.

At present this package is mainly oriented to using RPMSG under the Xvisor hypervisor. As such it takes certain short cuts
and does not support all RPMSG features.

626

Name
API — Functions

Synopsis

#include <cyg/io/rpmsg.h>

struct rpmsg_device *cyg_rpmsg_open(char *devname);

int cyg_rpmsg_close(struct rpmsg_device *dev);

void cyg_rpmsg_poll(void);

typedef int (*rpmsg_ept_cb)(struct rpmsg_endpoint *ept, const void *data, int len,
uint32_t src, void *priv);

typedef int (*rpmsg_ns_unbind_cb)(struct rpmsg_endpoint *ept);

int rpmsg_create_ept(struct rpmsg_endpoint *ept, struct rpmsg_device *dev, const char
*name, uint32_t src, uint32_t dst, rpmsg_ept_cb cb, rpmsg_ns_unbind_cb ns_unbind_cb);

void rpmsg_destroy_ept(struct rpmsg_endpoint *ept);

unsigned int is_rpmsg_ept_ready(struct rpmsg_endpoint *ept);

int rpmsg_send(struct rpmsg_endpoint *ept, const void *data, int len);

int rpmsg_sendto(struct rpmsg_endpoint *ept, const void *data, int len, uint32_t dst);

int rpmsg_send_offchannel(struct rpmsg_endpoint *ept, uint32_t src, uint32_t dst,
const void *data, int len);

int rpmsg_trysend(struct rpmsg_endpoint *ept, const void *data, int len);

int rpmsg_trysendto(struct rpmsg_endpoint *ept, const void *data, int len, uint32_t
dst);

int rpmsg_trysend_offchannel(struct rpmsg_endpoint *ept, uint32_t src, uint32_t dst,
const void *data, int len);

int rpmsg_send_offchannel_raw(struct rpmsg_endpoint *ept, uint32_t src, uint32_t dst,
const void *data, int len, int wait);

Description
The RPMSG API follows the standard API in most details. The main difference is that currently it is oriented towards supporting
the Xvisor VMSG infrastructure, which differs from the standard in some ways. As a result the name service functionality is
not supported, and there are some eCos specific extensions.

The eCos extensions provide a mechanism for managing RPMSG devices. The function cyg_rpmsg_open() looks for an
RPMSG device with the given name and returns a pointer to it. The function cyg_rpmsg_close() closes a device down
when it is no longer needed. The function cyg_rpmsg_poll() is used in systems where interrupts are disabled to process
RPMSG transfers; where interrupts are enabled the RPMSG package calls this function internally and the application does
not need to do it itself.

The remaining API functions follow the OpenAMP API with the exception of the name server functionality.

The function rpmsg_create_ept() initializes an application-supplied endpoint object with a name, addresses and
callbacks; any messages directed to the given destination address will cause the callback on this endpoint to be called. An

627

RPMSG Application API

RPMSG client should create an endpoint to communicate with a remote node. The client should provide at least a channel
name and a callback for message notification. By default the endpoint source address should be set to RPMSG_ADDR_ANY.

The function rpmsg_destroy_ept() unregisters the endpoint from the device.

The function is_rpmsg_ept_ready() returns 1 if the endpoint has both local and destination addresses set, 0 otherwise.

The function rpmsg_send() sends data of length len based on the endpoint ept. The message will be sent to the
remote node which the channel belongs to, using the endpoint's source and destination addresses. If there are no TX buffers
available, the function will block until one becomes available, or a timeout of 15 seconds elapses. When the latter happens,
RPMSG_ERR_NO_BUFF is returned. The function returns the number of bytes sent if successful, or a negative error code on
failure.

The function rpmsg_sendto() functions in the same way as rpmsg_send() except that the destination address is taken
from the dst argument and not the endpoint.

The function rpmsg_send_offchannel() functions in the same way as rpmsg_send() except that both the source
and destination addresses are taken from the src and dst argument and not the endpoint.

The functions rpmsg_trysend(), rpmsg_trysendto() and rpmsg_trysend_offchannel() function in
the same way as their non-try equivalents except that when no buffers are available they return immediately with
RPMSG_ERR_NO_BUFF.

The function rpmsg_send_offchannel_raw() allows all options supported by the previous functions to be specified
as arguments.

When a message is received for an endpoint it is passed to the application by calling the callback function registered when
the endpoint was created. The endpoint, data pointer and length and the source endpoint address are passed in. The callback
is made from a thread that is part of the RPMSG subsystem. The callback is permitted to call any functions that are allowed
from a thread but should avoid doing anything that might take a long time since it would block processing of new messages
for other endpoints.

The following code shows an example of the use of this API. For clarity, error checking code is omitted.

void rpmsg_test(void)
{
 struct rpmsg_device *rdev = NULL;
 struct rpmsg_endpoint ept;
 int err;
 int i;
 uint32_t src = 0x501;
 uint32_t dst = 0x502;

 // Locate device "rpmsg0"
 rdev = cyg_rpmsg_open("rpmsg0");

 // Create an endpoint for the given src and dst pair
 err = rpmsg_create_ept(&ept, rdev,
 "ecos-ept0", src, dst,
 rpmsg_ept_cb, NULL);

 // Send some messages, we assume the peer will
 // reply in some way.
 for(i = 0; i < 100; i++)
 {
 char msg[40];

 int len = diag_sprintf(msg, "%3d 1234567", i);

 err = rpmsg_send(&ept, msg, len);

 diag_printf("SENT: %4d %04lx %s\n", len, dst, (char *)msg);

 }

 // Close the device when we are finished

628

RPMSG Application API

 cyg_rpmsg_close(rdev);
}

// Receive callback
int rpmsg_ept_cb(struct rpmsg_endpoint *ept, void *data,
 size_t len, uint32_t src, void *priv)
{
 // Handle received message

 diag_printf("GOT : %4d %04lx %s\n", len, src, data);

 return RPMSG_SUCCESS;
}

629

Part XXXIII. Serial Device Drivers
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
115. Freescale MCFxxxx Serial Driver ... 632

MCFxxxx Serial Driver ... 633
116. NXP PNX8310 Serial Driver ... 636

PNX8310 Serial Driver .. 637
117. Nios II Avalon UART Serial Driver ... 639

Nios II Avalon UART Serial Driver .. 640

631

Chapter 115. Freescale MCFxxxx Serial
Driver

632

Freescale MCFxxxx Serial Driver

Name
CYGPKG_DEVS_SERIAL_MCFxxxx — eCos Support for the MCFxxxx On-chip Serial Devices

Description
All members of the Freescale MCFxxxx ColdFire family of processors contain a number of on-chip UARTs for serial com-
munication. They all use very similar hardware. There are some variations such as different fifo sizes, and some processors
contain extra functionality such as autobaud detection, but a single eCos device driver can cope with most of these differences.
The CYGPKG_DEVS_SERIAL_MCFxxxx package provides this driver. It will use definitions provided by the variant HAL
CYGPKG_HAL_M68K_MCFxxxx, the processor HAL and the platform HAL.

The driver provides partial support for hardware flow control and for serial line status. Only CTS/RTS hardware flow control
is supported since the UART does not provide DTR/DSR lines. Similarly only line breaks, and certain communication errors
are supported for line status since the UART does not provide other lines such as DCD or RI. On some platforms it should be
possible to emulate these lines using GPIO pins, but currently there is no support for this.

Once application code accesses a UART through the serial driver, for example by opening a device /dev/ser0, the driver
assumes that it has sole access to the hardware. This means that the UART should not be used for any other purpose, for example
HAL diagnostics or gdb debug traffic. Instead such traffic has to go via another communication channel such as ethernet.

Configuration Options
The MCFxxxx serial driver should be loaded automatically when selecting a platform containing a suitable processor, and
it should never be necessary to load it explicitly. The driver as a whole is inactive unless the generic serial support, CYGP-
KG_IO_SERIAL_DEVICES, is enabled. Exactly which UART or UARTs are accessible on a given platform is determined
by the platform because even if the processor contains a UART the platform may not provide a connector. Support for a given
UART, say uart0, is controlled by a configuration option CYGPKG_DEVS_SERIAL_MCFxxxx_SERIAL0. The device driver
configuration option in turn depends on a HAL configuration option CYGHWR_HAL_M68K_MCFxxxx_UART0 to indicate
that the UART is actually present and connected on the target hardware. If a given UART is of no interest to an application
developer then it is possible to save some memory by disabling this option.

For every enabled UART there are a set of configuration options. The following use SERIAL0 as an example, though each
UART device available will have its own unique SERIALn naming:

CYGDAT_DEVS_SERIAL_MCFxxxx_SERIAL0_NAME

Each serial device should have a unique name so that application code can open it. The default device names are /dev/
ser0, /dev/ser1, and so on. It is only necessary to change these if the platform contains additional off-chip UARTs
with clashing names.

CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_ISR_PRIORITY

By default the driver arranges for the UARTs to interrupt at a low interrupt priority. Usually there will be no need to change
this because the driver does not actually do very much processing at ISR level, and anyway UARTs are not especially fast
devices so do not require immediate attention. On some Coldfires with MCF5282-compatible interrupt controllers care
has to be taken that all interrupt priorities are unique.

CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_BAUD

Each UART will be initialized to a given baud rate. The default baud rate is 38400 because in most scenarios this is fast
enough yet does not suffer from excess data corruption. Lower baud rates can be used if the application will operate in
an electrically noisy environment, or higher baud rates up to 230400 can be used if 38400 does not provide sufficient
throughput.

CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_BUFSIZE

The serial driver will maintain software buffers for incoming and outgoing data. The former allows data to continue to
arrive even if the application is still busy processing the previous transfer, and thus potentially improves throughput. The
latter allows the application to transmit data without immediately blocking until the transfer is complete, often eliminating

633

Freescale MCFxxxx Serial Driver

the need for a separate thread. The size of these buffers can be controlled via this configuration option, or alternatively
these buffers can be disabled completely to save memory.

CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_ISR_BUFSIZE

If the serial driver has been configured with buffering (non-zero CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL-
n_BUFSIZE option) then this RX ISR specific option allows extra ISR buffering to be used to minimise the chances of
dropped characters at high baud rates. The use of this extra ISR->DSR buffer reduces the number of DSR calls needed to
pass data to the higher I/O layer whilst also minimising the latency in processing individual received characters.

Note

If debugging using RedBoot “GDB over Ethernet”, due to the increased ISR and DSR latency from
the debugging support, the I/O and ISR buffers may need to be very large to minimise the chance
of dropped characters at high baud rates (e.g. 230400). For example the CYGPKG_IO_SERIAL test
serial3 (against the hosted ser_filter) can, when debugging via BDM (i.e. no RedBoot) and config-
ured with diagnostics at 115200 using UART0, run the test at 230400 using UART1 successful-
ly with CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL1_BUFSIZE of 128-bytes and a CYGNUM_DE-
VS_SERIAL_MCFxxxx_SERIAL1_ISR_BUFSIZE of 32-bytes. However, if RedBoot “GDB over
Ethernet” debugging is used, with diagnostics over the Ethernet/RedBoot channel, then the test
running at 230400 over UART1 will complete without dropped characters with CYGNUM_DE-
VS_SERIAL_MCFxxxx_SERIAL1_BUFSIZE of 8192-bytes and a CYGNUM_DEVS_SERIAL_M-
CFxxxx_SERIAL1_ISR_BUFSIZE of 4096-bytes. If even larger (e.g. 64K) continuous 230400 trans-
fers are required then those buffers need to be further increased. This is an unfortunate side-effect of the ISR/
DSR latencies introduced by RedBoot Ethernet based debugging.

Careful application specific tuning of the buffer sizes, and potentially the CYGNUM_DEVS_SERIAL_M-
CFxxxx_SERIALn_ISR_PRIORITY, may be needed to ensure the desired baud rate and bandwidth re-
quirements are met. If the ISR latency is too high, or the application thread reading data from the serial I/O
layer cannot empty the CYGNUM_DEVS_SERIAL_MCFxxxx_SERIALn_BUFSIZE quickly enough, then
characters can still be dropped even with large buffers.

It is important that any thread priorities and/or scheduling requirements match the desired UART device use,
and that the higher-level buffering and DMA receive buffers are tuned to match the worse-case load.

If the processor HAL is capable of supporting eDMA and the specific UART device is configured to use buffering, by setting a
suitable CYGNUM_DEVS_SERIAL_MCFxxxx_SERIALn_BUFSIZE value, then DMA specific options are made available:

CYGPKG_DEVS_SERIAL_MCFxxxx_SERIAL0_EDMA

This option, when enabled, allows eDMA support for the UART device to be configured via the following configuration
options:

CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_EDMA_TX

If I/O buffering is configured then this option allows eDMA to be used for transmissions. This can greatly reduce the
number of ISR and DSR operations needed to support transmission, reducing the CPU load needed.

CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_EDMA_PRIORITY

By default the driver arranges for the UART DMA to interrupt at the highest priority. For lower baud rates this is less
critical, but when configured for high baud rates (e.g. 115200 or higher, and especially for ColdFire processors with
UARTs with a shallow hardware FIFO) the aim is to minimise the interrupt latency for DMA buffer switch events.

Note

eDMA use for RX is not yet implemented.

There are additional options in the generic serial I/O package CYGPKG_IO_SERIAL which will affect this driver. For example
CYGPKG_IO_SERIAL_FLOW_CONTROL and its sub-options determine what flow control mechanism (if any) should be
used.

634

Freescale MCFxxxx Serial Driver

This package also defines some configuration options related to testing. Usually these options are of no interest to application
developers and can be ignored.

Porting
The generic driver needs some information from other packages about the exact hardware, for example how many UARTs are
available and where in memory they can be accessed.

1. Another package, usually the processor HAL, should provide one or more options CYGHWR_HAL_M68K_MCFxxxx_UAR-
T0, CYGHWR_HAL_M68K_MCFxxxx_UART1 or CYGHWR_HAL_M68K_MCFxxxx_UART2. These may be calculated or
user-configurable depending on the processor.

2. The device driver will also look for symbol definitions CYGHWR_HAL_M68K_MCFxxxx_UART0_RTS and CYGH-
WR_HAL_M68K_MCFxxxx_UART0_CTS, and the equivalents for the other UARTs, to determine whether or not these
handshake lines are connected. These may be configuration options or they may be statically defined in a HAL I/O header
file. The platform HAL should also implement the generic serial package's interface CYGINT_IO_SERIAL_FLOW_CON-
TROL_HW if appropriate.

3. If RTS is connected then the driver will also look for a symbol CYGHWR_HAL_M68K_MCFxxxx_UART0_RS485_RTS.
This enables partial support for RS485 communication in that the device driver will arrange for the RTS line to be asserted
during a transmit. The driver has no support for more advanced RS485 functionality such as multidrop.

In addition the driver assumes the standard MCFxxxx HAL macros are defined for the UART base addresses and the registers.
The driver primarily targets MCF5282-compatible UARTs but there is also some support for functionality available on other
members of the Coldfire range, for example the MCF5272's fractional baud rate support.

The HAL can optionally define the HAL_PLF_DEVS_SERIAL_MCFxxx_XMIT_HOOK. macro to provide code called to
indicate when the driver transmissions are started and stopped. The macro is passed the base H/W address for the device in
use (to identify the port when multiple serial interfaces are active) as well as a boolean indicating the start (true) and stop
(false) status for TX.

635

Chapter 116. NXP PNX8310 Serial Driver

636

NXP PNX8310 Serial Driver

Name
CYGPKG_DEVS_SERIAL_MIPS_PNX8310 — eCos Support for the PNX8310 On-chip UARTs

Description
The PNX8310 comes with two on-chip UARTs for serial communication. Other PNX83xx processors come with compatible
devices. The CYGPKG_DEVS_SERIAL_MIPS_PNX8310 package provides an eCos serial device driver. It can support up
to three UARTs, depending on the processor and on which of the UARTs are connected on any given platform. If the CTS
and RTS lines are connected then hardware flow control is supported. Line status is supported for line breaks and for certain
communication errors. The UARTs do not have any support for DTR, DSR, DCD or RI lines. On some platforms these lines
may be emulated using GPIO pins, but the driver does not currently have any support for this.

Once application code accesses a UART through the serial driver, for example by opening a device /dev/ser0, the driver
assumes that it has sole access to the hardware. This means that the UART should not be used for any other purpose, for example
HAL diagnostics or gdb debug traffic. Instead such traffic has to go via another communication channel such as ethernet.

Configuration Options
The PNX8310 serial driver should be loaded automatically when selecting a platform containing a suitable processor, and
it should never be necessary to load it explicitly. The driver as a whole is inactive unless the generic serial support, CYGP-
KG_IO_SERIAL_DEVICES, is enabled. Exactly which UART or UARTs are accessible on a given platform is determined
by the platform because even if the processor contains a UART the platform may not provide a connector. Support for a given
UART, say uart0, is controlled by a configuration option CYGPKG_DEVS_SERIAL_PNX8310_SERIAL0, which will be
active only if the platform enables the device. If a given UART is of no interest to an application developer then it is possible
to save some memory by disabling this option.

For every enabled UART there are a further four configuration options:

CYGDAT_DEVS_SERIAL_PNX8310_SERIAL0_NAME

Each serial device should have a unique name so that application code can open it. The default device names are /dev/
ser0, /dev/ser1, and so on. It is only necessary to change these if the platform contains additional off-chip UARTs
with clashing names.

CYGNUM_DEVS_SERIAL_PNX8310_SERIAL0_ISR_PRIORITY

By default the driver arranges for the UARTs to interrupt at a low interrupt priority. Usually there will be no need to change
this because the driver does not actually do very much processing at ISR level, and anyway UARTs are not especially fast
devices so do not require immediate attention.

CYGNUM_DEVS_SERIAL_PNX8310_SERIAL0_BAUD

Each UART will be initialized to a given baud rate. The default baud rate is 38400 because in most scenarios this is fast
enough yet does not suffer from excess data corruption. Lower baud rates can be used if the application will operate in
an electrically noisy environment, or higher baud rates up to 230400 can be used if 38400 does not provide sufficient
throughput.

CYGNUM_DEVS_SERIAL_PNX8310_SERIAL0_BUFSIZE

The serial driver will maintain software buffers for incoming and outgoing data. The former allows data to continue to
arrive even if the application is still busy processing the previous transfer, and thus potentially improves throughput. The
latter allows the application to transmit data without immediately blocking until the transfer is complete, often eliminating
the need for a separate thread. The size of these buffers can be controlled via this configuration option, or alternatively
these buffers can be disabled completely to save memory.

There are additional options in the generic serial I/O package CYGPKG_IO_SERIAL which will affect this driver. For example
CYGPKG_IO_SERIAL_FLOW_CONTROL and its sub-options determine what flow control mechanism (if any) should be
used.

637

NXP PNX8310 Serial Driver

This package also defines some configuration options related to testing. Usually these options are of no interest to application
developers and can be ignored.

Porting
The generic driver needs some information from other packages about the exact hardware, for example how many UARTs are
available and whether or not they are connected.

1. Another package, usually the platform HAL, should implement one or more of the interfaces CYGINT_DEVS_SERIAL_P-
NX8310_UART0, CYGINT_DEVS_SERIAL_PNX8310_UART1, or CYGINT_DEVS_SERIAL_PNX8310_UART2.
Typically this is left to the platform HAL because even if the processor contains the UART device it may not be accessible
on a given platform because there is no suitable connector.

2. If the RTS and CTS are connected for a given UART then the platform HAL should also implement the appropriate inter-
face, for example CYGINT_DEVS_SERIAL_PNX8310_UART0_RS232_RTSCTS. This will enable driver support for
hardware handshaking.

3. If a given UART is supported then the generic driver will need to know where it is mapped in the address space. Typically
this is handled by the processor or variant HAL package via a definition HAL_PNX8310_UART0_BASE in cyg/hal/
proc_io.h or cyg/hal/var_io.h.

4. On some platforms or processors additional initialization may be needed, for example to connect certain pins to the internal
UART rather than to other on-chip devices. The processor or platform HAL can define a macro HAL_PNX8310_UAR-
T0_PROC_INIT for this purpose.

638

Chapter 117. Nios II Avalon UART Serial
Driver

639

Nios II Avalon UART Serial Driver

Name
CYGPKG_DEVS_SERIAL_NIOS2_AVALON_UART — eCos Serial Driver for Nios II Avalon UARTs

Description
A Nios II hardware design can include one or more Avalon uart devices for serial communication. On typical hardware each uart
requires an external transceiver chip on the board to convert between FGPA and RS232 voltage levels, so the actual number of
uarts is more a property of the board than of the FPGA hardware design. CYGPKG_DEVS_SERIAL_NIOS2_AVALON_UART
provides an RS232 serial device driver for up to eight Avalon uarts in the design. It should be noted that in typical eCos
configurations the first uart will be used for the HAL diagnostics and debug channel, either directly or via virtual vector calls
to the RedBoot ROM monitor, so that uart should not be accessed via the serial driver.

Configuration Options
The Nios II Avalon uart serial driver should be loaded automatically when creating an eCos configuration for a hardware design
which includes a suitable device, and it should never be necessary to load the package explicitly. The driver as a whole is
inactive unless the generic serial support CYGPKG_IO_SERIAL_DEVICES is enabled.

For each uart in the h/w design the driver package provides a component, for example, CYGPKG_DE-
VS_SERIAL_NIOS2_AVALON_UART0, allowing driver support for that uart to be enabled or disabled. When enabled this
component contains a number of options related to that uart:

CYGDAT_DEVS_SERIAL_NIOS2_AVALON_UART0_NAME

Each serial device should have a unique name so that application code can open it. The default names may be provided
by the h/w design HAL, otherwise they are strings such as /dev/ser0 and /dev/ser1. Usually it is only necessary
to change these names if the h/w design involves different types of uarts and hence multiple serial device drivers.

CYGDAT_DEVS_SERIAL_NIOS2_AVALON_UART0_BAUD

If the h/w design supports variable baud rates then this option can be used to set the default baud rate. This may be different
from the default set in the h/w design. It will be installed when the device is opened by application code. If the h/w design
does not support variable baud rates then this option will be inactive.

CYGDAT_DEVS_SERIAL_NIOS2_AVALON_UART0_BUFSIZE

The serial driver will maintain software buffers for incoming and outgoing data. The former allows data to continue to
arrive even if the application is still busy processing the previous transfer, and thus potentially improves throughput. Also
since Avalon uarts do not have fifos a software buffer reduces the risk of lost data. The latter allows the application to
transmit data without immediately blocking until the transfer is complete, often eliminating the need for a separate thread.
The size of these buffers can be controlled via this configuration option, or alternatively these buffers can be disabled
completely to save memory.

In addition the package provides control over the compiler flags used to build the driver code and some support for serial testing.
There are further options in the generic serial I/O package CYGPKG_IO_SERIAL which will affect this driver. For example
CYGPKG_IO_SERIAL_FLOW_CONTROL and its sub-options determine what flow control mechanism (if any) should be
used. Hardware flow control will only be available if the h/w design includes support for the RTS/CTS lines.

Porting
This serial driver package needs information from the h/w design HAL about the number of Avalon uarts and how they have
been configured. Note that this information can also affect the implementation of the HAL diagnostics and debug channel in
the Nios II architectural HAL package so the relevant CDL interfaces are provided there. Also note that in accordance with
eCos conventions uart numbering starts with 0.

1. The CDL interface CYGHWR_HAL_NIOS2_AVALON_UARTS should be implemented once for every Avalon uart in the
h/w design.

640

Nios II Avalon UART Serial Driver

2. Avalon uarts can be designed with RTS/CTS support if desired. If a given uart has this support enabled then the h/w design
HAL should implement the appropriate CDL interface, for example CYGHWR_HAL_NIOS2_AVALON_UART0_RTSCTS.
In the absence of RTS/CTS support the serial driver will not attempt hardware flow control on that uart.

3. Avalon uarts can be designed with either a fixed or a variable baud rate. If the latter then the h/w design HAL should
implement the appropriate CDL interface, for example CYGHWR_HAL_NIOS2_AVALON_UART0_VARIABLE_BAUD.

4. For each uart the h/w design HAL should define the base address, the interrupt vector, the uart's input clock, the default
baud rate, the number of stop bits, the parity, and the word length. This information should come from the cyg/hal/
nios2_hwconfig.h header.

5. Default device names and baud rates can be provided using configuration options such as CYGDAT_DE-
VS_SERIAL_NIOS2_AVALON_UART0_DEFAULT_NAME and CYGNUM_DEVS_SERIAL_NIOS2_AVALON_UAR-
T0_DEFAULT_BAUD.

Unlike more conventional uarts, with an Avalon uart the number of bits per word, the number of stop bits, and the parity
support are all fixed when the hardware is designed. Any attempt to change these settings at run-time will fail. The baud rate
may also be fixed in the h/w design, or run-time changes may be supported. If the latter then the baud rate will be constrained
by the input clock and a 16-bit divisor register, so for example with a 100MHz input clock the lowest standard baud rate that
can be supported is 1800.

The serial driver does not provide any support for DMA transfers so it ignores any end-of-packet register that may have been
included in the h/w design. Only RS232 is supported, not RS485 networking. There is no support for the DTR, DSR, DCD or
RI lines. If these are needed then the lines would have to be wired up to an Avalon GPIO unit and handled by application code.

641

Part XXXIV. USB Support

Name
Overview — eCosPro Support for USB

Description

Important

This eCosPro-USB Middleware package is STRICTLY LICENSED FOR NON-COMMERCIAL PURPOSES
ONLY. It may not be used for Commercial purposes in full or in part in any format, including source code, binary
code and object code format.

A Commercial eCosPro License version 3 (or above) which explicity includes this Middleware Package is re-
quired for Commercial use.

The eCosPro-USB package only provides USB functionality for embedded systems. Where USB connectivity between eCos-
based USB devices and host systems is required, it is your responsibility to ensure that a suitable host operating system class
driver is available. Common host operating systems such as Windows, Linux and OS X include support for several standard
USB classes. Unfortunately the specific classes supported varies considerably between them. If a host operating system you
wish to support does not provide the necessary class support, then a suitable driver will need to be sourced from a third party
USB class provider.

All USB Vendor and Product IDs used within this stack are for testing purposes only. It is your responsibility to obtain and
deploy valid identifiers for your product; information about this can be found at the following link: www.usb.org/develop-
ers/vendor . It is also your responsibility to undertake any compliance testing needed to use the USB logo. Information regard-
ing the USB-IF compliance program can be found here: http://www.usb.org/developers/compliance/.

Class Support
The individual USB classes are documented in the sections of the eCosPro documentation most relevant to that functionality.
For example, information regarding the configuration and use of the Host Mass Storage Class is organized together with other
file system related documentation.

Table 5. USB class support

USB Class eCos Package Name and Documenta-
tion Link

Description

Host Mass Storage Class
(MSC)

Host mass storage driver package

(CYGPKG_DEVS_DISK_USBMS)

Supports use of USB memory sticks, hard disk dri-
ves and similar storage devices. USB mass storage
devices essentially provide a block level interface,
which by convention, a FAT format file system is lay-
ered over.

Host Communication De-
vice Class (CDC), Ab-
stract Control Model
(ACM) subclass

Host CDC ACM protocol driver pack-
age

(CYGPKG_IO_USB_CDC_ACM_HOST)

This class enables USB to serial converters conform-
ing to the USB-IF defined CDC ACM class to be con-
nected to embedded hardware. This can be used to ex-
pand the number of serial port connections available
and can also be used for straightforward interconnec-
tion of embedded hardware; where one side imple-
ments the USB host class, and the other the device
(target) side support. Read the USB Serial Support
section for an overview of general USB serial func-
tionality.

Host FTDI serial adapter
class

Host FTDI protocol driver package

(CYGPKG_IO_USB_FTDI)

This class enables FTDI USB to serial adapters to be
connected to the embedded hardware, expanding the
number of serial port connections available. This is a
proprietary standard defined and supported by FTDI.

643

http://www.usb.org/developers/vendor
http://www.usb.org/developers/vendor
http://www.usb.org/developers/compliance/

Overview

USB Class eCos Package Name and Documenta-
tion Link

Description

Read the USB Serial Support section for an overview
of general USB serial functionality.

Target Communication
Device Class (CDC),
Abstract Control Model
(ACM) subclass

Target CDC ACM protocol driver pack-
age

(CYGPKG_IO_USB_CDC_ACM)

This class enables simple, straightforward connec-
tivity and communication between embedded hard-
ware and host PC's, or other embedded hardware. It is
a USB-IF defined class that is supported by all major
host operating systems. Read the USB Serial Support
section for an overview of general USB serial func-
tionality.

Target Remote Network
Driver Interface Specifi-
cation (RNDIS) Class

Target RNDIS driver package

(CYGPKG_DEVS_ETH_USB_RNDIS)

The RNDIS support provides network level connec-
tivity to host PCs. Note that this does not provide
physical network access, but rather enables generic
networking level communications between the USB
attached Host and Target devices. RNDIS is a propri-
etary Microsoft defined class and is particularly suited
for use with Windows-based systems. Compatible dri-
vers are also available for other major operating sys-
tems.

Target Communication
Device Class (CDC), Eth-
ernet Emulation Model
(EEM) subclass

Target CDC EEM driver package

(CYGPKG_DEVS_ETH_USB_CDCEEM)

CDC-EEM provides direct network level connectivi-
ty between embedded targets and host PCs. Note that
this does not provide physical network access, but
rather enables generic networking level communi-
cations between the USB attached Host and Target
devices. It is a USB-IF defined USB standard and is
supported natively by both Linux and Mac OS.

Stack Limitations
The eCosPro USB stack stack currently implements a subset of the complete USB functionality. It is intended that it will
eventually fully support not just host and target sides of the USB protocol, but also On-The-Go functionality. The current state
of the stack is as follows:

• OTG support is not implemented.

• The host stack implements only control and bulk transfers. Interrupt and Isochronous transfers are not currently implemented.
Additionally, only fixed size transfers are supported, short transfers are not, and scatter/gather support is not implemented.

• Hub and root hub support is limited to those control requests directly needed by the stack. Hub connect state is polled, hub
interrupt status transfers are not supported.

• There is a limited set of host controllers supported. Currently only OHCI and the Synopsys DWC_usb controller are sup-
ported.

• The target stack implements control, bulk and interrupt transfers. Isochronous transfers are not implemented. Limited support
for short OUT transfers is implemented.

• A relatively limited set of peripheral controllers is currently supported. For example, the Synopsys DWC_usb controller, as
used on the STM32 Cortex-M family and the Atmel UDPHS controller driver.

• There is no intrinsic support for composite devices. In target mode applications can define and service composite devices
directly. In host mode class drivers should be able to extract the specific interfaces they need from a composite device,
although this has never been tested.

• The stack can currently only function within eCos with the kernel present. Support for unthreaded, non-interrupting envi-
ronments such as RedBoot has not been implemented.

644

Overview

Terminology
USB has its own terminology, some of which conflicts with similar terms used in eCos. Some terms are used several times for
slightly different but related concepts. The following lists some of the terms used and how they relate to the eCosPro USB stack.

Device A device is something that is plugged into a USB bus, for example a flash drive, a serial
adaptor or an ethernet adaptor. When its attachment is detected it is given an address and
descriptors are fetched. These will generally be referred to by the term physical device.

In the eCosPro USB host stack the term device is also used to refer to the data struc-
ture allocated in the host stack to represent and manage the physical device while it is
attached.

Target A target is the name used in the eCosPro USB stack for a peripheral device implemented
by eCosPro.

Host Controller (HC) A host controller is the hardware device that provides access to a USB bus. It typically
controls the transfer of packets between the USB stack and devices. It usually also pro-
vides support for one or more external ports into which devices and hubs are plugged.

Host Controller Driver (HCD) A host controller driver is the software component that controls the host controller hard-
ware and provides a standard interface by which the rest of the USB stack accesses the
bus.

Peripheral Controller (PC) A peripheral controller is the hardware device that provides access to a USB bus in
peripheral mode. It typically controls the transfer of packets between the USB stack and
the USB host.

Peripheral Controller Driver (PCD) A peripheral controller driver is the software component that controls the peripheral
controller hardware and provides a standard interface by which the rest of the USB stack
accesses the bus.

Hub A hub is a USB bus component that splits the USB bus into a number of additional
ports. A typical external hub has four downstream ports for connecting new devices
and a single upstream port that connects to a downstream port of another hub or host
controller.

A host controller also acts as a hub, known as a root hub. It typically contains one,
two or more ports which form the external interface to the USB bus. These are usually
controlled by a handful of registers in the controller and accessed by the HCD. The USB
host stack usually virtualizes the root hub so that it can be controlled in exactly the same
way as an external hub through the exchange of control messages.

Endpoint In the USB specification an endpoint is the terminus of communication between the
host and a device. All USB transfers are directed to a combination of device address
and endpoint number. Endpoints are uni-directional, and each device can have up to 16
endpoints in each direction, except endpoint 0 which is bidirectional.

In the eCosPro USB stack, the term endpoint is often used to refer to data structures that
represent and manage transfers between the host and the target. Endpoint data structures
can exist in both the USB stack itself and in the HCD/PCD.

Transfer All communication is handled through a usb_tfr object. Internally to an HCD/PCD,
the term transfer may also refer to an internal data structure. There may be a many-to-
one relationship between HCD/PCD transfers and usb_tfr objects.

Port A port is the connection point for attached devices. Both external hubs and host con-
trollers have downstream ports. A hub's port is the target of various control operations
to enable/disable and reset the connected device.

645

Overview

Class Driver A class driver is a software component that converts a USB device into a particular eCos
device type. Typically it operates between two interfaces, acting as a client to the USB
stack and providing an eCos device interface to higher level components.

To configure and use the USB stack support, you should mainly refer to the class specific documentation linked to above. The
following sections of this document are intended for developers who wish to build a deeper understanding of how the USB
stack functions, for example to add their own class support.

Host Support Overview
Host support comprises the USB stack itself, one or more Host Controller Drivers and one or more Class Drivers.

During initialization the USB stack calls the init routine of each HCD. Platform-specific code called by the HCD locates all
the instances of that host controller and configures it for host usage. This usually involves supplying power and clocks to the
HC, configuring external pin multiplexing and enabling any external PHY, charge pump or power switches. Each HC is then
registered with the USB stack as a separate USB bus. The first thing that happens for each bus is that a new device object is
created to represent the root hub for that bus. The root hub is a virtual USB hub implemented by the USB stack to control the
downstream ports of the HC. The USB stack controls the downstream ports by calling functions in the HCD.

All hubs, including the root hubs, are polled on a regular basis by the USB stack to detect any new device connections. If a new
connection is detected then a device object is allocated and initialized. This object is then driven through a state machine that
resets the device, assigns an address to it and fetches its device and configuration descriptors. Once this is done the device type
is inspected. If it is a hub then the device object is passed over to the hub state machine which fetches further descriptors and
starts polling the downstream ports for new connections. If it is not a hub, then the list of registered class drivers is searched
for a class driver that recognizes the device type.

Class drivers interact with the device by allocating and initializing USB transfer objects and passing them to the USB stack for
execution. Each transfer object identifies the device it applies to together with the endpoint and transfer type. It also points to
a data buffer to/from which the data will be transferred and for control messages also contains the SETUP packet. Transfers
are passed into the USB stack and are processed asynchronously to the client; completion of a transfer is signalled by calling a
callback function in the transfer. The transfer's status indicates whether this was a successful exchange of data, some error has
occurred, or the device has been disconnected. At this point the class driver is free to release the transfer, or resubmit it.

Device disconnection usually results in any active transfers receiving an error. It is also noticed by the hub polling machine
and results in the device being detached from its parent hub. A call is also made to the class driver, which should then cancel
any active transfers, dismantle any device specific data structures and optionally signal the event to its clients in turn.

The existence of transfers and device objects is controlled by reference counts. For each device the presence of the physical
device counts as a reference, as should its use by a class driver; each active transfer also counts as a reference. So, when a
device is detached, the physical device reference will be removed, but it will only be returned to the free pool once all transfers
have completed and the class driver has finished with it. Similarly, transfers are created with a single reference, but the HCD
will take one or more references while the transfer is active in the controller. To release a transfer, the class driver simply needs
to decrement the reference counter in the completion callback, which will return it to the pool immediately, or maybe a little
later when the HCD has finished with it.

Target Support Overview
Target, or peripheral, support comprises the USB stack itself plus one or more Peripheral Controller Drivers. There is currently
no equivalent of the host class driver mechanism for targets and instead peripheral functionality is provided by application
code. See the acm_example.c source for an example; this can be found in the packages/io/usb/<version>/tests
directory.

Initialization of the target USB stack is similar to that for the host stack as far as Peripheral Controller Drivers are concerned.
The USB stack calls the init routine of each PCD. Platform-specific code called by the PCD locates all the instances of that
peripheral controller and configures them for peripheral usage. This usually involves supplying power and clocks to the Pe-
ripheral Controller, configuring external pin multiplexing and enabling any external PHY, charge pump or power switches.
For dual mode OTG controllers, much of this can be shared with the host controller mode. Finally, the peripheral controller
is registered with the USB stack under a unique name.

646

Overview

Application code instantiates a target by creating a target object and populating it with pointers to device, string and configu-
ration descriptors. Most of this can be done statically, and apart from the target object, can be constant data stored in ROM
or flash memory. The target object also contains pointers to a number of callback routines that the USB stack uses to signal
events to the application. The target is activated by attaching it to the specific peripheral controller that controls the external
USB socket on which the peripheral is to be presented.

The USB stack remains quiescent until the PCD detects that the peripheral port has been attached to a host controller. From this
point the USB stack handles most of the initial interaction with the host as it resets the peripheral port, assigns an address and
fetches descriptors. Most descriptors will be fetched from those statically defined in the target object, but if any are not found
then a callback to the application is made which allows it to manufacture any special descriptors dynamically. Also during this
process, callbacks will be made to indicate the progress of the peripheral through the USB peripheral state machine.

Once the target reaches CONFIGURED state it is ready for operation and application code can start exchanging messages with
the host. This is done using exactly the same transfer objects as are used in host mode. Each transfer object identifies the
endpoint, transfer type and data to be exchanged, and its completion is signalled by calling a callback function. Transfers are
controlled by reference counts in the same way as for host support; since the target is statically allocated by the application it
is not subject to reference count control in the same way as host device objects.

If the peripheral is detached then any active transfers will be cancelled and the target is returned to an earlier state. Reconnection
will restart the configuration process and eventually return the target to CONFIGURED state. Application code should avoid
submitting transfers unless the target is in CONFIGURED state.

Structure of this Document
This document is divided into a number of sections. Some of these are of interest to all users, others will only be useful to
writers of class or host controller drivers. Other parts are only useful to those who are working on the USB stack itself:

• The Configuration section describes the CDL configuration options that can be applied to the USB stack.

• The Transfer Objects section describes the message-like transfer objects that are used for all data transfers in the USB stack,
together with various API functions that apply to them.

• The Host Device Object section describes the data structure used to represent a device connected to the stack in host mode.
This section also describes the lifecycle of a device and a hub.

• The Class Drivers section describes the interface to host device class drivers.

• The Host Controller Drivers section describes the interface to Host Controller Drivers.

• The Target Objects section describes the data structure used to represent a target device connected to the stack in periph-
eral mode. This section also describes the support for string descriptor encoding and the target object API together with a
description of what an application should do to create a target peripheral device.

• The Peripheral Controller Drivers section describes the interface to Peripheral Controller Drivers.

647

Name
Configuration — USB System Configuration

Description
USB support consists of several packages: the main USB subsystem CYGPKG_IO_USB; at least one HCD or PCD package,
for example CYGPKG_DEVS_USB_OHCI or CYGPKG_DEVS_USB_PCD_DWC; and a target specific configuration package,
for example CYGPKG_DEVS_USB_STM32. The driver and configuration packages are usually part of the target specification
in ecos.db. Once these packages are installed, there are a number of configuration options that may be set. Those for the
controllers and configuration packages are described in their own documentation, those for the USB subsystem are described
here.

To enable USB support in any configuration it should simply be necessary to add the CYGPKG_IO_USB package and then
enable CYGPKG_IO_USB_HOST and/or CYGPKG_IO_USB_TARGET to provide the appropriate stack modes.

Options
The following configuration options control the behaviour of the USB subsystem.

cdl_component CYGPKG_IO_USB_HOST

This component enables USB host support in the USB stack.

cdl_option CYGNUM_IO_USB_HOST_BUFFER_SIZE

The USB subsystem uses a shared buffer for some purposes. This option defines the size of that buffer. Class drivers
may require that this buffer be increased in size. The default size is 64 bytes, which is sufficient for the configurations
of most devices.

cdl_component CYGSEM_IO_USB_HUB

This option controls the level of HUB support. When enabled, full HUB support is provided, for both root and external
HUBs. When disabled, only rudimentary root hub support is provided, external hubs are not supported, and all devices
must be plugged in to the USB host device. This option is enabled by default.

cdl_option CYGNUM_IO_USB_HUB_POLL_INTERVAL

This option defines the interval in milliseconds between polls of a hub's ports for device attach and detach events. This
value effectively defines how responsive the system is to device attach/detach. The default value is 1000, causing the hubs
to be polled once a second.

cdl_option CYGNUM_IO_USB_HUB_PORT_MAX

This option defines the maximum number of ports allowed per hub. The default value is four since most external hubs
have just four downstream ports; virtual root hubs seldom have more and usually have fewer.

cdl_component CYGPKG_IO_USB_TARGET

This component enables USB target support in the USB stack.

cdl_option CYGNUM_IO_USB_MEMORY_TABLE_TARGET_ENDPOINT_SIZE

Number of endpoints allocated for target use.

cdl_option CYGNUM_IO_USB_OS_THREAD_STACK_SIZE

The USB subsystem uses an internal thread to handle asynchronous actions. This option defines the size of this stack in
addition to CYGNUM_HAL_STACK_SIZE_TYPICAL. The default value is 4KiB.

648

Configuration

cdl_option CYGNUM_IO_USB_OS_THREAD_PRIORITY

The USB subsystem uses an internal thread to handle asynchronous actions. This option defines the priority at which this
thread is scheduled. The default value is set to 10, which makes the USB thread run at a medium high priority.

cdl_component CYGSEM_IO_USB_MEMORY_SYSTEM_HEAP

This option enables use of the system heap for all USB memory allocations. It is orthogonal to the PRIVATE_HEAP and
TABLES options. This is the default memory allocation option.

cdl_option CYGNUM_IO_USB_MEMORY_SYSTEM_HEAP_LIMIT

This option sets a limit on the amount of memory allocated from the system heap. Once the USB stack has allocated this
much, it will refuse further allocations until memory is freed. If this value is set to 0 (the default) the limit is not enforced.

cdl_component CYGSEM_IO_USB_MEMORY_PRIVATE_HEAP

This option enables use of a fixed size private heap for all USB memory allocations. It is orthogonal to the SYSTEM_HEAP
and TABLES options.

cdl_option CYGNUM_IO_USB_MEMORY_PRIVATE_HEAP_SIZE

This option defines the size of the private heap. Once this heap is exhausted, no more memory will be allocated.

cdl_component CYGSEM_IO_USB_MEMORY_TABLES

This option enables use of fixed sized static tables for all USB memory allocations. It is orthogonal to the SYSTEM_HEAP
and PRIVATE_HEAP options.

cdl_option CYGNUM_IO_USB_MEMORY_TABLE_TFR_SIZE

Number of transfer objects in table. This option defaults to 4.

cdl_option CYGNUM_IO_USB_MEMORY_TABLE_DEVICE_SIZE

Number of device objects in table. This option defaults to 4.

cdl_option CYGNUM_IO_USB_MEMORY_TABLE_ENDPOINT_SIZE

Number of endpoints allocated. The endpoint object table will be the device table size multiplied by this value plus the
value of CYGNUM_IO_USB_MEMORY_TABLE_TARGET_ENDPOINT_SIZE. The default value is 3. Typically devices
need an entry for endpoint zero plus input and output endpoints. If any class driver needs more it should require a larger
value for this option.

cdl_option CYGNUM_IO_USB_MEMORY_TABLE_DESC_SIZE

Number of descriptor objects in table. This option defaults to five times the number of entries in the device table. Typically
each device needs an entry each for one configuration, one interface and three endpoints. Class drivers can increase this
value if necessary.

cdl_option CYGNUM_IO_USB_TRANSFER_POOL_SIZE

This option defines the number of transfer objects maintained in the free pool for fast allocation. When the memory
allocation strategy is to use tables, this option is ignored and the pool is set to the same size as the transfer table, and all
transfers are kept in the pool. The default value is 4.

cdl_option CYGDBG_IO_USB_DIAG

This option controls the inclusion of diagnostics in the USB stack. The exact set of diagnostic messages can be further
controlled at runtime on a per-subsystem basis.

649

Configuration

cdl_option CYGDBG_IO_USB_LOG

This option controls the inclusion of logging in the USB stack. This differs from diagnostics in that only major events
like device attach/detach are logged.

cdl_option CYGDBG_IO_USB_STATISTICS

This option controls the inclusion of statistics gathering in the USB stack.

cdl_option CYGNUM_IO_USB_STATISTICS_INTERVAL

This option defines the interval between reporting USB stack statistics. The time is given in seconds. A value of 0 disables
the regular reports and statistics will only be reported if the application calls usb_statistics_log().

650

Name
Transfer Object — Structure and Interface

Synopsis
#include <cyg/io/usb.h>

usb_tfr *usb_device_tfr_alloc(dev);

usb_tfr *usb_target_tfr_alloc(tgt);

void usb_tfr_ref(tfr);

void usb_tfr_unref(tfr);

void usb_tfr_init(tfr, endpoint, attr, buffer, size, callback, callback_data);

#define usb_request_init(req, request_type, request, value, index, length);

void usb_tfr_control(tfr, endpoint, req, buffer, size, callback, callback_data);

usb_tfr *usb_control_tfr(dev, request_type, request, value, index, callback, call-
back_data);

void usb_tfr_bulk(tfr, endpoint, req, buffer, size, callback, callback_data);

void usb_tfr_submit(tfr);

void usb_tfr_cancel(tfr);

Description
Most interaction between clients of the USB stack and the stack itself happens through the use of transfer objects (or just
transfers). These data structures are allocated and initialized by the client and passed to the USB stack. When the transfer
completes, the client is notified via a callback, following which it may release or reuse the object for another transfer.

Transfer Class Object
A transfer has the following structure:

struct usb_tfr
{
 usb_node node; // List/queue node

 union
 {
 usb_device *dev; // Host device
 usb_target *tgt; // Target device
 };

 usb_uint16 refcount; // Reference count
 usb_uint16 endpoint; // Endpoint address
 usb_uint8 attr; // Transfer type
 usb_uint8 flags; // Additional flags
 int status; // Current/returned status

 void *tfr_buffer; // Data buffer
 usb_uint16 tfr_size; // Size of transfer/buffer
 usb_uint16 tfr_actual; // Actual size transferred

 usb_tfr_callback *callback[2]; // Completion callback stack
 void *callback_data; // Callback data

 // The following fields are used by the HCD or PCD

651

Transfer Objects

 void *hcd_endpoint; // HCD endpoint private data
 usb_list hcd_list; // HCD transfer list

 // Per-transfer-type fields.
 union
 {
 struct
 {
 usb_uint8 setup[8]; // Setup packet
 } control;
 struct
 {
 } bulk;
#ifdef USB_CONFIG_INTERRUPT
 struct
 {
 } interrupt;
#endif
#ifdef USB_CONFIG_ISOCHRONOUS
 struct
 {
 int start_frame; // Start frame
 int interval; // transfer interval
 int pkt_count; // Number of packets
 usb_iso_packet_desc *iso_packet; // packet descriptors
 } isochronous;
#endif
 };
};

The fields of the transfer are as follows:

node A list node, which is used to link this transfer into internal lists in the USB stack. It may also be used
by the client when the object is in its possession, but should be unlinked whenever passed to usb_t-
fr_submit().

dev A pointer to the host device object on which this transfer will operate. This is filled in when the transfer
is allocated by usb_device_tfr_alloc(). This value should not be changed directly by the client
since other fields in this object may depend on this field. The transfer also holds a reference to the device
which may not be decremented properly if this field is changed. If the client needs to communicate with
a different device, it should allocate a new transfer object.

dev A pointer to the target object on which this transfer will operate. This is filled in when the transfer is
allocated by usb_target_tfr_alloc(). This value should not be changed directly by the client
since other fields in this object may depend on this field. The transfer also holds a reference to the target
which may not be decremented properly if this field is changed.

refcount Transfer reference count. This controls the existence of this transfer. It can be incremented with a call to
usb_tfr_ref() and decremented with a call usb_tfr_unref(). This field is set to 1 when the
transfer is allocated, and the reference count on the associated device or target is also incremented. If
the refcount is decremented to zero then the device or target reference is decremented, and the transfer
returned to the free pool.

endpoint This is the endpoint number and direction. This field has the same format as the bEndpointAddress
field of an endpoint descriptor and is initialized from the descriptor.

attr This is the endpoint attributes; it mainly defines the type of transfer: control, bulk, interrupt or isochro-
nous. It may contain other information for some transfer types. This field is initialized from the bmAt-
tributes field of an endpoint descriptor and has the same format.

flags This field contains a number of flag bits that control the nature of the transfer. If USB_T-
FR_FLAGS_TARGET is set then this is a target mode transfer and the tgt field is is valid, otherwise it
is a host mode transfer and the dev field is valid. The flags USB_TFR_FLAGS_START and USB_T-
FR_FLAGS_END allow transfers to be chained together to provide a scatter/gather facility; this is cur-
rently not implemented. The USB_TFR_FLAGS_CALLBACK flag indicates that this transfer's callback

652

Transfer Objects

should be called when it is complete. The USB_TFR_FLAGS_SHORT_OK flag indicates that a short
transfer should be treated as a success and not a failure; this is currently not implemented for host trans-
fers, but is for target OUT transfers.

By default, a transfer is initialized with the START, END and CALLBACK flags set. Additionally a target
mode transfer is initialized with the TARGET flag set.

status This field contains the transfer status. While it is in the possession of the USB stack, this field may be
used to record internal state transitions. When it is returned to the client via a callback, it will contain
either USB_OK to indicate the transfer was successful, an error code, or a status code (e.g. USB_T-
FR_CANCELLED).

tfr_buffer A pointer to a buffer containing the data to be transmitted, or where the received data should be places.
There are no explicit alignment requirements on this buffer, but on some platforms this buffer may need
to be synchronized to external memory or flushed from the data cache, so if it is not cache line aligned
these operations may have a side-effect on other data.

tfr_size The size of the data buffer, in bytes, and hence the size of the transfer. The transfer size is not limited
by the maximum packet size of the addressed endpoint, the driver may split the transfer into a sequence
of packets if necessary.

tfr_actual When the transfer is complete, this will contain the number of bytes actually transferred. This should
only differ from tfr_size if the SHORT_OK flag is set.

callback When a transfer has completed, this is signalled to the client by calling a callback routine. Callbacks
are managed as a stack, with the client callback as the lowest, last, callback. This mechanism allow the
USB stack to interpose its own finalization processing for a transfer if required. This callback stacking
is opaque to the client.

callback_data This is a client-supplied data value that the client can supply to ensure continuity between the submitter
and the callback; it is usually a pointer to some controlling data structure. The client's callback can retrieve
this value from the transfer by accessing this field. While callbacks are stacked, the callback_data is not,
internal callbacks only make use of the standard transfer fields.

hcd_endpoint This field is for use by the HCD or PCD, and typically contains a pointer to the data structure in the
driver that controls the endpoint to which this transfer is directed.

hcd_list This field is for use by the HCD or PCD, and typically is the root of a chain of internal data structures
that define the data transfer.

control This sub-structure is part of an anonymous union that defines per-transfer-type fields consisting of this
field and the following bulk, interrupt and isochronous fields. This structure contains the con-
tents of the setup packet. In host mode normally the setup packet is not assigned directly, but is copied
here by usb_tfr_control() after being initialized elsewhere with usb_request_init().

bulk This field contains bulk transfer control fields. It is currently empty.

interrupt This field contains interrupt transfer control fields. It is currently empty and is only defined if interrupt
transfer support is configured. It's contents may change significantly when interrupt transfer support is
implemented.

isochronous This field contains isochronous transfer control fields. It is currently empty and is only defined if isochro-
nous transfer support is configured. At present isochronous transfers are not supported. It's contents may
change significantly when isochronous transfer support is implemented.

API
There are a number of API functions associated with the management of transfer objects.

Host mode clients should allocate a transfer by calling usb_device_tfr_alloc(). The result will be a pointer to a transfer
which has been zeroed except that the node field will be initialized, the dev field will be set to the supplied device pointer

653

Transfer Objects

and the refcount will be set to 1. Additionally, usb_device_ref() will have been called on the device. This function
will return a NULL pointer if there are no transfers available for allocation.

Target mode clients should allocate a transfer by calling usb_target_tfr_alloc(). The result will be a pointer to a
transfer which has been zeroed except that the node field will be initialized, the tgt field will be set to the supplied target
pointer, the refcount will be set to 1 and usb_target_ref() will have been called on the target. The flags field will
be initialized with the USB_TFR_FLAGS_TARGET flag. This function will return a NULL pointer if there are no transfers
available for allocation.

If a client needs to take further reference to the transfer it can call usb_tfr_ref(). References are released by calling
usb_tfr_unref(). When a client is finished with a transfer it should call usb_tfr_unref() a last time to release the
initial reference. This may have the side-effect of calling usb_device_unref() or usb_target_unref() which may
result in the device object being freed.

In general, a transfer is initialized by one of several routines to create a specific type of transfer. The most general initialization
routine is usb_tfr_init() which sets up the transfer with the endpoint address and attributes, a data buffer, and a callback.
This is the only initialization function that should be applied to target mode transfers, the remaining initialization functions
only apply to host mode transfers.

Control transfer initialization is supported by a number of functions. The function usb_tfr_control() initializes a general
control transfer. The endpoint argument is used to look up the endpoint in the device and initialize the endpoint and
attr fields in the transfer. The req argument points to a completed USB request that will be copied into the setup buffer.
The data buffer and callback are initialized too. The USB request can be initialized using the usb_request_init() macro.
The first argument to this is the name of the request to initialize, not a pointer. The remaining arguments give values for the
various fields; the 16 bit fields will potentially be byte swapped into little endian order.

The function usb_control_tfr() provided a higher level interface to create control transfers that do not transfer additional
data. This is given the destination device plus values for the request type, request code, value and index field (but not the
length), and the callback. Using these parameters, a transfer is allocated, a request buffer created and the transfer initialized
with an endpoint address of zero. If a transfer cannot be allocated, a NULL pointer is returned.

A bulk transfer can be initialized using usb_tfr_bulk(). The endpoint argument is used to look up the endpoint in the
device and initialize the endpoint and attr fields in the transfer. The buffer and callback are also initialized.

Interrupt and Isochronous transfers are not currently supported, but when they are similar functions to initialize those will be
available.

A transfer is submitted to the USB stack by calling usb_submit(). This function performs some simple checks before pass-
ing the transfer on to the appropriate driver. If this function is passed a NULL transfer, it will return USB_ERR_TFR_ALLOC.
The transfer initialization routines also return if a NULL transfer is passed to them. This allows detection and handling of
transfer allocation failures in most cases to be deferred until this call, keeping error handling simpler.

A transfer can be cancelled by calling usb_cancel(). This may simply mark the transfer for cancellation, the transfer may
not actually be cancelled until some time after this function returns. When the transfer is actually cancelled, its callback will be
called with a status of USB_TFR_CANCELLED. However, if the transfer was already finished, or caused an error, the callback
status may be USB_OK or an error code. Thus client code cannot rely on the transfer completing with a CANCELLED status;
this call just ensures that the transfer will be returned to the client in some way. Note that it is not very useful to cancel host
mode control or bulk transfers since they will usually be processed as soon as submitted and will be returned quickly; the client
is unlikely to catch them in time.

654

Name
Host Device Object — Structure and Interface

Synopsis

#include <cyg/io/usb.h>

void usb_device_ref(dev);

void usb_device_unref(dev);

Description
Whenever a new device or hub is attached to a USB, a device object is created to represent it in the USB stack. Most users
of the USB stack do not need to concern themselves with the contents of a device object, so most of the information here is
for the use of USB stack developers.

Host Device Object
This structure does double duty for both standard devices and for hubs. The internal union separates out the role specific fields.
This structure also has two typedef names, usb_device and usb_hub, which can be used interchangeably, but help keep track
of which role the structure is currently being used in. A device object has the following structure:

struct usb_device
{
 usb_node node; // Node in per-hub list
 usb_bus *bus; // Controlling bus
 usb_hub *parent; // Parent hub

 usb_uint32 flags; // Flags
 usb_uint8 refcount; // Reference counter
 usb_uint8 id; // Device ID
 usb_uint8 port; // Port on parent hub
 usb_uint8 state; // Current device state
 usb_uint8 state_data; // Associated data

 usb_device_descriptor desc; // Device descriptor
 usb_descriptor *config; // Current configuration
 usb_descriptor *interface; // Current interface
 usb_descriptor *desc_chain; // Chain of all descriptors

 usb_resource_client res_client; // Resource client

 void *hcd_priv; // HCD private data

 usb_device_endpoint *endpoints; // List of active endpoints

 union
 {
 struct
 {
 union
 {
 // Used only during initialization
 usb_uint8 *buf; // Descriptor read buffer
 usb_config_descriptor *config; // Config descriptor view of buf

 // Used only when state >= RUNNING
 usb_class_driver *class_driver; // Attached class driver

 };

 } device;
 struct
 {

655

Host Device Objects

 int port_count; // Number of downstream ports
 usb_hub_port_status port_status[USB_HUB_PORT_MAX+1];

 usb_uint8 *buf; // Descriptor read buffer

 usb_list devices; // List of attached devices

 // Status tfr state
 usb_tfr *status_tfr; // Current status change tfr
 usb_uint8 status_buf[4]; // Status change buffer
 usb_descriptor *intr_desc; // Interrupt endpoint descriptor

 // TODO: Power allocation stuff

 // TODO: Transaction translator stuff
 } hub;
 };
};

The fields of the device are as follows:

node A list node that is used to link this device into a list in the hub object to which this device is attached.

bus A pointer to the object representing the bus to which this device is attached. This pointer provides access to
the HCD that communicates with this device. The bus object also controls the allocation of device IDs.

parent A pointer to the parent hub, the same hub in whose device list this device must be linked via the node field.

flags Flag bits controlling aspects of this device. The USB_DEVICE_FLAGS_HUB indicates that this device is a
hub, and USB_DEVICE_FLAGS_HUB_ROOT indicates that this is a root hub.

refcount Device reference count. This is initialized to 1 when the device is first attached, representing a reference held
by the physical device, and incremented for each active transfer for this device. Class drivers may also take
their own references. When the physical device is detached the refcount is decremented, which should result
in the device object being freed.

id Device ID. Each device starts with an ID of zero while it is being configured. This field will be set to the
allocated ID once the physical device has had its address set successfully.

port This is the port number within the parent hub to which this device is attached.

state Device state. During their lifetime devices pass through a set of different states. This field described what
state the device is currently in.

state_data Some device states need some additional data in addition to the state. That data is stored here.

desc During initialization the USB stack will read the device device descriptor and store it here.

config When the device has been configured, this will point to the descriptor for the configuration that has been set
in the physical device.

interface When the device has been configured, this will point to the descriptor for the interface that has been set in
the physical device.

desc_chain This points to a chain of usb_descriptor objects which contain all the configuration, interface and endpoint
descriptors that have been read from the physical device. They are stored in a single linear chain with the
descriptors for each configuration chained on to the end of the previous descriptor chain.

res_client This structure is used internally by the USB stack to enable devices to wait for resources such as memory,
or to implement delays.

hcd_priv This is a pointer to private data defined by the HCD that controls the physical device. It is copied from the
hcd_priv field of the usb_bus object from which the device attachment was detected.

656

Host Device Objects

endpoints This points to a chain of usb_device_endpoint objects which associate an endpoint descriptor with an HCD
supplied pointer that implements that endpoint. Only the endpoints for the interface currently selected appear
in this list, together with endpoint 0 for control packets.

device This sub-structure is part of an anonymous union that provides fields for either devices or hubs, depending
on the flags field. At present this contains an anonymous union that contains either a pointer to a buffer
used to read configurations, or during normal running a pointer to the class driver that is using this device.

hub This is the second element of the anonymous union and contains field used if this device is a hub. This
contains a number of fields that are mainly used internally by the USB stack. Included are a count of the
number of downstream ports the hub contains together with the most recent reported state of each and a list
of the devices attached to this hub. As hub support evolves, this sub-structure will acquire further fields.

Device Lifecycle
From initial attachment through configuration, data transfer and final detachment, a device goes through a lifecycle in the USB
stack. This section looks at this lifecycle.

When a physical device is attached to a port on a hub the state change is detected by the hub state machine (see Hub Lifecycle).
This results in a device object being created and initialized. The refcount is set to 1, representing a reference held by the
physical device.

A device runs through a state machine that is generally run in the callbacks of transfers, delays and resource allocations. Each
state assesses the result of the previous operation, issues new transfers/delays/allocations, sets the next state and waits for
completion. States are generally named for the operation for which they waiting to complete. The device moves through the
following states:

NEW

This is the initial state, the device is further initialized to have an endpoint for device 0 endpoint 0. A request is set up to
wait for allocation of the shared configuration buffer.

BUFFER

This state is entered when the shared configuration buffer has been allocated. This buffer allocation has two purposes. First,
it provides us with a buffer large enough to read entire configurations into. Second, and more importantly, it serializes all
device initializations, which is necessary before setting the device address. The device sends a control packet to the hub
to clear the connect change bit. The state_data field is initialized to contain a pair of 4 bit counters which count the
number of reset and port status retries that have been tried.

CLEAR_CONNECT

Once the connect change bit has been cleared, the device sends a control command to the hub to reset the physical device.
This puts the device into a state where it responds to commands sent to device ID 0.

RESETTING

After the reset command has been sent, the device waits 200ms for the reset to complete.

RESET_DELAY

After the delay, a control request is sent to the hub to get the status of the port.

PORT_STATUS

The result of the port status request is analyzed. If the device appears to have disconnected, then the state machine is
terminated, and the detach event will be detected by the hub state machine. If the port status indicates that the device
has not been reset, then the port status retry counter is decremented, and after a delay the state machine goes back to the
RESETTING state, to re-submit the port status request. If the port status counter is zero, then a clear port enable command
is sent, the reset retry counter is decremented, the port status counter reset to its original value and the next state set to

657

Host Device Objects

CLEAR_CONNECT. This will cause the port to be reset again. If both retry counters are zero, then the device is considered
unusable and the device state set to UNDEFINED. If the device has been rest and enabled then the reset is successful. A
control command is sent to the hub to clear the reset change bit in the port and the next state set to CLEAR_RESET.

CLEAR_RESET

In this state we are reasonably sure that the device has been reset correctly, it should respond to control commands sent to
device ID 0. A new device ID is allocated from the usb_bus object and stored in the state_data field. A control command
is now sent to device ID 0 to set the address of the device to the allocated value. The next state is set to ADDRESS.

ADDRESS

If the attempt to set the address failed then the device is disabled, the ID freed and the state set to CLEAR_CONNECT
to go through the rest and port status cycle again. If it was successful then the device ID is set to the allocated value and
a new control endpoint is attached in the HCD. A control request is sent to the device to read the device descriptor into
the buffer and the next state set to DEV_DESC.

DEV_DESC

Once the device descriptor has been successfully read, it is copied into the desc field of the device object. A request is
now sent to read the first 9 bytes of the first configuration descriptor into the buffer. The next state is set to CFG_DESC
and the state_data set to zero.

CFG_DESC

From the first 9 bytes of the configuration descriptor it is possible to get the whole size of the configuration. This is used
to send a request to read the entire configuration into the buffer. The next state is set to CFG_ALL.

CFG_ALL

The read configuration is parsed and converted into a chain of usb_descriptor objects, which are then appended to the
desc_chain in the device. If there are more configurations to read, then a new request to read the first 9 bytes of the
next descriptor is sent and the state set to CFG_DESC; the state_data field is used to keep track of which descriptor is
currently being read.

If all the descriptors have been read then the device configuration is inspected. If the device is a hub, then the hub state
machine is started. Otherwise, the shared buffer is released and a class driver is sought to support this device. If no class
driver is found, the device state is set to UNSUPPORTED, otherwise it is set to RUNNING.

RUNNING

This is the eventual state for a device supported by a class driver. The device will stay in this state until the physical
device detaches.

A device can end up in two other states instead of this one. UNSUPPORTED state is similar to RUNNING except that
there is no class driver. UNDEFINED state is reached if the device appears to be attached to the hub port, but does not
communicate with the USB stack.

When a device detach is detected by the hub state machine, usb_device_detach() is called. This function puts the device
into DETACH state, deallocates the device ID and unlinks the device from the parent hub. If the device is a hub, then it also
recursively detaches any devices attached to the ports of this hub. If the device has a class driver attached to it, then the driver's
detach routine is called. Finally, usb_device_unref() is called to remove the physical device's reference. This should
result in the device being deallocated once any pending transfers have terminated.

Hub Lifecycle
Initially a hub passes through the same state machine as any other device to reset it, allocate an ID and read the descriptors.
Once this is done and the device is identified as a hub, control moves to the hub state machine, which is an additional set of
states to the device state machine.

658

Host Device Objects

RUNNING

The hub starts out in device RUNNING state. The shared buffer is still allocated and a control command is sent to the hub
to read its hub descriptor. The next state is set to DESC.

DESC

When the hub descriptor has been read, the number of downstream ports is extracted and saved. A control command is
sent to power up port 1 and the state_data is set to 1. The next state is set to PORT_POWER.

PORT_POWER

The state machine loops in this state sending a command to power up each hub port in turn, using state_data to keep track
of the current port. Once all ports have been powered up, a command to fetch the port status of port 1 is sent and status_data
set to 1. The next state is set to PORT_STATUS.

PORT_STATUS

The port status result is analyzed and if it shows a connection status change then usb_device_attach() or us-
b_device_detach() are called as appropriate. If there are more ports to poll, then a port status command is sent for
the next port, and state_data incremented to track which port is being polled. If all the ports have been polled, then the
state is set to READY and a delay set up for some number of milliseconds in the future.

READY

This is the default state of a hub when it is not polling the ports. When the delay set up in PORT_STATUS expires, this
state is processed. A new port status request is sent for port 1, state_data set to 1, and the next state set to PORT_STATUS.
This re-executes the loop in PORT_STATUS state to poll all the ports and act on any attach/detach events.

659

Name
Class Drivers — Structure and Interface

Synopsis
#include <cyg/io/usb.h>

int usb_class_driver_register(class_driver);

int usb_class_driver_deregister(class_driver);

usb_descriptor *usb_descriptor_find(desc, type);

usb_descriptor *usb_device_class_find(dev, class, subclass, protocol, configuration,
interface);

int usb_device_configure(dev, config, callback, callback_data);

Description
A class driver translates between operations on a standard eCos device interface and operations on a USB device. For example
the USB mass storage class driver translates between disk driver operations and USB mass storage operations.

USB Class Object
A class driver interfaces initially to the USB stack through a usb_class_driver object:

struct usb_class_driver
{
 usb_node node; // Link in class driver list
 int priority; // Priority in list

 int (*attach)(usb_class_driver *class_driver,
 usb_device *device);

 int (*detach)(usb_class_driver *class_driver,
 usb_device *device);

 void (*poll)(usb_class_driver *class_driver,
 usb_uint32 interval);
};

The fields in this structure are as follows:

node A list node, which is used to link this object into a prioritized list of class drivers. This is initialized by us-
b_class_driver_register() so does not need to be initialized by the class driver.

priority The priority of this class driver. This should be a positive integer. When looking for a class driver to handle a
newly attached device, the list is scanned in increasing priority order. So lower values are handled first.

attach Whenever a new device is attached to a hub, the USB stack assigns it an address, fetches any descriptors, and then
tried to find a class driver for it. It does this by calling the attach() functions of all registered class drivers until
one indicates that it is willing to handle this device. The attach() function indicates acceptance by returning
USB_OK, it indicates non-acceptance by returning an error code, preferably USB_ERR_NO_SUPPORT.

If the attach() function returns USB_OK then it should also set the device's device.class_driver field
to point to the usb_class_driver object. It should call usb_device_ref() on the USB device to ensure that
it remains valid. It must also call usb_device_select_interface.

detach This function is called when the USB device detaches. In addition to cleaning up its own data structures, the
main thing this function should do it arrange for the reference to the USB device taken in the attach function to
be released by calling usb_device_unref(), directly or otherwise.

660

Class Drivers

poll This function is called periodically from the USB subsystem. The interval parameter indicates the number
of milliseconds since the last call to this function. It can be used by the class driver to operate timeouts and
retries. The exact interval between calls will depend on the level of activity of the USB stack and the resolution
of the main system timer. Class drivers should therefore not depend on this for accurate timing operation and
may need to make their own arrangements for such things.

USB Class API
The USB stack exports a number of functions that are intended for use by class drivers.

The function usb_class_driver_register() is used by a class driver to register itself with the USB stack. Typically a
class driver is initialized as an instance of the driver type that it is intending to serve (e.g. disk, network, serial etc.) and during
the initialization function for that driver will call usb_class_driver_register(). If the driver ever needs to detach
itself from the USB stack then it can call usb_class_driver_deregister().

Within the attach() function, the class driver can call some USB stack functions to help it decide whether a device is one
that it can support. The most important of these is usb_device_class_find() which scans the descriptors attached to a
a device for an interface that implements the given class, subclass and protocol types. A value of -1 for subclass
and protocol acts as a wildcard. If successful it returns pointers to the configuration and interface found. The function us-
b_descriptor_find() can be used on dev->desc_chain, or any other descriptor pointer, to find the next descriptor
of a given type. The class driver can also just inspect the device and parse the descriptor chain itself if necessary.

Before returning, the attach() function should call usb_device_configure(). Which will configure the device to use
the configuration descriptor is supplied. The class driver must also supply a callback which will be called when the configuration
has been done, or has failed. Further device setup can then be done in the callback.

Putting all that together, the functions of a class driver should have the following approximate form:

//---
// Attach device call

static int mydev_attach(usb_class_driver *class_driver, usb_device *dev)
{
 int result = USB_OK;
 mydev_data *mydev;

 // Look for configuration and interface. Here we assume that the
 // first configuration is the one we want to use and that we are
 // not worried about the function type, hence the wildcard.
 usb_descriptor *cdesc, *idesc;

 usb_device_class_find(dev, USB_CLASS_MYCLASS, USB_SUBCLASS_MYSUBCLASS, -1, &cdesc, &idesc);

 if(cdesc == NULL || idesc == NULL)
 return USB_ERR_NO_SUPPORT;

 // Set up device data structures here...
 mydev = mydev_alloc();
 mydev->dev = dev;

 // Extract any useful information from the interface descriptor
 // chain, such as endpoint addresses...

 // Reference the device
 usb_device_ref(dev);

 // Send off a command to select the configuration
 // we have found.
 result = usb_device_configure(dev, cdesc, mydev_attach_tfr_done, mydev);

 // If it all worked, set the device's class driver to point to us.
 if(result == USB_OK)
 dev->device.class_driver = class_driver;

 return result;
}

661

Class Drivers

//---
// Configuration callback

static int mydev_attach_tfr_done(usb_tfr *tfr)
{
 int result = tfr->status;
 mydev_data *mydev = tfr->callback_data;
 usb_device *dev = tfr->dev;

 // Release tfr object
 usb_tfr_unref(tfr);

 if(result != USB_OK)
 {
 // Handle configuration error by detaching from USB device and
 // freeing local resources.
 mydev_free(mydev);
 usb_device_unref(dev);
 return result;
 }

 // Continue device initialization...

 return result;
}

//---
// Device detach call

static int mydev_detach(usb_class_driver *class_driver, usb_device *dev)
{
 int result = USB_OK;

 // Find my device data from device pointer.
 mydev_data *mydev = mydev_find(dev);

 // Shut down device...

 // Free device data structure
 mydev_free(mydev);

 // Release reference to device
 usb_device_unref(dev);

 return result;
}

//---
// Device poll call

static void mydev_poll(usb_class_driver *class_driver, usb_uint32 interval)
{
 // Handle timeouts and delays in active devices...
}

662

Name
Host Controller Drivers — Structure and Interface

Description

This section is mainly of interest to developers who want to write a new host controller driver. It describes the interface used
by the USB stack to initiate HCD operations and the API that an HCD can use to interact with the USB stack.

HCD Object

The main interface between the USB stack and each type of HCD is the usb_hcd object:

struct usb_hcd
{
 const char *name; // Driver name

 // Initialization etc.
 void (*init)(void); // Initialize controller(s)
 int (*attach)(usb_bus *bus); // Attach to hardware
 int (*detach)(usb_bus *bus); // Detach from hardware

 // Endpoint handling
 int (*endpoint_attach)(usb_device *dev, usb_device_endpoint *dep);
 int (*endpoint_detach)(usb_device *dev, void *hcd_endpoint);

 // Transfer handling
 int (*submit)(usb_device *dev, usb_tfr *tfr); // Submit transfer (chain)
 int (*cancel)(usb_device *dev, usb_tfr *tfr); // Cancel transfer

 // Controller operation
 void (*poll)(usb_bus *bus); // Poll controller for events

 int (*frame_number)(usb_bus *bus); // Get current frame number

 // Root hub support

 int (*port_status)(usb_bus *bus, int port, usb_hub_port_status *status);
 int (*set_port_feature)(usb_bus *bus, int port, usb_uint16 feature);
 int (*clear_port_feature)(usb_bus *bus, int port, usb_uint16 feature);

 // TODO: Bandwidth support

} CYG_HAL_TABLE_TYPE;

The fields are as follows:

name This is a pointer to a string that names this device. It is mainly used for debugging.

init This is called once by the USB stack to initialize all HCDs of this type. In combination with
platform code this function should enumerate all the HCDs of the supported type and eventually
call usb_hcd_register() to make the controller available to the USB stack.

The call to usb_hcd_register() is passed a hcd_bus object that the HCD should allocate
in its private data structures. Within this object the hcd field should be set to this HCDs usb_hcd
object. The hcd_priv field should be set to point to the HCDs per-controller private data struc-
ture; this value will be copied to the hcd_priv field of any device attached to this bus. The
hcd_ep0 field should be set to point to an HCD control endpoint for device 0; this will be used
to communicate with a newly attached device before its ID has been set. The second argument to
usb_hcd_register() is a count of the number of downstream, ports the root hub contains.

While this function should locate the devices and initialize the HCD data structures it should not
access the Host Controller hardware at this point.

663

Host Controller Drivers

attach This is called to attach the HCD to the hardware. This is when the hardware should be initialized,
interrupt handlers registered and everything made ready for transfers to occur.

detach This is called to detach the HCD from the hardware. It should undo the initialization done by the
attach function, leaving the device free for other software to take control.

The main reason for this attach/detach mechanism is to allow OTG devices to be shared between
host and peripheral drivers.

endpoint_attach This is called to create an endpoint in the host controller. The HCD should use the id of the device
plus the endpoint descriptor in the usb_device_endpoint object to create an endpoint of the correct
type and direction for the device.

The HCD will typically allocate controller and driver data structures to represent this endpoint.
If the underlying controller only supports a limited number of endpoints, then the driver should
either fail excess endpoint attachments, or arrange to share the physical endpoints between a
larger number of virtual endpoints. If the HCD endpoint is created successfully the it should
assign a pointer to it to the hcd field in the usb_device_endpoint object.

endpoint_detach This is called when the device is detached, or changes its active interface. It undoes the resource
allocation made in endpoint_attach. Additionally, this function must cancel any transfers
that are pending on the endpoint. Depending on the nature of the controller, these transfer can-
cellations and the eventual deallocation of the endpoint may happen after this function returns.

submit This is called to submit a transfer to a device. Internally, this function should extract the HCD
private data from the device hcd_priv and the endpoint from the device's usb_device_end-
point object for the transfer's endpoint address. The HCD is free to use the hcd_endpoint and
hcd_list fields in the usb_tfr object; the latter should be initialized before use.

cancel This is called to cancel a pending transfer. In general this is only necessary for interrupt or isochro-
nous transfers, control and bulk transfers will always terminate within a finite time. The transfer
will not necessarily be available for reuse once this function returns. This is only guaranteed once
the transfer's callback is invoked, either with a USB_TFR_CANCELLED status, some other error,
or even USB_OK.

poll This is called from the main USB handling loop to give the HCD the chance to service the hard-
ware. In general all controller operations should be handled in this function rather than the ISR or
DSR. The HCD should test the hardware for transfer completion, device attach/detach and errors
and handle them here.

If a transfer completes in this polling routine its callback may either be invoked directly by call-
ing usb_tfr_callback_pop() or may be deferred for later processing by calling usb_t-
fr_complete_async(). The latter is preferable since it avoids any problems of recursion if
the callback submits another transfer.

The simplest way to write an HCD is to do all device event handling in the poll() routine. If
the controller supports interrupts then the HCD can call usb_signal_poll() to cause the
poll routine to be called. If it makes sense to handle device events in the ISR or DSR, callbacks,
such as returning transfers, should still happen in the poll routine.

frame_number This simply returns the current USB frame number.

port_status This call fills in the status buffer with information on the state of the given port. This routine
should query the port in the host controller's root hub registers and translate the results into the
standard format expected in the status result, which should be returned in little endian order.

set_port_feature This is called to set a port feature. The feature argument is a standard hub port feature code
as defined in the USB standard. Only the subset of features relevant to a root hub are supported.

clear_port_feature This is called to clear a port feature. The feature argument is a standard hub port feature code
as defined in the USB standard. Only the subset of features relevant to a root hub are supported.

664

Name
Target Object — Structure and Interface

Synopsis

#include <cyg/io/usb.h>

void usb_target_ref(tgt);

void usb_target_unref(tgt);

int usb_target_attach(tgt, pcdi);

int usb_target_detach(tgt);

int usb_target_stall(tgt, ep, stall);

usb_pcdi *usb_pcdi_find_by_name(name);

int usb_string_descriptor_utf8(buf, len, u8);

int usb_string_descriptor_create(buf, len, index, strings[], strings_num);

Description
In order to support a target device, application code must create and initialize a usb_target object, which is then passed to
the USB stack.

Throughout this section the code that instantiates and uses the target object is referred to an an "application". Normally this
will be a device driver or other middleware that translates USB operations into some other interface that eCosPro understands.
Examples would be the CDC ACM driver that translates USB traffic into a serial device, or the RNDIS driver that translates
into a Ethernet driver interface.

The target mode stack retains the USB terminology for data transfer direction, which can be a little confusing. So a transfer
which involves data being passed from the host to be received by the target, is referred to as an OUT transfer. Similarly,
transmission from the target to the host is referred to an an IN transfer.

Target Object
A target object has the following structure:

struct usb_target
{
 usb_pcdi *pcdi; // PCD device instance

 usb_uint32 flags; // Flags
 usb_uint8 refcount; // Reference counter
 usb_uint8 id; // Device ID
 usb_uint8 state; // Current target state

 const usb_device_descriptor *desc; // Device descriptor
 const usb_device_qual_descriptor *qdesc; // Device qualifier descriptor

 const usb_config_descriptor **configs; // Array of configurations
 int config_count; // Size of array
 const usb_config_descriptor *config_current;// Currently selected config

 const usb_string_descriptor **strings; // Array of string descriptors
 int string_count; // Size of array

665

Target Objects

 usb_target_endpoint ep0; // Control endpoint

 usb_target_interface *interfaces; // List of active interfaces

 void *data; // Client private data pointer

 // Optional callbacks to user code

 // Control message escape
 int (*control)(usb_target *tgt, usb_request *req, void **buf, usb_uint16 *len);

 int (*new_state)(usb_target *tgt); // Signals state change

 // Dynamic descriptor callback, called if the addressed static
 // descriptor pointer is NULL.
 int (*get_descriptor)(usb_target *tgt, usb_uint8 type, usb_uint8 index,
 usb_uint8 **buf, usb_uint16 *len);

#if CYGINT_IO_USB_TARGET_INTERFACE_CALLBACK>0
 // Interface change callback
 int (*set_interface)(usb_target *tgt, usb_uint8 intf, usb_uint8 alt);
#endif
};

The fields of the target object are as follows:

pcdi This is a pointer to the PCD instance to which this target object is attached. This is initial-
ized during the call to usb_target_attach() and cleared by usb_target_de-
tach(). This field should not be initialized or changed by the application.

flags Various flag bits. At present only two flags are defined, USB_TGT_FLAG_CALL-
BACK_CTRL and USB_TGT_FLAG_CALLBACK_DESC which control the invocation
of the control() and get_descriptor() callbacks.

refcount Target reference count. Since target objects are allocated by the application, zeroing this
count does not cause the target to be zeroed. This count is used to keep track of the
number of transfers associated with the target and for consistency checking.

id The device ID. This is the ID that the host has set via a SET ADDRESS command.
Before that happens, and when the target is reset, this will be set to zero.

state Target state. This moves through states as defined by the USB specification and controls
how the target reacts to bus events such as suspend, resume and reset.

desc A pointer to the device descriptor for this target. If this pointer is NULL, then the
get_descriptor() callback is called to supply the descriptor.

qdesc A pointer to the device qualifier descriptor for this target. If this pointer is NULL, then
the get_descriptor() callback is called to supply the descriptor.

configs A pointer to an array of pointers to configuration descriptors. If this pointer is NULL,
or a pointer in the array is NULL, then the get_descriptor() callback is called
to supply the descriptor.

config_count The size of the configs array. If a descriptor index greater than this value is requested,
then the get_descriptor() callback is called to supply the descriptor.

config_current When a target passes into the CONFIGURED state, this field will be set to point to the
configuration selected. When the target is reset, this will be set back to NULL.

strings A pointer to an array of pointers to string descriptors. If this pointer is NULL, or a pointer
in the array is NULL, then the get_descriptor() callback is called to supply the
descriptor.

666

Target Objects

There are a number of issues with string descriptors and their encoding which are cov-
ered in the section titled String Descriptor Encoding.

string_count The size of the strings array. If a descriptor index greater than this value is requested,
then the get_descriptor() callback is called to supply the descriptor.

ep0 A target endpoint structure. This is initialized and attached to the PCDI when the target
is initially connected to the bus. It is used for all control endpoint transfers.

The desc sub-field of this object may be initialized to point to a descriptor for endpoint
0. If this is left NULL, it will be initialized to point to a default descriptor that allows a
maximum packet size of 64 bytes. If the client needs to use a different maximum packet
size on endpoint zero, it should set this sub-field.

interfaces A chain of dynamically allocated target interface objects. When the target is configured
by the host the selected configuration is scanned and for each endpoint in each active
interface an endpoint is created and attached to the PCDI. A usb_target_endpoint object
is allocated and attached to this list for each interface, and itself contains a list of us-
b_target_endpoint objects for each attached endpoint. When the target is reset, this list
is scanned, the endpoints detached from the PCDI, and all the objects freed. A switch
to a different alternate setting for an interface will result in the interface object in this
list being detached, its endpoints detached from the PCDI, and a new interface and end-
points for the selected alternate created.

data A data pointer that the application may use for its own purposes. Normally this will point
to some data structure associated with the application.

control() Normally, the USB target mode stack will handle all control SETUP messages to read
descriptors, set the address, set the configuration and other commands. If a SETUP pack-
et arrives that has a request type or code that is not recognized, then this function will
be called. The return code defines what will happen next:

USB_OK

This indicates that the command was recognized and processed and there is no fur-
ther action required. The USB stack will return a status packet to the host and then
return to looking for the next SETUP packet.

USB_TARGET_CONTROL_DATAIN

This indicates that the USB stack should return data to the host. The data to be
returned should be described by setting *buf and *len to the address and size
of a buffer.

When the data has been successfully sent, this function will be called again, with
the same request structure, the buffer pointer as passed, and *len set to the actual
quantity of data sent. This is done so that the application can release or reuse the
buffer; it can distinguish this call from the first by looking at *buf which will be
NULL in the first call and non-NULL in the second. On return from this second
call a status packet will be received from the host and the USB stack will return to
looking for the next SETUP packet.

USB_TARGET_CONTROL_DATAOUT

This indicates that the USB stack should receive data from the host. A buffer into
which the data should be received is described by setting *buf and *len to the
address and size of the buffer.

When the data has been successfully received, this function will be called again,
with the same request structure, the buffer pointer as passed, and *len set to the

667

Target Objects

actual quantity of data received. The application can distinguish this call from the
first by looking at *buf which will be NULL in the first call and non-NULL in the
second. On return from this second call a status packet will be return to the host and
the USB stack will return to looking for the next SETUP packet.

USB_ERR_COMMAND_INVALID

If the callback returns this error code, then the USB stack will generate a STALL
condition on the bus, which will act to abort the control transfer. The stack will then
return to looking for the next SETUP packet.

If this callback is NULL, then any unrecognized SETUP packets will cause a STALL.
So, unless the target device protocol contains extra control operations, it is not necessary
for the application to supply this callback.

new_state() This callback is called each time the target moves into a new state. The application can
perform any processing of its own in response to this call. If the application does no
need to process these events, it can set this pointer to NULL.

get_descriptor() If any of the descriptor pointers in the target object is NULL, or a descriptor outside
the supplied set is fetched, this callback will be called. The type and index values
identify the descriptor being read. If the application can generate the descriptor itself, it
should set *buf and *len to point to the descriptor and return.

When the descriptor has been returned to the host, this callback will be called again with
the same type and index values. This is done so that the application can release or reuse
the buffer; it can distinguish this call from the first by looking at *buf which will be
NULL in the first call and non-NULL in the second.

get_interface() If a target implements interfaces with alternate settings, the CDL interface CYGIN-
T_IO_USB_TARGET_INTERFACE_CALLBACK should be implemented to cause
this callback to be present. Subsequently, whenever the host sends a SET_INTERFACE
operation to select an alternate setting, this function will be called. This allows the client
code to adapt to the potential change in endpoint configuration.

Since relatively few targets implement alternate interface settings, this callback is only
present if the CDL interface is implemented.

String Descriptor Encoding
USB string descriptors are in Unicode, encoded in UTF-16LE. Unfortunately, this is not a character encoding that is directly
supported by the GCC toolchain. There are a number of ways to work around this. The first, and simplest is to use the -
fshort-char compiler option to force wchar_t to be 16 bits rather than the default 32 bits. Strings can then be prefixed
by L to ensure 16 bit Unicode encoding. A typical static descriptor can then be defined as follows:

static const usb_string_descriptor mytgt_string_manufacturer =
{
 .bLength = 2+2*11,
 .bDescriptorType = USB_DESC_STRING,
 .bString = L"eCosCentric"
};

However, there are a number of problems with this. The encoding is strictly 16 bits, and any code points that require a surrogate
pair cannot be defined. Compiling files with the -fshort-char option will throw up compiler warnings since it differs from
the defaults with which the libraries will have been built. But, most importantly, it only works for little endian targets; big
endian targets will generate the 16 bit values in big endian byte order.

A more portable approach would be to encode the UTF-16LE directly using optional byte swaps where necessary, as in the
following example:

static const usb_string_descriptor mytgt_string_manufacturer =

668

Target Objects

{
 .bLength = 2+2*11,
 .bDescriptorType = USB_DESC_STRING,
 .bString = { USB_CPU_TO_LE16('e'),
 USB_CPU_TO_LE16('C'),
 USB_CPU_TO_LE16('o'),
 USB_CPU_TO_LE16('s'),
 …
 }
};

However, this approach is clumsy and does not allow the size or contents of the string to be made a configuration option, or
even easy to change in the code.

The preferred approach in the USB stack is to generate and store string descriptors in UTF-8 and to convert them to UTF-16LE
at run time, when the descriptor is requested. A UTF-8 string is just a sequence of bytes and can be defined and manipulated like
any other byte array. Most text editors will allow a UTF-8 string to be created or pasted in from some other source without any
problems. Most UTF-8 strings occupy less space than their UTF-16LE equivalents. A standard ASCII string is just a UTF-8
string that contains no code points beyond the basic ASCII set.

To simplify use of UTF-8 strings, the USB stack exports a couple of helper functions. The function usb_string_de-
scriptor_utf8() takes a pointer and length of a buffer in which a string descriptor is created, and a pointer to a UTF-8
string. It recodes the UTF-8 string into UTF-16LE in the buffer together with setting the descriptor size and type. If successful,
the buffer will contain a string descriptor ready to be transmitted. If the buffer is not large enough for the descriptor, an error
code will be returned.

The function usb_string_descriptor_create() is passed a buffer pointer and length, the index of the descriptor to
be returned and a pointer to an array of UTF-8 strings. It checks that the index is correct and then creates a new string descriptor
in the buffer using the indexed string from the array; it calls usb_string_descriptor_utf8() to do this.

To put all this together, the strings for a device can be defined statically as follows:

static const usb_string_descriptor mytgt_string_langid =
{
 .bLength = 2+2*1,
 .bDescriptorType = USB_DESC_STRING,
 .bString = { USB_CPU_TO_LE16(0x0809) },
};

static const usb_string_descriptor *mytgt_string_descriptors[1] =
{
 [0] = &mytgt_string_langid,
};

static const char *mytgt_descriptor_strings[] =
{
 [1] = "eCosCentric",
 [2] = "My Device",
 [3] = "01234567890",
};

In the target object, the strings field is set to point to mytgt_string_descriptors and string_count set to 1. This
will cause the USB target stack to call the target's get_descriptor function for the remaining string descriptors. This function
should look like the following example:

static usb_uint8 mytgt_dynamic_desc[64]; // Dynamic descriptor buffer

static int mytgt_get_descriptor(usb_target *tgt, usb_uint8 type, usb_uint8 index,
 usb_uint8 **buf, usb_uint16 *len)
{
 int result = USB_OK;

 // A non-NULL buffer pointer is the USB stack returning the buffer
 // to us for reuse.
 if(*buf != NULL)
 return USB_OK;

 if(type == USB_DESC_STRING)

669

Target Objects

 {
 result = usb_string_descriptor_create(mytgt_dynamic_desc, sizeof(mytgt_dynamic_desc),
 index,
 mytgt_descriptor_strings,
 sizeof(mytgt_descriptor_strings)/sizeof(char *));
 if(result == USB_OK)
 {
 *buf = mytgt_dynamic_desc;
 *len = mytgt_dynamic_desc[0];
 }
 }
 else
 {
 // Handle any other descriptor types
 }

 return result;
}

Note that in this example the serial number string is a constant. For devices where a unique serial number is required for
each unit, a different approach may be needed. First the unit must have a unique identifier that can be used for this purpose.
Depending on the platform this could be fetched from EPROM, FLASH, a serial number chip or a built-in chip ID. The simplest
approach is to convert this value into an ASCII string. Then in the get_descriptor() function this string can be converted
to a string descriptor when the serial number is requested. For an example take a look at the hid_test.c test program where
a serial number is manufactured from a checksum of the executable.

Target Object API
The USB stack exports a number of functions that are intended for use by applications using targets.

The function usb_target_attach() must be called to attach a target to a specific peripheral interface. Peripheral inter-
faces are named and a pointer to a particular interface can be obtained by calling usb_pcdi_find_by_name(). Following
this, most target events will be handled by the USB stack with calls to the callbacks as necessary. If the application wants to
stop the target, it should call usb_target_detach().

Some USB protocols require an endpoint stall to signal various conditions. The function usb_target_endpoint_stal-
l() allows this to be done. The ep argument contains the endpoint address, and should have USB_ENDPOINT_ADDR_IN
set for IN endpoints. The stall argument is 1 to stall the endpoints and zero to clear the stall condition.

An application must instantiate a usb_target object and initialize it before calling usb_target_attach(). Typically this
object can be defined statically as in the following example:

static usb_target mytgt_target =
{
 .desc = &mytgt_device_descriptor,
 .qdesc = &mytgt_device_qual_descriptor,

 .configs = mytgt_config_descriptors,
 .config_count = 1,

 .strings = mytgt_string_descriptors,
 .string_count = 1,

 .control = mytgt_control,
 .new_state = mytgt_new_state,
 .get_descriptor = mytgt_get_descriptor,

 .data = &mytgt_data,
};

This defines the target object, initializes the static descriptors and callbacks. No fields beyond those shown above need to be
initialized. While none of the fields is mandatory, if a static descriptor is not present, the get_descriptor() callback will
be called, so it is not sensible to have both NULL descriptors and no get_descriptor().

Once the application has started, it should locate the PCDI it wants to attach the target to and call usb_target_attach(),
as in the following example:

670

Target Objects

void mytgt_init(void)
{
 usb_pcdi *pcdi;

 // Find PCDI by name
 pcdi = usb_pcdi_find_by_name("usb_fs");

 if(pcdi == NULL)
 {
 // Handle error
 }

 // Attach our target to the PCDI
 result = usb_target_attach(&mytgt_target, pcdi);

 if(result != USB_OK)
 {
 // Handle error
 }
}

Once the target has been attached, all further interaction with the application will be via the callbacks. Most new_state()
callbacks can be ignored while the target is going through the initial connect/reset/address sequence. The transition to CON-
FIGURED state is the most important since this is when the target should become ready to interact with the host. Normally
this will be the point at which it submits transfers to the OUT endpoints to receive packets from the host and maybe starts
sending data via the IN endpoints.

For a complete example take a look at the acm_example.c test program. This source is annotated with extra comments.
The usbms_tgt.c and hid_test.c test programs in packages/io/usb/<version>/tests directory. The CDC/
ACM protocol driver can also examined for example code.

671

Name
Peripheral Controller Drivers — Structure and Interface

Description
This section is mainly of interest to developers who want to write a new peripheral controller driver. It describes the interface
used by the USB stack to initiate PCD operations and the API that a PCD can use to interact with the USB stack.

PCD Objects
The main interface between the USB stack and each type of PCD is the usb_pcd object:

struct usb_pcd
{
 const char *name; // Driver name

 int pad;

 // Initialization etc.
 void (*init)(void); // Initialize controller(s)
 int (*attach)(usb_pcdi *pcdi, usb_target *tgt); // Attach to hardware
 int (*detach)(usb_pcdi *pcdi, usb_target *tgt); // Detach from hardware

 // Endpoint attach/detach
 int (*endpoint_attach)(usb_pcdi *pcdi, usb_target_endpoint *tep);
 int (*endpoint_detach)(usb_pcdi *pcdi, usb_target_endpoint *tep);

 // Set/clear endpoint stall
 int (*endpoint_stall)(usb_pcdi *pcdi, usb_target_endpoint *tep, int stall);

 // Transfer handling
 int (*submit)(usb_target *tgt, usb_tfr *tfr); // Submit transfer (chain)
 int (*cancel)(usb_target *tgt, usb_tfr *tfr); // Cancel transfer

 // Controller operation
 void (*poll)(usb_pcdi *pcdi); // Poll controller for events

 int (*set_address)(usb_pcdi *pcdi, usb_uint8 addr); // Set new target address

};

The fields are as follows:

name This is a pointer to a string that names this device. It is mainly used for debugging.

init This is called once by the USB stack to initialize all PCDs of this type. In combination with platform
code this function should enumerate all the PCDs of the supported type and eventually call usb_pc-
di_register() to make the controller available to the USB stack.

The call to usb_pcdi_register() is passed a usb_pcdi object that the PCD should allocate in
its private data structures.

While this function should locate the devices and initialize the PCD data structures it should not access
the Peripheral Controller hardware at this point.

attach This is called to attach the PCD to the hardware. This is when the hardware should be initialized,
interrupt handlers registered and everything made ready for transfers to occur.

detach This is called to detach the PCD from the hardware. It should undo the initialization done by the attach
function, leaving the device free for other software to take control.

The main reason for this attach/detach mechanism is to allow OTG devices to be shared between host
and peripheral drivers.

672

Peripheral Controller Drivers

endpoint_attach This is called to create an endpoint in the peripheral controller. The PCD should use the endpoint
descriptor in the usb_target_endpoint object to create an endpoint of the correct type and direction
for the device.

The PCD will typically allocate controller and driver data structures to represent this endpoint. If the
underlying controller only supports a limited number of endpoints, then the driver should either fail
excess endpoint attachments, or arrange to share the physical endpoints between a larger number of
virtual endpoints. If the PCD endpoint is created successfully the it should assign a pointer to it to the
pcd field in the usb_target_endpoint object.

endpoint_detach This is called when the target is detached, or changes its active interface. It undoes the resource allo-
cation made in endpoint_attach. Additionally, this function must cancel any transfers that are
pending on the endpoint. Depending on the nature of the controller, these transfer cancellations and
the eventual deallocation of the endpoint may happen after this function returns.

submit This is called to submit a transfer to the controller. Internally, this function should extract the PCD
private data from the target pcdi field and the endpoint from the target's usb_target_endpoint object
for the transfer's endpoint address. The PCD is free to use the hcd_endpoint and hcd_list
fields in the usb_tfr object; the latter should be initialized before use.

cancel This is called to cancel a pending transfer. The transfer will not necessarily be available for reuse
once this function returns. This is only guaranteed once the transfer's callback is invoked, either with
a USB_TFR_CANCELLED status, some other error, or even USB_OK.

poll This is called from the main USB handling loop to give the PCD the chance to service the hardware.
Controller operations may be handled either in this function or in the ISR or DSR; however, callbacks
must be made from this function. The PCD should test the hardware for transfer completion, device
attach/detach and errors and handle them here.

If a transfer completes in this polling routine its callback may either be invoked directly by calling
usb_tfr_callback_pop() or may be deferred for later processing by calling usb_tfr_com-
plete_async(). The latter is preferable since it avoids any problems of recursion if the callback
submits another transfer.

The simplest way to write an PCD is to do all device event handling in the poll() routine. If the
controller supports interrupts then the PCD can call usb_signal_poll() to cause the poll routine
to be called. If it makes sense to handle device events in the ISR or DSR, callbacks, such as returning
transfers, should still happen in the poll routine.

set_address This is called to set the address of the target in the peripheral controller. This is called after the host
has sent a SET_ADDRESS command.

There is just one instance of the usb_pcd object for each type of peripheral controller. However, there may be more than one
physical device of each type on the board. Each of these is represented by a usb_pcdi object:

struct usb_pcdi
{
 usb_node node; // Link in PDCI list

 char *name; // Instance name

 usb_uint8 state; // Controller state

 usb_pcd *pcd; // Pointer to PCD
 usb_target *tgt; // Current attached target
 void *pcdi; // Driver private data
};

node Node in list of active PCD instances. This need not be initialized by the PCD, it is initialize by usb_pcdi_reg-
ister().

name Name of this interface. This should distinguish it from all other PCDIs, and is used by usb_pc-
di_find_by_name() to locate this PCDI. This field must be initialized by the PCD before calling usb_pc-
di_register().

673

Peripheral Controller Drivers

pcd A pointer to the usb_pcd object for the controlling driver. This field must be initialized by the PCD before calling
usb_pcdi_register().

tgt When a target is attached to a PCDI by calling usb_target_attach(), a pointer to the target is placed here. This
field should be initialized to NULL by the PCD before calling usb_pcdi_register().

pcdi A pointer to a per-instance data structure in the PCD. This field must be initialized by the PCD before calling us-
b_pcdi_register().

674

Part XXXV. USB Serial Support
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
118. USB Serial Support .. 677

Overview ... 678
119. USB Target CDC ACM Protocol Driver .. 685

Overview ... 686
120. USB Host CDC ACM Protocol Driver .. 688

Overview ... 689
121. USB Host FTDI Protocol Driver .. 691

Overview ... 692

676

Chapter 118. USB Serial Support

677

USB Serial Support

Name
Overview — eCosPro Support for USB Serial devices

Description
eCosPro USB serial support is divided into a number of packages. The USB serial driver package (CYGP-
KG_IO_SERIAL_USB) provides the common part of the USB serial device support. It communicates with one or more pack-
ages that implement a specific USB serial protocol. Serial support is implemented in both peripheral and host modes. The
currently supported USB serial protocol packages include the Target CDC ACM protocol driver, Host CDC ACM protocol
driver and Host FTDI protocol driver.

Applications access USB serial devices just as they would a physical UART, using the standard eCos I/O package API to send
and receive data, and to set and get configuration and status information.

Example USB serial test applications can be found in the packages/devs/serial/usb/<VER>/tests directory. In
particular the usb_echo.c test demonstrates access to all potentially attached USB serial protocol device types. It also
includes code that shows the use of callbacks to determine when a host adapter has been attached or detached.

The following sections describe the configuration, internal data structures and workings of the USB serial package. They will
generally only be of interest to someone with specific configuration requirements, or to gain a deeper understanding of the
interface between the USB serial and protocol packages.

Data Structures
For various practical reasons, the interface between this package and the protocol drivers is defined in the usb_serial.h
file in the main USB package.

The interface between the eCos serial driver and the USB protocol driver is defined by a data structure, usb_serial_if. This
contains a number of fields that control the transfer of data between the drivers. Many of these are for internal use of the drivers,
however, a number must be initialized by the user:

dev

In host mode this should be set to point to the usb_device object for the device being used when it has attached to the bus.
The protocol driver must take a reference to this device in order to prevent it from being deallocated.

tgt

In target mode this points to the usb_target object that represents this peripheral. This target should be populated with
suitable descriptors for the protocol being implemented.

call

This points to a table of functions that are used to communicate between the two drivers. This is described later.

chan

A pointer to the eCos serial device channel.

rx_buf

A pointer to a buffer used to receive data from the protocol package.

rx_maxpkt

The size of the rx_buf buffer.

target.pcdi_name

In target mode, this points to a string that names the peripheral controller to which the target will be attached.

678

USB Serial Support

host.id

In host mode, this should be the channel index number. This effectively defines the order in which host channels are
searched for a VID/PID match. See the CDC/ACM host driver for details.

host.vid

In host mode, this controls whether this serial channel matches a particular USB Vendor ID. If zero it will match any ID,
otherwise this channel will only match a device with the given Vendor ID. See the CDC/ACM host driver for details.

host.pid

In host mode, this controls whether this serial channel matches a particular USB Product ID. If zero it will match any ID,
otherwise this channel will only match a device with the given Product ID. See the CDC/ACM host driver for details.

The call field points to a table of function calls. The functions in this table provide communication between the serial driver
and the protocol driver.

int (*init)(usb_serial_if *usb_if);

This is the initialization routine for the protocol driver, it is called from the serial driver during it's initialization. This
function should perform any USB stack initialization, such as attaching the target object to the PCDI in target mode, or
register the class driver in host mode.

int (*attach)(usb_serial_if *usb_if);

This is called from the protocol driver whenever an attach event is detected in both host and target modes. The main side
effect of this will be to invoke any registered serial callback.

int (*detach)(usb_serial_if *usb_if);

This is called from the protocol driver whenever an attach event is detected in both host and target modes. As with the
attach call, this will cause the serial callback to be invoked.

int (*send_data_start)(usb_serial_if *usb_if);

This is called from the protocol driver to kick the serial driver transmitter into activity. It should be called when the USB
device, host or target, moves into a state where data transfers can be started.

int (*send_data)(usb_serial_if *usb_if, usb_uint8 *buf, usb_int16 len);

This is called by the serial driver to transmit data on the USB device. The buf and len arguments describe the raw data
to be sent. The protocol driver may need to wrap this data in any protocol headers or trailers and send it via the USB stack.

int (*send_data_done)(usb_serial_if *usb_if, usb_uint8 *buf, usb_int16 len);

This is called by the protocol driver when the transfer requested by send_data has completed. The buf will match the
buffer pointer in the send_data call, and len will give the amount of data transmitted. It is likely that this function will
call send_data to start another transmission; so the protocol driver must be ready for this.

int (*recv_data)(usb_serial_if *usb_if, usb_uint8 *buf, usb_int32 len);

This is called by the serial driver to supply a buffer for asynchronous data reception. It will use the rx_buf and rx_max-
pkt fields from the common data structure. The protocol driver should use this to submit the necessary USB reception
transfers to the USB device.

int (*recv_data_done)(usb_serial_if *usb_if, usb_uint8 *buf, usb_int16 len);

The protocol driver calls this when some data has been received. The buf and len describe the data received; while these
will describe a portion of the rx_buf buffer, they may not describe all of it since protocol headers and trailers may be
skipped. As with send_data_done, the serial driver may call back into the protocol driver during this call.

int (*dev_line_coding)(usb_serial_if *usb_if, usb_line_coding *line_coding);

This is called from the protocol driver when it receives a command from the USB peer to set the line parameters. The
parameters passed are encoded in the usb_line_coding as described in the usb_serial.h header.

679

USB Serial Support

int (*dev_control_line_state)(usb_serial_if *usb_if, usb_uint16 line_state);

This is called from the protocol driver when it receives a command from the USB peer to set the RTS and DTR control
line states. The state is encoded in the line_state argument as described in the usb_serial.h header.

int (*usb_line_coding)(usb_serial_if *usb_if, usb_line_coding *line_coding);

This is called from the serial driver when the eCos client sets any of the serial line parameters. The parameters passed are
encoded in the usb_line_coding as described in the usb_serial.h header.

int (*usb_control_line_state)(usb_serial_if *usb_if, usb_uint16 line_state);

This is called from the serial driver when the eCos client sets the state of either the RTS or DTR lines. The state is encoded
in the line_state argument as described in the usb_serial.h header.

int (*usb_set_config)(usb_serial_if *usb_if, cyg_uint32 key, const void *xbuf,
cyg_uint32 *len);

This may be called from the serial driver if it is passed any set_config() keys that it does not recognize. It allows the
protocol driver to handle any config options itself. This entry may be set to NULL, in which case no call will be made.

int (*usb_get_descriptor)(usb_serial_if *usb_if, usb_uint8 type, usb_uint8 index,
usb_uint8 **buf, usb_uint16 *len);

This is used only for target mode drivers. The target get_descriptor() callback will be called if a given descriptor is
not statically defined in the target object. If that routine cannot supply the descriptor then this callback should be invoked.
The arguments follow the pattern of the target get_descriptor() function, except for the first argument, which is a
pointer to the serial interface object and not the target object. This entry may be set to NULL if there are no descriptors
to be fetched.

The line coding and control line entries in this list provide functionality that in the context of a pseudo-USB-serial connection
between two machines have no real purpose. They only make sense if there is a genuine UART being controlled at one end.

Example Target Setup
A USB serial device needs some data structures to be defined and initialized. For a target mode device the following example
for a notional target shows what needs to be done. This is usually done in a platform specific USB configuration package to
associate a hardware peripheral with the serial protocol driver. This example shows a CDC ACM device, although the same
approach should serve for any target protocol.

//===
// USB serial device ACM0

#define USB_SUBSYSTEM USB_SUBSYSTEM_PCD

#include <cyg/usb/usb.h>
#include <pkgconf/io_usb_cdc_acm.h>
#include <cyg/usb/usb_serial.h>
#include <cyg/usb/cdc_acm.h>

#include CYGDAT_IO_USB_SERIAL_DEVICE_HEADER

//---
// Connection calls
//
// Functions that start with usb_serial are supplied by the serial driver.
// Functions that start with cdc_acm are supplied by the CDC ACM protocol
// driver and would be substituted with functions for another protocol
// driver.

static const usb_serial_calls example_serial_calls =
{
 .init = cdc_acm_init,
 .attach = usb_serial_attach,
 .detach = usb_serial_detach,
 .send_data_start = usb_serial_send_data_start,
 .send_data = cdc_acm_send_data,

680

USB Serial Support

 .send_data_done = usb_serial_send_data_done,
 .recv_data = cdc_acm_recv_data,
 .recv_data_done = usb_serial_recv_data_done,
 .dev_line_coding = usb_serial_line_coding,
 .dev_control_line_state = usb_serial_control_line_state,
 .usb_line_coding = cdc_acm_line_coding,
 .usb_control_line_state = cdc_acm_control_line_state,
 .usb_get_descriptor = cdc_acm_get_descriptor,
};

//---
// Interface object
//
// Preceeded by some forward definitions and the declaration of the receive
// buffer.

static usb_target example_acm0_target;
static serial_channel example_acm0;

static usb_uint8 example_acm0_rx_buf[CYGNUM_IO_USB_CDC_ACM_MAXPKT];

static usb_serial_if example_acm0_serial_if =
{
 .tgt = &example_acm0_target,
 .call = &example_serial_calls,
 .chan = &example_acm0,
 .target.pcdi_name = "usb_fs",

 .rx_buf = example_acm0_rx_buf,
 .rx_maxpkt = CYGNUM_IO_USB_CDC_ACM_MAXPKT,
};

//---
// USB target
//
// The CDC ACM protocol driver supplies the device, configuration and string
// descriptors, However, string descriptor 3, the serial number, is not provided
// and must be generated by a call to the target get_descriptor callback. The
// control and new_state callbacks are also supplied by the protocol driver.

static int example_acm0_get_descriptor(usb_target *tgt, usb_uint8 type, usb_uint8 index,
 usb_uint8 **buf, usb_uint16 *len);

static usb_target example_acm0_target =
{
 .desc = &cdc_acm_device_descriptor,

 .configs = cdc_acm_config_descriptors,
 .config_count = 1,

 .strings = cdc_acm_string_descriptors,
 .string_count = 4,
 .get_descriptor = example_acm0_get_descriptor,

 .control = cdc_acm_control,
 .new_state = cdc_acm_new_state,

 .data = &example_acm0_serial_if,
};

//---
// Serial channel
//
// This is the standard serial device channel structure, and needs to be
// initialized in the standard way with default settings and transmit and
// receive buffers.

// The baud rate is irrelevant, but we must choose a default value
#define CYGNUM_DEVS_USB_EXAMPLE_ACM0_BAUD 9600

static unsigned char example_acm_out_buf0[CYGNUM_DEVS_USB_EXAMPLE_ACM0_BUFSIZE];
static unsigned char example_acm_in_buf0[CYGNUM_DEVS_USB_EXAMPLE_ACM0_BUFSIZE];

681

USB Serial Support

static SERIAL_CHANNEL_USING_INTERRUPTS(example_acm0,
 usb_serial_funs,
 example_acm0_serial_if,
 CYG_SERIAL_BAUD_RATE(CYGNUM_DEVS_USB_EXAMPLE_ACM0_BAUD),
 CYG_SERIAL_STOP_DEFAULT,
 CYG_SERIAL_PARITY_DEFAULT,
 CYG_SERIAL_WORD_LENGTH_DEFAULT,
 CYG_SERIAL_FLAGS_DEFAULT,
 &example_acm_out_buf0[0], sizeof(example_acm_out_buf0),
 &example_acm_in_buf0[0], sizeof(example_acm_in_buf0)
);

//---
// Device table entry
//
// This generates an entry in the device table for the ACM0 device.

DEVTAB_ENTRY(example_serial_io0,
 "/dev/acm0",
 0, // Does not depend on a lower level interface
 &cyg_io_serial_devio,
 usb_serial_init,
 usb_serial_lookup, // Serial driver may need initializing
 &example_acm0
);

//---
// Descriptor callback
//
// String descriptor 3 is not defined by the CDC ACM driver. Instead it must
// be supplied by a platform-specific callback. The following example simply
// returns a constant descriptor; in real systems, a descriptor may need to be
// synthesized from a board-specific serial number (fetched from flash or EEPROM).
// Any other descriptors are generated by the CDC ACM driver via the
// usb_get_descriptor() callback.

static const usb_string_serial cdc_acm_string_product =
{
 .bLength = 2+2*10,
 .bDescriptorType = USB_DESC_STRING,
 .bString = L"0123456789",
};

static int example_acm0_get_descriptor(usb_target *tgt, usb_uint8 type, usb_uint8 index,
 usb_uint8 **buf, usb_uint16 *len)
{
 int result = USB_OK;

 if((type == USB_DESC_STRING) && (index == tgt->desc->iSerialNumber))
 {
 *buf = (usb_uint8 *)&usb_string_serial;
 *len = usb_string_serial->bLength;
 }
 else
 {
 usb_serial_if *usb_if = tgt->data;
 if(usb_if->call->usb_get_descriptor)
 result = usb_if->call->usb_get_descriptor(usb_if, type, index, buf, len);
 }

 return result;
}

Example Host Setup
Host mode devices need largely the same set of data structures as for target mode, but initialized in a slightly different way.
This is usually done in the USB serial protocol driver where a number of channels will be instantiated. The following shows
the data structures for CDC ACM channel 0.

//---

682

USB Serial Support

// Connection calls
//
// Functions that start with usb_serial are supplied by the serial driver.
// Functions that start with cdc_acm_host are supplied by the CDC ACM host protocol
// driver and would be substituted with functions for another protocol
// driver.

static const usb_serial_calls cdc_acm_host_serial_calls =
{
 .init = cdc_acm_host_init,
 .attach = usb_serial_attach,
 .detach = usb_serial_detach,
 .send_data_start = usb_serial_send_data_start,
 .send_data = cdc_acm_host_send_data,
 .send_data_done = usb_serial_send_data_done,
 .recv_data = cdc_acm_host_recv_data,
 .recv_data_done = usb_serial_recv_data_done,
 .dev_line_coding = usb_serial_line_coding,
 .dev_control_line_state = usb_serial_control_line_state,
 .usb_line_coding = cdc_acm_host_line_coding,
 .usb_control_line_state = cdc_acm_host_control_line_state,
};

//---
// Interface object
//
// Preceeded by some forward definitions and the declaration of the receive
// buffer.

static serial_channel cdc_acm0_host;

static usb_uint8 cdc_acm0_host_rx_buf[CDC_ACM_HOST_MAXPKT];

static usb_serial_if cdc_acm0_host_serial_if =
{
 .call = &cdc_acm0_host_serial_calls,
 .chan = &cdc_acm0_host,

 .rx_buf = cdc_acm0_host_rx_buf,
 .rx_maxpkt = CDC_ACM_HOST_MAXPKT,

 .host.id = __n,
 .host.vid = CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_VID,
 .host.pid = CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_PID,
};

//---
// Serial channel
//
// This is the standard serial device channel structure, and needs to be
// initialized in the standard way with default settings and transmit and
// receive buffers.

static unsigned char cdc_acm_out_buf0_host[CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_BUFSIZE];
static unsigned char cdc_acm_in_buf0_host[CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_BUFSIZE];

static SERIAL_CHANNEL_USING_INTERRUPTS(cdc_acm0_host,
 usb_serial_funs,
 cdc_acm0_host_serial_if,
 CYG_SERIAL_BAUD_RATE(CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_BAUD),
 CYG_SERIAL_STOP_DEFAULT,
 CYG_SERIAL_PARITY_DEFAULT,
 CYG_SERIAL_WORD_LENGTH_DEFAULT,
 CYG_SERIAL_FLAGS_DEFAULT,
 &cdc_acm_out_buf0_host[0], sizeof(cdc_acm_out_buf0_host),
 &cdc_acm_in_buf0_host[0], sizeof(cdc_acm_in_buf0_host)
);

//---
// Device table entry
//
// This generates an entry in the device table for the ACM0 device.

683

USB Serial Support

DEVTAB_ENTRY(cdc_acm_host_serial_io0,
 CYGPKG_IO_USB_CDC_ACM_HOST_SERIAL0_NAME,
 0,
 &cyg_io_serial_devio,
 usb_serial_init,
 usb_serial_lookup,
 &cdc_acm0_host
);

684

Chapter 119. USB Target CDC ACM
Protocol Driver

685

USB Target CDC ACM Protocol Driver

Name
Overview — eCosPro Support for CDC ACM Protocol in Peripheral Mode

Description
This package provides support for a peripheral mode serial connection using the CDC ACM protocol. It needs to be used in
conjunction with the USB serial driver package and the reader is referred to that document for additional details.

Configuration
To use this package, various other packages need to be included and configuration options need to be set. The packages
that need including are CYGPKG_IO_USB, CYGPKG_IO_SERIAL_USB, CYGPKG_IO_SERIAL and this package CYGP-
KG_IO_USB_CDC_ACM. To get USB target and serial support running, the options CYGPKG_IO_USB_TARGET and CYG-
PKG_IO_SERIAL_DEVICES need to be enabled. So long as the hardware USB configuration package defines the target data
structures described in the USB serial driver package, a CDC/ACM peripheral will be presented on the selected device port.

The configuration options CYGNUM_IO_USB_CDC_ACM_VID and CYGNUM_IO_USB_CDC_ACM_PID must be configured,
respectively, with suitable VendorID and ProductID values. These values are used by hosts to identify a specific USB device.
The www.usb.org site provides more information, specifically the Getting a Vendor ID page.

The configuration options CYGPKG_IO_USB_CDC_ACM_MANUFACTURER and CYGPKG_IO_USB_CDC_ACM_PRODUCT
allow for human-readable identification strings to be supplied by the device. These strings are returned as part of the device
USB description, and may be used by the host O/S in its description of the product as presented to end-users.

The configuration option CYGNUM_IO_USB_CDC_ACM_MAXPKT defines the maximum packet size used for USB transfers.
It is used to define fields in the CDC ACM descriptors and must be used to define the size of the the rx_buf in the usb_serial_if
structure.

Configuration Packages

The USB driver configuration packages for some target families (e.g. AT91 and STM32) contain configuration for a CDC ACM
device instance. These have some common configuration options. In the following descriptions, XXXX should be replaced by
the target family name.

The option CYGNUM_DEVS_USB_XXXX_ACM0_BUFSIZE defines the size of the circular buffer for ACM0. This must be
sized such that there is always enough space in the buffer for a maximum sized USB packet after the high water mark is reached.

The option CYGPKG_DEVS_USB_XXXX_ACM0_SERIALNO defines the source of the serial number reported in USB string
descriptor 3. The CSUM option generates an executable-unique checksum, which is necessary for the eCosCentric test system.
The HAL option calls a function supplied by the platform HAL to supply the serial number. The CONST option uses the value
of CYGINT_DEVS_USB_XXXX_ACM0_SERIALNO, which is useful for testing. In all cases the serial number is a 32 bit
unsigned value which is encoded into the string descriptor in hexadecimal combined with the test crash ID.

The option CYGINT_DEVS_USB_XXXX_ACM0_SERIALNO supplies the constant value for the serial number if the CONST
option is selected. This is useful for testing, but is not a viable solution for production devices.

Protocol Support
This driver only supports a minimal subset of the CDC ACM protocol, sufficient to provide a serial-like interface between a host
and the target board. Any unrecognized messages will generate an error response; normally a STALL on the control endpoint.

CDC ACM uses two bulk endpoints to transfer raw data bytes between the host and the target board. Additionally, control
messages are sent to the control endpoint to adjust the configuration of the channel. The following commands are supported:

SET LINE CODING This sets the baud rate, stop bits, parity and character size for the channel. These para-
meters are simply passed on to the USB serial driver by calling the dev_line_cod-
ing callback.

686

http://www.usb.org
http://www.usb.org/developers/vendor/

USB Target CDC ACM Protocol Driver

GET LINE CODING This returns the baud rate, stop bits, parity and character size for the channel. Usually
this just returns the value set by the last SET LINE CODING command. The data
structure is initialized to a default set of values in case it is queried before being set.

SET CONTROL LINE STATE This sets the state of the RTS and DTR lines. These are passed on to the USB serial
driver by calling the dev_control_line_state callback.

SEND BREAK This sends a BREAK condition on the line. At present this command is accepted and
acknowledged but nothing is done to act on it.

Since the protocol driver is not controlling a real UART, these commands have no real effect and are supported mainly to
keep host OS drivers happy.

Host Driver Advice
The Linux operating system includes generic support for CDC ACM class devices and automatically supports standards con-
forming CDC ACM based devices.

Whilst Windows also includes built-in generic CDC ACM support, it has to be enabled with a specially crafted .inf file. You
may alternatively elect to use a third party CDC ACM class driver as this can provide better functionality, reliability and install
support compared to the Windows built-in driver.

In-depth information concerning Windows USB class support along with the use, configuration and installation of associat-
ed .inf files, are beyond the scope of this documentation. The Microsoft Developer Network documentation should be consulted
for specific details. Relevant sections include Windows USB support and USB class drivers included in Windows.

As an aid in the use of Windows built-in CDC ACM class support an example .inf file has been provided here: packages/de-
vs/usb/pcd/class/cdc_acm/<version>/host/cdcacm-generic.inf

The .inf file will need to be tailored to match your specific manufacturer VID and PID numbers, as well as manufacturer and
device description strings. You will need to modify all the VID and PID references in the [DeviceList] sections, as well as the
MFGNAME and DESCRIPTION strings at the end of the file. To enable CDC ACM on a specific Windows system the user
should right-click on the .inf file and select the "Install" option from the pop-up menu. A Windows driver validation dialog
box will appear, from which the "Install this driver software anyway" option should be selected.

Depending on the Windows version you are using, the CDC ACM driver installation may not be automatic on the first connec-
tion of your CDC ACM class device. An error may be reported in finding a suitable device driver during device insertion, or
the Device Manager may show your device, but with an associated warning triangle. In these cases you will need to manually
select the correct class driver. To accomplish this, right-click on the new entry in the "Ports" section of the Device Manager
and select "Update Driver Software" from the pop-up menu. In the following dialog select "Browse my computer for driver
software". You should then select the "Let me pick from a list of device drivers on my computer" from the available options
that are then displayed. At this point you will then be presented with a list of device types - select "Ports (COM & LPT)" and
then the "Next" button. You should then be able to find your company name in the Manufacturer list, and the Model associated
with your driver entry - select this and hit the "Next" button. A Warning dialog concerning device verification will appear,
select "Yes" to continue and install the driver. A confirmation message indicating the driver has installed should then appear.

Each time an eCos CDC ACM device is plugged in an entry should become visible within the "Ports" section of the Device
Manager. The entry's device name should include an associated automatically assigned COM port number in brackets. You
should be able to connect to this assigned COM port to communicate with your device.

687

http://msdn.microsoft.com/en-us/library/windows/hardware/ff538930%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-gb/library/windows/hardware/ff538820%28v=vs.85%29.aspx

Chapter 120. USB Host CDC ACM
Protocol Driver

688

USB Host CDC ACM Protocol Driver

Name
Overview — eCosPro Support for CDC ACM Protocol in Host Mode

Description
This package provides protocol driver support for host mode serial adapter connections that use the CDC ACM protocol. It
needs to be used in conjunction with the USB serial driver package and the reader is referred to that document for additional
details.

Usage Model
The eCos serial driver subsystem does not support the dynamic creation and deletion of serial devices. Instead the CDC/ACM
driver allocates a number of permanently available serial channels which are allocated to USB devices as they are attached. In
order to retain some continuity, it is possible to assign specific Vendor and Product ID values to individual channels so that
the USB device will be allocated the same channel each time it is attached.

Writing data to a detached channel will result in that data being lost, just as if it were being written to a disconnected serial
line. A detached channel will not produce any data. Changes to the line configuration (baud rate, parity, stop bits, data size)
will be stored and applied to the device once it is attached.

Applications may install a serial line callback function which will be called with the which field set to CYGNUM_SERIAL_S-
TATUS_ATTACH and the value field set to zero for a detach and one for an attach.

Configuration
To use this package, various other packages need to be included and configuration options need to be set. The packages that need
to be included are: USB Support (CYGPKG_IO_USB), USB serial driver (CYGPKG_IO_SERIAL_USB), Serial device drivers
(CYGPKG_IO_SERIAL) and this package USB host cdc acm protocol driver (CYGPKG_IO_USB_CDC_ACM_HOST). Pack-
ages can be added directly using ecosconfig add on the command line, or the Build->Packages… menu item within the eCos
Configuration Tool. Depending on your platform some of these may already be present in the default eCos configuration. To
activate the requisite USB host and serial support, the options CYGPKG_IO_USB_HOST and CYGPKG_IO_SERIAL_DE-
VICES need to be enabled. Following this at least one CDC/ACM channel needs to be configured using the options below.

The configuration option CYGNUM_IO_USB_CDC_ACM_MAXPKT defines the maximum packet size used for USB transfers.
It is used define the size of the the rx_buf in the usb_serial_if structure. The actual packet size used by any device is specified
in its descriptors. Most CDC/ACM devices will use a maximum packet size of 64 bytes, and many will be smaller. So this
value should not be reduced unless it is known that only devices with smaller packet sizes will be used.

Each serial channel has a number of configuration options associated with it. The following descriptions show the options for
serial channel 0, for other channels the zero should be replaced with the number of the channel, currently up to 4.

CYGINT_IO_USB_CDC_ACM_HOST_SERIAL0

This interface may be implemented by the platform HAL to instantiate this serial channel.

CYGPKG_IO_USB_CDC_ACM_HOST_SERIAL0

This is the main component that defines this serial channel, unless this component is enabled, the remaining options will
remain undefined. Its default value is derived from CYGINT_IO_USB_CDC_ACM_HOST_SERIAL0, but it may also be
enabled with a requires statement or from the configtool.

CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_NAME

This option controls the name that an eCos application should use to access this device via cyg_io_lookup(), open(), or
similar calls. The default is "/dev/acm0" and so on.

CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_BAUD

This option specifies the default baud rate for this channel. Its default value is set to CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD.

689

USB Host CDC ACM Protocol Driver

CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_BUFSIZE

This option specifies the size of both the input and output buffer for the common serial I/O driver layer. This should be at
least equal to CYGNUM_IO_USB_CDC_ACM_HOST_MAXPKT and preferably somewhat larger. The default value makes
it twice the maximum packet size.

CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_VID

This option controls whether this serial channel matches a particular USB Vendor ID. If zero it will match any ID, otherwise
this channel will only match a device with the given vendor ID.

CYGNUM_IO_USB_CDC_ACM_HOST_SERIAL0_PID

This option controls whether this serial channel matches a particular USB Product ID. If zero it will match any ID, otherwise
this channel will only match a device with the given product ID.

Channels are searched for a VID and PID match in numerical order, skipping any that are already in use. Therefore lower
numbered channels should have more specific VID and PID values and generic channels should be at the end of the list.

Protocol Support
This driver only supports a subset of the CDC ACM protocol, sufficient to provide a serial-like interface between the host
and the device.

CDC ACM uses two bulk endpoints to transfer raw data bytes between the host and the target board. Additionally, control
messages are sent to the control endpoint to adjust the configuration of the channel. Only the following commands are currently
sent:

SET LINE CODING This sets the baud rate, stop bits, parity and character size for the channel. This is gen-
erated in response to a CYG_IO_SET_CONFIG_SERIAL_INFO set_config key from
the application.

Supported Devices
Any USB serial adapter that implements the standard USB-IF defined CDC ACM protocol should be compatible with the
eCosPro host CDC ACM protocol driver. The driver has been tested successfully with the Microchip MCP2200 chip based
Microchip MCP2200EV-VCP evaluation board.

690

http://www.microchip.com/wwwproducts/devices.aspx?dDocName=en546923
http://www.microchip.com/Developmenttools/ProductDetails.aspx?PartNO=MCP2200EV-VCP

Chapter 121. USB Host FTDI Protocol
Driver

691

USB Host FTDI Protocol Driver

Name
Overview — eCosPro Support for FTDI Protocol in Host Mode

Description
This package provides protocol support for a host mode connection to FTDI USB to serial adaptors. It needs to be used in
conjunction with the USB serial driver package and the reader is referred to that document for additional details.

Usage Model
The eCos serial driver subsystem does not support the dynamic creation and deletion of serial devices. Instead the FTDI driver
allocates a number of permanently available serial channels which are allocated to USB devices as they are attached. In order
to retain some continuity, it is possible to assign specific Vendor and Product ID values to individual channels so that the USB
device will be allocated the same channel each time it is attached.

Writing data to a detached channel will result in that data being lost, just as if it were being written to a disconnected serial
line. A detached channel will not produce any data. Changes to the line configuration (baud rate, parity, stop bits, data size,
flow control) will be stored and applied to the device once it is attached.

Applications may install a serial line callback function which will be called with the which field set to CYGNUM_SERIAL_S-
TATUS_ATTACH and the value field set to zero for a detach and one for an attach.

Configuration
To use this package, various other packages need to be included and configuration options need to be set. The packages that
need to be included are: USB Support (CYGPKG_IO_USB), USB serial driver (CYGPKG_IO_SERIAL_USB), Serial device
drivers (CYGPKG_IO_SERIAL) and this package USB host ftdi protocol driver (CYGPKG_IO_USB_FTDI). Packages can be
added directly using ecosconfig add on the command line, or the Build->Packages… menu item within the eCos Configuration
Tool. Depending on your platform some of these may already be present in the default eCos configuration. To activate the
requisite USB host and serial support, the options CYGPKG_IO_USB_HOST and CYGPKG_IO_SERIAL_DEVICES need to
be enabled. Following this at least one FTDI channel needs to be configured using the options below.

The configuration option CYGNUM_IO_USB_FTDI_MAXPKT defines the maximum packet size used for USB transfers. It is
used to define the size of the the rx_buf in the usb_serial_if structure. The actual packet size used by any device is specified
in its descriptors. Most FTDI devices will use a maximum packet size of 64 bytes, and many will be smaller. So this value
should not be reduced unless it is known that only devices with smaller packet sizes will be used.

The option CYGPKG_IO_USB_FTDI_SUPPORTED_EXTRA defines an additional set of VID/PID pairs that the driver can
support. A user or HAL package can define this to add entries to the table of VID/PID pairs that the driver recognizes as valid
devices. This option consists of a comma separated list of initializers for for a VID/PID structure. For example "{ 0x0403,
0x6001 }, …".

Each serial channel has a number of configuration options associated with it. The following descriptions show the options for
serial channel 0, for other channels the zero should be replaced with the number of the channel, currently up to 4.

CYGINT_IO_USB_FTDI_SERIAL0

This interface may be implemented by the platform HAL to instantiate this serial channel.

CYGPKG_IO_USB_FTDI_SERIAL0

This is the main component that defines this serial channel, unless this component is enabled, the remaining options will
remain undefined. Its default value is derived from CYGINT_IO_USB_FTDI_SERIAL0, but it may also be enabled with
a requires statement or from the configtool.

CYGNUM_IO_USB_FTDI_SERIAL0_NAME

This option defines the name of this channel, which eCos applications should use to access the device via cyg_io_lookup(),
open() or similar calls. The default is to set it to "/dev/ftdi0" and so on.

692

USB Host FTDI Protocol Driver

CYGNUM_IO_USB_FTDI_SERIAL0_BAUD

This option specifies the default baud rate for this channel. Its default value is set to CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD.

CYGNUM_IO_USB_FTDI_SERIAL0_BUFSIZE

This option specifies the size of both the input and output buffer for the common serial I/O driver layer. This should be
at least equal to CYGNUM_IO_USB_FTDI_MAXPKT and preferably somewhat larger. The default value makes it twice
the maximum packet size.

CYGNUM_IO_USB_FTDI_SERIAL0_VID

This option controls whether this serial channel matches a particular USB Vendor ID. If zero it will match any ID, otherwise
this channel will only match a device with the given vendor ID.

CYGNUM_IO_USB_FTDI_SERIAL0_PID

This option controls whether this serial channel matches a particular USB Product ID. If zero it will match any ID, otherwise
this channel will only match a device with the given product ID.

Channels are searched for a VID and PID match in numerical order, skipping any that are already in use. Therefore lower
numbered channels should have more specific VID and PID values and generic channels should be at the end of the list.

CYGNUM_IO_USB_FTDI_SERIAL0_LATENCY

This option defines the latency in milliseconds between packets containing data from the FTDI device. If the device has
62 or more bytes available, it will send a packet immediately. Otherwise it will wait this number of milliseconds after the
last packet before sending what it has. Decreasing this value will improve responsiveness for low data rate applications at
the cost of more activity from the host driver as it processes more packets.

Supported Devices
There is a large family of FTDI devices, some of which support slightly different variants of the communication protocol. It
is therefore important to detect what kind of device has been attached. FTDI devices do not have standard class. subclass or
protocol codes defined by the USB-IF. Device descriptors have these fields set to zero, to redirect them to the interfaces. The
interface fields are set to 0xFF, which is a reserved vendor specific code. Additionally, FTDI devices can have internal or
external PROMs from which idVendor, idProduct and string descriptors may be fetched. The result of all this is that the
exact identity of an FTDI device can be difficult to determine.

The eCosPro FTDI driver employs a number of strategies to determine whether a device is one that can be supported. The first
part of this is a table of VID/PID pairs. Only if a device can be found in this table will it be accepted. By default the table con-
tains the standard FTDI VID/PID values and will be extended to contain the values for any other devices that have been tested.
There is also a mechanism that allows users or other packages to add entries to this table using the CYGPKG_IO_USB_FT-
DI_SUPPORTED_EXTRA option.

If a device passes the VID/PID test, then other descriptor values such as bcdDevice bNumInterface are used to determine
which FTDI device model this is likely to be and adjust the protocol used to talk to it accordingly.

The eCos FTDI driver has been successfully tested against the following standard FTDI USB serial adapters:

• FTDI CHIPI-X10 (FT231X based)

• FTDI US232R (FT232RL based)

• FTDI US232B (FT232BM based)

In addition an older FT232R and a FT2232C dual channel based devices from manufacturers other than FTDI have also been
tested.

693

http://www.ftdichip.com/Products/Cables/USBRS232.htm

Part XXXVI. VirtIO Support

Name
Overview — eCosPro Support for VirtIO

Description
The eCosPro VirtIO package supports access to VirtIO devices. It provides general management of the device and the buffer
queues associated with it. Normally a next-level driver will use the facilities provided by this driver to then implement an eCos
compliant driver for a particular class of device.

A VirtIO device is described by a cyg_vio_driver structure. Data transfers are described by a cyg_vio_tfr structure. Operations
are handled through an API that is used by the class drivers.

VirtIO Device Structure
A VirtIO device is instantiated by creating one of these structures and populating its fields with suitable values. The following
fields need to be set; other fields in the structure will be initialized by the VirtIO driver.

base Base address of the device.

vector Device interrupt vector. Interrupts are not handled by the VirtIO driver, instead they need to be handled
by the parent class driver. See the API description for details.

vector_pri Interrupt vector priority.

priv A private pointer for the parent driver. This will usually be a pointer to a data structure that the driver
uses to store state for this device.

legacy If set to 1, this indicates that the device is a legacy device. At present only legacy devices are supported.

pci If set to 1 this indicates that this is a PCI device. At present PCI devices are not supported.

drv_features A bit mask corresponding to the driver feature bits defined for this class of driver. This will be set in the
DRV_FEATURES field of the device during feature negotiation.

queue_count The number of queues in the queue array.

queue A pointer to an array of pointers to cyg_vio_queue structures. Queues are defined using the
VIO_QUEUE(__name, __size) macro and then collected together into an array which is pointed
to by this field.

The following example shows how a VirtIO console driver would be instantiated:

// Define driver feature set
#define VIO_CONSOLE_FEATURES VIRTIO_F_RING_INDIRECT_DESC | \
 VIRTIO_F_NOTIFY_ON_EMPTY | \
 VIRTIO_F_ANY_LAYOUT | \
 VIRTIO_CONSOLE_F_MULTIPORT | \
 VIRTIO_CONSOLE_F_EMERG_WRITE

// Set queue size
#define CONSOLE_QUEUE_SIZE 128

// Define queues. Here we have two console channels and a control channel.
VIO_QUEUE(virtual_console_rxq0, CONSOLE_QUEUE_SIZE);
VIO_QUEUE(virtual_console_txq0, CONSOLE_QUEUE_SIZE);
VIO_QUEUE(virtual_control_rxq, CONSOLE_QUEUE_SIZE);
VIO_QUEUE(virtual_control_txq, CONSOLE_QUEUE_SIZE);
VIO_QUEUE(virtual_console_rxq1, CONSOLE_QUEUE_SIZE);
VIO_QUEUE(virtual_console_txq1, CONSOLE_QUEUE_SIZE);

// Collect queues together into an array
cyg_vio_queue *virtual_console_queues[] = { &virtual_console_rxq0, &virtual_console_txq0,

695

Overview

 &virtual_control_rxq, &virtual_control_txq,
 &virtual_console_rxq1, &virtual_console_txq1 };

// Declare the driver
cyg_vio_driver console_vio_driver =
{
 // Hardware parameters
 .base = CYGHWR_HAL_CONSOLE0_BASE,
 .vector = CYGNUM_HAL_INTERRUPT_CONSOLE0,
 .vector_pri = 0xa0,

 // Console driver private data
 .priv = &virtual_console,

 // This is a legacy, non PCI device
 .legacy = 1,
 .pci = 0,

 // Set driver features for use in negotiation
 .drv_features = VIO_CONSOLE_FEATURES,

 // Attach queues.
 .queue_count = 6,
 .queue = virtual_console_queues,

};

VirtIO Transfer Structure
Data transfers are described using a cyg_vio_tfr structure. The parent driver prepares a transfer object, passes it to the VirtIO
driver and receives it back via a callback when the transfer is complete.

A transfer object has the following structure:

#define VIO_IOV_MAX 8

struct cyg_vio_tfr
{
 cyg_uint16 queue; // Queue number
 cyg_uint16 head; // head descriptor index
 cyg_uint16 iov_len; // IOV entry count
 cyg_uint32 actual; // Total actual bytes transferred

 void (*callback)(cyg_vio_tfr *tfr);
 void *priv; // Private data pointer

 struct
 {
 void *buffer;
 cyg_uint32 size;
 cyg_uint32 flags;
 } iov[VIO_IOV_MAX];
};

#define VIO_IOV_FLAGS_WRITE CYGHWR_VIRTIO_DESC_FLAGS_WRITE

The fields are as follows:

queue The index in the queue array of the queue to apply the transfer to.

head This is used to store the index of the head buffer descriptor associated with this transfer. It does not need to be
set by the client, but may be monitored to detect transfer completion, it will be set to 0xFFFF when the transfer
is done.

iov_len The number of entries in the iov field that are in use.

696

Overview

actual The actual number of bytes transferred. This is the value of the used queue element length field and therefore
depends on the hypervisors device emulation to set it correctly.

callback A function that is called when the transfer is completed. The single argument is a pointer to the completed
transfer. This will only be called from within the cyg_vio_poll().

priv A private pointer that can be used by the parent driver to supply context to the callback.

iov An array of buffer pointers with their sizes. The flags field for each will either be zero, or contain the
VIO_IOV_FLAGS_WRITE flag. If the flag is zero, then this buffer is for transfer from the VM to the hypervi-
sor, and if set, then the buffer is for transfer from the hypervisor to the VM.

While the default size of this array is 8, this is not a fixed limit. Larger arrays could be passed by treating a
transfer object as an initial substructure of a larger object that contains space for a longer IOV array.

697

Name
API — Functions

Synopsis
#include <cyg/io/virtio.h>

cyg_uint32 cyg_vio_avail(cyg_vio_driver *driver, int queue);

cyg_bool cyg_vio_queue_ready(cyg_vio_driver *driver, int queue);

cyg_bool cyg_vio_submit(cyg_vio_driver *driver, cyg_vio_tfr *tfr);

void cyg_vio_poll(cyg_vio_driver *driver);

void cyg_vio_driver_init(cyg_vio_driver *driver);

void hal_vio_init(void);

Description
This API is intended to be used by client drivers to access the VirtIO device and provide the functionality expected of a driver
of the given class.

Functions cyg_vio_avail() and cyg_vio_queue_ready() test the state of the queue. The first returns the number of
buffer descriptors available for transfer; it can be used to check that there is enough resource to start a transfer before submitting
it. The second is used to check that a queue has completed initialization.

The function cyg_vio_submit() submits a transfer to the VirtIO device. All fields in the transfer should be initialized
before submission. If the transfer is successfully queued, this function returns CYG_VIO_DONE. If the submission fails, a non-
zero error code is returned.

The function cyg_vio_poll() polls a given driver for completed transfers. If a transfer is complete, then its callback
function is called. Calling this poll routine is the only way in which transfer completions are recognized. It is the responsibility
of the client driver to arrange to call it. This may be done from a thread context if that exists, or may be done from a DSR if
the device interrupt has been enabled. When a callback is called, the only fields in the transfer that will have been updated are
the head and actual fields; so the transfer may be immediately resubmitted to the driver from the callback with no changes
if the same transfer is to be repeated.

The function cyg_vio_driver_init() is called to initialize the common parts of a VirtIO driver. This function will
perform startup negotiation with the hypervisor device and initialize all valid queues. On return, the driver will be ready for
submission of transfers. If this function is called for a driver that has already been initialized, it will return immediately, so
it may be called from multiple locations safely.

The function hal_vio_init() is not supplied by the VirtIO package but is expected to be defined by the variant or platform
HAL. The VirtIO package calls this function from a constructor during initialization. This function is responsible for detecting
any VirtIO devices, installing base address and interrupt vector values and calling cyg_vio_driver_init() for each.
Detection may involve searching a memory area for valid VirtIO devices or scanning a PCI bus. If the VirtIO devices are at
known fixed addresses then this function should just call cyg_vio_driver_init() for each device to be initialized.

698

Part XXXVII. Wallclock Device Drivers
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
122. Wallclock Support ... 701

Wallclock support ... 702
C API ... 704

123. Dallas DS1302 Wallclock Device Driver ... 706
Dallas DS1302 Wallclock Device Driver .. 707

124. Dallas DS1306 Wallclock Device Driver ... 709
Dallas DS1306 Wallclock Device Driver .. 710

125. Dallas DS1307 Wallclock Device Driver ... 712
Dallas DS1307 Wallclock Device Driver .. 713

126. Dallas DS1390 Wallclock Device Driver ... 714
Dallas DS1390 Wallclock Device Driver .. 715

127. Freescale MCFxxxx On-Chip Wallclock Device Driver .. 717
Freescale MCFxxxx On-Chip Wallclock Device Driver ... 718

128. Intersil ISL1208 Wallclock Device Driver .. 719
Intersil ISL1208 Wallclock Device Driver .. 720

129. Intersil ISL12028 Wallclock Device Driver .. 721
Intersil ISL12028 Wallclock Device Driver ... 722

130. ST M41TXX Wallclock Device Driver .. 723
ST M41TXX Wallclock Device Driver .. 724

131. ST M48T Wallclock Device Driver .. 725
ST M48T Wallclock Device Driver ... 726

700

Chapter 122. Wallclock Support

701

Wallclock Support

Name
CYGPKG_IO_WALLCLOCK — eCos Support Wallclock devices

Overview

The wallclock device provides real time stamps, as opposed to the eCos kernel timers which typically just count the number
of clock ticks since the hardware was powered up. Depending on the target platform this device may involve interacting with
a suitable on-chip device or an external clock chip, or it may be emulated by using the kernel timers.

The wallclock package operates using the standard UNIX epoch of midnight 1st January 1970. When times and dates are
expressed in seconds, this is zero point for that count. However, many wallclock devices only have a two digit year field. In
order to get a further 30 years duration from this field, and to avoid Y2K issues, many drivers actually store dates starting from
the year 2000. It is therefore inavisable to try setting the wallclock to any date before 2000.

Configuration

The Wallclock package contains a number of configuration options, most of which are set by either the wallclock device driver,
or the platform HAL.

CYGINT_WALLCLOCK_HW_IMPLEMENTATIONS

This interface is implemented by the wallclock device driver to signal to this package that a hardware wallclock device is
present. If this interface is zero, then this package will implement the wallclock using the kernel timer.

CYGINT_WALLCLOCK_SET_GET_MODE_SUPPORTED

This interface is implement by the wallclock device driver to signal to this package that the device can set the current value
as well as get it and that the set value is preserved when the power is off.

CYGSEM_WALLCLOCK_MODE

The wallclock driver can be used in one of two modes. Set/get mode allows time to be kept during power off (assuming
there's a battery backed clock). Init/get mode is slightly smaller and can be used when there is no battery backed clock
- in this mode time 0 is the time of the board power up. The default value of this option depends on whether CYGIN-
T_WALLCLOCK_SET_GET_MODE_SUPPORTED but may be changed by the user.

CYGPKG_WALLCLOCK_EMULATE

When this option is enabled, a wallclock device will be emulated using the kernel real-time clock. The default value
depends on the value of CYGINT_WALLCLOCK_HW_IMPLEMENTATIONS but may be changed by the user.

CYGIMP_WALLCLOCK_NONE

This option disables the wallclock even if a hardware driver is present. The default value is depends on the value of
CYGINT_WALLCLOCK_HW_IMPLEMENTATIONS.

CYGINT_IO_WALLCLOCK_HAS_SCRATCHSPACE

If the underlying wallclock driver implements this interface, that means that it supports scratch space. This feature exists
in some hardware to allow users to store some information in battery backed RAM, alongside the wallclock RTC's data.
An API is provided by this package to access it.

CYGINT_IO_WALLCLOCK_HAS_ALARM

Some wallclock hardware provides alarms which will generate an interrupt when a certain date/time is reached. This
interface can be implemented by the underlying wallclock driver to indicate that such support can be used. An API is
provided by this package to set and disable these alarms. Note these alarms are wholly separate from eCos kernel alarms.

702

Wallclock Support

Wallclock Tests
This package contains a number of test programs. The wallclock and wallclock2 programs test basic functionality of the
wallclock device. The alarm program tests the functionality of any alarms supported by the device. The subsec program tests
the functionality and accuracy of device subsecond support if it is present.

703

Wallclock Support

Name
C API — Details

Synopsis

#include <cyg/io/wallclock.h>

cyg_uint32 cyg_wallclock_get_current_time(void);

void cyg_wallclock_set_current_time(cyg_uint32 time_stamp);

Cyg_ErrNo cyg_wallclock_get_time_timespec(struct timespec *tp);

Cyg_ErrNo cyg_wallclock_set_time_timespec(struct timespec *tp);

Cyg_ErrNo cyg_wallclock_get_time_date(cyg_uint16 *year, cyg_uint8 *month, cyg_uint8
*day, cyg_uint8 *hour, cyg_uint8 *min, cyg_uint8 *sec, cyg_uint32 *nsec);

Cyg_ErrNo cyg_wallclock_set_time_date(cyg_uint16 year, cyg_uint8 month, cyg_uint8
day, cyg_uint8 hour, cyg_uint8 min, cyg_uint8 sec, cyg_uint32 nsec);

Cyg_ErrNo cyg_wallclock_get_info(wallclock_info_key key, wallclock_info *info);

Cyg_ErrNo cyg_wallclock_set_alarm_timespec(cyg_uint8 alarm_index, struct timespec
*alarm_tp);

Cyg_ErrNo cyg_wallclock_set_alarm_date(cyg_uint8 alarm_index, cyg_uint16 year,
cyg_uint8 month, cyg_uint8 day, cyg_uint8 hour, cyg_uint8 min, cyg_uint8 sec, cyg_uin-
t32 nsec);

Cyg_ErrNo cyg_wallclock_disable_alarm(cyg_uint8 alarm_index);

Cyg_ErrNo cyg_wallclock_read_scratch(cyg_uint32 offset, cyg_uint8 *buf, cyg_uint32
len);

Cyg_ErrNo cyg_wallclock_write_scratch(cyg_uint32 offset, cyg_uint8 *buf, cyg_uint32
len);

Description
The wallclock package exports a C API for interacting directly with the wallclock. This API is a veneer over a C++ API which is
used internally within eCos. Applications should generally use the C API. Wallclock support is also integrated into the POSIX
and C++ library packages and if these are part of the configuration the APIs provided by these libraries should be used in
preference to the API described here. This API will sidestep any mechanisms present in these other packages for maintenance
of the current time and may give rise to inconsistencies between the times that different parts of the system percieve.

The main part of the API consists of functions to set and get the current wallclock time. There are three versions of each
set and get function which take the time to be set or got in different formats. The functions cyg_wallclock_get_cur-
rent_time and cyg_wallclock_set_current_time use a timestamp consisting of seconds since the epoch;
no fractions of a second are supported. The functions cyg_wallclock_get_time_timespec and cyg_wall-
clock_set_time_timespec use a struct timespec consisting of seconds and nanoseconds values; the nanoseconds value
is only used or returned non-zero if the underlying wallclock device supports sub-second resolution. Finally, the cyg_wall-
clock_get_time_date and cyg_wallclock_set_time_date use a date and time broken down into its component
parts from the year down to nanoseconds; again the nanoseconds argument is only used or returned non-zero if sub-second
support is present.

The function cyg_wallclock_get_info returns information about the wallclock device. The key may be one of the
following values:

704

Wallclock Support

CYG_WALLCLOCK_INFO_RES

Resolution in microseconds/tick (NB different from kernel). Returns in "resolution" member of wallclock_info.

CYG_WALLCLOCK_INFO_MAXYEAR

The maximum year supported. This is a rough hint of the exact date. Returned in uint32val.

CYG_WALLCLOCK_INFO_GET_SCRATCH_SIZE

Many modern RTCs have a battery backed scratch space accompanying the RTC. If there is one, this returns its size in bytes
in the "uint32val" member of the wallclock_info. If unsupported, either ENOSUPP is returned, or size may be set to 0.

CYG_WALLCLOCK_INFO_GET_NUM_ALARMS

Number of alarms available. Number returned in the "uint32val" member of wallclock_info. If unsupported, either
ENOSUPP returned, or uint32val set to 0.

CYG_WALLCLOCK_INFO_GET_ALARM_INTVEC

Must be called with an alarm index number in the "uint32val" member of supplied wallclock_info argument. Will return
the interrupt vector number for that alarm in the same "uint32val" member. If there is no alarm or no interrupt for it,
ENOSUPP is returned.

CYG_WALLCLOCK_INFO_GET_SUBSECOND_FRACTION

Sub-second fractions supported. If the wallclock driver supports sub-second resolution, this returns in "uint32val" the
number of fractions each second is divided into. If the driver does not support sub-seconds, then this will either return
ENOSUPP, or "uint32val" will be zero.

CYG_WALLCLOCK_INFO_GET_ALARM_PERIOD_MIN

Since not all RTCs will have support for second granularity alarms this call is used to ascertain the minimum alarm period.
Must be called with an alarm index number in the "uint32val" member of supplied wallclock_info argument. Will return
in "uint32val" the smallest alarm delta as a microsecond value. If the driver returns ENOSUPP, or the value 0, then the
default of 1-second granularity can be assumed.

If the wallclock device supports alarms then the functions cyg_wallclock_set_alarm_timespec, cyg_wall-
clock_set_alarm_date and cyg_wallclock_disable_alarm will be defined and provide support for setting and
disabling individual alarms. Expiry of an alarm will cause a given interrupt vector to be raised (as defined bt the CYG_WALL-
CLOCK_INFO_GET_ALARM_INTVEC key). It is the responsibility of the application to attach an ISR and DSR to this vector
and handle any subsequent processing. See the alarm test program for an example.

If the wallclock device supports scratch space then the functions cyg_wallclock_read_scratch and cyg_wall-
clock_write_scratch will be defined to read and write len bytes at the given offset in the scratch space.

705

Chapter 123. Dallas DS1302 Wallclock
Device Driver

706

Dallas DS1302 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1302 — eCos Support for the Dallas DS1302 Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1302 provides a device driver for the wallclock device in
the Dallas DS1302 Real-Time Clock chips. This combines a real-time clock and 31 bytes of battery-backed RAM in a single
package. The driver can also be used with any other chips that provide the same interface to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

The package provides a number of additional functions that are specific to a DS1302:

#include <cyg/io/wallclock/ds1302.h>

externC unsigned char cyg_wallclock_ds1302_read_tcs_ds_rs(void);
externC void cyg_wallclock_ds1302_write_tcs_ds_rs(unsigned char val);
externC void cyg_wallclock_ds1302_read_ram(int offset,
 unsigned char* buf, int len);
externC void cyg_wallclock_ds1302_write_ram(int offset,
 unsigned char* buf, int len);

The _tcs_ds_rs functions allow applications to read and update the trickle charge register in the DS1302. The manufactur-
er's data sheet should be consulted for further information on this register.

The _ram functions allow applications to read and modify the contents of the 31 bytes of battery-backed RAM. The offset
specifies the starting address within the RAM and should be between 0 and 31. The buffer provides the destination or source
of the data, and the length gives the number of bytes transferred. Wrap-around is not supported so the sum of the offset and
length should also be less than 31. The package's ds1302.c testcase provides example code.

The wallclock package is initialized by a static constructor with a priority immediately after CYG_INIT_DEV_WALLCLOCK.
Applications should not call any wallclock-related functions nor any of the DS1302-specific functions before that constructor
has run.

Porting
The DS1302 is accessed via a 3-wire bus. At the time of writing there is no generic 3-wire support package within eCos,
so instead the wallclock driver expects to bit-bang some GPIO lines. Typically the platform HAL provides appropriate hard-
ware-specific macros for this, via the header file cyg/hal/plf_io.h. The required macros are:

HAL_DS1302_CE(_setting_);
HAL_DS1302_SCLK(_setting_);
HAL_DS1302_OUT(_setting_);
HAL_DS1302_IN(_setting_);
HAL_DS1302_SELECT_OUT(_setting_);

The argument to the first three macros will always be 0 or 1 and corresponds to the desired state of the chip-enable, clock, or
I/O line. For example, at the start of a transfer the wallclock driver will invoke:

707

Dallas DS1302 Wallclock Device Driver

 …
 HAL_DS1302_CE(1);
 …

Asserting the CE line should activate the DS1302 chip. The HAL_DS1302_IN macro is used to sample the state of the I/O
line and should set its argument to 0 or 1. The HAL_DS1302_SELECT_OUT macro is used to switch the I/O line between
output (1) or input (0).

Platform HALs may provide two additional macros:

HAL_DS1302_DATA
HAL_DS1302_INIT();

HAL_DS1302_DATA can be used to define one or more static variables needed by the other macros, for example to hold a
shadow copy of the GPIO output register. If defined, HAL_DS1302_INIT will be invoked during driver initialization and
typically sets up the GPIO lines such that the CE and SCLK lines are outputs.

In addition the DS1302 device driver package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1302 should be included in
the CDL target entry so that it gets loaded automatically whenever eCos is configured for that target.

708

Chapter 124. Dallas DS1306 Wallclock
Device Driver

709

Dallas DS1306 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1306 — eCos Support for the Dallas DS1306 Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1306 provides a device driver for the wallclock device in
the Dallas DS1306 Real-Time Clock chips. This combines a real-time clock and 96 bytes of battery-backed RAM in a single
package. The driver can also be used with any other chips that provide the same interface to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

The package provides a number of additional functions that are specific to a DS1306:

#include <cyg/io/wallclock/ds1306.h>

externC void cyg_wallclock_ds1306_read_regs(int offset,
 unsigned char* buf, int len);
externC void cyg_wallclock_ds1306_write_regs(int offset,
 const unsigned char* buf, int len);
externC void cyg_wallclock_ds1306_read_ram(int offset,
 unsigned char* buf, int len);
externC void cyg_wallclock_ds1306_write_ram(int offset,
 const unsigned char* buf, int len);

The read_regs and write_regs functions allow direct access to all of the wallclock-related registers including the alarms,
the control register 0x0F, the status register 0x10, and the trickle charger register 0x11. The offset should be between 0x00 and
0x1F, specifying the first register that should be read or written. For full details of the DS1306 registers see the manufacturer's
data sheet.

The _ram functions allow applications to read and modify the contents of the 96 bytes of battery-backed RAM. The offset
specifies the starting address within the RAM and should be between 0x00 and 0x5F. The buffer provides the destination or
source of the data, and the length gives the number of bytes transferred. The package's ds1306.c testcase provides example
code.

The wallclock package is initialized by a static constructor with a priority immediately after CYG_INIT_DEV_WALLCLOCK.
Applications should not call any wallclock-related functions nor any of the DS1306-specific functions before that constructor
has run.

Porting
The DS1306 can be either attached to an SPI bus or it can be accessed via a 3-wire interface. The driver supports both modes
of operation, with a bit of support from the platform HAL. For SPI, the platform HAL should implement the CDL interface
CYGHWR_WALLCLOCK_DALLAS_DS1306_SPI and provided an SPI device instance cyg_spi_wallclock_ds1306.
The exact details of this device instantiation will depend on the SPI bus driver. For 3-wire the platform HAL should implement
the CDL interface CYGHWR_WALLCLOCK_DALLAS_DS1306_3WIRE and provide a bit-bang function:

#include <cyg/io/wallclock/ds1306.h>

710

Dallas DS1306 Wallclock Device Driver

cyg_bool
hal_ds1306_bitbang(cyg_ds1306_bitbang_op op)
{
 cyg_bool result = 0;

 switch(op) {
 case CYG_DS1306_BITBANG_INIT: …
 case CYG_DS1306_BITBANG_CE_HIGH: …
 case CYG_DS1306_BITBANG_CE_LOW: …
 case CYG_DS1306_BITBANG_SCLK_HIGH: …
 case CYG_DS1306_BITBANG_SCLK_LOW: …
 case CYG_DS1306_BITBANG_DATA_HIGH: …
 case CYG_DS1306_BITBANG_DATA_LOW: …
 case CYG_DS1306_BITBANG_DATA_READ: …
 case CYG_DS1306_BITBANG_INPUT: …
 case CYG_DS1306_BITBANG_OUTPUT: …
 }
 return result;
}

The INIT operation should set the 3-wire bus to its default settings: all lines should be output low. The HIGH and LOW
operations should set the specified line to the appropriate level. INPUT switches the data line from an output to an input, and
OUTPUT switches it back to an output. READ should return the current state of the data line, and is the only operation for
which the return value matters.

In addition the DS1306 device driver package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1306 should be included in
the CDL target entry so that it gets loaded automatically whenever eCos is configured for that target.

711

Chapter 125. Dallas DS1307 Wallclock
Device Driver

712

Dallas DS1307 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307 — eCos Support for the Dallas DS1307 Serial Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307 provides a device driver for the wallclock device in the
Dallas DS1307 Serial Real-Time Clock chips. This combines a real-time clock and 56 bytes of battery-backed RAM in a single
package. The driver can also be used with any other chips that provide the same interface to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

Porting
DS1307 platform support can be implemented in one of two ways. The preferred approach involves the generic I²C API, as de-
fined by the package CYGPKG_IO_I2C. The platform HAL can just provide a cyg_i2c_device structure cyg_i2c_wall-
clock_ds1307 and implement the CDL interface CYGINT_DEVICES_WALLCLOCK_DALLAS_DS1307_I2C. The
DS1307 driver will now use I²C rx and tx operations to interact with the chip.

Alternatively the DS1307 driver can use macros or functions provided by another package to access the chip. This is intended
primarily for older platforms that predate the CYGPKG_IO_I2C package. The other package should export a header file
containing macros DS_GET and DS_PUT that transfer the eight bytes corresponding to the chip's clock registers. It should also
export the name of this header via a #define CYGDAT_DEVS_WALLCLOCK_DS1307_INL in the global configuration
header pkgconf/system.h. For full details see the source code.

In addition the DS1307 device driver package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307 should be included in
the CDL target entry so that it gets loaded automatically whenever eCos is configured for that target.

713

Chapter 126. Dallas DS1390 Wallclock
Device Driver

714

Dallas DS1390 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1390 — eCos Support for the Dallas DS1390 Serial Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1390 provides a device driver for the wallclock device in the
Dallas DS1390 Serial Real-Time Clock chips. The driver can also be used with any other chips that provide the same interface
to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

Porting
The DS1390 driver uses the SPI driver API defined by the package CYGPKG_IO_SPI. A suitable SPI device driver must be
available for the target. The platform HAL must provide a cyg_spi_device structure cyg_spi_wallclock_ds1390. The
platform HAL should initialize this structure and any associated SPI driver specific struture with the correct phase, polarity
and chip select parameters for this device.

In addition the DS1390 device driver package CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1390 should be included in
the CDL target entry so that it gets loaded automatically whenever eCos is configured for that target.

Extra API Calls
In addition to the standard wallclock API calls, this driver exports a number of additional functions to permit direct access to
additional features of the device. A header, cyg/io/wallclock/ds1390.h is available to define this API.

cyg_uint8 cyg_ds1390_read_reg(int addr)

Read and return a single 8-bit register from the DS1390, addr should be in the range 0x00 to 0x0F.

void cyg_ds1390_write_reg(int addr, int val)

Write a single 8-bit register to the DS1390, addr should be in the range 0x00 to 0x0F and val in the range 0x00 to 0xFF.

void cyg_ds1390_set_control(cyg_uint8 val)

Write the DS1390 control register with the content of val.

cyg_uint8 cyg_ds1390_get_control(void)

Read and return the value of the DS1390 control register.

void cyg_ds1390_set_status(cyg_uint8 val)

Write the DS1390 status register with the content of val.

715

Dallas DS1390 Wallclock Device Driver

cyg_uint8 cyg_ds1390_get_status(void)

Read and return the value of the DS1390 control register.

void cyg_ds1390_set_charger(cyg_uint8 val)

Write the DS1390 trickle-charge register with the content of val.

cyg_uint8 cyg_ds1390_get_charger(void)

Read and return the value of the DS1390 trickle-charge register.

int cyg_wallclock_set_alarm(cyg_uint32 secs)

Set the DS1390 alarm to trigger when the wallclock time matches the value of secs. The DS1390 alarm will match only
up to days of the month, so the alarm cannot be set more than one month in the future. This function only initializes the
DS1390 to generate the alarm interrupt; it is the responsibility of the caller to attach an ISR to the appropriate vector and
unmask it in the interrupt controller.

716

Chapter 127. Freescale MCFxxxx On-Chip
Wallclock Device Driver

717

Freescale MCFxxxx On-Chip Wallclock Device Driver

Name
CYGPKG_DEVS_WALLCLOCK_MCFxxxx — eCos Support for the Freescale MCFxxxx On-Chip Real-Time Clock

Description
Some members of the Freescale ColdFire range of processors come with an on-chip Real-Time Clock device which can act as
an eCos wallclock. The device will not always be appropriate for an application's requirement. Typically it does not have its
own low-current battery input so it will only operate when the whole processor is powered up. Hence either the entire system
needs to be powered by a battery or have a battery backup. Otherwise the device will lose its settings when the power fails,
requiring an application-level recovery mechanism, which means that there is no real advantage to using the RTC rather than
a software emulation.

For those scenarios where the on-chip RTC does meet the application's requirements, this package CYGPKG_DEVS_WALL-
CLOCK_MCFxxxx provides an eCos device driver. The package will usually be loaded into the configuration automatically
whenever selecting a target which contains a compatible device. By default it will provide the standard eCos wallclock device,
although another implementation such as software emulation may be selected if desired. The only other configuration options
related to this package allow users to change the compiler flags. If the application does not actually use the wallclock device,
directly or indirectly, then the code should get removed automatically at link-time to ensure that the application does not suffer
any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

The wallclock driver does not provide any support for other functionality provided by the RTC device such as the alarm or
stopwatch. It only manipulates the HOURMIN, SECONDS, DAYS, and CR registers. Applications can access the remaining
registers as required without affecting the driver.

The wallclock package is initialized by a static constructor with a priority immediately after CYG_INIT_CLOCK. Applications
should not call any wallclock-related functions before that constructor has run.

Porting
The driver requires only minimal porting. The HAL packages, typically the processor HAL, should supply the register def-
initions and the device base address HAL_MCFxxxx_RTC_BASE. In addition the platform HAL should define the crystal
frequency using a #define of HAL_MCFxxxx_RTC_XTAL: legal values are 32768, 32000, and 38400. Finally the driver
package CYGPKG_DEVS_WALLCLOCK_MCFxxxx should be included in the CDL target entry so that it gets loaded automat-
ically whenever eCos is configured for that target.

718

Chapter 128. Intersil ISL1208 Wallclock
Device Driver

719

Intersil ISL1208 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_INTERSIL_ISL1208 — eCos Support for the Intersil ISL1208 Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_INTERSIL_ISL1208 provides a device driver for the wallclock device
in the Intersil ISL1208 Real-Time Clock chips. These combine a real-time clock, alarm functionality, a selectable frequency
output, and two bytes of non-volatile memory in a single package. The driver can also be used with any other chips that provide
the same interface to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

The driver does not provide direct access to any of the other functionality provided by the chip. Instead if an application wishes
to access the alarms or the non-volatile bytes then it can do so itself, via the generic I²C API. However any such application
code does need to synchronize with the wallclock driver to prevent concurrent accesses to the device. The driver exports a
mutex lock to allow for this:

#include <cyg/io/wallclock/isl1208.h>

extern cyg_drv_mutex_t cyg_isl1208_lock;

The mutex should be locked via cyg_drv_mutex_lock to prevent the wallclock driver from accessing the chip, and then
unlocked via cyg_drv_mutex_unlock when the driver can safely access the chip again.

The wallclock package is initialized by a static constructor with a priority immediately after CYG_INIT_DEV_WALLCLOCK.
Applications should not call any wallclock-related functions before that constructor has run.

Porting
The ISL1208 is accessed via an I²C serial bus, and the driver assumes the presence of the generic I²C support package CYG-
PKG_IO_I2C and a suitable hardware driver. In addition it requires that some other package, typically the platform HAL,
exports a cyg_i2c_device structure cyg_i2c_wallclock_isl1208. The ISL1208 device driver package CYGPKG_DE-
VICES_WALLCLOCK_INTERSIL_ISL1208 can then be included in the CDL target entry so that it gets loaded automati-
cally whenever eCos is configured for that target.

720

Chapter 129. Intersil ISL12028 Wallclock
Device Driver

721

Intersil ISL12028 Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_INTERSIL_ISL12028 — eCos Support for the Intersil ISL12028 Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_INTERSIL_ISL12028 provides a device driver for the wallclock device
in the Intersil ISL12028 Real-Time Clock chips. These combine a real-time clock, alarm functionality, and a bank of EEPROM
in a single package. The driver can also be used with any other chips that provide the same interface to the clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

The driver does not provide direct access to any of the other functionality provided by the chip. Instead if an application wishes
to access the alarms or the EEPROM memory then it can do so itself, via the generic I²C API. However any such application
code does need to synchronize with the wallclock driver to prevent concurrent accesses to the device. The driver exports a
mutex lock to allow for this:

#include <cyg/io/wallclock/isl12028.h>

extern cyg_drv_mutex_t cyg_isl12028_lock;

The mutex should be locked via cyg_drv_mutex_lock to prevent the wallclock driver from accessing the chip, and then
unlocked via cyg_drv_mutex_unlock when the driver can safely access the chip again.

The wallclock package is initialized by a static constructor with a priority immediately after CYG_INIT_DEV_WALLCLOCK.
Applications should not call any wallclock-related functions before that constructor has run.

Porting
The ISL12028 is accessed via an I²C serial bus, and the driver assumes the presence of the generic I²C support package CYG-
PKG_IO_I2C and a suitable hardware driver. In addition it requires that some other package, typically the platform HAL, ex-
ports a cyg_i2c_device structure cyg_i2c_wallclock_isl12028. The ISL12028 device driver package CYGPKG_DE-
VICES_WALLCLOCK_INTERSIL_ISL12028 can then be included in the CDL target entry so that it gets loaded automat-
ically whenever eCos is configured for that target.

722

Chapter 130. ST M41TXX Wallclock Device
Driver

723

ST M41TXX Wallclock Device Driver

Name
CYGPKG_DEVICES_WALLCLOCK_ST_M41TXX — eCos Support for the ST M41TXX Serial Real-Time Clock

Description
This package CYGPKG_DEVICES_WALLCLOCK_ST_M41TXX provides a device driver for the wallclock device in the ST
M41TXX Serial Real-Time Clock chips. This is a real-time clock, alarm and watchdog in a single package. eCos only currently
supports the real-time clock function.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

Porting
M41TXX platform support is implemented via the generic I²C API, as defined by the package CYGPKG_IO_I2C. The platform
HAL can just provide a cyg_i2c_device structure cyg_i2c_wallclock_m41txx. The M41TXX driver will now use I²C
rx and tx operations to interact with the chip.

In addition the M41TXX device driver package CYGPKG_DEVICES_WALLCLOCK_ST_M41TXX should be included in the
CDL target entry so that it gets loaded automatically whenever eCos is configured for that target.

724

Chapter 131. ST M48T Wallclock Device
Driver

725

ST M48T Wallclock Device Driver

Name
CYGPKG_DEVS_WALLCLOCK_ST_M48Txxx — eCos Support for the ST M48T TimeKeeper SRAM chips and compatibles

Description
This package CYGPKG_DEVS_WALLCLOCK_ST_M48Txxx provides a device driver for the wallclock device in the ST M48T
family of TimeKeeper SRAM chips (e.g. the M48T35AV part). These combine an amount of battery-backed SRAM and a
real-time clock in a single package. The driver can also be used with any other chips that provide the same interface to the
clock hardware.

The package will usually be loaded into the configuration automatically whenever selecting a target which contains a compatible
chip. By default it will provide the standard eCos wallclock device, although another implementation such as software emulation
may be selected if desired. The only other configuration options related to this package allow users to change the compiler
flags. If the application does not actually use the wallclock device, directly or indirectly, then the code should get removed
automatically at link-time to ensure that the application does not suffer any unnecessary overheads.

Functionality
This wallclock device driver package implements the standard functionality required by the generic wallclock support CYG-
PKG_IO_WALLCLOCK. The functionality is not normally accessed directly. Instead it is used by the C library time pack-
age to implement standard calls such as time and gmtime. The eCos C library also provides a non-standard function
cyg_libc_time_settime for changing the current wallclock setting. In addition RedBoot provides a date command
which interacts with the wallclock device.

M48T devices provide some support for a calibration value. If the application has some alternative way of getting a reliable
time value, for example NTP over a TCP/IP network, then the wallclock can be made to tick slightly faster or slower. The
calibration value is a small integer between -31 and +31. A positive value x adds 512x extra cycles every 125829120 actual
cycles, speeding up the clock by approximately 10.7x seconds per month. Alternatively a negative value x subtracts 256x
cycles, slowing down the clock by 5.35x seconds per month. The package provides two functions for examining and changing
the current calibration value:

#include <cyg/io/wallclock_m48txxx.h>

externC cyg_int32 cyg_wallclock_m48t_get_calibration(void);
externC void cyg_wallclock_m48t_set_calibration(cyg_int32);

Porting
For most platforms adding support for the M48T wallclock device requires just two steps. The package must be added to the
appropriate CDL target entry so that it gets loaded automatically, and selects the relevant ST M48T family device, whenev-
er configuring eCos for that target. Also the platform HAL should specify the location of the clock hardware in the address
space, by defining the symbol HAL_WALLCLOCK_M48Txxx_BASE. The definition should go into cyg/hal/hal_io.h
or more commonly into a platform-specific header cyg/hal/plf_io.h which gets included automatically by the former.
The value should be the address of the control register of the clock device. The driver provides the CYGNUM_DEVS_WALL-
CLOCK_ST_M48Txxx_OFFSET_CLOCK value which is set to the appropriate offset value for the CYGHWR_DEVS_WALL-
CLOCK_ST_M48Txxx selected device. For example, given a battery-backed 32K TimeKeeper chip at 0x30000000, the clock
hardware will occupy the last eight bytes at 0x30007ff8 and that is the value which should be used, and CYGNUM_DE-
VS_WALLCLOCK_ST_M48Txxx_OFFSET_CLOCK will have the value 0x7ff8.

The package provides some support for hardware where the clock is mapped into memory in strange ways. The
platform HAL can define an additional symbol HAL_WALLCLOCK_M48Txxx_STRIDE and macros HAL_WALL-
CLOCK_M48Txxx_READ_UINT8 and HAL_WALLCLOCK_M48Txxx_WRITE_UINT8 to change the way in which the dri-
ver accesses the hardware. The source code should be consulted for further details of how these work.

If the selected ST M48T device implements the Century bit then the configurarion will define CYGINT_DEVS_WALL-
CLOCK_ST_M48Txxx_CENTURY_BIT as a non-zero value. The platform can override the CDL device based configuration
by defining HAL_WALLCLOCK_M48Txxx_NO_CENTURY_BIT which can be used to notify the driver that a compatible
device does not support the Century bit, or that the feature should be explicitly disabled.

726

ST M48T Wallclock Device Driver

If the Century bit is not supported the driver will instead use a heuristic for determining the century: if the year register is <
70 then this is treated as relative to 2000; otherwise it is treated as relative to 1900; this gives an effective range of Jan 1st
1970 to Dec 31st 2069.

727

Part XXXVIII. Watchdog Drivers
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
132. Freescale Kinetis Watchdog Driver ... 730

Kinetis Watchdog Driver ... 731
133. Freescale MCFxxxx SCM Watchdog Driver ... 732

MCFxxxx SCM Watchdog Driver ... 733
134. Freescale MCFxxxx Watchdog Driver ... 734

MCFxxxx Watchdog Driver ... 735
135. Freescale MCF5272 Watchdog Driver ... 736

MCF5272 Watchdog Driver ... 737
136. Freescale MCF5282 Watchdog Driver ... 738

MCF5282 Watchdog Driver ... 739
137. Freescale MCF532x Watchdog Driver ... 740

MCF532x Watchdog Driver ... 741
138. Nios II Avalon Timer Watchdog Driver .. 742

Nios II Avalon Timer Watchdog Driver ... 743
139. NXP PNX8310 Watchdog Driver ... 744

PNX8310 Watchdog Driver .. 745
140. NXP PNX8330 Watchdog Driver ... 746

PNX8330 Watchdog Driver .. 747
141. Synthetic Target Watchdog Device ... 748

Synthetic Target Watchdog Device .. 749

729

Chapter 132. Freescale Kinetis Watchdog
Driver

730

Freescale Kinetis Watchdog Driver

Name
CYGPKG_DEVICES_WATCHDOG_CORTEXM_KINETIS — eCos Support for the Kinetis on-chip Watchdog timer device
(WDOG)

Description
The Freescale Kinetis processor provides a Watchdog Timer (WDOG) module. Once the watchdog timer is enabled it will
automatically reset the processor unless software resets the timer within the configured period.

The package CYGPKG_DEVICES_WATCHDOG_CORTEXM_KINETIS provides an eCos driver for this device, complement-
ing the generic package CYGPKG_IO_WATCHDOG. The functionality should be accessed via the standard eCos watchdog
functions watchdog_start, watchdog_reset and watchdog_get_resolution.

The driver only supports “reset” mode.

Configuration Options
The Kinetis watchdog driver package should be loaded automatically when selecting a platform containing a Kinetis processor,
and it should never be necessary to load it explicitly into the configuration. The package is inactive unless the generic watchdog
support CYGPKG_IO_WATCHDOG is loaded and the watchdog explicitly started. Depending on the choice of eCos template it
may be necessary to load the CYGPKG_IO_WATCHDOG package. By default the HAL startup for the Kinetis platform disables
the watchdog shortly after reset, so even when the I/O watchdog package is loaded the watchdog will not trigger unless the
watchdog support is explicitly started by calling watchdog_start.

The package provides four main configuration options.

CYGIMP_WATCHDOG_HARDWARE can be used to disable the use of the hardware watchdog and switch to a software emulation
provided by the generic watchdog package instead. This may prove useful during debugging.

CYGNUM_DEVS_WATCHDOG_CORTEXM_KINETIS_CLK is used to select the clock source used to drive the watchdog timer
module. The setting of this variable affects the minimum and maximum values that can be configured for the watchdog timeout.

CYGNUM_DEVS_WATCHDOG_CORTEXM_KINETIS_CLK_PRESCALER can further extend the maximum possible value for
the watchdog timeout.

CYGNUM_DEVS_WATCHDOG_CORTEXM_KINETIS_DESIRED_TIMEOUT_US determines the timeout before the hardware
watchdog resets the system. The default setting gives a 1-second timeout. The minimum and maximum timeout values are
determined by the selected source clock and prescaler values. Depending on the configuration the range can extend from 9
microseconds to 4000 seconds.

Porting
The watchdog device driver does not require any platform-specific support. The only porting effort required is to list CYGP-
KG_DEVICES_WATCHDOG_CORTEXM_KINETIS as one of the hardware packages in the ecos.db target entry.

731

Chapter 133. Freescale MCFxxxx SCM
Watchdog Driver

732

Freescale MCFxxxx SCM Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MCFxxxx_SCM — eCos Support for the MCFxxxx SCM On-chip Watchdog Device

Description
ColdFire MCFxxxx processors typically come with two on-chip watchdog devices. The main watchdog is not readily usable
by eCos: it comes up enabled and, once disabled, it can never be reenabled. Hence in a typical development environment that
watchdog device needs to be disabled early on or it will interfere with debugging, and cannot be used again. There is a second
watchdog device embedded in the System Control Module which is usable. This package CYGPKG_DEVS_WATCHDOG_M-
CFxxxx_SCM provides an eCos driver for that device, complementing the generic package CYGPKG_IO_WATCHDOG. The
driver functionality should be accessed via the standard eCos watchdog functions watchdog_start, watchdog_reset
and watchdog_get_resolution.

Configuration Options
The MCFxxxx SCM watchdog driver package should be loaded automatically when selecting a platform containing a suitable
MCFxxxx ColdFire processor. It should never be necessary to load it explicitly into the configuration. The package is inactive
unless the generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template it may
be necessary to load the latter.

There are a number of configuration options. The first is CYGIMP_WATCHDOG_HARDWARE, which can be used to disable
the use of the hardware watchdog and switch to a software emulation provided by the generic watchdog package instead. This
may prove useful during debugging.

By default the watchdog device is set to reset the system when the timeout expires. It can be configured to raise an interrupt
instead by disabling CYGIMP_DEVS_WATCHDOG_MCFxxxx_SCM_RESET. The interrupt ISR will invoke any installed ap-
plication action handlers.

The watchdog timeout is controlled by CYGNUM_DEVS_WATCHDOG_MCFxxxx_SCM_TICKS. This corresponds to the CWT
field in the SCM's CWCR register. It can take a value between 8 and 31, with a default of 28. That means 2^28 peripheral bus
clock ticks have to elapse before the watchdog triggers. Typically that means a timeout of a small number of seconds. There is a
calculated CDL option CYGNUM_DEVS_WATCHDOG_MCFxxxx_SCM_DELAY which gives the current delay in nanoseconds.

The watchdog device has a bit which turns it read-only, preventing any errant code from accidentally disabling it. By default
the driver will set this bit after starting the watchdog. If for some reason the application needs to access the device directly then
the option CYGIMP_DEVS_WATCHDOG_MCFxxxx_SCM_WRITE_ONCE should be disabled.

By default the watchdog is set to continue ticking even if the core is halted by an idle thread action or by power management
code. This can cause problems if the application code halts the core for an extended period of time, so the behaviour can be
changed by disabling CYGIMP_DEVS_WATCHDOG_MCFxxxx_SCM_RUN_WHILE_HALTED.

If the watchdog device is configured to raise interrupts rather than generate a reset then CYGNUM_DEVS_WATCHDOG_M-
CFxxxx_SCM_ISR_PRIORITY controls the interrupt priority. There are also configuration options allowing developers to
tweak the compiler flags used for building this package.

Porting
The watchdog device driver usually does not require any platform-specific support. The processor HAL should provide the
device definitions needed by the code. The only porting effort required is to list CYGPKG_DEVS_WATCHDOG_MCFxxxx_SCM
as one of the hardware packages in the ecos.db target entry.

733

Chapter 134. Freescale MCFxxxx
Watchdog Driver

734

Freescale MCFxxxx Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MCFxxxx — eCos Support for the MCFxxxx On-chip Watchdog Device

Description
Several members of the MCFxxxx ColdFire family have a simple watchdog device embedded in the System Control Module
or SCM. This package CYGPKG_DEVS_WATCHDOG_MCFxxxx provides an eCos device driver for the watchdog device,
complementing the generic package CYGPKG_IO_WATCHDOG. The driver functionality should be accessed via the standard
eCos watchdog functions watchdog_start, watchdog_reset and watchdog_get_resolution.

The hardware has limited functionality: instead of automatically causing a reset when the watchdog triggers it can only raise
an interrupt. By default the watchdog driver installs a non-maskable interrupt with the highest possible priority, and a custom
interrupt VSR will immediately perform a reset using the chip's Reset Controller Module. This is not quite as good as a
watchdog device which performs the reset automatically: corruption of the interrupt vector table, the interrupt controller, the
SCM module, or the VSR code may prevent a reset from occurring. However in most circumstances a watchdog timeout will
still result in a full reset. Alternatively the driver can be configured to generate an ordinary interrupt, leaving it up to application
code to perform recovery from the timeout.

Configuration Options
The MCFxxxx watchdog driver package should be loaded automatically when selecting a platform containing a suitable Cold-
Fire processor, and it should never be necessary to load it explicitly into the configuration. The package is inactive unless the
generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template it may be necessary
to load the latter.

The first configuration option is CYGIMP_WATCHDOG_HARDWARE, which can be used to disable the use of the hardware
watchdog and switch to a software emulation provided by the generic watchdog package instead. This may prove useful during
debugging.

If the hardware watchdog is enabled then CYGIMP_DEVS_WATCHDOG_MCFxxxx_ATTEMPT_RESET controls whether the
driver will install a non-maskable interrupt VSR which performs a reset, or an ordinary interrupt handler which calls into
application code. The default is to attempt the reset.

The watchdog timeout is controlled by CYGNUM_DEVS_WATCHDOG_MCFxxxx_TICKS. It is measured in system clock ticks
and only a limited number of values are available: 29, 211, 213, 215, 219, 223, 227 and 231. The default is 227 clock ticks. For a
processor running at 64MHz that corresponds to just over two seconds. With the same clock 223 ticks would give 0.13 seconds
and 231 would give 33 seconds. For convenience there is a calculated configuration option CYGNUM_DEVS_WATCHDOG_M-
CFxxxx_DELAY which gives the actual delay in nanoseconds.

If the watchdog is configured to generate an ordinary interrupt rather than attempt a reset then CYGNUM_DEVS_WATCH-
DOG_MCFxxxx_ISR_PRIORITY determines the interrupt priority. The default will be provided by the processor HAL.

Porting
The watchdog device driver usually does not require any platform-specific support. The only porting effort required is to list
CYGPKG_DEVS_WATCHDOG_MCFxxxx as one of the hardware packages in the ecos.db target entry. However if the driver
has been configured to generate a reset then it will use HAL_VSR_SET to install a custom VSR cyg_mcfxxxx_watch-
dog_vsr. On platforms where the exception vectors are in flash and hence read-only this will be a problem and the function
will have to be placed in the appropriate slot instead of hal_m68k_interrupt_vsr.

735

Chapter 135. Freescale MCF5272
Watchdog Driver

736

Freescale MCF5272 Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MCF5272 — eCos Support for the MCF5272 On-chip Watchdog Device

Description
The Freescale MCF5272 ColdFire processor has a built-in watchdog device. Once started it will automatically reset the proces-
sor unless software updates the device at regular intervals. The package CYGPKG_DEVS_WATCHDOG_MCF5272provides
an eCos driver for this device, complementing the generic package CYGPKG_IO_WATCHDOG. The functionality should be
accessed via the standard eCos watchdog functions watchdog_start, watchdog_reset and watchdog_get_res-
olution.

The watchdog driver only supports reset mode. The hardware can also be configured to raise an interrupt when the watchdog
times out, but this mode of operation is not supported.

Configuration Options
The MCF5272 watchdog driver package should be loaded automatically when selecting a platform containing an MCF5272
processor, and it should never be necessary to load it explicitly into the configuration. The package is inactive unless the
generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template it may be necessary
to load the latter.

The package provides two main configuration options. CYGIMP_WATCHDOG_HARDWARE can be used to disable the use of
the hardware watchdog and switch to a software emulation provided by the generic watchdog package instead. This may
prove useful during debugging. CYGNUM_DEVS_WATCHDOG_MCF5272_TICKS determines the timeout before the hardware
watchdog resets the processor. It should be a 15-bit number, with each tick corresponding to 32768 system clock cycles. For a
processor operating at 66MHz each tick is approximately 0.5 milliseconds so the default value of 2000 corresponds to a one-
second timeout. The maximum value of 32767 gives a timeout of approximately 16 seconds.

Porting
The watchdog device driver does not require any platform-specific support. The only porting effort required is to list CYGP-
KG_DEVS_WATCHDOG_MCF5272 as one of the hardware packages in the ecos.db target entry.

737

Chapter 136. Freescale MCF5282
Watchdog Driver

738

Freescale MCF5282 Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MCF5282 — eCos Support for the MCF5282 On-chip Watchdog Device

Description
The Freescale MCF5282 Coldfire processor has two built-in watchdog devices. The System Control Module or SCM has a
simple watchdog device which can only generate an interrupt when the watchdog triggers. The Watchdog Timer Module has
a more advanced watchdog device, but unfortunately it has a write-once register which makes it difficult to use in a typical
development environment. The package CYGPKG_DEVS_WATCHDOG_MCF5282 provides an eCos device driver for the SCM
device, complementing the generic package CYGPKG_IO_WATCHDOG. The functionality should be accessed via the standard
eCos watchdog functions watchdog_start, watchdog_reset and watchdog_get_resolution.

By default the watchdog driver installs a non-maskable interrupt with the highest possible priority, and a custom interrupt VSR
will immediately perform a reset using the chip's Reset Controller Module. This is not quite as good as a watchdog device
which performs the reset automatically: corruption of the interrupt vector table, the interrupt controller, the SCM module, or
the VSR code may prevent a reset from occurring. However in most circumstances a watchdog timeout will still result in a full
reset. Alternatively the driver can be configured to generate an ordinary interrupt, leaving it up to application code to perform
recovery from the timeout.

Configuration Options
The MCF5282 watchdog driver package should be loaded automatically when selecting a platform containing an MCF5282
processor, and it should never be necessary to load it explicitly into the configuration. The package is inactive unless the
generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template it may be necessary
to load the latter.

The first configuration option is CYGIMP_WATCHDOG_HARDWARE, which can be used to disable the use of the hardware
watchdog and switch to a software emulation provided by the generic watchdog package instead. This may prove useful during
debugging.

If the hardware watchdog is enabled then CYGIMP_DEVS_WATCHDOG_MCF5282_ATTEMPT_RESET controls whether the
driver will install a non-maskable interrupt VSR which performs a reset, or an ordinary interrupt handler which calls into
application code. The default is to attempt the reset.

The watchdog timeout is controlled by CYGNUM_DEVS_WATCHDOG_MCF5282_TICKS. It is measured in system clock ticks
and only a limited number of values are available: 29, 211, 213, 215, 219, 223, 227 and 231. The default is 227 clock ticks. For a
processor running at 64MHz that corresponds to just over two seconds. With the same clock 223 ticks would give 0.13 seconds
and 231 would give 33 seconds.

If the watchdog is configured to generate an ordinary interrupt rather than attempt a reset then CYGNUM_DEVS_WATCH-
DOG_MCF5282_ISR_PRIORITY determines the interrupt priority. The default will be provided by the processor HAL. On
an MCF5282 all interrupt priorities must be unique.

Porting
The watchdog device driver does not require any platform-specific support. The only porting effort required is to list CYGP-
KG_DEVS_WATCHDOG_MCF5282 as one of the hardware packages in the ecos.db target entry.

739

Chapter 137. Freescale MCF532x
Watchdog Driver

740

Freescale MCF532x Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MCF532x — eCos Support for the MCF532x On-chip Watchdog Device

Description
The ColdFire MCF532x family of processors come with two on-chip watchdog devices. The main watchdog is not readily
usable by eCos: it comes up enabled and, once disabled, it can never be reenabled. Hence in a typical development environment
that watchdog device needs to be disabled early on or it will interfere with debugging, and cannot be used again. There is a
second watchdog device embedded in the System Control Module which is usable. This package CYGPKG_DEVS_WATCH-
DOG_MCF532x provides an eCos driver for that device, complementing the generic package CYGPKG_IO_WATCHDOG. The
driver functionality should be accessed via the standard eCos watchdog functions watchdog_start, watchdog_reset
and watchdog_get_resolution.

Configuration Options
The MCF532x watchdog driver package should be loaded automatically when selecting a platform containing an MCF532x
ColdFire processor, or any other ColdFire with a compatible device. It should never be necessary to load it explicitly into the
configuration. The package is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending
on the choice of eCos template it may be necessary to load the latter.

There are a number of configuration options. The first is CYGIMP_WATCHDOG_HARDWARE, which can be used to disable
the use of the hardware watchdog and switch to a software emulation provided by the generic watchdog package instead. This
may prove useful during debugging.

By default the watchdog device is set to reset the system when the timeout expires. It can be configured to raise an interrupt
instead by disabling CYGIMP_DEVS_WATCHDOG_MCF532x_RESET. The interrupt ISR will invoke any installed application
action handlers.

The watchdog timeout is controlled by CYGNUM_DEVS_WATCHDOG_MCF532x_TICKS. This corresponds to the CWT field
in the SCM's CWCR register. It can take a value between 8 and 31, with a default of 27. That means 2^27 clock ticks have to
elapse before the watchdog triggers. For a processor operating at 240/80MHz that corresponds to approximately 1.67 seconds.
There is also a calculated CDL option CYGNUM_DEVS_WATCHDOG_MCF532x_DELAY which gives the current delay in
nanoseconds.

The watchdog device has a bit which turns it read-only, preventing any errant code from accidentally disabling it. By default
the driver will set this bit after starting the watchdog. If for some reason the application needs to access the device directly then
the option CYGIMP_DEVS_WATCHDOG_MCF532x_WRITE_ONCE should be disabled.

By default the watchdog is set to continue ticking even if the core is halted by an idle thread action or by power management
code. This can cause problems if the application code halts the core for an extended period of time, so the behaviour can be
changed by disabling CYGIMP_DEVS_WATCHDOG_MCF532x_RUN_WHILE_HALTED.

If the watchdog device is configured to raise interrupts rather than generate a reset then CYGNUM_DEVS_WATCHDOG_M-
CF532x_ISR_PRIORITY controls the interrupt priority. There are also configuration options allowing developers to tweak
the compiler flags used for building this package.

Porting
The watchdog device driver usually does not require any platform-specific support. The only porting effort required is to list
CYGPKG_DEVS_WATCHDOG_MCF532x as one of the hardware packages in the ecos.db target entry.

741

Chapter 138. Nios II Avalon Timer
Watchdog Driver

742

Nios II Avalon Timer Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_NIOS2_AVALON_TIMER — eCos Support for a Nios II Avalon Timer-based Watchdog De-
vice

Description
A Nios II hardware design can include an Avalon timer which acts as a watchdog device. Once started it will automat-
ically reset the processor unless software updates the device at regular intervals. The package CYGPKG_DEVS_WATCH-
DOG_NIOS2_AVALON_TIMER provides an eCos driver for this device, complementing the generic package CYGP-
KG_IO_WATCHDOG. The functionality should be accesssed via the standard eCos watchdog functions.

Configuration Options
The Avalon watchdog driver package should be loaded automatically when creating an eCos configuration for a hardware
design which includes a suitable watchdog device, and it should never be necessary to load the package explicitly. The package
is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template
it may be necessary to load the latter.

The package provides a configuration option CYGIMP_WATCHDOG_HARDWARE. This can be used to disable the use of the
hardware watchdog and switch to a software emulation provided by the generic watchdog package instead. This may prove
useful during debugging. The package also provides two configuration options for manipulating the compiler flags used to
build the driver.

Porting
A hardware design requiring a watchdog should include an Avalon timer labelled “watchdog”. This timer should use the presets
for a watchdog device: no writeable period, no readable snapshot, no start/stop control bits, no timeout pulse, system reset on
timeout. The watchdog period can be set to any desired value, subject to the constraints of a 32-bit counter and the hardware's
input clock. For example if the hardware runs at 100MHz then the watchdog period is limited to at most 42.9 seconds.

The hardware design HAL package should include definitions for HAL_NIOS2_AVALON_TIMER_WATCHDOG_BASE
and HAL_NIOS2_AVALON_TIMER_WATCHDOG_PERIOD. In addition the ecos.db target entry should list CYGPKG_DE-
VS_WATCHDOG_NIOS2_AVALON_TIMER as one of the hardware packages.

743

Chapter 139. NXP PNX8310 Watchdog
Driver

744

NXP PNX8310 Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MIPS_PNX8310 — eCos Support for the PNX8310 On-chip Watchdog Device

Description
The NXP PNX8310 processor is based around a PR1910 core. This core supports three timers, one of which can act as a
watchdog device. Once the timer is started it will automatically reset the processor unless software resets the timer at regu-
lar intervals. The package CYGPKG_DEVS_WATCHDOG_MIPS_PNX8310 provides an eCos driver for this device, comple-
menting the generic package CYGPKG_IO_WATCHDOG. The functionality should be accessed via the standard eCos watchdog
functions watchdog_start, watchdog_reset and watchdog_get_resolution.

The watchdog driver only supports reset mode. The hardware can also be configured to raise an interrupt half way
through the timeout period, but the driver does not use this functionality. An application can install an interrupt handler on
CYGNUM_HAL_ISR_TMR3 if desired.

Configuration Options
The PNX8310 watchdog driver package should be loaded automatically when selecting a platform containing a PNX8310
processor, and it should never be necessary to load it explicitly into the configuration. The package is inactive unless the
generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template it may be necessary
to load the latter.

The package provides two main configuration options. CYGIMP_WATCHDOG_HARDWARE can be used to disable the use of
the hardware watchdog and switch to a software emulation provided by the generic watchdog package instead. This may prove
useful during debugging. CYGNUM_DEVS_WATCHDOG_MIPS_PNX8310_MILLISECONDS determines the timeout before
the hardware watchdog resets the system. The default setting gives a 10-second timeout. The maximum timeout is determined
by the CPU clock frequency, approximately 70 seconds for a 120MHz processor.

Porting
The watchdog device driver does not require any platform-specific support. The only porting effort required is to list CYGP-
KG_DEVS_WATCHDOG_MIPS_PNX8310 as one of the hardware packages in the ecos.db target entry.

745

Chapter 140. NXP PNX8330 Watchdog
Driver

746

NXP PNX8330 Watchdog Driver

Name
CYGPKG_DEVS_WATCHDOG_MIPS_PNX8330 — eCos Support for the PNX8330 On-chip Watchdog Device

Description
The NXP PNX8330 processor Configuration unit supports three timers, one of which will act as a watchdog device. Once
the timer is started it will automatically reset the processor unless software resets the timer at regular intervals. The package
CYGPKG_DEVS_WATCHDOG_MIPS_PNX8330 provides an eCos driver for this device, complementing the generic package
CYGPKG_IO_WATCHDOG. The functionality should be accessed via the standard eCos watchdog functions watchdog_s-
tart, watchdog_reset and watchdog_get_resolution.

The hardware, and thus the watchdog driver, only supports reset mode.

Configuration Options
The PNX8330 watchdog driver package should be loaded automatically when selecting a platform containing a PNX8330
processor, and it should never be necessary to load it explicitly into the configuration. The package is inactive unless the
generic watchdog support CYGPKG_IO_WATCHDOG is loaded. Depending on the choice of eCos template it may be necessary
to load the latter.

The package provides two main configuration options. CYGIMP_WATCHDOG_HARDWARE can be used to disable the use of
the hardware watchdog and switch to a software emulation provided by the generic watchdog package instead. This may prove
useful during debugging. CYGNUM_DEVS_WATCHDOG_MIPS_PNX8330_MILLISECONDS determines the timeout before
the hardware watchdog resets the system. The default setting gives a 10-second timeout. The maximum timeout is determined
by the CPU clock frequency, approximately 70 seconds for a 120MHz processor.

Porting
The watchdog device driver does not require any platform-specific support. The only porting effort required is to list CYGP-
KG_DEVS_WATCHDOG_MIPS_PNX8330 as one of the hardware packages in the ecos.db target entry.

747

Chapter 141. Synthetic Target Watchdog
Device

748

Synthetic Target Watchdog Device

Name
Synthetic Target Watchdog Device — Emulate watchdog hardware in the synthetic target

Overview
Some target hardware comes equipped with a watchdog timer. Application code can start this timer and after a certain period
of time, typically a second, the watchdog will trigger. Usually this causes the hardware to reboot. The application can prevent
this by regularly resetting the watchdog. An automatic reboot can be very useful when deploying hardware in the field: a
hardware glitch could cause the unit to hang; or the software could receive an unexpected sequence of inputs, never seen in
the laboratory, causing the system to lock up. Often the hardware is still functional, and a reboot sorts out the problem with
only a brief interruption in service.

The synthetic target watchdog package emulates watchdog hardware. During system initialization watchdog device will be
instantiated, and the watchdog.tcl script will be loaded by the I/O auxiliary. When the eCos application starts the watchdog
device, the watchdog.tcl script will start checking the state of the eCos application at one second intervals. A watchdog
reset call simply involves a message to the I/O auxiliary. If the watchdog.tcl script detects that a second has elapsed
without a reset then it will send a SIGPWR signal to the eCos application, causing the latter to terminate. If gdb is being used to
run the application, the user will get a chance to investigate what is happening. This behaviour is different from real hardware
in that there is no automatic reboot, but the synthetic target is used only for development purposes, not deployment in the field:
if a reboot is desired then this can be achieved very easily by using gdb commands to run another instance of the application.

Installation
Before a synthetic target eCos application can use a watchdog device it is necessary to build and install host-side support. The
relevant code resides in the host subdirectory of the synthetic target watchdog package, and building it involves the standard
configure, make and make install steps. The implementation of the watchdog support does not require any executables, just
a Tcl script watchdog.tcl and some support files, so the make step is a no-op.

There are two main ways of building the host-side software. It is possible to build both the generic host-side software and all
package-specific host-side software, including the watchdog support, in a single build tree. This involves using the configure
script at the toplevel of the eCos repository. For more information on this, see the README.host file at the top of the
repository. Note that if you have an existing build tree which does not include the synthetic target watchdog support then it
will be necessary to rerun the toplevel configure script: the search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This requires a separate build directory, building directly in the
source tree is disallowed. The configure options are much the same as for a build from the toplevel, and the README.host
file can be consulted for more details. It is essential that the watchdog support be configured with the same --prefix option
as other eCos host-side software, especially the I/O auxiliary provided by the architectural synthetic target HAL package,
otherwise the I/O auxiliary will be unable to locate the watchdog support.

Target-side Configuration
The watchdog device depends on the generic watchdog support, CYGPKG_IO_WATCHDOG: if the generic support is absent then
the watchdog device will be inactive. Some templates include this generic package by default, but not all. If the configuration
does not include the generic package then it can be added using the eCos configuration tools, for example:

$ ecosconfig add CYGPKG_IO_WATCHDOG

By default the configuration will use the hardware-specific support, i.e. this package. However the generic watchdog package
contains an alternative implementation using the kernel alarm facility, and that implementation can be selected if desired. How-
ever usually it will be better to rely on an external watchdog facility as provided by the I/O auxiliary and the watchdog.tcl
script: if there are serious problems within the application, for example memory corruption, then an internal software-only
implementation will not be reliable.

The watchdog resolution is currently fixed to one second: if the device does not receive a reset signal at least once a second
then the watchdog will trigger and the eCos application will be terminated with a SIGPWR signal. The current implementation
does not allow this resolution to be changed.

749

Synthetic Target Watchdog Device

On some targets the watchdog device does not perform a hard reset. Instead the device works more or less via the interrupt
subsystem, allowing application code to install action routines that will be called when the watchdog triggers. The synthetic
target watchdog support effectively does perform a hard reset, by sending a SIGPWR signal to the eCos application, and there
is no support for action routines.

The synthetic target watchdog package provides some configuration options for manipulating the compiler flags used for
building the target-side code. That code is fairly simple, so for nearly all applications the default flags will suffice.

It should be noted that the watchdog device is subject to selective linking. Unless some code explicitly references the device, for
example by calling the start and reset functions, the watchdog support will not appear in the final executable. This is desirable
because a watchdog device has no effect until started.

Wallclock versus Elapsed Time

On real hardware the watchdog device uses wallclock time: if the device does not receive a reset signal within a set period
of time then the watchdog will trigger. When developing for the synthetic target this is not always appropriate. There may be
other processes running, using up some or most of the cpu time. For example, the application may be written such that it will
issue a reset after some calculations which are known to complete within half a second, well within the one-second resolution
of the watchdog device. However if other Linux processes are running then the synthetic target application may get timesliced,
and half a second of computation may take several seconds of wallclock time.

Another problem with using wallclock time is that it interferes with debugging: if the application hits a breakpoint then it is
unlikely that the user will manage to restart it in less than a second, and the watchdog will not get reset in time.

To avoid these problems the synthetic target watchdog normally uses consumed cpu time rather than wallclock time. If the
application is timesliced or if it is halted inside gdb then it does not consume any cpu time. The application actually has to
spend a whole second's worth of cpu cycles without issuing a reset before the watchdog triggers.

However using consumed cpu time is not a perfect solution either. If the application makes blocking system calls then it is not
using cpu time. Interaction with the I/O auxiliary involves system calls, but these should take only a short amount of time so their
effects can be ignored. If the application makes direct system calls such as cyg_hal_sys_read then the system behaviour
becomes undefined. In addition by default the idle thread will make blocking select system calls, effectively waiting until an
interrupt occurs. If an application spends much of its time idle then the watchdog device may take much longer to trigger than
expected. It may be desirable to enable the synthetic target HAL configuration option CYGIMP_HAL_IDLE_THREAD_SPIN,
causing the idle thread to spin rather than block, at the cost of wasted cpu cycles.

The default is to use consumed cpu time, but this can be changed in the target definition file:

synth_device watchdog {
 use wallclock_time
 …
}

User Interface

When the synthetic target is run in graphical mode the watchdog device extends the user interface in two ways. The Help menu
is extended with an entry for the watchdog-specific documentation. There is also a graphical display of the current state of the
watchdog. Initially the watchdog is asleep:

When application code starts the device the watchdog will begin to keep an eye on things (or occasionally both eyes).

750

Synthetic Target Watchdog Device

If the watchdog triggers the display will change again, and optionally the user can receive an audible alert. The location of the
watchdog display within the I/O auxiliary's window can be controlled via a watchdog_pack entry in the target definition file.
For example the following can be used to put the watchdog display to the right of the central text window:

synth_device watchdog {
 watchdog_pack -in .main.e -side top
 …
}

The user interface section of the generic synthetic target HAL documentation can be consulted for more information on window
packing.

By default the watchdog support will not generate an audible alert when the watchdog triggers, to avoid annoying colleagues.
Sound can be enabled in the target definition file, and two suitable files sound1.au and sound2.au are supplied as standard:

synth_device watchdog {
 sound sound1.au
 …
}

An absolute path can be specified if desired:

synth_device watchdog {
 sound /usr/share/emacs/site-lisp/emacspeak/sounds/default-8k/alarm.au
 …
}

Sound facilities are not built into the I/O auxiliary itself, instead an external program is used. The default player is play, a front-
end to the sox application shipped with some Linux distributions. If another player should be used then this can be specified
in the target definition file:

synth_device watchdog {
 …
 sound_player my_sound_player

The specified program will be run in the background with a single argument, the sound file.

Command Line Arguments
The watchdog support does not use any command line arguments. All configuration is handled through the target definition file.

Hooks
The watchdog support does not provide any hooks for use by other scripts. There is rarely any need for customizing the system's
behaviour when a watchdog triggers because those should be rare events, even during application development.

Additional Tcl Procedures
The watchdog support does not provide any additional Tcl procedures or variables for use by other scripts.

751

Part XXXIX. eCos POSIX
compatibility layer

Table of Contents
142. POSIX Standard Support .. 755

Process Primitives [POSIX Section 3] .. 755
Functions Implemented .. 755
Functions Omitted .. 755
Notes .. 756

Process Environment [POSIX Section 4] .. 756
Functions Implemented .. 756
Functions Omitted .. 756
Notes .. 756

Files and Directories [POSIX Section 5] ... 757
Functions Implemented .. 757
Functions Omitted .. 757
Notes .. 757

Input and Output [POSIX Section 6] .. 758
Functions Implemented .. 758
Functions Omitted .. 758
Notes .. 758

Device and Class Specific Functions [POSIX Section 7] ... 758
Functions Implemented .. 758
Functions Omitted .. 758
Notes .. 758

C Language Services [POSIX Section 8] .. 759
Functions Implemented .. 759
Functions Omitted .. 759
Notes .. 759

System Databases [POSIX Section 9] .. 759
Functions Implemented .. 759
Functions Omitted .. 759
Notes .. 760

Data Interchange Format [POSIX Section 10] ... 760
Synchronization [POSIX Section 11] ... 760

Functions Implemented .. 760
Functions Omitted .. 760
Notes .. 760

Memory Management [POSIX Section 12] ... 761
Functions Implemented .. 761
Functions Omitted .. 761
Notes .. 761

Execution Scheduling [POSIX Section 13] .. 761
Functions Implemented .. 761
Functions Omitted .. 762
Notes .. 762

Clocks and Timers [POSIX Section 14] ... 762
Functions Implemented .. 762
Functions Omitted .. 762
Notes .. 762

Message Passing [POSIX Section 15] .. 763
Functions Implemented .. 763
Functions Omitted .. 763
Notes .. 763

Thread Management [POSIX Section 16] ... 763
Functions Implemented .. 763
Functions Omitted .. 764
Notes .. 764

Thread-Specific Data [POSIX Section 17] .. 764

753

eCos POSIX compatibility layer

Functions Implemented .. 764
Functions Omitted .. 764
Notes .. 764

Thread Cancellation [POSIX Section 18] .. 764
Functions Implemented .. 764
Functions Omitted .. 765
Notes .. 765

Non-POSIX Functions ... 765
General I/O Functions ... 765
Socket Functions .. 765
Notes .. 765

References and Bibliography .. 766

754

Chapter 142. POSIX Standard Support
eCos contains support for the POSIX Specification (ISO/IEC 9945-1)[POSIX].

POSIX support is divided between the POSIX and the FILEIO packages. The POSIX package provides support for threads,
signals, synchronization, timers and message queues. The FILEIO package provides support for file and device I/O. The two
packages may be used together or separately, depending on configuration.

This document takes a functional approach to the POSIX library. Support for a function implies that the data types and defin-
itions necessary to support that function, and the objects it manipulates, are also defined. Any exceptions to this are noted, and
unless otherwise noted, implemented functions behave as specified in the POSIX standard.

This document only covers the differences between the eCos implementation and the standard; it does not provide complete
documentation. For full information, see the POSIX standard [POSIX]. Online, the Open Group Single Unix Specification
[SUS2] provides complete documentation of a superset of POSIX. If you have access to a Unix system with POSIX compati-
bility, then the manual pages for this will be of use. There are also a number of books available. [Lewine] covers the process,
signal, file and I/O functions, while [Lewis1], [Lewis2], [Nichols] and [Norton] cover Pthreads and related topics (see Bibli-
ography, xref). However, many of these books are oriented toward using POSIX in non-embedded systems, so care should be
taken in applying them to programming under eCos.

The remainder of this chapter broadly follows the structure of the POSIX Specification. References to the appropriate section
of the Standard are included.

Omitted functions marked with “// TBA” are potential candidates for later implementation.

Process Primitives [POSIX Section 3]

Functions Implemented
int kill(pid_t pid, int sig);
int pthread_kill(pthread_t thread, int sig);
int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);
int sigqueue(pid_t pid, int sig, const union sigval value);
int sigprocmask(int how, const sigset_t *set, sigset_t *oset);
int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset);
int sigpending(sigset_t *set);
int sigsuspend(const sigset_t *set);
int sigwait(const sigset_t *set, int *sig);
int sigwaitinfo(const sigset_t *set, siginfo_t *info);
int sigtimedwait(const sigset_t *set, siginfo_t *info, const struct timespec *timeout);
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signo);
int sigdelset(sigset_t *set, int signo);
int sigismember(const sigset_t *set, int signo);
unsigned int alarm(unsigned int seconds);
int pause(void);
unsigned int sleep(unsigned int seconds);

Functions Omitted
pid_t fork(void);
int execl(const char *path, const char *arg, …);
int execv(const char *path, char *const argv[]);
int execle(const char *path, const char *arg, …);
int execve(const char *path, char *const argv[], char *const envp[]);
int execlp(const char *path, const char *arg, …);
int execvp(const char *path, char *const argv[]);
int pthread_atfork(void(*prepare)(void), void (*parent)(void), void (*child)());
pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

755

POSIX Standard Support

void _exit(int status);

Notes
• Signal handling may be enabled or disabled with the CYGPKG_POSIX_SIGNALS option. Since signals are used by other

POSIX components, such as timers, disabling signals will disable those components too.

• kill() and sigqueue() may only take a pid argument of zero, which maps to the current process.

• The SIGEV_THREAD notification type is not currently implemented.

• Job Control and Memory Protection signals are not supported.

• An extra implementation defined si_code value, SI_EXCEPT, is defined to distinguish hardware generated exceptions from
others.

• Extra signals are defined: _SIGTRAP_, _SIGIOT_, _SIGEMT_, _SIGSYS_ These are largely to maintain compatibility
with the signal numbers used by GDB.

• Signal delivery may currently occur at unexpected places in some API functions. Using longjmp() to transfer control out of
a signal handler may result in the interrupted function not being able to complete properly. This may result in later function
calls failing or deadlocking.

Process Environment [POSIX Section 4]

Functions Implemented
int uname(struct utsname *name);
time_t time(time_t *tloc);
char *getenv(const char *name);
int isatty(int fd);
long sysconf(int name);

Functions Omitted
pid_t getpid(void);
pid_t getppid(void);
uid_t getuid(void);
uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);
int setuid(uid_t uid);
int setgid(gid_t gid);
int getgroups(int gidsetsize, gid_t grouplist[]);
char *getlogin(void);
int getlogin_r(char *name, size_t namesize);
pid_t getpgrp(void);
pid_t setsid(void);
int setpgid(pid_t pid, pid_t pgid);
char *ctermid(char *s);
char *ttyname(int fd); // TBA
int ttyname_r(int fd, char *name, size_t namesize); // TBA
clock_t times(struct tms *buffer); // TBA

Notes
• The fields of the utsname structure are initialized as follows:

sysname “eCos”
nodename “” (gethostname() is currently not available)

release Major version number of the kernel

756

POSIX Standard Support

version Minor version number of the kernel
machine “” (Requires some config tool changes)

The sizes of these strings are defined by CYG_POSIX_UTSNAME_LENGTH and CYG_POSIX_UTSNAME_NODE-
NAME_LENGTH. The latter defaults to the value of the former, but may also be set independently to accommodate a longer
node name.

• The time() function is currently implemented in the C library.

• A set of environment strings may be defined at configuration time with the CYGDAT_LIBC_DEFAULT_ENVIRONMENT
option. The application may also define an environment by direct assignment to the environ variable.

• At present isatty() assumes that any character device is a tty and that all other devices are not ttys. Since the only kind of
device that eCos currently supports is serial character devices, this is an adequate distinction.

• All system variables supported by sysconf will yield a value. However, those that are irrelevant to eCos will either return
the default minimum defined in <limits.h>, or zero.

Files and Directories [POSIX Section 5]

Functions Implemented
DIR *opendir(const char *dirname);
struct dirent *readdir(DIR *dirp);
int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);
void rewinddir(DIR *dirp);
int closedir(DIR *dirp);
int chdir(const char *path);
char *getcwd(char *buf, size_t size);
int open(const char * path , int oflag , …);
int creat(const char * path, mode_t mode);
int link(const char *existing, const char *new);
int mkdir(const char *path, mode_t mode);
int unlink(const char *path);
int rmdir(const char *path);
int rename(const char *old, const char *new);
int stat(const char *path, struct stat *buf);
int fstat(int fd, struct stat *buf);
int access(const char *path, int amode);
long pathconf(const char *path, int name);
long fpathconf(int fd, int name);

Functions Omitted
mode_t umask(mode_t cmask);
int mkfifo(const char *path, mode_t mode);
int chmod(const char *path, mode_t mode); // TBA
int fchmod(int fd, mode_t mode); // TBA
int chown(const char *path, uid_t owner, gid_t group);
int utime(const char *path, const struct utimbuf *times); // TBA
int ftruncate(int fd, off_t length); // TBA

Notes
• If a call to open() or creat() supplies the third _mode_ parameter, it will currently be ignored.

• Most of the functionality of these functions depends on the underlying filesystem.

• Currently access() only checks the F_OK mode explicitly, the others are all assumed to be true by default.

• The maximum number of open files allowed is supplied by the CYGNUM_FILEIO_NFILE option. The maximum number
of file descriptors is supplied by the CYGNUM_FILEIO_NFD option.

757

POSIX Standard Support

Input and Output [POSIX Section 6]

Functions Implemented
int dup(int fd);
int dup2(int fd, int fd2);
int close(int fd);
ssize_t read(int fd, void *buf, size_t nbyte);
ssize_t write(int fd, const void *buf, size_t nbyte);
int fcntl(int fd, int cmd, …);
off_t lseek(int fd, off_t offset, int whence);
int fsync(int fd);
int fdatasync(int fd);

Functions Omitted
int pipe(int fildes[2]);
int aio_read(struct aiocb *aiocbp); // TBA
int aio_write(struct aiocb *aiocbp); // TBA
int lio_listio(int mode, struct aiocb *const list[],
 int nent, struct sigevent *sig); // TBA
int aio_error(struct aiocb *aiocbp); // TBA
int aio_return(struct aiocb *aiocbp); // TBA
int aio_cancel(int fd, struct aiocb *aiocbp); // TBA
int aio_suspend(const struct aiocb *const list[],
 int nent, const struct timespec *timeout); // TBA
int aio_fsync(int op, struct aiocb *aiocbp); // TBA

Notes
• Only the F_DUPFD command of fcntl() is currently implemented.

• Most of the functionality of these functions depends on the underlying filesystem.

Device and Class Specific Functions [POSIX Sec-
tion 7]

Functions Implemented
speed_t cfgetospeed(const struct termios *termios_p);
int cfsetospeed(struct termios *termios_p, speed_t speed);
speed_t cfgetispeed(const struct termios *termios_p);
int cfsetispeed(struct termios *termios_p, speed_t speed);
int tcgetattr(int fd, struct termios *termios_p);
int tcsetattr(int fd, int optional_actions, const struct termios *termios_p);
int tcsendbreak(int fd, int duration);
int tcdrain(int fd);
int tcflush(int fd, int queue_selector);
int tcsendbreak(int fd, int action);

Functions Omitted
pid_t tcgetpgrp(int fd);
int tcsetpgrp(int fd, pid_t pgrp);

Notes
• Only the functionality relevant to basic serial device control is implemented. Only very limited support for canonical input

is provided, and then only via the “tty” devices, not the “serial” devices. None of the functionality relevant to job control,
controlling terminals and sessions is implemented.

758

POSIX Standard Support

• Only MIN = 0 and TIME = 0 functionality is provided.

• Hardware flow control is supported if the underlying device driver and serial port support it.

• Support for break, framing and parity errors depends on the functionality of the hardware and device driver.

C Language Services [POSIX Section 8]

Functions Implemented
char *setlocale(int category, const char *locale);
int fileno(FILE *stream);
FILE *fdopen(int fd, const char *type);
int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(FILE *stream);
int putchar_unlocked(void);
char *strtok_r(char *s, const char *sep, char **lasts);
char *asctime_r(const struct tm *tm, char *buf);
char *ctime_r(const time_t *clock, char *buf);
struct tm *gmtime_r(const time_t *clock, struct tm *result);
struct tm *localtime_r(const time_t *clock, struct tm *result);
int rand_r(unsigned int *seed);

Functions Omitted
void flockfile(FILE *file);
int ftrylockfile(FILE *file);
void funlockfile(FILE *file);
int sigsetjmp(sigjmp_buf env, int savemask); // TBA
void siglongjmp(sigjmp_buf env, int val); // TBA
void tzset(void); // TBA

Notes
• setlocale() is implemented in the C library Internationalization package.

• Functions fileno() and fdopen() are implemented in the C library STDIO package.

• Functions getc_unlocked(), getchar_unlocked(), putc_unlocked() and putchar_unlocked() are defined but are currently iden-
tical to their non-unlocked equivalents.

• strtok_r(), asctime_r(), ctime_r(), gmtime_r(), localtime_r() and rand_r() are all currently in the C library, alongside their
non-reentrant versions.

System Databases [POSIX Section 9]

Functions Implemented
<none>

Functions Omitted
struct group *getgrgid(gid_t gid);
int getgrgid(gid_t gid, struct group *grp, char *buffer, size_t bufsize, struct group **result);
struct group *getgrname(const char *name);
int getgrname_r(const char *name, struct group *grp, char *buffer,
 size_t bufsize, struct group **result);
struct passwd *getpwuid(uid_t uid);

759

POSIX Standard Support

int getpwuid_r(uid_t uid, struct passwd *pwd, char *buffer,
 size_t bufsize, struct passwd **result);
struct passwd *getpwnam(const char *name);
int getpwnam_r(const char *name, struct passwd *pwd, char *buffer,
 size_t bufsize, struct passwd **result);

Notes
• None of the functions in this section are implemented.

Data Interchange Format [POSIX Section 10]
This section details tar and cpio formats. Neither of these is supported by eCos.

Synchronization [POSIX Section 11]

Functions Implemented
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_getvalue(sem_t *sem, int *sval);
int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutex_attr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_timedlock(pthread_mutex_t *mutex, const struct timespec *abstime);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_condattr_init(pthread_condattr_t *attr);
int pthread_condattr_destroy(pthread_condattr_t *attr);
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
 const struct timespec *abstime);

Functions Omitted
sem_t *sem_open(const char *name, int oflag, …); // TBA
int sem_close(sem_t *sem); // TBA
int sem_unlink(const char *name); // TBA
int pthread_mutexattr_getpshared(const pthread_mutexattr_t *attr,
 int *pshared);
int pthread_mutexattr_setpshared(const pthread_mutexattr_t *attr,
 int pshared);
int pthread_condattr_getpshared(const pthread_condattr_t *attr,
 int *pshared);
int pthread_condattr_setpshared(const pthread_condattr_t *attr,
 int pshared);

Notes
• The presence of semaphores is controlled by the CYGPKG_POSIX_SEMAPHORES option. This in turn causes the

_POSIX_SEMAPHORES feature test macro to be defined and the semaphore API to be made available.

• The pshared argument to sem_init() is not implemented, its value is ignored.

760

POSIX Standard Support

• Functions sem_open(), sem_close() and sem_unlink() are present but always return an error (ENOSYS).

• The exact priority inversion protocols supported may be controlled with the _POSIX_THREAD_PRIO_INHERIT and
_POSIX_THREAD_PRIO_PROTECT configuration options.

• {_POSIX_THREAD_PROCESS_SHARED} is not defined, so the process-shared mutex and condition variable attrib-
utes are not supported, and neither are the functions pthread_mutexattr_getpshared(), pthread_mutexattr_setpshared(),
pthread_condattr_getpshared() and pthread_condattr_setpshared().

• Condition variables do not become bound to a particular mutex when pthread_cond_wait() is called. Hence different threads
may wait on a condition variable with different mutexes. This is at variance with the standard, which requires a condition
variable to become (dynamically) bound by the first waiter, and unbound when the last finishes. However, this difference
is largely benign, and the cost of policing this feature is non-trivial.

Memory Management [POSIX Section 12]

Functions Implemented
<none>

Functions Omitted
int mlockall(int flags);
int munlockall(void);
int mlock(const void *addr, size_t len);
int munlock(const void *addr, size_t len);
void mmap(void *addr, size_t len, int prot, int flags, int fd, off_t off);
int munmap(void *addr, size_t len);
int mprotect(const void *addr, size_t len, int prot);
int msync(void *addr, size_t len, int flags);
int shm_open(const char *name, int oflag, mode_t mode);
int shm_unlink(const char *name);

Notes
None of these functions are currently provided. Some may be implemented in a restricted form in the future.

Execution Scheduling [POSIX Section 13]

Functions Implemented
int sched_yield(void);
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_rr_get_interval(pid_t pid, struct timespec *t);
int pthread_attr_setscope(pthread_attr_t *attr, int scope);
int pthread_attr_getscope(const pthread_attr_t *attr, int *scope);
int pthread_attr_setinheritsched(pthread_attr_t *attr, int inherit);
int pthread_attr_getinheritsched(const pthread_attr_t *attr, int *inherit);
int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);
int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param *param);
int pthread_attr_getschedparam(const pthread_attr_t *attr, struct sched_param *param);
int pthread_setschedparam(pthread_t thread, int policy, const struct sched_param *param);
int pthread_getschedparam(pthread_t thread, int *policy, struct sched_param *param);
int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr, int protocol);
int pthread_mutexattr_getprotocol(pthread_mutexattr_t *attr, int *protocol);
int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int prioceiling);
int pthread_mutexattr_getprioceiling(pthread_mutexattr_t *attr, int *prioceiling);
int pthread_mutex_setprioceiling(pthread_mutex_t *mutex, int prioceiling, int *old_ceiling);
int pthread_mutex_getprioceiling(pthread_mutex_t *mutex, int *prioceiling);

761

POSIX Standard Support

Functions Omitted
int sched_setparam(pid_t pid, const struct sched_param *param);
int sched_getparam(pid_t pid, struct sched_param *param);
int sched_setscheduler(pid_t pid, int policy, const struct sched_param *param);
int sched_getscheduler(pid_t pid);

Notes
• The functions sched_setparam(), sched_getparam(), sched_setscheduler() and sched_getscheduler() are present but always

return an error.

• The scheduler policy SCHED_OTHER is equivalent to SCHED_RR.

• Only PTHREAD_SCOPE_SYSTEM is supported as a contentionscope attribute.

• The default thread scheduling attributes are:

contentionscope PTHREAD_SCOPE_SYSTEM
inheritsched PTHREAD_INHERIT_SCHED
schedpolicy SCHED_OTHER
chedparam.sched 0

• Mutex priority inversion protection is controlled by a number of kernel configuration op-
tions. If CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTOCOL_INHERIT is defined then
{_POSIX_THREAD_PRIO_INHERIT} will be defined and PTHREAD_PRIO_INHERIT may be set as the proto-
col in a pthread_mutexattr_t object. If CYGSEM_KERNEL_SYNCH_MUTEX_PRIORITY_INVERSION_PROTO-
COL_CEILING is defined then {_POSIX_THREAD_PRIO_PROTECT} will be defined and PTHREAD_PRIO_PRO-
TECT may be set as the protocol in a pthread_mutexattr_t object.

• The default attribute values set by pthread_mutexattr_init() is to set the protocol attribute to PTHREAD_PRIO_NONE and
the prioceiling attribute to zero.

Clocks and Timers [POSIX Section 14]

Functions Implemented
int clock_settime(clockid_t clock_id,
const struct timespec *tp);
int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *tp);
int timer_create(clockid_t clock_id, struct sigevent *evp, timer_t *timer_id);
int timer_delete(timer_t timer_id);
int timer_settime(timer_t timerid,
 int flags,
 const struct itimerspec *value,
 struct itimerspec *ovalue);
int timer_gettime(timer_t timerid, struct itimerspec *value);
int timer_getoverrun(timer_t timerid);
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
int gettimeofday(struct timeval *tv, struct timezone* tz);

Functions Omitted
<none>

Notes
• Currently timer_getoverrun() only reports timer notifications that are delayed in the timer subsystem. If they are delayed in

the signal subsystem, due to signal masks for example, this is not counted as an overrun.

762

POSIX Standard Support

• The option CYGPKG_POSIX_TIMERS allows the timer support to be enabled or disabled, and causes _POSIX_TIMERS
to be defined appropriately. This will cause other parts of the POSIX system to have limited functionality.

Message Passing [POSIX Section 15]

Functions Implemented
mqd_t mq_open(const char *name, int oflag, …);
int mq_close(mqd_t mqdes);
int mq_unlink(const char *name);
int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len, unsigned int msg_prio);
ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len, unsigned int *msg_prio);
int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat, struct mq_attr *omqstat);
int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);
int mq_notify(mqd_t mqdes, const struct sigevent *notification);

From POSIX 1003.1d draft:

int mq_send(mqd_t mqdes,
 const char *msg_ptr,
 size_t msg_len,
 unsigned int msg_prio,
 const struct timespec *abs_timeout);

ssize_t mq_receive(mqd_t mqdes,
 char *msg_ptr,
 size_t msg_len,
 unsigned int *msg_prio,
 const struct timespec *abs_timeout);

Functions Omitted
<none>

Notes
• The presence of message queues is controlled by the CYGPKG_POSIX_MQUEUES option. Setting this will cause

[_POSIX_MESSAGE_PASSING] to be defined and the message queue API to be made available.

• Message queues are not currently filesystem objects. They live in their own name and descriptor spaces.

Thread Management [POSIX Section 16]

Functions Implemented
int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);
int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
int pthread_attr_getstackaddr(const pthread_attr_t *attr, void **stackaddr);
int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t *attr, size_t *stacksize);
int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine)(void *),
 void *arg);
pthread_t pthread_self(void);
int pthread_equal(pthread_t thread1, pthread_t thread2);
void pthread_exit(void *retval);
int pthread_join(pthread_t thread, void **thread_return);
int pthread_detach(pthread_t thread);
int pthread_once(pthread_once_t *once_control, void (*init_routine)(void));

763

POSIX Standard Support

Functions Omitted
<none>

Notes
• The presence of thread support as a whole is controlled by the the CYGPKG_POSIX_PTHREAD configuration option.

Note that disabling this will also disable many other features of the POSIX package, since these are intimately bound up
with the thread mechanism.

• The default (non-scheduling) thread attributes are:

detachstate PTHREAD_CREATE_JOINABLE
stackaddr unset
stacksize unset

• Dynamic thread stack allocation is only provided if there is an implementation of malloc() configured (i.e. a package imple-
ments the CYGINT_MEMALLOC_MALLOC_ALLOCATORS interface). If there is no malloc() available, then the thread
creator must supply a stack. If only a stack address is supplied then the stack is assumed to be PTHREAD_STACK_MIN
bytes long. This size is seldom useful for any but the most trivial of threads. If a different sized stack is used, both the stack
address and stack size must be supplied.

• The value of PTHREAD_THREADS_MAX is supplied by the CYGNUM_POSIX_PTHREAD_THREADS_MAX option.
This defines the maximum number of threads allowed. The POSIX standard requires this value to be at least 64, and this
is the default value set.

• When the POSIX package is installed, the thread that calls main() is initialized as a POSIX thread. The priority of that thread
is controlled by the CYGNUM_POSIX_MAIN_DEFAULT_PRIORITY option.

Thread-Specific Data [POSIX Section 17]

Functions Implemented
int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));
int pthread_setspecific(pthread_key_t key, const void *pointer);
void *pthread_getspecific(pthread_key_t key);
int pthread_key_delete(pthread_key_t key);

Functions Omitted
<none>

Notes
• The value of PTHREAD_DESTRUCTOR_ITERATIONS is provided by the CYGNUM_POSIX_PTHREAD_DESTRUC-

TOR_ITERATIONS option. This controls the number of times that a key destructor will be called while the data item re-
mains non-NULL.

• The value of PTHREAD_KEYS_MAX is provided by the CYGNUM_POSIX_PTHREAD_KEYS_MAX option. This de-
fines the maximum number of per-thread data items supported. The POSIX standard calls for this to be a minimum of 128,
which is rather large for an embedded system. The default value for this option is set to 128 for compatibility but it should
be reduced to a more usable value.

Thread Cancellation [POSIX Section 18]

Functions Implemented
int pthread_cancel(pthread_t thread);

764

POSIX Standard Support

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);
void pthread_testcancel(void);
void pthread_cleanup_push(void (*routine)(void *), void *arg);
void pthread_cleanup_pop(int execute);

Functions Omitted
<none>

Notes
Asynchronous cancellation is only partially implemented. In particular, cancellation may occur in unexpected places in some
functions. It is strongly recommended that only synchronous cancellation be used.

Non-POSIX Functions
In addition to the standard POSIX functions defined above, the following non-POSIX functions are defined in the FILEIO
package.

General I/O Functions
int ioctl(int fd, CYG_ADDRWORD com, CYG_ADDRWORD data);
int select(int nfd, fd_set *in, fd_set *out, fd_set *ex, struct timeval *tv);

Socket Functions
int socket(int domain, int type, int protocol);
int bind(int s, const struct sockaddr *sa, unsigned int len);
int listen(int s, int len);
int accept(int s, struct sockaddr *sa, socklen_t *addrlen);
int connect(int s, const struct sockaddr *sa, socklen_t len);
int getpeername(int s, struct sockaddr *sa, socklen_t *len);
int getsockname(int s, struct sockaddr *sa, socklen_t *len);
int setsockopt(int s, int level, int optname, const void *optval, socklen_t optlen);
int getsockopt(int s, int level, int optname, void *optval, socklen_t *optlen);
ssize_t recvmsg(int s, struct msghdr *msg, int flags);
ssize_t recvfrom(int s, void *buf, size_t len, int flags, struct sockaddr *from, socklen_t *fromlen);
ssize_t recv(int s, void *buf, size_t len, int flags);
ssize_t sendmsg(int s, const struct msghdr *msg, int flags);
ssize_t sendto(int s,
 const void *buf,
 size_t len,
 int flags,
 const struct sockaddr *to,
 socklen_t tolen);
ssize_t send(int s, const void *buf, size_t len, int flags);
int shutdown(int s, int how);

Notes
• The precise behaviour of these functions depends mainly on the functionality of the underlying filesystem or network stack

to which they are applied.

765

References and Bibliography
[Lewine] Donald A. Lweine Posix Programmer‚s Guide: Writing Portable Unix Programs With the POSIX.1 Standard O‚Reilly

& Associates; ISBN: 0937175730.

[Lewis1] Bil Lewis Daniel J. Berg Threads Primer: A Guide to Multithreaded Programming Prentice Hall ISBN: 013443698

[Lewis2] Bil Lewis Daniel J. Berg Multithreaded Programming With Pthreads Prentice Hall Computer Books ISBN:
0136807291

[Nichols] Bradford Nichols Dick Buttlar Jacqueline Proulx Farrell Pthreads Programming: A POSIX Standard for Better Mul-
tiprocessing (O‚Reilly Nutshell) O‚Reilly & Associates ISBN: 1565921151

[Norton] Scott J. Norton Mark D. Depasquale Thread Time: The MultiThreaded Programming Guide Prentice Hall ISBN:
0131900676

[POSIX] Portable Operating System Interface(POSIX) - Part 1: System Application Programming Interface (API)[C Language]
ISO/IEC 9945-1:1996, IEEE

[SUS2] Open Group; Single Unix Specification, Version 2 http://www.opengroup.org/public/pubs/online/7908799/index.html

766

http://www.opengroup.org/public/pubs/online/7908799/index.html

Part XL. µITRON

Table of Contents
143. µITRON API .. 769

Introduction to µITRON .. 769
µITRON and eCos .. 769
Task Management Functions .. 770

Error checking ... 770
Task-Dependent Synchronization Functions ... 771

Error checking ... 771
Synchronization and Communication Functions .. 772

Error checking ... 773
Extended Synchronization and Communication Functions .. 774
Interrupt management functions .. 774

Error checking ... 775
Memory pool Management Functions ... 775

Error checking ... 776
Time Management Functions .. 777

Error checking ... 777
System Management Functions .. 778

Error checking ... 778
Network Support Functions ... 778
µITRON Configuration FAQ .. 778

768

Chapter 143. µITRON API
Introduction to µITRON
The µITRON specification defines a highly flexible operating system architecture designed specifically for application in
embedded systems. The specification addresses features which are common to the majority of processor architectures and
deliberately avoids virtualization which would adversely impact real-time performance. The µITRON specification may be
implemented on many hardware platforms and provides significant advantages by reducing the effort involved in understanding
and porting application software to new processor architectures.

Several revisions of the µITRON specification exist. In this release, eCos supports the µITRON version 3.02 specification,
with complete “Standard functionality” (level S), plus many “Extended” (level E) functions. An exception is get_tid() which
has µITRON 4 semantics. The definitive reference on µITRON is Dr. Sakamura‚s book: µITRON 3.0, An Open and Portable
Real-Time Operating System for Embedded Systems. The book can be purchased from the IEEE Press, and an ASCII version
of the standard can be found online at http://www.t-engine.org/specifications#d.

µITRON and eCos
The eCos kernel implements the functionality used by the µITRON compatibility subsystem. The configuration of the kernel
influences the behavior of µITRON programs.

In particular, the default configuration has time slicing (also known as round-robin scheduling) switched on; this means that a
task can be moved from RUN state to READY state at any time, in order that one of its peers may run. This is not strictly confor-
mant to the µITRON specification, which states that timeslicing may be implemented by periodically issuing a rot_rdq(0)
call from within a periodic task or cyclic handler; otherwise it is expected that a task runs until it is pre-empted in consequence
of synchronization or communication calls it makes, or the effects of an interrupt or other external event on a higher priority
task cause that task to become READY. To disable timeslicing functionality in the kernel and µITRON compatibility environ-
ment, please disable the CYGSEM_KERNEL_SCHED_TIMESLICE configuration option in the kernel package. A description
of kernel scheduling is in Kernel Overview.

For another example, the semantics of task queueing when waiting on a synchronization object depend solely on the way
the underlying kernel is configured. As discussed above, the multi-level queue scheduler is the only one which is µITRON
compliant, and it queues waiting tasks in FIFO order. Future releases of that scheduler might be configurable to support priority
ordering of task queues. Other schedulers might be different again: for example the bitmap scheduler can be used with the
µITRON compatibility layer, even though it only allows one task at each priority and as such is not µITRON compliant, but it
supports only priority ordering of task queues. So which queueing scheme is supported is not really a property of the µITRON
compatibility layer; it depends on the kernel.

In this version of the µITRON compatibility layer, the calls to disable and enable scheduling and interrupts (dis_dsp(),
ena_dsp(), loc_cpu() and unl_cpu()) call underlying kernel functions; in particular, the xxx_dsp() functions lock
the scheduler entirely, which prevents dispatching of DSRs; functions implemented by DSRs include clock counters and alarm
timers. Thus time “stops” while dispatching is disabled with dis_dsp().

Like all parts of the eCos system, the detailed semantics of the µITRON layer are dependent on its configuration and the config-
uration of other components that it uses. The µITRON configuration options are all defined in the file pkgconf/uitron.h,
and can be set using the configuration tool or editing the .ecc file in your build directory by hand.

An important configuration option for the µITRON compatibility layer is “Option: Return Error Codes for Bad Params” (
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS), which allows a lot of the error checking code in the µITRON com-
patibility layer to be removed. Of course this leaves a program open to undetected errors, so it should only be used once an
application is fully debugged and tested. Its benefits include reduced code size and faster execution. However, it affects the
API significantly, in that with this option enabled, bad calls do not return errors, but cause an assert failure (if that is itself
enabled) or malfunction internally. There is discussion in more detail about this in each section below.

We now give a brief description of the µITRON functions which are implemented in this release. Note that all C and C++
source files should have the following #include statement:

769

http://www.t-engine.org/specifications#d

µITRON API

#include <cyg/compat/uitron/uit_func.h>

Task Management Functions
The following functions are fully supported in this release:

ER sta_tsk(
 ID tskid,
 INT stacd)

void ext_tsk(void)

void exd_tsk(void)

ER dis_dsp(void)

ER ena_dsp(void)

ER chg_pri(
 ID tskid,
 PRI tskpri)

ER rot_rdq(
 PRI tskpri)

ER get_tid(
 ID *p_tskid)

ER ref_tsk(
 T_RTSK *pk_rtsk,
 ID tskid)

ER ter_tsk(
 ID tskid)

ER rel_wai(
 ID tskid)

The following two functions are supported in this release, when enabled with the configuration option CYGP-
KG_UITRON_TASKS_CREATE_DELETE with some restrictions:

ER cre_tsk(
 ID tskid,
 T_CTSK *pk_ctsk)

ER del_tsk(
 ID tskid)

These functions are restricted as follows:

Because of the static initialization facilities provided for system objects, a task is allocated stack space statically in the config-
uration. So while tasks can be created and deleted, the same stack space is used for that task (task ID number) each time. Thus
the stack size (pk_ctsk->stksz) requested in cre_tsk() is checked for being less than that which was statically allocated,
and otherwise ignored. This ensures that the new task will have enough stack to run. For this reason del_tsk() does not in
any sense free the memory that was in use for the task's stack.

The task attributes (pk_ctsk->tskatr) are ignored; current versions of eCos do not need to know whether a task is written in
assembler or C/C++ so long as the procedure call standard appropriate to the CPU is followed.

Extended information (pk_ctsk->exinf) is ignored.

Error checking
For all these calls, an invalid task id (tskid) (less than 1 or greater than the number of configured tasks) only returns E_ID when
bad params return errors (CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS is enabled, see above).

Similarly, the following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RE-
TURN_ERRORS is enabled:

770

µITRON API

• pk_crtk in cre_tsk() is a valid pointer, otherwise return E_PAR

• ter_tsk() or rel_wai() on the calling task returns E_OBJ

• the CPU is not locked already in dis_dsp() and ena_dsp() ; returns E_CTX

• priority level in chg_pri() and rot_rdq() is checked for validity, E_PAR

• return value pointer in get_tid() and ref_tsk() is a valid pointer, or E_PAR

The following conditions are checked for, and return error codes if appropriate, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS :

• When create and delete functions cre_tsk() and del_tsk() are supported, all calls which use a valid task ID number
check that the task exists; if not, E_NOEXS is returned

• When supported, cre_tsk() : the task must not already exist; otherwise E_OBJ

• When supported, cre_tsk() : the requested stack size must not be larger than that statically configured for the task; see
the configuration options “Static initializers”, and “Default stack size”. Else E_NOMEM

• When supported, del_tsk() : the underlying eCos thread must not be running - this would imply either a bug or some
program bypassing the µITRON compatibility layer and manipulating the thread directly. E_OBJ

• sta_tsk() : the task must be dormant, else E_OBJ

• ter_tsk() : the task must not be dormant, else E_OBJ

• chg_pri() : the task must not be dormant, else E_OBJ

• rel_wai() : the task must be in WAIT or WAIT-SUSPEND state, else E_OBJ

Task-Dependent Synchronization Functions
These functions are fully supported in this release:

ER sus_tsk(
 ID tskid)

ER rsm_tsk(
 ID tskid)

ER frsm_tsk(
 ID tskid)

ER slp_tsk(void)

ER tslp_tsk(
 TMO tmout)

ER wup_tsk(
 ID tskid)

ER can_wup(
 INT *p_wupcnt, ID tskid)

Error checking
The following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RETURN_ER-
RORS is enabled (see the configuration option “Return Error Codes for Bad Params”):

• invalid tskid; less than 1 or greater than CYGNUM_UITRON_TASKS returns E_ID

• wup_tsk() , sus_tsk() , rsm_tsk() , frsm_tsk() on the calling task returns E_OBJ

• dispatching is enabled in tslp_tsk() and slp_tsk() , or E_CTX

771

µITRON API

• tmout must be positive, otherwise E_PAR

• return value pointer in can_wup() is a valid pointer, or E_PAR

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• When create and delete functions cre_tsk() and del_tsk() are supported, all calls which use a valid task ID number
check that the task exists; if not, E_NOEXS is returned

• sus_tsk() : the task must not be dormant, else E_OBJ

• frsm/rsm_tsk() : the task must be suspended, else E_OBJ

• tslp/slp_tsk() : return codes E_TMOUT, E_RLWAI and E_DLT are returned depending on the reason for terminating
the sleep

• wup_tsk() and can_wup() : the task must not be dormant, or E_OBJ is returned

Synchronization and Communication Functions
These functions are fully supported in this release:

ER sig_sem(
 ID semid)

ER wai_sem(
 ID semid)

ER preq_sem(
 ID semid)

ER twai_sem(
 ID semid, TMO tmout)

ER ref_sem(
 T_RSEM *pk_rsem , ID semid)

ER set_flg(
 ID flgid, UINT setptn)

ER clr_flg(
 ID flgid, UINT clrptn)

ER wai_flg(
 UINT *p_flgptn, ID flgid ,
 UINT waiptn , UINT wfmode)

ER pol_flg(
 UINT *p_flgptn, ID flgid ,
 UINT waiptn , UINT wfmode)

ER twai_flg(
 UINT *p_flgptn ID flgid ,
 UINT waiptn , UINT wfmode, TMO tmout)

ER ref_flg(
 T_RFLG *pk_rflg, ID flgid)

ER snd_msg(
 ID mbxid, T_MSG *pk_msg)

ER rcv_msg(
 T_MSG **ppk_msg, ID mbxid)

ER prcv_msg(
 T_MSG **ppk_msg, ID mbxid)

ER trcv_msg(
 T_MSG **ppk_msg, ID mbxid , TMO tmout)

772

µITRON API

ER ref_mbx(
 T_RMBX *pk_rmbx, ID mbxid)

The following functions are supported in this release (with some restrictions) if enabled with the appropriate configuration
option for the object type (for example CYGPKG_UITRON_SEMAS_CREATE_DELETE):

ER cre_sem(
 ID semid, T_CSEM *pk_csem)

ER del_sem(
 ID semid)

ER cre_flg(
 ID flgid, T_CFLG *pk_cflg)

ER del_flg(
 ID flgid)

ER cre_mbx(
 ID mbxid, T_CMBX *pk_cmbx)

ER del_mbx(
 ID mbxid)

In general the queueing order when waiting on a synchronization object depends on the underlying kernel configuration. The
multi-level queue scheduler is required for strict µITRON conformance and it queues tasks in FIFO order, so requests to create
an object with priority queueing of tasks (pk_cxxx->xxxatr = TA_TPRI) are rejected with E_RSATR. Additional
undefined bits in the attributes fields must be zero.

In general, extended information (pk_cxxx->exinf) is ignored.

For semaphores, the initial semaphore count (pk_csem->isemcnt) is supported; the new semaphore's count is set. The maximum
count is not supported, and is not in fact defined in type pk_csem.

For flags, multiple tasks are allowed to wait. Because single task waiting is a subset of this, the W bit (TA_WMUL) of the flag
attributes is ignored; all other bits must be zero. The initial flag value is supported.

For mailboxes, the buffer count is defined statically by kernel configuration option CYGNUM_KERNEL_SYNCH_M-
BOX_QUEUE_SIZE; therefore the buffer count field is not supported and is not in fact defined in type pk_cmbx. Queueing of
messages is FIFO ordered only, so TA_MPRI (in pk_cmbx->mbxatr) is not supported.

Error checking
The following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RETURN_ER-
RORS is enabled:

• invalid object id; less than 1 or greater than CYGNUM_UITRON_TASKS/SEMAS/MBOXES as appropriate returns E_ID

• dispatching is enabled in any call which can sleep, or E_CTX

• tmout must be positive, otherwise E_PAR

• pk_cxxx pointers in cre_xxx() must be valid pointers, or E_PAR

• return value pointer in ref_xxx() is valid pointer, or E_PAR

• flag wait pattern must be non-zero, and mode must be valid, or E_PAR

• return value pointer in flag wait calls is a valid pointer, or E_PAR

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS :

• When create and delete functions cre_xxx() and del_xxx() are supported, all calls which use a valid object ID number
check that the object exists. If not, E_NOEXS is returned.

773

µITRON API

• In create functions cre_xxx() , when supported, if the object already exists, then E_OBJ

• In any call which can sleep, such as twai_sem() : return codes E_TMOUT, E_RLWAI, E_DLT or of course E_OK are
returned depending on the reason for terminating the sleep

• In polling functions such as preq_sem() return codes E_TMOUT or E_OK are returned depending on the state of the
synchronization object

• In creation functions, the attributes must be compatible with the selected underlying kernel configuration: in cre_sem()
pk_csem->sematr must be equal to TA_TFIFO else E_RSATR.

• In cre_flg() pk_cflg->flgatr must be either TA_WMUL or TA_WSGL else E_RSATR.

• In cre_mbx() pk_cmbx->mbxatr must be TA_TFIFO + TA_MFIFO else E_RSATR.

Extended Synchronization and Communication
Functions
None of these functions are supported in this release.

Interrupt management functions
These functions are fully supported in this release:

void ret_int(void)

ER loc_cpu(void)

ER unl_cpu(void)

ER dis_int(
 UINT eintno)

ER ena_int(
 UINT eintno)

void ret_wup(
 ID tskid)

ER iwup_tsk(
 ID tskid)

ER isig_sem(
 ID semid)

ER iset_flg(
 ID flgid ,
 UID setptn)

ER isend_msg(
 ID mbxid ,
 T_MSG *pk_msg)

Note that ret_int() and the ret_wup() are implemented as macros, containing a “return” statement.

Also note that ret_wup() and the ixxx_yyy() style functions will only work when called from an ISR whose associated
DSR is cyg_uitron_dsr(), as specified in include file <cyg/compat/uitron/uit_ifnc.h>, which defines the
ixxx_yyy() style functions also.

If you are writing interrupt handlers more in the eCos style, with separate ISR and DSR routines both of your own devising,
do not use these special functions from a DSR: use plain xxx_yyy() style functions (with no ’i‚ prefix) instead, and do not
call any µITRON functions from the ISR at all.

The following functions are not supported in this release:

774

µITRON API

ER def_int(
 UINT dintno,
 T_DINT *pk_dint)

ER chg_iXX(
 UINT iXXXX)

ER ref_iXX(
 UINT * p_iXXXX)

These unsupported functions are all Level C (CPU dependent). Equivalent functionality is available via other eCos-specific
APIs.

Error checking
The following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RETURN_ER-
RORS is enabled:

• loc/unl_cpu() : these must only be called in a µITRON task context, else E_CTX.

• dis/ena_int() : the interrupt number must be in range as specified by the platform HAL in qustion, else E_PAR.

Memory pool Management Functions
These functions are fully supported in this release:

ER get_blf(
 VP *p_blf, ID mpfid)

ER pget_blf(
 VP *p_blf, ID mpfid)

ER tget_blf(
 VP *p_blf, ID mpfid, TMO tmout)

ER rel_blf(
 ID mpfid, VP blf)

ER ref_mpf(
 T_RMPF *pk_rmpf, ID mpfid)

ER get_blk(
 VP *p_blk, ID mplid, INT blksz)

ER pget_blk(
 VP *p_blk, ID mplid, INT blksz)

ER tget_blk(
 VP *p_blk, ID mplid, INT blksz, TMO tmout)

ER rel_blk(
 ID mplid, VP blk)

ER ref_mpl(
 T_RMPL *pk_rmpl, ID mplid)

Note that of the memory provided for a particular pool to manage in the static initialization of the memory pool objects, some
memory will be used to manage the pool itself. Therefore the number of blocks * the blocksize will be less than the total
memory size.

The following functions are supported in this release, when enabled with CYGPKG_UITRON_MEMPOOLVAR_CRE-
ATE_DELETE or CYGPKG_UITRON_MEMPOOLFIXED_CREATE_DELETE as appropriate, with some restrictions:

ER cre_mpl(
 ID mplid, T_CMPL *pk_cmpl)

ER del_mpl(
 ID mplid)

ER cre_mpf(

775

µITRON API

 ID mpfid, T_CMPF *pk_cmpf)

ER del_mpf(
 ID mpfid)

Because of the static initialization facilities provided for system objects, a memory pool is allocated a region of memory to
manage statically in the configuration. So while memory pools can be created and deleted, the same area of memory is used
for that memory pool (memory pool ID number) each time. The requested variable pool size (pk_cmpl->mplsz) or the number
of fixed-size blocks (pk_cmpf->mpfcnt) times the block size (pk_cmpf->blfsz) are checked for fitting within the statically
allocated memory area, so if a create call succeeds, the resulting pool will be at least as large as that requested. For this reason
del_mpl() and del_mpf() do not in any sense free the memory that was managed by the deleted pool for use by other
pools; it may only be managed by a pool of the same object id.

For both fixed and variable memory pools, the queueing order when waiting on a synchronization object depends on the
underlying kernel configuration. The multi-level queue scheduler is required for strict µITRON conformance and it queues
tasks in FIFO order, so requests to create an object with priority queueing of tasks (pk_cxxx->xxxatr = TA_TPRI) are rejected
with E_RSATR. Additional undefined bits in the attributes fields must be zero.

In general, extended information (pk_cxxx->exinf) is ignored.

Error checking
The following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RETURN_ER-
RORS is enabled:

• invalid object id; less than 1 or greater than CYGNUM_UITRON_MEMPOOLVAR/MEMPOOLFIXED as appropriate returns
E_ID

• dispatching is enabled in any call which can sleep, or E_CTX

• tmout must be positive, otherwise E_PAR

• pk_cxxx pointers in cre_xxx() must be valid pointers, or E_PAR

• return value pointer in ref_xxx() is a valid pointer, or E_PAR

• return value pointers in get block routines is a valid pointer, or E_PAR

• blocksize request in get variable block routines is greater than zero, or E_PAR

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS:

• When create and delete functions cre_xxx() and del_xxx() are supported, all calls which use a valid object ID number
check that the object exists. If not, E_NOEXS is returned.

• When create functions cre_xxx() are supported, if the object already exists, then E_OBJ

• In any call which can sleep, such as get_blk() : return codes E_TMOUT, E_RLWAI, E_DLT or of course E_OK are
returned depending on the reason for terminating the sleep

• In polling functions such as pget_blk() return codes E_TMOUT or E_OK are returned depending on the state of the
synchronization object

• In creation functions, the attributes must be compatible with the selected underlying kernel configuration: in cre_mpl()
pk_cmpl->mplatr must be equal to TA_TFIFO else E_RSATR.

• In cre_mpf() pk_cmpf->mpfatr must be equal to TA_TFIFO else E_RSATR.

• In creation functions, the requested size of the memory pool must not be larger than that statically configured for the pool
else E_RSATR; see the configuration option “Option: Static initializers”. In cre_mpl() pk_cmpl->mplsz is the field
of interest

776

µITRON API

• In cre_mpf() the product of pk_cmpf->blfsz and pk_cmpf->mpfcnt must be smaller than the memory statically
configured for the pool else E_RSATR

• In functions which return memory to the pool rel_blk() and rel_blf() , if the free fails, for example because the
memory did not come from that pool originally, then E_PAR is returned

Time Management Functions
These functions are fully supported in this release:

ER set_tim(
 SYSTIME *pk_tim)

Caution

Setting the time may cause erroneous operation of the kernel, for example a task performing a wait with a time-
out may never awaken.

ER get_tim(
 SYSTIME *pk_tim)

ER dly_tsk(
 DLYTIME dlytim)

ER def_cyc(
 HNO cycno, T_DCYC *pk_dcyc)

ER act_cyc(
 HNO cycno, UINT cycact)

ER ref_cyc(
 T_RCYC *pk_rcyc, HNO cycno)

ER def_alm(
 HNO almno, T_DALM *pk_dalm)

ER ref_alm(
 T_RALM *pk_ralm, HNO almno)

void ret_tmr(void)

Error checking
The following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RETURN_ER-
RORS is enabled:

• invalid handler number; less than 1 or greater than CYGNUM_UITRON_CYCLICS/ALARMS as appropriate, or E_PAR

• dispatching is enabled in dly_tsk() , or E_CTX

• dlytim must be positive or zero, otherwise E_PAR

• return value pointer in ref_xxx() is a valid pointer, or E_PAR

• params within pk_dalm and pk_dcyc must be valid, or E_PAR

• cycact in act_cyc() must be valid, or E_PAR

• handler must be defined in ref_xxx() and act_cyc() , or E_NOEXS

• parameter pointer must be a good pointer in get_tim() and set_tim() , otherwise E_PAR is returned

The following conditions are checked for, and can return error codes, regardless of the setting of
CYGSEM_UITRON_BAD_PARAMS_RETURN_ERRORS :

• dly_tsk() : return code E_RLWAI is returned depending on the reason for terminating the sleep

777

µITRON API

System Management Functions
These functions are fully supported in this release:

ER get_ver(
 T_VER *pk_ver)

ER ref_sys(
 T_RSYS *pk_rsys)

ER ref_cfg(
 T_RCFG *pk_rcfg)

Note that the information returned by each of these calls may be configured to match the user's own versioning system, and
the values supplied by the default configuration may be inappropriate.

These functions are not supported in this release:

ER def_svc(
 FN s_fncd,
 T_DSVC *pk_dsvc)

ER def_exc(
 UINT exckind,
 T_DEXC *pk_dexc)

Error checking
The following conditions are only checked for, and only return errors if CYGSEM_UITRON_BAD_PARAMS_RETURN_ER-
RORS is enabled:

• return value pointer in all calls is a valid pointer, or E_PAR

Network Support Functions
None of these functions are supported in this release.

µITRON Configuration FAQ
Q: How are µITRON objects created?

For each type of uITRON object (tasks, semaphores, flags, mboxes, mpf, mpl) these two quantities are controlled by config-
uration:

• The maximum number of this type of object.

• The number of these objects which exist initially.

This is assuming that for the relevant object type, create and delete operations are enabled; enabled is the default. For example,
the option CYGPKG_UITRON_MBOXES_CREATE_DELETE controls whether the functions cre_mbx() and del_mbx()
exist in the API. If not, then the maximum number of mboxes is the same as the initial number of mboxes, and so on for all
µITRON object types.

Mboxes have no initialization, so there are only a few, simple configuration options:

• CYGNUM_UITRON_MBOXES is the total number of mboxes that you can have in the system. By default this is 4, so you can
use mboxes 1,2,3 and 4. You cannot create mboxes outside this range; trying to cre_mbx(5,…) will return an error.

• CYGNUM_UITRON_MBOXES_INITIALLY is the number of mboxes created automatically for you, during startup. By
default this is 4, so all 4 mboxes exist already, and an attempt to create one of these eg. cre_mbx(3,…) will return an
error because the mbox in quesion already exists. You can delete a pre-existing mbox, and then re-create it.

778

µITRON API

If you change CYGNUM_UITRON_MBOXES_INITIALLY, for example to 0, no mboxes are created automatically for you
during startup. Any attempt to use an mbox without creating it will return E_NOEXS because the mbox does not exist. You
can create an mbox, say cre_mbx(3,…) and then use it, say snd_msg(3,&foo), and all will be well.

Q: How are µITRON objects initialized?

Some object types have optional initialization. Semaphores are an example. You could have CYGNUM_UITRON_SEMAS=10
and CYGNUM_UITRON_SEMAS_INITIALLY=5 which means you can use semaphores 1-5 straight off, but you must create
semaphores 6-10 before you can use them. If you decide not to initialize semaphores, semaphores 1-5 will have an initial count
of zero. If you decide to initialize them, you must supply a dummy initializer for semaphores 6-10 also. For example, in terms
of the configuration output in pkgconf/uitron.h:

 #define CYGDAT_UITRON_SEMA_INITIALIZERS \
 CYG_UIT_SEMA(1), \
 CYG_UIT_SEMA(0), \
 CYG_UIT_SEMA(0), \
 CYG_UIT_SEMA(99), \
 CYG_UIT_SEMA(1), \
 CYG_UIT_SEMA_NOEXS, \
 CYG_UIT_SEMA_NOEXS, \
 CYG_UIT_SEMA_NOEXS, \
 CYG_UIT_SEMA_NOEXS, \
 CYG_UIT_SEMA_NOEXS

Semaphore 1 will have initial count 1, semaphores 2 and 3 will be zero, number 4 will be 99 initially, 5 will be one and numbers
6 though 10 do not exist initially.

Aside: this is how the definition of the symbol would appear in the configuration header file pkgconf/uitron.h — un-
fortunately editing such a long, multi-line definition is somewhat cumbersome in the GUI config tool in current releases. The
macros CYG_UIT_SEMA() — to create a semaphore initializer — and CYG_UIT_SEMA_NOEXS — to invoke a dummy
initializer — are provided in in the environment to help with this. Similar macros are provided for other object types. The
resulting #define symbol is used in the context of a C++ array initializer, such as:

Cyg_Counting_Semaphore2 cyg_uitron_SEMAS[CYGNUM_UITRON_SEMAS] = {
 CYGDAT_UITRON_SEMA_INITIALIZERS
};

which is eventually macro-processed to give

Cyg_Counting_Semaphore2 cyg_uitron_SEMAS[10] = {
 Cyg_Counting_Semaphore2((1)),
 Cyg_Counting_Semaphore2((0)),
 Cyg_Counting_Semaphore2((0)),
 Cyg_Counting_Semaphore2((99)),
 Cyg_Counting_Semaphore2((1)),
 Cyg_Counting_Semaphore2(0),
 Cyg_Counting_Semaphore2(0),
 Cyg_Counting_Semaphore2(0),
 Cyg_Counting_Semaphore2(0),
 Cyg_Counting_Semaphore2(0),
};

so you can see how it is necessary to include the dummy entries in that definition, otherwise the resulting code will not compile
correctly.

If you choose CYGNUM_UITRON_SEMAS_INITIALLY=0 it is meaningless to initialize them, for they must be created and
so initialized then, before use.

Q: What about µITRON tasks?

Some object types require initialization. Tasks are an example of this. You must provide a task with a priority, a function to
enter when the task starts, a name (for debugging purposes), and some memory to use for the stack. For example (again in
terms of the resulting definitions in pkgconf/uitron.h):

#define CYGNUM_UITRON_TASKS 4 // valid task ids are 1,2,3,4
#define CYGNUM_UITRON_TASKS_INITIALLY 4 // they all exist at start

779

µITRON API

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void startup(unsigned int); \
extern "C" void worktask(unsigned int); \
extern "C" void lowtask(unsigned int); \
static char stack1[CYGNUM_UITRON_STACK_SIZE], \
 stack2[CYGNUM_UITRON_STACK_SIZE], \
 stack3[CYGNUM_UITRON_STACK_SIZE], \
 stack4[CYGNUM_UITRON_STACK_SIZE];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
 CYG_UIT_TASK("main task", 8, startup, &stack1, sizeof(stack1)), \
 CYG_UIT_TASK("worker 2" , 9, worktask, &stack2, sizeof(stack2)), \
 CYG_UIT_TASK("worker 3" , 9, worktask, &stack3, sizeof(stack3)), \
 CYG_UIT_TASK("low task" ,20, lowtask, &stack4, sizeof(stack4)), \

So this example has all four tasks statically configured to exist, ready to run, from the start of time. The “main task” runs a
routine called startup() at priority 8. Two “worker” tasks run both a priority 9, and a “low priority” task runs at priority
20 to do useful non-urgent background work.

Task ID | Exists at | Function | Priority | Stack | Stack
 number | startup | entry | | address | size
--------+-----------+----------+----------+---------+----------
 1 | Yes | startup | 8 | &stack1 | CYGNUM…
 2 | Yes | worktask | 9 | &stack2 | CYGNUM…
 3 | Yes | worktask | 9 | &stack3 | CYGNUM…
 4 | Yes | lowtask | 20 | &stack4 | CYGNUM…
--------+-----------+----------+----------+---------+----------

Q: How can I create µITRON tasks in the program?

You must provide free slots in the task table in which to create new tasks, by configuring the number of tasks existing initially
to be smaller than the total. For a task ID which does not initially exist, it will be told what routine to call, and what priority
it is, when the task is created. But you must still set aside memory for the task to use for its stack, and give it a name during
initialization. For example:

#define CYGNUM_UITRON_TASKS 4 // valid task ids are 1-4
#define CYGNUM_UITRON_TASKS_INITIALLY 1 // only task #1 exists

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void startup(unsigned int); \
static char stack1[CYGNUM_UITRON_STACK_SIZE], \
 stack2[CYGNUM_UITRON_STACK_SIZE], \
 stack3[CYGNUM_UITRON_STACK_SIZE], \
 stack4[CYGNUM_UITRON_STACK_SIZE];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
 CYG_UIT_TASK("main", 8, startup, &stack1, sizeof(stack1)), \
 CYG_UIT_TASK_NOEXS("slave", &stack2, sizeof(stack2)), \
 CYG_UIT_TASK_NOEXS("slave2", &stack3, sizeof(stack3)), \
 CYG_UIT_TASK_NOEXS("slave3", &stack4, sizeof(stack4)), \

So tasks numbered 2,3 and 4 have been given their stacks during startup, though they do not yet exist in terms of cre_tsk()
and del_tsk() so you can create tasks 2–4 at runtime.

Task ID | Exists at | Function | Priority | Stack | Stack
 number | startup | entry | | address | size
--------+-----------+----------+----------+---------+----------
 1 | Yes | startup | 8 | &stack1 | CYGNUM…
 2 | No | N/A | N/A | &stack2 | CYGNUM…
 3 | No | N/A | N/A | &stack3 | CYGNUM…
 4 | No | N/A | N/A | &stack4 | CYGNUM…
--------+-----------+----------+----------+---------+----------

(you must have at least one task at startup in order that the system can actually run; this is not so for other uITRON object types)

Q: Can I have different stack sizes for µITRON tasks?

Simply set aside different amounts of memory for each task to use for its stack. Going back to a typical default setting for the
µITRON tasks, the definitions in pkgconf/uitron.h might look like this:

780

µITRON API

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void task1(unsigned int); \
extern "C" void task2(unsigned int); \
extern "C" void task3(unsigned int); \
extern "C" void task4(unsigned int); \
static char stack1[CYGNUM_UITRON_STACK_SIZE], \
 stack2[CYGNUM_UITRON_STACK_SIZE], \
 stack3[CYGNUM_UITRON_STACK_SIZE], \
 stack4[CYGNUM_UITRON_STACK_SIZE];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
 CYG_UIT_TASK("t1", 1, task1, &stack1, CYGNUM_UITRON_STACK_SIZE), \
 CYG_UIT_TASK("t2", 2, task2, &stack2, CYGNUM_UITRON_STACK_SIZE), \
 CYG_UIT_TASK("t3", 3, task3, &stack3, CYGNUM_UITRON_STACK_SIZE), \
 CYG_UIT_TASK("t4", 4, task4, &stack4, CYGNUM_UITRON_STACK_SIZE)

Note that CYGNUM_UITRON_STACK_SIZE is used to control the size of the stack objects themselves, and to tell the system
what size stack is being provided.

Suppose instead stack sizes of 2000, 1000, 800 and 800 were required: this could be achieved by using the GUI config tool to
edit these options, or editting the .ecc file to get these results in pkgconf/uitron.h:

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void task1(unsigned int); \
extern "C" void task2(unsigned int); \
extern "C" void task3(unsigned int); \
extern "C" void task4(unsigned int); \
static char stack1[2000], \
 stack2[1000], \
 stack3[800], \
 stack4[800];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
 CYG_UIT_TASK("t1", 1, task1, &stack1, sizeof(stack1)), \
 CYG_UIT_TASK("t2", 2, task2, &stack2, sizeof(stack2)), \
 CYG_UIT_TASK("t3", 3, task3, &stack3, sizeof(stack3)), \
 CYG_UIT_TASK("t4", 4, task4, &stack4, sizeof(stack4))

Note that the sizeof() operator has been used to tell the system what size stacks are provided, rather than quoting a number
(which is difficult for maintenance) or the symbol CYGNUM_UITRON_STACK_SIZE (which is wrong).

We recommend using (if available in your release) the stacksize symbols provided in the architectural HAL for your target,
called CYGNUM_HAL_STACK_SIZE_TYPICAL and CYGNUM_HAL_STACK_SIZE_MINIMUM. So a better (more portable)
version of the above might be:

#define CYGDAT_UITRON_TASK_EXTERNS \
extern "C" void task1(unsigned int); \
extern "C" void task2(unsigned int); \
extern "C" void task3(unsigned int); \
extern "C" void task4(unsigned int); \
static char stack1[CYGNUM_HAL_STACK_SIZE_TYPICAL + 1200], \
 stack2[CYGNUM_HAL_STACK_SIZE_TYPICAL + 200], \
 stack3[CYGNUM_HAL_STACK_SIZE_TYPICAL], \
 stack4[CYGNUM_HAL_STACK_SIZE_TYPICAL];

#define CYGDAT_UITRON_TASK_INITIALIZERS \
 CYG_UIT_TASK("t1", 1, task1, &stack1, sizeof(stack1)), \
 CYG_UIT_TASK("t2", 2, task2, &stack2, sizeof(stack2)), \
 CYG_UIT_TASK("t3", 3, task3, &stack3, sizeof(stack3)), \
 CYG_UIT_TASK("t4", 4, task4, &stack4, sizeof(stack4))

781

Part XLI. TCP/IP Stack Support for eCos
The Common Networking for eCos package provides support for a complete TCP/IP networking stack. The design allows for
the actual stack to be modular allowing for different implementations to be provided. Currently only one version based on
FreeBSD is available, with the earlier OpenBSD implementation (circa 2000) deprecated and withdrawn from current eCosPro
releases.

For resource-constrained systems, the lightweight networking stack lwip (see Part XLIV, “lwIP - the lightweight IP stack
for eCosPro”) has been ported to eCos and supports the IP, TCP, UDP, ICMP, IGMP, ARP, DHCP, AutoIP, DNS, SNMP,
SLIP and PPP protocols. lwip was designed from the outset to have a low memory footprint and gains many of its lightweight
properties from being highly configurable, making it an excellent eCos add-on package.

Table of Contents
144. Ethernet Driver Design ... 784
145. Sample Code .. 785
146. Configuring IP Addresses ... 786
147. Tests and Demonstrations ... 788

Loopback tests ... 788
Building the Network Tests .. 788
Standalone Tests ... 788
Performance Test .. 789
Interactive Tests ... 789
Maintenance Tools .. 790

148. Support Features .. 792
TFTP .. 792
DHCP ... 793

149. TCP/IP Library Reference ... 795
getdomainname .. 795
gethostname ... 795
byteorder ... 796
ethers .. 798
getaddrinfo .. 799
gethostbyname .. 803
getifaddrs .. 805
getnameinfo ... 806
getnetent .. 809
getprotoent ... 810
getrrsetbyname ... 811
getservent .. 813
if_nametoindex ... 814
inet ... 815
inet6_option_space .. 818
inet6_rthdr_space .. 820
inet_net ... 823
ipx ... 824
iso_addr .. 825
link_addr ... 826
net_addrcmp .. 827
ns ... 827
resolver ... 828
accept ... 830
bind .. 831
connect ... 833
getpeername ... 834
getsockname .. 835
getsockopt ... 836
ioctl .. 839
listen ... 840
poll ... 840
select .. 842
send .. 844
shutdown ... 846
socket ... 846

783

Chapter 144. Ethernet Driver Design
Currently, the networking stack only supports ethernet based networking.

The network drivers use a two-layer design. One layer is hardware independent and contains all the stack specific code. The
other layer is platform dependent and communicates with the hardware independent layer via a very simple API. In this way,
hardware device drivers can actually be used with other stacks, if the same API can be provided by that stack. We designed the
drivers this way to encourage the development of other stacks in eCos while allowing re-use of the actual hardware specific
code.

More comprehensive documentation of the ethernet device driver and the associated API can be found in the eCos generic
ethernet device driver documentation. The driver and API is the same as the minimal debug stack used by the RedBoot appli-
cation. See the RedBoot documentation for further information.

784

Chapter 145. Sample Code
Many examples using the networking support are provided. These are arranged as eCos test programs, primarily for use in
verifying the package, but they can also serve as useful frameworks for program design. We have taken a KISS approach to
building programs which use the network. A single include file <network.h> is all that is required to access the stack. A
complete, annotated test program can be found at net/common/VERSION/tests/ftp_test.c, with its associated files.

785

Chapter 146. Configuring IP Addresses
Each interface (“eth0” and “eth1”) has independent configuration of its setup. Each can be set up manually (in which case
you must write code to do this), or by using BOOTP/DHCP, or explicitly, with configured values. If additional interfaces are
added, these must be configured manually.

The configurable values are:

• IP address

• netmask

• broadcast address

• gateway/router

• server address.

Server address is the DHCP server if applicable, but in addition, many test cases use it as “the machine to talk to” in whatever
manner the test exercises the protocol stack.

The initialization is invoked by calling the C routine:

void init_all_network_interfaces(void);

Additionally, if the system is configured to support IPv6 then each interface may have an address assigned which is a com-
posite of a 64 bit prefix and the 32 bit IPv4 address for that interface. The prefix is controlled by the CDL setting CYGH-
WR_NET_DRIVER_ETH0_IPV6_PREFIX for “eth0”, etc. This is a CDL booldata type, allowing this address to be suppressed
if not desired.

Alternatively, the system can configure its IPv6 address using router solicitation. When the CDL option CYGOP-
T_NET_IPV6_ROUTING_THREAD is enabled, init_all_network_interface will start a thread which sends out
router solicit messages, process router advertisements and thus configure an IPv6 address to the interface.

Refer to the test cases, …/packages/net/common/VERSION/tests/ftp_test.c for example usage, and the source
files in …/packages/net/common/VERSION/src/bootp_support.c and network_support.c to see what
that call does.

This assumes that the MAC address (also known as ESA or Ethernet Station Address) is already defined in the serial EEPROM
or however the particular target implements this; support for setting the MAC address is hardware dependent.

DHCP support is active by default, and there are configuration options to control it. Firstly, in the top level of the “Networking”
configuration tree, “Use full DHCP instead of BOOTP” enables DHCP, and it contains an option to have the system provide a
thread to renew DHCP leases and manage lease expiry. Secondly, the individual interfaces “eth0” and “eth1” each have new
options within the “Use BOOTP/DHCP to initialize ’ethX‚” to select whether to use DHCP rather than BOOTP.

You should not configure the network stack to use BOOTP/DHCP if you are using RedBoot, have configured it also to use
BOOTP/DHCP, and are connected via GDB to it over the network. Otherwise the TCP/IP stacks in both RedBoot and the eCos
application are likely to be given the same IP address, which will cause problems.

Note that you are completely at liberty to ignore this startup code and its configuration in building your application. init_al-
l_network_interfaces() is provided for three main purposes:

• For use by eCos's own test programs.

• As an easy “get you going” utility for newcomers to eCos.

• As readable example code from which further development might start.

If your application has different requirements for bringing up available network interfaces, setting up routes, determining IP
addresses and the like from the defaults that the example code provides, you can write your own initialization code to use

786

Configuring IP Addresses

whatever sequence of ioctl() function calls carries out the desired setup. Analogously, in larger systems, a sequence of
“ifconfig” invocations is used; these mostly map to ioctl() calls to manipulate the state of the interface in question.

By default the supplied init_all_network_interfaces() code can configure up to two ethernet interfaces. An
alternative implementation is available that can configure more interfaces. This code is used by enabling the CYGP-
KG_NET_DRIVER_INIT_NEW option; this is enabled by default if more than two interfaces are configured but may also be
enabled by the user. At preseent support is limited to four interfaces, but can be extended with minimal changes to the CDL
and code to any number of interfaces. The alternative code is functionally equivalent to the default, but uses more memory
and is therefore not used by default.

787

Chapter 147. Tests and Demonstrations
Loopback tests
By default, only tests which can execute on any target will be built. These therefore do not actually use external network
interfaces (though they may configure and initialize them) but are limited to testing via the loopback interface.

ping_lo_test - ping test of the loopback address
tcp_lo_select - simple test of select with TCP via loopback
tcp_lo_test - trivial TCP test via loopback
udp_lo_test - trivial UDP test via loopback
multi_lo_select - test of multiple select() calls simultaneously

Building the Network Tests
To build further network tests, ensure that the configuration option CYGPKG_NET_BUILD_TESTS is set in your build and
then make the tests in the usual way. Alternatively (with that option set) use the following command after building the eCos
library, if you wish to build only the network tests:

make -C net/common/VERSION/ tests

This should give test executables in install/tests/net/common/VERSION/tests including the following:

socket_test - trivial test of socket creation API
mbuf_test - trivial test of mbuf allocation API
ftp_test - simple FTP test, connects to “server”
ping_test - pings “server” and non-existent host to test timeout
dhcp_test - ping test, but also relinquishes and
 reacquires DHCP leases periodically
flood - a flood ping test; use with care
tcp_echo - data forwarding program for performance test
nc_test_master - network characterization master
nc_test_slave - network characterization slave
server_test - a very simple server example
tftp_client_test - performs a tftp get and put from/to “server”
tftp_server_test - runs a tftp server for a short while
set_mac_address - set MAC address(es) of interfaces in NVRAM
bridge - contributed network bridge code
nc6_test_master - IPv4/IPv6 network characterization master
nc6_test_slave - IPv4/IPv6 network characterization slave
ga_server_test - a very simple IPv4/IPv6 server example

Standalone Tests
socket_test - trivial test of socket creation API
mbuf_test - trivial test of mbuf allocation API

These two do not communicate over the net; they just perform simple API tests then exit.

ftp_test - simple FTP test, connects to “server”

This test initializes the interface(s) then connects to the FTP server on the “server” machine for for each active interface in
turn, confirms that the connection was successful, disconnects and exits. This tests interworking with the server.

ping_test - pings “server” and non-existent host to test timeout

This test initializes the interface(s) then pings the server machine in the standard way, then pings address “32 up” from the
server in the expectation that there is no machine there. This confirms that the successful ping is not a false positive, and tests
the receive timeout. If there is such a machine, of course the 2nd set of pings succeeds, confirming that we can talk to a machine
not previously mentioned by configuration or by bootp. It then does the same thing on the other interface, eth1.

If IPv6 is enabled, the program will also ping to the address it last received a router advertisement from. Also a ping will be
made to that address plus 32, in a similar way the the IPv4 case.

788

Tests and Demonstrations

dhcp_test - ping test, but also manipulates DHCP leases

This test is very similar to the ping test, but in addition, provided the network package is not configured to do this automatically,
it manually relinquishes and reclaims DHCP leases for all available interfaces. This tests the external API to DHCP. See section
below describing this.

flood - a flood ping test; use with care

This test performs pings on all interfaces as quickly as possible, and only prints status information periodically. Flood pinging
is bad for network performance; so do not use this test on general purpose networks unless protected by a switch.

Performance Test
tcp_echo - data forwarding program for performance test

tcp_echo is one part of the standard performance test we use. The other parts are host programs tcp_source and tcp_sink.
To make these (under your HOST system) cd to the tests source directory in the eCos repository and type “make -f
make.host” - this should build tcp_source and tcp_sink.

The host program “tcp_source” sends data to the target. On the target, “tcp_echo” sends it onwards to “tcp_sink”
running on your host. So the target must receive and send on all the data that tcp_source sends it; the time taken for this
is measured and the data rate is calculated.

To invoke the test, first start tcp_echo on the target board and wait for it to become quiescent - it will report work to calibrate
a CPU load which can be used to simulate real operating conditions for the stack.

Then on your host machine, in one terminal window, invoke tcp_sink giving it the IP address (or hostname) of one interface
of the target board. For example “tcp_sink 10.130.39.66”. tcp_echo on the target will print something like “SINK
connection from 10.130.39.13:1143” when tcp_sink is correctly invoked.

Next, in another host terminal window, invoke tcp_source, giving it the IP address (or hostname) of an interface of
the target board, and optionally a background load to apply to the target while the test runs. For example, “tcp_source
194.130.39.66” to run the test with no additional target CPU load, or “tcp_source 194.130.39.66 85” to load
it up to 85% used. The target load must be a multiple of 5. tcp_echo on the target will print something like “SOURCE
connection from 194.130.39.13:1144” when tcp_source is correctly invoked.

You can connect tcp_sink to one target interface and tcp_source to another, or both to the same interface. Similarly, you can
run tcp_sink and tcp_source on the same host machine or different ones. TCP/IP and ARP look after them finding one
another, as intended.

nc_test_master - network characterization master
nc_test_slave - network characterization slave

These tests talk to each other to measure network performance. They can each run on either a test target or a host comput-
er given some customization to your local environment. As provided, nc_test_slave must run on the test target, and
nc_test_master must be run on a host computer, and be given the test target's IP address or hostname.

The tests print network performance for various packet sizes over UDP and TCP, versus various additional CPU loads on
the target.

The programs below are additional forms which support both IPv4 and IPv6 addressing:

 nc6_test_slave
 nc6_test_master

Interactive Tests
server_test - a very simple server example

This test simply awaits a connection on port 7734 and after accepting a connection, gets a packet (with a timeout of a few
seconds) and prints it.

789

Tests and Demonstrations

The connection is then closed. We then loop to await the next connection, and so on. To use it, telnet to the target on port
7734 then type something (quickly!)

% telnet 172.16.19.171 7734
Hello target board

and the test program will print something like:

connection from 172.16.19.13:3369
buf = "Hello target board"

ga_server_test - another very simple server example

This is a variation on the ga_server_test test with the difference being that it uses the getaddrinfo function to set up its
addresses. On a system with IPv6 enabled, it will listen on port 7734 for a TCP connection via either IPv4 or IPv6.

tftp_client_test - performs a tftp get and put from/to “server”

This is only partially interactive. You need to set things up on the “server” in order for this to work, and you will need to look
at the server afterwards to confirm that all was well.

For each interface in turn, this test attempts to read by tftp from the server, a file called tftp_get and prints the status and
contents it read (if any). It then writes the same data to a file called tftp_put on the same server.

In order for this to succeed, both files must already exist. The TFTP protocol does not require that a WRQ request _create_ a
file, just that it can write it. The TFTP server on Linux certainly will only allow writes to an existing file, given the appropriate
permission. Thus, you need to have these files in place, with proper permission, before running the test.

The conventional place for the tftp server to operate in LINUX is /tftpboot/; you will likely need root privileges to create files
there. The data contents of tftp_get can be anything you like, but anything very large will waste lots of time printing it on
the test‚s stdout, and anything above 32kB will cause a buffer overflow and unpredictable failure.

Creating an empty tftp_put file (eg. by copying /dev/null to it) is neatest. So before the test you should have something like:

-rw-rw-rw- 1 root 1076 May 1 11:39 tftp_get
-rw-rw-rw- 1 root 0 May 1 15:52 tftp_put

note that both files have public permissions wide open. After running the test, tftp_put should be a copy of tftp_get.

-rw-rw-rw- 1 root 1076 May 1 11:39 tftp_get
-rw-rw-rw- 1 root 1076 May 1 15:52 tftp_put

If the configuration contains IPv6 support, the test program will also use IPv6. It will attempt to put/get the files listed above
from the address it last received a routers solicit from.

tftp_server_test - runs a tftp server for a short while

This test is truly interactive, in that you can use a standard tftp application to get and put files from the server, during the 5
minutes that it runs. The dummy filesystem which underlies the server initially contains one file, called “uu” which contains
part of a familiar text and some padding. It also accommodates creation of 3 further files of up to 1Mb in size and names of up
to 256 bytes. Exceeding these limits will cause a buffer overflow and unpredictable failure.

The dummy filesystem is an implementation of the generic API which allows a true filesystem to be attached to the tftp server
in the network stack.

We have been testing the tftp server by running the test on the target board, then using two different host computers connecting
to the different target interfaces, putting a file from each, getting the “uu” file, and getting the file from the other computer.
This verifies that data is preserved during the transfer as well as interworking with standard tftp applications.

Maintenance Tools
set_mac_address - set MAC address(es) of interfaces in NVRAM

This program makes an example ioctl() call SIOCSIFHWADDR “Socket IO Set InterFace HardWare ADDRess” to set
the MAC address on targets where this is supported and enabled in the configuration. You must edit the source to choose a

790

Tests and Demonstrations

MAC address and further edit it to allow this very dangerous operation. Not all ethernet drivers support this operation, because
most ethernet hardware does not support it — or it comes pre-set from the factory. Do not use this program.

791

Chapter 148. Support Features
TFTP
The TFTP client and server are described in tftp_support.h;

The TFTP client has and new and an older, deprecated, API. The new API works for both IPv4 and IPv6 where as the deprecated
API is IPv4 only.

The new API is as follows:

int tftp_client_get(const char * const filename,
 const char * const server,
 const int port,
 char *buf,
 int len,
 const int mode,
 int * const err);

int tftp_client_put(const char * const filename,
 const char * const server,
 const int port,
 const char *buf,
 int len,
 const int mode,
 int *const err);

Currently server can only be a numeric IPv4 or IPv6 address. The resolver is currently not used, but it is planned to add this
feature (patches welcome). If port is zero the client connects to the default TFTP port on the server. Otherwise the specified
port is used.

The deprecated API is:

int tftp_get(const char * const filename,
 const struct sockaddr_in * const server,
 char *buf,
 int len,
 const int mode,
 int * const error);

int tftp_put(const char * const filename,
 const struct sockaddr_in * const server,
 const char *buffer,
 int len,
 const int mode,
 int * const err);

The server should contain the address of the server to contact. If the sin_port member of the structure is zero the default
TFTP port is used. Otherwise the specified port is used.

Both API's report errors in the same way. The functions return a value of -1 and *err will be set to one of the following values:

#define TFTP_ENOTFOUND 1 /* file not found */
#define TFTP_EACCESS 2 /* access violation */
#define TFTP_ENOSPACE 3 /* disk full or allocation exceeded */
#define TFTP_EBADOP 4 /* illegal TFTP operation */
#define TFTP_EBADID 5 /* unknown transfer ID */
#define TFTP_EEXISTS 6 /* file already exists */
#define TFTP_ENOUSER 7 /* no such user */
#define TFTP_TIMEOUT 8 /* operation timed out */
#define TFTP_NETERR 9 /* some sort of network error */
#define TFTP_INVALID 10 /* invalid parameter */
#define TFTP_PROTOCOL 11 /* protocol violation */
#define TFTP_TOOLARGE 12 /* file is larger than buffer */

If there are no errors the return value is the number of bytes transfered.

792

Support Features

The server is more complex. It requires a filesystem implementation to be supplied by the user, and attached to the tftp server
by means of a vector of function pointers:

struct tftpd_fileops {
 int (*open)(const char *, int);
 int (*close)(int);
 int (*write)(int, const void *, int);
 int (*read)(int, void *, int);
};

These functions have the obvious semantics. The structure describing the filesystem is an argument to the tftpd_start:

int tftp_start(int port,
 struct tftpd_fileops *ops);

The first argument is the port to use for the server. If this port number is zero, the default TFTP port number will be used. The
return value from tftpd_start is a handle which can be passed to tftpd_stop. This will kill the tftpd thread. Note that
this is not a clean shutdown. The thread will simply be killed. tftpd_stop will attempt to close the sockets the thread was
listening on and free some of its allocated memory. But if the thread was actively transferreing data at the time tftpd_stop
is called, it is quite likely some memory and a socket will be leaked. Use this function with caution (or implement a clean
shutdown and please contribute the code back :-).

There are two CDL configuration options that control how many servers on how many different ports tftp can be started.
CYGSEM_NET_TFTPD_MULTITHREADED, when enabled, allows multiple tftpd threads to operate on the same port num-
ber. With only one thread, while the thread is active transferring data, new requests for transfers will not be served until the
active transfer is complete. When multiple threads are started on the same port, multiple transfers can take place simultaneous,
up to the number of threads started. However a semaphore is required to synchronise the threads. This semaphore is required
per port. The CDL option CYGNUM_NET_TFTPD_MULTITHREADED_PORTS controls how many different port numbers
multithreaded servers can service.

If CYGSEM_NET_TFTPD_MULTITHREADED is not enabled, only one thread may be run per port number. But this re-
moves the need for a semaphore and so CYGNUM_NET_TFTPD_MULTITHREADED_PORTS is not required and unlimited
number of ports can be used.

It should be noted that the TFTPD does not perform any form of file locking. When multiple servers are active, it is assumed
the underlying filesystem will refuse to open the same file multiple times, operate correctly with simultaneous read/writes to
the same file, or if you are unlucky, corrupt itself beyond all repair.

When IPv6 is enabled the tftpd thread will listen for requests from both IPv4 and IPv6 addresses.

As discussed in the description of the tftp_server_test above, an example filesystem is provided in net/common/VERSION/
src/tftp_dummy_file.c for use by the tftp server test. The dummy filesystem is not a supported part of the network
stack, it exists purely for demonstration purposes.

DHCP
This API publishes a routine to maintain DHCP state, and a semaphore that is signalled when a lease requires attention: this
is your clue to call the aforementioned routine.

The intent with this API is that a simple DHCP client thread, which maintains the state of the interfaces, can go as follows:
(after init_all_network_interfaces() is called from elsewhere)

while (1) {
 while (1) {
 cyg_semaphore_wait(&dhcp_needs_attention);
 if (! dhcp_bind()) // a lease expired
 break; // If we need to re-bind
 }
 dhcp_down(); // tear down unbound interfaces
 init_all_network_interfaces(); // re-initialize
}

and if the application does not want to suffer the overhead of a separate thread and its stack for this, this functionality can be
placed in the app‚s server loop in an obvious fashion. That is the goal of breaking out these internal elements. For example,
some server might be arranged to poll DHCP from time to time like this:

793

Support Features

while (1) {
 init_all_network_interfaces();
 open-my-listen-sockets();
 while (1) {
 serve-one-request();
 // sleeps if no connections, but not forever;
 // so this loop is polled a few times a minute...
 if (cyg_semaphore_trywait(&dhcp_needs_attention)) {
 if (! dhcp_bind()) {
 close-my-listen-sockets();
 dhcp_down();
 break;
 }
 }
 }
}

If the configuration option CYGOPT_NET_DHCP_DHCP_THREAD is defined, then eCos provides a thread as described
initially. Independent of this option, initialization of the interfaces still occurs in init_all_network_interfaces()
and your startup code can call that. It will start the DHCP management thread if configured. If a lease fails to be renewed,
the management thread will shut down all interfaces and attempt to initialize all the interfaces again from scratch. This may
cause chaos in the app, which is why managing the DHCP state in an application aware thread is actually better, just far less
convenient for testing.

If the configuration option CYGOPT_NET_DHCP_OPTION_HOST_NAME is defined, then the TAG_HOST_NAME DHCP
option will be included in any DHCP lease requests. The text for the hostname is set by calling dhcp_set_hostname().
Any DHCP lease requests made prior to calling dhcp_set_hostname() will not include the TAG_HOST_NAME DHCP
option. The configuration option CYGNUM_NET_DHCP_OPTION_HOST_NAME_LEN controls the maximum length al-
lowed for the hostname. This permits the hostname text to be determined at run-time. Setting the hostname to the empty string
will have the effect of disabling the TAG_HOST_NAME DHCP option.

If the configuration option CYGOPT_NET_DHCP_OPTION_DHCP_CLIENTID_MAC is defined, then the TAG_D-
HCP_CLIENTID DHCP option will be included in any DHCP lease requests. The client ID used will be the current MAC
address of the network interface.

The option CYGOPT_NET_DHCP_PARM_REQ_LIST_ADDITIONAL allows additional DHCP options to be added to the
request sent to the DHCP server. This option should be set to a comma separated list of options.

The option CYGOPT_NET_DHCP_PARM_REQ_LIST_REPLACE is similar to CYGOPT_NET_DHCP_PARM_RE-
Q_LIST_ADDITIONAL but in this case it completely replaces the default list of options with the configured set of comma
separated options.

794

Chapter 149. TCP/IP Library Reference
getdomainname
GETDOMAINNAME(3) BSD Library Functions Manual GETDOMAINNAME(3)

NAME
 getdomainname, setdomainname -- get/set YP domain name of current host

SYNOPSIS
 #include <unistd.h>

 int
 getdomainname(char *name, size_t namelen);

 int
 setdomainname(const char *name, size_t namelen);

DESCRIPTION
 The getdomainname() function returns the YP domain name for the current
 processor, as previously set by setdomainname(). The parameter namelen
 specifies the size of the name array. If insufficient space is provided,
 the returned name is truncated. The returned name is always null termi-
 nated.

 setdomainname() sets the domain name of the host machine to be name,
 which has length namelen. This call is restricted to the superuser and
 is normally used only when the system is bootstrapped.

RETURN VALUES
 If the call succeeds a value of 0 is returned. If the call fails, a
 value of -1 is returned and an error code is placed in the global vari-
 able errno.

ERRORS
 The following errors may be returned by these calls:

 [EFAULT] The name or namelen parameter gave an invalid address.

 [EPERM] The caller tried to set the domain name and was not
 the superuser.

SEE ALSO
 domainname(1), gethostid(3), gethostname(3), sysctl(3), sysctl(8), yp(8)

BUGS
 Domain names are limited to MAXHOSTNAMELEN (from <sys/param.h>) charac-
 ters, currently 256. This includes the terminating NUL character.

 If the buffer passed to getdomainname() is too small, other operating
 systems may not guarantee termination with NUL.

HISTORY
 The getdomainname function call appeared in SunOS 3.x.

BSD May 6, 1994 BSD

gethostname
GETHOSTNAME(3) BSD Library Functions Manual GETHOSTNAME(3)

NAME
 gethostname, sethostname -- get/set name of current host

SYNOPSIS
 #include <unistd.h>

 int

795

TCP/IP Library Reference

 gethostname(char *name, size_t namelen);

 int
 sethostname(const char *name, size_t namelen);

DESCRIPTION
 The gethostname() function returns the standard host name for the current
 processor, as previously set by sethostname(). The parameter namelen
 specifies the size of the name array. If insufficient space is provided,
 the returned name is truncated. The returned name is always null termi-
 nated.

 sethostname() sets the name of the host machine to be name, which has
 length namelen. This call is restricted to the superuser and is normally
 used only when the system is bootstrapped.

RETURN VALUES
 If the call succeeds a value of 0 is returned. If the call fails, a
 value of -1 is returned and an error code is placed in the global vari-
 able errno.

ERRORS
 The following errors may be returned by these calls:

 [EFAULT] The name or namelen parameter gave an invalid address.

 [EPERM] The caller tried to set the hostname and was not the
 superuser.

SEE ALSO
 hostname(1), getdomainname(3), gethostid(3), sysctl(3), sysctl(8), yp(8)

STANDARDS
 The gethostname() function call conforms to X/Open Portability Guide
 Issue 4, Version 2 (``XPG4.2'').

HISTORY
 The gethostname() function call appeared in 4.2BSD.

BUGS
 Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>) characters,
 currently 256. This includes the terminating NUL character.

 If the buffer passed to gethostname() is smaller than MAXHOSTNAMELEN,
 other operating systems may not guarantee termination with NUL.

BSD June 4, 1993 BSD

byteorder
BYTEORDER(3) BSD Library Functions Manual BYTEORDER(3)

NAME
 htonl, htons, ntohl, ntohs, htobe32, htobe16, betoh32, betoh16, htole32,
 htole16, letoh32, letoh16, swap32, swap16 -- convert values between dif-
 ferent byte orderings

SYNOPSIS
 #include <sys/types.h>
 #include <machine/endian.h>

 u_int32_t
 htonl(u_int32_t host32);

 u_int16_t
 htons(u_int16_t host16);

 u_int32_t
 ntohl(u_int32_t net32);

 u_int16_t

796

TCP/IP Library Reference

 ntohs(u_int16_t net16);

 u_int32_t
 htobe32(u_int32_t host32);

 u_int16_t
 htobe16(u_int16_t host16);

 u_int32_t
 betoh32(u_int32_t big32);

 u_int16_t
 betoh16(u_int16_t big16);

 u_int32_t
 htole32(u_int32_t host32);

 u_int16_t
 htole16(u_int16_t host16);

 u_int32_t
 letoh32(u_int32_t little32);

 u_int16_t
 letoh16(u_int16_t little16);

 u_int32_t
 swap32(u_int32_t val32);

 u_int16_t
 swap16(u_int16_t val16);

DESCRIPTION
 These routines convert 16- and 32-bit quantities between different byte
 orderings. The ``swap'' functions reverse the byte ordering of the given
 quantity, the others converts either from/to the native byte order used
 by the host to/from either little- or big-endian (a.k.a network) order.

 Apart from the swap functions, the names can be described by this form:
 {src-order}to{dst-order}{size}. Both {src-order} and {dst-order} can
 take the following forms:

 h Host order.
 n Network order (big-endian).
 be Big-endian (most significant byte first).
 le Little-endian (least significant byte first).

 One of the specified orderings must be `h'. {size} will take these
 forms:

 l Long (32-bit, used in conjunction with forms involving `n').
 s Short (16-bit, used in conjunction with forms involving `n').
 16
 16-bit.
 32
 32-bit.

 The swap functions are of the form: swap{size}.

 Names involving `n' convert quantities between network byte order and
 host byte order. The last letter (`s' or `l') is a mnemonic for the tra-
 ditional names for such quantities, short and long, respectively. Today,
 the C concept of short and long integers need not coincide with this tra-
 ditional misunderstanding. On machines which have a byte order which is
 the same as the network order, routines are defined as null macros.

 The functions involving either ``be'', ``le'', or ``swap'' use the num-
 bers 16 and 32 for specifying the bitwidth of the quantities they operate
 on. Currently all supported architectures are either big- or little-
 endian so either the ``be'' or ``le'' variants are implemented as null
 macros.

797

TCP/IP Library Reference

 The routines mentioned above which have either {src-order} or {dst-order}
 set to `n' are most often used in conjunction with Internet addresses and
 ports as returned by gethostbyname(3) and getservent(3).

SEE ALSO
 gethostbyname(3), getservent(3)

HISTORY
 The byteorder functions appeared in 4.2BSD.

BUGS
 On the vax, alpha, i386, and so far mips, bytes are handled backwards
 from most everyone else in the world. This is not expected to be fixed
 in the near future.

BSD June 4, 1993 BSD

ethers
ETHERS(3) BSD Library Functions Manual ETHERS(3)

NAME
 ether_aton, ether_ntoa, ether_addr, ether_ntohost, ether_hostton,
 ether_line -- get ethers entry

SYNOPSIS
 #include <netinet/if_ether.h>

 char *
 ether_ntoa(struct ether_addr *e);

 struct ether_addr *
 ether_aton(char *s);

 int
 ether_ntohost(char *hostname, struct ether_addr *e);

 int
 ether_hostton(char *hostname, struct ether_addr *e);

 int
 ether_line(char *l, struct ether_addr *e, char *hostname);

DESCRIPTION
 Ethernet addresses are represented by the following structure:

 struct ether_addr {
 u_int8_t ether_addr_octet[6];
 };

 The ether_ntoa() function converts this structure into an ASCII string of
 the form ``xx:xx:xx:xx:xx:xx'', consisting of 6 hexadecimal numbers sepa-
 rated by colons. It returns a pointer to a static buffer that is reused
 for each call. The ether_aton() converts an ASCII string of the same
 form and to a structure containing the 6 octets of the address. It
 returns a pointer to a static structure that is reused for each call.

 The ether_ntohost() and ether_hostton() functions interrogate the data-
 base mapping host names to Ethernet addresses, /etc/ethers. The
 ether_ntohost() function looks up the given Ethernet address and writes
 the associated host name into the character buffer passed. This buffer
 should be MAXHOSTNAMELEN characters in size. The ether_hostton() func-
 tion looks up the given host name and writes the associated Ethernet
 address into the structure passed. Both functions return zero if they
 find the requested host name or address, and -1 if not.

 Each call reads /etc/ethers from the beginning; if a `+' appears alone on
 a line in the file, then ether_hostton() will consult the ethers.byname
 YP map, and ether_ntohost() will consult the ethers.byaddr YP map.

 The ether_line() function parses a line from the /etc/ethers file and

798

TCP/IP Library Reference

 fills in the passed struct ether_addr and character buffer with the Eth-
 ernet address and host name on the line. It returns zero if the line was
 successfully parsed and -1 if not. The character buffer should be
 MAXHOSTNAMELEN characters in size.

FILES
 /etc/ethers

SEE ALSO
 ethers(5)

HISTORY
 The ether_ntoa(), ether_aton(), ether_ntohost(), ether_hostton(), and
 ether_line() functions were adopted from SunOS and appeared in NetBSD 0.9
 b.

BUGS
 The data space used by these functions is static; if future use requires
 the data, it should be copied before any subsequent calls to these func-
 tions overwrite it.

BSD December 16, 1993 BSD

getaddrinfo
GETADDRINFO(3) BSD Library Functions Manual GETADDRINFO(3)

NAME
 getaddrinfo, freeaddrinfo, gai_strerror -- nodename-to-address transla-
 tion in protocol-independent manner

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netdb.h>

 int
 getaddrinfo(const char *nodename, const char *servname,
 const struct addrinfo *hints, struct addrinfo **res);

 void
 freeaddrinfo(struct addrinfo *ai);

 char *
 gai_strerror(int ecode);

DESCRIPTION
 The getaddrinfo() function is defined for protocol-independent nodename-
 to-address translation. It performs the functionality of
 gethostbyname(3) and getservbyname(3), but in a more sophisticated man-
 ner.

 The addrinfo structure is defined as a result of including the <netdb.h>
 header:

 struct addrinfo { *
 int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST */
 int ai_family; /* PF_xxx */
 int ai_socktype; /* SOCK_xxx */
 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
 size_t ai_addrlen; /* length of ai_addr */
 char *ai_canonname; /* canonical name for nodename */
 struct sockaddr *ai_addr; /* binary address */
 struct addrinfo *ai_next; /* next structure in linked list */
 };

 The nodename and servname arguments are pointers to NUL-terminated
 strings or NULL. One or both of these two arguments must be a non-null
 pointer. In the normal client scenario, both the nodename and servname
 are specified. In the normal server scenario, only the servname is spec-
 ified. A non-null nodename string can be either a node name or a numeric

799

TCP/IP Library Reference

 host address string (i.e., a dotted-decimal IPv4 address or an IPv6 hex
 address). A non-null servname string can be either a service name or a
 decimal port number.

 The caller can optionally pass an addrinfo structure, pointed to by the
 third argument, to provide hints concerning the type of socket that the
 caller supports. In this hints structure all members other than
 ai_flags, ai_family, ai_socktype, and ai_protocol must be zero or a null
 pointer. A value of PF_UNSPEC for ai_family means the caller will accept
 any protocol family. A value of 0 for ai_socktype means the caller will
 accept any socket type. A value of 0 for ai_protocol means the caller
 will accept any protocol. For example, if the caller handles only TCP
 and not UDP, then the ai_socktype member of the hints structure should be
 set to SOCK_STREAM when getaddrinfo() is called. If the caller handles
 only IPv4 and not IPv6, then the ai_family member of the hints structure
 should be set to PF_INET when getaddrinfo() is called. If the third
 argument to getaddrinfo() is a null pointer, this is the same as if the
 caller had filled in an addrinfo structure initialized to zero with
 ai_family set to PF_UNSPEC.

 Upon successful return a pointer to a linked list of one or more addrinfo
 structures is returned through the final argument. The caller can
 process each addrinfo structure in this list by following the ai_next
 pointer, until a null pointer is encountered. In each returned addrinfo
 structure the three members ai_family, ai_socktype, and ai_protocol are
 the corresponding arguments for a call to the socket() function. In each
 addrinfo structure the ai_addr member points to a filled-in socket
 address structure whose length is specified by the ai_addrlen member.

 If the AI_PASSIVE bit is set in the ai_flags member of the hints struc-
 ture, then the caller plans to use the returned socket address structure
 in a call to bind(). In this case, if the nodename argument is a null
 pointer, then the IP address portion of the socket address structure will
 be set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY_INIT for an IPv6
 address.

 If the AI_PASSIVE bit is not set in the ai_flags member of the hints
 structure, then the returned socket address structure will be ready for a
 call to connect() (for a connection-oriented protocol) or either
 connect(), sendto(), or sendmsg() (for a connectionless protocol). In
 this case, if the nodename argument is a null pointer, then the IP
 address portion of the socket address structure will be set to the loop-
 back address.

 If the AI_CANONNAME bit is set in the ai_flags member of the hints struc-
 ture, then upon successful return the ai_canonname member of the first
 addrinfo structure in the linked list will point to a NUL-terminated
 string containing the canonical name of the specified nodename.

 If the AI_NUMERICHOST bit is set in the ai_flags member of the hints
 structure, then a non-null nodename string must be a numeric host address
 string. Otherwise an error of EAI_NONAME is returned. This flag pre-
 vents any type of name resolution service (e.g., the DNS) from being
 called.

 The arguments to getaddrinfo() must sufficiently be consistent and unam-
 biguous. Here are pitfall cases you may encounter:

 + getaddrinfo() will raise an error if members of the hints structure
 are not consistent. For example, for internet address families,
 getaddrinfo() will raise an error if you specify SOCK_STREAM to
 ai_socktype while you specify IPPROTO_UDP to ai_protocol.

 + If you specify a servname which is defined only for certain
 ai_socktype, getaddrinfo() will raise an error because the arguments
 are not consistent. For example, getaddrinfo() will raise an error
 if you ask for ``tftp'' service on SOCK_STREAM.

 + For internet address families, if you specify servname while you set
 ai_socktype to SOCK_RAW, getaddrinfo() will raise an error, because
 service names are not defined for the internet SOCK_RAW space.

800

TCP/IP Library Reference

 + If you specify a numeric servname, while leaving ai_socktype and
 ai_protocol unspecified, getaddrinfo() will raise an error. This is
 because the numeric servname does not identify any socket type, and
 getaddrinfo() is not allowed to glob the argument in such case.

 All of the information returned by getaddrinfo() is dynamically allo-
 cated: the addrinfo structures, the socket address structures, and canon-
 ical node name strings pointed to by the addrinfo structures. To return
 this information to the system the function freeaddrinfo() is called.
 The addrinfo structure pointed to by the ai argument is freed, along with
 any dynamic storage pointed to by the structure. This operation is
 repeated until a NULL ai_next pointer is encountered.

 To aid applications in printing error messages based on the EAI_xxx codes
 returned by getaddrinfo(), gai_strerror() is defined. The argument is
 one of the EAI_xxx values defined earlier and the return value points to
 a string describing the error. If the argument is not one of the EAI_xxx
 values, the function still returns a pointer to a string whose contents
 indicate an unknown error.

 Extension for scoped IPv6 address
 The implementation allows experimental numeric IPv6 address notation with
 scope identifier. By appending the percent character and scope identi-
 fier to addresses, you can fill sin6_scope_id field for addresses. This
 would make management of scoped address easier, and allows cut-and-paste
 input of scoped address.

 At this moment the code supports only link-local addresses with the for-
 mat. Scope identifier is hardcoded to name of hardware interface associ-
 ated with the link. (such as ne0). Example would be like
 ``fe80::1%ne0'', which means ``fe80::1 on the link associated with ne0
 interface''.

 The implementation is still very experimental and non-standard. The cur-
 rent implementation assumes one-by-one relationship between interface and
 link, which is not necessarily true from the specification.

EXAMPLES
 The following code tries to connect to ``www.kame.net'' service ``http''.
 via stream socket. It loops through all the addresses available, regard-
 less from address family. If the destination resolves to IPv4 address,
 it will use AF_INET socket. Similarly, if it resolves to IPv6, AF_INET6
 socket is used. Observe that there is no hardcoded reference to particu-
 lar address family. The code works even if getaddrinfo returns addresses
 that are not IPv4/v6.

 struct addrinfo hints, *res, *res0;
 int error;
 int s;
 const char *cause = NULL;

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = PF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 error = getaddrinfo("www.kame.net", "http", &hints, &res0);
 if (error) {
 errx(1, "%s", gai_strerror(error));
 /*NOTREACHED*/
 }
 s = -1;
 for (res = res0; res; res = res->ai_next) {
 s = socket(res->ai_family, res->ai_socktype,
 res->ai_protocol);
 if (s < 0) {
 cause = "socket";
 continue;
 }

 if (connect(s, res->ai_addr, res->ai_addrlen) < 0) {
 cause = "connect";
 close(s);
 s = -1;

801

TCP/IP Library Reference

 continue;
 }

 break; /* okay we got one */
 }
 if (s < 0) {
 err(1, cause);
 /*NOTREACHED*/
 }
 freeaddrinfo(res0);

 The following example tries to open a wildcard listening socket onto ser-
 vice ``http'', for all the address families available.

 struct addrinfo hints, *res, *res0;
 int error;
 int s[MAXSOCK];
 int nsock;
 const char *cause = NULL;

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = PF_UNSPEC;
 hints.ai_socktype = SOCK_STREAM;
 hints.ai_flags = AI_PASSIVE;
 error = getaddrinfo(NULL, "http", &hints, &res0);
 if (error) {
 errx(1, "%s", gai_strerror(error));
 /*NOTREACHED*/
 }
 nsock = 0;
 for (res = res0; res && nsock < MAXSOCK; res = res->ai_next) {
 s[nsock] = socket(res->ai_family, res->ai_socktype,
 res->ai_protocol);
 if (s[nsock] < 0) {
 cause = "socket";
 continue;
 }

 if (bind(s[nsock], res->ai_addr, res->ai_addrlen) < 0) {
 cause = "bind";
 close(s[nsock]);
 continue;
 }
 (void) listen(s[nsock], 5);

 nsock++;
 }
 if (nsock == 0) {
 err(1, cause);
 /*NOTREACHED*/
 }
 freeaddrinfo(res0);

DIAGNOSTICS
 Error return status from getaddrinfo() is zero on success and non-zero on
 errors. Non-zero error codes are defined in <netdb.h>, and as follows:

 EAI_ADDRFAMILY Address family for nodename not supported.
 EAI_AGAIN Temporary failure in name resolution.
 EAI_BADFLAGS Invalid value for ai_flags.
 EAI_FAIL Non-recoverable failure in name resolution.
 EAI_FAMILY ai_family not supported.
 EAI_MEMORY Memory allocation failure.
 EAI_NODATA No address associated with nodename.
 EAI_NONAME nodename nor servname provided, or not known.
 EAI_SERVICE servname not supported for ai_socktype.
 EAI_SOCKTYPE ai_socktype not supported.
 EAI_SYSTEM System error returned in errno.

 If called with proper argument, gai_strerror() returns a pointer to a
 string describing the given error code. If the argument is not one of
 the EAI_xxx values, the function still returns a pointer to a string

802

TCP/IP Library Reference

 whose contents indicate an unknown error.

SEE ALSO
 getnameinfo(3), gethostbyname(3), getservbyname(3), hosts(5),
 resolv.conf(5), services(5), hostname(7), named(8)

 R. Gilligan, S. Thomson, J. Bound, and W. Stevens, Basic Socket Interface
 Extensions for IPv6, RFC2553, March 1999.

 Tatsuya Jinmei and Atsushi Onoe, An Extension of Format for IPv6 Scoped
 Addresses, internet draft, draft-ietf-ipngwg-scopedaddr-format-02.txt,
 work in progress material.

 Craig Metz, "Protocol Independence Using the Sockets API", Proceedings of
 the freenix track: 2000 USENIX annual technical conference, June 2000.

HISTORY
 The implementation first appeared in WIDE Hydrangea IPv6 protocol stack
 kit.

STANDARDS
 The getaddrinfo() function is defined in IEEE POSIX 1003.1g draft speci-
 fication, and documented in ``Basic Socket Interface Extensions for
 IPv6'' (RFC2553).

BUGS
 The text was shamelessly copied from RFC2553.

BSD May 25, 1995 BSD

gethostbyname
GETHOSTBYNAME(3) BSD Library Functions Manual GETHOSTBYNAME(3)

NAME
 gethostbyname, gethostbyname2, gethostbyaddr, gethostent, sethostent,
 endhostent, hstrerror, herror -- get network host entry

SYNOPSIS
 #include <netdb.h>
 extern int h_errno;

 struct hostent *
 gethostbyname(const char *name);

 struct hostent *
 gethostbyname2(const char *name, int af);

 struct hostent *
 gethostbyaddr(const char *addr, int len, int af);

 struct hostent *
 gethostent(void);

 void
 sethostent(int stayopen);

 void
 endhostent(void);

 void
 herror(const char *string);

 const char *
 hstrerror(int err);

DESCRIPTION
 The gethostbyname() and gethostbyaddr() functions each return a pointer
 to an object with the following structure describing an internet host
 referenced by name or by address, respectively. This structure contains
 either information obtained from the name server (i.e., resolver(3) and

803

TCP/IP Library Reference

 named(8)), broken-out fields from a line in /etc/hosts, or database
 entries supplied by the yp(8) system. resolv.conf(5) describes how the
 particular database is chosen.

 struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses from name server */
 };
 #define h_addr h_addr_list[0] /* address, for backward compatibility */

 The members of this structure are:

 h_name Official name of the host.

 h_aliases A zero-terminated array of alternate names for the host.

 h_addrtype The type of address being returned.

 h_length The length, in bytes, of the address.

 h_addr_list A zero-terminated array of network addresses for the host.
 Host addresses are returned in network byte order.

 h_addr The first address in h_addr_list; this is for backward com-
 patibility.

 The function gethostbyname() will search for the named host in the cur-
 rent domain and its parents using the search lookup semantics detailed in
 resolv.conf(5) and hostname(7).

 gethostbyname2() is an advanced form of gethostbyname() which allows
 lookups in address families other than AF_INET, for example AF_INET6.

 The gethostbyaddr() function will search for the specified address of
 length len in the address family af. The only address family currently
 supported is AF_INET.

 The sethostent() function may be used to request the use of a connected
 TCP socket for queries. If the stayopen flag is non-zero, this sets the
 option to send all queries to the name server using TCP and to retain the
 connection after each call to gethostbyname() or gethostbyaddr(). Other-
 wise, queries are performed using UDP datagrams.

 The endhostent() function closes the TCP connection.

 The herror() function prints an error message describing the failure. If
 its argument string is non-null, it is prepended to the message string
 and separated from it by a colon (`:') and a space. The error message is
 printed with a trailing newline. The contents of the error message is
 the same as that returned by hstrerror() with argument h_errno.

FILES
 /etc/hosts
 /etc/resolv.conf

DIAGNOSTICS
 Error return status from gethostbyname(), gethostbyname2(), and
 gethostbyaddr() is indicated by return of a null pointer. The external
 integer h_errno may then be checked to see whether this is a temporary
 failure or an invalid or unknown host.

 The variable h_errno can have the following values:

 HOST_NOT_FOUND No such host is known.

 TRY_AGAIN This is usually a temporary error and means that the
 local server did not receive a response from an authori-
 tative server. A retry at some later time may succeed.

804

TCP/IP Library Reference

 NO_RECOVERY Some unexpected server failure was encountered. This is
 a non-recoverable error.

 NO_DATA The requested name is valid but does not have an IP
 address; this is not a temporary error. This means that
 the name is known to the name server but there is no
 address associated with this name. Another type of
 request to the name server using this domain name will
 result in an answer; for example, a mail-forwarder may be
 registered for this domain.

SEE ALSO
 resolver(3), getaddrinfo(3), getnameinfo(3), hosts(5), resolv.conf(5),
 hostname(7), named(8)

CAVEAT
 If the search routines in resolv.conf(5) decide to read the /etc/hosts
 file, gethostent() and other functions will read the next line of the
 file, re-opening the file if necessary.

 The sethostent() function opens and/or rewinds the file /etc/hosts. If
 the stayopen argument is non-zero, the file will not be closed after each
 call to gethostbyname(), gethostbyname2(), or gethostbyaddr().

 The endhostent() function closes the file.

HISTORY
 The herror() function appeared in 4.3BSD. The endhostent(),
 gethostbyaddr(), gethostbyname(), gethostent(), and sethostent() func-
 tions appeared in 4.2BSD.

BUGS
 These functions use static data storage; if the data is needed for future
 use, it should be copied before any subsequent calls overwrite it. Only
 the Internet address formats are currently understood.

 YP does not support any address families other than AF_INET and uses the
 traditional database format.

BSD March 13, 1997 BSD

getifaddrs
GETIFADDRS(3) BSD Library Functions Manual GETIFADDRS(3)

NAME
 getifaddrs -- get interface addresses

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <ifaddrs.h>

 int
 getifaddrs(struct ifaddrs **ifap);

 void
 freeifaddrs(struct ifaddrs *ifap);

DESCRIPTION
 The getifaddrs() function stores a reference to a linked list of the net-
 work interfaces on the local machine in the memory referenced by ifap.
 The list consists of ifaddrs structures, as defined in the include file
 <ifaddrs.h>. The ifaddrs structure contains at least the following
 entries:

 struct ifaddrs *ifa_next; /* Pointer to next struct */
 char *ifa_name; /* Interface name */
 u_int ifa_flags; /* Interface flags */
 struct sockaddr *ifa_addr; /* Interface address */
 struct sockaddr *ifa_netmask; /* Interface netmask */

805

TCP/IP Library Reference

 struct sockaddr *ifa_broadaddr; /* Interface broadcast address */
 struct sockaddr *ifa_dstaddr; /* P2P interface destination */
 void *ifa_data; /* Address specific data */

 ifa_next
 Contains a pointer to the next structure on the list. This field
 is set to NULL in last structure on the list.

 ifa_name
 Contains the interface name.

 ifa_flags
 Contains the interface flags, as set by ifconfig(8).

 ifa_addr
 References either the address of the interface or the link level
 address of the interface, if one exists, otherwise it is NULL.
 (The sa_family field of the ifa_addr field should be consulted to
 determine the format of the ifa_addr address.)

 ifa_netmask
 References the netmask associated with ifa_addr, if one is set,
 otherwise it is NULL.

 ifa_broadaddr
 This field, which should only be referenced for non-P2P inter-
 faces, references the broadcast address associated with ifa_addr,
 if one exists, otherwise it is NULL.

 ifa_dstaddr
 References the destination address on a P2P interface, if one
 exists, otherwise it is NULL.

 ifa_data
 References address family specific data. For AF_LINK addresses
 it contains a pointer to the struct if_data (as defined in
 include file <net/if.h>) which contains various interface
 attributes and statistics. For all other address families, it
 contains a pointer to the struct ifa_data (as defined in include
 file <net/if.h>) which contains per-address interface statistics.

 The data returned by getifaddrs() is dynamically allocated and should be
 freed using freeifaddrs() when no longer needed.

RETURN VALUES
 Upon successful completion, a value of 0 is returned. Otherwise, a value
 of -1 is returned and errno is set to indicate the error.

ERRORS
 The getifaddrs() may fail and set errno for any of the errors specified
 for the library routines ioctl(2), socket(2), malloc(3), or sysctl(3).

BUGS
 If both <net/if.h> and <ifaddrs.h> are being included, <net/if.h> must be
 included before <ifaddrs.h>.

SEE ALSO
 ioctl(2), socket(2), sysctl(3), networking(4), ifconfig(8)

HISTORY
 The getifaddrs() function first appeared in BSDI BSD/OS. The function is
 supplied on OpenBSD since OpenBSD 2.7.

 September 3, 2013

getnameinfo
GETNAMEINFO(3) BSD Library Functions Manual GETNAMEINFO(3)

NAME
 getnameinfo -- address-to-nodename translation in protocol-independent

806

TCP/IP Library Reference

 manner

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <netdb.h>

 int
 getnameinfo(const struct sockaddr *sa, socklen_t salen, char *host,
 size_t hostlen, char *serv, size_t servlen, int flags);

DESCRIPTION
 The getnameinfo() function is defined for protocol-independent address-
 to-nodename translation. Its functionality is a reverse conversion of
 getaddrinfo(3), and implements similar functionality with
 gethostbyaddr(3) and getservbyport(3) in more sophisticated manner.

 This function looks up an IP address and port number provided by the
 caller in the DNS and system-specific database, and returns text strings
 for both in buffers provided by the caller. The function indicates suc-
 cessful completion by a zero return value; a non-zero return value indi-
 cates failure.

 The first argument, sa, points to either a sockaddr_in structure (for
 IPv4) or a sockaddr_in6 structure (for IPv6) that holds the IP address
 and port number. The salen argument gives the length of the sockaddr_in
 or sockaddr_in6 structure.

 The function returns the nodename associated with the IP address in the
 buffer pointed to by the host argument. The caller provides the size of
 this buffer via the hostlen argument. The service name associated with
 the port number is returned in the buffer pointed to by serv, and the
 servlen argument gives the length of this buffer. The caller specifies
 not to return either string by providing a zero value for the hostlen or
 servlen arguments. Otherwise, the caller must provide buffers large
 enough to hold the nodename and the service name, including the terminat-
 ing null characters.

 Unfortunately most systems do not provide constants that specify the max-
 imum size of either a fully-qualified domain name or a service name.
 Therefore to aid the application in allocating buffers for these two
 returned strings the following constants are defined in <netdb.h>:

 #define NI_MAXHOST MAXHOSTNAMELEN
 #define NI_MAXSERV 32

 The first value is actually defined as the constant MAXDNAME in recent
 versions of BIND's <arpa/nameser.h> header (older versions of BIND define
 this constant to be 256) and the second is a guess based on the services
 listed in the current Assigned Numbers RFC.

 The final argument is a flag that changes the default actions of this
 function. By default the fully-qualified domain name (FQDN) for the host
 is looked up in the DNS and returned. If the flag bit NI_NOFQDN is set,
 only the nodename portion of the FQDN is returned for local hosts.

 If the flag bit NI_NUMERICHOST is set, or if the host's name cannot be
 located in the DNS, the numeric form of the host's address is returned
 instead of its name (e.g., by calling inet_ntop() instead of
 gethostbyaddr()). If the flag bit NI_NAMEREQD is set, an error is
 returned if the host's name cannot be located in the DNS.

 If the flag bit NI_NUMERICSERV is set, the numeric form of the service
 address is returned (e.g., its port number) instead of its name. The two
 NI_NUMERICxxx flags are required to support the -n flag that many com-
 mands provide.

 A fifth flag bit, NI_DGRAM, specifies that the service is a datagram ser-
 vice, and causes getservbyport() to be called with a second argument of
 "udp" instead of its default of "tcp". This is required for the few
 ports (512-514) that have different services for UDP and TCP.

807

TCP/IP Library Reference

 These NI_xxx flags are defined in <netdb.h>.

 Extension for scoped IPv6 address
 The implementation allows experimental numeric IPv6 address notation with
 scope identifier. IPv6 link-local address will appear as string like
 ``fe80::1%ne0'', if NI_WITHSCOPEID bit is enabled in flags argument.
 Refer to getaddrinfo(3) for the notation.

EXAMPLES
 The following code tries to get numeric hostname, and service name, for
 given socket address. Observe that there is no hardcoded reference to
 particular address family.

 struct sockaddr *sa; /* input */
 char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

 if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), sbuf,
 sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV)) {
 errx(1, "could not get numeric hostname");
 /*NOTREACHED*/
 }
 printf("host=%s, serv=%s\n", hbuf, sbuf);

 The following version checks if the socket address has reverse address
 mapping.

 struct sockaddr *sa; /* input */
 char hbuf[NI_MAXHOST];

 if (getnameinfo(sa, sa->sa_len, hbuf, sizeof(hbuf), NULL, 0,
 NI_NAMEREQD)) {
 errx(1, "could not resolve hostname");
 /*NOTREACHED*/
 }
 printf("host=%s\n", hbuf);

DIAGNOSTICS
 The function indicates successful completion by a zero return value; a
 non-zero return value indicates failure. Error codes are as below:

 EAI_AGAIN The name could not be resolved at this time. Future
 attempts may succeed.

 EAI_BADFLAGS The flags had an invalid value.

 EAI_FAIL A non-recoverable error occurred.

 EAI_FAMILY The address family was not recognized or the address
 length was invalid for the specified family.

 EAI_MEMORY There was a memory allocation failure.

 EAI_NONAME The name does not resolve for the supplied parameters.
 NI_NAMEREQD is set and the host's name cannot be
 located, or both nodename and servname were null.

 EAI_SYSTEM A system error occurred. The error code can be found
 in errno.

SEE ALSO
 getaddrinfo(3), gethostbyaddr(3), getservbyport(3), hosts(5),
 resolv.conf(5), services(5), hostname(7), named(8)

 R. Gilligan, S. Thomson, J. Bound, and W. Stevens, Basic Socket Interface
 Extensions for IPv6, RFC2553, March 1999.

 Tatsuya Jinmei and Atsushi Onoe, An Extension of Format for IPv6 Scoped
 Addresses, internet draft, draft-ietf-ipngwg-scopedaddr-format-02.txt,
 work in progress material.

 Craig Metz, "Protocol Independence Using the Sockets API", Proceedings of
 the freenix track: 2000 USENIX annual technical conference, June 2000.

808

TCP/IP Library Reference

HISTORY
 The implementation first appeared in WIDE Hydrangea IPv6 protocol stack
 kit.

STANDARDS
 The getaddrinfo() function is defined IEEE POSIX 1003.1g draft specifica-
 tion, and documented in ``Basic Socket Interface Extensions for IPv6''
 (RFC2553).

BUGS
 The current implementation is not thread-safe.

 The text was shamelessly copied from RFC2553.

 OpenBSD intentionally uses different NI_MAXHOST value from what RFC2553
 suggests, to avoid buffer length handling mistakes.

BSD May 25, 1995 BSD

getnetent
GETNETENT(3) BSD Library Functions Manual GETNETENT(3)

NAME
 getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent -- get net-
 work entry

SYNOPSIS
 #include <netdb.h>

 struct netent *
 getnetent(void);

 struct netent *
 getnetbyname(char *name);

 struct netent *
 getnetbyaddr(in_addr_t net, int type);

 void
 setnetent(int stayopen);

 void
 endnetent(void);

DESCRIPTION
 The getnetent(), getnetbyname(), and getnetbyaddr() functions each return
 a pointer to an object with the following structure containing the bro-
 ken-out fields of a line in the network database, /etc/networks.

 struct netent {
 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net number type */
 in_addr_t n_net; /* net number */
 };

 The members of this structure are:

 n_name The official name of the network.

 n_aliases A zero-terminated list of alternate names for the network.

 n_addrtype The type of the network number returned; currently only
 AF_INET.

 n_net The network number. Network numbers are returned in machine
 byte order.

 The getnetent() function reads the next line of the file, opening the

809

TCP/IP Library Reference

 file if necessary.

 The setnetent() function opens and rewinds the file. If the stayopen
 flag is non-zero, the net database will not be closed after each call to
 getnetbyname() or getnetbyaddr().

 The endnetent() function closes the file.

 The getnetbyname() and getnetbyaddr() functions search the domain name
 server if the system is configured to use one. If the search fails, or
 no name server is configured, they sequentially search from the beginning
 of the file until a matching net name or net address and type is found,
 or until EOF is encountered. Network numbers are supplied in host order.

FILES
 /etc/networks

DIAGNOSTICS
 Null pointer (0) returned on EOF or error.

SEE ALSO
 resolver(3), networks(5)

HISTORY
 The getnetent(), getnetbyaddr(), getnetbyname(), setnetent(), and
 endnetent() functions appeared in 4.2BSD.

BUGS
 The data space used by these functions is static; if future use requires
 the data, it should be copied before any subsequent calls to these func-
 tions overwrite it. Only Internet network numbers are currently under-
 stood. Expecting network numbers to fit in no more than 32 bits is
 naive.

BSD March 13, 1997 BSD

getprotoent
GETPROTOENT(3) BSD Library Functions Manual GETPROTOENT(3)

NAME
 getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent
 -- get protocol entry

SYNOPSIS
 #include <netdb.h>

 struct protoent *
 getprotoent(void);

 struct protoent *
 getprotobyname(char *name);

 struct protoent *
 getprotobynumber(int proto);

 void
 setprotoent(int stayopen);

 void
 endprotoent(void);

DESCRIPTION
 The getprotoent(), getprotobyname(), and getprotobynumber() functions
 each return a pointer to an object with the following structure contain-
 ing the broken-out fields of a line in the network protocol database,
 /etc/protocols.

 struct protoent {
 char *p_name; /* official name of protocol */

810

TCP/IP Library Reference

 char **p_aliases; /* alias list */
 int p_proto; /* protocol number */
 };

 The members of this structure are:

 p_name The official name of the protocol.

 p_aliases A zero-terminated list of alternate names for the protocol.

 p_proto The protocol number.

 The getprotoent() function reads the next line of the file, opening the
 file if necessary.

 The setprotoent() function opens and rewinds the file. If the stayopen
 flag is non-zero, the net database will not be closed after each call to
 getprotobyname() or getprotobynumber().

 The endprotoent() function closes the file.

 The getprotobyname() and getprotobynumber() functions sequentially search
 from the beginning of the file until a matching protocol name or protocol
 number is found, or until EOF is encountered.

RETURN VALUES
 Null pointer (0) returned on EOF or error.

FILES
 /etc/protocols

SEE ALSO
 protocols(5)

HISTORY
 The getprotoent(), getprotobynumber(), getprotobyname(), setprotoent(),
 and endprotoent() functions appeared in 4.2BSD.

BUGS
 These functions use a static data space; if the data is needed for future
 use, it should be copied before any subsequent calls overwrite it. Only
 the Internet protocols are currently understood.

BSD June 4, 1993 BSD

getrrsetbyname
GETRRSETBYNAME(3) BSD Library Functions Manual GETRRSETBYNAME(3)

NAME
 getrrsetbyname -- retrieve DNS records

SYNOPSIS
 #include <netdb.h>

 int
 getrrsetbyname(const char *hostname, unsigned int rdclass,
 unsigned int rdtype, unsigned int flags, struct rrsetinfo **res);

 int
 freerrset(struct rrsetinfo **rrset);

DESCRIPTION
 getrrsetbyname() gets a set of resource records associated with a
 hostname, class and type. hostname is a pointer a to null-terminated
 string. The flags field is currently unused and must be zero.

 After a successful call to getrrsetbyname(), *res is a pointer to an
 rrsetinfo structure, containing a list of one or more rdatainfo struc-
 tures containing resource records and potentially another list of
 rdatainfo structures containing SIG resource records associated with

811

TCP/IP Library Reference

 those records. The members rri_rdclass and rri_rdtype are copied from
 the parameters. rri_ttl and rri_name are properties of the obtained
 rrset. The resource records contained in rri_rdatas and rri_sigs are in
 uncompressed DNS wire format. Properties of the rdataset are represented
 in the rri_flags bitfield. If the RRSET_VALIDATED bit is set, the data
 has been DNSSEC validated and the signatures verified.

 The following structures are used:

 struct rdatainfo {
 unsigned int rdi_length; /* length of data */
 unsigned char *rdi_data; /* record data */
 };

 struct rrsetinfo {
 unsigned int rri_flags; /* RRSET_VALIDATED … */
 unsigned int rri_rdclass; /* class number */
 unsigned int rri_rdtype; /* RR type number */
 unsigned int rri_ttl; /* time to live */
 unsigned int rri_nrdatas; /* size of rdatas array */
 unsigned int rri_nsigs; /* size of sigs array */
 char *rri_name; /* canonical name */
 struct rdatainfo *rri_rdatas; /* individual records */
 struct rdatainfo *rri_sigs; /* individual signatures */
 };

 All of the information returned by getrrsetbyname() is dynamically allo-
 cated: the rrsetinfo and rdatainfo structures, and the canonical host
 name strings pointed to by the rrsetinfostructure. Memory allocated for
 the dynamically allocated structures created by a successful call to
 getrrsetbyname() is released by freerrset(). rrset is a pointer to a
 struct rrset created by a call to getrrsetbyname().

 If the EDNS0 option is activated in resolv.conf(3), getrrsetbyname() will
 request DNSSEC authentication using the EDNS0 DNSSEC OK (DO) bit.

RETURN VALUES
 getrrsetbyname() returns zero on success, and one of the following error
 codes if an error occurred:

 ERRSET_NONAME the name does not exist
 ERRSET_NODATA the name exists, but does not have data of the desired
 type
 ERRSET_NOMEMORY memory could not be allocated
 ERRSET_INVAL a parameter is invalid
 ERRSET_FAIL other failure

SEE ALSO
 resolver(3), resolv.conf(5), named(8)

AUTHORS
 Jakob Schlyter <jakob@openbsd.org>

HISTORY
 getrrsetbyname() first appeared in OpenBSD 3.0. The API first appeared
 in ISC BIND version 9.

BUGS
 The data in *rdi_data should be returned in uncompressed wire format.
 Currently, the data is in compressed format and the caller can't uncom-
 press since it doesn't have the full message.

CAVEATS
 The RRSET_VALIDATED flag in rri_flags is set if the AD (autenticated
 data) bit in the DNS answer is set. This flag should not be trusted
 unless the transport between the nameserver and the resolver is secure
 (e.g. IPsec, trusted network, loopback communication).

BSD Oct 18, 2000 BSD

812

TCP/IP Library Reference

getservent
GETSERVENT(3) BSD Library Functions Manual GETSERVENT(3)

NAME
 getservent, getservbyport, getservbyname, setservent, endservent -- get
 service entry

SYNOPSIS
 #include <netdb.h>

 struct servent *
 getservent(void);

 struct servent *
 getservbyname(char *name, char *proto);

 struct servent *
 getservbyport(int port, char *proto);

 void
 setservent(int stayopen);

 void
 endservent(void);

DESCRIPTION
 The getservent(), getservbyname(), and getservbyport() functions each
 return a pointer to an object with the following structure containing the
 broken-out fields of a line in the network services database,
 /etc/services.

 struct servent {
 char *s_name; /* official name of service */
 char **s_aliases; /* alias list */
 int s_port; /* port service resides at */
 char *s_proto; /* protocol to use */
 };

 The members of this structure are:

 s_name The official name of the service.

 s_aliases A zero-terminated list of alternate names for the service.

 s_port The port number at which the service resides. Port numbers
 are returned in network byte order.

 s_proto The name of the protocol to use when contacting the service.

 The getservent() function reads the next line of the file, opening the
 file if necessary.

 The setservent() function opens and rewinds the file. If the stayopen
 flag is non-zero, the net database will not be closed after each call to
 getservbyname() or getservbyport().

 The endservent() function closes the file.

 The getservbyname() and getservbyport() functions sequentially search
 from the beginning of the file until a matching protocol name or port
 number (specified in network byte order) is found, or until EOF is
 encountered. If a protocol name is also supplied (non-null), searches
 must also match the protocol.

FILES
 /etc/services

DIAGNOSTICS
 Null pointer (0) returned on EOF or error.

813

TCP/IP Library Reference

SEE ALSO
 getprotoent(3), services(5)

HISTORY
 The getservent(), getservbyport(), getservbyname(), setservent(), and
 endservent() functions appeared in 4.2BSD.

BUGS
 These functions use static data storage; if the data is needed for future
 use, it should be copied before any subsequent calls overwrite it.
 Expecting port numbers to fit in a 32-bit quantity is probably naive.

BSD January 12, 1994 BSD

if_nametoindex
IF_NAMETOINDEX(3) BSD Library Functions Manual IF_NAMETOINDEX(3)

NAME
 if_nametoindex, if_indextoname, if_nameindex, if_freenameindex -- convert
 interface index to name, and vice versa

SYNOPSIS
 #include <net/if.h>

 unsigned int
 if_nametoindex(const char *ifname);

 char *
 if_indextoname(unsigned int ifindex, char *ifname);

 struct if_nameindex *
 if_nameindex(void);

 void
 if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
 These functions map interface indexes to interface names (such as
 ``lo0''), and vice versa.

 The if_nametoindex() function converts an interface name specified by the
 ifname argument to an interface index (positive integer value). If the
 specified interface does not exist, 0 will be returned.

 if_indextoname() converts an interface index specified by the ifindex
 argument to an interface name. The ifname argument must point to a buf-
 fer of at least IF_NAMESIZE bytes into which the interface name corre-
 sponding to the specified index is returned. (IF_NAMESIZE is also
 defined in <net/if.h> and its value includes a terminating null byte at
 the end of the interface name.) This pointer is also the return value of
 the function. If there is no interface corresponding to the specified
 index, NULL is returned.

 if_nameindex() returns an array of if_nameindex structures.
 if_nametoindex is also defined in <net/if.h>, and is as follows:

 struct if_nameindex {
 unsigned int if_index; /* 1, 2, … */
 char *if_name; /* null terminated name: "le0", … */
 };

 The end of the array of structures is indicated by a structure with an
 if_index of 0 and an if_name of NULL. The function returns a null
 pointer on error. The memory used for this array of structures along
 with the interface names pointed to by the if_name members is obtained
 dynamically. This memory is freed by the if_freenameindex() function.

 if_freenameindex() takes a pointer that was returned by if_nameindex() as
 argument (ptr), and it reclaims the region allocated.

814

TCP/IP Library Reference

DIAGNOSTICS
 if_nametoindex() returns 0 on error, positive integer on success.
 if_indextoname() and if_nameindex() return NULL on errors.

SEE ALSO
 R. Gilligan, S. Thomson, J. Bound, and W. Stevens, ``Basic Socket Inter-
 face Extensions for IPv6,'' RFC2553, March 1999.

STANDARDS
 These functions are defined in ``Basic Socket Interface Extensions for
 IPv6'' (RFC2533).

BSD May 21, 1998 BSD

inet
INET(3) BSD Library Functions Manual INET(3)

NAME
 inet_addr, inet_aton, inet_lnaof, inet_makeaddr, inet_netof,
 inet_network, inet_ntoa, inet_ntop, inet_pton -- Internet address manipu-
 lation routines

SYNOPSIS
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 in_addr_t
 inet_addr(const char *cp);

 int
 inet_aton(const char *cp, struct in_addr *addr);

 in_addr_t
 inet_lnaof(struct in_addr in);

 struct in_addr
 inet_makeaddr(unsigned long net, unsigned long lna);

 in_addr_t
 inet_netof(struct in_addr in);

 in_addr_t
 inet_network(const char *cp);

 char *
 inet_ntoa(struct in_addr in);

 const char *
 inet_ntop(int af, const void *src, char *dst, size_t size);

 int
 inet_pton(int af, const char *src, void *dst);

DESCRIPTION
 The routines inet_aton(), inet_addr() and inet_network() interpret char-
 acter strings representing numbers expressed in the Internet standard `.'
 notation. The inet_pton() function converts a presentation format
 address (that is, printable form as held in a character string) to net-
 work format (usually a struct in_addr or some other internal binary rep-
 resentation, in network byte order). It returns 1 if the address was
 valid for the specified address family, or 0 if the address wasn't
 parseable in the specified address family, or -1 if some system error
 occurred (in which case errno will have been set). This function is
 presently valid for AF_INET and AF_INET6. The inet_aton() routine inter-
 prets the specified character string as an Internet address, placing the
 address into the structure provided. It returns 1 if the string was suc-
 cessfully interpreted, or 0 if the string was invalid. The inet_addr()
 and inet_network() functions return numbers suitable for use as Internet
 addresses and Internet network numbers, respectively.

815

TCP/IP Library Reference

 The function inet_ntop() converts an address from network format (usually
 a struct in_addr or some other binary form, in network byte order) to
 presentation format (suitable for external display purposes). It returns
 NULL if a system error occurs (in which case, errno will have been set),
 or it returns a pointer to the destination string. The routine
 inet_ntoa() takes an Internet address and returns an ASCII string repre-
 senting the address in `.' notation. The routine inet_makeaddr() takes
 an Internet network number and a local network address and constructs an
 Internet address from it. The routines inet_netof() and inet_lnaof()
 break apart Internet host addresses, returning the network number and
 local network address part, respectively.

 All Internet addresses are returned in network order (bytes ordered from
 left to right). All network numbers and local address parts are returned
 as machine format integer values.

INTERNET ADDRESSES (IP VERSION 4)
 Values specified using the `.' notation take one of the following forms:

 a.b.c.d
 a.b.c
 a.b
 a

 When four parts are specified, each is interpreted as a byte of data and
 assigned, from left to right, to the four bytes of an Internet address.
 Note that when an Internet address is viewed as a 32-bit integer quantity
 on a system that uses little-endian byte order (such as the Intel 386,
 486 and Pentium processors) the bytes referred to above appear as
 ``d.c.b.a''. That is, little-endian bytes are ordered from right to
 left.

 When a three part address is specified, the last part is interpreted as a
 16-bit quantity and placed in the rightmost two bytes of the network
 address. This makes the three part address format convenient for speci-
 fying Class B network addresses as ``128.net.host''.

 When a two part address is supplied, the last part is interpreted as a
 24-bit quantity and placed in the rightmost three bytes of the network
 address. This makes the two part address format convenient for specify-
 ing Class A network addresses as ``net.host''.

 When only one part is given, the value is stored directly in the network
 address without any byte rearrangement.

 All numbers supplied as ``parts'' in a `.' notation may be decimal,
 octal, or hexadecimal, as specified in the C language (i.e., a leading 0x
 or 0X implies hexadecimal; otherwise, a leading 0 implies octal; other-
 wise, the number is interpreted as decimal).

INTERNET ADDRESSES (IP VERSION 6)
 In order to support scoped IPv6 addresses, getaddrinfo(3) and
 getnameinfo(3) are recommended rather than the functions presented here.

 The presentation format of an IPv6 address is given in [RFC1884 2.2]:

 There are three conventional forms for representing IPv6 addresses as
 text strings:

 1. The preferred form is x:x:x:x:x:x:x:x, where the 'x's are the hexa-
 decimal values of the eight 16-bit pieces of the address. Examples:

 FEDC:BA98:7654:3210:FEDC:BA98:7654:3210
 1080:0:0:0:8:800:200C:417A

 Note that it is not necessary to write the leading zeros in an indi-
 vidual field, but there must be at least one numeral in every field
 (except for the case described in 2.).

 2. Due to the method of allocating certain styles of IPv6 addresses, it
 will be common for addresses to contain long strings of zero bits.

816

TCP/IP Library Reference

 In order to make writing addresses

 containing zero bits easier a special syntax is available to com-
 press the zeros. The use of ``::'' indicates multiple groups of 16
 bits of zeros. The ``::'' can only appear once in an address. The
 ``::'' can also be used to compress the leading and/or trailing
 zeros in an address.

 For example the following addresses:

 1080:0:0:0:8:800:200C:417A a unicast address
 FF01:0:0:0:0:0:0:43 a multicast address
 0:0:0:0:0:0:0:1 the loopback address
 0:0:0:0:0:0:0:0 the unspecified addresses

 may be represented as:

 1080::8:800:200C:417A a unicast address
 FF01::43 a multicast address
 ::1 the loopback address
 :: the unspecified addresses

 3. An alternative form that is sometimes more convenient when dealing
 with a mixed environment of IPv4 and IPv6 nodes is
 x:x:x:x:x:x:d.d.d.d, where the 'x's are the hexadecimal values of
 the six high-order 16-bit pieces of the address, and the 'd's are
 the decimal values of the four low-order 8-bit pieces of the address
 (standard IPv4 representation). Examples:

 0:0:0:0:0:0:13.1.68.3
 0:0:0:0:0:FFFF:129.144.52.38

 or in compressed form:

 ::13.1.68.3
 ::FFFF:129.144.52.38

DIAGNOSTICS
 The constant INADDR_NONE is returned by inet_addr() and inet_network()
 for malformed requests.

SEE ALSO
 byteorder(3), gethostbyname(3), getnetent(3), inet_net(3), hosts(5),
 networks(5)

STANDARDS
 The inet_ntop and inet_pton functions conforms to the IETF IPv6 BSD API
 and address formatting specifications. Note that inet_pton does not
 accept 1-, 2-, or 3-part dotted addresses; all four parts must be speci-
 fied. This is a narrower input set than that accepted by inet_aton.

HISTORY
 The inet_addr, inet_network, inet_makeaddr, inet_lnaof and inet_netof
 functions appeared in 4.2BSD. The inet_aton and inet_ntoa functions
 appeared in 4.3BSD. The inet_pton and inet_ntop functions appeared in
 BIND 4.9.4.

BUGS
 The value INADDR_NONE (0xffffffff) is a valid broadcast address, but
 inet_addr() cannot return that value without indicating failure. Also,
 inet_addr() should have been designed to return a struct in_addr. The
 newer inet_aton() function does not share these problems, and almost all
 existing code should be modified to use inet_aton() instead.

 The problem of host byte ordering versus network byte ordering is confus-
 ing.

 The string returned by inet_ntoa() resides in a static memory area.

BSD June 18, 1997 BSD

817

TCP/IP Library Reference

inet6_option_space
INET6_OPTION_SPACE(3) BSD Library Functions Manual INET6_OPTION_SPACE(3)

NAME
 inet6_option_space, inet6_option_init, inet6_option_append,
 inet6_option_alloc, inet6_option_next, inet6_option_find -- IPv6 Hop-by-
 Hop and Destination Options manipulation

SYNOPSIS
 #include <netinet/in.h>

 int
 inet6_option_space(int nbytes);

 int
 inet6_option_init(void *bp, struct cmsghdr **cmsgp, int type);

 int
 inet6_option_append(struct cmsghdr *cmsg, const u_int8_t *typep,
 int multx, int plusy);

 u_int8_t *
 inet6_option_alloc(struct cmsghdr *cmsg, int datalen, int multx,
 int plusy);;

 int
 inet6_option_next(const struct cmsghdr *cmsg, u_int8_t **tptrp);

 int
 inet6_option_find(const struct cmsghdr *cmsg, u_int8_t **tptrp,
 int type);

DESCRIPTION
 Building and parsing the Hop-by-Hop and Destination options is compli-
 cated due to alignment constranints, padding and ancillary data manipula-
 tion. RFC2292 defines a set of functions to help the application. The
 function prototypes for these functions are all in the <netinet/in.h>
 header.

 inet6_option_space
 inet6_option_space() returns the number of bytes required to hold an
 option when it is stored as ancillary data, including the cmsghdr struc-
 ture at the beginning, and any padding at the end (to make its size a
 multiple of 8 bytes). The argument is the size of the structure defining
 the option, which must include any pad bytes at the beginning (the value
 y in the alignment term ``xn + y''), the type byte, the length byte, and
 the option data.

 Note: If multiple options are stored in a single ancillary data object,
 which is the recommended technique, this function overestimates the
 amount of space required by the size of N-1 cmsghdr structures, where N
 is the number of options to be stored in the object. This is of little
 consequence, since it is assumed that most Hop-by-Hop option headers and
 Destination option headers carry only one option (appendix B of
 [RFC-2460]).

 inet6_option_init
 inet6_option_init() is called once per ancillary data object that will
 contain either Hop-by-Hop or Destination options. It returns 0 on suc-
 cess or -1 on an error.

 bp is a pointer to previously allocated space that will contain the
 ancillary data object. It must be large enough to contain all the indi-
 vidual options to be added by later calls to inet6_option_append() and
 inet6_option_alloc().

 cmsgp is a pointer to a pointer to a cmsghdr structure. *cmsgp is ini-
 tialized by this function to point to the cmsghdr structure constructed
 by this function in the buffer pointed to by bp.

818

TCP/IP Library Reference

 type is either IPV6_HOPOPTS or IPV6_DSTOPTS. This type is stored in the
 cmsg_type member of the cmsghdr structure pointed to by *cmsgp.

 inet6_option_append
 This function appends a Hop-by-Hop option or a Destination option into an
 ancillary data object that has been initialized by inet6_option_init().
 This function returns 0 if it succeeds or -1 on an error.

 cmsg is a pointer to the cmsghdr structure that must have been initial-
 ized by inet6_option_init().

 typep is a pointer to the 8-bit option type. It is assumed that this
 field is immediately followed by the 8-bit option data length field,
 which is then followed immediately by the option data. The caller ini-
 tializes these three fields (the type-length-value, or TLV) before call-
 ing this function.

 The option type must have a value from 2 to 255, inclusive. (0 and 1 are
 reserved for the Pad1 and PadN options, respectively.)

 The option data length must have a value between 0 and 255, inclusive,
 and is the length of the option data that follows.

 multx is the value x in the alignment term ``xn + y''. It must have a
 value of 1, 2, 4, or 8.

 plusy is the value y in the alignment term ``xn + y''. It must have a
 value between 0 and 7, inclusive.

 inet6_option_alloc
 This function appends a Hop-by-Hop option or a Destination option into an
 ancillary data object that has been initialized by inet6_option_init().
 This function returns a pointer to the 8-bit option type field that
 starts the option on success, or NULL on an error.

 The difference between this function and inet6_option_append() is that
 the latter copies the contents of a previously built option into the
 ancillary data object while the current function returns a pointer to the
 space in the data object where the option's TLV must then be built by the
 caller.

 cmsg is a pointer to the cmsghdr structure that must have been initial-
 ized by inet6_option_init().

 datalen is the value of the option data length byte for this option.
 This value is required as an argument to allow the function to determine
 if padding must be appended at the end of the option. (The
 inet6_option_append() function does not need a data length argument since
 the option data length must already be stored by the caller.)

 multx is the value x in the alignment term ``xn + y''. It must have a
 value of 1, 2, 4, or 8.

 plusy is the value y in the alignment term ``xn + y''. It must have a
 value between 0 and 7, inclusive.

 inet6_option_next
 This function processes the next Hop-by-Hop option or Destination option
 in an ancillary data object. If another option remains to be processed,
 the return value of the function is 0 and *tptrp points to the 8-bit
 option type field (which is followed by the 8-bit option data length,
 followed by the option data). If no more options remain to be processed,
 the return value is -1 and *tptrp is NULL. If an error occurs, the
 return value is -1 and *tptrp is not NULL.

 cmsg is a pointer to cmsghdr structure of which cmsg_level equals
 IPPROTO_IPV6 and cmsg_type equals either IPV6_HOPOPTS or IPV6_DSTOPTS.

 tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used by
 the function to remember its place in the ancillary data object each time
 the function is called. The first time this function is called for a
 given ancillary data object, *tptrp must be set to NULL.

819

TCP/IP Library Reference

 Each time this function returns success, *tptrp points to the 8-bit
 option type field for the next option to be processed.

 inet6_option_find
 This function is similar to the previously described inet6_option_next()
 function, except this function lets the caller specify the option type to
 be searched for, instead of always returning the next option in the
 ancillary data object. cmsg is a pointer to cmsghdr structure of which
 cmsg_level equals IPPROTO_IPV6 and cmsg_type equals either IPV6_HOPOPTS
 or IPV6_DSTOPTS.

 tptrp is a pointer to a pointer to an 8-bit byte and *tptrp is used by
 the function to remember its place in the ancillary data object each time
 the function is called. The first time this function is called for a
 given ancillary data object, *tptrp must be set to NULL. ~ This function
 starts searching for an option of the specified type beginning after the
 value of *tptrp. If an option of the specified type is located, this
 function returns 0 and *tptrp points to the 8- bit option type field for
 the option of the specified type. If an option of the specified type is
 not located, the return value is -1 and *tptrp is NULL. If an error
 occurs, the return value is -1 and *tptrp is not NULL.

DIAGNOSTICS
 inet6_option_init() and inet6_option_append() return 0 on success or -1
 on an error.

 inet6_option_alloc() returns NULL on an error.

 On errors, inet6_option_next() and inet6_option_find() return -1 setting
 *tptrp to non NULL value.

EXAMPLES
 RFC2292 gives comprehensive examples in chapter 6.

SEE ALSO
 W. Stevens and M. Thomas, Advanced Sockets API for IPv6, RFC2292,
 February 1998.

 S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
 Specification, RFC2460, December 1998.

HISTORY
 The implementation first appeared in KAME advanced networking kit.

STANDARDS
 The functions are documented in ``Advanced Sockets API for IPv6''
 (RFC2292).

BUGS
 The text was shamelessly copied from RFC2292.

BSD December 10, 1999 BSD

inet6_rthdr_space
INET6_RTHDR_SPACE(3) BSD Library Functions Manual INET6_RTHDR_SPACE(3)

NAME
 inet6_rthdr_space, inet6_rthdr_init, inet6_rthdr_add,
 inet6_rthdr_lasthop, inet6_rthdr_reverse, inet6_rthdr_segments,
 inet6_rthdr_getaddr, inet6_rthdr_getflags -- IPv6 Routing Header Options
 manipulation

SYNOPSIS
 #include <netinet/in.h>

 size_t
 inet6_rthdr_space(int type, int segments);

 struct cmsghdr *

820

TCP/IP Library Reference

 inet6_rthdr_init(void *bp, int type);

 int
 inet6_rthdr_add(struct cmsghdr *cmsg, const struct in6_addr *addr,
 unsigned int flags);

 int
 inet6_rthdr_lasthop(struct cmsghdr *cmsg, unsigned int flags);

 int
 inet6_rthdr_reverse(const struct cmsghdr *in, struct cmsghdr *out);

 int
 inet6_rthdr_segments(const struct cmsghdr *cmsg);

 struct in6_addr *
 inet6_rthdr_getaddr(struct cmsghdr *cmsg, int index);

 int
 inet6_rthdr_getflags(const struct cmsghdr *cmsg, int index);

DESCRIPTION
 RFC2292 IPv6 advanced API defines eight functions that the application
 calls to build and examine a Routing header. Four functions build a
 Routing header:

 inet6_rthdr_space() return #bytes required for ancillary data

 inet6_rthdr_init() initialize ancillary data for Routing header

 inet6_rthdr_add() add IPv6 address & flags to Routing header

 inet6_rthdr_lasthop() specify the flags for the final hop

 Four functions deal with a returned Routing header:

 inet6_rthdr_reverse() reverse a Routing header

 inet6_rthdr_segments() return #segments in a Routing header

 inet6_rthdr_getaddr() fetch one address from a Routing header

 inet6_rthdr_getflags() fetch one flag from a Routing header

 The function prototypes for these functions are all in the <netinet/in.h>
 header.

 inet6_rthdr_space
 This function returns the number of bytes required to hold a Routing
 header of the specified type containing the specified number of segments
 (addresses). For an IPv6 Type 0 Routing header, the number of segments
 must be between 1 and 23, inclusive. The return value includes the size
 of the cmsghdr structure that precedes the Routing header, and any
 required padding.

 If the return value is 0, then either the type of the Routing header is
 not supported by this implementation or the number of segments is invalid
 for this type of Routing header.

 Note: This function returns the size but does not allocate the space
 required for the ancillary data. This allows an application to allocate
 a larger buffer, if other ancillary data objects are desired, since all
 the ancillary data objects must be specified to sendmsg(2) as a single
 msg_control buffer.

 inet6_rthdr_init
 This function initializes the buffer pointed to by bp to contain a
 cmsghdr structure followed by a Routing header of the specified type.
 The cmsg_len member of the cmsghdr structure is initialized to the size
 of the structure plus the amount of space required by the Routing header.
 The cmsg_level and cmsg_type members are also initialized as required.

821

TCP/IP Library Reference

 The caller must allocate the buffer and its size can be determined by
 calling inet6_rthdr_space().

 Upon success the return value is the pointer to the cmsghdr structure,
 and this is then used as the first argument to the next two functions.
 Upon an error the return value is NULL.

 inet6_rthdr_add
 This function adds the address pointed to by addr to the end of the Rout-
 ing header being constructed and sets the type of this hop to the value
 of flags. For an IPv6 Type 0 Routing header, flags must be either
 IPV6_RTHDR_LOOSE or IPV6_RTHDR_STRICT.

 If successful, the cmsg_len member of the cmsghdr structure is updated to
 account for the new address in the Routing header and the return value of
 the function is 0. Upon an error the return value of the function is -1.

 inet6_rthdr_lasthop
 This function specifies the Strict/Loose flag for the final hop of a
 Routing header. For an IPv6 Type 0 Routing header, flags must be either
 IPV6_RTHDR_LOOSE or IPV6_RTHDR_STRICT.

 The return value of the function is 0 upon success, or -1 upon an error.

 Notice that a Routing header specifying N intermediate nodes requires N+1
 Strict/Loose flags. This requires N calls to inet6_rthdr_add() followed
 by one call to inet6_rthdr_lasthop().

 inet6_rthdr_reverse
 This function takes a Routing header that was received as ancillary data
 (pointed to by the first argument, in) and writes a new Routing header
 that sends datagrams along the reverse of that route. Both arguments are
 allowed to point to the same buffer (that is, the reversal can occur in
 place).

 The return value of the function is 0 on success, or -1 upon an error.

 inet6_rthdr_segments
 This function returns the number of segments (addresses) contained in the
 Routing header described by cmsg. On success the return value is between
 1 and 23, inclusive. The return value of the function is -1 upon an
 error.

 inet6_rthdr_getaddr
 This function returns a pointer to the IPv6 address specified by index
 (which must have a value between 1 and the value returned by
 inet6_rthdr_segments()) in the Routing header described by cmsg. An
 application should first call inet6_rthdr_segments() to obtain the number
 of segments in the Routing header.

 Upon an error the return value of the function is NULL.

 inet6_rthdr_getflags
 This function returns the flags value specified by index (which must have
 a value between 0 and the value returned by inet6_rthdr_segments()) in
 the Routing header described by cmsg. For an IPv6 Type 0 Routing header
 the return value will be either IPV6_RTHDR_LOOSE or IPV6_RTHDR_STRICT.

 Upon an error the return value of the function is -1.

 Note: Addresses are indexed starting at 1, and flags starting at 0, to
 maintain consistency with the terminology and figures in RFC2460.

DIAGNOSTICS
 inet6_rthdr_space() returns 0 on errors.

 inet6_rthdr_add(), inet6_rthdr_lasthop() and inet6_rthdr_reverse() return
 0 on success, and returns -1 on error.

 inet6_rthdr_init() and inet6_rthdr_getaddr() return NULL on error.

 inet6_rthdr_segments() and inet6_rthdr_getflags() return -1 on error.

822

TCP/IP Library Reference

EXAMPLES
 RFC2292 gives comprehensive examples in chapter 8.

SEE ALSO
 W. Stevens and M. Thomas, Advanced Sockets API for IPv6, RFC2292,
 February 1998.

 S. Deering and R. Hinden, Internet Protocol, Version 6 (IPv6)
 Specification, RFC2460, December 1998.

HISTORY
 The implementation first appeared in KAME advanced networking kit.

STANDARDS
 The functions are documented in ``Advanced Sockets API for IPv6''
 (RFC2292).

BUGS
 The text was shamelessly copied from RFC2292.

 inet6_rthdr_reverse() is not implemented yet.

BSD December 10, 1999 BSD

inet_net
INET_NET(3) BSD Library Functions Manual INET_NET(3)

NAME
 inet_net_ntop, inet_net_pton -- Internet network number manipulation rou-
 tines

SYNOPSIS
 #include <sys/socket.h>
 #include <netinet/in.h>
 #include <arpa/inet.h>

 char *
 inet_net_ntop(int af, const void *src, int bits, char *dst, size_t size);

 int
 inet_net_pton(int af, const char *src, void *dst, size_t size);

DESCRIPTION
 The inet_net_ntop() function converts an Internet network number from
 network format (usually a struct in_addr or some other binary form, in
 network byte order) to CIDR presentation format (suitable for external
 display purposes). bits is the number of bits in src that are the net-
 work number. It returns NULL if a system error occurs (in which case,
 errno will have been set), or it returns a pointer to the destination
 string.

 The inet_net_pton() function converts a presentation format Internet net-
 work number (that is, printable form as held in a character string) to
 network format (usually a struct in_addr or some other internal binary
 representation, in network byte order). It returns the number of bits
 (either computed based on the class, or specified with /CIDR), or -1 if a
 failure occurred (in which case errno will have been set. It will be set
 to ENOENT if the Internet network number was not valid).

 The only value for af currently supported is AF_INET. size is the size
 of the result buffer dst.

NETWORK NUMBERS (IP VERSION 4)
 Internet network numbers may be specified in one of the following forms:

 a.b.c.d/bits
 a.b.c.d
 a.b.c
 a.b

823

TCP/IP Library Reference

 a

 When four parts are specified, each is interpreted as a byte of data and
 assigned, from left to right, to the four bytes of an Internet network
 number. Note that when an Internet network number is viewed as a 32-bit
 integer quantity on a system that uses little-endian byte order (such as
 the Intel 386, 486, and Pentium processors) the bytes referred to above
 appear as ``d.c.b.a''. That is, little-endian bytes are ordered from
 right to left.

 When a three part number is specified, the last part is interpreted as a
 16-bit quantity and placed in the rightmost two bytes of the Internet
 network number. This makes the three part number format convenient for
 specifying Class B network numbers as ``128.net.host''.

 When a two part number is supplied, the last part is interpreted as a
 24-bit quantity and placed in the rightmost three bytes of the Internet
 network number. This makes the two part number format convenient for
 specifying Class A network numbers as ``net.host''.

 When only one part is given, the value is stored directly in the Internet
 network number without any byte rearrangement.

 All numbers supplied as ``parts'' in a `.' notation may be decimal,
 octal, or hexadecimal, as specified in the C language (i.e., a leading 0x
 or 0X implies hexadecimal; otherwise, a leading 0 implies octal; other-
 wise, the number is interpreted as decimal).

SEE ALSO
 byteorder(3), inet(3), networks(5)

HISTORY
 The inet_net_ntop and inet_net_pton functions first appeared in BIND
 4.9.4.

BSD June 18, 1997 BSD

ipx
IPX(3) BSD Library Functions Manual IPX(3)

NAME
 ipx_addr, ipx_ntoa -- IPX address conversion routines

SYNOPSIS
 #include <sys/types.h>
 #include <netipx/ipx.h>

 struct ipx_addr
 ipx_addr(const char *cp);

 char *
 ipx_ntoa(struct ipx_addr ipx);

DESCRIPTION
 The routine ipx_addr() interprets character strings representing IPX
 addresses, returning binary information suitable for use in system calls.
 The routine ipx_ntoa() takes IPX addresses and returns ASCII strings rep-
 resenting the address in a notation in common use:

 <network number>.<host number>.<port number>

 Trailing zero fields are suppressed, and each number is printed in hexa-
 decimal, in a format suitable for input to ipx_addr(). Any fields lack-
 ing super-decimal digits will have a trailing `H' appended.

 An effort has been made to ensure that ipx_addr() be compatible with most
 formats in common use. It will first separate an address into 1 to 3
 fields using a single delimiter chosen from period (`.'), colon (`:'), or
 pound-sign (`#'). Each field is then examined for byte separators (colon
 or period). If there are byte separators, each subfield separated is

824

TCP/IP Library Reference

 taken to be a small hexadecimal number, and the entirety is taken as a
 network-byte-ordered quantity to be zero extended in the high-network-
 order bytes. Next, the field is inspected for hyphens, in which case the
 field is assumed to be a number in decimal notation with hyphens separat-
 ing the millenia. Next, the field is assumed to be a number: It is
 interpreted as hexadecimal if there is a leading `0x' (as in C), a trail-
 ing `H' (as in Mesa), or there are any super-decimal digits present. It
 is interpreted as octal is there is a leading `0' and there are no super-
 octal digits. Otherwise, it is converted as a decimal number.

RETURN VALUES
 None. (See BUGS.)

SEE ALSO
 ns(4), hosts(5), networks(5)

HISTORY
 The precursor ns_addr() and ns_ntoa() functions appeared in 4.3BSD.

BUGS
 The string returned by ipx_ntoa() resides in a static memory area. The
 function ipx_addr() should diagnose improperly formed input, and there
 should be an unambiguous way to recognize this.

BSD June 4, 1993 BSD

iso_addr
ISO_ADDR(3) BSD Library Functions Manual ISO_ADDR(3)

NAME
 iso_addr, iso_ntoa -- network address conversion routines for Open System
 Interconnection

SYNOPSIS
 #include <sys/types.h>
 #include <netiso/iso.h>

 struct iso_addr *
 iso_addr(char *cp);

 char *
 iso_ntoa(struct iso_addr *isoa);

DESCRIPTION
 The routine iso_addr() interprets character strings representing OSI
 addresses, returning binary information suitable for use in system calls.
 The routine iso_ntoa() takes OSI addresses and returns ASCII strings rep-
 resenting NSAPs (network service access points) in a notation inverse to
 that accepted by iso_addr().

 Unfortunately, no universal standard exists for representing OSI network
 addresses.

 The format employed by iso_addr() is a sequence of hexadecimal ``digits''
 (optionally separated by periods), of the form:

 <hex digits>.<hex digits>.<hex digits>

 Each pair of hexadecimal digits represents a byte with the leading digit
 indicating the higher-ordered bits. A period following an even number of
 bytes has no effect (but may be used to increase legibility). A period
 following an odd number of bytes has the effect of causing the byte of
 address being translated to have its higher order bits filled with zeros.

RETURN VALUES
 iso_ntoa() always returns a null terminated string. iso_addr() always
 returns a pointer to a struct iso_addr. (See BUGS.)

SEE ALSO
 iso(4)

825

TCP/IP Library Reference

HISTORY
 The iso_addr() and iso_ntoa() functions appeared in 4.3BSD-Reno.

BUGS
 The returned values reside in a static memory area.

 The function iso_addr() should diagnose improperly formed input, and
 there should be an unambiguous way to recognize this.

BSD June 4, 1993 BSD

link_addr
LINK_ADDR(3) BSD Library Functions Manual LINK_ADDR(3)

NAME
 link_addr, link_ntoa -- elementary address specification routines for
 link level access

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>
 #include <net/if_dl.h>

 void
 link_addr(const char *addr, struct sockaddr_dl *sdl);

 char *
 link_ntoa(const struct sockaddr_dl *sdl);

DESCRIPTION
 The link_addr() function interprets character strings representing link-
 level addresses, returning binary information suitable for use in system
 calls. link_ntoa() takes a link-level address and returns an ASCII
 string representing some of the information present, including the link
 level address itself, and the interface name or number, if present. This
 facility is experimental and is still subject to change.

 For link_addr(), the string addr may contain an optional network inter-
 face identifier of the form ``name unit-number'', suitable for the first
 argument to ifconfig(8), followed in all cases by a colon and an inter-
 face address in the form of groups of hexadecimal digits separated by
 periods. Each group represents a byte of address; address bytes are
 filled left to right from low order bytes through high order bytes.

 Thus le0:8.0.9.13.d.30 represents an Ethernet address to be transmitted
 on the first Lance Ethernet interface.

RETURN VALUES
 link_ntoa() always returns a null-terminated string. link_addr() has no
 return value. (See BUGS.)

SEE ALSO
 iso(4), ifconfig(8)

HISTORY
 The link_addr() and link_ntoa() functions appeared in 4.3BSD-Reno.

BUGS
 The returned values for link_ntoa reside in a static memory area.

 The function link_addr() should diagnose improperly formed input, and
 there should be an unambiguous way to recognize this.

 If the sdl_len field of the link socket address sdl is 0, link_ntoa()
 will not insert a colon before the interface address bytes. If this
 translated address is given to link_addr() without inserting an initial
 colon, the latter will not interpret it correctly.

BSD July 28, 1993 BSD

826

TCP/IP Library Reference

net_addrcmp
NET_ADDRCMP(3) BSD Library Functions Manual NET_ADDRCMP(3)

NAME
 net_addrcmp -- compare socket address structures

SYNOPSIS
 #include <netdb.h>

 int
 net_addrcmp(struct sockaddr *sa1, struct sockaddr *sa2);

DESCRIPTION
 The net_addrcmp() function compares two socket address structures, sa1
 and sa2.

RETURN VALUES
 If sa1 and sa2 are for the same address, net_addrcmp() returns 0.

 The sa_len fields are compared first. If they do not match,
 net_addrcmp() returns -1 or 1 if sa1->sa_len is less than or greater than
 sa2->sa_len, respectively.

 Next, the sa_family members are compared. If they do not match,
 net_addrcmp() returns -1 or 1 if sa1->sa_family is less than or greater
 than sa2->sa_family, respectively.

 Lastly, if each socket address structure's sa_len and sa_family fields
 match, the protocol-specific data (the sa_data field) is compared. If
 there's a match, both sa1 and sa2 must refer to the same address, and 0
 is returned; otherwise, a value >0 or <0 is returned.

HISTORY
 A net_addrcmp() function was added in OpenBSD 2.5.

BSD July 3, 1999 BSD

ns
NS(3) BSD Library Functions Manual NS(3)

NAME
 ns_addr, ns_ntoa -- Xerox NS(tm) address conversion routines

SYNOPSIS
 #include <sys/types.h>
 #include <netns/ns.h>

 struct ns_addr
 ns_addr(char *cp);

 char *
 ns_ntoa(struct ns_addr ns);

DESCRIPTION
 The routine ns_addr() interprets character strings representing XNS
 addresses, returning binary information suitable for use in system calls.
 The routine ns_ntoa() takes XNS addresses and returns ASCII strings rep-
 resenting the address in a notation in common use in the Xerox Develop-
 ment Environment:

 <network number>.<host number>.<port number>

 Trailing zero fields are suppressed, and each number is printed in hexa-
 decimal, in a format suitable for input to ns_addr(). Any fields lacking
 super-decimal digits will have a trailing `H' appended.

 Unfortunately, no universal standard exists for representing XNS
 addresses. An effort has been made to ensure that ns_addr() be compati-

827

TCP/IP Library Reference

 ble with most formats in common use. It will first separate an address
 into 1 to 3 fields using a single delimiter chosen from period (`.'),
 colon (`:'), or pound-sign `#'. Each field is then examined for byte
 separators (colon or period). If there are byte separators, each sub-
 field separated is taken to be a small hexadecimal number, and the
 entirety is taken as a network-byte-ordered quantity to be zero extended
 in the high-network-order bytes. Next, the field is inspected for
 hyphens, in which case the field is assumed to be a number in decimal
 notation with hyphens separating the millenia. Next, the field is
 assumed to be a number: It is interpreted as hexadecimal if there is a
 leading `0x' (as in C), a trailing `H' (as in Mesa), or there are any
 super-decimal digits present. It is interpreted as octal is there is a
 leading `0' and there are no super-octal digits. Otherwise, it is con-
 verted as a decimal number.

RETURN VALUES
 None. (See BUGS.)

SEE ALSO
 hosts(5), networks(5)

HISTORY
 The ns_addr() and ns_toa() functions appeared in 4.3BSD.

BUGS
 The string returned by ns_ntoa() resides in a static memory area. The
 function ns_addr() should diagnose improperly formed input, and there
 should be an unambiguous way to recognize this.

BSD June 4, 1993 BSD

resolver
RESOLVER(3) BSD Library Functions Manual RESOLVER(3)

NAME
 res_query, res_search, res_mkquery, res_send, res_init, dn_comp,
 dn_expand -- resolver routines

SYNOPSIS
 #include <sys/types.h>
 #include <netinet/in.h>
 #include <arpa/nameser.h>
 #include <resolv.h>

 int
 res_query(char *dname, int class, int type, u_char *answer, int anslen);

 int
 res_search(char *dname, int class, int type, u_char *answer, int anslen);

 int
 res_mkquery(int op, char *dname, int class, int type, char *data,
 int datalen, struct rrec *newrr, char *buf, int buflen);

 int
 res_send(char *msg, int msglen, char *answer, int anslen);

 int
 res_init(void);

 int
 dn_comp(char *exp_dn, char *comp_dn, int length, char **dnptrs,
 char **lastdnptr);

 int
 dn_expand(u_char *msg, u_char *eomorig, u_char *comp_dn, u_char *exp_dn,
 int length);

DESCRIPTION
 These routines are used for making, sending, and interpreting query and

828

TCP/IP Library Reference

 reply messages with Internet domain name servers.

 Global configuration and state information that is used by the resolver
 routines is kept in the structure _res. Most of the values have reason-
 able defaults and can be ignored. Options stored in _res.options are
 defined in <resolv.h> and are as follows. Options are stored as a simple
 bit mask containing the bitwise OR of the options enabled.

 RES_INIT True if the initial name server address and default domain
 name are initialized (i.e., res_init() has been called).

 RES_DEBUG Print debugging messages.

 RES_AAONLY Accept authoritative answers only. With this option,
 res_send() should continue until it finds an authoritative
 answer or finds an error. Currently this is not imple-
 mented.

 RES_USEVC Use TCP connections for queries instead of UDP datagrams.

 RES_STAYOPEN Used with RES_USEVC to keep the TCP connection open
 between queries. This is useful only in programs that
 regularly do many queries. UDP should be the normal mode
 used.

 RES_IGNTC Unused currently (ignore truncation errors, i.e., don't
 retry with TCP).

 RES_RECURSE Set the recursion-desired bit in queries. This is the
 default. (res_send() does not do iterative queries and
 expects the name server to handle recursion.)

 RES_DEFNAMES If set, res_search() will append the default domain name
 to single-component names (those that do not contain a
 dot). This option is enabled by default.

 RES_DNSRCH If this option is set, res_search() will search for host
 names in the current domain and in parent domains; see
 hostname(7). This is used by the standard host lookup
 routine gethostbyname(3). This option is enabled by
 default.

 RES_USE_INET6 Enables support for IPv6-only applications. This causes
 IPv4 addresses to be returned as an IPv4 mapped address.
 For example, 10.1.1.1 will be returned as ::ffff:10.1.1.1.
 The option is not meaningful on OpenBSD.

 The res_init() routine reads the configuration file (if any; see
 resolv.conf(5)) to get the default domain name, search list, and the
 Internet address of the local name server(s). If no server is config-
 ured, the host running the resolver is tried. The current domain name is
 defined by the hostname if not specified in the configuration file; it
 can be overridden by the environment variable LOCALDOMAIN. This environ-
 ment variable may contain several blank-separated tokens if you wish to
 override the search list on a per-process basis. This is similar to the
 search command in the configuration file. Another environment variable
 RES_OPTIONS can be set to override certain internal resolver options
 which are otherwise set by changing fields in the _res structure or are
 inherited from the configuration file's options command. The syntax of
 the RES_OPTIONS environment variable is explained in resolv.conf(5).
 Initialization normally occurs on the first call to one of the following
 routines.

 The res_query() function provides an interface to the server query mecha-
 nism. It constructs a query, sends it to the local server, awaits a
 response, and makes preliminary checks on the reply. The query requests
 information of the specified type and class for the specified fully qual-
 ified domain name dname. The reply message is left in the answer buffer
 with length anslen supplied by the caller.

 The res_search() routine makes a query and awaits a response like
 res_query(), but in addition, it implements the default and search rules

829

TCP/IP Library Reference

 controlled by the RES_DEFNAMES and RES_DNSRCH options. It returns the
 first successful reply.

 The remaining routines are lower-level routines used by res_query(). The
 res_mkquery() function constructs a standard query message and places it
 in buf. It returns the size of the query, or -1 if the query is larger
 than buflen. The query type op is usually QUERY, but can be any of the
 query types defined in <arpa/nameser.h>. The domain name for the query
 is given by dname. newrr is currently unused but is intended for making
 update messages.

 The res_send() routine sends a pre-formatted query and returns an answer.
 It will call res_init() if RES_INIT is not set, send the query to the
 local name server, and handle timeouts and retries. The length of the
 reply message is returned, or -1 if there were errors.

 The dn_comp() function compresses the domain name exp_dn and stores it in
 comp_dn. The size of the compressed name is returned or -1 if there were
 errors. The size of the array pointed to by comp_dn is given by length.
 The compression uses an array of pointers dnptrs to previously compressed
 names in the current message. The first pointer points to the beginning
 of the message and the list ends with NULL. The limit to the array is
 specified by lastdnptr. A side effect of dn_comp() is to update the list
 of pointers for labels inserted into the message as the name is com-
 pressed. If dnptr is NULL, names are not compressed. If lastdnptr is
 NULL, the list of labels is not updated.

 The dn_expand() entry expands the compressed domain name comp_dn to a
 full domain name The compressed name is contained in a query or reply
 message; msg is a pointer to the beginning of the message. The uncom-
 pressed name is placed in the buffer indicated by exp_dn which is of size
 length. The size of compressed name is returned or -1 if there was an
 error.

FILES
 /etc/resolv.conf configuration file see resolv.conf(5).

SEE ALSO
 gethostbyname(3), resolv.conf(5), hostname(7), named(8)

 RFC1032, RFC1033, RFC1034, RFC1035, RFC1535, RFC974

 Name Server Operations Guide for BIND.

HISTORY
 The res_query function appeared in 4.3BSD.

BSD June 4, 1993 BSD

accept
ACCEPT(2) BSD System Calls Manual ACCEPT(2)

NAME
 accept -- accept a connection on a socket

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 accept(int s, struct sockaddr *addr, socklen_t *addrlen);

DESCRIPTION
 The argument s is a socket that has been created with socket(2), bound to
 an address with bind(2), and is listening for connections after a
 listen(2). The accept() argument extracts the first connection request
 on the queue of pending connections, creates a new socket with the same
 properties of s, and allocates a new file descriptor for the socket. If
 no pending connections are present on the queue, and the socket is not
 marked as non-blocking, accept() blocks the caller until a connection is

830

TCP/IP Library Reference

 present. If the socket is marked non-blocking and no pending connections
 are present on the queue, accept() returns an error as described below.
 The accepted socket may not be used to accept more connections. The
 original socket s remains open.

 The argument addr is a result parameter that is filled in with the
 address of the connecting entity as known to the communications layer.
 The exact format of the addr parameter is determined by the domain in
 which the communication is occurring. The addrlen is a value-result
 parameter; it should initially contain the amount of space pointed to by
 addr; on return it will contain the actual length (in bytes) of the
 address returned. This call is used with connection-based socket types,
 currently with SOCK_STREAM.

 It is possible to select(2) or poll(2) a socket for the purposes of doing
 an accept() by selecting it for read.

 For certain protocols which require an explicit confirmation, such as ISO
 or DATAKIT, accept() can be thought of as merely dequeuing the next con-
 nection request and not implying confirmation. Confirmation can be
 implied by a normal read or write on the new file descriptor, and rejec-
 tion can be implied by closing the new socket.

 One can obtain user connection request data without confirming the con-
 nection by issuing a recvmsg(2) call with an msg_iovlen of 0 and a non-
 zero msg_controllen, or by issuing a getsockopt(2) request. Similarly,
 one can provide user connection rejection information by issuing a
 sendmsg(2) call with providing only the control information, or by call-
 ing setsockopt(2).

RETURN VALUES
 The call returns -1 on error. If it succeeds, it returns a non-negative
 integer that is a descriptor for the accepted socket.

ERRORS
 The accept() will fail if:

 [EBADF] The descriptor is invalid.

 [ENOTSOCK] The descriptor references a file, not a socket.

 [EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.

 [EINVAL] The referenced socket is not listening for connections
 (that is, listen(2) has not yet been called).

 [EFAULT] The addr parameter is not in a writable part of the
 user address space.

 [EWOULDBLOCK] The socket is marked non-blocking and no connections
 are present to be accepted.

 [EMFILE] The per-process descriptor table is full.

 [ENFILE] The system file table is full.

 [ECONNABORTED] A connection has been aborted.

SEE ALSO
 bind(2), connect(2), listen(2), poll(2), select(2), poll(2), socket(2)

HISTORY
 The accept() function appeared in 4.2BSD.

BSD February 15, 1999 BSD

bind
BIND(2) BSD System Calls Manual BIND(2)

NAME

831

TCP/IP Library Reference

 bind -- bind a name to a socket

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 bind(int s, const struct sockaddr *name, socklen_t namelen);

DESCRIPTION
 bind() assigns a name to an unnamed socket. When a socket is created
 with socket(2) it exists in a name space (address family) but has no name
 assigned. bind() requests that name be assigned to the socket.

NOTES
 Binding a name in the UNIX domain creates a socket in the file system
 that must be deleted by the caller when it is no longer needed (using
 unlink(2)).

 The rules used in name binding vary between communication domains. Con-
 sult the manual entries in section 4 for detailed information.

RETURN VALUES
 If the bind is successful, a 0 value is returned. A return value of -1
 indicates an error, which is further specified in the global errno.

ERRORS
 The bind() call will fail if:

 [EBADF] S is not a valid descriptor.

 [ENOTSOCK] S is not a socket.

 [EADDRNOTAVAIL] The specified address is not available from the local
 machine.

 [EADDRINUSE] The specified address is already in use.

 [EINVAL] The socket is already bound to an address.

 [EINVAL] The family of the socket and that requested in
 name->sa_family are not equivalent.

 [EACCES] The requested address is protected, and the current
 user has inadequate permission to access it.

 [EFAULT] The name parameter is not in a valid part of the user
 address space.

 The following errors are specific to binding names in the UNIX domain.

 [ENOTDIR] A component of the path prefix is not a directory.

 [ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} charac-
 ters, or an entire path name exceeded {PATH_MAX} char-
 acters.

 [ENOENT] A prefix component of the path name does not exist.

 [ELOOP] Too many symbolic links were encountered in translat-
 ing the pathname.

 [EIO] An I/O error occurred while making the directory entry
 or allocating the inode.

 [EROFS] The name would reside on a read-only file system.

 [EISDIR] An empty pathname was specified.

SEE ALSO
 connect(2), getsockname(2), listen(2), socket(2)

832

TCP/IP Library Reference

HISTORY
 The bind() function call appeared in 4.2BSD.

BSD February 15, 1999 BSD

connect
CONNECT(2) BSD System Calls Manual CONNECT(2)

NAME
 connect -- initiate a connection on a socket

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 connect(int s, const struct sockaddr *name, socklen_t namelen);

DESCRIPTION
 The parameter s is a socket. If it is of type SOCK_DGRAM, this call
 specifies the peer with which the socket is to be associated; this
 address is that to which datagrams are to be sent, and the only address
 from which datagrams are to be received. If the socket is of type
 SOCK_STREAM, this call attempts to make a connection to another socket.
 The other socket is specified by name, which is an address in the commu-
 nications space of the socket. Each communications space interprets the
 name parameter in its own way. Generally, stream sockets may success-
 fully connect() only once; datagram sockets may use connect() multiple
 times to change their association. Datagram sockets may dissolve the
 association by connecting to an invalid address, such as a null address.

RETURN VALUES
 If the connection or binding succeeds, 0 is returned. Otherwise a -1 is
 returned, and a more specific error code is stored in errno.

ERRORS
 The connect() call fails if:

 [EBADF] S is not a valid descriptor.

 [ENOTSOCK] S is a descriptor for a file, not a socket.

 [EADDRNOTAVAIL] The specified address is not available on this
 machine.

 [EAFNOSUPPORT] Addresses in the specified address family cannot be
 used with this socket.

 [EISCONN] The socket is already connected.

 [ETIMEDOUT] Connection establishment timed out without establish-
 ing a connection.

 [EINVAL] A TCP connection with a local broadcast, the all-ones
 or a multicast address as the peer was attempted.

 [ECONNREFUSED] The attempt to connect was forcefully rejected.

 [EINTR] A connect was interrupted before it succeeded by the
 delivery of a signal.

 [ENETUNREACH] The network isn't reachable from this host.

 [EADDRINUSE] The address is already in use.

 [EFAULT] The name parameter specifies an area outside the
 process address space.

 [EINPROGRESS] The socket is non-blocking and the connection cannot
 be completed immediately. It is possible to select(2)

833

TCP/IP Library Reference

 or poll(2) for completion by selecting the socket for
 writing, and also use getsockopt(2) with SO_ERROR to
 check for error conditions.

 [EALREADY] The socket is non-blocking and a previous connection
 attempt has not yet been completed.

 The following errors are specific to connecting names in the UNIX domain.
 These errors may not apply in future versions of the UNIX IPC domain.

 [ENOTDIR] A component of the path prefix is not a directory.

 [ENAMETOOLONG] A component of a pathname exceeded {NAME_MAX} charac-
 ters, or an entire path name exceeded {PATH_MAX} char-
 acters.

 [ENOENT] The named socket does not exist.

 [EACCES] Search permission is denied for a component of the
 path prefix.

 [EACCES] Write access to the named socket is denied.

 [ELOOP] Too many symbolic links were encountered in translat-
 ing the pathname.

SEE ALSO
 accept(2), getsockname(2), getsockopt(2), poll(2), select(2), socket(2)

HISTORY
 The connect() function call appeared in 4.2BSD.

BSD February 15, 1999 BSD

getpeername
GETPEERNAME(2) BSD System Calls Manual GETPEERNAME(2)

NAME
 getpeername -- get name of connected peer

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 getpeername(int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION
 getpeername() returns the address information of the peer connected to
 socket s. One common use occurs when a process inherits an open socket,
 such as TCP servers forked from inetd(8). In this scenario,
 getpeername() is used to determine the connecting client's IP address.

 getpeername() takes three parameters:

 s Contains the file descriptor of the socket whose peer should be looked
 up.

 name Points to a sockaddr structure that will hold the address informa-
 tion for the connected peer. Normal use requires one to use a structure
 specific to the protocol family in use, such as sockaddr_in (IPv4) or
 sockaddr_in6 (IPv6), cast to a (struct sockaddr *).

 For greater portability, especially with the newer protocol families, the
 new struct sockaddr_storage should be used. sockaddr_storage is large
 enough to hold any of the other sockaddr_* variants. On return, it can
 be cast to the correct sockaddr type, based the protocol family contained
 in its ss_family field.

 namelen Indicates the amount of space pointed to by name, in bytes.

834

TCP/IP Library Reference

 If address information for the local end of the socket is required, the
 getsockname(2) function should be used instead.

 If name does not point to enough space to hold the entire socket address,
 the result will be truncated to namelen bytes.

RETURN VALUES
 If the call succeeds, a 0 is returned and namelen is set to the actual
 size of the socket address returned in name. Otherwise, errno is set and
 a value of -1 is returned.

ERRORS
 On failure, errno is set to one of the following:

 [EBADF] The argument s is not a valid descriptor.

 [ENOTSOCK] The argument s is a file, not a socket.

 [ENOTCONN] The socket is not connected.

 [ENOBUFS] Insufficient resources were available in the system to
 perform the operation.

 [EFAULT] The name parameter points to memory not in a valid
 part of the process address space.

SEE ALSO
 accept(2), bind(2), getsockname(2), getpeereid(2), socket(2)

HISTORY
 The getpeername() function call appeared in 4.2BSD.

BSD July 17, 1999 BSD

getsockname
GETSOCKNAME(2) BSD System Calls Manual GETSOCKNAME(2)

NAME
 getsockname -- get socket name

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 getsockname(int s, struct sockaddr *name, socklen_t *namelen);

DESCRIPTION
 getsockname() returns the locally bound address information for a speci-
 fied socket.

 Common uses of this function are as follows:

 + When bind(2) is called with a port number of 0 (indicating the kernel
 should pick an ephemeral port) getsockname() is used to retrieve the
 kernel-assigned port number.

 + When a process calls bind(2) on a wildcard IP address, getsockname()
 is used to retrieve the local IP address for the connection.

 + When a function wishes to know the address family of a socket,
 getsockname() can be used.

 getsockname() takes three parameters:

 s, Contains the file desriptor for the socket to be looked up.

 name points to a sockaddr structure which will hold the resulting address
 information. Normal use requires one to use a structure specific to the

835

TCP/IP Library Reference

 protocol family in use, such as sockaddr_in (IPv4) or sockaddr_in6
 (IPv6), cast to a (struct sockaddr *).

 For greater portability (such as newer protocol families) the new struc-
 ture sockaddr_storage exists. sockaddr_storage is large enough to hold
 any of the other sockaddr_* variants. On return, it should be cast to
 the correct sockaddr type, according to the current protocol family.

 namelen Indicates the amount of space pointed to by name, in bytes. Upon
 return, namelen is set to the actual size of the returned address infor-
 mation.

 If the address of the destination socket for a given socket connection is
 needed, the getpeername(2) function should be used instead.

 If name does not point to enough space to hold the entire socket address,
 the result will be truncated to namelen bytes.

RETURN VALUES
 On success, getsockname() returns a 0, and namelen is set to the actual
 size of the socket address returned in name. Otherwise, errno is set,
 and a value of -1 is returned.

ERRORS
 If getsockname() fails, errno is set to one of the following:

 [EBADF] The argument s is not a valid descriptor.

 [ENOTSOCK] The argument s is a file, not a socket.

 [ENOBUFS] Insufficient resources were available in the system to
 perform the operation.

 [EFAULT] The name parameter points to memory not in a valid
 part of the process address space.

SEE ALSO
 accept(2), bind(2), getpeername(2), getpeereid(2), socket(2)

BUGS
 Names bound to sockets in the UNIX domain are inaccessible; getsockname
 returns a zero length name.

HISTORY
 The getsockname() function call appeared in 4.2BSD.

BSD July 17, 1999 BSD

getsockopt
GETSOCKOPT(2) BSD System Calls Manual GETSOCKOPT(2)

NAME
 getsockopt, setsockopt -- get and set options on sockets

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 getsockopt(int s, int level, int optname, void *optval,
 socklen_t *optlen);

 int
 setsockopt(int s, int level, int optname, const void *optval,
 socklen_t optlen);

DESCRIPTION
 getsockopt() and setsockopt() manipulate the options associated with a
 socket. Options may exist at multiple protocol levels; they are always
 present at the uppermost ``socket'' level.

836

TCP/IP Library Reference

 When manipulating socket options the level at which the option resides
 and the name of the option must be specified. To manipulate options at
 the socket level, level is specified as SOL_SOCKET. To manipulate
 options at any other level the protocol number of the appropriate proto-
 col controlling the option is supplied. For example, to indicate that an
 option is to be interpreted by the TCP protocol, level should be set to
 the protocol number of TCP; see getprotoent(3).

 The parameters optval and optlen are used to access option values for
 setsockopt(). For getsockopt() they identify a buffer in which the value
 for the requested option(s) are to be returned. For getsockopt(), optlen
 is a value-result parameter, initially containing the size of the buffer
 pointed to by optval, and modified on return to indicate the actual size
 of the value returned. If no option value is to be supplied or returned,
 optval may be NULL.

 optname and any specified options are passed uninterpreted to the appro-
 priate protocol module for interpretation. The include file
 <sys/socket.h> contains definitions for socket level options, described
 below. Options at other protocol levels vary in format and name; consult
 the appropriate entries in section 4 of the manual.

 Most socket-level options utilize an int parameter for optval. For
 setsockopt(), the parameter should be non-zero to enable a boolean
 option, or zero if the option is to be disabled. SO_LINGER uses a struct
 linger parameter, defined in <sys/socket.h>, which specifies the desired
 state of the option and the linger interval (see below). SO_SNDTIMEO and
 SO_RCVTIMEO use a struct timeval parameter, defined in <sys/time.h>.

 The following options are recognized at the socket level. Except as
 noted, each may be examined with getsockopt() and set with setsockopt().

 SO_DEBUG enables recording of debugging information
 SO_REUSEADDR enables local address reuse
 SO_REUSEPORT enables duplicate address and port bindings
 SO_KEEPALIVE enables keep connections alive
 SO_DONTROUTE enables routing bypass for outgoing messages
 SO_LINGER linger on close if data present
 SO_BROADCAST enables permission to transmit broadcast messages
 SO_OOBINLINE enables reception of out-of-band data in band
 SO_SNDBUF set buffer size for output
 SO_RCVBUF set buffer size for input
 SO_SNDLOWAT set minimum count for output
 SO_RCVLOWAT set minimum count for input
 SO_SNDTIMEO set timeout value for output
 SO_RCVTIMEO set timeout value for input
 SO_TYPE get the type of the socket (get only)
 SO_ERROR get and clear error on the socket (get only)

 SO_DEBUG enables debugging in the underlying protocol modules.
 SO_REUSEADDR indicates that the rules used in validating addresses sup-
 plied in a bind(2) call should allow reuse of local addresses.
 SO_REUSEPORT allows completely duplicate bindings by multiple processes
 if they all set SO_REUSEPORT before binding the port. This option per-
 mits multiple instances of a program to each receive UDP/IP multicast or
 broadcast datagrams destined for the bound port. SO_KEEPALIVE enables
 the periodic transmission of messages on a connected socket. Should the
 connected party fail to respond to these messages, the connection is con-
 sidered broken and processes using the socket are notified via a SIGPIPE
 signal when attempting to send data. SO_DONTROUTE indicates that outgo-
 ing messages should bypass the standard routing facilities. Instead,
 messages are directed to the appropriate network interface according to
 the network portion of the destination address.

 SO_LINGER controls the action taken when unsent messages are queued on
 socket and a close(2) is performed. If the socket promises reliable
 delivery of data and SO_LINGER is set, the system will block the process
 on the close(2) attempt until it is able to transmit the data or until it
 decides it is unable to deliver the information (a timeout period mea-
 sured in seconds, termed the linger interval, is specified in the
 setsockopt() call when SO_LINGER is requested). If SO_LINGER is disabled

837

TCP/IP Library Reference

 and a close(2) is issued, the system will process the close in a manner
 that allows the process to continue as quickly as possible.

 The option SO_BROADCAST requests permission to send broadcast datagrams
 on the socket. Broadcast was a privileged operation in earlier versions
 of the system. With protocols that support out-of-band data, the
 SO_OOBINLINE option requests that out-of-band data be placed in the nor-
 mal data input queue as received; it will then be accessible with recv(2)
 or read(2) calls without the MSG_OOB flag. Some protocols always behave
 as if this option is set. SO_SNDBUF and SO_RCVBUF are options to adjust
 the normal buffer sizes allocated for output and input buffers, respec-
 tively. The buffer size may be increased for high-volume connections, or
 may be decreased to limit the possible backlog of incoming data. The
 system places an absolute limit on these values.

 SO_SNDLOWAT is an option to set the minimum count for output operations.
 Most output operations process all of the data supplied by the call,
 delivering data to the protocol for transmission and blocking as neces-
 sary for flow control. Nonblocking output operations will process as
 much data as permitted subject to flow control without blocking, but will
 process no data if flow control does not allow the smaller of the low
 water mark value or the entire request to be processed. A select(2) or
 poll(2) operation testing the ability to write to a socket will return
 true only if the low water mark amount could be processed. The default
 value for SO_SNDLOWAT is set to a convenient size for network efficiency,
 often 1024. SO_RCVLOWAT is an option to set the minimum count for input
 operations. In general, receive calls will block until any (non-zero)
 amount of data is received, then return with the smaller of the amount
 available or the amount requested. The default value for SO_RCVLOWAT is
 1. If SO_RCVLOWAT is set to a larger value, blocking receive calls nor-
 mally wait until they have received the smaller of the low water mark
 value or the requested amount. Receive calls may still return less than
 the low water mark if an error occurs, a signal is caught, or the type of
 data next in the receive queue is different than that returned.

 SO_SNDTIMEO is an option to set a timeout value for output operations.
 It accepts a struct timeval parameter with the number of seconds and
 microseconds used to limit waits for output operations to complete. If a
 send operation has blocked for this much time, it returns with a partial
 count or with the error EWOULDBLOCK if no data was sent. In the current
 implementation, this timer is restarted each time additional data are
 delivered to the protocol, implying that the limit applies to output por-
 tions ranging in size from the low water mark to the high water mark for
 output. SO_RCVTIMEO is an option to set a timeout value for input opera-
 tions. It accepts a struct timeval parameter with the number of seconds
 and microseconds used to limit waits for input operations to complete.
 In the current implementation, this timer is restarted each time addi-
 tional data are received by the protocol, and thus the limit is in effect
 an inactivity timer. If a receive operation has been blocked for this
 much time without receiving additional data, it returns with a short
 count or with the error EWOULDBLOCK if no data were received.

 Finally, SO_TYPE and SO_ERROR are options used only with getsockopt().
 SO_TYPE returns the type of the socket, such as SOCK_STREAM; it is useful
 for servers that inherit sockets on startup. SO_ERROR returns any pend-
 ing error on the socket and clears the error status. It may be used to
 check for asynchronous errors on connected datagram sockets or for other
 asynchronous errors.

RETURN VALUES
 A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
 The call succeeds unless:

 [EBADF] The argument s is not a valid descriptor.

 [ENOTSOCK] The argument s is a file, not a socket.

 [ENOPROTOOPT] The option is unknown at the level indicated.

 [EFAULT] The address pointed to by optval is not in a valid

838

TCP/IP Library Reference

 part of the process address space. For getsockopt(),
 this error may also be returned if optlen is not in a
 valid part of the process address space.

SEE ALSO
 connect(2), ioctl(2), poll(2), select(2), poll(2), socket(2),
 getprotoent(3), protocols(5)

BUGS
 Several of the socket options should be handled at lower levels of the
 system.

HISTORY
 The getsockopt() system call appeared in 4.2BSD.

BSD February 15, 1999 BSD

ioctl
IOCTL(2) BSD System Calls Manual IOCTL(2)

NAME
 ioctl -- control device

SYNOPSIS
 #include <sys/ioctl.h>

 int
 ioctl(int d, unsigned long request, …);

DESCRIPTION
 The ioctl() function manipulates the underlying device parameters of spe-
 cial files. In particular, many operating characteristics of character
 special files (e.g., terminals) may be controlled with ioctl() requests.

 The argument d must be an open file descriptor. The third argument is
 called arg and contains additional information needed by this device to
 perform the requested function. arg is either an int or a pointer to a
 device-specific data structure, depending upon the given request.

 An ioctl request has encoded in it whether the argument is an ``in''
 parameter or ``out'' parameter, and the size of the third argument (arg)
 in bytes. Macros and defines used in specifying an ioctl request are
 located in the file <sys/ioctl.h>.

RETURN VALUES
 If an error has occurred, a value of -1 is returned and errno is set to
 indicate the error.

ERRORS
 ioctl() will fail if:

 [EBADF] d is not a valid descriptor.

 [ENOTTY] d is not associated with a character special device.

 [ENOTTY] The specified request does not apply to the kind of
 object that the descriptor d references.

 [EINVAL] request or arg is not valid.

 [EFAULT] arg points outside the process's allocated address
 space.

SEE ALSO
 cdio(1), chio(1), mt(1), execve(2), fcntl(2), intro(4), tty(4)

HISTORY
 An ioctl() function call appeared in Version 7 AT&T UNIX.

BSD December 11, 1993 BSD

839

TCP/IP Library Reference

listen
LISTEN(2) BSD System Calls Manual LISTEN(2)

NAME
 listen -- listen for connections on a socket

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 listen(int s, int backlog);

DESCRIPTION
 To accept connections, a socket is first created with socket(2), a will-
 ingness to accept incoming connections and a queue limit for incoming
 connections are specified with listen(), and then the connections are
 accepted with accept(2). The listen() call applies only to sockets of
 type SOCK_STREAM or SOCK_SEQPACKET.

 The backlog parameter defines the maximum length the queue of pending
 connections may grow to. If a connection request arrives with the queue
 full the client may receive an error with an indication of ECONNREFUSED,
 or, if the underlying protocol supports retransmission, the request may
 be ignored so that retries may succeed.

RETURN VALUES
 A 0 return value indicates success; -1 indicates an error.

ERRORS
 listen() will fail if:

 [EBADF] The argument s is not a valid descriptor.

 [ENOTSOCK] The argument s is not a socket.

 [EOPNOTSUPP] The socket is not of a type that supports the opera-
 tion listen().

SEE ALSO
 accept(2), connect(2), socket(2)

HISTORY
 The listen() function call appeared in 4.2BSD.

BUGS
 The backlog is currently limited (silently) to 128.

BSD December 11, 1993 BSD

poll
POLL(2) BSD System Calls Manual POLL(2)

NAME
 poll -- synchronous I/O multiplexing

SYNOPSIS
 #include <poll.h>

 int
 poll(struct pollfd *fds, int nfds, int timeout);

DESCRIPTION
 poll() provides a mechanism for reporting I/O conditions across a set of
 file descriptors.

 The arguments are as follows:

840

TCP/IP Library Reference

 fds Points to an array of pollfd structures, which are defined as:

 struct pollfd {
 int fd;
 short events;
 short revents;
 };

 The fd member is an open file descriptor. The events and
 revents members are bitmasks of conditions to monitor and condi-
 tions found, respectively.

 nfds The number of pollfd structures in the array.

 timeout Maximum interval to wait for the poll to complete, in millisec-
 onds. If this value is 0, then poll() will return immediately.
 If this value is INFTIM (-1), poll() will block indefinitely
 until a condition is found.

 The calling process sets the events bitmask and poll() sets the revents
 bitmask. Each call to poll() resets the revents bitmask for accuracy.
 The condition flags in the bitmasks are defined as:

 POLLIN Data is available on the file descriptor for reading.

 POLLNORM Same as POLLIN.

 POLLPRI Same as POLLIN.

 POLLOUT Data can be written to the file descriptor without blocking.

 POLLERR This flag is not used in this implementation and is provided
 only for source code compatibility.

 POLLHUP The file descriptor was valid before the polling process and
 invalid after. Presumably, this means that the file descrip-
 tor was closed sometime during the poll.

 POLLNVAL The corresponding file descriptor is invalid.

 POLLRDNORM Same as POLLIN.

 POLLRDBAND Same as POLLIN.

 POLLWRNORM Same as POLLOUT.

 POLLWRBAND Same as POLLOUT.

 POLLMSG This flag is not used in this implementation and is provided
 only for source code compatibility.

 All flags except POLLIN, POLLOUT, and their synonyms are for use only in
 the revents member of the pollfd structure. An attempt to set any of
 these flags in the events member will generate an error condition.

 In addition to I/O multiplexing, poll() can be used to generate simple
 timeouts. This functionality may be achieved by passing a null pointer
 for fds.

WARNINGS
 The POLLHUP flag is only a close approximation and may not always be
 accurate.

RETURN VALUES
 Upon error, poll() returns a -1 and sets the global variable errno to
 indicate the error. If the timeout interval was reached before any
 events occurred, a 0 is returned. Otherwise, poll() returns the number
 of file descriptors for which revents is non-zero.

ERRORS
 poll() will fail if:

841

TCP/IP Library Reference

 [EINVAL] nfds was either a negative number or greater than the number
 of available file descriptors.

 [EINVAL] An invalid flags was set in the events member of the pollfd
 structure.

 [EINVAL] The timeout passed to poll() was too large.

 [EAGAIN] Resource allocation failed inside of poll(). Subsequent calls
 to poll() may succeed.

 [EINTR] poll() caught a signal during the polling process.

SEE ALSO
 poll(2), select(2), sysconf(3)

HISTORY
 A poll() system call appeared in AT&T System V UNIX.

BSD December 13, 1994 BSD

select
SELECT(2) BSD System Calls Manual SELECT(2)

NAME
 select -- synchronous I/O multiplexing

SYNOPSIS
 #include <sys/types.h>
 #include <sys/time.h>
 #include <unistd.h>

 int
 select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout);

 FD_SET(fd, &fdset);

 FD_CLR(fd, &fdset);

 FD_ISSET(fd, &fdset);

 FD_ZERO(&fdset);

DESCRIPTION
 select() examines the I/O descriptor sets whose addresses are passed in
 readfds, writefds, and exceptfds to see if some of their descriptors are
 ready for reading, are ready for writing, or have an exceptional condi-
 tion pending, respectively. The first nfds descriptors are checked in
 each set; i.e., the descriptors from 0 through nfds-1 in the descriptor
 sets are examined. On return, select() replaces the given descriptor
 sets with subsets consisting of those descriptors that are ready for the
 requested operation. select() returns the total number of ready descrip-
 tors in all the sets.

 The descriptor sets are stored as bit fields in arrays of integers. The
 following macros are provided for manipulating such descriptor sets:
 FD_ZERO(&fdset) initializes a descriptor set fdset to the null set.
 FD_SET(fd, &fdset) includes a particular descriptor fd in fdset.
 FD_CLR(fd, &fdset) removes fd from fdset. FD_ISSET(fd, &fdset) is non-
 zero if fd is a member of fdset, zero otherwise. The behavior of these
 macros is undefined if a descriptor value is less than zero or greater
 than or equal to FD_SETSIZE, which is normally at least equal to the max-
 imum number of descriptors supported by the system.

 If timeout is a non-null pointer, it specifies a maximum interval to wait
 for the selection to complete. If timeout is a null pointer, the select
 blocks indefinitely. To effect a poll, the timeout argument should be
 non-null, pointing to a zero-valued timeval structure. timeout is not
 changed by select(), and may be reused on subsequent calls; however, it

842

TCP/IP Library Reference

 is good style to re-initialize it before each invocation of select().

 Any of readfds, writefds, and exceptfds may be given as null pointers if
 no descriptors are of interest.

RETURN VALUES
 select() returns the number of ready descriptors that are contained in
 the descriptor sets, or -1 is an error occurred. If the time limit
 expires, select() returns 0. If select() returns with an error, includ-
 ing one due to an interrupted call, the descriptor sets will be unmodi-
 fied.

ERRORS
 An error return from select() indicates:

 [EFAULT] One or more of readfds, writefds, or exceptfds points
 outside the process's allocated address space.

 [EBADF] One of the descriptor sets specified an invalid
 descriptor.

 [EINTR] A signal was delivered before the time limit expired
 and before any of the selected events occurred.

 [EINVAL] The specified time limit is invalid. One of its com-
 ponents is negative or too large.

SEE ALSO
 accept(2), connect(2), gettimeofday(2), poll(2), read(2), recv(2),
 send(2), write(2), getdtablesize(3)

BUGS
 Although the provision of getdtablesize(3) was intended to allow user
 programs to be written independent of the kernel limit on the number of
 open files, the dimension of a sufficiently large bit field for select
 remains a problem. The default bit size of fd_set is based on the symbol
 FD_SETSIZE (currently 256), but that is somewhat smaller than the current
 kernel limit to the number of open files. However, in order to accommo-
 date programs which might potentially use a larger number of open files
 with select, it is possible to increase this size within a program by
 providing a larger definition of FD_SETSIZE before the inclusion of
 <sys/types.h>. The kernel will cope, and the userland libraries provided
 with the system are also ready for large numbers of file descriptors.

 Alternatively, to be really safe, it is possible to allocate fd_set bit-
 arrays dynamically. The idea is to permit a program to work properly
 even if it is execve(2)'d with 4000 file descriptors pre-allocated. The
 following illustrates the technique which is used by userland libraries:

 fd_set *fdsr;
 int max = fd;

 fdsr = (fd_set *)calloc(howmany(max+1, NFDBITS),
 sizeof(fd_mask));
 if (fdsr == NULL) {
 …
 return (-1);
 }
 FD_SET(fd, fdsr);
 n = select(max+1, fdsr, NULL, NULL, &tv);
 …
 free(fdsr);

 Alternatively, it is possible to use the poll(2) interface. poll(2) is
 more efficient when the size of select()'s fd_set bit-arrays are very
 large, and for fixed numbers of file descriptors one need not size and
 dynamically allocate a memory object.

 select() should probably have been designed to return the time remaining
 from the original timeout, if any, by modifying the time value in place.
 Even though some systems stupidly act in this different way, it is
 unlikely this semantic will ever be commonly implemented, as the change

843

TCP/IP Library Reference

 causes massive source code compatibility problems. Furthermore, recent
 new standards have dictated the current behaviour. In general, due to
 the existence of those brain-damaged non-conforming systems, it is unwise
 to assume that the timeout value will be unmodified by the select() call,
 and the caller should reinitialize it on each invocation. Calculating
 the delta is easily done by calling gettimeofday(2) before and after the
 call to select(), and using timersub() (as described in getitimer(2)).

 Internally to the kernel, select() works poorly if multiple processes
 wait on the same file descriptor. Given that, it is rather surprising to
 see that many daemons are written that way (i.e., httpd(8)).

HISTORY
 The select() function call appeared in 4.2BSD.

BSD March 25, 1994 BSD

send
SEND(2) BSD System Calls Manual SEND(2)

NAME
 send, sendto, sendmsg -- send a message from a socket

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 ssize_t
 send(int s, const void *msg, size_t len, int flags);

 ssize_t
 sendto(int s, const void *msg, size_t len, int flags,
 const struct sockaddr *to, socklen_t tolen);

 ssize_t
 sendmsg(int s, const struct msghdr *msg, int flags);

DESCRIPTION
 send(), sendto(), and sendmsg() are used to transmit a message to another
 socket. send() may be used only when the socket is in a connected state,
 while sendto() and sendmsg() may be used at any time.

 The address of the target is given by to with tolen specifying its size.
 The length of the message is given by len. If the message is too long to
 pass atomically through the underlying protocol, the error EMSGSIZE is
 returned, and the message is not transmitted.

 No indication of failure to deliver is implicit in a send(). Locally
 detected errors are indicated by a return value of -1.

 If no messages space is available at the socket to hold the message to be
 transmitted, then send() normally blocks, unless the socket has been
 placed in non-blocking I/O mode. The select(2) or poll(2) system calls
 may be used to determine when it is possible to send more data.

 The flags parameter may include one or more of the following:

 #define MSG_OOB 0x1 /* process out-of-band data */
 #define MSG_DONTROUTE 0x4 /* bypass routing, use direct interface */

 The flag MSG_OOB is used to send ``out-of-band'' data on sockets that
 support this notion (e.g., SOCK_STREAM); the underlying protocol must
 also support ``out-of-band'' data. MSG_DONTROUTE is usually used only by
 diagnostic or routing programs.

 See recv(2) for a description of the msghdr structure.

RETURN VALUES
 The call returns the number of characters sent, or -1 if an error
 occurred.

844

TCP/IP Library Reference

ERRORS
 send(), sendto(), and sendmsg() fail if:

 [EBADF] An invalid descriptor was specified.

 [ENOTSOCK] The argument s is not a socket.

 [EFAULT] An invalid user space address was specified for a
 parameter.

 [EMSGSIZE] The socket requires that message be sent atomically,
 and the size of the message to be sent made this
 impossible.

 [EAGAIN] The socket is marked non-blocking and the requested
 operation would block.

 [ENOBUFS] The system was unable to allocate an internal buffer.
 The operation may succeed when buffers become avail-
 able.

 [ENOBUFS] The output queue for a network interface was full.
 This generally indicates that the interface has
 stopped sending, but may be caused by transient con-
 gestion.

 [EACCES] The SO_BROADCAST option is not set on the socket, and
 a broadcast address was given as the destination.

 [EHOSTUNREACH] The destination address specified an unreachable host.

 [EINVAL] The flags parameter is invalid.

 [EHOSTDOWN] The destination address specified a host that is down.

 [ENETDOWN] The destination address specified a network that is
 down.

 [ECONNREFUSED] The destination host rejected the message (or a previ-
 ous one). This error can only be returned by con-
 nected sockets.

 [ENOPROTOOPT] There was a problem sending the message. This error
 can only be returned by connected sockets.

 [EDESTADDRREQ] The socket is not connected, and no destination
 address was specified.

 [EISCONN] The socket is already connected, and a destination
 address was specified.

 In addition, send() and sendto() may return the following error:

 [EINVAL] len was larger than SSIZE_MAX.

 Also, sendmsg() may return the following errors:

 [EINVAL] The sum of the iov_len values in the msg_iov array
 overflowed an ssize_t.

 [EMSGSIZE] The msg_iovlen member of msg was less than 0 or larger
 than IOV_MAX.

 [EAFNOSUPPORT] Addresses in the specified address family cannot be
 used with this socket.

SEE ALSO
 fcntl(2), getsockopt(2), poll(2), recv(2), select(2), poll(2), socket(2),
 write(2)

HISTORY

845

TCP/IP Library Reference

 The send() function call appeared in 4.2BSD.

BSD July 28, 1998 BSD

shutdown
SHUTDOWN(2) BSD System Calls Manual SHUTDOWN(2)

NAME
 shutdown -- shut down part of a full-duplex connection

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 shutdown(int s, int how);

DESCRIPTION
 The shutdown() call causes all or part of a full-duplex connection on the
 socket associated with s to be shut down. If how is SHUT_RD, further
 receives will be disallowed. If how is SHUT_WR, further sends will be
 disallowed. If how is SHUT_RDWR, further sends and receives will be dis-
 allowed.

RETURN VALUES
 A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
 The call succeeds unless:

 [EINVAL] how is not SHUT_RD, SHUT_WR, or SHUT_RDWR.

 [EBADF] s is not a valid descriptor.

 [ENOTSOCK] s is a file, not a socket.

 [ENOTCONN] The specified socket is not connected.

SEE ALSO
 connect(2), socket(2)

HISTORY
 The shutdown() function call appeared in 4.2BSD. The how arguments used
 to be simply 0, 1, and 2, but now have named values as specified by
 X/Open Portability Guide Issue 4 (``XPG4'').

BSD June 4, 1993 BSD

socket
SOCKET(2) BSD System Calls Manual SOCKET(2)

NAME
 socket -- create an endpoint for communication

SYNOPSIS
 #include <sys/types.h>
 #include <sys/socket.h>

 int
 socket(int domain, int type, int protocol);

DESCRIPTION
 socket() creates an endpoint for communication and returns a descriptor.

 The domain parameter specifies a communications domain within which com-
 munication will take place; this selects the protocol family which should
 be used. These families are defined in the include file <sys/socket.h>.
 The currently understood formats are

846

TCP/IP Library Reference

 AF_UNIX (UNIX internal protocols),
 AF_INET (ARPA Internet protocols),
 AF_INET6 (ARPA IPv6 protocols),
 AF_ISO (ISO protocols),
 AF_NS (Xerox Network Systems protocols),
 AF_IPX (Internetwork Packet Exchange), and
 AF_IMPLINK (IMP host at IMP link layer).

 The socket has the indicated type, which specifies the semantics of com-
 munication. Currently defined types are:

 SOCK_STREAM
 SOCK_DGRAM
 SOCK_RAW
 SOCK_SEQPACKET
 SOCK_RDM

 A SOCK_STREAM type provides sequenced, reliable, two-way connection based
 byte streams. An out-of-band data transmission mechanism may be sup-
 ported. A SOCK_DGRAM socket supports datagrams (connectionless, unreli-
 able messages of a fixed (typically small) maximum length). A
 SOCK_SEQPACKET socket may provide a sequenced, reliable, two-way connec-
 tion-based data transmission path for datagrams of fixed maximum length;
 a consumer may be required to read an entire packet with each read system
 call. This facility is protocol specific, and presently implemented only
 for PF_NS. SOCK_RAW sockets provide access to internal network protocols
 and interfaces. The types SOCK_RAW, which is available only to the supe-
 ruser, and SOCK_RDM, which is planned, but not yet implemented, are not
 described here.

 The protocol specifies a particular protocol to be used with the socket.
 Normally only a single protocol exists to support a particular socket
 type within a given protocol family. However, it is possible that many
 protocols may exist, in which case a particular protocol must be speci-
 fied in this manner. The protocol number to use is particular to the
 communication domain in which communication is to take place; see
 protocols(5). A value of 0 for protocol will let the system select an
 appropriate protocol for the requested socket type.

 Sockets of type SOCK_STREAM are full-duplex byte streams, similar to
 pipes. A stream socket must be in a connected state before any data may
 be sent or received on it. A connection to another socket is created
 with a connect(2) call. Once connected, data may be transferred using
 read(2) and write(2) calls or some variant of the send(2) and recv(2)
 calls. When a session has been completed a close(2) may be performed.
 Out-of-band data may also be transmitted as described in send(2) and
 received as described in recv(2).

 The communications protocols used to implement a SOCK_STREAM ensure that
 data is not lost or duplicated. If a piece of data for which the peer
 protocol has buffer space cannot be successfully transmitted within a
 reasonable length of time, then the connection is considered broken and
 calls will indicate an error with -1 returns and with ETIMEDOUT as the
 specific code in the global variable errno. The protocols optionally
 keep sockets ``warm'' by forcing transmissions roughly every minute in
 the absence of other activity. An error is then indicated if no response
 can be elicited on an otherwise idle connection for a extended period
 (e.g., 5 minutes). A SIGPIPE signal is raised if a process sends on a
 broken stream; this causes naive processes, which do not handle the sig-
 nal, to exit.

 SOCK_SEQPACKET sockets employ the same system calls as SOCK_STREAM sock-
 ets. The only difference is that read(2) calls will return only the
 amount of data requested, and any remaining in the arriving packet will
 be discarded.

 SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspon-
 dents named in send(2) calls. Datagrams are generally received with
 recvfrom(2), which returns the next datagram with its return address.

 An fcntl(2) call can be used to specify a process group to receive a

847

TCP/IP Library Reference

 SIGURG signal when the out-of-band data arrives. It may also enable non-
 blocking I/O and asynchronous notification of I/O events via SIGIO.

 The operation of sockets is controlled by socket level options. These
 options are defined in the file <sys/socket.h>. setsockopt(2) and
 getsockopt(2) are used to set and get options, respectively.

RETURN VALUES
 A -1 is returned if an error occurs, otherwise the return value is a
 descriptor referencing the socket.

ERRORS
 The socket() call fails if:

 [EPROTONOSUPPORT] The protocol type or the specified protocol is not
 supported within this domain.

 [EMFILE] The per-process descriptor table is full.

 [ENFILE] The system file table is full.

 [EACCES] Permission to create a socket of the specified type
 and/or protocol is denied.

 [ENOBUFS] Insufficient buffer space is available. The socket
 cannot be created until sufficient resources are
 freed.

SEE ALSO
 accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2),
 listen(2), poll(2), read(2), recv(2), select(2), send(2), setsockopt(2),
 shutdown(2), socketpair(2), write(2), getprotoent(3), netintro(4)

 An Introductory 4.3 BSD Interprocess Communication Tutorial, reprinted in
 UNIX Programmer's Supplementary Documents Volume 1.

 BSD Interprocess Communication Tutorial, reprinted in UNIX Programmer's
 Supplementary Documents Volume 1.

HISTORY
 The socket() function call appeared in 4.2BSD.

BSD June 4, 1993 BSD

848

Part XLII. FreeBSD TCP/
IP Stack port for eCos

TCP/IP Networking for eCos now provides a complete TCP/IP networking stack, based on a recent snapshot of the FreeBSD
code, released by the KAME project. The networking support is fully featured and well tested within the eCos environment.

Table of Contents
150. Networking Stack Features .. 851
151. Freebsd TCP/IP stack port ... 852

Targets .. 852
Building the Network Stack ... 852

152. APIs .. 853
Standard networking .. 853

850

Chapter 150. Networking Stack Features
Since this networking package is based on BSD code, it is very complete and robust. The eCos implementation includes support
for the following protocols:

• IPv4

• UDP

• TCP

• ICMP

• raw packet interface

• Multi-cast addressing

• IPv6 (including UDP, ICP, ICMP)

These additional features are also present in the package, but are not supported:

• Berkeley Packet Filter

• Uni-cast support

• Multi-cast routing

851

Chapter 151. Freebsd TCP/IP stack port
This document describes how to get started with the Freebsd TCP/IP network stack.

Targets
A number of ethernet devices may be supported. The default configuration supports two instances of the interface by default,
and you will need to write your own driver instantiation code, and supplemental startup and initialization code, if you should
add additional ones.

The target for your board will normally be supplied with an ethernet driver, in which case including the network stack and
generic ethernet driver package to your build will automatically enable usage of the ethernet device driver. If your target is not
supplied with an ethernet driver, you will need to use loopback (see the section called “Loopback tests”).

Building the Network Stack
Using the Build->Packages dialog, add the packages “Networking”, “Freebsd TCP/IP Stack” and “Common Ethernet Sup-
port” to your configuration. Their package names are CYGPKG_NET, CYGPKG_NET_FREEBSD_STACK and CYGP-
KG_NET_ETH_DRIVERS respectively.

A short-cut way to do this is by using the “net” template if it is available for your platform.

The platform-specific ethernet device driver for your platform will be added as part of the target selection (in the Build-
>Templates “Hardware” item), along with the PCI I/O subsystem (if relevent) and the appropriate serial device driver.

For example, the PowerPC MBX target selection adds the package PKG_NET_QUICC_ETH_DRIVERS, and the Cirrus Logic
EDB7xxx target selection adds the package CYGPKG_NET_EDB7XXX_ETH_DRIVERS. After this, eCos and its tests can
be built exactly as usual.

Note

By default, most of the network tests are not built. This is because some of them require manual intervention,
i.e. they are to be run “by hand”, and are not suitable for automated testing. To build the full set of network
tests, set the configuration option CYGPKG_NET_BUILD_HW_TESTS “Build hardware networking tests (de-
mo programs)” within “Networking support build options”.

852

Chapter 152. APIs
Standard networking
The APIs for the standard networking calls such as socket(), recv() and so on, are in header files relative to the top-level
include directory, within the standard subdirectories as conventionally found in /usr/include. For example:

 install/include/arpa/tftp.h
 install/include/netinet/tcpip.h
 install/include/sys/socket.h
 install/include/sys/socketvar.h
 install/include/sys/sockio.h

network.h at the top level defines various extensions, for example the API init_all_network_interfaces(void)
described above. We advise including network.h whether you use these features or not.

In general, using the networking code may require definition of two symbols: _KERNEL and __ECOS. _KERNEL is not
normally required; __ECOS is normally required. So add this to your compile lines for files which use the network stack:

 -D__ECOS

To expand a little, it‚s like this because this is a port of a standard distribution external to eCos. One goal is to perturb the
sources as little as possible, so that upgrading and maintenance from the external distribution is simplified. The __ECOS
symbol marks out the eCos additions in making the port. The _KERNEL symbol is traditional UNIX practice: it distinguishes
a compilation which is to be linked into the kernel from one which is part of an application. eCos applications are fully linked,
so this distinction does not apply. _KERNEL can however be used to control the visibility of the internals of the stack, so
depending on what features your application uses, it may or may not be necessary.

The include file network.h undefines _KERNEL unconditionally, to provide an application-like compilation environment.
If you were writing code which, for example, enumerates the stack‚s internal structures, that is a kernel-like compilation
environment, so you would need to define _KERNEL (in addition to __ECOS) and avoid including network.h.

853

Part XLIII. eCos PPP User Guide
This package provides support for PPP (Point-to-Point Protocol) in the eCos FreeBSD TCP/IP networking stack.

Table of Contents
153. Features ... 856
154. Using PPP .. 857
155. PPP Interface .. 859

cyg_ppp_options_init() .. 860
cyg_ppp_up() ... 863
cyg_ppp_down() ... 864
cyg_ppp_wait_up() .. 865
cyg_ppp_wait_down() .. 866
cyg_ppp_chat() ... 867

156. Installing and Configuring PPP .. 868
Including PPP in a Configuration .. 868
Configuring PPP ... 868

157. CHAT Scripts ... 871
Chat Script .. 871
ABORT Strings .. 872
TIMEOUT ... 872
Sending EOT ... 872
Escape Sequences ... 872

158. PPP Enabled Device Drivers ... 873
159. Testing ... 874

Test Programs .. 874
Test Script ... 875

855

Chapter 153. Features
The eCos PPP implementation provides the following features:

• PPP line protocol including VJ compression.

• LCP, IPCP and CCP control protocols.

• PAP and CHAP authentication.

• CHAT subset connection scripting.

• Modem control line support.

856

Chapter 154. Using PPP
Before going into detail, let's look at a simple example of how the eCos PPP package is used. Consider the following example:

static void ppp_up(void)
{
 cyg_ppp_options_t options;
 cyg_ppp_handle_t ppp_handle;

 // Bring up the TCP/IP network
 init_all_network_interfaces();

 // Initialize the options
 cyg_ppp_options_init(&options);

 // Start up PPP
 ppp_handle = cyg_ppp_up("/dev/ser0", &options);

 // Wait for it to get running
 if(cyg_ppp_wait_up(ppp_handle) == 0)
 {
 // Make use of PPP
 use_ppp();

 // Bring PPP link down
 cyg_ppp_down(ppp_handle);

 // Wait for connection to go down.
 cyg_ppp_wait_down(ppp_handle);
 }
}

This is a simple example of how to bring up a simple PPP connection to another computer over a directly connected serial line.
The other end is assumed to already be running PPP on the line and waiting for a connection.

The first thing this code does is to call init_all_network_interfaces() to bring up the TCP/IP stack and initialize
any other network interfaces. It then calls cyg_ppp_options_init() to initialize the PPP options structure to the defaults.
As it happens, the default options are exactly what we want for this example, so we don't need to make any further changes.
We go straight on to bring the PPP interface up by calling cyg_ppp_up(). The arguments to this function give the name of
the serial device to use, in this case "/dev/ser0", and a pointer to the options.

When cyg_ppp_up() returns, it passes back a handle to the PPP connection which is to be used in other calls. The PPP
link will not necessarily have been fully initialized at this time. There is a certain amount of negotiation that goes on between
the ends of a PPP link before it is ready to pass packets. An application can wait until the link is ready by calling cyg_pp-
p_wait_up(), which returns zero if the link is up and running, or -1 if it has gone down or failed to come up.

After a successful return from cyg_ppp_wait_up(), the application may make use of the PPP connection. This is rep-
resented here by the call to use_ppp() but it may, of course, be accessed by any thread. While the connection is up the
application may use the standard socket calls to make or accept network connections and transfer data in the normal way.

Once the application has finished with the PPP link, it can bring it down by calling cyg_ppp_down(). As with bringing the
connection up, this call is asynchronous, it simply informs the PPP subsystem to start bringing the link down. The application
can wait for the link to go down fully by calling cyg_ppp_wait_down().

That example showed how to use PPP to connect to a local peer. PPP is more often used to connect via a modem to a remote
server, such as an ISP. The following example shows how this works:

static char *isp_script[] =
{
 "ABORT" , "BUSY" ,
 "ABORT" , "NO CARRIER" ,
 "ABORT" , "ERROR" ,
 "" , "ATZ" ,
 "OK" , "AT S7=45 S0=0 L1 V1 X4 &C1 E1 Q0" ,
 "OK" , "ATD" CYGPKG_PPP_DEFAULT_DIALUP_NUMBER ,
 "ogin:--ogin:" , CYGPKG_PPP_AUTH_DEFAULT_USER ,

857

Using PPP

 "assword:" , CYGPKG_PPP_AUTH_DEFAULT_PASSWD ,
 "otocol:" , "ppp" ,
 "HELLO" , "\\c" ,
 0
};

static void ppp_up(void)
{
 cyg_ppp_options_t options;
 cyg_ppp_handle_t ppp_handle;

 // Bring up the TCP/IP network
 init_all_network_interfaces();

 // Initialize the options
 cyg_ppp_options_init(&options);

 options.script = isp_script;
 options.modem = 1;

 // Start up PPP
 ppp_handle = cyg_ppp_up("/dev/ser0", &options);

 // Wait for it to get running
 if(cyg_ppp_wait_up(ppp_handle) == 0)
 {
 // Make use of PPP
 use_ppp();

 // Bring PPP link down
 cyg_ppp_down(ppp_handle);

 // Wait for connection to go down.
 cyg_ppp_wait_down(ppp_handle);
 }
}

The majority of this code is exactly the same as the previous example. The main difference is in the setting of a couple of
options before calling cyg_ppp_up(). The script option is set to point to a CHAT script to manage the setup of the
connection. The modem option is set to cause the PPP system to make use of the modem control lines.

During the PPP bring-up a call will be made to cyg_ppp_chat() to run the CHAT script (see Chapter 157, CHAT Scripts). In
the example this script sets up various modem options and then dials a number supplied as part of the PPP package configuration
(see Chapter 156, Installing and Configuring PPP). When the connection has been established, the script log on to the server,
using a name and password also supplied by the configuration, and then starts PPP on the remote end. If this script succeeds
the PPP connection will be brought up and will then function as expected.

The modem option causes the PPP system to make use of the modem control lines. In particular it waits for Carrier Detect
to be asserted, and will bring the link down if it is lost. See cyg_ppp_options_init() for more details.

858

Chapter 155. PPP Interface

859

PPP Interface

Name
cyg_ppp_options_init — Initialize PPP link options

Synopsis

#include <cyg/ppp/ppp.h>

cyg_int32 cyg_ppp_options_init(*options);

Description
This function initializes the PPP options, pointed to by the options parameter, to the default state. Once the defaults have
been initialized, application code may adjust them by assigning new values to the the fields of the cyg_ppp_options_t structure.

This function returns zero if the options were initialized successfully. It returns -1 if the options argument is NULL, or the
options could not be initialized.

The option fields, their functions and default values are as follows:

debug If set to 1 this enables the reporting of debug messages from the PPP system. These will be generated
using diag_printf() and will appear on the standard debug channel. Note that diag_print-
f() disables interrupts during output: this may cause the PPP link device to overrun and miss char-
acters. It is quite possible for this option to cause errors and even make the PPP link fail completely.
Consequently, this option should be used with care.

Default value: 0

kdebugflag This five bit field enables low level debugging messages from the PPP device layer in the TCP/IP
stack. As with the debug option, this may result in missed characters and cause errors. The bits of
the field have the following meanings:

Bit BSD Name Description

0x01 SC_DEBUG Enable debug messages

0x02 SC_LOG_INPKT Log contents of good packets
received

0x04 SC_LOG_OUTPKT Log contents of packets sent

0x08 SC_LOG_RAWIN Log all characters received

0x10 SC_LOG_FLUSH Log all characters flushed

Default value: 0

default_route If set to 1 this option causes the PPP subsystem to install a default route in the TCP/IP stack's routing
tables using the peer as the gateway. This entry will be removed when the PPP link is broken. If there
is already an existing working network connection, such as an ethernet device, then there may already
be a default route established. If this is the case, then this option will have no effect.

Default value: 1

modem If this option is set to 1, then the modem lines will be used during the connection. Specifically, the
PPP subsystem will wait until the carrier detect signal is asserted before bringing up the PPP
link, and will take the PPP link down if this signal is de-asserted.

Default value: 0

flowctl This option is used to specify the mechanism used to control data flow across the serial line. It can
take one of the following values:

860

PPP Interface

CYG_PPP_FLOWCTL_DEFAULT

The flow control mechanism is not changed and is left at whatever value was set before bringing
PPP up. This allows a non-standard flow control mechanism to be used, or for it to be chosen
and set by some other means.

CYG_PPP_FLOWCTL_NONE

Flow control is turned off. It is not recommended that this option be used unless the baud rate is
set low or the two communicating machines are particularly fast.

CYG_PPP_FLOWCTL_HARDWARE

Use hardware flow control via the RTS/CTS lines. This is the most effective flow control mech-
anism and should always be used if available. Availability of this mechanism depends on whether
the serial device hardware has the ability to control these lines, whether they have been connected
to the socket pins and whether the device driver has the necessary support.

CYG_PPP_FLOWCTL_SOFTWARE

Use software flow control by embedding XON/XOFF characters in the data stream. This is some-
what less effective that hardware flow control since it is subject to the propagation time of the
serial cable and the latency of the communicating devices. Since it does not rely on any hardware
support, this flow control mechanism is always available.

Default value: CYG_PPP_FLOWCTL_HARDWARE

refuse_pap If this option is set to 1, then the PPP subsystem will not agree to authenticate itself to the peer with
PAP. When dialling in to a remote server it is normal to authenticate the client. There are three ways
this can be done, using a straightforward login mechanism via the CHAT script, with the Password
Authentication Protocol (PAP), or with the Challenge Handshake Authentication Protocol (CHAP).
For PAP to work the user and passwd options must be set to the expected values. If they are not,
then this option should be set to force CHAP authentication.

Default value: 0

refuse_chap If this option is set to 1, then the PPP subsystem will not agree to authenticate itself to the peer with
CHAP. CHAP authentication will only work if the passwd option has been set to the required CHAP
secret for the destination server. Otherwise this option should be disabled.

If both refuse_pap and refuse_chap are set, then either no authentication will be carried out,
or it is the responsibility of the chat script to do it. If the peer does not require any authentication,
then the setting of these options is irrelevant.

Default value: 0

baud This option is set to the baud rate at which the serial connection should be run. The default value is the
rate at which modems conventionally operate. This field is an instance of the cyg_serial_baud_rate_t
enum defined in the serialio.h header and may only take one of the baud rate constants defined
in there.

Default value: CYGNUM_SERIAL_BAUD_115200

idle_time_limit This is the number of seconds that the PPP connection may be idle before it is shut down automatically.

Default value: 60

maxconnect This causes the connection to terminate when it has been up for this number of seconds. The default
value of zero means that the connection will stay up indefinitely, until either end explicitly brings it
down, or the link is lost.

861

PPP Interface

Default value: 0

our_address This is the IP address, in network byte order, to be attached to the local end of the PPP connection.
The default value of INADDR_ANY causes the local address to be obtained from the peer.

Default value: INADDR_ANY

his_address This is the IP address, in network byte order, to be attached to the remote end of the PPP connection.
The default value of INADDR_ANY causes the remote address to be obtained from the peer.

Default value: INADDR_ANY

accept_local This allows the behaviour described above for our_address to be modified. Normally, if
our_address is set, then the PPPD will insist that this address be used. However, if this option is
also set, the PPPD will accept a value supplied by the peer.

Default value: 0

accept_remote This allows the behaviour described above for his_address to be modified. Normally, if
his_address is set, then the PPPD will insist that this address be used. However, if this option is
also set, the PPPD will accept a value supplied by the peer.

Default value: 0

script This is a pointer to a CHAT script suitable for passing to cyg_ppp_chat(). See Chapter 157,
CHAT Scripts for details of the format and contents of this script.

Default value: NULL

user This array contains the user name to be used for PAP authentication. This field is not used for
CHAP authentication. By default the value of this option is set from the CYGPKG_PPP_AUTH_DE-
FAULT_USER configuration option.

Default value: CYGPKG_PPP_AUTH_DEFAULT_USER

passwd This array contains the password to be used for PAP authentication, or the secret to be used during
CHAP authentication. By default the value of this option is set from the CYGPKG_PPP_AUTH_DE-
FAULT_PASSWD configuration option.

Default value: CYGPKG_PPP_AUTH_DEFAULT_PASSWD

862

PPP Interface

Name
cyg_ppp_up — Bring PPP connection up

Synopsis
#include <cyg/ppp/ppp.h>

cyg_ppp_handle_t cyg_ppp_up(*devnam, *options);

Description
This function starts up a PPP connection. The devnam argument is the name of the device to be used for the connection, typ-
ically "/dev/ser0" or "/dev/ser1". The options argument should point to an initialized cyg_ppp_options_t object.

The return value will either be zero, indicating a failure, or a cyg_ppp_handle_t object that may be used as an argument to
other PPP functions.

Note

Although the PPP API is designed to permit several simultaneous connections to co-exist, at present only one
PPP connection is actually implemented. Any attempt to create a second connection while there is already one
open will fail.

863

PPP Interface

Name
cyg_ppp_down — Bring PPP connection down

Synopsis
#include <cyg/ppp/ppp.h>

cyg_int32 cyg_ppp_down(handle);

Description
This function brings the PPP connection down. The handle argument is the result of a successful call to cyg_ppp_up().
This function only signals to the PPP subsystem that the link should be brought down. The link will be terminated asynchro-
nously. If the application needs to wait for the link to terminate, then it should call cyg_ppp_wait_down() after calling
cyg_ppp_down().

The function returns zero if it was able to start the termination of the PPP connection successfully. It will return -1 if the
connection is not running, or if it could not otherwise start the termination.

864

PPP Interface

Name
cyg_ppp_wait_up — Wait for PPP connection to come up

Synopsis
#include <cyg/ppp/ppp.h>

cyg_int32 cyg_ppp_wait_up(handle);

Description
This function waits until the PPP connection is running and then returns. This is needed because the actual bring up of the
connection happens mostly after the call to cyg_ppp_up() returns, and may take some time to complete, especially if dialling
a remote server.

The result of this call will be zero when the connection is running, or -1 if the connection failed to start for some reason. If the
connection is already running when this call is made it will return immediately with a zero result. If the connection is not in
the process of coming up, or has failed, or has terminated, then a result of -1 will be returned immediately. Thus this function
may also be used to test that the connection is still running at any point.

865

PPP Interface

Name
cyg_ppp_wait_down — Wait for PPP connection to terminate

Synopsis
#include <cyg/ppp/ppp.h>

void cyg_ppp_wait_down(handle);

Description
This function waits for the PPP connection to terminate. The link may be terminated with a call to cyg_ppp_down(), by
the remote end, or by the telephone line being dropped or lost.

This function has no return value. If the PPP connection is not running, or has terminated, it will return. Applications should
use cyg_ppp_wait_up() to test the link state.

866

PPP Interface

Name
cyg_ppp_chat — Execute chat script

Synopsis
#include <cyg/ppp/ppp.h>

cyg_int32 cyg_ppp_chat(*devname, *script[]);

Description
This function implements a subset of the automated conversational scripting as defined by the chat program. The first argument
is the name of the serial device to be used, typically "/dev/ser0" or "/dev/ser1". The script argument is a pointer
to a zero terminated array of strings that comprise the chat script. See Chapter 154, Using PPP for an example script, and
Chapter 157, CHAT Scripts for full detail of the script used.

The return value of this function will be zero if the chat script fails for any reason, such as an ABORT or a timeout. If the end
of the script is reached, then the return value will be non-zero.

Under normal use this function is called from the PPP subsystem if the cyg_ppp_options_t script field is set to a non-NULL
value. This function should only be used directly if the application needs to undertake special processing between running the
chat script, and bringing up the PPP connections.

867

Chapter 156. Installing and Configuring
PPP
Including PPP in a Configuration
PPP is contained entirely within a single eCos package. So to include PPP in a configuration all you need to do is add that
package.

In the GUI configuration tool use the Build->Packages menu item, find the "PPP Support" package in the left-hand pane and
use the Add button to add it to the list of packages in use in the right-hand pane.

In the command-line tool ecosconfig, you can use the following command during the configuration phase to add the PPP
package:

$ ecosconfig add ppp

In addition to the PPP package you will also need to have the "Network" package and the "Serial Device Drivers"
package in the configuration. The dependencies and requirements of the networking package are such that it is strongly rec-
ommended that you start with the net template.

See the eCos User Guide for full details on how to configure and build eCos.

Configuring PPP
The PPP package contains a number of configuration options that may be changed to affect its behaviour.

CYGNUM_PPP_PPPD_THREAD_PRIORITY

The PPP system contains two threads, One is used for receiving data from the link and processing control packets. The
other is used to transmit data asynchronously to the link when it cannot be completed synchronously. The receive thread
runs at the priority given here, and the transmit thread runs at the next lower priority. The exact priority needed here
depends on the importance of the PPP subsystem relative to the rest of the system. The default is to put it in the middle of
the priority range to provide reasonable response without impacting genuine high priority threads.

Default value: CYGNUM_KERNEL_SCHED_PRIORITIES/2

CYGPKG_PPP_DEBUG_WARN_ONLY

The runtime debug option enables logging of high level debug messages. Too many of these can interfere with the PPP
device and may result in missed messages. This is because these messages are emitted via the diag_printf() mechanism,
which disables interrupts while it prints. By default, therefore, we only report errors and warnings, and not all events.
Setting this option to zero will enable the logging of all events.

Default value: 1

CYGPKG_PPP_AUTH_DEFAULT_USER

This option gives the default value for the user name used to initialize the user field in the PPP options.

Default value: "eCos"

CYGPKG_PPP_AUTH_DEFAULT_PASSWD

This option gives the default value for the password used to initialize the passwd field in the PPP options.

Default value: "secret"

868

Installing and Configuring PPP

CYGPKG_PPP_DEFAULT_DIALUP_NUMBER

This option provides a default dialup number for use in chat scripts. This value is not used anywhere in the PPP package,
but is provided to complete the information needed, alongside the user name and password, for accessing a typical dialup
server.

Default value: "5551234"

CYGPKG_PPP_PAP

This component enables the inclusion of PAP authentication support.

Default value: 1

CYGPKG_PPP_CHAP

This component enables the inclusion of CHAT authentication support.

Default value: 1

CYGPKG_PPP_COMPRESSION

This component provides control over PPP compression features. WARNING: at present there are problems with this
option, and and in any case the compression code needs to allocate large amounts of memory. Hence this option is currently
disabled and should remain so.

Default value: 0

PPP_BSDCOMP

This option enables inclusion of BSD compression into the PPP protocol.

Default value: 0

PPP_DEFLATE

This option enables inclusion of ZLIB compression into the PPP protocol.

Default value: 0

CYGPKG_PPP_CHAT

This component enables the inclusion of a simple scripting system to bring up PPP connections. It implements a subset
of the chat scripting language.

Default value: 1

CYGNUM_PPP_CHAT_ABORTS_MAX

This option defines the maximum number of ABORT strings that the CHAT system will store.

Default value: 10

CYGNUM_PPP_CHAT_ABORTS_SIZE

This option defines the maximum size of each ABORT strings that the chat system will store.

Default value: 20

CYGNUM_PPP_CHAT_STRING_LENGTH

This option defines the maximum size of any expect or reply strings that the chat system will be given.

869

Installing and Configuring PPP

Default value: 256

CYGPKG_PPP_TEST_DEVICE

This option defines the serial device to be used for PPP test programs.

Default value: "/dev/ser0"

CYGPKG_PPP_TESTS_AUTOMATE

This option enables automated testing features in certain test programs. These programs will interact with a test server at
the remote end of the serial link to run a variety of tests in different conditions. Without this option most tests default to
running a single test instance and are suitable for being run by hand for debugging purposes.

Default value: 0

CYGDAT_PPP_TEST_BAUD_RATES

This option supplies a list of baud rates at which certain tests will run if the CYGPKG_PPP_TESTS_AUTOMATE option
is set.

Default value: "CYGNUM_SERIAL_BAUD_19200, CYGNUM_SERIAL_BAUD_38400,
CYGNUM_SERIAL_BAUD_57600, CYGNUM_SERIAL_BAUD_115200"

870

Chapter 157. CHAT Scripts
The automated conversational scripting supported by the eCos PPP package is a subset of the scripting language provided by
the chat command found on most UNIX and Linux systems.

Unlike the chat command, the eCos cyg_ppp_chat() function takes as a parameter a zero-terminated array of pointers to
strings. In most programs this will be defined by means of an initializer for a static array, although there is nothing to stop the
application constructing it at runtime. A simple script would be defined like this:

static char *chat_script[] =
{
 "ABORT" , "BUSY" ,
 "ABORT" , "NO CARRIER" ,
 "" , "ATD5551234" ,
 "ogin:--ogin:" , "ppp" ,
 "ssword:" , "hithere" ,
 0
};

The following sections have been abstracted from the public domain documentation for the chat command.

Chat Script
A script consists of one or more "expect-send" pairs of strings, separated by spaces, with an optional "subexpect- subsend"
string pair, separated by a dash as in the following example:

 "ogin:--ogin:" , "ppp" ,
 "ssword:" , "hello2u2" ,
 0

This script fragment indicates that the cyg_ppp_chat() function should expect the string "ogin:". If it fails to receive a
login prompt within the time interval allotted, it is to send a carriage return to the remote and then expect the string "ogin:"
again. If the first "ogin:" is received then the carriage return is not generated.

Once it received the login prompt the cyg_ppp_chat() function will send the string "ppp" and then expect the prompt
"ssword:". When it receives the prompt for the password, it will send the password "hello2u2".

A carriage return is normally sent following the reply string. It is not expected in the "expect" string unless it is specifically
requested by using the "\r" character sequence.

The expect sequence should contain only what is needed to identify the string. It should not contain variable information. It is
generally not acceptable to look for time strings, network identification strings, or other variable pieces of data as an expect
string.

To help correct for characters which may be corrupted during the initial sequence, look for the string "ogin:" rather than "login:".
It is possible that the leading "l" character may be received in error and you may never find the string even though it was sent
by the system. For this reason, scripts look for "ogin:" rather than "login:" and "ssword:" rather than "password:".

A very simple script might look like this:

 "ogin:" , "ppp" ,
 "ssword:" , " hello2u2" ,
 0

In other words, expect "….ogin:", send "ppp", expect "…ssword:", send "hello2u2".

In actual practice, simple scripts are rare. At the very least, you should include sub-expect sequences should the original string
not be received. For example, consider the following script:

 "ogin:--ogin:" , "ppp" ,
 "ssword:" , "hello2u2",
 0

871

CHAT Scripts

This would be a better script than the simple one used earlier. This would look for the same "login:" prompt, however, if one
was not received, a single return sequence is sent and then it will look for "login:" again. Should line noise obscure the first
login prompt then sending the empty line will usually generate a login prompt again.

ABORT Strings
Many modems will report the status of the call as a string. These strings may be CONNECTED or NO CARRIER or BUSY.
It is often desirable to terminate the script should the modem fail to connect to the remote. The difficulty is that a script would
not know exactly which modem string it may receive. On one attempt, it may receive BUSY while the next time it may receive
NO CARRIER.

These "abort" strings may be specified in the script using the ABORT sequence. It is written in the script as in the following
example:

 "ABORT" , "BUSY" ,
 "ABORT" , "NO CARRIER" ,
 "" , "ATZ" ,
 "OK" , "ATDT5551212" ,
 "CONNECT" , …

This sequence will expect nothing; and then send the string ATZ. The expected response to this is the string OK. When it
receives OK, it sends the string ATDT5551212 to dial the telephone. The expected string is CONNECT. If the string CONNECT
is received the remainder of the script is executed. However, should the modem find a busy telephone, it will send the string
BUSY. This will cause the string to match the abort character sequence. The script will then fail because it found a match to
the abort string. If it received the string NO CARRIER, it will abort for the same reason. Either string may be received. Either
string will terminate the chat script.

TIMEOUT
The initial timeout value is 45 seconds. To change the timeout value for the next expect string, the following example may
be used:

 "" , "ATZ" ,
 "OK" , "ATDT5551212" ,
 "CONNECT" , "\\c" ,
 "TIMEOUT" , "10" ,
 "ogin:--ogin:" , "ppp" ,
 "TIMEOUT" , "5" ,
 "assword:" , "hello2u2" ,
 0

This will change the timeout to 10 seconds when it expects the login: prompt. The timeout is then changed to 5 seconds when
it looks for the password prompt.

The timeout, once changed, remains in effect until it is changed again.

Sending EOT
The special reply string of EOT indicates that the chat program should send an EOT character to the remote. This is normally
the End-of-file character sequence. A return character is not sent following the EOT. The EOT sequence may be embedded
into the send string using the sequence "\x04" (i.e. a Control-D character).

Escape Sequences
Most standard chat escape sequences can be replaced with standard C string escapes such as '\r', '\n', '\t' etc. Additional escape
sequences may be embedded in the expect or reply strings by introducing them with two backslashes.

\\c Suppresses the newline at the end of the reply string. This is the only method to send a string without a trailing return
character. It must be at the end of the send string. For example, the sequence "hello\\c" will simply send the characters
h, e, l, l, o. (not valid in expect strings.)

872

Chapter 158. PPP Enabled Device Drivers
For PPP to function fully over a serial device, its driver must implement certain features. At present not all eCos serial drivers
implement these features. A driver indicates that it supports a certain feature by including an "implements" line in its CDL
for the following interfaces:

CYGINT_IO_SERIAL_FLOW_CONTROL_HW

This interface indicates that the driver implements hardware flow control using the RTS and CTS lines. When data is being
transferred over high speed data lines, it is essential that flow control be used to prevent buffer overrun.

The PPP subsystem functions best with hardware flow control. If this is not available, then it can be configured to use
software flow control. Since software flow control is implemented by the device independent part of the serial device
infrastructure, it is available for all serial devices. However, this will have an effect on the performance and reliability
of the PPP link.

CYGINT_IO_SERIAL_LINE_STATUS_HW

This interface indicates that the driver implements a callback interface for indicating the status of various RS232 control
lines. Of particular interest here is the ability to detect changes in the Carrier Detect (CD) line. Not all drivers that implement
this interface can indicate CD status.

This functionality is only needed if it is important that the link be dropped immediately a telephone connection fails.
Without it, a connection will only be dropped after it times out. This may be acceptable in many situations.

At the time of writing, the serial device drivers for the following platforms implement some or all of the required functionality:

• All drivers that use the generic 16x5x driver implement all functions:

• ARM CerfPDA

• ARM IQ80321

• ARM PID

• ARM IOP310

• i386 PC

• MIPS Atlas

• MIPS Ref4955

• SH3 SE77x9

• The following drivers implement flow control but either do not support line status callbacks, or do not report CD changes:

• SH4 SCIF

• A&M AdderI

• A&M AdderII

• All other drivers can support software flow control only.

873

Chapter 159. Testing
Test Programs
There are a number of test programs supplied with the PPP subsystem. By default all of these tests use the device configured
by CYGPKG_PPP_TEST_DEVICE as the PPP link device.

ppp_up

This test just brings up the PPP link on CYGPKG_PPP_TEST_DEVICE and waits until the remote end brings it back
down. No modem lines are used and the program expects a PPP connection to be waiting on the other end of the line.
Typically the remote end will test the link using ping or access the HTTP system monitor if it is present.

If CYGPKG_PPP_TESTS_AUTOMATE is set, then this test attempts to bring PPP up at each of the baud rates specified in
CYGDAT_PPP_TEST_BAUD_RATES. If it is not set then it will just bring the connection up at 115200 baud.

ppp_updown

This test brings the PPP link up on CYGPKG_PPP_TEST_DEVICE and attempts to ping the remote end of the link. Once
the pings have finished, the link is then brought down.

If CYGPKG_PPP_TESTS_AUTOMATE is set, then this test attempts to bring PPP up at each of the baud rates specified in
CYGDAT_PPP_TEST_BAUD_RATES. If it is not set then it will just bring the connection up at 115200 baud.

chat

This test does not bring the PPP link up but simply executes a chat script. It expects a server at the remote end of the link
to supply the correct responses.

This program expects the test_server.sh script to be running on the remote end and attempts several different tests, ex-
pecting a variety of different responses for each.

ppp_auth

This test attempts to bring up the PPP link under a variety of different authentication conditions. This includes checking
that both PAP and CHAP authentication work, and that the connection is rejected when the incorrect authentication protcol
or secrets are used.

This test expects the test_server.sh script to be running on the remote end. For this test to work the /etc/ppp/pap-
secrets file on the remote end should contain the following two lines:

eCos * secret *
eCosPAP * secretPAP *

The /etc/ppp/chap-secrets file should contain:

eCos * secret *
eCosCHAP * secretCHAP *

isp

This test expects the serial test device to be connected to a Hayes compatible modem. The test dials the telephone num-
ber given in CYGPKG_PPP_DEFAULT_DIALUP_NUMBER and attempts to log on to an ISP using the user name and
password supplied in CYGPKG_PPP_AUTH_DEFAULT_USER and CYGPKG_PPP_AUTH_DEFAULT_PASSWD. Once
the PPP connection has been made, the program then attempts to ping a number of well known addresses.

Since this test is designed to interact with an ISP, it does not run within the automated testing system.

tcp_echo

This is a version of the standard network tcp_echo test that brings up the PPP connection before waiting for the tcp_sink
and tcp_source programs to connect. It is expected that at least one of these programs will connect via the PPP link.
However, if another network interface is present, such as an ethernet device, then one may connect via that interface.

874

Testing

While this test is supported by the test_server.sh script, it runs for such a long time that it should not normally be used
during automated testing.

nc_test_slave

This is a version of the standard network nc_test_slave test that brings up the PPP connection before waiting for the
nc_test_master program to connect. It is expected that the master will connect via the PPP link.

While this test is supported by the test_server.sh script, it runs for such a long time that it should not normally be used
during automated testing.

Test Script
The PPP package additionally contains a shell script (test_server.sh) that may be used to operate the remote end of a PPP
test link.

The script may be invoked with the following arguments:

--dev=<devname>

This mandatory option gives the name of the device to be used for the PPP link. Typically "/dev/ttyS0" or "/dev/
ttyS1".

--myip=<ipaddress>

This mandatory option gives the IP address to be attached to this end of the PPP link.

--hisip=<ipaddress>

This mandatory option gives the IP address to be attached to the remote (test target) end of the PPP link.

--baud=<baud_rate>

This option gives the baud rate at which the PPP link is to be run. If absent then the link will run at the value set for --
redboot-baud.

--redboot

If this option is present then the script will look for a "RedBoot>" prompt between test runs. This is necessary if the
serial device being used for testing is also used by RedBoot.

--redboot-baud=<baud_rate>

This option gives the baud rate at which the search for the RedBoot prompt will be made. If absent then the link will
run at 38400 baud.

--debug

If this option is present, then the script will print out some additional debug messages while it runs.

This script operates as follows: If the --redboot option is set it sets the device baud rate to the RedBoot baud rate and waits
until a "RedBoot>" prompt is encountered. It then sets the baud rate to the value given by the --baud option and reads lines
from the device until a recognizable test announce string is read. It then executes an appropriate set of commands to satisfy
the test. This usually means bringing up the PPP link by running pppd and maybe executing various commands. It then either
terminates the link itself, or waits for the target to terminate it. It then goes back to looking for another test announce string. If a
string of the form "BAUD:XXX" is received then the baud rate is changed depending on the XXX value. If a "FINISH" string
is received it returns to waiting for a "RedBoot>" prompt. The script repeats this process until it is terminated with a signal.

875

Part XLIV. lwIP - the lightweight
IP stack for eCosPro

Table of Contents
160. lwIP overview ... 879

Introduction ... 879
lwIP sources and ports .. 879
External documentation ... 879
Licensing ... 880

161. Basic concepts .. 881
Structure .. 881
Application Programming Interfaces (APIs) .. 881
Protocol implementations ... 881
Packet data buffers ... 881
Configurability ... 882
Limitations .. 883
Quick Start .. 884

162. Port ... 886
Port status ... 886
Implementation ... 886

System Configuration .. 886
System Source ... 887
Threads ... 887

Extensions ... 889
eCos API reference ... 889

163. Configuration .. 897
Configuration Overview ... 897
Configuring the lwIP stack ... 898
Performance and Footprint Tuning .. 902

Performance ... 902
Optimizations ... 903
Memory Footprint ... 904

164. Sequential API .. 908
Overview ... 908
Comparison with BSD sockets .. 908

BSD API Restrictions .. 908
Netbufs ... 908
TCP/IP thread .. 908
Usage ... 909

API declarations ... 909
Types .. 909

API reference ... 914
165. Raw API .. 955

Overview ... 955
Usage ... 955
Callbacks ... 956
TCP connection setup .. 957
Sending TCP data ... 962
Receiving TCP data .. 964
Application polling ... 966
Closing connections, aborting connections and errors .. 967
Lower layer TCP interface ... 970
UDP interface .. 970
System initialization .. 977

Initialization detail .. 978
166. Debug and Test ... 980

Debugging ... 980
Asserts .. 980
Memory Allocations .. 980

877

lwIP - the lightweight IP stack for eCosPro

Statistics .. 980
GDB/RedBoot .. 980
Host Tools ... 981

Testing .. 981
lwipsnmp ... 981
lwipsntp .. 981
lwiperf .. 981
unitwrap .. 981
socket ... 982
tcpecho ... 982
udpecho .. 982
frag .. 982
nc_test_slave .. 982
httpd ... 982
httpd2 ... 983
lookup .. 983
sys_timeout .. 983
lwiphttpd ... 983

878

Chapter 160. lwIP overview
Introduction
lwIP, short for lightweight IP, is an implementation of a standard Internet Protocol v4 and v6 networking protocol stack
designed to operate in a resource-constrained environment. It was created in 2001 by Adam Dunkels of the Swedish Institute
of Computer Science for his Master's thesis. The core lwIP code was released publically under an open licence.

The lwIP stack supports the IP, TCP, UDP, ICMP, IGMP, ARP, DHCP, AutoIP, DNS, SNMP, SLIP and PPP protocols, and
there is a selection of APIs which applications can use to interact with it. As well as being designed from the outset to have
a low memory footprint, it also gains many of its lightweight properties from being highly configurable. This makes it an
excellent choice for integration into eCos.

This documentation describes lwIP and properties specific to its port to eCosPro. The usage, configuration and tuning of
lwIP will also be discussed. Many of the concepts discussed here will require some understanding of the inherent underlying
properties of the TCP, UDP and IP protocols. This documentation cannot substitute for an introduction to TCP/IP stacks and
protocols generally, and it is recommended that where needed the reader seeks out a good reference book, such as:

• TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, published by Addison-Wesley Professional, ISBN-10:
0-201-63346-9, ISBN-13: 978-0-201-63346-7.

• Internetworking with TCP/IP: volume 1, Douglas E. Comer, published by Prentice-Hall, ISBN-10: 0-131-87671-6, ISBN-13:
978-0-131-87671-2.

or one of the many online guides:

• The TCP/IP Guide

• Network Sorcery RFC Sourcebook

• Wikipedia

lwIP sources and ports
lwIP is portable and by no means specific to eCos. It has an active development community and undergoes continuous develop-
ment of its core code, focussed around its project page on the Savannah development site run by the Free Software Foundation.

In order to provide a robust, feature-rich, and commercially supportable solution for eCosPro, the eCos support has been
overhauled by eCosCentric® to work with the latest lwIP releases.

This documentation corresponds solely to the eCosPro port of lwIP, and the usage, configuration system and operation differs
in many regards from that in other code bases.

Warning

As detailed in the section called “Port status” the current eCosPro lwIP is using a much newer lwIP source base
with substantial changes from previous eCosPro lwIP offerings. As such some CDL compatibility issues will
arise if attempts are made to use old .ecc configuration files.

Either a fresh configuration can be created, and options re-selected as desired, or prior to switching to the newer
source world, whilst still configured to use the older ECOS_REPOSITORY the eCos configtool can be used to
export (File->Export) the configuration to a .ecm (minimal configuration) file. Then after switching to the
new ECOS_REPOSITORY source tree the eCos configtool can be used to import (File->Import) the created
.ecm file.

External documentation
A limited amount of publically available documentation is available for the lwIP project. Some of it has been incorporated into
this manual. The following lists useful documentation known about at the time of writing:

879

http://www.sics.se/~adam/lwip/
http://www.sics.se/
http://www.sics.se/
http://www.sics.se/~adam/publications.html#theses
http://www.tcpipguide.com/
http://www.networksorcery.com/enp/default.htm
http://en.wikipedia.org/wiki/Internet_protocol_suite
http://savannah.nongnu.org/projects/lwip/
http://savannah.nongnu.org/
http://www.fsf.org/

lwIP overview

• Adam Dunkel's Master's Thesis - the original description of lwIP design and operation, but now somewhat outdated.

• Report by Adam Dunkel into the design and implementation of lwIP, including a sequential API reference, and example
code. Largely still applicable to current lwIP, albeit incomplete. A copy of the PDF version may be found in the doc/
subdirectory of the lwIP package in the eCosPro source repository (packages/net/lwip_tcpip/VERSION/doc/
dunkels-lwip.pdf relative to the base of the eCosPro installation).

• The lwIP Wiki site provides a good introduction to many lwIP features, and provides links to related documentation.

• Text description of the lwIP raw API. A copy of the version at time of writing may be found in the doc/ subdirectory
of the lwIP package in the eCosPro source repository (packages/net/lwip_tcpip/VERSION/doc/rawapi.txt
relative to the base of the eCosPro installation).

• Text description of the sys_arch porting abstraction layer. A copy of the version at time of writing may be found in the doc/
subdirectory of the lwIP package in the eCosPro source repository (packages/net/lwip_tcpip/VERSION/doc/
sys_arch.txt relative to the base of the eCosPro installation).

Licensing
The lwIP core code is distributed under a 3 clause BSD-style license. Confirmation has been received from Adam Dunkels
that the existing public lwIP documentation is also covered by this license.

The original public eCos port included elements distributed under the eCos license.

As a result of the changes made by eCosCentric, portions of the eCos port of lwIP in eCosPro are covered by the eCosPro
License.

880

http://www.sics.se/~adam/thesis.pdf
http://lwip.wikia.com/wiki/LwIP_Wiki
http://git.savannah.gnu.org/cgit/lwip.git/tree/doc/rawapi.txt
http://git.savannah.gnu.org/cgit/lwip.git/tree/doc/sys_arch.txt
http://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_.28.22New_BSD_License.22_or_.22Modified_BSD_License.22.29
http://ecos.sourceware.org/license-overview.html
http://www.ecoscentric.com/ecospro-license.shtml
http://www.ecoscentric.com/ecospro-license.shtml

Chapter 161. Basic concepts
Structure
lwIP has been incorporated into eCos as a single package (CYGPKG_NET_LWIP) which contains all the core lwIP code and
the bulk of the eCos port. The remaining elements that constitute the eCos port can be found in the generic Ethernet driver
package (CYGPKG_IO_ETH_DRIVERS) and so is only relevant when using an Ethernet-based network card rather than SLIP
or PPP. Support for SLIP and PPPoS (PPP-over-Serial) is layered over the standard eCos serial driver API.

The port to eCos has been constructed using the sys_arch porting abstraction within lwIP, and this allows the eCos port to be
cleanly separated from the core lwIP code, although it still remains in the lwIP eCos package.

Application Programming Interfaces (APIs)
There are three different APIs which may be used by applications to interface with the stack: the raw API, the sequential API,
or the BSD sockets compatibility API. Each one in turn builds on the functionality provided by the previous API. This allows
users the flexibility of choosing a fairly bare implementation to squeeze the maximum out of the available resources; or to
use a more powerful API to simplify application coding and reduce time-to-market. Note that despite the presence of the BSD
sockets compatibility API, the lwIP stack implementation is not in any way related to the other BSD-derived TCP/IP stacks
present in eCos.

The raw API provides an event-based interface with callbacks directly into the application in order to handle incoming/outgoing
data and events. There is no inter-thread protection and can only operate with a single thread of execution.

The sequential API is a more traditional style of network interface API which provides functions that may be called synchro-
nously to perform network operations, and where those operations can be considered complete (or will complete asynchro-
nously with no further application interaction) when those functions return to the application.

When using the sequential API (or the BSD sockets API which is layered on top of it), lwIP maintains its own internal thread
for network data processing and event management. This is usually referred to as lwIP's TCP/IP thread (even though that is
a slight misnomer). This thread uses mailboxes to communicate with application threads, and semaphores to provide mutual
exclusion protection.

The BSD sockets compatibility API included in lwIP provides a subset of the Berkeley sockets interface introduced in the BSD
4.2 operating system. The Berkeley sockets interface, recently standardised by ISO/IEC in POSIX 2003.1, will be familiar to
those who have developed network applications on Linux, POSIX, UNIX or to a limited extent Windows with Winsock.

As the BSD sockets API provided as part of lwIP is only a subset of the full sockets, it should be considered only as an aid to
development or for when porting existing code. It should not be considered as a drop-in replacement for applications written
for a complete BSD network stack implementation which supports a wealth of features that do not exist in, and in many cases
would be inappropriate for, a low footprint implementation such as lwIP.

Protocol implementations
lwIP implements a variety of protocols. Support for each protocol can be individually included in or excluded from the config-
uration, subject to dependency constraints. The protocol implementations are mostly compartmentalised into separate source
modules. Support exists for TCP, UDP, UDP-Lite, IP (IPv4 and IPv6), ICMP, ICMP6, ARP when using Ethernet, IGMP,
DHCP, AutoIP and Stateless AutoConfiguration, DNS, MLD, ND, SNMP, SNTP, TFTP, SLIP and PPP.

In most cases functionality has been intentionally restricted to avoid "bloat" (unnecessary features increasing resource use), or
in some cases completely omitted. This is covered in slightly more detail in the section called “Limitations”.

Packet data buffers
lwIP does not only possess features allowing it by itself to maintain a small footprint, but also has design aspects which allow
it to work with the application to reduce footprint. One important case of this is lwIP packet data buffers.

881

Basic concepts

Packet data buffers in lwIP are termed pbufs. Pbufs can be chained together in fairly arbitrary ways to create a pbuf chain. The
idea is that the application can pass the stack a pbuf of data to transmit, and the stack can prepend and possibly append other
pbufs to encapsulate the data in protocol headers/footers without having to copy the data elsewhere, thus saving resources.
In some cases, depending on precisely how the pbuf was allocated, the stack may even be able to fit protocol headers inside
the pbuf passed to it. It also means that the application can itself provide data allocated in differing ways and from different
locations, but assembled together as a pbuf chain. This will ensure that the data is treated as if it were all allocated contiguously.
When using the sequential API, the underlying pbufs are wrapped in a netbuf construct in order to provide a simpler API to
manipulate data in buffers; but the underlying functionality remains based on pbufs.

When a pbuf is created, it must be one of a variety of types:

PBUF_RAM This is a conventional buffer, which points to data allocated from a pool in RAM managed by lwIP. On creation
the buffer size must be given.

PBUF_ROM This is a buffer pointing to immutable read-only data. This allows fixed literal data to be stored in ROM/Flash
rather than using up precious RAM. Note that data pointed at by a PBUF_ROM pbuf does not literally have
to point at read-only memory. All it means is that the data must not change, even if control has returned to the
application. The pbuf data may still be being referenced as part of a packet waiting in a queue to be transmitted,
or more often, waiting in a queue in case retransmission is necessary.

Caution

Not all architectures will allow ethernet transfers direct from ROM, so the underlying hardware
device driver may need to perform copying of data as required.

PBUF_REF This is a buffer pointing to mutable data, passed in by reference. This means data provided by the application
allocated from its own resources, and which could change in the future. This differs from PBUF_RAM packets
in that the data is allocated by the application, and not from lwIP's PBUF_RAM buffer memory pool. As the
application could change the data after control is returned to it, if lwIP finds it must enqueue the pbuf, it will
internally copy the data to a new PBUF_RAM. The benefits of this type of packet occur when the packet does
not need to be enqueued, and so no PBUF_RAM pbuf needs to be allocated.

PBUF_POOL The buffer is allocated as a chain of fixed size pbufs from a fixed size pool.

Configurability
lwIP was designed from the outset to have a low resource footprint. One of the techniques it uses to achieve this goal is its
high level of configurability.

lwIP allows both coarse- and fine-grained control of functionality. Large sections of potentially unused functionality can be
selected to be removed by the user, including entire protocol stacks. Such examples of removable coarse-grained functionality
include UDP, TCP, SLIP, PPP stacks, ethernet/ARP support, IP fragmentation and/or reassembly, or the sequential API.

It has a somewhat modular and layered design to assist with this. It is intentionally only somewhat modular: other TCP/IP stacks
have strictly enforced interfaces and abstractions between protocol layers. These abstractions are frequently cumbersome and
can result in unnecessary resource implications. lwIP deliberately violates some of these protocol interface layering abstractions
where doing so could improve resource utilization. An example is reserving an estimated appropriate amount of space for
protocol headers when constructing packets, where the choice of protocol dictates the amount of space.

Where lwIP really stands out is in its fine-grained control over the various pools of resources. Most resources are compartmen-
talised into fixed size memory pools to allow sizes to be constrained deterministically. The application designer will know, or
can choose, the maximum number of network connections which are to be supported depending on application requirements.
They also know the level of data throughput required for transmission or reception and can control the levels of the necessary
resources appropriately, such as numbers of buffers (separately for incoming or outgoing packet data) and their sizes, numbers
of protocol control blocks, TCP window sizes and more.

In this way, application designers can choose a configuration that maximises performance within the limitations of available
memory. Clearly, the more constrained the memory, the greater the potential for adverse consequences for performance, or
the number of supported connections. However, it should be realised that even with copious quantities of memory resources

882

Basic concepts

available to lwIP, it cannot be expected that a stack intentionally designed from the outset to be sparing with memory will
perform as well as a stack intentionally designed from the outset for high performance. Nevertheless careful tuning of lwIP
almost always results in significant performance improvements.

A simple real-world test application, from a target platform with only a total of 128K of RAM, would when performing a
simple test transmitting multiple 1400-byte packets obtain a throughput of >1000k/s. However, the same platform configuration
sending multiple 8192-byte packets would see the throughput drop to <100k/s since fragmentation and buffer availability now
impact the lwIP performance. System designers need to consider how the application makes use of the available lwIP APIs in
conjunction with the resources available to maximise application network throughput.

Limitations
As already mentioned, lwIP does not seek to provide a complete implementation of a TCP/IP stack providing the same level of
functionality provided in large OSes such as Linux, Windows, *BSD, etc. While some aspects are controlled by configuration,
in other cases functionality is intentionally limited to fit the design requirements of a compact footprint.

While a complete list of the limitations would be too numerous to enumerate, here are some of the most relevant ones to be
aware of:

• Retransmission and windowing algorithms are implemented simply, at the expense of some performance.

• Routing is simplified - one gateway per interface. IP forwarding follows the same rules as the host itself.

• No support for NAT, nor packet filtering.

• The TCP, DHCP and IP protocols can contain options in their packets. Relatively few of these options are supported by lwIP.

• IPv4 Path MTU discovery (from RFC1191) is not supported. Ordinarily it is used to avoid fragmentation of packets resulting
from the maximum MTU of an intermediate link between source and destination being smaller than the packet sizes actually
transmitted. lwIP does however allow the TCP Maximum Segment Size (MSS) to be configured.

• No complex data structures, caches and search trees to optimise speed. Generally simple lists are used.

• Thread safety (for the sequential and BSD compatibility API) is implemented in a very simple form. Individual connections
should not be operated on by multiple threads simultaneously. The mutual exclusion that is provided is at a very coarse grain
- the network processing operations themselves are not multi-threaded.

• Most ICMP packet types are ignored.

• If IP fragmentation and reassembly support is enabled then a limited sequence of IP fragments can be reassembled at one time
(controlled by lwIP configuration options). If the number of active sequences supported is exceeded then packet fragments
for new sequences are simply dropped, with the hope that a subsequent retransmission may be successful. Received IP
fragments are allowed to be reassembled out of order however.

• The BSD sockets compatibility API does not implement all socket options, API functions, nor API semantics.

• Error handling for application errors is frequently only handled with asserts - used only during debug builds during devel-
opment, allowing for smaller production code in release builds.

• The TCP persist timer is not implemented. If a remote peer has filled its receive window and as a result lwIP stops sending,
then when the remote peer processes more data it sends an ACK to update the window. However if that ACK is lost, then
if data is entirely unidirectional (lwIP to remote host), the connection could stall. In practice, this has not been something
people have experienced really.

• TCP data is not split in the unsent queue, resulting in somewhat inefficient use of receiver windows.

• The DNS client support only returns IPv4 addresses.

• The SNMP agent only provides traps to IPv4 addresses.

883

http://www.faqs.org/rfcs/rfc1191.html

Basic concepts

• The SNTP client provides a minimal SNTPv4 implementation.

• The lwIP IPv6 implementation does not currently track router advertisement routeinfo information. The IPv6 routing simply
uses the normal /64 prefix for matching destination addresses against acquired (source) addresses for each indivdual lwIP
network interface. If a destination address cannot be matched against an acquired source /64 address then the routingerror
(ERR_RTE) code is returned. This is not normally a limitation when using link-local or global addresses, but if an organi-
sation is using unique-local addressing the lwIP stack by default will limit addressing to destinations on the same subnet
(i.e. the matching /64 prefix). However, an eCos specific extension exists for supporting unique-local addresses, where the
CDL option CYGNUM_LWIP_IPV6_UNIQUELOCAL_MASK can define the number of global prefix bits which are matched
(from /48 to /64). This option can be configured to allow destination addresses for other unique-local subnets to be matched
against the specific /64 interface unique-local address.

There are many more examples.

If a lwIP Direct device driver is being used then see the section called “GDB/RedBoot” regarding limitation of remote network
GDB/RedBoot debugging.

Quick Start
Incorporating lwIP into your application is straightforward. The essential starting point is to incorporate the lwIP eCos package
(CYGPKG_NET_LWIP) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool. If you wish to support Ethernet devices, you will also need to include the Common Ethernet Support
(CYGPKG_IO_ETH_DRIVERS) eCos package. For SLIP/PPPoS support, you will need to enable the Hardware serial device
drivers (CYGPKG_IO_SERIAL_DEVICES) configuration option within the Serial device drivers (CYGPKG_IO_SERIAL)
eCos package.

Note

When using serial devices it is important to ensure the I/O driver configuration provides the necessary buffers
and/or hardware flow-control to avoid the possibility of PPPoS/SLIP RX data loss.

Alternatively, as a convenience, configuration templates have been provided to permit an easy starting point for creating a
configuration incorporating lwIP. Two templates are provided: lwip_eth for those intending to use lwIP with Ethernet; and
lwip_ppp for those intending to use lwIP with PPP. These may be used either by providing the template name as an extra
argument on the command line to ecosconfig new; or with the Build->Templates… menu item within the eCos Configuration
Tool. Both these templates are basic, incorporating only those packages which are essential for lwIP operation.

At this stage it would be appropriate to tailor the lwIP package configuration to the application requirements. At a minimum it
would be appropriate to consider whether a static IP address, or a dynamic IP address served from a DHCP server, is required.
Note that if RedBoot is used on the target and incorporates network support, then you must not give lwIP and RedBoot the
same IP address. For the same reason, you must not configure both lwIP and RedBoot to obtain an IP address via DHCP.

Prior to coding your application to perform lwIP stack operations using its APIs, the stack must be initialised. This does not
happen automatically, and instead a C function must be called:

int cyg_lwip_init ();

The function declaration can be obtained by including the network.h header file:

#include <network.h>

cyg_lwip_init returns 0 on success and non-zero on failure. Note that 0 may be returned even if no network interfaces
were successfully initialised. This is because in some cases interfaces are brought up asynchronously in any case, devaluing
such an error indication; and because an interface not coming up may be expected. If the application needs to determine the
status of interfaces, it should query the stack using the netif_* functions using the <lwip/netif.h> header file.

The cyg_lwip_init function must be called from a thread context. Raw API users need not call this function, although they
instead will be required to perform their own stack initialization. Consult the raw API documentation for more information.

884

Basic concepts

Note

The cyg_lwip_init function, depending on the configuration, may block for some time waiting for interfaces
to acquire network addresses. Alternatively the:

int cyg_lwip_init_nowait ();

function can be called to perform just the necessary low-level initialisation, without the extra addresswait func-
tionality. The cyg_lwip_init function itself uses the cyg_lwip_init_nowait routine prior to waiting
for network addresses to be assigned.

Alternatively, the (weak) helper function:

void init_all_network_interfaces ();

is provided. By default it just calls the lwIP specific cyg_lwip_init initialisation, but it may be overridden by drivers or
run-time support if alternative initialisation strategies are required.

Note

The init_all_network_interfaces name is the same as used by the alternative CYGPKG_NET BSD
networking world.

If obtaining an address via DHCP it can be convenient to enable the network interface debugging configuration option within
lwIP (CYGDBG_LWIP_DEBUG_NETIF). This will allow the IP address which was set to be viewed on the diagnostic output
console. Similarly the helper function:

int cyg_lwip_netif_print_info (netif, pf);

can be called after cyg_lwip_init to output specific interface address information via the supplied printf-alike routine.
For example using diag_printf for the pf parameter will display the address information on the diagnostic output console
without having to enable the network interface debugging feature.

885

Chapter 162. Port

Port status
The eCos port of lwIP in eCosPro is based on the main lwIP Savannah git code base, with modifications consisting of both
bug fixes and feature enhancements being made to the lwIP core code by eCosCentric.

The port requires the eCos kernel (CYGPKG_KERNEL) for now. The main reasons for this are because the ethernet driver and
serial driver implementations have dependencies on interrupts and non-kernel interrupt support is tricky; and that it is only
really feasible in the lwIP core code to avoid a multi-thread OS if solely using the raw API. And when using the raw API, the
application would have to be responsible for polling the underlying device driver (e.g. Ethernet) in any case.

Some eCos Ethernet drivers may have alignment constraints on packet data. This is usually not a problem, however it can affect
PBUF_ROM packets, whose alignment is dictated by the application. Therefore the application must ensure only appropriately
aligned PBUF_ROM packets are passed to lwIP, as appropriate for the hardware-specific Ethernet device driver.

lwIP's BSD sockets compatibility API is completely separate from the socket and file descriptor interface provided by the eCos
File I/O (CYGPKG_IO_FILEIO) package. As such, network packages which rely on semantics such as being able to read and
write both files and sockets with that API, cannot work with lwIP at the present time. This includes the httpd, DNS, SNTP
and FTP client packages. The NET-SNMP package uses BSD stack-specific APIs and so also cannot work with lwIP, though
lwIP can be configured with its own internal SNMP agent providing MIB-2 support. Note that an example httpd server written
using the lwIP raw API is included in the tests/ subdirectory of the lwIP eCos package.

For convenience when using the BSD sockets compatibility API, including the network.h header file:

#include <network.h>

This allows access to the API. This also has the benefit of potentially allowing interchangeable application code if switching
between the lwIP BSD socket compatibility API and the real BSD stack port in eCos.

lwIP does not attempt to provide a cleanly delineated namespace for lwIP functions. This could make it difficult to port legacy
code where there is a chance of conflicting names and symbols, both functions and data. Care is required here.

Note

The serial-based SLIP and PPP protocols should be functional, however they have not been well tested, and so
are not supported under the terms of incident support in eCosPro.

There is only convenient configuration for a single SLIP and/or PPP interface. Multiple interface support is
planned for some future point.

Implementation
The following sections provide an overview of how the port is structured regarding the interface between eCos and the core
lwIP implementation.

System Configuration
The normal lwIP approach of the user supplying a lwipopts.h header file that provides manifests to override the standard
lwIP opt.h header file is used to configure the main stack features. For eCos the lwipopts.h is provided as part of the
CYGPKG_NET_LWIP package along with the lwIP generic sources. Note: For eCos the lwipopts.h also contains definitions
for some lwIP features that do not yet have defaults defined within opt.h.

The eCos lwipopts.h implementation itself sets the majority of the lwIP feature control options based on the standard eCos
CDL (.ecc) configuration world.

886

http://git.savannah.gnu.org/cgit/lwip.git

Port

System Source
The CYGPKG_NET_LWIP package provides some eCos specific functionality in the src/ecos/ directory.

• lwip_ecos_init.cxx

This source file provides two functions that are normally called by the application. The function cyg_lwip_init is needed to
initialize the lwIP network stack, and cyg_lwip_netif_print_info can optionally be called to output network interface address
information.

If CYGINT_IO_ETH_DRIVERS_PHY_EVENTS is configured to provide PHY event notification support then the functions
cyg_net_eth_phy_ctx_acquireand cyg_net_eth_phy_dsr are available for network device drivers to manage per-interface
event notification between the driver and lwIP TCP/IP stack layers.

• sys_arch.cxx

This source file implements the majority of the run-time support needed by lwIP to execute under eCos, which mainly covers:

• Mailbox support, mapping lwIP sys_mbox_t to eCos Cyg_Mbox objects.

• Semaphore support, mapping lwIP sys_sem_t to eCos Cyg_Counting_Semaphore objects.

• Thread support, mapping lwIP sys_thread_t to eCos Cyg_Thread objects.

• Mutex support, mapping lwIP sys_mutex_t to eCos Cyg_Mutex objects.

• Timer conversion support for converting between real-time-clock and millisecond ticks. The cyg_lwip_tick_to_msecand
cyg_lwip_msec_to_tick functions may be useful to applications.

• sio.c

Some serial I/O utility routines for SLIP and PPPoS support.

Only a single serial interface is support and is accessed via a named serial I/O device (either CYGDAT_LWIP_PPP_DEV
for PPPoS, or CYGDAT_LWIP_SLIP_DEV for SLIP). The I/O device is configured with non-blocking RX, and blocking
TX as per the requirements of the lwIP APIs. The lwIP package CDL does not enforce any specific serial configuration
(due to the varied differences between architectures and driver feature sets), so the developer is responsible for ensuring a
suitable serial I/O driver configuration.

Threads
The lwIP network stack is mostly thread-safe for sockets and the sequential API, but not for the raw API. The most important
caveat is that even for the sequential API it is NOT thread-safe to access the same BSD-style socket, or netconn, from multiple
threads.

The default for eCos is for the run-time support to provide the TCP/IP helper thread, which is enabled via the lwIP NO_SYS=0
manifest definition. The lwIP API thread will be created even if the CYGFUN_LWIP_SEQUENTIAL_API option is not en-
abled, unless over-ridden by the CYGFUN_LWIP_NO_SYS option.

Note

Disabling the sequential API option does not disable the TCP/IP helper thread for backwards compatibility with
previous eCos configurations where the helper thread is expected even if the option CYGFUN_LWIP_SEQUEN-
TIAL_API is disabled.

When the TCP/IP helper thread is required, the eCos lwIP run-time support will call the lwIP tcpip_init()
function as part of the initialization sequence. The created eCos thread is named with the configured
CYGDAT_LWIP_TCPIP_THREAD_NAME value, and with the priority as configured by CYGNUM_LWIP_NET-
WORK_THREAD_PRIORITY.

887

Port

Providing this thread allows simple raw API applications to interact with the eCos ethernet device drivers.

Note

The, mutually exclusive, SLIP and PPPoS features require the CYGFUN_LWIP_SEQUENTIAL_API support,
and hence cannot be used with a CYGFUN_LWIP_NO_SYS configuration.

Caution

If the option CYGFUN_LWIP_NO_SYS is enabled then the system overhead required for suitably configured raw
API applications will be minimised. It is the responsibility of the application to implement the necessary thread
or polled model as desired for its specific, required, functionality.

If SLIP support is configured then a handler thread is also created during the system initialization. As with the main lwIP thread
the name and the priority of the thread can be set in the eCos configuration.

The current PPPoS implementation does not use a seperate helper thread, with the required RX work being done as part of
the normal TCP/IP helper thread.

Note: At some points within the lwIP network stack the eCos scheduler is locked. Whilst this is only for short sections of code,
this could disrupt real-time behaviour.

Thread-safety considerations regarding lwIP:

• the network stack is thread-safe in general

However, individual sockets should not be shared between different eCos threads simultaneously (e.g. two threads doing
overlapping recv()s).

• uses semaphores

So priority inversion is possible.

• coarse locking granularity

The whole lwIP network stack can remain locked for a long time whilst an operation is processed. This could exacerbate
any priority inversion issues.

• core lwIP code (and hence the raw API) is not thread-safe

• mailboxes are used extensively

Mailboxes are used to funnel all threads' API requests into the lwIP context to avoid synchronisation problems, but this can
cause priority inversion.

Also the effects of CYGNUM_KERNEL_SYNCH_MBOX_QUEUE_SIZE should be considered, since a very shallow mailbox
depth could lead to client threads blocking waiting to post requests.

For eCos the timer support has been extended to provide absolute timeout functionality to provide consistent timeout behaviour.
The manifset setting SYS_TIMEOUT_ENDTIME=1 is enforced for eCos builds. If the previous lwIP functionality is required
then SYS_TIMEOUT_ENDTIME=0 and SYS_TIMEOUT_DELTA=1 should be manually configured in the lwipopts.h
header file.

Caution

If the older SYS_TIMEOUT_DELTA=1 support is enabled then be aware that the default lwIP sources do not
work on absolute times, and as such the lwIP idea of what time is will go wrong if the single lwIP thread is pre-
empted for too long. In this case the lwIP code should really be executed in a high priority thread, but this is not
enfored by default, as there may be application threads in the system which must run at a higher priority. This
laxness of time management within lwIP can lead to problems with some sub-systems. For example, accuracy
of DHCP lease-time renewal requests

888

Port

Extensions
When creating a deeply-embedded network application some features of lwIP can be used by the general application code to
save on the code footprint of duplicating similar support. One major area that can easily be made use of in such a way is the
lwIP memory allocation support.

If the CDL option CYGFUN_LWIP_MEMP_USE_CUSTOM_POOLS is enabled then the user can supply the lwippools.h
header file accessible to the lwIP build. This header file is included by lwIP when defining the memory pool structures, and
can include application specific custom pools. The following example implementation provides a new application specific 16
entry memory pool containing 64-byte buffers:

/*> lwippools.h <*/

/* NOTE: We do NOT have the standard header file one-time inclusion conditional
 checks since this source file is referenced multiple-times, with different
 macro definitions, depending on the part of the memory pool support being
 instantiated. */

LWIP_MEMPOOL(APP_BUFFER, 16, 64, "APP_BUFFER")

/*> EOF lwippools.h <*/

The custom memory pool space is located within the configured lwIP memory pool space. The pool can then be accessed via
the memp_malloc() and memp_free() as normal:

pointer = (someptr *)memp_malloc(MEMP_APP_BUFFER);
/* Do some work with the buffer … */
memp_free(MEMP_APP_BUFFER, pointer);

For eCos the memory pool allocation support is protected using the SYS_ARCH_PROTECT (DSR) serialization support code,
allowing the calls to be made from any thread.

Similarly if lwIP is configured with CYGFUN_LWIP_MEM_USE_POOLS then it will use fixed size memory pools instead of a
heap for the mem_malloc() calls. The lwippools.h header file can then be used to define the specific fixed size memory
pools to be used by including suitable LWIP_MALLOC_MEMPOOL() macro calls. For example the following fragment will
define a set of fixed size pools:

/* Define three pools with buffer sizes of 256, 512, and 1512 bytes respectively. */
LWIP_MALLOC_MEMPOOL_START
LWIP_MALLOC_MEMPOOL(20, 256)
LWIP_MALLOC_MEMPOOL(10, 512)
LWIP_MALLOC_MEMPOOL(5, 1512)
/* More pools can be added as required. */
LWIP_MALLOC_MEMPOOL_END

eCos API reference

889

Port

Name
cyg_lwip_init — Initialise lwIP network stack

Synopsis
#include <arch/cc.h>

int cyg_lwip_init ();

Description

This function should be called by the eCos application at startup. It performs the initialization of the lwIP network stack and
any configured network device drivers.

If either of the IPv4 DHCP CYGSEM_LWIP_DHCP_WAIT_DHCP_COMPLETE or IPv6 stateless autoconfiguration
CYGSEM_LWIP_IPV6_AUTOCONFIG_WAIT_COMPLETE options are enabled then this initialization routine will wait for
up to the maximum of the configured timeouts for the network interfaces to acquire the relevant addresses. If the network ser-
vices are slow in providing a required address then it is possible that this function will exit with the interface not yet reachable
from the network, so applications should always validate interfaces after calling this initialization routine. The wait support is
provided by this routine to ensure a common implementation. If required the function can be called again to re-wait for the
configured timeouts, but it should be noted that subsequent calls do not re-initialize the lwIP stack.

Return value

The value 0 is returned on completion of the initialization. The value 1 is returned if the routine has previously been called,
and is not an indication of a failure to initialise.

890

Port

Name
cyg_lwip_netif_print_info — Output network interface address information

Synopsis
#include <arch/cc.h>

int cyg_lwip_netif_print_info (iface, pf);

Description

This helper function provides a common method for applications to output network address information for the specified
iface interface. It can be used (see the section called “Quick Start”) to provide user feedback of acquired addresses. It can
easily be used with test programs by supplying diag_printf() as the pf output function. Supplying an application specific
routine however can allow for the fixed format address string to be output via an alternative user interface.

The network interface pointer for passing to this function in the iface parameter can be obtained from the lwIP function:

struct netif *netif_find(char *name)

The name passed is the registered two-character interface name. Alternatively if the default network interface is required it
can be directly referenced via the exported struct netif *netif_default variable.

Return value

The value 0 is returned on success. The value 1 is returned if there was a problem with the interface, e.g. the link is not up,
or the address associated with the interface has not yet been set.

891

Port

Name
cyg_net_eth_phy_ctx_acquire — Allocate PHY event context

Synopsis
#include <cyg/io/eth/eth_drv.h>

void *cyg_net_eth_phy_ctx_acquire (priv);

Description

To allow per-interface PHY notification, the client network driver will call this function to register the passed priv reference,
and to be given an abstract handle which is subsequently passed to the cyg_net_eth_phy_dsr function when the driver needs to
notify the lwIP stack of a PHY event. For lwIP this passed value MUST be a structnetif*netif (network interface) reference.

Return value

A NULL value indicates a system error, otherwise it is the abstract handle used in the driver->lwIP PHY event notification.
The caller of this function does not need to interpret the returned value. Internal to the lwIP stack the value returned depends
on whether the lwIP world is configured to use a helper thread. For NO_SYS (true raw) configurations without a helper thread
this function will just return the passed netif parameter since that is all that is needed for the driver->lwIP support. When a
helper thread is being used (e.g. sequential API) then it will be a pointer to the message used to communicate the PHY event
information in a thread-safe manner.

892

Port

Name
cyg_net_eth_phy_dsr — Notify lwIP stack of PHY event

Synopsis
#include <cyg/io/eth/eth_drv.h>

void cyg_net_eth_phy_dsr (ctx);

Description

This function is called when the underlying network device driver needs to notify the lwIP TCP/IP stack of a link (PHY) event.
Primarily this would be used to report link up or down events as appropriate, since certain TCP/IP operations may need to
occur when a network connection is re-established (e.g. ARP packets, address negotiation, etc.).

The ctx parameter should be the pointer returned by the cyg_net_eth_phy_ctx_acquire call.

893

Port

Name
cyg_lwip_tick_to_msec — Convert eCos kernel clock ticks to millisecond count

Synopsis
#include <arch/sys_arch.h>

u32_tcyg_lwip_tick_to_msec (ticks);

Description

Convert eCos kernel clock ticks value to a millisecond count.

Return value

The number of milliseconds corresponding to the supplied ticks value.

894

Port

Name
cyg_lwip_msec_to_tick — Convert millisecond count to eCos kernel clock ticks

Synopsis
#include <arch/sys_arch.h>

cyg_tick_countcyg_lwip_msec_to_tick (msecs);

Description

Convert millisecond count to eCos kernel clock ticks.

Return value

The eCos kernel clock ticks corresponding to the supplied msecs millisecond count.

895

Port

Name
cyg_lwip_statistics — Statistics output

Synopsis
#include <arch/cc.h>

void cyg_lwip_statistics (outfn);

Description

This function is provided mainly for debugging and development tuning, since it may be useful to monitor lwIP resource usage
over various test scenarios when tuning an eCos lwIP configuration.

The function is a NOP unless the lwIP statistics gathering support is configured. The main configuration option CYGDBG_L-
WIP_STATS controls the availability of the statistics feature, with sub-options then being available to control specific sub-
section statistics gathering.

The outfn is the printf-style varargs routine used to output the human-readable information. For example, a simple usage
would be to pass the diag_printf function so that the statistics are output on the same diagnostic channel as any other
test/debug information.

896

Chapter 163. Configuration
This chapter shows how to include the lwIP networking support into an eCos configuration, and how to configure it once
installed. This subject was briefly covered in the section called “Quick Start”.

Configuration Overview
The lwIP networking stack is contained in a single eCos package CYGPKG_NET_LWIP. However, it depends on the services
of a collection of other packages for complete functionality:

CYGPKG_KERNEL

The main eCos kernel package. This provides the main run-time infrastructure as needed by the lwIP stack. For example,
support for threads, semaphores, mailboxes, etc.

CYGPKG_ISOINFRA

ISO C and POSIX standards infrastructure package. This provides access to many run-time utility routines. For example
rand_r().

CYGPKG_ERROR

Error package. This provides access to the common eCos error and status codes.

CYGPKG_LIBC_STDLIB

General support library. This provides general ISO C utility functions to the lwIP system.

CYGPKG_LIBC_STRING

Strings library. This provides the string and memory move and compare routines used by the lwIP system.

CYGPKG_LIBC_I18N

Internationalization library. This provides character interpretation support routines.

CYGPKG_IO_ETH_DRIVERS

The common ethernet device driver support package. This is only required when lwIP is being configured for ethernet
support.

CYGPKG_IO_SERIAL_DEVICES

The serial device driver support package. This is only required when lwIP is being configured for SLIP or PPPoS support.

To add the lwIP support to a configuration, it is necessary to add the packages listed above as appropriate. This is best done
by using a template file. Two examples of such templates files are provided:

lwip_eth Provides a current.ect file containing the packages necessary to add ethernet lwIP support to any config-
uration.

lwip_ppp Provides a current.ect file containing the packages necessary to add lwIP serial-based interface support
to any configuration.

In addition to the packages listed above, hardware-specific device driver packages will be needed for ethernet devices to be
used. These device drivers are usually part of the target description in the eCos database and will be enabled if the CYGP-
KG_IO_ETH_DRIVERS package is included.

For some target platforms a choice of device driver will be available. The lwIP driver model section of the CYGP-
KG_IO_ETH_DRIVERS_LWIP option may allow either a Direct or Standard driver to be selected. Direct are lwIP only de-

897

Configuration

vice drivers designed for better performance on lower resource systems, but with some limitations on features supported (for
example remote network debugging as mentioned in the section called “GDB/RedBoot”). The Standard drivers use the eCos
standard ethernet driver interface allowing the device driver to be used for configurations using other TCP/IP stacks (e.g.
FreeBSD) as well as for lwIP configurations.

Note: If lwIP is being configured to provide POSIX-style names for some socket support operations then the eCos package
CYGPKG_IO_FILEIO should not normally be enabled in the eCos configuration at the same time, since care needs to be
taken to avoid name-space clashes.

Configuring the lwIP stack
Note: For a low-level brief overview of how the lwIP source accesses the configured features see the section called “System
Configuration”.

Once added to the configuration, the lwIP package has a large number of configuration options. There are too many configu-
ration options to go into full detail in this section, though the major eCos port specific options and fundamental support options
are detailed. The configuration tool can be used to examine the hierarchy of the complete set of lwIP configuration options.

Stack size for system threads (CYGNUM_LWIP_THREAD_STACK_SIZE)

The eCos lwIP implementation uses this fixed value as the stack size for all the lwIP system threads.

If this value is set too low then incorrect operation can result due to stack overflow. The value should be configured
to be large enough to cover the target platform worst-case stack requirement. The Thread Information documentation
provides an overview of the cyg_thread_measure_stack_usage() that can be used to monitor and tune the stack
requirements of the network application.

Network thread priority (CYGNUM_LWIP_NETWORK_THREAD_PRIORITY)

This value defines the main lwIP network thread priority, and also, if the feature is used, the default thread priority assigned
to lwIP system threads.

Loop interface (CYGFUN_LWIP_LOOPIF)

This option controls whether support is included for the standard loopback network interface. The interface is created
with the IPv4 address 127.0.0.1 and the IPv6 address ::1. The interface can be used for testing purposes, or where
compatibility with existing code is required.

Ethernet support (CYGPKG_LWIP_ETH)

This boolean option defines whether support for ethernet interfaces is enabled, and if enabled provides access to a variety
of configuration options for the ethernet interfaces.

By default the eCos configuration provides support for defining up to 3 ethernet network interfaces. If more interfaces are
required then the CDL source in cdl/lwip_net.cdl will need to be manually edited. For the following descriptions
the n suffix should one of 0, 1 or 2.

Interface n config (CYGPKG_LWIP_ETH_DEVn)

If this boolean option is enabled then it provides the set of configuration options for the specific ethernet network
interface. The following STATIC, DHCP, AUTOIP and MANUAL options are mutually exclusive, with only one being
actively configured at any point.

Static IPv4 address (CYGPKG_LWIP_ETH_DEV_ADDR_STATICn)

If this boolean option is enabled then the ethernet interface will be configured during initialization to use the
supplied IPv4 addresses.

IP address (CYGPKG_LWIP_ETH_DEV_ADDR_STATIC_IPn)

This option provides the hard-coded IPv4 address for the interface.

898

http://www.ecoscentric.com/ecospro/doc/html/ref/kernel-thread-info.html

Configuration

Netmask (CYGPKG_LWIP_ETH_DEV_ADDR_STATIC_NETMASKn)

This option provides the hard-coded subnet IPv4 netmask for the interface.

Gateway (CYGPKG_LWIP_ETH_DEV_ADDR_STATIC_GWn)

This option provides the hard-coded gateway router IPv4 address to be used for the default route for packets
sent via the interface that are not destined for the directly connected subnet.

IPv4 address from DHCP (CYGPKG_LWIP_ETH_DEV_ADDR_DHCPn)

If the lwIP DHCP (Dynamic Host Configuration Protocol) support is configured then this option can be enabled for the
interface to obtain its IPv4 address, netmask and gateway values from a suitable DHCP server present on the network.

IPv4 address from AutoIP (CYGPKG_LWIP_ETH_DEV_ADDR_AUTOIPn)

This option if enabled configures the interface to obtain a link-local IPv4 address using the AutoIP feature.

Set address manually (CYGPKG_LWIP_ETH_DEV_ADDR_MANUALn)

This option if enabled indicates that the application code will itself be calling the lwIP functions required to configure
the interface addresses.

The application will need to supply a cyg_lwip_eth_init_manual() function implementation, which will be
called from the common IO layer lwIP Ethernet initialisation.

Set as default interface (CYGPKG_LWIP_ETH_IS_DEFAULTn)

This option, if enabled, selects the respective interface as the default to be used when the network stack needs to
communicate with an address which is not part of a network directly associated with a specific interface.

TCP (CYGPKG_LWIP_TCP)

This option controls whether the TCP protocol is supported by the lwIP configuration. If enabled, a set of configuration
options are available to tune the lwIP TCP implementation.

IPv4 (CYGFUN_LWIP_IPV4)

This option enables the IPv4 support. If enabled, a set of configuration options are available to control IPv4 specific
features.

IPv6 (CYGFUN_LWIP_IPV6)

This option enables the IPv6 support. If enabled, a set of configuration options are available to control IPv6 specific
features.

UDP (CYGPKG_LWIP_UDP)

This option controls whether the UDP protocol is supported by the lwIP configuration. If enabled, a set of configuration
options are available to tune the lwIP UDP implementation.

SNMP Agent (CYGFUN_LWIP_SNMP)

If enabled the lwIP world will provide a SNMP (Simple Network Management Protocol) MIB-II agent.

Due to the stated lightweight and simple nature of lwIP, with it mainly being targeted at resource limited embedded targets,
the SNMP features available are constrained (e.g. lwIP has a limited notion of IP routing, only pre-compiled MIBs, etc.).
Objects located above the .iso.org.dod.internet hierarchy are not supported. By default only the .mgmt sub-
tree is available, though if the CDL option CYGFUN_LWIP_SNMP_PRIVATE_MIB is enabled then the .private sub-
tree becomes available too via the application supplied private_mib.h header file.

899

Configuration

The supplied private_mib.h must contain a struct mib_array_node mib_private definition which is referenced by
the lwIP SNMP agent, and describes the private MIB hierarchy. As an example the main struct min_array_node mgmt
provided in the source file src/core/snmp/mib2.c can be referenced.

Note: The SNMP agent has a sizeable code and data footprint, so may not be suitable for targets with limited resources.

SLIP (CYGPKG_LWIP_SLIP)

If enabled lwIP will provide support for the SLIP (Serial Line IP) subsystem. This will provide a network interface to
encapsulate IP packets and to send and receive them to a remote system using eCos serial drivers. This option enables a
set of SLIP specific configuration options. Note: Though basic functionality has been tested, the SLIP functionality is not
supported under the terms of the incident support in eCosPro.

PPP (CYGPKG_LWIP_PPP)

If enabled lwIP will provide support for the PPP (Point-to-Point Protocol) subsystem. This option enables a set of PPP
specific configuration options.

PPP-over-Ethernet (CYGPKG_LWIP_PPPOE_SUPPORT)

If this PPP sub-option is enabled then support for PPPoE (PPP-over-Ethernet) is provided. This provides support
for encapsulating PPP frames inside ethernet frames, and is mainly used where a secure point-to-point connection is
required, for example, to avoid IP, MAC and DHCP issues.

Note

Support for PPPoE is not yet tested or supported for eCosPro.

PPP-over-Serial (CYGPKG_LWIP_PPPOS_SUPPORT)

If this PPP sub-option is enabled then support is provided to encapsulate IP packets and to send and receive them to
a remote system using eCos serial drivers.

Note: PPP is more sophisticated than SLIP, and is therefore larger. It does however provide extra features, such as
authentication, better link management, option negotion and header compression.

Note: Though basic PPPoS functionality has been tested, the PPPoS functionality is not supported under the terms
of the incident support in eCosPro.

RAW sockets (CYGPKG_LWIP_RAW)

This option enables support for raw sockets. These allow the transmission or reception of packets over IP but using pro-
tocols other than TCP or UDP; or in order to construct packets that cannot be constructed with the lwIP API directly. Raw
sockets can be used by selecting a connection type of NETCONN_RAW with the lwIP sequential API. This support is
also used by the BSD socket API when creating a socket of type SOCK_RAW

Provide sequential API (CYGPKG_LWIP_SEQUENTIAL_API)

This option enables support for the lwIP sequential API (see the section called “Application Programming Interfaces
(APIs)” for an overview).

Provide BSD-style socket API (CYGFUN_LWIP_COMPAT_SOCKETS)

This option enables the lwIP support for BSD-style socket operations. This can be useful for adapting existing software
to be able to use the lwIP stack.

The socket functions in the API have the form lwip_accept(), lwip_bind(), lwip_listen() etc. Enabling this
option causes macros to be defined to map these functions to the BSD function names (accept(), bind(), listen(),
etc.). If this causes naming conflicts for the application, then you may wish to disable this option. Particular care is required
if this option is enabled at the same time as the File I/O CYGPKG_IO_FILEIO package is used since a single source file
will be unlikely to be able to use the File I/O APIs and the lwIP BSD compatible socket API.

900

Configuration

Provide POSIX-style socket API (CYGFUN_LWIP_POSIX_SOCKETS_IO_NAMES)

This option enables the lwIP support for POSIX-style socket operations, useful for adapting existing software to be able to
use the lwIP stack. The socket functions in the API have the form lwip_read(), lwip_write(), etc. Enabling this
option causes macros to be defined to map the POSIX function names (read(), write(), etc.) to these lwIP functions.
If this causes naming conflicts for the application you may want to disable this option.

Generate proto checksums (CYGIMP_LWIP_CHECKSUM_GEN_proto)
Verify proto checksums (CYGIMP_LWIP_CHECKSUM_CHECK_proto)

There are a set of configuration options to control checksum generation and calculation support. The IP suffix deals with
the generic ethernet IP packet checksum, and the UDP and TCP suffixes with the specific protocol packet checksums. The
ICMP6 suffix (CHECK only) performs verification of IPv6 ICMPv6 packets.

See the section called “Checksums” for more information regarding the implications of these options.

Checksum on copy (CYGIMP_LWIP_CHECKSUM_ON_COPY)

This option if enabled implements code to calculate checksums when copying data from application buffers to packet
buffers.

Internal lwIP callback hook definition header (CYGBLD_LWIP_HOOK_H)

This option allows a specific configuration (i.e. application) to provide its own optional lwIP hook callback definitions
if required. Some hooks extend functionality (e.g. LWIP_HOOK_VLAN_SET) whilst others are useful for diagnostics
or tracking (e.g. LWIP_HOOK_IP4_INPUT). If enabling this functionality the developer should be conversant with the
internals of lwIP and understand how to declare the specific hook macros as well as how they will be called.

One caveat to be aware of is that since the hooks are compiled-into the lwIP stack they may be called from the very
beginning of the network stack startup, which may be before the main application code is fully initialised. Care should be
taken in the called hooks to ensure a valid state exists. This also means that any hooks that are defined to call application
code, the relevant functions need to be available to all code linked against the lwIP stack built with the hooks included.

Any private state needed must be referenced via the netif descriptor. However we currently use the netif->state
pointer internally for eCos. The exact interpretation of the state field depends on the actual eCos configuration. For
standard driver worlds it is normally a reference to the driver struct eth_drv_sc descriptor.

So for any other private application context that needs to be referenced we can use the client_data vector held in each
netif descriptor. The lwIP stack internally has fixed slots allocated for its internal functionality, so we need to ensure that
CYGNUM_LWIP_NETIF_CLIENT_DATA is configured with the number of extra slots needed by any application code.
The application is responsible for managing the indexing from LWIP_NETIF_CLIENT_DATA_INDEX_MAX onwards.

Hardware driver override header (CYGBLD_LWIP_HW_DRIVER_OVERRIDE_HEADER)

This option is not normally set by the user, but is provided to allow device drivers to specify a target specific header file
that can be used to influence the lwIP configuration.

For example, the lwIP direct ethernet drivers use a header file configured via this option to influence the way the lwIP
packet buffer pool is created.

ALTCP abstraction layer (CYGFUN_LWIP_ALTCP)

This option enables the TCP abstraction layer that replaces the internal TCP function references with indirect calls allowing
the support for SSL/TLS or proxy-connect support to applications written against the lwIP TCP callback API without the
application layer requiring knowledge of the underlying protocol details.

When the ALTCP functionality is enabled the option CYGFUN_LWIP_ALTCP_TLS controls whether the ALTCP TLS
API is available.

For eCos, in conjunction with the Mbed TLS (CYGPKG_MBEDTLS) package, the CYGFUN_LWIP_MBEDTLS configura-
tion option uses the lwIP Mbed TLS wrapper for the lwIP CYGFUN_LWIP_ALTCP_TLS controlled TLS API.

901

Configuration

Note

If the CYGFUN_LWIP_ALTCP_TLS option is enabled, but the CYGFUN_LWIP_MBEDTLS option is not
enabled, then the developer is responsible for providing the ALTCP wrapper functions required. The lwIP
package sub-directory src/apps/altcp_tls/altcp_tls_mbedtls contains the Mbed TLS wrap-
per which can be used as a reference if required.

Memory pool sizes (CYGNUM_LWIP_MEMP_NUM_pool)

The lwIP configuration contains the ability to set many memory related options. The major configuration being the number
of pool entries for the different types of memory buffer and descriptors used within the various lwIP subsystems, and these
are prefixed CYGNUM_LWIP_MEMP_NUM_ with a usage specific pool suffix.

See the section called “Memory Footprint” for more information about tuning the lwIP memory footprint.

Normally the configuration options should be left at their default values unless you have a specific need to change them, e.g.
memory requirements. Once the configuration has been created, it should be possible to compile eCos and link it with the
application without any errors.

Performance and Footprint Tuning

Performance
There are many changes in configuration that can affect performance. For example, the number and size of buffers, how
checksum calculations are implementated, etc.

The CYGDBG_LWIP_STATS option can be enabled to allow for a variety of statistics counts to be gathered during execution.
The various options are all prefixed with CYGDBG_LWIP_STATS_, and a sub-system specific suffix.

These statistics can help with the tuning of the lwIP world during development, since monitoring the minimum and maximum
usage counts of resources along with the error counts can indicate resource starvation issues. Note: Some error counts are
indicative of a temporary inability to claim a resource, and are not necessarily a fatal error for the stack, just a potential
slowdown.

In order to determine the number of resources used in practice, during development it is recommended that testing is performed
under the expected maximum load expected to need to be handled, in order to understand the resource requirements at that
load. To get useful information for this, temporarily configure lwIP with a higher number of resources than would be expected
to be needed, memory permitting. Then the application should be tested under the expected network load, at the end of which,
the statistics can be inspected, and attention paid to the "max" fields which show the maximum number of each resource used in
practice in that sample scenario. This can then be used to inform decisions into the appropriate allocation of reduced resources
set in the configuration of lwIP for the final product, without unduly compromising performance.

If CYGDBG_LWIP_STATS is enabled then the function:

#include <lwip/stats.h>

void stats_display ();

can be used to dump all of the statistics gathered via the output routine defined by the LWIP_PLATFORM_DIAG function
wrapper (currently defined to use diag_printf() in the eCos specific arch/cc.h header file).

See the section called “Memory Footprint” for more information about tuning the lwIP memory footprint.

TCP

If the CYGPKG_LWIP_TCP option is configured then various TCP specific options are available for tuning the performance.
The main options are covered in the subsections below.

902

Configuration

Receive Window

The CYGNUM_LWIP_TCP_WND option defines the maximum TCP receive window size. This size is advertised to remote
peers to indicate how much data they can send. While larger values are faster, you should not advertise more than you can
receive, which means you must have sufficient capacity in the pbuf pool used for received data for all your connections.

Maximum Segment Size

The CYGNUM_LWIP_TCP_MSS option defines the Maximum Segment Size (MSS) advertised to peers to constrain the amount
of TCP data they send in each packet. This is recommended not to be more than the interface MTU less 40 bytes. The 40
bytes are the sum of a TCP header and IP header, neither with any options. If any options are used regularly, this value should
be reduced further.

If the MSS has been set too large, it will result in IP fragmentation and consequent inefficient network operation. If the MSS
is too large and IP fragmentation has been disabled (CYGFUN_LWIP_IP_FRAG), incorrect stack operation will likely result
including oversize packets never getting sent, or even a failure in the ethernet driver. The most common MTU size is 1500
bytes (leading to a recommended MSS of up to 1460 bytes) but is certainly not universal: some routers, and especially VPNs,
can have lower MTUs and will in turn fragment packets leading to lower efficiency. For best resource utilisation by lwIP, it is
a good idea for the MSS to be set so that incoming packets can fit into a whole number of pbufs from the packet buffer pool.
As such the default MSS is that of the pbuf pool packet buffer size (CYGNUM_LWIP_PBUF_POOL_BUFSIZE), less 40 bytes
to allow room for TCP and IP headers without options.

Sending Data

The CYGNUM_LWIP_TCP_SND_BUF option defines the amount of buffer space in bytes allowed for outstanding (unacked)
sent data for each TCP connection. This option is complementary to CYGNUM_LWIP_TCP_SND_QUEUELEN which defines
the number of packet buffers allowed for outstanding (unacked) sent data for each TCP connection. The TCP layer will refuse
to queue a buffer to be sent if either the total quantity of data in bytes waiting to be sent would then exceed CYGNUM_L-
WIP_TCP_SND_BUF, or there are already at least CYGNUM_LWIP_TCP_SND_QUEUELEN buffers in the queue waiting to
be sent.

Optimizations
The following sections detail some optimization hints that could be useful on certain target platforms to maximise lwIP data
throughput.

Checksums

A major performance bottle-neck for lwIP is the software checksum code, since it is executed frequently. If the underlying eth-
ernet device driver provides hardware checksum support then the appropriate CHECKSUM_GEN_* and CHECKSUM_CHECK_*
options can be disabled. However if software checksums are needed then you may want to override the standard checksum
implementation. This can be achieved by adding a LWIP_CHKSUM definition to a header file included by lwIP, e.g. adding
the following to lwipopts.h:

#define LWIP_CHKSUM your_checksum_routine

The standard lwip_standard_chksum() implementations from src/core/inet_chksum.c provide some C exam-
ples, though you might want to craft an assembly function for this specific case. RFC#1071 is a good introduction to this
subject. A highly optimized assembler routine will provide the greatest improvement in overall lwIP performance for software
checksum based systems.

If the CYGIMP_LWIP_CHECKSUM_ON_COPY functionality is enabled then support for calculating checksums when data is
copied into the stack (from application buffers into packet buffers) and can result in fewer checksum calculations if a packet
buffer is going to be used multiple times, or if pre-calculated checksums are available for pre-built packets.

The memcpy()-alike function:

u16_t lwip_chksum_copy (dest, src, len);

can be used to copy data, and return the checksum of the data copied. The extra TCP TF_SEG_DATA_CHECKSUMMED flag
is used internally by the lwIP TCP support to track whether a checksum has been set on the payload data.

903

Configuration

Network-vs-Host

Since network byte order is big-endian, other significant improvements can be made by supplying assembly or inline replace-
ments for htons() and htonl() if you're using a little-endian architecture.

#define LWIP_PLATFORM_BYTESWAP 1
#define LWIP_PLATFORM_HTONS(x) your_htons
#define LWIP_PLATFORM_HTONL(x) your_htonl

If the lwIP CYGIMP_LWIP_HAL_BYTESWAP configuration option is enabled then lwIP will use the HAL supplied support.
The CYGIMP_LWIP_HAL_BYTESWAP option is enabled by default if the architecture indicates that optimised byte-swap
implementations are available, otherwise the option is disabled by default and for little-endian architectures lwIP will provide
byte-swap functions.

Device Driver

The ethernet MAC device driver should ideally use interrupts and DMA to avoid busy loops wherever possible. Hardware
support for scatter-gather DMA should be used if available, since multiple packet buffers can then be used to hold the different
sections of a frame, allowing for zero-copy of payload data.

Release Builds

For a production release it is highly recommended to disable CYGDBG_LWIP_STATS.

Memory Footprint
The setting of the CYGNUM_LWIP_THREAD_STACK_SIZE configuration option and the memory configuration options de-
scribed in the section called “Performance” will all affect the overall RAM footprint required by lwIP.

However, as long as the option to use the standard run-time allocator (CYGFUN_LWIP_MEM_LIB_MALLOC) is NOT enabled,
the memory footprint of lwIP is deterministic and fixed by the selected configuration.

The major memory configuration options are listed below. Setting these configuration values is usually a compromise between
the amount of physical RAM available on the target platform, and the lwIP throughput (performance) requirements.

Heap size (CYGNUM_LWIP_MEM_SIZE)

This option defines the size of the heap that lwIP maintains separate from the system heap so that the resource requirements
of one do not affect the other. It is primarily (although not exclusively) used as the memory pool from which packet buffers
for transmission are allocated, when the data to be sent needs to be copied (type PBUF_RAM). It is also used to allocate
space for dynamically created messages boxes and semaphores. This option can be increased to improve performance
when sending large amounts of data.

Packet buffer size (CYGNUM_LWIP_PBUF_POOL_BUFSIZE)

This option specifies the maximum size of data which a single packet buffer (pbuf) allocated from the packet buffer pool
for incoming packets can contain. The overall memory footprint of each packet buffer is slightly larger to account for
metadata. Incoming packets larger than this size are chained together, using additional packet buffers. If only short packets
are usually received, memory efficiency may be improved by reducing the packet buffer size, even if this is accompanied
by an increase in the number of packets in the pool using the CYGNUM_LWIP_PBUF_POOL_SIZE option. If larger
packets tend to be received, the converse is true.

Note: Some network drivers set constraints on the value of this option, in order to better integrate with hardware properties.

Incoming packet messages (CYGNUM_LWIP_MEMP_NUM_TCPIP_MSG)
API messages (CYGNUM_LWIP_MEMP_NUM_API_MSG)

When using the sequential API these options define the simultaneous number of, respectively, the packet input and API
messages. These messages are used for communicating between external threads and the core lwIP network stack.

904

Configuration

Netbufs (CYGNUM_LWIP_MEMP_NUM_NETBUF)

This option defines the maximum number of netbuf structures which may be in use simultaneously with the sequential
API (which in turn are used by the BSD sockets API). Each netbuf structure corresponds to a chain of packet buffers to
be used for sending or receiving data. This option may be set to 0 if the application will only be using the raw API.

Netconns (CYGNUM_LWIP_MEMP_NUM_NETCONNS)

This option defines the maximum number of netconn structures which may be in use simultaneously with the sequential
API. Each netconn structure corresponds to a connection, whether active or inactive. This option may be set to 0 if the
application will only be using the raw API.

Packet buffer pool size (CYGNUM_LWIP_PBUF_POOL_SIZE)

This option specifies the number of packet buffers (pbufs) present in the packet buffer pool. This pool is used to pro-
vide space for incoming data packets, and so this option limits the number of incoming data packets being processed,
or pending (including those not yet read out from the stack by the application). It is also used to hold packet frag-
ments if the option CYGFUN_LWIP_IP_REASS is enabled, and so must be large enough to cover the CYGNUM_L-
WIP_IP_REASS_MAX_PBUFS requirement. Note that additional buffers are used in a chain when incoming packets are
received which exceed the maximum size of each packet buffer. This option may be adjusted depending on the anticipated
peak network traffic. Incoming packets are dropped when the pool is depleted.

Number of memp packet buffers (CYGNUM_LWIP_MEMP_NUM_PBUF)

The lwIP API allows packets to be transmitted which only contain a reference to the data being sent, instead of copying
the data into a separate buffer. This can be useful when sending a lot of data out of ROM (or other static memory). This
option specifies the number of such packets that can be used simultaneously. You may wish to increase the value of this
option if the application sends a lot of such data, or reduce if not sending any of this form. These buffers are also used when
IP fragmentation support is enabled, but a static buffer is not used (CYGIMP_LWIP_IP_FRAG_USES_STATIC_BUF
disabled), so may also need increasing if fragmentation is common.

RAW protocol control blocks (CYGNUM_LWIP_MEMP_NUM_RAW_PCB)

This option defines the number of RAW protocol control blocks that may be used simultaneously. One is required for
each active RAW connection.

UDP control blocks (CYGNUM_LWIP_MEMP_NUM_UDP_PCB)

This option defines the number of UDP protocol control blocks that may be used simultaneously. One is required for each
active UDP connection.

TCP control blocks (CYGNUM_LWIP_MEMP_NUM_TCP_PCB)

This option defines the number of TCP protocol control blocks that may be used simultaneously. One is required for each
TCP connection. Hence this option defines the maximum number of TCP connections that may be open simultaneously.
Increase the value of this option if more simultaneous TCP connections are required.

Listening TCP control blocks (CYGNUM_LWIP_MEMP_NUM_TCP_PCB_LISTEN)

This option defines the number of protocol control blocks dedicated to listening for incoming TCP connection requests.
This corresponds to the maximum number of TCP ports which may be simultaneously listened on.

Queued TCP segments (CYGNUM_LWIP_MEMP_NUM_TCP_SEG)

This option defines the maximum number of TCP segments which may be simultaneously queued. This option may need
to be adjusted if the stack reports memory failure errors when attempting to send large quantities of data through TCP
connections simultaneously, or when individual TCP writes are so large that the number of MSS-sized segments exceeds
the value of this option. If the option to allow out-of-order incoming packets (CYGIMP_LWIP_TCP_QUEUE_OOSEQ)
is enabled, then such segments may also be dropped if the maximum number of TCP segments specified in this option
has been reached.

905

Configuration

Queued packets for ARP resolve (CYGNUM_LWIP_MEMP_NUM_ARP_QUEUE)

The number of simultaneously queued outgoing packet buffers that are waiting for an ARP request to finish to resolve
their destination address.

Queued IP reassembly packets (CYGNUM_LWIP_MEMP_NUM_REASSDATA)
Simultaneous IP fragments (CYGNUM_LWIP_MEMP_NUM_FRAG_PBUF)

These options provide respectively the number of packets that can simultaneously be queued for reassembly, and the
number of fragments (not packets) that can be simultaneously queued for sending.

System timeouts (CYGNUM_LWIP_MEMP_NUM_INTERNAL_TIMEOUTS)
User timeouts (CYGNUM_LWIP_MEMP_NUM_USER_TIMEOUTS)

The INTERNAL value is the number of timeout objects required to support the configured lwIP features. The USER value
defines the maximum number of user timeouts that may be pending simultaneously. The value of this option may need
to be increased if there are more threads using the raw API, or if there are more threads calling the select() BSD
compatibility function.

Multicast group members (CYGNUM_LWIP_MEMP_NUM_IGMP_GROUP)

This option defines the number of multicast groups whose network interfaces can be members at the same time. This value
must be at least twice the number of active network interfaces active in the configuration.

Active lwip_addrinfo() calls (CYGNUM_LWIP_MEMP_NUM_NETDB)
Local host list entries (CYGNUM_LWIP_MEMP_NUM_LOCALHOSTLIST)

If DNS support is enabled then these options respectively control the number of concurrent lwip_addrinfo() calls
supported, and the number of host entries in the dynamic local host list.

Simultaneous PPP connections (CYGNUM_LWIP_MEMP_NUM_PPP_PCB)
Concurrent PPPoE interfaces (CYGNUM_LWIP_MEMP_NUM_PPPOE_INTERFACES)

These options respectively control the number of simultaneously active PPP connections, and the number of concurrently
active PPPoE connections.

lwIP Footprint

The following size information was gathered from a CortexM3 targeted configuration using the eCosCentric GNU tools (ver-
sion 4.4.5c) with gcc -O2 optimization selected. The byte sizes are provided to give an example overview of the lwIP footprint
that can be expected, and are purely for informational purposes.

In the following builds Basic refers to a sequential API configuration with UDP and TCP support, but with most options disabled
(no fragmentation or reassembly support, static address, no SNMP agent, no IGMP, etc.). The builds marked Reassembly refers
to the addition of fragmented packet reassembly code to the Basic builds. The Full entry is a configuration with all the lwIP
ethernet features enabled (excluding SNMP, SLIP and PPP) to give an idea of the upper footprint for a fully-featured ethernet
build.

The values given are for the complete lwIP library package, so specific application linkage (due to the eCos use of -ffunc-
tion-sections) means that not all of the code and data measured in the sizes given below may actually be included in the
final executable. The footprint can be made even smaller by explicit use of the raw API.

Note: The bss values below do NOT include the stack requirement for the sequential API thread, nor the main configurable
lwIP heap space. This is because the aim is to present an example of the base lwIP requirement, independent of the configured
heap and stack space required for a particular application or target environment.

CortexM3 (STM32F2xx) text + rodata data bss

Basic IPv4 static 40224 16 516

Basic IPv4 AutoIP 41660 16 516

906

Configuration

CortexM3 (STM32F2xx) text + rodata data bss

Basic IPv4 DHCP 46712 16 520

Basic IPv4 IPv6 58680 24 613

Reassembly IPv4 static 41928 16 526

Reassembly IPv4 IPv6 60488 24 627

Full IPv4 IPv6 80512 24 1843

Note: Configurations built with the options CYGDBG_LWIP_DEBUG, CYGDBG_LWIP_ASSERTS or CYGDBG_LWIP_S-
TATS enabled will have a significantly larger code footprint. Similarly configurations built with the CYGPKG_INFRA_DEBUG
option or the compiler -O0 optimisation flag will also have a significant effect on the footprint.

Example "small" footprint

The example described in this section targets the STM3220G-EVAL platform, but similar figures have also been obtained for
other platforms (e.g. AT91SAM7XEK).

With careful tuning it is possible to implement a simple raw API webserver using the httpd2 test example in ~32K of ROM
and ~10K of RAM. This is for the complete application, thread stacks, network buffers, etc.

Even though httpd2 is a simple application it does provide a real-world useful working data point for a minimal footprint
system. Note: For this example build the httpd2.c source was modified to use the minimal STACK_SIZE definition.

The small_rom_stm3220g_httpd2.ecm example template used is provided in the lwIP package doc directory. The
steps needed to build the minimal example binary are:

$ mkdir small_httpd2
$ cd small_httpd2
$ ecosconfig new stm3220g_eval
[ecosconfig output elided]
$ ecosconfig import $ECOS_REPOSITORY/net/lwip_tcpip/VERSION/doc/small_rom_stm3220g_httpd2.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make tests
[make output elided]
$ arm-eabi-objcopy -O binary install/tests/net/lwip_tcpip/VERSION/tests/httpd2 httpd2.bin

The produced httpd2.bin binary can then be loaded into the flash of the STM3220G-EVAL at address 0x08000000.

907

Chapter 164. Sequential API
Overview
As described earlier, the lwIP sequential API provides a straightforward and easy-to-use method of interfacing to the stack.
Unlike the raw API, which requires event-driven callbacks, an application can simply call the API functions as needed to
perform stack operations such as sending data, receiving data, or manipulating packet buffers or connections. While the raw
API may allow for more efficient operation, the sequential API typically allows for simpler application design.

Comparison with BSD sockets
In design, it is not unlike the BSD sockets API. Some of the terminology differs however: in the sequential API, the term
connection is used for any communication link between network peers, and the handle for a connection is termed a netconn.
A netconn can be considered analogous to a socket, albeit specific to networking - BSD sockets traditionally represent both
network connections and files.

The main reason for superiority over the socket API occurs with buffer management. The BSD socket API was designed to
manage the fact that the user and the operating system kernel operate in different address spaces and data must always be
copied regardless. This results in not only decreased performance, but also increased footprint as buffers must be allocated
to hold the copied data.

BSD API Restrictions
By default the eCos lwIP configurations enable the option CYGFUN_LWIP_COMPAT_SOCKETS which means normally you
cannot include both the lwIP headers <lwip/sockets.h> or <network.h>, and the CYGPKG_IO_FILEIO package
(i.e. POSIX-alike) headers from the same file.

Netbufs
Instead of the BSD approach of generic buffers, the sequential API uses netbufs, which are based on pbufs. This allows users
to manage buffers directly, including even allowing data to come from ROM. Since pbufs, and hence netbufs, can be chained,
this also allows the application and lwIP to avoid the need for large regions of entirely contiguous memory in order to hold
data. Instead data can be constructed in chunks, and chained together.

When the application wishes to send data, it can send a netbuf directly with UDP. TCP is different as it is intrinsically a
buffering, streaming protocol, which requires data to be kept aside to allow for retransmissions. As a result data is sent using
just a pointer to memory and a length. However since TCP data can also reside in ROM, it is possible to indicate that the data
does not need copying, and so will persist even if the stack needs to queue the data. This can lead to huge savings of memory.
For example, static web page content can reside in ROM, and never need to be copied to RAM.

For both TCP and UDP, incoming data is passed to the application as netbufs. The application can use API functions to extract
the data from the netbufs - care must be taken as the received data may in fact be a chain. A convenience function exists to
copy out the entirety of data across the whole chain into a single contiguous region of memory. Otherwise the application can
process data in each netbuf in the chain in turn. The functions netbuf_first() and netbuf_next() can be used to
iterate throught the chain.

TCP/IP thread
When interacting with the network stack using the sequential API, all operations are not handled by the calling thread, but
instead are passed to the lwIP network processing (TCP/IP) thread. Inter-thread communication is used inside lwIP to ensure
that at the point the API function returns, operation is either complete, or for asynchronous operations, under way.

For example, to register a timeout callback the tcpip_timeout() function can be used from client threads to cross the
thread boundary into the sequential TCP/IP thread. However, since the actual timeout callback handler registered will be

908

Sequential API

executed within the sequential TCP/IP thread context, it can subsequently directly call the lwIP internal sys_timeout()
if it needs to re-schedule its callback.

Usage

API declarations
Declarations for all sequential API types and functions may be obtained by including the <lwip/api.h> header file:

#include <lwip/api.h>

Types
Objects of type struct netconn and struct netbuf are intended to be used as opaque types and the structure contents are intended
to be maintained and viewed only by lwIP itself. User applications accessing internal members do so at their own risk, and
future API compatibility is not guaranteed, nor is thread synchronization since lwIP is entitled to change structure contents
at any time.

IP address representation

Depending on the lwIP configuration some API functions take an IP address, which can either be an IPv4 or an IPv6 address.

The IPv4 type struct ip_addr may be accessed as if it has the following structure:

struct ip_addr {
 u32_t addr;
};

The IPv6 type struct ip6_addr may be accessed as if it has the following structure:

struct ip6_addr {
 u32_t addr[4];
};

Caution

API users must use the declarations of these structures from the header file <lwip/ip_addr.h> which is
included implicitly by <lwip/api.h>. These types must not be declared by the application itself.

To make it easier to work with either IPv4 or IPv6 addresses the type ipX_addr_t is provided. This is a union of the IPv4 and
IPv6 address structures, and may be accessed as if it has the following structure:

typedef union {
 ip_addr_t ip4;
 ip6_addr_t ip6;
} ipX_addr_t;

See the section called “ipX Helpers” for an overview of the IP version neutral address support. As with the caveat regarding
the declarations of the specific IPv4 and IPv6 address structures, the ipX declarations should be accessed via including the
<lwip/ip_addr.h> header file.

IPv4 Addresses

For convenience, predefined struct ip_addr instances are provided for the special cases of "any" IP address (0.0.0.0), and the
global broadcast address (255.255.255.255). These instances can be accessed with the macro defines IP_ADDR_ANY and
IP_ADDR_BROADCAST which return values of type struct ip_addr *.

The addr field is a 32-bit integral value representing the IP address in network byte order (not host byte order).

A variety of convenience function-like macros exist for manipulation or evaluation of IP addresses:

909

Sequential API

IP_ADDR_ANY

This macro evaluates to an expression of type struct ip_addr * identifying an IP address structure which can be used to
represent the special "any" IP address 0.0.0.0.

IP_ADDR_BROADCAST

This macro evaluates to an expression of type struct ip_addr * identifying an IP address structure which can be used to
represent the special global IP address 255.255.255.255.

IN_CLASSA(a)

An expression which evaluates to non-zero if a (of type u32_t and in host byte order) is a class A internet address.

IN_CLASSB(a)

An expression which evaluates to non-zero if a (of type u32_t and in host byte order) is a class B internet address.

IN_CLASSC(a)

An expression which evaluates to non-zero if a (of type u32_t and in host byte order) is a class C internet address.

IN_CLASSD(a)

An expression which evaluates to non-zero if a (of type u32_t and in host byte order) is a class D internet address.

IP4_ADDR(ipaddr, a, b, c, d)

Sets ipaddr (of type struct ip_addr *) to the internet address a.b.c.d. For example:

struct ip_addr host;
 …
 IP4_ADDR(host, 192, 168, 1, 1);

ip_addr_cmp(addr1, addr2)

Returns non-zero if the arguments addr1 and addr2, both of type struct ip_addr * are identical. Zero if they differ.

ip_addr_netcmp(addr1, addr2, mask)

Returns non-zero if the arguments addr1 and addr2, both of type struct ip_addr * are on the same network, as indicated
by the network mask mask which is itself also of type struct ip_addr *. Zero if they are on different networks.

htons(s)

Portably converts s of type u16_t from host byte order to a u16_t in network byte order.

ntohs(s)

Portably converts s of type u16_t from network byte order to a u16_t in host byte order.

htonl(l)

Portably converts l of type u32_t from host byte order to a u32_t in network byte order.

ntohl(l)

Portably converts l of type u32_t from network byte order to a u32_t in host byte order.

Some further potentially useful macro definitions can be viewed in <lwip/ip_addr.h>.

IPv6 Addresses

The header file <lwip/ip6_addr.h> (which is included by default from <lwip/api.h>) contains definitions for many
IPv6 address convenience function-like macros, as well as utility function prototypes.

910

Sequential API

The following is not an exhaustive list, so the reader is recommended to inspect the header file to get a complete overview of
the IPv6 address support macros and functions.

IP6_ADDR_ANY

This macro evaluates to an expression of type struct ip6_addr * identifying an IP address structure which can be used to
represent the special "any" IPv6 address ::/128. It actually just returns the address of the exported ip6_addr_any
variable.

ip6_addr_copy(dest, src)

This implements a fast (no NULL check) address copy.

ip6_addr_set(dest, src)

Set the dest address from the supplied src. If src is NULL the destination is written with zeroes.

ip6_addr_set_zero(ip6addr)

Sets the ip6addr address to all zeroes.

ip6_addr_set_any(ip6addr)

This explicitly sets the IP6_ADDR_ANY address value.

ip6_addr_set_loopback(ip6addr)

This sets the destination ip6addr parameters to the ::1 loopback address.

ip6_addr_set_hton(dest, src)

Copy the src address to the dest address converting from host to network byte order.

ip6_addr_netcmp(addr1, addr2)

An expression which evaluates to non-zero if the supplied addr1 and addr2 parameters are on the same network, by
comparing the most-significant 64-bits of the addresses.

ip6_addr_cmp(addr1, addr2)

An expression which evaluates to non-zero if there is an exact match between the supplied addr1 and addr2 parameters.

ip6_get_subnet_id(ip6addr)

This returns in host byte order the 16-bit subnet identifier.

ip6_addr_isany(ip6addr)

An expression which evaluates to non-zero if ip6addr matches the IP6_ADDR_ANY address (all zeroes).

ip6_addr_isglobal(ip6addr)

An expression which evaluates to non-zero if the supplied ip6addr is a valid global address.

ip6_addr_islinklocal(ip6addr)

An expression which evaluates to non-zero if the ip6addr parameter is a valid link-local address.

ip6_addr_issitelocal(ip6addr)

An expression which evaluates to non-zero if the ip6addr parameter is a valid site-local address.

911

Sequential API

ip6_addr_isuniquelocal(ip6addr)

An expression which evaluates to non-zero if the ip6addr parameter is a valid unique link-local address.

ip6_addr_ismulticast(ip6addr)

An expression which evaluates to non-zero if the supplied ip6addr is a valid multicast address.

There are various other function-like macros provided to further decode whether the multicast address is a loopback,
link-local, admin-local, global, etc. address. The definitions for these variants can be found by inspecting the <lwip/
ip6_addr.h> header file.

ip6_addr_isallnodes_iflocal(ip6addr)

An expression which evaluates to non-zero if the supplied ip6addr matches the IPv6 ff01::1 loopback "all nodes"
address.

ip6_addr_isallnodes_linklocal(ip6addr)

An expression which evaluates to non-zero if the supplied ip6addr matches the IPv6 link-local "all nodes" address.

ip6_addr_isallrouters_linklocal(ip6addr)

An expression which evaluates to non-zero if the supplied ip6addr matches the IPv6 link-local "all routers" address.

ip6_addr_set_allnodes_linklocal(ip6addr)

Sets the given ip6addr to the ff02::1 link-local "all nodes" multicast address.

ip6_addr_set_allrouters_linklocal(ip6addr)

Sets the given ip6addr to the ff02::2 link-local "all routers" multicast address.

ip6_addr_isinvalid(addr_state)

An expression which evaluates to non-zero if the supplied addr_state parameter is IP6_ADDR_INVALID.

ip6_addr_isvalid(addr_state)

An expression which evaluates to non-zero if the supplied addr_state parameter denotes a valid address state, where
the IP6_ADDR_VALID bitmask is set.

ip6_addr_istentative(addr_state)

An expression which evaluates to non-zero if the supplied addr_state parameter has the IP6_ADDR_TENTATIVE
bitmask set.

ip6_addr_ispreferred(addr_state)

An expression which evaluates to non-zero if the supplied addr_state parameter is IP6_ADDR_PREFERRED.

ip6_addr_isdeprecated(addr_state)

An expression which evaluates to non-zero if the supplied addr_state parameter is IP6_ADDR_DEPRECATED.

int ip6addr_aton(const char *cp, ip6_addr_t *addr)

Checks whether cp is a valid ASCII representation of an IPv6 address, and if valid converts it to the binary IPv6 address
destination addr. The function returns 1 on successful conversion, or 0 on failure.

char *ip6addr_ntoa_r(const ip6_addr_t *addr, char *buf, int buflen)

Converts the binary IPv6 address addr into an ASCII representation written into the supplied buf buffer of buflen
bytes.

912

Sequential API

Returns the buf parameter on success if the buffer has been updated to hold the ASCII address representation, or NULL
if the buffer was too small.

ipX Helpers

Instead of directly referencing the IPv4 or IPv6 versions of the utility routines, applications should ideally use the common
ipX_* variants. These functions, and function-like macros, take as their first parameter a boolean is_ipv6 value denoting
when zero that the referenced addresses are IPv4 structures, or when non-zero that the referenced addresses are IPv6 structures.
Note: If IPv6 support is not enabled for lwIP then the ipX_* implementations default to only using IPv4 addresses.

ipX_addr_copy(is_ipv6, dest, src)

This implements a fast (no NULL check) address copy.

ipX_addr_set(is_ipv6, dest, src)

Set the dest address from the supplied src. If src is NULL the destination is written with zeroes.

ipX_addr_set_ipaddr(is_ipv6, dest, src)

Sets the dest address parameter from the specified src. If src is NULL the destination is written with zeroes.

ipX_addr_set_zero(is_ipv6, ipaddr)

Sets the address to all zeroes. This is normally the ANY address.

ipX_addr_set_any(is_ipv6, ipaddr)

This explicitly sets the ANY address.

ipX_addr_set_loopback(is_ipv6, ipaddr)

This sets the destination ipaddr to the respective loopback interface address. For IPv4 this is 127.0.0.1 and ::1
for IPv6.

ipX_addr_set_hton(is_ipv6, dest, src)

Copy the src address to the dest address converting from host to network byte order.

ipX_addr_cmp(is_ipv6, addr1, addr2)

An expression which evaluates to non-zero if there is an exact match between the supplied addr1 and addr2 parameters.

ipX_addr_isany(is_ipv6, ipaddr)

An expression which evaluates to non-zero if ipaddr is NULL or points at the ANY address value.

ipX_addr_ismulticast(is_ipv6, ipaddr)

An expression which evaluates to non-zero if ipaddr references a valid multicast address value.

ipX_addr_debug_print(is_ipv6, debug, ipaddr)

This debugging helper macro will output the raw IPv4 or IPv6 address via the printf-alike debug support calls if the relevant
lwIP debugging option specified by the debug parameter is enabled.

Error codes

While the BSD sockets API uses POSIX standard error codes (ENOMEM, EINVAL, etc.) the lwIP sequential API has its own
separate set of error code definitions.

These error definitions are used by any API function that returns a value of type err_t. The following table indicates possible
error code values and their meaning:

913

Sequential API

Table 164.1. lwIP sequential API error codes

Code Meaning

ERR_OK No error, operation successful.

ERR_MEM Out of memory error.

ERR_BUF Buffer error.

ERR_ABRT Connection aborted.

ERR_RST Connection reset.

ERR_CLSD Connection closed.

ERR_CONN Not connected.

ERR_VAL Illegal value.

ERR_ARG Illegal argument.

ERR_RTE Routing problem.

ERR_USE Address in use.

ERR_IF Low-level network interface error.

ERR_ISCONN Already connected.

ERR_TIMEOUT Timeout.

ERR_INPROGRESS Operation in progress.

ERR_WOULDBLOCK Operation would block.

API reference

914

Sequential API

Name
netbuf_new() — Allocate a netbuf structure

Synopsis
struct netbuf *netbuf_new ();

Description

Allocates a netbuf structure. No buffer space is allocated when doing this, only the top level structure. After use, the netbuf
must be deallocated with netbuf_delete().

915

Sequential API

Name
netbuf_delete() — Deallocate a netbuf structure

Synopsis
void netbuf_delete ();

Description

Deallocates a netbuf structure previously allocated by a call to the netbuf_new() function. Any buffer memory allocated
to the netbuf by calls to netbuf_alloc() is also deallocated.

Example

Example 164.1. This example shows the basic mechanisms for using netbufs.

int
main()
{
 struct netbuf *buf;
 buf = netbuf_new(); /* create a new netbuf */
 netbuf_alloc(buf, 100); /* allocate 100 bytes of buffer */

 /* do something with the netbuf */
 /* […] */
 netbuf_delete(buf); /* deallocate netbuf */
}

916

Sequential API

Name
netbuf_alloc() — Allocate space in a netbuf

Synopsis
void *netbuf_alloc (buf, size);

Description

Allocates buffer memory with size number of bytes for the netbuf buf. The function returns a pointer to the allocated
memory. Any memory previously allocated to the netbuf buf is deallocated. The allocated memory can later be deallocated
with the netbuf_free() function. Since protocol headers are expected to precede the data when it should be sent, the
function allocates memory for protocol headers as well as for the actual data.

917

Sequential API

Name
netbuf_free() — Deallocate buffer memory associated with a netbuf

Synopsis
void netbuf_free (buf);

Description

Deallocates the buffer memory associated with the netbuf buf. If no buffer memory has been allocated for the netbuf, this
function does nothing.

918

Sequential API

Name
netbuf_ref() — Associate a data pointer with a netbuf

Synopsis
err_t netbuf_ref (buf, data, size);

Description

Associates the external memory pointed to by the data pointer with the netbuf buf. The size of the external memory is given
by size. Any memory previously allocated to the netbuf is deallocated. The difference between allocating memory for the
netbuf with netbuf_alloc() and allocating memory using, e.g., malloc() and referencing it with netbuf_ref() is
that in the former case, space for protocol headers is allocated as well which makes processing and sending the buffer faster.

The result returned will be ERR_OK if the data is referenced successfully, or the error ERR_MEM if the data could not be
referenced due to lack of memory.

Example

Example 164.2. This example shows a simple use of the netbuf_ref()

int
main()
{
 struct netbuf *buf;
 char string[] = "A string";

 /* create a new netbuf */
 buf = netbuf_new();

 /* reference the string */
 if (netbuf_ref(buf, string, sizeof(string)) == ERR_OK) {
 /* do something with the netbuf */
 /* […] */
 }

 /* deallocate netbuf */
 netbuf_delete(buf);
}

919

Sequential API

Name
netbuf_len() — Obtain the total length of a netbuf

Synopsis
u16_t netbuf_len (buf);

Description

Returns the total length of the data in the netbuf buf, even if the netbuf is fragmented. For a fragmented netbuf, the value
obtained by calling this function is not the same as the size of the first fragment in the netbuf.

920

Sequential API

Name
netbuf_data() — Obtain a pointer to netbuf data

Synopsis
err_t netbuf_data (buf, data, len);

Description

This function is used to obtain a pointer to and the length of a block of data in the netbuf buf. The arguments data and
len are result parameters that will be filled with a pointer to the data and the length of the data pointed to. If the netbuf is
fragmented, this function gives a pointer to one of the fragments in the netbuf. The application program must use the fragment
handling functions netbuf_first() and netbuf_next() in order to reach all data in the netbuf. See the example under
netbuf_next() for an example of how use netbuf_data().

921

Sequential API

Name
netbuf_next() — Traverse internal fragments in a netbuf

Synopsis
s8_t netbuf_next (buf);

Description

This function updates the internal fragment pointer in the netbuf buf so that it points to the next fragment in the netbuf. The
return value is zero if there are more fragments in the netbuf, > 0 if the fragment pointer now points to the last fragment in the
netbuf, and < 0 if the fragment pointer already pointed to the last fragment.

Example

Example 164.3. This example shows how to use the netbuf_next() function

We assume that this is in the middle of a function and that the variable buf is a netbuf.

 /* […] */
 do {
 char *data;
 int len;

 /* obtain a pointer to the data in the fragment */
 netbuf_data(buf, data, len);

 /* do something with the data */
 do_something(data, len);
 } while(netbuf_next(buf) >= 0);
 /* […] */

922

Sequential API

Name
netbuf_first() — Reset fragment pointer to start of netbuf

Synopsis
void netbuf_first (buf);

Description

Resets the internal fragment pointer in the netbuf buf so that it points to the first fragment.

923

Sequential API

Name
netbuf_copy() — Copy all netbuf data to memory pointer

Synopsis
void netbuf_copy (buf, data, len);

Description

Copies all of the data from the netbuf buf into the memory pointed to by data even if the netbuf buf is fragmented. The len
parameter is an upper bound of how much data that will be copied into the memory pointed to by data.

Example

Example 164.4. This example shows a simple use of netbuf_copy()

Here, 200 bytes of memory is allocated on the stack to hold data. Even if the netbuf buf has more data that 200 bytes, only
200 bytes are copied into data.

void
example_function(struct netbuf *buf)
{
 char data[200];
 netbuf_copy(buf, data, 200);

 /* do something with the data */
}

924

Sequential API

Name
netbuf_copy_partial() — Copy some netbuf data to memory pointer

Synopsis
void netbuf_copy_partial (buf, data, len, offset);

Description

This function is similar to netbuf_copy() except that it takes an extra parameter, offset, which can be used to set an
offset from the start of the packet to start copying the len bytes.

925

Sequential API

Name
netbuf_chain() — Chain two netbufs together

Synopsis
void netbuf_chain (head, tail);

Description

Chains the two netbufs head and tail together so that the data in tail will become the last fragment(s) in head. The netbuf
tail is deallocated and should not be used after the call to this function.

926

Sequential API

Name
netbuf_fromaddr() — Obtain the sender's IPv4 address for a netbuf

Synopsis
struct ip_addr *netbuf_fromaddr (buf);

Description

Returns the IPv4 address of the host the netbuf buf was received from. If the netbuf has not been received from the network,
the return value of this function is undefined. The function netbuf_fromport() can be used to obtain the port number
of the remote host.

927

Sequential API

Name
netbuf_fromaddr_ip6() — Obtain the sender's IPv6 address for a netbuf

Synopsis
struct ip6_addr *netbuf_fromaddr (buf);

Description

Returns the IPv6 address of the host the netbuf buf was received from. If the netbuf has not been received from the network,
the return value of this function is undefined. The function netbuf_fromport() can be used to obtain the port number
of the remote host.

928

Sequential API

Name
netbuf_fromport() — Obtain the sender's port number for a netbuf

Synopsis
u16_t netbuf_fromport (buf);

Description

Returns the port number of the host the netbuf buf was received from. If the netbuf has not been received from the network,
the return value of this function is undefined. The function netbuf_fromaddr() can be used to obtain the IP address of
the remote host.

929

Sequential API

Name
netconn_new() — Create a new connection structure

Synopsis
struct netconn *netconn_new (type);

Description

Creates a new connection abstraction structure. The argument usually one of either NETCONN_TCP or NETCONN_UDP, yield-
ing either a TCP or a UDP connection. No connection is established by the call to this function and no data is sent over the
network.

For more advanced use, it is also possible to specify different connection types: NETCONN_UDPLITE, NETCONN_UDP-
NOCHKSUM or NETCONN_RAW.

If IPv6 support is configured then the type can be suffixed with _IPV6 to specify an IPv6 connection. e.g. NETCON-
N_TCP_IPV6.

930

Sequential API

Name
netconn_new_with_callback() — Create a new connection structure with a callback

Synopsis
struct netconn *netconn_new_with_callback (type, (*callback));

Description

This function is similar to netconn_new() except that an additional function pointer callback is passed. The function
pointed to by callback will be called when data is sent or received. Specifically, the netconn_evt parameter to the
callback is used to indicate the event type. This enum can have the following values:

NETCONN_EVT_RCVPLUS

Used when new incoming data from a remote peer arrives. The amount of data received is passed in len. If len is 0 then
a connection event has occurred: this may be an error, the acceptance of a connection for a listening connection (called
for the listening connection), or deletion of the connection.

NETCONN_EVT_RCVMINUS

Used when new incoming data from a remote peer has been received and accepted by higher layers. The amount of data
accepted is passed in len. If len is 0 then this indicates the acceptance of a connection as a result of a listening port
(called for the newly created accepted connection).

NETCONN_EVT_SENDPLUS

Used when data has been sent to a remote peer and received by it. This only occurs for TCP connections, and specifically
is only triggered when, as a consequence of TCP acknowledgements from the remote peer, the free TCP send buffer size
now exceeds the configured send buffer low water mark (configured with the CYGNUM_LWIP_TCP_SNDLOWAT CDL
configuration option). The amount of data sent in the most recent transaction is passed in len. If len is 0 then this
indicates the connection has been deleted.

NETCONN_EVT_SENDMINUS

This is only used for TCP connections, and is triggered when a sufficient amount of data has been sent on the connection
that the amount of free send buffer space is now under the send buffer low water mark (configured with the CYGNUM_L-
WIP_TCP_SNDLOWAT CDL configuration option). The amount of data sent in the most recent transaction is passed in
len.

NETCONN_EVT_ERROR

This is only used for TCP connections, and is triggered when an error has occurred or a connection is being forced closed.
It is used to signal select().

931

Sequential API

Name
netconn_new_with_proto_and_callback() — Create a new connection structure with a callback for a specific protocol

Synopsis
struct netconn *netconn_new_with_callback(type, proto, (*callback));

Description

This function is similar to netconn_new_with_callback() except that an additional parameter proto may be used
to indicate the IP protocol number to use. If proto is non-zero, it must only be used with the type set to NETCONN_RAW.

The most common use of this function is the creation of connections suitable for generating ICMP packets.

932

Sequential API

Name
netconn_delete() — Deallocate a netconn

Synopsis
err_t netconn_delete (conn);

Description

Deallocates the netconn conn. If the connection is open, it is closed as a result of this call.

933

Sequential API

Name
netconn_type() — Obtain the type of netconn

Synopsis
enum netconn_type netconn_type (conn);

Description

Returns the type of the connection conn. This is the same type that is given as an argument to netconn_new() (and its variants)
and can be one of NETCONN_TCP, NETCONN_UDP, NETCONN_UDPLITE, NETCONN_UDPNOCHKSUM or NETCONN_RAW.

If IPv6 support is configured then it can also be one of NETCONN_TCP_IPV6, NETCONN_UDP_IPV6, NETCONN_UD-
PLITE_IPV6 or NETCONN_UDPNOCHKSUM_IPV6.

934

Sequential API

Name
netconn_peer() — Obtain the remote host IP address/port of a netconn

Synopsis
err_t netconn_peer (conn, addr, port);

Description

This function is used to obtain the IPv4 address and port of the remote end of the connection indicated by conn. The parameters
addr and port are result parameters that are set by the function. If the connection conn is not connected to any remote
host, the results are undefined.

935

Sequential API

Name
netconn_addr() — Obtain the local host IPv4 address/port of a netconn

Synopsis
err_t netconn_addr (conn, addr, port);

Description

This function is used to obtain the local IPv4 address and port number of the connection conn.

936

Sequential API

Name
netconn_bind() — Set local IP address/port of a netconn

Synopsis
err_t netconn_bind (conn, addr, port);

Description

Binds the connection conn to the local IP address addr and TCP or UDP port port. If addr is NULL, the local IP address
is determined by the networking system.

The addr is defined as a pointer to an IPv4 address, though the routine will accept a suitably cast IPv6 address structure
pointer. However the netconn_bind_ip6() function provides explicit IPv6 address support.

937

Sequential API

Name
netconn_bind_ip6() — Set local IPv6 address/port of a netconn

Synopsis
err_t netconn_bind (conn, addr, port);

Description

Binds the connection conn to the local IPv6 address addr and TCP or UDP port port. If addr is NULL, the local IP address
is determined by the networking system.

938

Sequential API

Name
netconn_connect() — Connect netconn to remote peer

Synopsis
err_t netconn_connect (conn, remote_addr, remote_port);

Description

In case of UDP, sets the remote receiver as given by remote_addr and remote_port of UDP messages sent over the
connection. For TCP, netconn_connect() opens a connection with the remote host.

Solely for UDP, it is possible to call netconn_connect() repeatedly to set a new remote destination to use for UDP
packets, rather than having to create and delete netconns for each destination.

939

Sequential API

Name
netconn_connect_ip6() — Connect netconn to remote peer

Synopsis
err_t netconn_connect (conn, remote_addr, remote_port);

Description

If IPv6 is configured then this provides similar functionality to the IPv4 function netconn_connect(), but with the re-
mote_addr referencing an IPv6 addresss.

940

Sequential API

Name
netconn_disconnect() — Disconnect UDP connection

Synopsis
err_t netconn_disconnect (conn);

Description

This function is only relevant for UDP connections. It unsets any previously set (using netconn_connect()) remote peer
address and port associated with connection conn.

941

Sequential API

Name
netconn_listen() — Make a listening TCP netconn

Synopsis
err_t netconn_listen (conn);

Description

Puts the TCP connection conn into the TCP LISTEN state. This means its purpose will become listening for incoming con-
nections from remote peers. netconn_accept() is required to establish a connection resulting from incoming connection
requests.

942

Sequential API

Name
netconn_accept() — Wait for incoming connections

Synopsis
err_t netconn_accept (conn, new_conn);

Description

This function blocks the process until a connection request from a remote host arrives on the TCP connection conn. The
connection must be in the LISTEN state so netconn_listen() must be called prior to netconn_accept(). When a
connection is established with the remote host, a new connection structure is returned in the new_conn parameter.

Example

Example 164.5. This example shows how to open a TCP server on port 2000 *

int
main()
{
 struct netconn *conn, *newconn;

 /* create a connection structure */
 conn = netconn_new(NETCONN_TCP);

 /* bind the connection to port 2000 on any local IP address */
 netconn_bind(conn, NULL, 2000);

 /* tell the connection to listen for incoming connection requests */
 netconn_listen(conn);

 /* block until we get an incoming connection */
 if (netconn_accept(conn, newconn) == ERR_OK) {
 /* do something with the connection */
 process_connection(newconn);

 /* deallocate both connections */
 netconn_delete(newconn);
 }
 netconn_delete(conn);
}

*This is only an example for illustrative purposes, and a complete version should perform comprehensive error checking.

943

Sequential API

Name
netconn_recv() — Wait for data

Synopsis
err_t netconn_recv (conn, new_buf);

Description

This function blocks the process while waiting for data to arrive on the connection conn. The return value will be ERR_OK on
success. On error, for example if the connection has been closed by the remote host, NULL is returned in new_buf, otherwise
a netbuf containing the received data is returned in new_buf.

Example

Example 164.6. This example demonstrates usage of the netconn_recv() function

In the following code, we assume that a connection has been established before the call to example_function().

voidexample_function(struct netconn *conn)
{
 struct netbuf *buf;
 err_t err;

 /* receive data until the other host closes the connection */
 while((err = netconn_recv(conn, buf)) == ERR_OK) {
 do_something(buf);
 }

 /* the connection has now been closed by the other end, so we close our end */
 netconn_close(conn);
}

944

Sequential API

Name
netconn_recv_tcp_pbuf() — Wait for data

Synopsis
err_t netconn_recv_tcp_pbuf (conn, new_buf);

Description

This function is similar to the netconn_recv() function, with the difference that the received data is placed in a pbuf
instead of a netbuf.

945

Sequential API

Name
netconn_recved() — Update receive window

Synopsis
void netconn_recved (conn, length);

Description

The application can call this function to notify the stack that it has processed the received data and is able to accept new data.

Warning

This function is primarily for use with sockets, and should be used with care. It can only be used when netcon-
n_set_noautorecved(conn,1) has been used to disable the automatic receive window updating.

946

Sequential API

Name
netconn_write() — Send data on TCP connection

Synopsis
err_t netconn_write (conn, data, len, copy);

Description

This function is only used for TCP connections. It puts the data pointed to by data on the output queue for the TCP connection
conn. The length of the data is given by len. There is no restriction on the length of the data. This function does not require
the application to explicitly allocate buffers, as this is taken care of by the stack. The copy parameter is a combination of
the following bitmask flags:

#define NETCONN_NOFLAG 0x00
#define NETCONN_COPY 0x01
#define NETCONN_MORE 0x02
#define NETCONN_DONTBLOCK 0x04

When passed the flag NETCONN_COPY the data is copied into internal buffers which are allocated for the data. This allows
the data to be modified directly after the call, but is inefficient both in terms of execution time and memory usage. If the flag
is not set then the data is not copied but rather referenced, and the NETCONN_NOCOPY manifest is provided for backwards
compatibality. The data must not be modified after the call, since the data can be put on the retransmission queue for the
connection, and stay there for an indeterminate amount of time. This is useful when sending data that is located in ROM and
therefore is immutable. If greater control over the modifiability of the data is needed, a combination of copied and non-copied
data can be used, as seen in the example below.

The flag NETCONN_MORE can be used for TCP connections and indicates that the PSH (push) flag will be set on the last
segment sent. The flag NETCONN_DONTBLOCK tells the stack to only write the data if all the data can be written at once.

Example

Example 164.7. This example demonstrates basic usage of the netconn_write() function *

Here, the variable data is assumed to be modified later in the program, and is therefore copied into the internal bufiers by
passing the flag NETCONN_COPY to netconn_write(). The text variable contains a string that will not be modified and
can therefore be sent using references instead of copying.

int
main()
{
 struct netconn *conn;
 char data[10];
 char text[] = "Static text";
 int i;

 /* set up the connection conn */
 /* […] */

 /* create some arbitrary data */
 for(i = 0; i < 10; i++)
 data[i] = i;

 netconn_write(conn, data, 10, NETCONN_COPY);
 netconn_write(conn, text, sizeof(text), NETCONN_NOFLAG);

 /* the data can be modified */
 for(i = 0; i < 10; i++)
 data[i] = 10 - i;

*This is only an example for illustrative purposes, and a complete version should perform comprehensive error checking.

947

Sequential API

 /* take down the connection conn */
 netconn_close(conn);
}

948

Sequential API

Name
netconn_send() — Send data on UDP connection

Synopsis
err_t netconn_send(conn, buf);

Description

Send the data in the netbuf buf on the UDP connection conn. The data in the netbuf should not be too large if IP fragmentation
support is disabled. If IP fragmentation support is disabled, the data should not be larger than the maximum transmission unit
(MTU) of the outgoing network interface, less the space required for link layer, IP and UDP headers. No checking is necessarily
made of whether the data is sufficiently small and sending very large netbufs might give undefined results.

Example

Example 164.8. This example demonstrates basic usage of the netconn_send() function *

This example shows how to send some UDP data to UDP port 7000 on a remote host with IP address 10.0.0.1.

int
main()
{
 struct netconn *conn;
 struct netbuf *buf;
 struct ip_addr addr;
 char *data;
 char text[] = "A static text";
 int i;

 /* create a new connection */
 conn = netconn_new(NETCONN_UDP);

 /* set up the IP address of the remote host */
 addr.addr = htonl(0x0a000001);

 /* connect the connection to the remote host */
 netconn_connect(conn, addr, 7000);

 /* create a new netbuf */
 buf = netbuf_new();
 data = netbuf_alloc(buf, 10);

 /* create some arbitrary data */
 for(i = 0; i < 10; i++)
 data[i] = i;

 /* send the arbitrary data */
 netconn_send(conn, buf);

 /* reference the text into the netbuf */
 netbuf_ref(buf, text, sizeof(text));

 /* send the text */
 netconn_send(conn, buf);

 /* deallocate connection and netbuf */
 netconn_delete(conn);
 netconn_delete(buf);
}

*This is only an example for illustrative purposes, and a complete version should perform comprehensive error checking.

949

Sequential API

Name
netconn_close() — Close a connection

Synopsis
err_t netconn_close (conn);

Description

Close the connection conn.

950

Sequential API

Name
netconn_shutdown() — Shutdown a connection

Synopsis
err_t netconn_shutdown (conn, shut_rx, shut_tx);

Description

Shut down one, or both, sides of a TCP connection, but without deleting the connection. The shut_rx and shut_tx para-
meters are treated as boolean values with non-zero values indicating that the respective read or write side should be closed.
Specifying that both RX and TX are to be shut is the same as closing the connection via calling netconn_close().

951

Sequential API

Name
netconn_set_noautorecved() — Set the connection no-auto-recved state

Synopsis
void netconn_set_noautorecved (conn, val);

Description

If val equates to true then the NETCONN_FLAG_NO_AUTO_RECVED state is set for the connection, otherwise the flag
is cleared.

952

Sequential API

Name
netconn_get_noautorecved() — Get the connection no-auto-recved state

Synopsis
cyg_bool netconn_get_noautorecved (conn);

Description

Returns a boolean state indicating the current NETCONN_FLAG_NO_AUTO_RECVED flag state for the connection.

953

Sequential API

Name
netconn_err() — Obtain connection error status

Synopsis
err_t netconn_err (conn);

Description

Obtain the stored error status of connection conn.

954

Chapter 165. Raw API
Much of the information in this chapter has been derived from lwIP's own raw API documentation, although additions, mod-
ifications and adaptations for eCos have been made.

Overview
While the high level lwIP sequential API is good for programs that are themselves sequential and can benefit from the blocking
open-read-write-close paradigm, lwIP itself is event based by nature. If an application can be written with an event-based
approach, then it becomes possible to integrate directly with the event-based design of the core lwIP code.

The raw TCP/IP API allows the application program to integrate better with the TCP/IP code. Program execution is event
based by having callback functions being called from within the TCP/IP code. The TCP/IP code and the application program
both run in the same thread. The sequential API has a much higher overhead and is not very well suited for small systems since
it forces a multithreaded paradigm on the application.

The raw TCP/IP interface is not only faster in terms of code execution time but is also less memory intensive. The drawback is
that program development is somewhat harder and application programs written for the raw TCP/IP interface are more difficult
to understand. Still, this is the preferred way of writing applications that should be small in code size and memory usage.

Both APIs can be used simultaneously by different application programs. In fact, the sequential API is implemented as an
application program using the raw TCP/IP interface.

An example of an application using the raw API can be found in the tests/ subdirectory of the lwIP eCos package. This
httpd2 test is built when the CDL configuration option CYGBLD_NET_LWIP_BUILD_MANUAL_TESTS is enabled. This raw
API application acts as a simple HTTP server. For more information see the section called “httpd2”.

Usage
The raw API is a very direct interface, and is close to the metal. If the CYGFUN_LWIP_NO_SYS option is enabled then there
still needs to be a single lwIP owner thread but an application can be constructed where the main processing loop of that thread
performs lwIP support as well as other application event processing as required so that only a single stack footprint is required.
The trueraw application is built when CYGFUN_LWIP_NO_SYS is configured, and the CYGBLD_NET_LWIP_BUILD_MAN-
UAL_TESTS option is enabled. This provides a simple example of an application using the raw API without the overhead of
the TCP/IP helper thread.

For true raw API applications the cyg_lwip_init() function can be used to initialise the lwIP stack (as for sequential or
BSD API applications), but there is no support for waiting for the network to be brought up within that function call, since
when using a true raw world the caller of the cyg_lwip_init() is also responsible for processing network packets that
may be needed to bring up the network interface up. If required an application can perform its own lwIP stack initialization,
and does not need to use the eCos default support.

Note that if you do decide to use cyg_lwip_init() with the configuration option CYGFUN_LWIP_SEQUENTIAL_API
disabled, so that solely the raw API is available, bbut with the configuration option CYGFUN_LWIP_NO_SYS also disabled,
then the application will need to provide its own alternative to the tcpip_input() function which had previously been used to
inject received packets into the stack. This function must be declared as follows:

err_t tcpip_input (,);

See the section called “System initialization” for further details on initialization.

Declarations for the API functions are found in header files within the lwIP include tree. The TCP functions are found in
<lwip/tcp.h>, and UDP in <lwip/udp.h>.

The raw API uses many of the same types and definitions used in the sequential API. In particular the raw API functions use
struct ip_addr and err_t error codes.

955

http://cvs.savannah.gnu.org/viewcvs/lwip/lwip/doc/rawapi.txt?rev=1.7view=log

Raw API

Callbacks
The configuration option CYGFUN_LWIP_EVENT_CALLBACK defaults to enabled. If enabled then program execution is
driven by callbacks. Each callback is an ordinary C function that is called from within the TCP/IP code. Every callback function
is passed the current TCP or UDP connection state as an argument. Also, in order to be able to keep program specific state, the
callback functions are called with a program specified argument that is independent of the TCP/IP state.

If the CYGFUN_LWIP_EVENT_CALLBACK option is disabled then a common user-supplied function is called from within
the TCP/IP code instead of the respective callback routine:

err_t lwip_tcp_event (arg, pcb, lwip_event, p, size, err);

For the individual callbacks or the shared lwip_tcp_event() the tcp_arg() function is used for setting the private
arg application connection state.

956

Raw API

Name
tcp_arg() — Set the application connection state

Synopsis
void tcp_arg (pcb, arg);

Description

The tcp_arg() function specifies the program specific state that should be passed to all other callback functions, or if
configured the lwip_tcp_event() function. The "pcb" argument is the current TCP connection control block, and the
"arg" argument is the argument that will be passed to the callbacks.

TCP connection setup
The functions used for setting up connections are similar to those of the sequential API and of the BSD socket API. A new
TCP connection identifier (i.e., a protocol control block - PCB) is created with the tcp_new() function. This PCB can then
be either set to listen for new incoming connections or be explicitly connected to another host.

957

Raw API

Name
tcp_new() — Create a new TCP PCB

Synopsis
struct tcp_pcb *tcp_new ();

Description

Creates a new TCP connection identifier (PCB).

Return value

Returns the new PCB. If memory is not available for creating the new PCB, NULL is returned.

958

Raw API

Name
tcp_bind() — Bind PCB to local IP address and port

Synopsis
err_t tcp_bind (pcb, ipaddr, port);

Description

Binds pcb to a local IP address and port number. The IP address can be specified as IP_ADDR_ANY in order to bind the
connection to all local IP addresses.

Return value

If another connection is bound to the same port, the function will return ERR_USE, otherwise ERR_OK is returned.

959

Raw API

Name
tcp_listen() — Make PCB listen for incoming connections

Synopsis
struct tcp_pcb *tcp_listen (pcb);

Description

Commands pcb to start listening for incoming connections. When an incoming connection is accepted, the function specified
with the tcp_accept() function will be called. pcb must have been bound to a local port with the tcp_bind() function.

Return value

The tcp_listen() function returns a new connection identifier, and the one passed as an argument to the function will
be deallocated. The reason for this behavior is that less memory is needed for a connection that is listening, so tcp_lis-
ten() will reclaim the memory needed for the original connection and allocate a new smaller memory block for the listening
connection.

tcp_listen() may return NULL if no memory was available for the listening connection. If so, the memory associated
with pcb will not be deallocated.

960

Raw API

Name
tcp_accept() — Set callback used for new incoming connections

Synopsis
void tcp_accept (pcb, (*accept));

Description

Specify the callback function that should be called when a new connection arrives for a listening TCP PCB.

961

Raw API

Name
tcp_connect() — Open connection to remote host

Synopsis
err_t tcp_connect (pcb, ipaddr, port, (*connected));

Description

Sets up pcb to connect to the remote host indicated by ipaddr on port port and sends the initial SYN segment which opens
the connection.

The tcp_connect() function returns immediately; it does not wait for the connection to be properly set up. Instead, it will
call the connected() function specified as the fourth argument when the connection is established. If the connection could
not be properly established, either because the other host refused the connection or because the other host didn't answer, the
connected() function will be called with its err argument set accordingly.

Return value

The tcp_connect() function can return ERR_MEM if no memory is available for enqueueing the SYN segment. If the SYN
indeed was enqueued successfully, the tcp_connect() function returns ERR_OK.

Sending TCP data
TCP data is sent by enqueueing the data with a call to tcp_write(). When the data is successfully transmitted to the remote
host, the application will be notified with a call to a specified callback function.

962

Raw API

Name
tcp_write() — Enqueue data for transmission

Synopsis
err_t tcp_write (pcb, dataptr, len, copy);

Description

Enqueues the data pointed to by dataptr. The length of the data is passed in len. The argument copy may be either 0 or 1
and indicates whether the new memory should be allocated for the data to be copied into. If the argument is 0, no new memory
should be allocated and the data should only be referenced by pointer.

Return value

The tcp_write() function will fail and return ERR_MEM if the length of the data exceeds the current send buffer size (as
defined by the CYGNUM_LWIP_TCP_SND_BUF CDL configuration option) or if the length of the queue of outgoing segment
is larger than the upper limit defined by the CYGNUM_LWIP_TCP_SND_QUEUELEN CDL configuration option. The number
of bytes available in the output queue can be retrieved with the tcp_sndbuf() function:

u16_t tcp_sndbuf (pcb);

The proper way to use this function is to call the function with at most tcp_sndbuf() bytes of data. If the function returns
ERR_MEM, the application should wait until some of the currently enqueued data has been successfully received by the other
host and try again. This can be achieved with a callback function previously provided to tcp_sent().

963

Raw API

Name
tcp_sent() — Set callback for successful transmission

Synopsis
void tcp_sent (pcb, (*sent));

Description

Specifies the callback function that should be called when data has successfully been received (i.e. acknowledged) by the
remote host. The len argument passed to the sent callback function gives the number of bytes that were acknowledged by
the last acknowledgment.

Receiving TCP data
TCP data reception is callback based - an application specified callback function is called when new data arrives. When the
application has taken the data, it has to call the tcp_recved() function to indicate that TCP can advertise an increase in
the receive window.

964

Raw API

Name
tcp_recv() — Set callback for incoming data

Synopsis
void tcp_recv (pcb, (*recv));

Description

Sets the callback function that will be called when new data arrives on the connection associated with pcb. The callback
function will be passed a NULL pbuf to indicate that the remote host has closed the connection.

965

Raw API

Name
tcp_recved() — Indicate receipt of data

Synopsis
void tcp_recved (pcb, len);

Description

This function must be called when the application has received the data. len indicates the length of the received data.

Application polling
When a connection is idle (i.e., no data is either transmitted or received), lwIP will repeatedly poll the application by calling
a specified callback function. This can be used either as a watchdog timer for killing connections that have stayed idle for too
long, or as a method of waiting for memory to become available. For instance, if a call to tcp_write() has failed because
memory wasn't available, the application may use the polling functionality to call tcp_write() again when the connection
has been idle for a while.

966

Raw API

Name
tcp_poll() — Set application poll callback

Synopsis
void tcp_poll (pcb, interval, (*poll));

Description

Specifies the polling interval and the callback function that should be called to poll the application. The interval is specified in
number of TCP coarse grained timer shots, which typically occurs twice a second. An interval of 10 means that the application
would be polled every 5 seconds.

Closing connections, aborting connections and er-
rors

967

Raw API

Name
tcp_close() — Close the connection

Synopsis
err_t tcp_close (pcb);

Description

Closes the connection. The pcb is deallocated by the TCP code after a call to tcp_close().

Return value

The function may return ERR_MEM if no memory was available for closing the connection. If so, the application should wait
and try again either by using the acknowledgment callback or the polling functionality. If the close succeeds, the function
returns ERR_OK.

968

Raw API

Name
tcp_abort() — Abort the connection

Synopsis
void tcp_abort (pcb);

Description

Aborts the connection by sending a RST (reset) segment to the remote host. pcb is deallocated. This function never fails.

If a connection is aborted because of an error, the application is alerted of this event by the callback previously registered with
tcp_err(). Errors that might abort a connection are when there is a shortage of memory.

969

Raw API

Name
tcp_err() — Set callback for errors

Synopsis
void tcp_err (pcb, (*err));

Description

Set callback function to be used on connection errors. The error callback function does not get the connection's pcb passed to
it as a parameter since the pcb may already have been deallocated.

Lower layer TCP interface
TCP provides a simple interface to the lower layers of the system. During system initialization, the function tcp_init() has
to be called before any other TCP function is called. When the system is running, the two timer functions tcp_fasttmr()
and tcp_slowtmr() must be called at regular intervals. The tcp_fasttmr() should be called every TCP_FAST_IN-
TERVAL milliseconds (defined in tcp.h, and currently 250ms) and tcp_slowtmr() should be called every TCP_SLOW_IN-
TERVAL milliseconds, currently 500ms.

UDP interface
The UDP interface is similar to that of TCP, but due to the lower level of complexity of UDP, the interface is significantly
simpler.

970

Raw API

Name
udp_new() — Create a new UDP pcb

Synopsis
struct udp_pcb *udp_new ();

Description

Creates a new connection identifier (PCB) which can be used for UDP communication. The PCB is not active until it has either
been bound to a local address or connected to a remote address.

Return value

Returns the new PCB. If memory is not available for creating the new PCB, NULL is returned.

971

Raw API

Name
udp_remove() — Remove a UDP pcb

Synopsis
void udp_remove (pcb);

Description

Removes and deallocates pcb.

972

Raw API

Name
udp_bind() — Bind PCB to local IP address and port

Synopsis
err_t udp_bind (pcb, ipaddr, port);

Description

Binds pcb to the local address indicated by ipaddr and port indicated by port. ipaddr can be IP_ADDR_ANY to indicate
that it should listen to any local IP address. Port may be 0 for any port.

Return value

This function can return ERR_USE if all usable UDP dynamic ports are used (only relevant if port is 0. Otherwise ud-
p_bind() will always return ERR_OK.

973

Raw API

Name
udp_connect() — Set remote UDP peer

Synopsis
err_t udp_connect (pcb, ipaddr, port);

Description

Sets the remote end of pcb. This function does not generate any network traffic, but only sets the remote address of the pcb.

Return value

This function can return ERR_USE if all usable UDP dynamic ports are used. Otherwise udp_connect() will always return
ERR_OK.

974

Raw API

Name
udp_disconnect() — Set remote UDP peer

Synopsis
void udp_disconnect (pcb);

Description

Remove the remote end of pcb. This function does not generate any network traffic, but only removes the remote address
of the pcb.

975

Raw API

Name
udp_send() — Send UDP packet

Synopsis
err_t udp_send (pcb, p);

Description

Sends the pbuf p to the remote host associated with pcb. The pbuf is not deallocated.

Return value

This function returns ERR_OK on success; but may return ERR_MEM if there is insufficient memory to prepend a UDP header,
or ERR_RTE if no suitable outgoing network interface could be found to route the packet on.

976

Raw API

Name
udp_recv() — Set callback for incoming UDP data

Synopsis
void udp_recv (pcb, (*recv), recv_arg);

Description

Registers a callback function recv with the PCB pcb so that when a UDP datagram is received, the callback is invoked. The
callback argument arg is set as the argument recv_arg to udp_recv(). The received datagram packet buffer is held in
p. The source address of the datagram is provided in addr, and the source port in port. The callback is expected to free
the packet.

System initialization
When performing manual initialization of lwIP for use with the raw API, the function lwip_init() can be called to per-
form the core setup. Depending on the actual lwipopts.h configuration lwip_init() will call the necessary routines
to initialize the required lwIP sub-systems.

In this example, these functions must be called in the order of appearance:

lwip_init()

Calls the individual, as configured, low-level lwIP module initialization routines.

If LWIP_ARP is defined then etharp_tmr() must be called at the regular ARP_TMR_INTERVAL interval (default 5
seconds) after the system has been initialized by this call.

Similarly if LWIP_TCP is defined then you must ensure that tcp_fasttmr() and tcp_slowtmr() are called at the
predefined regular intervals.

struct netif *netif_add(struct netif *netif, struct ip_addr *ipaddr, struct ip_addr
*netmask, struct ip_addr *gw, void *state, err_t (* init)(struct netif *netif), err_t
(* input)(struct pbuf *p, struct netif *netif))

Adds your network interface to the netif_list. Allocate a struct netif and pass a pointer to this structure as the first
argument. Give pointers to cleared struct ip_addr structures when using DHCP, or fill them with sane numbers otherwise.
The state pointer may be NULL.

The init function pointer must point to an initialization function for your ethernet netif interface. The following code
illustrates an example use:

err_t netif_if_init(struct netif *netif)
{
 u8_t i;

 for(i = 0; i < 6; i++)
 netif->hwaddr[i] = some_eth_addr[i];
 init_my_eth_device();
 return ERR_OK;
}

Normally for ethernet devices the input function must point to the lwIP function ethernet_input().

netif_set_default(struct netif *netif)

Registers netif as the default network interface.

977

Raw API

netif_set_up(struct netif *netif)

When netif is fully configured, this function must be called to allow it to be used.

dhcp_start(struct netif *netif)

If LWIP_DHCP is configured then this function creates a new DHCP client for this interface the first time the routine is
called. Note: you must call dhcp_fine_tmr() and dhcp_coarse_tmr() at the predefined regular intervals after
starting the client.

You can peek in the netif->dhcp struct for the actual DHCP status.

Initialization detail
If required the manual raw API initialization could directly call the required lwIP sub-system module initialization functions
(rather then calling the lwip_init() function).

The calls should be performed in the following order:

stats_init() Clears the structure where runtime statistics are gathered.

Note: The statistics support is only included if LWIP_STATS is configured, and then
some of the statistics code is only present if LWIP_DEBUG is also defined.

sys_init() Not generally used with raw API, but can be called for ease of compatibility if using
sequential API in addition, initialised manually. The lwip_init() implementation
only calls this function if NO_SYS is NOT defined.

mem_init() Initializes the dynamic memory heap defined by the CDL configuration option
CYGNUM_LWIP_MEM_SIZE.

memp_init() Initializes the memory pools defined by the CDL configuration options CYGNUM_L-
WIP_MEMP_NUM_*.

pbuf_init() Initializes the pbuf (packet buffer) memory pool defined by the CDL configuration op-
tion CYGNUM_LWIP_PBUF_POOL_SIZE.

netif_init() This function will call netif_add() as appropriate to create the
LWIP_HAVE_LOOPIF configured loopback network interface.

lwip_socket_init() If LWIP_SOCKET is configured then this function is called to initialise the BSD-alike
API module. It does not do much at present, but it should be called to handle future
changes.

ip_init() This function does not do much at present, but it should be called to handle future
changes.

etharp_init() Called if LWIP_ARP is configured to initialize the ARP table and queue.

Note: you must regularly call the etharp_tmr function at the ARP_TMR_INTERVAL
(default 5 seconds) interval after this initialization.

raw_init() If LWIP_RAW is configured then this function is called. It does not do much at present,
but it should be called to handle future changes.

udp_init() If LWIP_UDP is configured then this function is called to initialize the required UDP
support state.

tcp_init() If LWIP_TCP is configured then this function is called to initialise the required TCP
support state.

978

Raw API

Note: you must call tcp_fasttmr() and tcp_slowtmr() at the predefined reg-
ular intervals after this initialization.

snmp_init() If LWIP_SNMP is configured then this function is called to start the SNMP agent sup-
port. It allocates a UDP pcb and binds it to IP_ADDR_ANY for the SNMP_IN_PORT
(default 161) configured port, listening for SNMP The routine will also generate a SN-
MP coldstart trap if configured appropriately.

autoip_init() If LWIP_AUTOIP is configured then this function is called for the IPv4 AutoIP support.
It does not do much at present, but it should be called to handle future changes.

igmp_init() If LWIP_IGMP is configured then this function is called for the IPv4 IGMP support. It
configures the allsystems and allroutes multicast addresses.

dns_init() If LWIP_DNS is configured then this function is called to allocate the UDP pcb for the
client and initialise the default DNS server address.

ip6_init() If LWIP_IPV6 is configured then this function is called. It does not do much at present,
but it should be called to handle future changes.

nd6_init() If LWIP_IPV6 is configured then this function is called. It does not do much at present,
but it should be called to handle future changes.

mld6_init() If LWIP_IPV6 and LWIP_IPV6_MLD are configured then this function is called. It
does not do much at present, but it should be called to handle future changes.

sys_timeouts_init() If LWIP_TIMERS is configured then this function is called. It uses the sys_time-
out() to register timeout callbacks for the configured lwIP features. Normally the raw
API will not be providing the sys_timeout functionality, and will, as mentioned
above, have to manually ensure the relevant timeout functions are called. e.g. ARP, TCP,
etc.

979

Chapter 166. Debug and Test
Debugging
Some explicit lwIP configuration items exist to aid with debugging problems. These, along with some other suggestions, are
documented in the sections below.

Asserts
An initial starting point for checking valid operation is to enable lwIP asserts. The CYGDBG_LWIP_ASSERTS option turns
on run-time asserts that can usually detect problems before they reach a fatal target/platform exception.

The lwIP asserts are based on the standard eCos assertion support, so will normally stop the code in a busy loop if triggered.
Normally when debugging it is usual to set a breakpoint on the entry to the cyg_assert_fail() function so that debugger
access to application state can be performed.

Memory Allocations
Run-time validation of the memory pools can be enabled in the lwIP configuration by setting one or more of the following
options:

Sanity check memory pools (CYGDBG_LWIP_MEMP_SANITY_CHECK)

If enabled lwIP will perform extra sanity checking of the memory pools every time an item is released.

Memory pool overflow checks (CYGDBG_LWIP_MEMP_OVERFLOW_CHECK)

This configuration option can currently be set to the value 0, 1 or 2.

If set to 0 then the feature is disabled (the default configuration), with the non-zero values enabling code to perform MEMP
under-/over-flow checking.

If set to 1 then a buffer boundary check is performed when an item is released.

If set to 2 then the code performs the buffer boundary check on every item, in every pool, every time an allocation or
release operation is performed. This, obviously, will be slow. However, it will normally provide quicker detection of buffer
problems.

For the non-zero configurations the options CYGDBG_LWIP_MEMP_SANITY_REGION_BEFORE and CYGDBG_L-
WIP_MEMP_SANITY_REGION_AFTER respectively define the size (in bytes) of the catch areas placed before and after
all allocations.

Statistics
The lwIP stack provides support for tracking statistics via enabling the Trafficstatistics CYGDBG_LWIP_STATS option. These
statistics have been briefly covered in the section called “Performance”. For debugging the error count (normally the err field
of the relevant statistics structure) can be useful in indicating resource issues, some of which will result in the stack failing
to operate correctly.

GDB/RedBoot
Some standard platforms may, by default, provide the RedBoot debug monitor, which in turn may be configured to allow
remote network GDB debugging connections. It should be noted that a limitation exists where an eCos application configured
to use a lwIP Direct driver CANNOT be debugged via such a remote network GDB connection due to interaction between the
RedBoot use of a Standard device driver and the application Direct device driver models. Using GDB via a UART or hardware
debug connection is not affected.

980

Debug and Test

In practice this is not normally an issue since low-level debugging, when developing for such low resource platforms that
require the use of the lwIP Direct device driver, is normally performed via a hardware debug interface (e.g. JTAG).

Host Tools
An invaluable tool to aid debugging of both network protocol stack problems and application level network interaction is
WireShark. It can be used to log packets, and to trace connection streams, whilst providing human readable data dumps.

The eCos synthetic ethernet target support can be a useful aid in separating application level networking problems from issues
with the under-lying network transport stack (e.g. lwIP). It can usefully be used to debug higher-level network applications in
a resource rich environment, before tuning the code for the resource-restricted lwIP target platform.

Testing
Some test applications are built if the active eCos lwIP configuration is suitable:

• lwipsnmp

• lwipsntp

• lwiperf

• unitwrap

If the configuration option CYGBLD_NET_LWIP_BUILD_MANUAL_TESTS is enabled then a further set of simple tests are
built. Note: The option is disabled by default. These manually executed are just basic verification tests and are not designed
to be an exhaustive test of all lwIP or TCP/IP networking features.

For the manual tests frag and udpecho the host tool nc (netcat) can be used to interface with the test. In the following sec-
tions any examples given of using the tests assume that the Unit Under Test (UUT) is at the local network IPv4 address
192.168.1.200. The actual local addresses for the UUT should be ascertained and substituted accordingly.

Note

Most of the manual tests are currently limited to accepting IPv4 connections. The exceptions are socket and
tcpecho which will accept IPv4 or IPv6 connections.

lwipsnmp
This is a simple test to exercise the SNMP agent when enabled via the CYGFUN_LWIP_SNMP option. It relies on the hostsn-
mp.sh script being executed on a host system to exercise a set of SNMP operations agsinst the target executing this application.

lwipsntp
This application tests the use of the lwIP SNTP client implementation when enabled via the CYGFUN_LWIP_SNTP option.
It initialises the SNTP client code and then waits to receive a valid time.

lwiperf
This test can be used to exercise the iPerf2 server provided by lwIP when it is enabled in the configuration using the CYG-
FUN_LWIP_LWIPERF option. It requests the test host to exercise a iperf-c against the target executing this application as a
simple demonstration of measuring the achievable network bandwidth.

unitwrap
If the eCos lwip configuration meets the requirements (re. memory configuration, TCP options, etc.) for the standard lwIP
checkframework unit tests then this test application is built. The application is a wrapper to support the lwIP unit tests and
allows verification of some lwIP features.

981

http://www.wireshark.org/

Debug and Test

socket
This is a very simple TCP protocol test using the BSD-alike socket API. The test will listen for two IPv4 or IPV6 connections
on port 7. For each connection established the test will continue to echo the data received on the TCP stream until the particular
connection is closed.

The nc utility can be used to communicate with the test program.

nc 192.168.1.200 7

After starting nc the UUT will acknowledge the connection by displaying:

PASS:<Received connection OK>

As this point it will wait for a line of text to be input and completed by pressing the Enter key. Multiple lines of text can be
entered, and should be echoed back to indicate that the UUT has received and responded OK. Entering Ctrl-D will terminate
the nc connection.

Another execution of nc as above will complete the test.

tcpecho
This is a very simple TCP protocol test. See the section called “socket” for a description of the test, since it has identical
requirements to that example.

udpecho
This is a very simple UDP protocol test, listening for two connections on port 7 and echo-ing back the data received.

The nc utility can be used to communicate with the test program.

nc -u 192.168.1.200 7

After starting nc it will wait for a line of text to be input and completed by pressing the Enter key. The nc will then perform
the necessary UDP connection to the specified port, transmit the data and output any reply. Another line of text can then be
entered to complete the test. Unlike the tcpecho a single nc execution can be used for the test, since each line transmitted counts
as a single UDP connection test.

frag
This is a simple test that should result in fragmented TCP packets being transmitted. The test can be exercised like the section
called “udpecho” since it listens for two UDP connections on port 7.

The major difference being that after echoing the received data the UUT will transmit a large amount of data to the host nc.

nc_test_slave
This test provides a client for use with the host side CYGPKG_NET nc_test_master application. The host side test code must
be manually built within the packages/net/common/vsn/tests directory.

When the UUT is started it will initially perform some slave performance calculations before it will start listening for connec-
tions.

httpd
This is a very simple HTTP daemon that will listen for two HTTP GET connections on port 80. Currently only IPv4 socket
connections are listened for. The test when started will display some information on the diagnostic channel, including:

PASS:<Listening on TCP port 80>

982

Debug and Test

INFO:<Will wait for two HTTP connections>

When it is has displayed the Will wait … message the UUT is ready to be accessed from the test host. The following example
uses the host tool wget to perform such a page fetch, and can be executed twice to perform the test. e.g.

wget http://192.168.7.165/

After the second GET operation the test will exit.

httpd2
This is a slightly more realistic HTTP daemon test, that will execute indefinitely. This test is a useful example of using the raw
API, and could form the basis of a simple, lightweight, webserver.

Currently it will only accept IPv4 socket connections on port 80. On startup it will not display any diagnostic output other than
the cyg_lwip_netif_print_info(netif_default, diag_printf) output displaying the default network
interface address information.

A standard web browser can be used to access the pages served by the daemon, returning a simple demonstration page as the
root document. The test has been designed to be extendible to easily support multiple pages.

lookup
If IPv4 DNS support is configured then this test performs some simple verification using some known lookups against the
locally configured DNS address (e.g. obtained via DHCP), and then again using a known fixed DNS server.

sys_timeout
This is a simple stand-alone test of the lwIP internal timeout handling. No external interaction is required.

lwiphttpd
This is a build of the standard lwIP example HTTPD application provided when the option CYGFUN_LWIP_HTTPD is enabled.
It provides a static (built-in) web-page.

If the lwIP configuration option CYGFUN_LWIP_MBEDTLS is enabled then the test also provides a TLS daemon (port 443)
using a built-in self-signed certificate as a basic example of the lwIP ALTCP TLS support.

Note

For eCos the CYGFUN_LWIP_MBEDTLS option is only available when the CYGFUN_LWIP_ALTCP_TLS
option is enabled, in turn controlled by the support for the lwIP ALTCP being enabled by the CYG-
FUN_LWIP_ALTCP feature. The developer should be aware that you need to provide your own ALTCP
wrapper functions if LWIP_ALTCP_TLS is defined but not the CYGPKG_MBEDTLS integration option
LWIP_ALTCP_TLS_MBEDTLS.

983

Part XLV. Ethernet Device Support
Documentation for drivers of this type is often integrated into the eCos board support documentation. You should review the
documentation for your target board for details. Standalone and more generic drivers are documented in the following sections.

Table of Contents
167. Writing Ethernet Device Drivers .. 986

Generic Ethernet API .. 986
Review of the functions ... 988

Init function ... 988
Start function ... 988
Stop function ... 989
Control function ... 989
Can-send function ... 993
Send function ... 993
Deliver function ... 993
Receive function ... 994
Poll function .. 994
Interrupt-vector function .. 994

Upper Layer Functions .. 995
Callback Init function .. 995
Callback Tx-Done function .. 995
Callback Receive function .. 995

Calling graph for Transmission and Reception ... 995
Transmission .. 995
Receive ... 996

168. lwIP Direct Ethernet Device Driver .. 997
Introduction ... 997
API reference ... 997
Multiple direct drivers ... 1003
lwIP MANUAL initialisation ... 1004

169. CDC-EEM Target USB driver .. 1006
Introduction .. 1006
API ... 1006
Configuration ... 1006

Configuration Overview ... 1006
Debug and Test .. 1008

Debugging ... 1008
170. RNDIS Target USB driver ... 1009

Introduction .. 1009
API ... 1009
Configuration ... 1009

Configuration Overview ... 1010
Debug and Test .. 1011

Debugging ... 1011
171. Ethernet PHY Device Support .. 1012

Ethernet PHY Device API .. 1012
172. Synopsys DesignWare Ethernet GMAC Driver ... 1015

Synopsys DesignWare Ethernet GMAC Driver .. 1016
173. Freescale ColdFire Ethernet Driver ... 1019

Freescale ColdFire Ethernet Driver .. 1020
174. Nios II Triple Speed Ethernet Driver ... 1022

Nios II Triple Speed Ethernet Driver .. 1023
175. SMSC LAN9118 Ethernet Driver ... 1024

SMSC LAN9118 Ethernet Driver .. 1025
176. Synthetic Target Ethernet Driver .. 1027

Synthetic Target Ethernet Driver ... 1028

985

Chapter 167. Writing Ethernet Device
Drivers

Generic Ethernet API
This section provides a simple description of how to write a low-level, hardware dependent ethernet driver. In eCos this is
known as a “standard” driver.

There is a high-level driver (which is only code — with no state of its own) that is part of the stack. There will be one or more
low-level drivers tied to the actual network hardware. Each of these drivers contains one or more driver instances. The intent
is that the low-level drivers know nothing of the details of the stack that will be using them. Thus, the same driver can be used
by the eCos supported TCP/IP stack, RedBoot, or any other, with no changes.

A driver instance is contained within a struct eth_drv_sc:

struct eth_hwr_funs {
 // Initialize hardware (including startup)
 void (*start)(struct eth_drv_sc *sc,
 unsigned char *enaddr,
 int flags);
 // Shut down hardware
 void (*stop)(struct eth_drv_sc *sc);
 // Device control (ioctl pass-thru)
 int (*control)(struct eth_drv_sc *sc,
 unsigned long key,
 void *data,
 int data_length);
 // Query - can a packet be sent?
 int (*can_send)(struct eth_drv_sc *sc);
 // Send a packet of data
 void (*send)(struct eth_drv_sc *sc,
 struct eth_drv_sg *sg_list,
 int sg_len,
 int total_len,
 unsigned long key);
 // Receive [unload] a packet of data
 void (*recv)(struct eth_drv_sc *sc,
 struct eth_drv_sg *sg_list,
 int sg_len);
 // Deliver data to/from device from/to stack memory space
 // (moves lots of memcpy()s out of DSRs into thread)
 void (*deliver)(struct eth_drv_sc *sc);
 // Poll for interrupts/device service
 void (*poll)(struct eth_drv_sc *sc);
 // Get interrupt information from hardware driver
 int (*int_vector)(struct eth_drv_sc *sc);
 // Logical driver interface
 struct eth_drv_funs *eth_drv, *eth_drv_old;
};

struct eth_drv_sc {
 struct eth_hwr_funs *funs;
 void *driver_private;
 const char *dev_name;
 int state;
 struct arpcom sc_arpcom; /* ethernet common */
};

Note

If you have two instances of the same hardware, you only need one struct eth_hwr_funs shared between them.

There is another structure which is used to communicate with the rest of the stack:

986

Writing Ethernet Device Drivers

struct eth_drv_funs {
 // Logical driver - initialization
 void (*init)(struct eth_drv_sc *sc,
 unsigned char *enaddr);
 // Logical driver - incoming packet notifier
 void (*recv)(struct eth_drv_sc *sc,
 int total_len);
 // Logical driver - outgoing packet notifier
 void (*tx_done)(struct eth_drv_sc *sc,
 CYG_ADDRESS key,
 int status);
};

Your driver does not create an instance of this structure. It is provided for driver code to use in the eth_drv member of the
function record. Its usage is described below in the section called “Upper Layer Functions”

One more function completes the API with which your driver communicates with the rest of the stack:

extern void eth_drv_dsr(cyg_vector_t vector,
 cyg_ucount32 count,
 cyg_addrword_t data);

This function is designed so that it can be registered as the DSR for your interrupt handler. It will awaken the “Network Delivery
Thread” to call your deliver routine. See the section called “Deliver function”.

You create an instance of struct eth_drv_sc using the ETH_DRV_SC() macro which sets up the structure, including the pro-
totypes for the functions, etc. By doing things this way, if the internal design of the ethernet drivers changes (e.g. we need to
add a new low-level implementation function), existing drivers will no longer compile until updated. This is much better than
to have all of the definitions in the low-level drivers themselves and have them be (quietly) broken if the interfaces change.

The “magic” which gets the drivers started (and indeed, linked) is similar to what is used for the I/O subsystem. This is done
using the NETDEVTAB_ENTRY() macro, which defines an initialization function and the basic data structures for the low-
level driver.

 typedef struct cyg_netdevtab_entry {
 const char *name;
 bool (*init)(struct cyg_netdevtab_entry *tab);
 void *device_instance;
 unsigned long status;
 } cyg_netdevtab_entry_t;

The device_instance entry here would point to the struct eth_drv_sc entry previously defined. This allows the network
driver setup to work with any class of driver, not just ethernet drivers. In the future, there will surely be serial PPP drivers,
etc. These will use the NETDEVTAB_ENTRY() setup to create the basic driver, but they will most likely be built on top of
other high-level device driver layers.

To instantiate itself, and connect it to the system, a hardware driver will have a template (boilerplate) which looks something
like this:

#include <cyg/infra/cyg_type.h>
#include <cyg/hal/hal_arch.h>
#include <cyg/infra/diag.h>
#include <cyg/hal/drv_api.h>
#include <cyg/io/eth/netdev.h>
#include <cyg/io/eth/eth_drv.h>

ETH_DRV_SC(DRV_sc,
 0, // No driver specific data needed
 "eth0", // Name for this interface
 HRDWR_start,
 HRDWR_stop,
 HRDWR_control,
 HRDWR_can_send
 HRDWR_send,
 HRDWR_recv,
 HRDWR_deliver,
 HRDWR_poll,
 HRDWR_int_vector
);

987

Writing Ethernet Device Drivers

NETDEVTAB_ENTRY(DRV_netdev,
 "DRV",
 DRV_HRDWR_init,
 &DRV_sc);

This, along with the referenced functions, completely define the driver.

Note

If one needed the same low-level driver to handle multiple similar hardware interfaces, you would need multiple
invocations of the ETH_DRV_SC()/NETDEVTAB_ENTRY() macros. You would add a pointer to some instance
specific data, e.g. containing base addresses, interrupt numbers, etc, where the

 0, // No driver specific data

is currently.

Review of the functions
Now a brief review of the functions. This discussion will use generic names for the functions — your driver should use
hardware-specific names to maintain uniqueness against any other drivers.

Init function
static bool DRV_HDWR_init(struct cyg_netdevtab_entry *tab)

This function is called as part of system initialization. Its primary function is to decide if the hardware (as indicated via tab-
>device_instance) is working and if the interface needs to be made available in the system. If this is the case, this function
needs to finish with a call to the ethernet driver function:

 struct eth_drv_sc *sc = (struct eth_drv_sc *)tab->device_instance;
 ….initialization code….
 // Initialize upper level driver
 (sc->funs->eth_drv->init)(sc, unsigned char *enaddr);

where enaddr is a pointer to the ethernet station address for this unit, to inform the stack of this device's readiness and
availability.

Note

The ethernet station address (ESA) is supposed to be a world-unique, 48 bit address for this particular ethernet
interface. Typically it is provided by the board/hardware manufacturer in ROM.

In many packages it is possible for the ESA to be set from RedBoot, (perhaps from 'fconfig' data), hard-coded from
CDL, or from an EPROM. A driver should choose a run-time specified ESA (e.g. from RedBoot) preferentially,
otherwise (in order) it should use a CDL specified ESA if one has been set, otherwise an EPROM set ESA, or
otherwise fail. See the cl/cs8900a ethernet driver for an example.

Start function
static void
HRDWR_start(struct eth_drv_sc *sc, unsigned char *enaddr, int flags)

This function is called, perhaps much later than system initialization time, when the system (an application) is ready for the
interface to become active. The purpose of this function is to set up the hardware interface to start accepting packets from the
network and be able to send packets out. The receiver hardware should not be enabled prior to this call.

Notes:

• This function will be called whenever the up/down state of the logical interface changes, e.g. when the IP
address changes, or when promiscuous mode is selected by means of an ioctl() call in the application. This
may occur more than once, so this function needs to be prepared for that case.

988

Writing Ethernet Device Drivers

• In future, the flags field (currently unused) may be used to tell the function how to start up, e.g. whether
interrupts will be used, alternate means of selecting promiscuous mode etc.

Stop function
static void HRDWR_stop(struct eth_drv_sc *sc)

This function is the inverse of “start.” It should shut down the hardware, disable the receiver, and keep it from interacting
with the physical network.

Control function
static int
HRDWR_control(
 struct eth_drv_sc *sc, unsigned long key,
 void *data, int len)

This function is used to perform low-level “control” operations on the interface. These operations would typically be initiated
via ioctl() calls in the BSD stack, and would be anything that might require the hardware setup to change (i.e. cannot be
performed totally by the platform-independent layers).

The key parameter selects the operation, and the data and len params point describe, as required, some data for the operation
in question.

Warning

Debugging of applications or execution of tests that use low-level filtering is strongly discouraged when
connecting over an ethernet connection to RedBoot.

In such instances the ethernet device is shared between eCos and RedBoot. Low-level “control” operations in-
structing the device to filter ethernet packets by IP address, port or VLAN can filter ethernet packets destined
to or from RedBoot.

Where these is no alternative, the developer must ensure that their application does not filter away ethernet packets
to or from RedBoot by adjusting the filters accordingly. e.g. Ensure that the RedBoot TCP port (default 9000)
and address are never filtered out.

Certain network tests (e.g. control) will detect when such a connection is made and either report that the test
is NOTAPPLICABLE or skip over the filtering portion of the test.

Available Operations:

ETH_DRV_SET_MAC_ADDRESS

This operation sets the ethernet station address (ESA or MAC) for the device. Normally this address is kept in non-volatile
memory and is unique in the world. This function must at least set the interface to use the new address. It may also update
the NVM as appropriate.

ETH_DRV_GET_IF_STATS_UD
ETH_DRV_GET_IF_STATS

These acquire a set of statistical counters from the interface, and write the information into the memory pointed to by
data. The “UD” variant explicitly instructs the driver to acquire up-to-date values. This is a separate option because doing
so may take some time, depending on the hardware.

The definition of the data structure is in cyg/io/eth/eth_drv_stats.h.

This call is typically made by SNMP.

989

Writing Ethernet Device Drivers

ETH_DRV_SET_MC_LIST

This entry instructs the device to set up multicast packet filtering to receive only packets addressed to the multicast ESAs
in the list pointed to by data.

The format of the data is a 32-bit count of the ESAs in the list, followed by packed bytes which are the ESAs themselves,
thus:

struct eth_drv_mc_list {
 int len;
 unsigned char addrs[CYGNUM_IO_ETH_DRIVERS_FILTER_LIST_SIZE][ETHER_ADDR_LEN];
};

Pass an empty list (len=0) to clear any existing multicast filters.

Some driver/hardware combinations can support a large number of ESAs, which can lead to a very large struct
eth_drv_mc_list object if all the available address slots are supported. The CYGNUM_IO_ETH_DRIVERS_FIL-
TER_LIST_SIZE CDL option can be tuned to reflect the upper limit required by an application configuration to minimise
the overhead of passing unnecessarily large struct eth_drv_mc_list objects around.

ETH_DRV_SET_MC_ALL

This entry instructs the device to receive all multicast packets, and delete any explicit filtering which had been set up.

ETH_DRV_SET_DA_LIST

This entry allows a list of unicast-DA (Destination Address) values to be supplied, and any perfect filtering supported by
the underlying driver to be configured appropriately.

The eth_drv_filter_list_t structure is used to provide the unicast-DA addresses to replace any existing DA
filtering in place.

Pass an empty list (len=0) to clear any existing unicast-DA filters.

ETH_DRV_SET_SA_LIST

This entry allows a eth_drv_filter_list_t supplied list of SA (Source Address) filters to be specified.

Pass an empty list (len=0) to clear any existing SA filters.

ETH_DRV_FILTER_OPTIONS

This entry is provided as a single API for get/set of multiple filtering options (minimising the number of calls and the code
required). It uses a standard AND/EOR approach to provide a single get/set interface.

For example, assuming the variable declaration:

struct eth_drv_options fo;

then the following will perform a GET without changing any flag state:

fo.u.mand = 0xFFFFFFFF;
fo.eor = 0x00000000;

To set an explicit value then the corresponding flag bit can be 0 for the AND. e.g.

fo.u.mand = 0x00000000;
fo.eor = 0x12345678;

To set an explicit value then the corresponding flag bit can be 0 for the AND. e.g. to set flag bit-0 to regardless of the
current state:

fo.u.mand = 0xFFFFFFFE;

990

Writing Ethernet Device Drivers

fo.eor = 0x00000001;

Toggling bits can also be supported. e.g. to toggle bit-2 and bit-4:

fo.u.mand = 0xFFFFFFFF;
fo.eor = 0x00000014;

After a successful request the eth_drv_options field u.val is updated to reflect the current driver option flag state
after any changes that may have been requested.

Currently the following flags are defined, but not all drivers will necessarily support all the features:

The ETH_DRV_FILTER_OPT_PROMISC flag is provided as an alternative to the existing ETH_DRV_SET_PROMISC
key option, just so that the control of the feature can be managed along with the other flags. It controls promiscuous mode.

The ETH_DRV_FILTER_OPT_BLOCK_BCAST flag controls whether all broadcast frames are dropped.

The ETH_DRV_FILTER_OPT_INVERSE_DA controls whether any enabled unicast DA (Destination Address) or mul-
ticast filtering (as set via ETH_DRV_SET_DA_LIST or ETH_DRV_SET_MC_LIST) operates in inverse filtering mode
where matches are dropped, and non-matching frames are allowed through.

The ETH_DRV_FILTER_OPT_INVERSE_SA controls whether any enabled SA (Source Address) filtering (set by
ETH_DRV_SET_SA_LIST) operates in inverse filtering mode where SA matches are dropped and non-SA matches al-
lowed.

The ETH_DRV_FILTER_OPT_L4_TCPUDP_ONLY flag controls whether any enabled L4 filtering will drop all non-
TCP and non-UDP packets. e.g. ICMP.

ETH_DRV_SET_FILTER_L3L4

This entry allows a L3 and/or L4 filter to be added. The struct eth_drv_filter_l3l4 descriptor provides the
filter configuration settings. The port numbers, IPv4 and IPv6 addresses must all be provided in network byte order.

The flags field is a combination of binary (boolean) flags describing the filter to be applied:

ETH_DRV_L3L4_L3SRC is set when the supplied L3 source address (SA) should be used for the match.

ETH_DRV_L3L4_L3SRC_IPV6 is used to distinguish the type of SA supplied: unset (0) for IPv4, and set (1) for IPv6.

ETH_DRV_L3L4_L3SRC_INV is set when an inverted SA match should be configured.

ETH_DRV_L3L4_L3SRC_MASK is set when the l3src_mb SA bitmask should be applied.

ETH_DRV_L3L4_L3DST is set when the supplied L3 destination address (DA) should be used for the match.

ETH_DRV_L3L4_L3DST_IPV6 is used to distinguish the type of DA supplied: unset (0) for IPv4, and set (1) for IPv6.

ETH_DRV_L3L4_L3DST_INV is set when an inverted DA match should be configured.

ETH_DRV_L3L4_L3DST_MASK is set when the l3dst_mb DA bitmask should be applied.

ETH_DRV_L3L4_L4SRC is set when a L4 source port filter should be applied as supplied in l4_src.

ETH_DRV_L3L4_L4SRC_UDP is set for L4 source UDP match, and unset for TCP.

ETH_DRV_L3L4_L4SRC_INV is set when an inverted L4 source match should be applied.

ETH_DRV_L3L4_L4DST is set when a L4 destination port filter should be applied as supplied in l4_dst.

ETH_DRV_L3L4_L4DST_UDP is set for L4 destination UDP match, and unset for TCP.

ETH_DRV_L3L4_L4DST_INV is set when an inverted L4 destination match should be applied.

991

Writing Ethernet Device Drivers

Note

Not all drivers may support all of the L3/L4 filtering options available in this API. The developer should be
aware of the features and limitations of the underlying Ethernet hardware MAC interface (and driver) in use.

ETH_DRV_CLR_FILTER_L3L4

This entry allows a L3/L4 filter to be removed. The eth_drv_filter_l3l4 structure should be populated as per the
original ETH_DRV_SET_FILTER_L3L4 call.

ETH_DRV_SET_VLANTAG

This operation instructs the device to configure a single, perfect, VLAN Tag filter.

The passed eth_drv_vlantag structure defines the VLAN Tag to be set for the filter, along with control flags that can
affect the operation. The following values can be ORed into the flags field to control the filter:

ETH_DRV_VLANTAG_FLG_INVERSE if set configures the filter as an inverted match; where only packets matching the
VLAN Tag are dropped.

ETH_DRV_VLANTAG_FLG_12BIT configures the driver to only match against the least-significant 12-bits of the sup-
plied vt field.

ETH_DRV_VLANTAG_FLG_SVLAN configures the driver to also accept the S-VLAN Tag (0x88A8) as a valid match.

The special flag ETH_DRV_VLANTAG_FLG_DISABLE is used to disable the VLAN Tag driver feature. The other flags
settings are ignored, as-is the vt value.

ETH_DRV_GET_VLANTAG

This call will return the current VLAN Tag filter setting in the supplied eth_drv_vlantag structure. The extra flag
ETH_DRV_VLANTAG_FLG_VALID in the returned flags field indicates whether a valid VLAN Tag filter has been set,
and whether the contents of the structure can be interpreted.

ETH_DRV_OPTIONS

This entry allows control of the operation of the underlying device driver. It is provided as a single API for get/set of mul-
tiple options using a standard AND/EOR approach, though currently only the RX interrupt-vs-polled option is provided.

See ETH_DRV_FILTER_OPTIONS for more detail regarding using AND/EOR for get and set operations.

The RX operation mode is controlled by multiple bits covered by the ETH_DRV_OPTION_RX_MODE_MASK.

The ETH_DRV_OPTION_RX_INT mode selects interrupt driven RX mode and is the default driver mode.

The ETH_DRV_OPTION_RX_POLL mode, where supported by the underlying driver, selects a RX polled mode of op-
eration. Normally this would not be desirable, but for some applications the (undefined) interrupt overhead of a high rate
of RX activity may adversely affect the performance of other subsystems; such that limiting RX reception (at the cost of
increased missed packets) is desired.

Note

The polled operation is less efficient with CPU bandwidth than the normal interrupt driven driver mode so
throughput will be lower when polled mode is selected.

Care should be taken with the driver specific poll-period selected since high-frequency polling when a high-
priority networking stack control thread is in use can be just as "bad" as an interrupt storm in denying other
threads CPU time.

The use of the ETH_DRV_OPTION_RX_POLL mode should be viewed as an option in extremis. Suitable
selection of the network thread priority levels, in conjunction with the driver and network stack buffering
options, should allow for correct application operation in a well constructed application when present on a

992

Writing Ethernet Device Drivers

RX saturated network. If supported by the driver then H/W filtering options can further reduce the S/W load
of the system hopefully avoiding the need to switch to polled RX.

The ETH_DRV_OPTION_RX_AUTO mode, where supported by the underlying driver, selects a mode of operation where
(under driver specific configuration) the driver will switch between interrupt and polled modes depending on the RX
activity. This can be used to ensure that if the driver and network stack are receiving high volumes of data that the RX
interrupt load of the system can be reduced by throttling RX reception using the polled mode.

This function should return zero if the specified operation was completed successfully. It should return non-zero if the operation
could not be performed, for any reason.

Can-send function
static int HRDWR_can_send(struct eth_drv_sc *sc)

This function is called to determine if it is possible to start the transmission of a packet on the interface. Some interfaces will
allow multiple packets to be "queued" and this function allows for the highest possible utilization of that mode.

Return the number of packets which could be accepted at this time, zero implies that the interface is saturated/busy.

Send function
struct eth_drv_sg {
 CYG_ADDRESS buf;
 CYG_ADDRWORD len;
};

static void
HRDWR_send(
 struct eth_drv_sc *sc,
 struct eth_drv_sg *sg_list, int sg_len,
 int total_len, unsigned long key)

This function is used to send a packet of data to the network. It is the responsibility of this function to somehow hand the
data over to the hardware interface. This will most likely require copying, but just the address/length values could be used
by smart hardware.

Note

All data in/out of the driver is specified via a “scatter-gather” list. This is just an array of address/length pairs
which describe sections of data to move (in the order given by the array), as in the struct eth_drv_sg defined
above and pointed to by sg_list.

Once the data has been successfully sent by the interface (or if an error occurs), the driver should call (sc->funs-
>eth_drv->tx_done)() (see the section called “Callback Tx-Done function”) using the specified key. Only then will
the upper layers release the resources for that packet and start another transmission.

Note

In future, this function may be extended so that the data need not be copied by having the function return a
“disposition” code (done, send pending, etc). At this point, you should move the data to some “safe” location
before returning.

Deliver function
static void
HRDWR_deliver(struct eth_drv_sc *sc)

This function is called from the “Network Delivery Thread” in order to let the device driver do the time-consuming work
associated with receiving a packet — usually copying the entire packet from the hardware or a special memory location into
the network stack's memory.

993

Writing Ethernet Device Drivers

After handling any outstanding incoming packets or pending transmission status, it can unmask the device's interrupts, and
free any relevant resources so it can process further packets.

It will be called when the interrupt handler for the network device has called

 eth_drv_dsr(vector, count, (cyg_addrword_t)sc);

to alert the system that “something requires attention.” This eth_drv_dsr() call must occur from within the interrupt han-
dler's DSR (not the ISR) or actually be the DSR, whenever it is determined that the device needs attention from the foreground.
The third parameter (data in the prototype of eth_drv_dsr() must be a valid struct eth_drv_sc pointer sc.

The reason for this slightly convoluted train of events is to keep the DSR (and ISR) execution time as short as possible, so that
other activities of higher priority than network servicing are not denied the CPU by network traffic.

To deliver a newly-received packet into the network stack, the deliver routine must call the following which will in turn call
the receive function, which we talk about next.

(sc->funs->eth_drv->recv)(sc, len);

See also the section called “Callback Receive function” below.

Receive function
static void
HRDWR_recv(
 struct eth_drv_sc *sc,
 struct eth_drv_sg *sg_list, int sg_len)

This function is a call back, only invoked after the upper-level function

(sc->funs->eth_drv->recv)(struct eth_drv_sc *sc, int total_len)

has been called itself from your deliver function when it knows that a packet of data is available on the interface. The (sc-
>funs->eth_drv->recv)() function then arranges network buffers and structures for the data and then calls HRD-
WR_recv() to actually move the data from the interface.

A scatter-gather list (struct eth_drv_sg) is used once more, just like in the send case.

Poll function
static void
HRDWR_poll(struct eth_drv_sc *sc)

This function is used when in a non-interrupt driven system, e.g. when interrupts are completely disabled. This allows the
driver time to check whether anything needs doing either for transmission, or to check if anything has been received, or if any
other processing needs doing.

It is perfectly correct and acceptable for the poll function to look like this:

static void
HRDWR_poll(struct eth_drv_sc *sc)
{
 my_interrupt_ISR(sc);
 HRDWR_deliver(struct eth_drv_sc *sc);
}

provided that both the ISR and the deliver functions are idempotent and harmless if called when there is no attention needed
by the hardware. Some devices might not need a call to the ISR here if the deliver function contains all the “intelligence.”

Interrupt-vector function
static int
HRDWR_int_vector(struct eth_drv_sc *sc)

994

Writing Ethernet Device Drivers

This function returns the interrupt vector number used for receive interrupts. This is so that the common GDB stubs can detect
when to check for incoming “CTRL-C” packets (used to asynchronously halt the application) when debugging over ethernet.
The GDB stubs need to know which interrupt the ethernet device uses so that they can mask or unmask that interrupt as required.

Upper Layer Functions
Upper layer functions are called by drivers to deliver received packets or transmission completion status back up into the
network stack.

These functions are defined by the hardware independent upper layers of the networking driver support. They are present
to hide the interfaces to the actual networking stack so that the hardware drivers may be used by different network stack
implementations without change.

These functions require a pointer to a struct eth_drv_sc which describes the interface at a logical level. It is assumed that the
low level hardware driver will keep track of this pointer so it may be passed “up” as appropriate.

Callback Init function
void (sc->funs->eth_drv->init)(
 struct eth_drv_sc *sc, unsigned char *enaddr)

This function establishes the device at initialization time. It should be called once per device instance only, from the initialization
function, if all is well (see the section called “Init function”). The hardware should be totally initialized (not “started”) when
this function is called.

Callback Tx-Done function
void (sc->funs->eth_drv->tx_done)(
 struct eth_drv_sc *sc,
 unsigned long key, int status)

This function is called when a packet completes transmission on the interface. The key value must be one of the keys provided
to HRDWR_send() above. The value status should be non-zero (details currently undefined) to indicate that an error
occurred during the transmission, and zero if all was well.

It should be called from the deliver function (see the section called “Deliver function”) or poll function (see the section called
“Poll function”).

Callback Receive function
void (sc->funs->eth_drv->recv)(struct eth_drv_sc *sc, int len)

This function is called to indicate that a packet of length len has arrived at the interface. The callback HRDWR_recv()
function described above will be used to actually unload the data from the interface into buffers used by the device independent
layers.

It should be called from the deliver function (see the section called “Deliver function”) or poll function (see the section called
“Poll function”).

Calling graph for Transmission and Reception
It may be worth clarifying further the flow of control in the transmit and receive cases, where the hardware driver does use
interrupts and so DSRs to tell the “foreground” when something asynchronous has occurred.

Transmission
1. Some foreground task such as the application, SNMP “daemon”, DHCP management thread or whatever, calls into network

stack to send a packet, or the stack decides to send a packet in response to incoming traffic such as a “ping” or ARP request.

995

Writing Ethernet Device Drivers

2. The driver calls the HRDWR_can_send() function in the hardware driver.

3. HRDWR_can_send() returns the number of available "slots" in which it can store a pending transmit packet. If it cannot
send at this time, the packet is queued outside the hardware driver for later; in this case, the hardware is already busy
transmitting, so expect an interrupt as described below for completion of the packet currently outgoing.

4. If it can send right now, HRDWR_send() is called. HRDWR_send() copies the data into special hardware buffers, or instructs
the hardware to “send that.” It also remembers the key that is associated with this tx request.

5. These calls return … time passes …

6. Asynchronously, the hardware makes an interrupt to say “transmit is done.” The ISR quietens the interrupt source in the
hardware and requests that the associated DSR be run.

7. The DSR calls (or is) the eth_drv_dsr() function in the generic driver.

8. eth_drv_dsr() in the generic driver awakens the “Network Delivery Thread” which calls the deliver function HRD-
WR_deliver() in the driver.

9. The deliver function realizes that a transmit request has completed, and calls the callback tx-done function (sc->funs-
>eth_drv->tx_done)() with the same key that it remembered for this tx.

10.The callback tx-done function uses the key to find the resources associated with this transmit request; thus the stack knows
that the transmit has completed and its resources can be freed.

11.The callback tx-done function also enquires whether HRDWR_can_send() now says “yes, we can send” and if so, dequeues
a further transmit request which may have been queued as described above. If so, then HRDWR_send() copies the data into
the hardware buffers, or instructs the hardware to "send that" and remembers the new key, as above. These calls then all
return to the “Network Delivery Thread” which then sleeps, awaiting the next asynchronous event.

12.All done …

Receive
1. Asynchronously, the hardware makes an interrupt to say “there is ready data in a receive buffer.” The ISR quietens the

interrupt source in the hardware and requests that the associated DSR be run.

2. The DSR calls (or is) the eth_drv_dsr() function in the generic driver.

3. eth_drv_dsr() in the generic driver awakens the “Network Delivery Thread” which calls the deliver function HRD-
WR_deliver() in the driver.

4. The deliver function realizes that there is data ready and calls the callback receive function (sc->funs->eth_drv-
>recv)() to tell it how many bytes to prepare for.

5. The callback receive function allocates memory within the stack (eg. MBUFs in BSD/Unix style stacks) and prepares a set
of scatter-gather buffers that can accommodate the packet.

6. It then calls back into the hardware driver routine HRDWR_recv(). HRDWR_recv() must copy the data from the hardware's
buffers into the scatter-gather buffers provided, and return.

7. The network stack now has the data in-hand, and does with it what it will. This might include recursive calls to transmit a
response packet. When this all is done, these calls return, and the “Network Delivery Thread” sleeps once more, awaiting
the next asynchronous event.

996

Chapter 168. lwIP Direct Ethernet Device
Driver
Introduction
This chapter provides a simple description of the basic requirements for a low-level, hardware specific, lwIP-direct ethernet
driver.

Using a lwIP-direct driver provides benefits in performance and smaller code- and memory-footprints. It also allows for the
potential for zero-copy UDP support and reduced (single) copy TCP support depending on the hardware available. The main
disadvantage over the standard ethernet driver world is the lack of RedBoot network debugging support.

The high-level driver implemented by this package (which is only code, without state of its own) is used to provide a common
interface for lwIP to either a lwIP-specific direct driver (as described in this chapter), or via a wrapper interface to a standard
generic ethernet driver (covered by the section called “Generic Ethernet API”).

Unlike the generic ethernet (standard) device driver support the lwIP device driver interface uses a fixed namespace between
the lwIP and driver layers. Normally only a single driver instance exists for a lwIP configured world, so the use of a fixed
namespace is, in reality, not an issue since lwIP is designed for lightweight, low resource, deeply-embedded systems. If a
target platform really does provide more than one distinct ethernet hardware implementation, requiring completely differ-
ent hardware drivers, then a wrapper layer conforming to the “direct” driver interface is provided when the option CYG-
FUN_IO_ETH_DRIVERS_LWIP_DRIVER_DIRECT_MULTI is configured. This implements a per-driver descriptor inter-
face between the individual low-level hardware interfaces for the platform and this common Ethernet I/O package.

Normally a direct driver implementation will also provide a driver specific header file which is referenced from the lwIP CDL
option CYGBLD_LWIP_HW_DRIVER_OVERRIDE_HEADER. The CDL covering the direct driver package should explicitly
set the value to the required header file name. Similarly when support is configured for multiple direct drivers, the CDL option
CYGBLD_LWIP_VARIANT_OVERRIDE_HEADER can be used to reference a header providing any needed platform/vari-
ant/driver specific features.

These header files can be used to provide access to prototypes and manifests needed to support specific lwIP features as
required. For example, if the hardware driver uses DMA, and requires timely support for re-using PBUFs once lwIP has finished
processing them, then the ECOS_LWIP_PBUF_POOL_FREE_HOOK manifest can be defined to reference a callback function
(See DRV_HDWR_pbuf_pool_free_hook()).

The following sections give an overview of the small set of functions that the driver needs to provide to be usable by this
package. When the multiple direct driver support is being used then these named functions are provided by this common
CYGPKG_IO_ETH_DRIVERS I/O Ethernet package, with a per-driver descriptor structure used to reference the specific driver
implementations (See the section called “Multiple direct drivers”).

API reference
The following function definitions document the namespace used by the eCos lwIP TCP/IP stack to interact with hardware
drivers.

997

lwIP Direct Ethernet Device Driver

Name
cyg_lwip_eth_ecos_init() — Initialize the hardware driver

Synopsis
#include <cyg/io/eth/eth_drv.h>

void cyg_lwip_eth_ecos_init();

Description

This function should perform the necessary hardware initialization, along with attaching any required eCos ISR and DSR sup-
port. As part of the initialization the upper-layer (generic) ethernet driver routine cyg_lwip_eth_drv_init_netif()
should be called.

The direct driver DSR should call the lwIP routine cyg_lwip_eth_dsr() on completion of its DSR handling to ensure
the lwIP delivery mechanism is notified.

998

lwIP Direct Ethernet Device Driver

Name
cyg_lwip_eth_low_level_output() — Transmit a packet

Synopsis
#include <cyg/io/eth/eth_drv.h>

err_t cyg_lwip_eth_low_level_output(netif, p);

Description

This function is called by higher layers to perform the actual transmission of the data packet referenced by p. The passed
pointer may be a chain of linked struct pbuf descriptors containing the data of the single packet, and is not a chain of packets.

Return value

This function returns a standard error code, as defined in <lwip/err.h>, with ERR_OK being returned on success.

999

lwIP Direct Ethernet Device Driver

Name
cyg_lwip_eth_run_deliveries() — Packet buffer house-keeping

Synopsis
#include <cyg/io/eth/eth_drv.h>

void cyg_lwip_eth_run_deliveries();

Description

This function is called from the lwIP thread context if the DSR has indicated that an ethernet delivery event needs to happen. It
can be used by the device driver to re-fill transmission buffers, or to pass pending receptions to the higher layers as required by
the hardware state. For example, if a received packet is available it should pass it into the stack via the common driver routine
cyg_lwip_eth_drv_ecosif_input().

1000

lwIP Direct Ethernet Device Driver

Name
cyg_lwip_eth_ioctl() — Control interface

Synopsis

#include <cyg/io/eth/eth_drv.h>

int cyg_lwip_eth_ioctl(netif, key, data, data_length);

Description

This function is used to perform low-level “control” operations on the specified lwIP network interface. It provides an interface
to the hardware where the function cannot be performed totally by the platform-independent layers.

The key parameter selects the operation, and the data and data_length parameters describe, as required, some data for
the specified operation.

Available Operations:

ETH_DRV_SET_MAC_ADDRESS

This operation sets the ethernet station address (ESA or MAC) for the specified network interface. Normally this address
would be kept in non-volatile memory and is unique in the world. This function must at minimum set the hardware interface
to use the supplied address, but (if required) it may also update the non-volatile memory as appropriate.

ETH_DRV_SET_MC_LIST

Configure the driver with the given list of multicast filters so that only received packets with a matching filter are accepted
and passed onto the lwIP stack.

The common ethernet support currently defines a fixed size vector for holding the “list” of multicast filter addresses:

struct eth_drv_mc_list {
 int len;
 unsigned char addrs[CYGNUM_IO_ETH_DRIVERS_FILTER_LIST_SIZE][ETHER_ADDR_LEN];
};

For the lwIP ethernet driver support the passed list may have unused entries (marked by the first byte having the multicast
flag bit 0 clear). This is an optimisation, and still allows for users to pass a front-filled len count of used entries, or for the
driver to avoid having to copy-down data when list entries are removed by marking individual passed list entries as unused.

For simple, lightweight, drivers it is common for the list support to simply perform the equivalent of the
ETH_DRV_SET_MC_ALL option, where the lwIP stack filters unwanted multicast packets instead of the driver having
pre-filtered based on the specified list.

ETH_DRV_SET_MC_ALL

Configure the driver to accept all multicast packets.

ETH_DRV_GET_IF_STATS, ETH_DRV_GET_IF_STATS_UD

These options acquire a set of statistical counters from the interface, and write the information into the memory referenced
by data. The calls to these options are typically made by SNMP agents. The “UD” variant explicitly instructs the driver
to acquire up-to-date values. This is a separate option because doing so may take some time, depending on the hardware.

The definition of the data structure can be found in the header file cyg/io/eth/eth_drv_stats.h.

1001

lwIP Direct Ethernet Device Driver

ETH_DRV_SET_DA_LIST
ETH_DRV_SET_SA_LIST
ETH_DRV_SET_FILTER_OPTIONS
ETH_DRV_SET_FILTER_L3L4
ETH_DRV_CLR_FILTER_L3L4
ETH_DRV_SET_VLANTAG
ETH_DRV_GET_VLANTAG
ETH_DRV_SET_OPMODE_RX

Refer to the section called “Control function” for the documentation for these filtering control options.

Return value

Successful completion of the operation is indicated by a result of 0 being returned. If a specific key operation is not supported
by the driver, or there is an error processing the requested operation then a result of 1 is returned to indicate failure.

1002

lwIP Direct Ethernet Device Driver

Name
DRV_HDWR_pbuf_pool_free_hook() — PBUF free hook callback

Synopsis

#include <cyg/io/eth/eth_drv.h>

u8_t DRV_HDWR_pbuf_pool_free_hook(p);

Description

If the driver specific header file defines ECOS_LWIP_PBUF_POOL_FREE_HOOK then the driver should implement a hard-
ware-specific function matching this defined prototype.

The function is called when lwIP is releasing a packet buffer, allowing the low-level device driver access to the (now unused)
packet buffer. This avoids the overhead of lwIP having to complete the free operation, and for the driver having to make a
subsequent allocation call.

If the driver does want to make use of the packet buffer descriptor (for example, to replace a DMA buffer slot) then it must
call the lwIP routine pbuf_pool_reinit() to ensure a valid descriptor state prior to reuse.

Return value

If the driver does not make use of the referenced struct pbuf then it returns a value of 1 to indicate that the packet buffer has
not been reused.

If the driver does claim the packet buffer then it should return 0 to indicate that the packet buffer descriptor has been reused.

Multiple direct drivers
When support for multiple direct drivers is configured then a driver instance is contained within a cyg_lwip_eth_t structure:

typedef struct cyg_lwip_eth {
 const char *name; // NUL terminated ASCII human-readable name
 void (*init)(struct cyg_lwip_eth *drvdesc);
 void (*run_deliveries)(void *instance);
 err_t (*ll_output)(struct netif *netif,struct pbuf *p);
 int (*pbuf_free_hook)(void *instance,struct pbuf *p);
 void (*phy_event)(struct netif *netif);
 int (*ioctl)(struct netif *netif,unsigned long key,void *data,int data_length);
 void *instance;
 cyg_uint32 flags;
} CYG_HAL_TABLE_TYPE cyg_lwip_eth_t;

This CYGPKG_IO_ETH_DRIVERS package will implement the wrapper namespace to support lwIP, calling the relevant
individual device driver registered functions as required.

You create an instance of cyg_lwip_eth_t using the CYG_LWIP_DRIVER macro, which sets up the structure. Using this
macro ensures that if the internal design changes then existing source will fail to compile until updated to reflect the changed
functionality. This is better than having definitions within the low-level drivers themselves, with the possibility of them building
successfully but then failing at run-time.

The individual hardware drivers are initialised automatically via the wrapper provided cyg_lwip_eth_ecos_init()
function, which iterates over the __LWIPDEVTAB__ vector containing the driver instance descriptors as required.

Note

When lwIP direct drivers are written to support CYGFUN_IO_ETH_DRIVERS_LWIP_DRIVER_DIREC-
T_MULTI configurations they MUST reference their cyg_lwip_eth_t descriptor via the state field of the

1003

lwIP Direct Ethernet Device Driver

struct netif describing the lwIP network interface. The instance field of the cyg_lwip_eth_t can be used to
hold driver specific instance data.

The function pointers referenced from the cyg_lwip_eth_t descriptor closely match the raw namespace, with the exception that
initialisation is passed the cyg_lwip_eth_t driver descriptor pointer, and the run_deliveries and pbuf_free_hook
implementations are passed the private instance pointer. This ensures that the individual driver implementation can access
the necessary state as would be the case for a single driver configuration.

Note

For the pbuf_free_hook support we should ideally pass the pbuf back to the original driver instance that
allocated that specific pbuf. However, for the moment, the code just offers the pbuf to each configured driver
in turn (the alternative would introduce complexity into the driver model for minimal gains).

This “do you want this pbuf” approach does not affect the behaviour, only the performance, of the driver when
used in a multi-driver configuration. If the developer needs to ensure that a particular driver instance is “high-
er priority” than other lwIP Ethernet drivers for pbuf re-use then they should enforce a mechanism for ensuring
the ordering of the __LWIPDEVTAB__device table.

lwIP MANUAL initialisation
Normally lwIP will default to DHCP for network interface address acquisition, but alternative methods can be configured
(AUTOIP, STATIC or MANUAL). The relevant configuration specific interface initialisation code is actually performed in
this common IO Ethernet package by the cyg_lwip_eth_drv_init_netif() function. When configured to use fixed
STATIC addresses those are held in the eCos configuration file for the build. The MANUAL option, however, allows for the
application code to manually supply address information and perform the interface initialisation.

When MANUAL address configuration is selected for an lwIP interface then an explicitly named function must be supplied by
the application run-time, with the prototype:

char cyg_lwip_eth_init_manual(struct netif *netif, char inum, unsigned char *enaddr);

The netif parameter references the underlying lwIP network interface descriptor, with the parameter inum being the logical
(indexed from 0) interface number. The enaddr references the IEEE MAC address for the interface.

It is expected that the application supplied routine will set the address configuration et al., before adding the interface, based
on some per-device stored/calculated values.

It is expected that if manual application interface initialisation is being used that the developer has a reasonable understanding
of lwIP and its internal requirements, and is au fait with the eCos network source base.

The following is a simple example implementation of the basic operations that need to be performed by the application to
provide MANUAL interface support:

char cyg_lwip_eth_init_manual(struct netif *netif, char inum, unsigned char *enaddr)
{
 ip4_addr_t ipaddr;
 ip4_addr_t netmask;
 ip4_addr_t gw;

 application_code_to_fill_addresses_for_interface_number(inum, &ipaddr, &netmask, &gw);

 char ok = (NULL != netif_add((netif),
 &ipaddr,
 &netmask,
 &gw,
 (netif)->state,
 cyg_lwip_eth_netif_init,
 ethernet_input));

 if (ok) {
#if LWIP_CHECKSUM_CTRL_PER_NETIF // per-interface checksum offload control
 // Set following as desired for the application configuration, or the

1004

lwIP Direct Ethernet Device Driver

 // target H/W driver feature support:
 (netif)->chksum_flags = NETIF_CHECKSUM_DISABLE_ALL;
#endif // LWIP_CHECKSUM_CTRL_PER_NETIF
 netif_set_up(netif);
 }

 return ok;
}

1005

Chapter 169. CDC-EEM Target USB driver
Introduction
eCosPro-CDCEEM is eCosCentric's commercial name for the USB peripheral device CYGPKG_DEVS_ETH_USB_CDCEEM
package. The package is not included as standard in eCosPro Developer's Kit releases, but is available as a separate add-on
package.

The CYGPKG_DEVS_ETH_USB_CDCEEM package implements a USB peripheral device CDC-EEM transport driver. The
current implementation makes use of the generic Ethernet driver package CYGPKG_DEVS_ETH_GENERIC_DIRECT to in-
tegrate with the lwIP TCP/IP stack.

The CDC-EEM peripheral driver is currently limited to use with the lwIP network stack, and is not available for the BSD
network stacks. This is a limitation of the parent CYGPKG_DEVS_ETH_GENERIC_DIRECT package, and not explicitly a
limitation of this CDC-EEM peripheral driver.

Normally the eCos lwIP network interface should be configured to use AutoIP, so that a link-local network address is assigned.
This ensures that when connected to hosts that do not provide a DHCP daemon, or support for routing to manual or application
set network addresses, an automatic connection is still configured.

API
There is no “user” API as such, since the cyg_eth_drv_generic_transport_cdceem structure is exported via the
__ETH_TRANSPORT_TAB__ table constructed at build-time, and referenced from the generic Ethernet device driver. The
CDC-EEM driver just provides a transport driver for the generic Ethernet world.

The exported CDC-EEM device features are controlled by the CDL for the package.

Configuration
This section shows how to include the CDC-EEM support into an eCos configuration, and how to configure it once installed.

Configuration Overview
The CDC-EEM driver is contained in a single eCos package CYGPKG_DEVS_ETH_USB_CDCEEM. However, it depends on
the services of a collection of other packages for complete functionality. Currently the CDC-EEM implementation is tightly
bound with the generic Ethernet driver package CYGPKG_DEVS_ETH_GENERIC_DIRECT.

Incorporating the CDC-EEM driver into your application is straightforward. The essential starting point is to incorporate the
CDC-EEM eCos package (CYGPKG_DEVS_ETH_USB_CDCEEM) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Configuring the CDC-EEM driver

Once added to the eCos configuration, the CDC-EEM package has a number of configuration options.

CYGPKG_DEVS_ETH_USB_CDCEEM_VID

The device VendorID. The VendorID number space is managed by the USB organisation, www.usb.org, and a unique
ID must be formally obtained.

In conjunction with the CYGPKG_DEVS_ETH_USB_CDCEEM_PID value this is used to uniquely identify a specific
peripheral product to the host O/S environment.

1006

http://www.usb.org

CDC-EEM Target USB driver

Note

The VID is normally expressed as a 16-bit hexadecimal number, but the eCos graphical configurarion tool
will normally display the value as a decimal.

CYGPKG_DEVS_ETH_USB_CDCEEM_PID

The device ProductID. The ProductID number space is managed by the vendor. This ID is sometimes used to uniquely
identify specific devices as regards the host device driver needed to communicate with the target device. It is the respon-
sibility of the developer to manage this internal (company) number space.

Note

The PID is normally expressed as a 16-bit hexadecimal number, but the eCos graphical configurarion tool
will normally display the value as a decimal.

CYGPKG_DEVS_ETH_USB_CDCEEM_MANUFACTURER

A human-readable device manufacturer identification string, that is returned as part of the device USB description. The
string may be used by the host O/S in its description of the product presented to end-users.

CYGPKG_DEVS_ETH_USB_CDCEEM_PRODUCT

A human-readable product identification string, that is returned as part of the device USB description. Like the manufac-
turer string this may be used on the host when presenting a device to the user.

CYGPKG_DEVS_ETH_USB_CDCEEM_SERIAL_FIXED

Depending on the product requirements the serial number returned as part of the USB descriptor can either be supplied at
run-time by the application HAL or defined by the CDL and fixed for a binary build.

The former approach relies on the HAL having a method of obtaining a unique identifier from the hardware from which
to construct a unique serial number string. This is normally the preferred approach to providing per-device unique identi-
fication, and is used when this option is disabled. When this option is enabled the build uses the string defined by this
option as the value returned in the device USB description. This latter approach is less flexible if different physical devices
need a unique ID since the CDL will need to be modified and a unique binary constructed for each specific device. If the
devices do not need to present a unique identity then the same serial number can be configured into the binary build with
the same value being used across all target devices.

CYGPKG_DEVS_ETH_USB_CDCEEM_POWERED

This option defines how the device declares its power state to the host, and should be configured to match the hardware
implementation supporting the CDC-EEM target driver. When configured as Bus powered then a further configuration
option is made available:

CYGPKG_DEVS_ETH_USB_CDCEEM_MAXPOWER

When bus-powered this option specifies the maximum power consumption of the device.

CYGIMP_CDCEEM_CRC_RX

When enabled verify EEM packet CRC on reception. If disabled then the CRC is ignored and all received packets are
passed to the parent Ethernet driver.

CYGIMP_CDCEEM_CRC_TX

If enabled then a CRC is calculated for every EEM packet transmitted. When disabled the special 0xDEADBEEF CRC
sentinel is used. NOTE: It is recommended to leave this option disabled currently, since problems have been seen where
Linux host drivers will incorrectly calculate the CRC and drop packets."

1007

CDC-EEM Target USB driver

CYGDBG_CDCEEM_DIAGNOSTICS

When enabled this option allows diagnostic output to be generated for different subsystems within the CDC-EEM driver,
and a set of further options are made available for configuration. This information is primarily for internal driver devel-
opment, and is not normally needed when debugging applications using the USB CDC-EEM network driver. The debug
output is sent to the diagnostic console channel as configured for the application.

Debug and Test

Debugging

Asserts

If the target platform resources allow the first step in debugging should be to enable ASSERTs. The inclusion of assert checking
will increase the code footprint and lower the performance, but do allow the code to catch internal errors from unexpected data
values. e.g. when the application/client is not able to guarantee the validity of data passed into the CDC-EEM layer.

The CDC-EEM transport driver asserts are controlled via the standard eCos Infrastructure CYGPKG_INFRA package
CYGDBG_USE_ASSERTS option. If enabled then run-time assertion checks are performed by the CDC-EEM driver.

If assertions are enabled, and a debugger is being used it is normally worth-while setting a breakpoint on the cyg_as-
sert_fail symbol so that the debugger will stop prior to entering the default busy-loop processing.

Diagnostic Output

In conjuction with the CYGDBG_CDCEEM_DIAGNOSTICS CDL configuration setting, the source-file src/cdceem.c im-
plements the CDC-EEM specific diagnostics control.

When CYGDBG_CDCEEM_DIAGNOSTICS is enabled a set of individually selectable sub-systems are available to control the
diagnostic output generated.

However, when developing or debugging the CDC-EEM driver implementation it may be simpler (with less build side-effects)
to control the debugging output via uncommenting the necessary manifests at the head of the src/cdceem.c source file
than re-configuring the complete eCos configuration via the CDL. That way only the CDC-EEM package will be re-built.

Note

Some diagnostic output if enabled may adversely affect the operation of the CDC-EEM driver as seen by 3rd-
party code. For example, “slow” serial diagnostic output of the packet parsing and response generation could
mean that a significant amount of time passes, such that the CDC-EEM driver no longer adheres to the timings
required by the USB host driver.

1008

Chapter 170. RNDIS Target USB driver

Introduction
eCosPro-RNDIS is eCosCentric's commercial name for the USB peripheral device CYGPKG_DEVS_ETH_USB_RNDIS pack-
age. The package is not included as standard in eCosPro Developer's Kit releases, but is available as a separate add-on package.

The CYGPKG_DEVS_ETH_USB_RNDIS package implements a USB peripheral device Remote NDIS transport driver. The
current implementation makes use of the generic Ethernet driver package CYGPKG_DEVS_ETH_GENERIC_DIRECT to in-
tegrate with the lwIP TCP/IP stack.

This driver has been tested against a range of host operating systems, including:

• Linux

Most modern Linux distributions will, by default, have support for RNDIS USB devices. For example, Ubuntu 12, CentOS 6,
etc. The target driver has been explicitly tested against 2.6 and 3.8 kernel based hosts.

• Mac OS X

The 3rd-party, open-source, HoRNDIS driver needs to be installed on the host. The eCos RNDIS driver has been explicitly
tested against Mac OS X versions 10.8.5 and 10.9, though earlier versions of Mac OS X should present no problems
assuming available HoRNDIS support.

• Windows

Windows XP (SP2), 7 (SP1), 8 and 8.1 have been testing using the standard Windows RNDIS host driver support.

The RNDIS peripheral driver is currently limited to use with the lwIP network stack, and is not available for the BSD network
stacks. This is a limitation of the parent CYGPKG_DEVS_ETH_GENERIC_DIRECT package, and not explicitly a limitation
of this RNDIS peripheral driver.

Normally the eCos lwIP network interface should be configured to use AutoIP, so that a link-local network address is assigned.
This ensures that when connected to hosts that do not provide a DHCP daemon, or support for routing to manual or application
set network addresses, an automatic connection is still configured.

One side-effect of the RNDIS networking model (as opposed to CDC-EEM for example) is that two network interfaces exist;
the host-end network interface created by the host O/S, and the peripheral lwIP interface providing the target application
networking. This means that each device configured to use the RNDIS USB target driver needs to provide two IEEE MAC
addresses. The platform HAL support supplying the MAC address to this driver, in conjunction with the developer/manufacturer
build world, must be aware of the requirements for managing the “unique identity” 24-bit MAC space in conjunction with the
24-bit IEEE OUI space specific to the device manufacturer.

API
There is no “user” API as such, since the cyg_eth_drv_generic_transport_rndis structure is exported via the
__ETH_TRANSPORT_TAB__ table constructed at build-time, and referenced from the generic Ethernet device driver. The
RNDIS driver just provides a transport driver for the generic Ethernet world.

The exported RNDIS device features are controlled by the CDL for the package.

Configuration
This section shows how to include the RNDIS support into an eCos configuration, and how to configure it once installed.

1009

http://joshuawise.com/horndis

RNDIS Target USB driver

Configuration Overview
The RNDIS driver is contained in a single eCos package CYGPKG_DEVS_ETH_USB_RNDIS. However, it depends on the
services of a collection of other packages for complete functionality. Currently the RNDIS implementation is tightly bound
with the generic Ethernet driver package CYGPKG_DEVS_ETH_GENERIC_DIRECT.

Incorporating the RNDIS driver into your application is straightforward. The essential starting point is to incorporate the RNDIS
eCos package (CYGPKG_DEVS_ETH_USB_RNDIS) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Configuring the RNDIS driver

Once added to the eCos configuration, the RNDIS package has a number of configuration options.

CYGPKG_DEVS_ETH_USB_RNDIS_VID

The device VendorID. The VendorID number space is managed by the USB organisation, www.usb.org, and a unique
ID must be formally obtained.

In conjunction with the CYGPKG_DEVS_ETH_USB_RNDIS_PID value this is used to uniquely identify a specific pe-
ripheral product to the host O/S environment.

Note

The VID is normally expressed as a 16-bit hexadecimal number, but the eCos graphical configurarion tool
will normally display the value as a decimal.

CYGPKG_DEVS_ETH_USB_RNDIS_PID

The device ProductID. The ProductID number space is managed by the vendor. This ID is sometimes used to uniquely
identify specific devices as regards the host device driver needed to communicate with the target device. It is the respon-
sibility of the developer to manage this internal (company) number space.

Note

The PID is normally expressed as a 16-bit hexadecimal number, but the eCos graphical configurarion tool
will normally display the value as a decimal.

CYGPKG_DEVS_ETH_USB_RNDIS_MANUFACTURER

A human-readable device manufacturer identification string, that is returned as part of the device USB description. The
string may be used by the host O/S in its description of the product presented to end-users.

CYGPKG_DEVS_ETH_USB_RNDIS_PRODUCT

A human-readable product identification string, that is returned as part of the device USB description. Like the manufac-
turer string this may be used on the host when presenting a device to the user.

CYGPKG_DEVS_ETH_USB_RNDIS_SERIAL_FIXED

Depending on the product requirements the serial number returned as part of the USB descriptor can either be supplied at
run-time by the application HAL or defined by the CDL and fixed for a binary build.

The former approach relies on the HAL having a method of obtaining a unique identifier from the hardware from which
to construct a unique serial number string. This is normally the preferred approach to providing per-device unique identi-
fication, and is used when this option is disabled. When this option is enabled the build uses the string defined by this
option as the value returned in the device USB description. This latter approach is less flexible if different physical devices
need a unique ID since the CDL will need to be modified and a unique binary constructed for each specific device. If the

1010

http://www.usb.org

RNDIS Target USB driver

devices do not need to present a unique identity then the same serial number can be configured into the binary build with
the same value being used across all target devices.

CYGPKG_DEVS_ETH_USB_RNDIS_POWERED

This option defines how the device declares its power state to the host, and should be configured to match the hardware
implementation supporting the RNDIS target driver. When configured as Bus powered then a further configuration option
is made available:

CYGPKG_DEVS_ETH_USB_RNDIS_MAXPOWER

When bus-powered this option specifies the maximum power consumption of the device.

CYGDBG_RNDIS_DIAGNOSTICS

When enabled this option allows diagnostic output to be generated for different subsystems within the RNDIS driver, and
a set of further options are made available for configuration. This information is primarily for internal driver development,
and is not normally needed when debugging applications using the USB RNDIS network driver. The debug output is sent
to the diagnostic console channel as configured for the application.

Debug and Test

Debugging

Asserts

If the target platform resources allow the first step in debugging should be to enable ASSERTs. The inclusion of assert checking
will increase the code footprint and lower the performance, but do allow the code to catch internal errors from unexpected data
values. e.g. when the application/client is not able to guarantee the validity of data passed into the RNDIS layer.

The RNDIS transport driver asserts are controlled via the standard eCos Infrastructure CYGPKG_INFRA package
CYGDBG_USE_ASSERTS option. If enabled then run-time assertion checks are performed by the RNDIS driver.

If assertions are enabled, and a debugger is being used it is normally worth-while setting a breakpoint on the cyg_as-
sert_fail symbol so that the debugger will stop prior to entering the default busy-loop processing.

Diagnostic Output

In conjuction with the CYGDBG_RNDIS_DIAGNOSTICS CDL configuration setting, the source-file src/rndis.c imple-
ments the RNDIS specific diagnostics control.

When CYGDBG_RNDIS_DIAGNOSTICS is enabled a set of individually selectable sub-systems are available to control the
diagnostic output generated.

However, when developing or debugging the RNDIS driver implementation it may be simpler (with less build side-effects) to
control the debugging output via uncommenting the necessary manifests at the head of the src/rndis.c source file than
re-configuring the complete eCos configuration via the CDL. That way only the RNDIS package will be re-built.

Note

Some diagnostic output if enabled may adversely affect the operation of the RNDIS driver as seen by 3rd-party
code. For example, “slow” serial diagnostic output of the packet parsing and response generation could mean
that a significant amount of time passes, such that the RNDIS driver no longer adheres to the timings required
by the USB host driver.

1011

Chapter 171. Ethernet PHY Device
Support
Ethernet PHY Device API
Modern ethernet subsystems are often separated into two pieces, the media access controller (sometimes known as a MAC)
and the physical device or line interface (often referred to as a PHY). In this case, the MAC handles generating and parsing
physical frames and the PHY handles how this data is actually moved to/from the wire. The MAC and PHY communicate
via a special protocol, known as MII. This MII protocol can handle control over the PHY which allows for selection of such
transmission criteria as line speed, duplex mode, etc.

In most cases, ethernet drivers only need to bother with the PHY during system initialization. Since the details of the PHY
are separate from the MAC, there are different drivers for each. The drivers for the PHY are described by a set of exported
functions which are commonly used by the MAC. The primary use of these functions currently is to initialize the PHY and
determine the status of the line connection.

The connection between the MAC and the PHY differs from MAC to MAC, so the actual routines to manipulate this data
channel are a property of the MAC instance. Furthermore, there are many PHY devices each with their own internal operations.
A complete MAC/PHY driver setup will be comprised of the MAC MII access functions and the PHY internal driver.

A driver instance is contained within a eth_phy_access_t:

#define PHY_BIT_LEVEL_ACCESS_TYPE 0
#define PHY_REG_LEVEL_ACCESS_TYPE 1

typedef struct {
 int ops_type; // 0 => bit level, 1 => register level
 bool init_done;
 void (*init)(void);
 void (*reset)(void);
 union {
 struct {
 void (*set_data)(int);
 int (*get_data)(void);
 void (*set_clock)(int);
 void (*set_dir)(int);
 } bit_level_ops;
 struct {
 void (*put_reg)(int reg, int unit, unsigned short data);
 bool (*get_reg)(int reg, int unit, unsigned short *data);
 } reg_level_ops;
 } ops;
 int phy_addr;
 struct _eth_phy_dev_entry *dev; // Chip access functions
} eth_phy_access_t;

struct _eth_phy_dev_entry {
 char *name;
 cyg_uint32 id;
 bool (*stat)(eth_phy_access_t *f, int *stat);
 unsigned int (*event)(eth_phy_access_t *f, unsigned int bitmask); // Configuration option
 cyg_uint32 idmask; // Masked with id to determine if there's a match
};

The dev element points to the PHY specific support functions. Currently, the only function which must be defined is stat().

The MAC-MII-PHY interface is a narrow connection, with commands and status moving between the MAC and PHY using
a bit-serial protocol. Some MAC devices contain the intelligence to run this protocol, exposing a mechanism to access PHY
registers one at a time. Other MAC devices may only provide access to the MII data lines (or even still, this may be considered
completely separate from the MAC). In these cases, the PHY support layer must handle the serial protocol. The choice between
the access methods is in the ops_type field. If it has the value PHY_BIT_LEVEL_ACCESS_TYPE, then the PHY device
layer will run the protocol, using the access functions set_data(), get_data(), set_clock(), set_dir() are used

1012

Ethernet PHY Device Support

to control the MII signals and run the protocol. If ops_type has the value PHY_REG_LEVEL_ACCESS_TYPE, then the
routines put_reg(), and get_reg() are used to access the PHY registers.

Two additional functions may be defined. These are init(), and reset(). The purpose of these functions is for gross-
level management of the MII interface. The init() function will be called once, at system initialization time. It should do
whatever operations are necessary to prepare the MII channel. In the case of PHY_BIT_LEVEL_ACCESS_TYPE devices,
init() should prepare the signals for use, i.e. set up the appropriate parallel port registers, etc. The reset() function may
be called by a driver to cause the PHY device to be reset to a known state. Not all drivers will require this and this function
may not even be possible, so it's use and behavior is somewhat target specific.

Currently, the only function required of device specific drivers is stat(). This routine should query appropriate registers in
the PHY and return a status bitmap indicating the state of the physical connection. In the case where the PHY can auto-negotiate
a line speed and condition, this information may be useful to the MAC to indicate what speed it should provide data, etc. The
status bitmask contains these bits:

#define ETH_PHY_STAT_LINK 0x0001 // Link up/down
#define ETH_PHY_STAT_100MB 0x0002 // Connection is 100Mb/10Mb
#define ETH_PHY_STAT_FDX 0x0004 // Connection is full/half duplex

Note: the usage here is that if the bit is set, then the condition exists. For example, if the ETH_PHY_STAT_LINK is set, then
a physical link has been established.

For platforms capable of supporting asynchronous PHY event notification the event() function can be im-
plemented. The CDL for the specific PHY and Ethernet driver combination defines whether the CYGINT_DE-
VS_ETH_PHY_PLF_IF_EVENTS controlled feature is actually included. The event() function, for simplicity, provides
both the event control and status support depending on the bitmask setting passed to the function. This function provides
the following functionality:

• configure the PHY for the events we are interested in receiving asynchronous notification for

• ascertain which events have occurred when an event is triggered

• clear any pending event (interrupt) status on the PHY

• ascertain the current status of the PHY

All of the above functionality is rolled into the single function to avoid the need for a separate stat() call to be made to the
PHY when processing a PHY interrupt at the Ethernet driver layer. Also the event() function should never block, unlike
the stat() implementation which may block depending on the PHY driver requirements.

In addition to the status bitmask bits defined for stat() (as listed above) extra status and control bits are defined. The status
bit:

#define ETH_PHY_STAT_ANC 0x0008 // Auto-Negotiation Completed

is used to reflect whether Auto-Negotiation has completed. When requesting enable/disable control, or detecting a change in
state indicated in the function result, the extra bits:

#define ETH_PHY_EVENT_LINK (1 << 16) // Link up/down change
#define ETH_PHY_EVENT_SPEED (1 << 17) // Speed (e.g. 10-/100-Mb/s) change
#define ETH_PHY_EVENT_DUPLEX (1 << 18) // Duplex (half/full) change
#define ETH_PHY_EVENT_AUTONEG (1 << 19) // Auto-Negotiation completed

are available. When passing the bitmask to the function the bit:

#define ETH_PHY_EVENT_UPDATE (1 << 31) // Update enabled events

is used to control both the enabling and disabling of specific PHY events. If ETH_PHY_EVENT_UPDATE if set then the
ETH_PHY_EVENT_ bit setting is used to control the enable (bit is set) or disable (bit is clear) state of the corresponding PHY
event. If this ETH_PHY_EVENT_UPDATE bit is not set then the PHY event configuration is not changed, allowing the function
call to be used purely for the clearing of pending events and ascertaing the event status and current PHY state. The returned
result bitmask will have the bit:

#define ETH_PHY_EVENT_STATUS (1 << 30) // Valid EVENT status flags

1013

Ethernet PHY Device Support

set if the event status information returned is valid. This is used to distinguish from the error value 0, used when the underlying
PHY operations are either not available (PHY event support not actually included) or an error has occurred.

Note

The default starting state for PHY drivers is that all PHY events should be disabled. The Ethernet driver then
requires an explicit call to enable PHY event support. For example to enable the LINK up/down event, and check
that the PHY actually supports the functionality, a driver could make the call:

 if (_eth_phy_event(eth->phy, (ETH_PHY_EVENT_LINK | ETH_PHY_EVENT_UPDATE)) & ETH_PHY_EVENT_STATUS) {
 // create, attach and enable platform specific PHY interrupt handler
 }

1014

Chapter 172. Synopsys DesignWare
Ethernet GMAC Driver

1015

Synopsys DesignWare Ethernet GMAC Driver

Name
CYGPKG_DEVS_ETH_DWC_GMAC — eCos Support for Synopsys DesignWare Ethernet GMAC Devices

Description
The CYGPKG_DEVS_ETH_DWC_GMAC package only implements the standard eCos driver interface. When used with the lwIP
TCP/IP network stack it provides implementations of the io/eth extended filtering options, and also provides support for
automatically throttling RX frame processing to limit the system overhead when used on a saturated network. See the section
called “Control function”.

Configuration Options
This Ethernet package should be loaded automatically when selecting a target containing a DWC GMAC controller, and it
should never be necessary to load it explicitly. If the application does not actually require Ethernet functionality then the
package is inactive and the final executable will not suffer any overheads from unused functionality. This is determined by the
presence of the generic Ethernet I/O package CYGPKG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the
right thing to happen. For example the default template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS
is not included, but the net, redboot and lwip_eth templates do include a TCP/IP stack so will specify that package and hence
enable the Ethernet driver.

All eCos network devices need a unique name. By default the first Ethernet device is assigned the name eth0. The plat-
form specific package providing the DWC GMAC network device descriptor also normally provides the interface name in its
struct eth_drv_sc structure instance.

The hardware requires that incoming Ethernet frames are received into one of a small number of buffers, arranged in a ring.
Once a frame has been received and its size is known the driver will pass it up to higher-level code for further processing. The
number of these buffers is provided in the platform specific package providing the dwc_gmac_priv structure instance.

In the standard Ethernet driver, each receive buffer requires 1528 bytes of memory. The package header file if_dwc_gmac.h
defines the manifest DWC_GMAC_RX_BUFF_SIZE which is used as the size of the receive descriptor ring buffers. A smaller
number of buffers increases the probability that incoming Ethernet frames have to be discarded. TCP/IP stacks are designed to
cope with the occasional lost packet, but if too many frames are discarded then this will greatly affect performance. A key issue
here is that passing the incoming frames up to higher-level code happens at thread level and hence the system behaviour is
defined in large part by the priority of various threads running in the TCP/IP stack. If application code has high-priority threads
that take up much of the available CPU time and the TCP/IP stack gets little chance to run then there will be little opportunity
to pass received frames up the stack. Similarly the priority of the TCP/IP network stack threads may affect the CPU bandwidth
available for other lower-priority application threads in a saturated network. Balancing out the various thread priorities and the
number of receive buffers is the responsibility of the application developer.

By default the Ethernet driver will raise interrupts using a low priority level. The exact value will depend on the processor
being used, and is held in the vector_pri field supplied by the platform specific package dwc_gmac_common structure
definition. The driver does very little at interrupt level, instead the real work is done via threads inside the TCP/IP stack. Hence
the interrupt priority has little or no effect on the system's behaviour. The RX interrupts are disabled whilst RX processing by
the thread level TCP/IP stack is pending; and only re-enabled once the thread level code has processed the RX ring buffer.

RX throttling

CYGIMP_DEVS_ETH_DWC_GMAC_NET_RX_AUTO

By default the driver uses interrupt driven RX frame handling, but allows for manual control of whether interrupt or polled
RX operation is used (via the ETH_DRV_OPTIONS interface). If CYGIMP_DEVS_ETH_DWC_GMAC_NET_RX_AUTO
is enabled then the driver will also support automatic switching between modes. Enabling this feature does not affect
the run-time operation of the driver by itself. It is the responsibility of the application to manually select ETH_DRV_OP-
TION_RX_AUTO mode via the ETH_DRV_OPTIONS control API if required.

// Simplistic example of setting driver AUTO-throttle option

struct netif *p_nif = netif_default;
struct eth_drv_sc *p_sc = (struct eth_drv_sc *)(netif->state);

1016

Synopsys DesignWare Ethernet GMAC Driver

if (p_sc->funs->control) {
 cyg_uint32 mode = ETH_DRV_OPTION_RX_AUTO;
 struct eth_drv_options drvopt;

 drvopt.u.mand = ~ETH_DRV_OPTION_RX_MODE_MASK;
 drvopt.eor = mode;

 int res = (p_sc->funs->control)(p_sc,ETH_DRV_OPTIONS,&drvopt,sizeof(drvopt));
 // Check mode is configured as requested:
 if (0 == res) {
 if (mode == (drvopt.u.val & ETH_DRV_OPTION_RX_MODE_MASK)) {
 success = true;
 } else {
 res = -1;
 }
 }
}

When AUTO-throttling is enabled other configuration options are made available to control the behaviour of the AU-
TO-throttle support.

CYGNUM_DEVS_ETH_DWC_GMAC_RUNAVG_SAMPLES

This option configures the number of samples used for the running averages. A smaller value will be coarser, but result
in quicker transitions on large deltas. A greater number of samples value will result in a smoother transition over a longer
period of time.

CYGSEM_DEVS_ETH_DWC_GMAC_NET_RX_AUTO_INTAVG

This option enables the AUTO support tracking of the RX load when in INT (interrupt) state. Since this has an impact on
the performance of the RX path the feature can be disabled by deselecting this option. When this option is disabled the
INT-to-POLL transition will only occur on network buffer exhaustion. When enabled the code will also track the active
RX load when in AUTO-INT mode and switch to polled mode when the CYGNUM_DEVS_ETH_DWC_GMAC_WM_IN-
T2POLL_PPMS configured watermark is exceeded.

CYGNUM_DEVS_ETH_DWC_GMAC_WM_INT2POLL_PPMS

When the AUTO-throttle feature is enabled this option specifies the load threshold (packets-per-millisecond) over which
we will switch from INT mode into POLL mode. This watermark is only used when AUTO mode is enabled, and AU-
TO-INT state is active, and triggers a switch to POLL mode When the load average rises above this threshold. It should
be tuned appropriately.

CYGNUM_DEVS_ETH_DWC_GMAC_WM_POLL2INT_PPMS

When the AUTO-throttle feature is enabled this option specifies the load threshold (packets-per-millisecond) under which
we switch from POLL mode back to INT mode when the load average drops below this threshold. It should be tuned
appropriately.

CYGNUM_DEVS_ETH_DWC_GMAC_NET_RX_POLL_PERIOD

When the driver is configured for RX polled operation, this value is the number of milliseconds used between polled
receiver calls.

Note

Care should be taken when setting a short poll period; since on networks where the driver will accepts large
numbers of RX packets, and a large amount of packet buffer space is allocated allowing the system to hold
a large number of pending RX packets, then depending on the relative priority of the network stack control
thread other application threads can be denied bandwidth.

MAC Address
All Ethernet devices should have a unique address which has to be provided from somewhere. There are a number of possi-
bilities:

1017

Synopsys DesignWare Ethernet GMAC Driver

1. The platform supplied driver instance dwc_gmac_priv structure provides the enaddr field which can be pre-initialised
by the platform specific world. The MAC address supplied in the referenced structure is used if neither of the run-time
options detailed below are provided. For example, the cyclone5_sx platform provides the CDL variable CYGDAT_DE-
VS_ETH_CYCLONE5_SX_MACADDR_ETH0 which is used to initialise the descriptor enaddr field for the eth0 instance.

2. The platform HAL can provide the address. For example the target board may have a small serial EPROM or similar which
is initialized during board manufacture. The platform HAL can read the serial EPROM during system startup and provide
the information to the Ethernet driver. If this is the case then the platform HAL should provide a macro CYGHWR_DE-
VS_ETH_DWC_GMAC_GET_ESA in the exported header cyg/hal/plf_arch.h.

3. If the target hardware boots via RedBoot and uses a block of flash to hold configuration variables then one of these variables
will be the MAC address. This is normally indicated by CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT being defined, in
which case the driver will attempt to access the MAC address via the CYGNUM_CALL_IF_FLASH_CFG_GET interface
to read the CYGNUM_FLASH_CFG_TYPE_CONFIG_ESA option. The MAC address to use can be manipulated at the
RedBoot prompt using the fconfig command, thus giving each board a unique address. An eCos application containing the
Ethernet driver will automatically pick up this address.

When designing a new target board it is recommended that the board comes with a unique network address supported by the
platform HAL, rather than relying on users to change the address. The latter approach can be error-prone and will lead to
failures that are difficult to track down.

Platform-specific PHY
The Ethernet GMAC hardware relies on an external media independent interface (MII), also known as a PHY chip. This
separate chip handles the low-level details of Ethernet communication, for example negotiating a link speed with the hub. In
most scenarios the PHY chip simply does the right thing and needs no support from the Ethernet driver. If there are special
requirements, for example if the board has to be hardwired to communicate at 10Mbps rather than autonegotiate the link speed,
then usually this is handled by fixed logic levels on some of the PHY pins or by using jumpers.

The driver supports asynchronous reporting of PHY events when the CDL option CYGSEM_DEVS_ETH_DWC_G-
MAC_PHY_EVENT is configured. Currently this event support is only available when using the lwIP TCP/IP networking stack.

1018

Chapter 173. Freescale ColdFire Ethernet
Driver

1019

Freescale ColdFire Ethernet Driver

Name
CYGPKG_DEVS_ETH_MCFxxxx — eCos Support for Freescale ColdFire On-chip Ethernet Devices

Description
Some members of the Freescale ColdFire family of processors come with an on-chip ethernet device. This package provides
an eCos driver for that device. The driver supports both polled mode for use by RedBoot and interrupt-driven mode for use
by a full TCP/IP stack.

The original version of the driver was written specifically for the MCF5272 processor. It has since been made to work on other
members of the ColdFire family.

There are in fact two driver implementations within this driver package, one standard driver suitable for use with various TCP/
IP stacks including at least RedBoot, BSD and lwIP; and one specific to lwIP. The lwIP-specific driver is a streamlined efficient
version designed for very low RAM overhead. As a result it is implemented intentionally at the expense of features such as
multiple network device support, and network debugging under RedBoot, but has improvements such as zero-copy reception
as well as zero-copy transmission if certain constraints are met by the data packet to be transmitted.

Configuration Options
This ethernet package should be loaded automatically when selecting a target containing a ColdFire processor with on-chip
ethernet, and it should never be necessary to load it explicitly. If the application does not actually require ethernet function-
ality then the package is inactive and the final executable will not suffer any overheads from unused functionality. This is
determined by the presence of the generic ethernet I/O package CYGPKG_IO_ETH_DRIVERS. Typically the choice of eCos
template causes the right thing to happen. For example the default template does not include any TCP/IP stack so CYGP-
KG_IO_ETH_DRIVERS is not included, but the net, redboot and lwip_eth templates do include a TCP/IP stack so will specify
that package and hence enable the ethernet driver.

The choice between using the standard driver, or the lwIP-specific driver is not made within this package, but is instead made
in the generic ethernet I/O package CYGPKG_IO_ETH_DRIVERS using the options within the lwIP driver model component
(CYGIMP_IO_ETH_DRIVERS_LWIP_DRIVER_MODEL). The standard driver is the default.

All eCos network devices need a unique name. By default the on-chip ethernet device is assigned the name eth0 but can be
changed through the configuration option CYGDAT_DEVS_ETH_MCFxxxx_NAME. This is useful if for example the target
hardware includes a number of additional off-chip ethernet devices. This setting is unused for the lwIP-specific driver.

The hardware requires that incoming ethernet frames are received into one of a small number of buffers, arranged in a ring.
Once a frame has been received and its size is known the driver will pass it up to higher-level code for further processing.
The number of these buffers is configurable via the option CYGNUM_DEVS_ETH_MCFxxxx_RXBUFFERS. In the standard
ethernet driver, each receive buffer requires 1528 bytes of memory; with the lwIP-specific driver, the size of each buffer is
set with the lwIP option CYGNUM_LWIP_PBUF_POOL_BUFSIZE, and multiple buffers are chained if needed to fulfil the
requirements of incoming frames. A smaller number of buffers increases the probability that incoming ethernet frames have to
be discarded. TCP/IP stacks are designed to cope with the occasional lost packet, but if too many frames are discarded then this
will greatly affect performance. A key issue here is that passing the incoming frames up to higher-level code typically happens
at thread level and hence the system behaviour is defined in large part by the priority of various threads running in the TCP/
IP stack. If application code has high-priority threads that take up much of the available cpu time and the TCP/IP stack gets
little chance to run then there will be little opportunity to pass received frames up the stack. Balancing out the various thread
priorities and the number of receive buffers is the responsibility of the application developer.

By default the ethernet driver will raise interrupts using a low priority level. The exact value will depend on the processor
being used, for example the MCF5282 interrupt controllers impose specific constraints on interrupt priorities. The driver does
very little at interrupt level, instead the real work is done via threads inside the TCP/IP stack. Hence the interrupt priority has
little or no effect on the system's behaviour. If the default priorities are inappropriate for some reason then they can be changed
through the configuration options CYGNUM_DEVS_ETH_MCFxxxx_ISR_RX_PRIORITY and CYGNUM_DEVS_ETH_M-
CFxxxx_ISR_TX_PRIORITY.

There is an option related to the default network MAC address, CYGDAT_DEVS_ETH_MCFxxxx_PLATFORM_MAC. This
is discussed in more detail below.

1020

Freescale ColdFire Ethernet Driver

Optionally the ethernet driver can maintain statistics about the number of incoming and transmitted ethernet frames, receive
overruns, collisions, and other conditions. Maintaining and providing these statistics involves some overhead, and is controlled
by the configuration option CYGFUN_DEVS_ETH_MCFxxxx_STATISTICS. Typically these statistics are only accessed
through SNMP, so by default statistics gathering is enabled if the configuration includes CYGPKG_SNMPAGENT and disabled
otherwise.

MAC Address
The ColdFire processors do not have a built-in unique network MAC address since that would require slightly different man-
ufacturing for each chip. All ethernet devices should have a unique address so this has to come from elsewhere. There are a
number of possibilities:

1. The platform HAL can provide the address. For example the target board may have a small serial EPROM or similar
which is initialized during board manufacture. The platform HAL can read the serial EPROM during system startup and
provide the information to the ethernet driver. If this is the case then the platform HAL should implement the CDL interface
CYGINT_DEVS_ETH_MCFxxxx_PLATFORM_MAC and provide a macro HAL_MCFxxxx_ETH_GET_MAC_ADDRESS
in the exported header cyg/hal/plf_arch.h.

2. There is a configuration option CYGDAT_DEVS_ETH_MCFxxxx_PLATFORM_MAC which specifies the default MAC ad-
dress. Manipulating this option is fine if the configuration will only be used on a single board. However if multiple boards
run applications with the same configuration then they would all have the same MAC address, and the resulting behaviour
is undefined.

3. If the target hardware boots via RedBoot and uses a block of flash to hold configuration variables then one of these variables
will be the MAC address. It can be manipulated at the RedBoot prompt using the fconfig command, thus giving each board
a unique address. An eCos application containing the ethernet driver will automatically pick up this address.

When designing a new target board it is recommended that the board comes with a unique network address supported by the
platform HAL, rather than relying on users to change the address. The latter approach can be error-prone and will lead to
failures that are difficult to track down.

Platform-specific PHY
The on-chip ethernet hardware relies on an external media independent interface (MII), also known as a PHY chip. This
separate chip handles the low-level details of ethernet communication, for example negotiating a link speed with the hub. In
most scenarios the PHY chip simply does the right thing and needs no support from the ethernet driver. If there are special
requirements, for example if the board has to be hardwired to communicate at 10Mbps rather than autonegotiate the link speed,
then usually this is handled by fixed logic levels on some of the PHY pins or by using jumpers.

The eCos ethernet driver assumes that the PHY is already fully operational and does not interact with it in any way. If the target
hardware does require software initialization of the PHY chip then usually this will be done in the platform HAL, because the
choice of PHY chip is a characteristic of the platform.

1021

Chapter 174. Nios II Triple Speed Ethernet
Driver

1022

Nios II Triple Speed Ethernet Driver

Name
CYGPKG_DEVS_ETH_NIOS2_TSE — eCos Support for Nios II Triple-Speed Ethernet Devices

Description
A Nios II hardware design can include one or more triple speed ethernet devices or TSEs. The package CYGPKG_DE-
VS_ETH_NIOS2_TSE provides an eCos driver for a single TSE device. It supports both polled mode for use by RedBoot and
interrupt-driven mode for use by a full TCP/IP stack.

Configuration Options
The Nios II TSE driver package should be loaded automatically when creating an eCos configuration for a hardware design
which includes the required devices, and it should never be necessary to load the package explicitly. If the application does not
actually require ethernet functionality then the package is inactive and the final executable will not suffer any overheads from
unused functionality. This is determined by the presence of the generic ethernet I/O package CYGPKG_IO_ETH_DRIVERS.
Typically the choice of eCos template causes the right thing to happen. For example the default template does not include any
TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and redboot templates do include a TCP/IP
stack so will specify that package and hence enable the ethernet driver.

The driver package will only instantiate the support for a single TSE device. If the hardware design involves multiple TSE
devices then support for the additional ones can be instantiated by application code. This can be achieved largely by cloning
file src/tse0.c in this package.

There are two configuration options related to the device instantiation. CYGDAT_DEVS_ETH_NIOS2_TSE0_NAME sets the
device name, defaulting to “eth0”. Typically this only needs to be changed if the hardware design includes other types of ethernet
device and their drivers also attempt to create a device “eth0”. CYGDAT_DEVS_ETH_NIOS2_TSE_ETH0_MAC specifies the
fallback ethernet station address or MAC address. In typical eCos systems the MAC address is provided via a RedBoot fconfig
option, allowing each board to have its own address. However if the fconfig functionality is unavailable, for example when
debugging via jtag, then the fallback address will be used instead. Note that each board on a network must have a unique MAC
address, so if there are several boards on the network using the fallback address and the same eCos configuration then network
communication can be expected to fail. Applications can also change the MAC address at run-time using a SIOCSIFHWADDR
ioctl. However this ioctl should not be used when debugging over ethernet because it will break the debug channel.

Porting
Each triple speed ethernet device requires three units in the hardware design: the tse_mac unit itself, and sgdma_rx and
sgdma_tx scatter-gather DMA controllers. Typically the hardware design will also include a bank of on-chip RAM to hold
the DMA descriptors. The settings for these units are best cloned from a reference hardware design such as the TSE_SGDMA
examples in the Nios II Embedded Design Suite, or the eCosPro_TSEplus design. The h/w design HAL package should provide
address and interrupt vector definitions for the various units.

1023

Chapter 175. SMSC LAN9118 Ethernet
Driver

1024

SMSC LAN9118 Ethernet Driver

Name
CYGPKG_DEVS_ETH_SMSC_LAN9118 — eCos Support for SMSC LAN9118 Ethernet Devices

Description
The SMSC LAN9118 chip is a high performance single chip ethernet controller which can be interfaced to a variety of em-
bedded processors. This package provides an eCos driver for that device. The driver supports both polled mode for use by
RedBoot and interrupt-driven mode for use by a full TCP/IP stack.

The exact interface between the LAN9118 chip and the main processor is determined by the platform HAL. On some platforms
there may even be multiple LAN9118 chips. This package only provides the platform-independent code. It is up to the platform
HAL to instantiate one or more device instances and to provide information such as the base address and interrupt vector. There
is also no explicit support for features like auto-negotiation or advanced flow control. These are left to the platform HAL or to
the application, although usually the default settings will be acceptable for most applications.

Configuration Options
This package should be loaded automatically when selecting a target equipped with a LAN9118 ethernet chip. and it should
never be necessary to load it explicitly. If the application does not actually require ethernet functionality then the package is
inactive and the final executable will not suffer any overheads from unused functionality. This is determined by the presence
of the generic ethernet I/O package CYGPKG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right
thing to happen. For example the default template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is
not included, but both the net and redboot templates do include a TCP/IP stack so will specify that package and hence enable
the ethernet driver.

Optionally the ethernet driver can maintain statistics about the number of incoming and transmitted ethernet frames, receive
overruns, collisions, and other conditions. Maintaining and providing these statistics involves some overhead, and is controlled
by the configuration option CYGFUN_DEVS_ETH_SMSC_LAN9118_STATISTICS. Typically these statistics are only ac-
cessed through SNMP, so by default statistics gathering is enabled if the configuration includes CYGPKG_SNMPAGENT and
disabled otherwise.

Porting the Driver to New Hardware
It is the responsibility of the platform HAL to instantiate one or more devices, depending on the number of LAN9118 chips
present. Typically this involves a separate file in the platform HAL sources:

#include <cyg/io/lan9118.h>

LAN9118_INSTANCE(alaia, 0, "eth0", alaia_eth_init);

static bool
alaia_eth_init(struct cyg_netdevtab_entry* tab)
{
 …

 return cyg_lan9118_eth_init(tab);
}

The first two arguments to the LAN9118_INSTANCE macro identify the platform and the device instance, and are used to
construct unique variable names. The third argument gives the device name, and the final argument is a platform-specific
initialization function. The platform HAL should also contain suitable CDL to build this file:

cdl_component CYGHWR_HAL_ALAIA_ETH {
 display "External ethernet support"
 parent CYGPKG_IO_ETH_DRIVERS
 flavor none
 active_if CYGPKG_IO_ETH_DRIVERS
 implements CYGNUM_DEVS_ETH_SMSC_LAN9118_COUNT
 compile -library=libextras.a alaia_eth.c
 description "
 The Alaia board comes with a single LAN9118 ethernet device."

1025

SMSC LAN9118 Ethernet Driver

 cdl_option CYGNUM_HAL_ALAIA_ETH_ISR_PRIORITY {
 …
 }
 …
}

If the configuration does not include the generic ethernet support then this component will be inactive. Otherwise the file
alaia_eth.c will get built into libextras.a, ensuring the device instance does not get eliminated by linker garbage
collection. The interface CYGNUM_DEVS_ETH_SMSC_LAN9118_COUNT should be implemented once per LAN9118 chip.
If additional configuration options are needed, for example to control the MAC address or the interrupt priority, then these
can go inside the component.

The driver needs to know where to access the device. If there is a single LAN9118 chip then the required information can be
supplied via #define's in the plf_io.h header:

#define HAL_LAN9118_BASE 0xBA000000
#define HAL_LAN9118_ISRVEC CYGNUM_HAL_ISR_LAN9118
#define HAL_LAN9118_ISRPRI CYGNUM_HAL_ALAIA_ETH_ISR_PRIORITY

Otherwise the platform-specific initialization function should put this information in fields in the LAN9118 instance structure:

static bool
alaia_eth_init(struct cyg_netdevtab_entry* tab)
{
 LAN9118_INSTANCE_NAME(alaia, 0).lan9118_base = 0xBA000000;
 LAN9118_INSTANCE_NAME(alaia, 0).lan9118_isrvec = CYGNUM_HAL_ISR_PIO4;
 LAN9118_INSTANCE_NAME(alaia, 0).lan9118_isrpri = 1;
 LAN9118_INSTANCE_NAME(alaia, 1).lan9118_base = 0xBB000000;
 LAN9118_INSTANCE_NAME(alaia, 1).lan9118_isrvec = CYGNUM_HAL_ISR_PIO5;
 LAN9118_INSTANCE_NAME(alaia, 1).lan9118_isrpri = 1;
 …
 return cyg_lan9118_eth_init(tab);
}

The initialization function should ensure that the processor's bus interface is set up correctly for talking to the ethernet chip,
and that the interrupt vector has been configured correctly for level vs. edge interrupts. This must happen before calling the
driver init function. Also the lan9118_hw_flags should be set correctly as per the flags in lan9118.h, for example:

static bool
alaia_eth_init(struct cyg_netdevtab_entry* tab)
{
 …
 LAN9118_INSTANCE_NAME(alaia, 0).lan9118_hw_flags =
 (LAN9118_HW_FLAGS_IRQ_POL_ACTIVE_HIGH |
 LAN9118_HW_FLAGS_IRQ_PUSH_PULL |
 LAN9118_HW_FLAGS_HAS_LED1 |
 LAN9118_HW_FLAGS_HAS_LED2);
 …
 return cyg_lan9118_eth_init(tab);
}

The LAN9118 can be accessed via either a 16-bit or 32-bit bus, and from big-endian or little-endian processors. This gives a
number of combinations. The chip is inherently little-endian, so on a little-endian processor there should be no problems. On
a big-endian processor there are two possibilities. If the LAN9118 is interfaced in the obvious way then it will be necessary
to swap the data of all incoming and outgoing packets, which imposes a significant performance penalty. On a 16-bit bus
the LAN9118_HW_FLAGS_16BIT_BE flag should be set. Alternatively the bytes on the bus can be swapped, either by the
hardware or by programming the processor's bus interface. This means no swapping is needed for data, but all accesses to the
LAN9118's command and status registers need swapping instead. However most of that swapping can be done at compile-time
so has no overhead. Defining HAL_LAN9118_SWAP_COMMANDS in plf_io.h sets up this mode. If there are multiple
ethernet chips then the driver assumes they are all wired the same way. For further details consult the driver's source code.

All ethernet devices require a unique MAC address. Ideally this will be provided by a serial EEPROM or similar, and if such a
device is present and attached to the LAN9118 then it will be used automatically by the ethernet chip to set the MAC address.
If the platform does not have a suitable EEPROM then the MAC address must come from elsewhere, for example a RedBoot
fconfig option, and the platform-specific initialization function should fill in the instance's lan9118_mac field.

1026

Chapter 176. Synthetic Target Ethernet
Driver

1027

Synthetic Target Ethernet Driver

Name
Synthetic Target Ethernet Support — Allow synthetic target applications to perform ethernet I/O

Overview
The synthetic target ethernet package can provide up to four network devices, eth0 to eth3. These can be used directly by
the eCos application or, more commonly, by a TCP/IP stack that is linked with the eCos application. Each eCos device can
be mapped on to a real Linux network device. For example, if the Linux PC has two ethernet cards and eth1 is not currently
being used by Linux itself, then one of the eCos devices can be mapped on to this Linux device. Alternatively, it is possible to
map some or all of the eCos devices on to the ethertap support provided by the Linux kernel.

The ethernet package depends on the I/O auxiliary provided by the synthetic target architectural HAL package. During ini-
tialization the eCos application will attempt to instantiate the desired devices, by sending a request to the auxiliary. This will
load a Tcl script ethernet.tcl that is responsible for handling the instantiation request and subsequent I/O operations, for
example transmitting an ethernet packet. However, some of the low-level I/O operations cannot conveniently be done by a Tcl
script so ethernet.tcl will actually run a separate program rawether to interact with the Linux network device.

On the target-side there are configuration options to control which network devices should be present. For many applications
a single device will be sufficient, but if the final eCos application is something like a network bridge then the package can
support multiple devices. On the host-side each eCos network device needs to be mapped on to a Linux one, either a real
ethernet device or an ethertap device. This is handled by an entry in the target definition file:

synth_device ethernet {
 eth0 real eth1
 eth1 ethertap tap3 00:01:02:03:FE:05
 …
}

The ethernet package also comes with support for packet logging, and provides various facilities for use by user Tcl scripts.

Installation
Before a synthetic target eCos application can access ethernet devices it is necessary to build and install host-side support. The
relevant code resides in the host subdirectory of the synthetic target ethernet package, and building it involves the standard
configure, make and make install steps. The build involves a new executable rawether which must be able to access a raw
Linux network device. This is achieved by installing it suid root, so the make install step has to be run with superuser privileges.

Caution

Installing rawether suid root introduces a potential security problem. Although normally rawether is executed
only by the I/O auxiliary, theoretically it can be run by any program. Effectively it gives any user the ability to
monitor all ethernet traffic and to inject arbitrary packets into the network. Also, as with any suid root programs
there may be as yet undiscovered exploits. Users and system administrators should consider the risks before
running make install.

There are two main ways of building the host-side software. It is possible to build both the generic host-side software and all
package-specific host-side software, including the ethernet support, in a single build tree. This involves using the configure
script at the toplevel of the eCos repository. For more information on this, see the README.host file at the top of the
repository. Note that if you have an existing build tree which does not include the synthetic target ethernet support then it will
be necessary to rerun the toplevel configure script: the search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This requires a separate build directory, building directly in the
source tree is disallowed. The configure options are much the same as for a build from the toplevel, and the README.host

1028

Synthetic Target Ethernet Driver

file can be consulted for more details. It is essential that the ethernet support be configured with the same --prefix option
as other eCos host-side software, especially the I/O auxiliary provided by the architectural synthetic target HAL package,
otherwise the I/O auxiliary will be unable to locate the ethernet support.

Target-side Configuration Options
The target-side code can be configured to support up to four ethernet devices, eth0 to eth3. By default eth0 is enabled if the
configuration includes a TCP/IP stack, otherwise it is disabled. The other three devices are always disabled by default. If any
of the devices are enabled then there will also be the usual configuration options related to building this package. Other options
related to network devices, for example whether or not to use DHCP, are provided by the generic network device package.

Real Ethernet
One obvious way of providing a synthetic target eCos application with ethernet I/O is to use a real ethernet device in the PC:
transmitted packets go out on a real network, and packets on the network addressed to the right MAC address are passed on to
eCos. This way synthetic target networking behaves just like networking on a real target with ethernet hardware. For example,
if there is a DHCP server anywhere on the network then eCos will be able to contact it during networking startup and get hold
of IP address information.

Configuring the ethernet support to use a real ethernet device requires a simple entry in the target definition file:

synth_device ethernet {
 <eCos device> real <linux device>
 …
}

For example, to map the eCos network device eth0 to the Linux device eth1:

synth_device ethernet {
 eth0 real eth1
 …
}

It is not possible for an ethernet device to be shared by both the eCos TCP/IP stack and the Linux one: there would be no simple
way to work out which stack incoming packets are intended for. In theory it might be possible to do some demultiplexing using
distinct IP addresses, but it would be impossible to support some functionality such as DHCP. Therefore the rawether program
will refuse to access any ethernet device already in use. On a typical Linux system eth0 will be used for Linux networking,
and the PC will have to be equipped with additional ethernet devices for use by eCos.

The rawether program will access the hardware via the appropriate Linux device driver, so it is important that the system is
set up such that the relevant module will be automatically loaded or is already loaded. The details of this will depend on the
installed distribution and version, but typically it will involve an entry in /etc/modules.conf.

Ethertap
The Linux kernel's ethertap facility provides a virtual network interface. A Linux application, for example the rawether pro-
gram, can open a special character device /dev/net/tun, perform various ioctl calls, and then write and read ether-
net packets. When the device is opened the Linux kernel automatically creates a new network interface, for example tap0.
The Linux TCP/IP stack can be made to use this network interface like any other interface, receiving and transmitting ethernet
packets. The net effect is a virtual network connecting just the Linux and eCos TCP/IP stacks, with no other nodes attached.
By default all traffic remains inside this virtual network and is never forwarded to a real network.

Support for the ethertap facility may or may not be provided automatically, depending on your Linux distribution and version.
If your system does not have a device /dev/net/tun or a module tun.o then the appropriate kernel documentation should
be consulted, for example /usr/src/linux-2.4/Documentation/networking/tuntap.txt. If you are using
an old Linux kernel then the ethertap functionality may be missing completely. When the rawether program is configured and
built, the configure script will check for a file /usr/include/linux/if_tun.h. If that file is missing then rawether
will be built without ethertap functionality, and only real ethernet interfaces will be supported.

The target definition file is used to map eCos network devices on to ethertap devices. The simplest usage is:

synth_device ethernet {

1029

Synthetic Target Ethernet Driver

 eth0 ethertap
 …
}

The Linux kernel will automatically allocate the next available tap network interface. Usually this will be tap0 but if other
software is using the ethertap facility, for example to implement a VPN, then a different number may be allocated. Usually it
will be better to specify the particular tap device that should be used for each eCos device, for example:

synth_device ethernet {
 eth0 ethertap tap3
 eth1 ethertap tap4
 …
}

The user now knows exactly which eCos device is mapped onto which Linux device, avoiding much potential confusion.
Because the virtual devices are emulated ethernet devices, they require MAC addresses. There is no physical hardware to
provide these addresses, so normally MAC addresses will be invented. That means that each time the eCos application is run
it will have different MAC addresses, which makes it more difficult to compare the results of different runs. To get more
deterministic behaviour it is possible to specify the MAC addresses in the target definition file:

synth_device ethernet {
 eth0 ethertap tap3 00:01:02:03:FE:05
 eth1 ethertap tap4 00:01:02:03:FE:06
 …
}

During the initialization phase the eCos application will instantiate the various network devices. This will cause the I/O auxiliary
to load the ethernet.tcl script and spawn rawether processes, which in turn will open /dev/net/tun and perform
the appropriate ioctl calls. On the Linux side there will now be new network interfaces such as tap3, and these can be
configured like any other network interface using commands such as ifconfig. In addition, if the Linux system is set up with
hotplug support then it may be possible to arrange for the network interface to become active automatically. On a Red Hat Linux
system this would require files such as /etc/sysconfig/network-scripts/ifcfg-tap3, containing data like:

DEVICE="tap3"
BOOTPROTO="none"
BROADCAST=10.2.2.255
IPADDR="10.2.2.1"
NETMASK="255.255.255.0"
NETWORK=10.2.2.0
ONBOOT="no"

This gives the Linux interface the address 10.2.2.1 on the network 10.2.2.0. The eCos network device should be con-
figured with a compatible address. One way of doing this would be to enable CYGHWR_NET_DRIVER_ETH0_ADDRS, set
CYGHWR_NET_DRIVER_ETH0_ADDRS_IP to 10.2.2.2, and similarly update the NETMASK, BROADCAST, GATEWAY
and SERVER configuration options.

It should be noted that the ethertap facility provides a virtual network, and any packets transmitted by the eCos application will
not appear on a real network. Therefore usually there will no accessible DHCP server, and eCos cannot use DHCP or BOOTP
to obtain IP address information. Instead the eCos configuration should use manual or static addresses.

When rawether exits, the tap interface is removed by the kernel. By adding the parameter persistent rawether will set the
persistent flag on the tap device.

synth_device ethernet {
 eth0 ethertap tap3 00:01:02:03:FE:05
 eth1 ethertap tap4 00:01:02:03:FE:06 persistent
 …
}

With this flag set the kernel will not remove the interface when rawether exits. This means applications such as dhcpd,
radvd, and tcpdump will continue to run on the interface between invocations of synthetic targets. As a result the target can
dynamically obtain its IP addresses from these daemons. Note it is a good idea to specify a MAC address otherwise a different
random MAC address will be used each time and the dhcpd daemon will not be able to reissue the same IP address.

Host daemons like dhcpd, ntpd, radvd etc are started at boot time. Since the tap device does not exists at this point in time it
is not possible for these daemons to bind to the tap device. A simple solution is to use the program install/bin/mktap. This
takes one parameter, the name of the tap device it should create. eg, tap3.

1030

Synthetic Target Ethernet Driver

An alternative approach would be to set up the Linux box as a network bridge, using commands like brctl to connect the
virtual network interface tap3 to a physical network interface such as eth0. Any packets sent by the eCos application will
get forwarded automatically to the real network, and some packets on the real network will get forwarded over the virtual
network to the eCos application. Note that the eCos application might also get some packets that were not intended for it, but
usually those will just be discarded by the eCos TCP/IP stack. The exact details of setting up a network bridge are left as an
exercise to the reader.

Packet Logging
The ethernet support comes with support for logging the various packets that are transferred, including a simple protocol
analyser. This generates simple text output using the filter mechanisms provided by the I/O auxiliary, so it is possible to control
the appearance and visibility of different types of output. For example the user might want to see IPv4 headers and all ICMPv4
and ARP operations, but not TCP headers or any of the packet data.

The protocol analyser is not intended to be a fully functional analyser with knowledge of many different TCP/IP protocols,
advanced search facilities, graphical traffic displays, and so on. Functionality like that is already provided by other tools such as
ethereal and tcpdump. Achieving similar levels of functionality would require a lot of work, for very little gain. It is still useful
to have some protocol analysis functionality available because the output will be interleaved with other output, for example
printf calls from the application. That may make it easier to understand the sequence of events.

One problem with logging ethernet traffic is that it can involve very large amounts of data. If the application is expected to run
for a long time or is very I/O intensive then it is easy to end up with many megabytes. When running in graphical mode all the
logging data will be held in memory, even data that is not currently visible. At some point the system will begin to run low
on memory and performance will suffer. To avoid problems, the ethernet script maintains a flag that controls whether or not
packet logging is active. The default is to run with logging disabled, but this can be changed in the target definition file:

synth_device ethernet {
 …
 logging 1
}

The ethernet script will add a toolbar button that allows this flag to be changed at run-time, allowing the user to capture traffic
for certain periods of time while the application continues running.

The target definition file can contain the following entries for the various packet logging filters:

synth_device ethernet {
 …
 filter ether -hide 0 -background LightBlue -foreground "#000080"
 filter arp -hide 0 -background LightBlue -foreground "#000050"
 filter ipv4 -hide 0 -background LightBlue -foreground "#000040"
 filter ipv6 -hide 1 -background LightBlue -foreground "#000040"
 filter icmpv4 -hide 0 -background LightBlue -foreground "#000070"
 filter icmpv6 -hide 1 -background LightBlue -foreground "#000070"
 filter udp -hide 0 -background LightBlue -foreground "#000030"
 filter tcp -hide 0 -background LightBlue -foreground "#000020"
 filter hexdata -hide 1 -background LightBlue -foreground "#000080"
 filter asciidata -hide 1 -background LightBlue -foreground "#000080"
}

All output will show the eCos network device, for example eth0, and the direction relative to the eCos application. Some of
the filters will show packet headers, for example ether gives details of the ethernet packet header and tcp gives information
about TCP headers such as whether or not the SYN flag is set. The TCP and UDP filters will also show source and destination
addresses, using numerical addresses and if possible host names. However, host names will only be shown if the host appears in
/etc/hosts: doing full DNS lookups while the data is being captured would add significantly to complexity and overhead.
The hexdata and asciidata filters show the remainder of the packets after the ethernet, IP and TCP or UDP headers
have been stripped.

Some of the filters will provide raw dumps of some of the packet data. Showing up to 1500 bytes of data for each packet would
be expensive, and often the most interesting information is near the start of the packet. Therefore it is possible to set a limit on
the number of bytes that will be shown using the target definition file. The default limit is 64 bytes.

synth_device ethernet {

1031

Synthetic Target Ethernet Driver

 …
 max_show 128
}

User Interface Additions
When running in graphical mode the ethernet script extends the user interface in two ways: a button is added to the toolbar so
that users can enable or disable packet logging; and an entry is added to the Help menu for the ethernet-specific documentation.

Command Line Arguments
The synthetic target ethernet support does not use any command line arguments. All configuration is handled through the target
definition file.

Hooks
The ethernet support defines two hooks that can be used by other scripts, especially user scripts: ethernet_tx and ether-
net_rx. The tx hook is called whenever eCos tries to transmit a packet. The rx hook is called whenever an incoming packet
is passed to the eCos application. Note that this may be a little bit after the packet was actually received by the I/O auxiliary
since it can buffer some packets. Both hooks are called with two arguments, the name of the network device and the packet
being transferred. Typical usage might look like:

 proc my_tx_hook { arg_list } {
 set dev [lindex $arg_list 0]
 incr ::my_ethernet_tx_packets($dev)
 incr ::my_ethernet_tx_bytes($dev) [string length [lindex $arg_list 1]]
 }
 proc my_rx_hook { arg_list } {
 set dev [lindex $arg_list 0]
 incr ::my_ethernet_rx_packets($dev)
 incr ::my_ethernet_rx_bytes($dev) [string length [lindex $arg_list 1]]
 }
 synth::hook_add "ethernet_tx" my_tx_hook
 synth::hook_add "ethernet_rx" my_rx_hook

The global arrays my_ethernet_tx_packets etc. will now be updated whenever there is ethernet traffic. Other code,
probably running at regular intervals by use of the Tcl after procedure, can then use this information to update a graphical
monitor of some sort.

Additional Tcl Procedures
The ethernet support provides one additional Tcl procedure that can be used by other scripts;

ethernet::devices_get_list

This procedure returns a list of the ethernet devices that have been instantiated, for example {eth0 eth1}.

1032

Part XLVI. DNS for eCos and RedBoot
eCos and RedBoot can both use the DNS package to perform network name lookups.

Table of Contents
177. DNS .. 1035

DNS API ... 1035
DNS Client Testing ... 1036

1034

Chapter 177. DNS
DNS API
The DNS client uses the normal BSD API for performing lookups: gethostbyname(), gethostbyaddr(), getad-
drinfo(), getnameinfo().

There are a few restrictions:

• If the DNS server returns multiple authoritive records for a host name to gethostbyname, the hostent will only contain
a record for the first entry. If multiple records are desired, use getaddrinfo, which will return multiple results.

• The code has been made thread safe. ie multiple threads may call gethostbyname() without causing problems to the
hostent structure returned. What is not safe is one thread using both gethostbyname() and gethostbyaddr(). A
call to one will destroy the results from the previous call to the other function. getaddrinfo() and getnameinfo()
are thread safe and so these are the preferred interfaces. They are also address family independent so making it easier to
port code to IPv6.

• The DNS client will only return IPv4 addresses to RedBoot. At the moment this is not really a limitation, since RedBoot
only supports IPv4 and not IPv6.

To initialise the DNS client the following function must be called:

#include <network.h>
int cyg_dns_res_start(char * dns_server)

Where dns_server is the address of the DNS server. The address must be in numeric form and can be either an IPv4 or an
IPv6 address.

There also exists a deprecated function to start the DNS client:

int cyg_dns_res_init(struct in_addr *dns_server)

where dns_server is the address of the DNS server the client should query. The address should be in network order and can
only be an IPv4 address.

On error both this function returns -1, otherwise 0 for success. If lookups are attemped before this function has been called,
they will fail and return NULL, unless numeric host addresses are passed. In this cause, the address will be converted and
returned without the need for a lookup.

A default, hard coded, server may be specified in the CDL option CYGDAT_NS_DNS_DEFAULT_SERVER. The use of this is
controlled by CYGPKG_NS_DNS_DEFAULT. If this is enabled, init_all_network_interfaces() will initialize the
resolver with the hard coded address. The DHCP client or user code my override this address by calling cyg_dns_res_init
again.

The DNS client understands the concepts of the target being in a domain. By default no domain will be used. Host name lookups
should be for fully qualified names. The domain name can be set and retrieved using the functions:

int getdomainname(name, len);

int setdomainname(name, len);

Alternatively, a hard coded domain name can be set using CDL. The boolean CYGPKG_NS_DNS_DOMAINNAME enables this
and the domain name is taken from CYGPKG_NS_DNS_DOMAINNAME_NAME.

Once set, the DNS client will use some simple heuristics when deciding how to use the domainname. If the name given to the
client ends with a "." it is assumed to be a FQDN and the domain name will not be used. If the name contains a "." somewhere
within it, first a lookup will be performed without the domainname. If that fails the domainname will be appended and looked
up. If the name does not contain a ".", the domainname is appended and used for the first query. If that fails, the unadorned
name is lookup.

1035

DNS

The getaddrinfo will return both IPv4 and IPv6 addresses for a given host name, when IPv6 is enabled in the eCos config-
uration. The CDL option CYGOPT_NS_DNS_FIRST_FAMILY controls the order IPv6 and IPv4 addresses are returned in the
linked list of addrinfo structures. If the value AF_INET is used, the IPv4 addresses will be first. If the value AF_INET6,
which is the default, is used, IPv6 address will be first. This ordering will control how clients attempt to connect to servers,
ie using IPv6 or IPv4 first.

DNS Client Testing
The DNS client has a test program, dns1.c, which tests many of the features of the DNS client and the functions gethost-
byname(), gethostbyaddr(), getaddrinfo(), getnameinfo().

In order for this test to work, a DNS server must be configured with a number of names and addresses. The following is an
example forward address resolution database for bind v9, which explains the requirements.

@ 1D IN SOA @ hostmaster.ecoscentric.com. (
 2017022501 ; serial
 3H ; refresh
 2H ; retry
 2W ; expiry
 1D) ; minimum

 1D IN NS ns0
 1D IN NS ns1
 1D IN NS dns1.zoneedit.com.
 1D IN NS dns2.zoneedit.com.

albus 1D IN A 212.13.207.200
barn 1D IN A 87.127.120.188
farm 1D IN A 88.97.17.238
fawkes 1D IN A 212.13.207.202
www 1D IN CNAME albus
www2 1D IN CNAME fawkes

The actual names and addresses do not matter, since they are configurable in the test. What is important is the relationship
between the names and the addresses and there family. ie hostnamev4 should map to one IPv4 address. hostnamev46 should
map to both an IPv4 and an IPv6 address. cnamev4 should be a CNAME record for hostname4. Reverse lookup information
is also needed by the test.

The information placed into the DNS server is also need in the test case. A structure is defined to hold this information:

struct test_info_s {
 char * dns_server_v4;
 char * dns_server_v6;
 char * domain_name;
 char * hostname_v4;
 char * cname_v4;
 char * ip_addr_v4;
 char * hostname_v6;
 char * cname_v6;
 char * ip_addr_v6;
 char * hostname_v46;
 char * cname_v46;
 char * ip_addr_v46_v4;
 char * ip_addr_v46_v6;
};

The test program may hold a number of such structures for different DNS server. The test will use each structure in turn to
perform the tests. If IPv6 is not enabled in the eCos configuration, the entries which use IPv6 may be assigned to NULL.

1036

Part XLVII. eCosPro-SecureSockets
Important

eCosPro-SecureSockets is an optional add-on package and may not be included in your release of eCosPro. If this
package is not listed in either the graphical or command line eCos Configuration tool, please contact eCosCentric
for availability and pricing.

Table of Contents
178. OpenSSL eCos Support ... 1039

Introduction .. 1039
Licensing, Copyrights and Patents ... 1039

Configuration ... 1039
Full Configuration ... 1039
Default Configuration .. 1040
Kernel Configuration ... 1040
Serial Line Support ... 1040
File System Dependencies .. 1041
Configuring OpenSSL .. 1041

openssl Command Tool ... 1041
Thread Safety ... 1043
eCos Customization ... 1044

Random Number Support ... 1044
BIO_diag ... 1044

Tests ... 1044
Limitations ... 1045

179. OpenSSL Manual ... 1046
openssl Command Line Tool .. 1046
Cryptographic functions ... 1221
SSL Functions .. 1565

1038

Chapter 178. OpenSSL eCos Support
Introduction
The eCosPro-SecureSockets package is a port of OpenSSL to eCos. It currently comprises a port of version 1.0.1u, but eCosCen-
tric will issue updates from time to time after new releases become avaliable.

Licensing, Copyrights and Patents
OpenSSL is distributed under a BSD-style Open Source license. The user is referred to the file LICENSE in the OpenSSL
release for details, and is responsible for complying with the conditions therein.

The following text on the subject of patents is adapted from text in the README file in the OpenSSL release:

Various companies hold various patents for various algorithms in various locations around the world. YOU
are responsible for ensuring that your use of any algorithms is legal by checking if there are any patents in
your country. The following are some of the patents that we know about or are rumoured to exist. This is
not a definitive list.

• RSA Security holds software patents on the RC5 algorithm. If you intend to use this cipher, you must
contact RSA Security for licensing conditions. Their web page is http://www.rsasecurity.com/.

• RC4 is a trademark of RSA Security, so use of this label should perhaps only be used with RSA Security's
permission.

• The IDEA algorithm used to be patented by Ascom, but as of 2012, there are no longer any valid patents
remaining so it may now be used patent-free.

• NTT and Mitsubishi have patents and pending patents on the Camellia algorithm, but allow use at no charge
without requiring an explicit licensing agreement: http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html.

To ensure that these patents are not accidentally violated, these algorithms are disabled by default and must be enabled explicitly
by the user to be included.

Part of the conditions of using OpenSSL is that the following acknowledgment be displayed and applies not only to us, here,
now, but to you as well:

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

Configuration
OpenSSL is designed to work in large, fully featured operating systems. It expects to find a filesystem, a networking stack
and a full C library. All of these things are available in eCos. However, a full configuration of this sort can be very large, both
in terms of the link library generated and the size of executables. This may not be appropriate for an embedded system with
limited memory availability. To mitigate these effects, the eCos port for OpenSSL has been adapted to work in three basic
configurations. Users can then adapt these further to their own needs.

Full Configuration
Accessing the complete functionality of OpenSSL requires a fully configured version of eCos. This should be based on the net
template together with a number of additional packages and configurations. These additions are contained in the openss-
l_full.ecm file in the package misc directory. This configuration may be built using the following sequence of shell
commands.

$ mkdir openssl_full
$ cd openssl_full

1039

http://www.rsasecurity.com/
http://info.isl.ntt.co.jp/crypt/eng/info/chiteki.html

OpenSSL eCos Support

$ ecosconfig new TARGET net
$ ecosconfig import $ECOS_REPOSITORY/services/openssl/VERSION/misc/openssl_full.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The same effect can be achieved from the graphical configtool by selecting the net template and then importing the ECM file.

Default Configuration
If no networking is available, openssl may still be built, but only the cryptographic and filesystem based functions may be used.
This configuration is based on the default template which included file I/O functions and the C library, but no networking,
plus the addition of an ECM file. This configuration may be built with the following sequence of commands, or the equivalent
in the configtool:

$ mkdir openssl_default
$ cd openssl_default
$ ecosconfig new TARGET default
$ ecosconfig import $ECOS_REPOSITORY/services/openssl/VERSION/misc/openssl_default.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

Kernel Configuration
OpenSSL will also build in a minimal kernel only configuration. This will be based on the kernel template plus an ECM
file. This may be built with the following commands, or the equivalent in the configtool:

$ mkdir openssl_kernel
$ cd openssl_kernel
$ ecosconfig new TARGET kernel
$ ecosconfig import $ECOS_REPOSITORY/services/openssl/VERSION/misc/openssl_kernel.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

This configuration is very basic, with no networking or file I/O, only the basic cryptographic functions will be available. The
ECM file adds only STDLIB and Internationalization, mainly so that qsort() can be include; without this ASN1 support,
and therefore most cryptographic components, cannot be built.

Serial Line Support
Some parts of the OpenSSL library read data from standard input; in particular some functions read passwords with echoing
disabled. They achieve this by using TERMIOS functions on the device. For this to work correctly it is necessary to configure
the standard I/O to use a serial driver, and to enable TERMIOS support on it. If you intend to use serial line 0 for this, then
the following ECM fragment will set up the serial device correctly:

cdl_configuration eCos {
 package CYGPKG_IO_SERIAL current ;
};

Enable serial device support
cdl_component CYGPKG_IO_SERIAL_DEVICES {
 user_value 1 ;
};

Enable general TERMIOS support
cdl_component CYGPKG_IO_SERIAL_TERMIOS {
 user_value 1;
};

Enable TERMIOS on serial 0
cdl_component CYGPKG_IO_SERIAL_TERMIOS_TERMIOS0 {
 user_value 1;
};

1040

OpenSSL eCos Support

Switch standard I/O to TERMIOS device 0
cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {
 user_value "\"/dev/termios0\"";
};

Substitute a different serial device number for 0 in the above where necessary.

File System Dependencies
Much of OpenSSL can function without access to a filesystem. However, there are parts that expect to load or store data to
or from files. If your application already uses a filesystem for other purposes (for example JFFS2 or YAFFS), then is should
be easy to store OpenSSL's files there.

Where no external file store is available, the RAM filesystem can be used for temporary storage. The RAM filesystem can
be mounted on system startup, and can be populated with files from data stored in memory. The following code shows how
this might be done:

#define SERVER_CERT "/ram/server.pem"
static const char server_pem[] {
 ….
};

void init_ramfs(void)
{
 int fd;
 int err;
 size_t done;

 // Mount the RAM filesystem
 err = mount("", "/ram", "ramfs");
 if(err != 0)
 diag_printf("RAMFS mount failed\n");

 // Write server.pem to RAM filesystem
 fd = open(SERVER_CERT, O_WRONLY|O_CREAT);
 done = write(fd, server_pem, sizeof(server_pem));
 if(done != sizeof(server_pem))
 diag_printf("server_pem write failed\n");
 close(fd);
}

Constant files can also be stored in the ROM filesystem, using mkromfs to create a file tree that can then be mounted and read.

Configuring OpenSSL
In addition to configuring eCos for OpenSSL, OpenSSL also contains a number of configuration points. The OpenSSL sources
have been separated into a number of components, mainly corresponding to specific cryptographic algorithms and other com-
ponents. Each of these is controlled by its own CDL option. By default only a subset of components are enabled. Other com-
ponents may be enabled individually and alternatively all components may be enabled by setting CYGPKG_OPENSSL_ALL.

Various components of OpenSSL depend on different sets of operating system functionality, such as networking or file I/
O. OpenSSL has internal configuration options to control the inclusion of different functional elements. In general we try to
use those to control the build process. We have also encoded some dependencies in the CDL, both internal and external, to
control the inclusion of entire components. However, the OpenSSL code is not normally compiled in systems with missing
functionality, so even if the CDL and OpenSSL dependencies are correct, it is still possible for builds to fail with compile
or link errors.

openssl Command Tool
The OpenSSL package contains a command line tool, openssl, that can be used to test the openssl package and to generate keys
and certificates. This command can either execute a single command at a time, or run in interactive mode where successive
commands are issued to a prompt. Under eCos it only runs in interactive mode, taking commands and issuing responses to
the serial console.

1041

OpenSSL eCos Support

The openssl tool will only build and run in the full configuration and additionally needs the RAM filesystem. If passwords are
to be supplied, the serial line support described earlier should be enabled.

The command executable is created and saved in the INSTALL_DIR/bin directory. Both the original ELF file and an SREC
file, openssl.srec are saved here. To run the command transfer the SREC file to your TFTP server and download and run
it under RedBoot. You should see something similar to the following:

RedBoot> load openssl.srec
Using default protocol (TFTP)
Entry point: 0x20040040, address range: 0x20040000-0x201e76ec
RedBoot> go
[cyg_net_init] Init: mbinit(0x00000000)
[cyg_net_init] Init: cyg_net_init_devs(0x00000000)
Init device 'dm9000_eth0'
[cyg_net_init] Init: loopattach(0x00000000)
[cyg_net_init] Init: ifinit(0x00000000)
[cyg_net_init] Init: domaininit(0x00000000)
[cyg_net_init] Init: cyg_net_add_domain(0x201e51b0)
New domain internet at 0x00000000
[cyg_net_init] Init: cyg_net_add_domain(0x201e2c4c)
New domain route at 0x00000000
[cyg_net_init] Init: call_route_init(0x00000000)
[cyg_net_init] Done
mount /ram
set current directory to /ram
load openssl.cnf into /ram/openssl.cnf
initialise network interfaces
BOOTP[eth0] op: REPLY
 htype: Ethernet
 hlen: 6
 hops: 0
 xid: 0x0
 secs: 0
 flags: 0x0
 hw_addr: 00:03:47:df:32:a8
 client IP: 192.168.7.20
 my IP: 192.168.7.20
 server IP: 192.168.7.22
 gateway IP: 192.168.0.1
 options:
 subnet mask: 255.255.0.0
 IP broadcast: 192.168.255.255
 gateway: 192.168.0.1
[eth_drv_ioctl] Warning: Driver can't set multi-cast mode
[eth_drv_ioctl] Warning: Driver can't set multi-cast mode
[eth_drv_ioctl] Warning: Driver can't set multi-cast mode
Start OpenSSL
OpenSSL> version
OpenSSL 1.0.0c 2 Dec 2010
OpenSSL>

The RAM filesystem is mounted and /ram is set as the current directory. It is therefore possible to test the generation of keys
and certificates into files:

OpenSSL> req -x509 -nodes -days 36500 \
 -subj "/C=GB/ST=England/L=Cambridge/O=eCosCentric/CN=ecoscentric.com" \
 -newkey rsa:1024 -keyout mycert.pem -out mycert.pem
Generating a 1024 bit RSA private key
…………........++++++
……..++++++
writing new private key to 'mycert.pem'

OpenSSL>

If you want to enter passwords without reflection, you need to enable the TERMIOS support described above.

The eCos hosted openssl command serves as a test for OpenSSL functionality, and is a good check that the library is complete.
However, it is of little practical use and has some limitations. While is possible to generate key files and certificates, it is
not then easy to get then off the board for future use, unless they are stored to an external medium such as an SD card. It
is recommended, instead, that a host based version of openssl be used to do this. Files may then be imported via removable

1042

OpenSSL eCos Support

media, or written to the RAM filesystem as described above. Another limitation is that if you run the s_server command, you
cannot terminate it. Under Unix/Linux this command relies on catching the signal generated by a Ctrl-C to terminate; there is
no support for this under eCos and the only way to terminate this command is to reboot and reload openssl.

Thread Safety
The OpenSSL library does not directly contain support for thread safe code. Instead it relies on application code to register
some callbacks to perform the locking required. Under eCos there are two ways of doing this: through the POSIX compatibility
package and directly using eCos APIs.

POSIX locking support is already available in OpenSSL. Example code is available in src/crypto/threads/th-
lock.c, and similar code is tested in the mttest test program. However, this code will only work in threads that have been
created using pthread_create(), or in the main() application thread.

eCos locking support uses lower level primitives and can be used from any kind of thread. In order to provide locking, an
application must register two callbacks with the library, and set up an array of locks that the library will request it to lock and
unlock. The following code does this:

// Forward definitions for callback functions.
void ecos_locking_callback(int mode, int type, char *file, int line);
unsigned long ecos_thread_id_callback(void);

// Pointer to array of locks.
static cyg_mutex_t *lock_cs;

// This function allocates and initializes the lock array
// and registers the callbacks. This should be called
// after the OpenSSL library has been initialized and
// before any new threads are created.
void thread_setup(void)
{
 int i;

 // Allocate lock array according to OpenSSL's requirements
 lock_cs=OPENSSL_malloc(CRYPTO_num_locks() * sizeof(cyg_mutex_t));

 // Initialize the locks
 for (i=0; i<CRYPTO_num_locks(); i++)
 {
 cyg_mutex_init(&(lock_cs[i]));
 }

 // Register callbacks
 CRYPTO_set_id_callback((unsigned long (*)())ecos_thread_id_callback);
 CRYPTO_set_locking_callback((void (*)())ecos_locking_callback);
}

// This function deallocates the lock array and deregisters the
// callbacks. It should be called after all threads have
// terminated.
void thread_cleanup(void)
{
 int i;

 // Deregister locking callback. No real need to
 // deregister id callback.
 CRYPTO_set_locking_callback(NULL);

 // Destroy the locks
 for (i=0; i<CRYPTO_num_locks(); i++)
 {
 cyg_mutex_destroy(&(lock_cs[i]));
 }

 // Release the lock array.
 OPENSSL_free(lock_cs);
}

1043

OpenSSL eCos Support

// Locking callback. The type, file and line arguments are
// ignored. The file and line may be used to identify the site of the
// call in the OpenSSL library for diagnostic purposes if required.
void ecos_locking_callback(int mode, int type, char *file, int line)
{
 if (mode & CRYPTO_LOCK)
 {
 cyg_mutex_lock(&(lock_cs[type]));
 }
 else
 {
 cyg_mutex_unlock(&(lock_cs[type]));
 }
}

// Thread id callback.
unsigned long ecos_thread_id_callback(void)
{
 return (unsigned long)cyg_thread_get_id(cyg_thread_self());
}

Example code similar to this can be found in the mttest_ecos test program.

eCos Customization
The eCos port of OpenSSL contains a number of customizations to adapt OpenSSL to the eCos environment.

Random Number Support
To function correctly, OpenSSL requires a source of cryptographically strong random numbers. These are usually sourced
either from operating system level entropy gathering or from a hardware random number generator. At present eCos does not
have any entropy gathering mechanism so the only viable source is a hardware RNG. Without entropy gathering or hardware
RNG use, some forms of encrypted data may be more vulnerable to attack. Contact eCosCentric if a solution is required for this.

OpenSSL gathers random numbers by calling RAND_poll() when necessary. This function is responsible for calling
RAND_add() to mix new random data into OpenSSL's PRNG state. Application code can also call RAND_add() directly
to add entropy from any source.

The source file src/ecos/rand_ecos.c contains an implementation of RAND_poll() that adds data from a static table
whenever called. This is clearly not cryptographically strong, since the same random data will be added each time an application
starts. This implementation is adequate for testing the library only and should not be used for real applications. The eCos
port of OpenSSL does not automatically use a hardware RNG if present, and so application code is responsible for calling
RAND_add() to incorporate random entropy from a hardware RNG into OpenSSL's PRNG.

BIO_diag
OpenSSL implements a general purpose data source/sink/filter object called a BIO. These may be attached to various sources
and sinks such as C library FILEs, file descriptors and sockets. Many functions that need to output messages take a pointer to
a BIO as an argument, which is typically attached to stdout or stderr. In certain eCos configurations these streams are
not present, but we still want to use these functions and supply a BIO for output.

eCos implements a new BIO type, BIO_diag which outputs any data on the eCos diagnostic channel. It can be created using
the new function BIO *BIO_new_diag(void), and can subsequently be used in place of any other output-only BIO. It
may be freed in the usual way with BIO_free().

Tests
OpenSSL contains a number of test programs that validate the correctness of various cryptographic algorithms and test the
functioning of the OpenSSL library. Most of these tests have been ported directly to eCos with only minor changes to allow
them to function in the eCos test environment. Since all these tests expect to use C library standard I/O (STDIO) for output,
they will only be built if that package is configured in.

1044

OpenSSL eCos Support

A small number of encryption algorithm tests have been further adapted to function without needing STDIO. This has mainly
involved replacing (f)printf with diag_printf, but also includes spawning a thread to run the test with sufficient stack.
These tests are all named the same as the base OpenSSL test from which they were derived with the addition of _ecos to
the file name.

The test program ssltest1 is the only purpose written SSL test program. It is a simple client that attempts to
contact an SSL server and send it some data. The server it contacts is defined by the configuration options CYG-
DAT_OPENSSL_TESTS_SERVER_IP and CYGDAT_OPENSSL_TESTS_SERVER_PORT which are used to set IP address
and port number of the server to contact. A suitable server can be run using the s_server command of the openssl tool on the
host with the configured IP address. The shell script in misc/runtest within the eCos OpenSSL package in the package
repository should do this correctly for any Linux host.

The test program openssl1 is a version of the openssl command line tool that runs a sequence of predefined commands to
test the library as a whole. One of the commands that this test runs is a timing test against the same server that ssltest1 uses.

Limitations
OpenSSL includes files crypto/asn1/a_utctm.c and src/crypto/asn1/a_time.c which have hard-coded year
limits of 2050. Use beyond that year is at present unsupported, although it is expected that upstream OpenSSL will resolve
this at some point.

1045

Chapter 179. OpenSSL Manual
openssl Command Line Tool

1046

OpenSSL Manual

Name
openssl — OpenSSL command line tool

Synopsis
opensslcommand [command_opts] [command_args]

openssl [list-standard-commands | list-message-digest-commands |
 list-cipher-commands | list-cipher-algorithms | list-message-digest-algorithms |
 list-public-key-algorithms]

opensslno-XXX [arbitrary options]

DESCRIPTION

OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS
v1) network protocols and related cryptography standards required by them.

The openssl program is a command line tool for using the various cryptography functions of OpenSSL's crypto library from
the shell. It can be used for

o Creation and management of private keys, public keys and parameters
o Public key cryptographic operations
o Creation of X.509 certificates, CSRs and CRLs
o Calculation of Message Digests
o Encryption and Decryption with Ciphers
o SSL/TLS Client and Server Tests
o Handling of S/MIME signed or encrypted mail
o Time Stamp requests, generation and verification

COMMAND SUMMARY

The openssl program provides a rich variety of commands (command in the SYNOPSIS above), each of which often has a
wealth of options and arguments (command_opts and command_args in the SYNOPSIS).

The pseudo-commands list-standard-commands, list-message-digest-commands, and list-cipher-commands output a list
(one entry per line) of the names of all standard commands, message digest commands, or cipher commands, respectively, that
are available in the present openssl utility.

The pseudo-commands list-cipher-algorithms and list-message-digest-algorithms list all cipher and message digest names,
one entry per line. Aliases are listed as:

from => to

The pseudo-command list-public-key-algorithms lists all supported public key algorithms.

The pseudo-command no-XXX tests whether a command of the specified name is available. If no command named XXX exists,
it returns 0 (success) and prints no-XXX; otherwise it returns 1 and prints XXX. In both cases, the output goes to stdout and
nothing is printed to stderr. Additional command line arguments are always ignored. Since for each cipher there is a command
of the same name, this provides an easy way for shell scripts to test for the availability of ciphers in the openssl program.
(no-XXX is not able to detect pseudo-commands such as quit, list-…-commands or no-XXX itself.)

STANDARD COMMANDS

asn1parse

Parse an ASN.1 sequence.

ca

Certificate Authority (CA) Management.

1047

OpenSSL Manual

ciphers

Cipher Suite Description Determination.

cms

CMS (Cryptographic Message Syntax) utility

crl

Certificate Revocation List (CRL) Management.

crl2pkcs7

CRL to PKCS#7 Conversion.

dgst

Message Digest Calculation.

dh

Diffie-Hellman Parameter Management. Obsoleted by dhparam.

dhparam

Generation and Management of Diffie-Hellman Parameters. Superseded by genpkey and pkeyparam

dsa

DSA Data Management.

dsaparam

DSA Parameter Generation and Management. Superseded by genpkey and pkeyparam

ec

EC (Elliptic curve) key processing

ecparam

EC parameter manipulation and generation

enc

Encoding with Ciphers.

engine

Engine (loadble module) information and manipulation.

errstr

Error Number to Error String Conversion.

gendh

Generation of Diffie-Hellman Parameters. Obsoleted by dhparam.

gendsa

Generation of DSA Private Key from Parameters. Superseded by genpkey and pkey

1048

OpenSSL Manual

genpkey

Generation of Private Key or Parameters.

genrsa

Generation of RSA Private Key. Superceded by genpkey.

nseq

Create or examine a netscape certificate sequence

ocsp

Online Certificate Status Protocol utility.

passwd

Generation of hashed passwords.

pkcs12

PKCS#12 Data Management.

pkcs7

PKCS#7 Data Management.

pkey

Public and private key management.

pkeyparam

Public key algorithm parameter management.

pkeyutl

Public key algorithm cryptographic operation utility.

rand

Generate pseudo-random bytes.

req

PKCS#10 X.509 Certificate Signing Request (CSR) Management.

rsa

RSA key management.

rsautl

RSA utility for signing, verification, encryption, and decryption. Superseded by pkeyutl

s_client

This implements a generic SSL/TLS client which can establish a transparent connection to a remote server speaking SSL/
TLS. It's intended for testing purposes only and provides only rudimentary interface functionality but internally uses mostly
all functionality of the OpenSSL ssl library.

1049

OpenSSL Manual

s_server

This implements a generic SSL/TLS server which accepts connections from remote clients speaking SSL/TLS. It's intended
for testing purposes only and provides only rudimentary interface functionality but internally uses mostly all functionality
of the OpenSSL ssl library. It provides both an own command line oriented protocol for testing SSL functions and a simple
HTTP response facility to emulate an SSL/TLS-aware webserver.

s_time

SSL Connection Timer.

sess_id

SSL Session Data Management.

smime

S/MIME mail processing.

speed

Algorithm Speed Measurement.

spkac

SPKAC printing and generating utility

ts

Time Stamping Authority tool (client/server)

verify

X.509 Certificate Verification.

version

OpenSSL Version Information.

x509

X.509 Certificate Data Management.

MESSAGE DIGEST COMMANDS

md2

MD2 Digest

md5

MD5 Digest

mdc2

MDC2 Digest

rmd160

RMD-160 Digest

sha

SHA Digest

1050

OpenSSL Manual

sha1

SHA-1 Digest

sha224

SHA-224 Digest

sha256

SHA-256 Digest

sha384

SHA-384 Digest

sha512

SHA-512 Digest

ENCODING AND CIPHER COMMANDS

base64

Base64 Encoding

bf bf-cbc bf-cfb bf-ecb bf-ofb

Blowfish Cipher

cast cast-cbc

CAST Cipher

cast5-cbc cast5-cfb cast5-ecb cast5-ofb

CAST5 Cipher

des des-cbc des-cfb des-ecb des-ede des-ede-cbc des-ede-cfb des-ede-ofb des-ofb

DES Cipher

des3 desx des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb

Triple-DES Cipher

idea idea-cbc idea-cfb idea-ecb idea-ofb

IDEA Cipher

rc2 rc2-cbc rc2-cfb rc2-ecb rc2-ofb

RC2 Cipher

rc4

RC4 Cipher

rc5 rc5-cbc rc5-cfb rc5-ecb rc5-ofb

RC5 Cipher

1051

OpenSSL Manual

PASS PHRASE ARGUMENTS

Several commands accept password arguments, typically using -passin and -passout for input and output passwords respec-
tively. These allow the password to be obtained from a variety of sources. Both of these options take a single argument whose
format is described below. If no password argument is given and a password is required then the user is prompted to enter one:
this will typically be read from the current terminal with echoing turned off.

pass:password

the actual password is password. Since the password is visible to utilities (like 'ps' under Unix) this form should only be
used where security is not important.

env:var

obtain the password from the environment variable var. Since the environment of other processes is visible on certain
platforms (e.g. ps under certain Unix OSes) this option should be used with caution.

file:pathname

the first line of pathname is the password. If the same pathname argument is supplied to -passin and -passout arguments
then the first line will be used for the input password and the next line for the output password. pathname need not refer
to a regular file: it could for example refer to a device or named pipe.

fd:number

read the password from the file descriptor number. This can be used to send the data via a pipe for example.

stdin

read the password from standard input.

SEE ALSO

asn1parse(1), ca(1), config(5), crl(1), crl2pkcs7(1), dgst(1), dhparam(1), dsa(1), dsaparam(1), enc(1), gendsa(1), genpkey(1),
genrsa(1), nseq(1), openssl(1), passwd(1), pkcs12(1), pkcs7(1), pkcs8(1), rand(1), req(1), rsa(1), rsautl(1), s_client(1), s_serv-
er(1), s_time(1), smime(1), spkac(1), verify(1), version(1), x509(1), crypto(3), ssl(3), x509v3_config(5)

HISTORY

The openssl(1) document appeared in OpenSSL 0.9.2. The list-XXX-commands pseudo-commands were added in OpenSSL
0.9.3; The list-XXX-algorithms pseudo-commands were added in OpenSSL 1.0.0; the no-XXX pseudo-commands were added
in OpenSSL 0.9.5a. For notes on the availability of other commands, see their individual manual pages.

1052

OpenSSL Manual

Name
asn1parse — ASN.1 parsing tool

Synopsis
opensslasn1parse
[-inform PEM|DER]
[-in filename]
[-out filename]
[-noout]
[-offset number]
[-length number]
[-i]
[-oid filename]
[-dump]
[-dlimit num]
[-strparse offset]
[-genstr string]
[-genconf file]

DESCRIPTION

The asn1parse command is a diagnostic utility that can parse ASN.1 structures. It can also be used to extract data from ASN.1
formatted data.

OPTIONS

-inform DER|PEM

the input format. DER is binary format and PEM (the default) is base64 encoded.

-in filename

the input file, default is standard input

-out filename

output file to place the DER encoded data into. If this option is not present then no data will be output. This is most useful
when combined with the -strparse option.

-noout

don't output the parsed version of the input file.

-offset number

starting offset to begin parsing, default is start of file.

-length number

number of bytes to parse, default is until end of file.

-i

indents the output according to the "depth" of the structures.

-oid filename

a file containing additional OBJECT IDENTIFIERs (OIDs). The format of this file is described in the NOTES section
below.

-dump

dump unknown data in hex format.

1053

OpenSSL Manual

-dlimit num

like -dump, but only the first num bytes are output.

-strparse offset

parse the contents octets of the ASN.1 object starting at offset. This option can be used multiple times to "drill down"
into a nested structure.

-genstr string, -genconf file

generate encoded data based on string, file or both using ASN1_generate_nconf(3) format. If file only is present then the
string is obtained from the default section using the name asn1. The encoded data is passed through the ASN1 parser and
printed out as though it came from a file, the contents can thus be examined and written to a file using the out option.

OUTPUT

The output will typically contain lines like this:

0:d=0 hl=4 l= 681 cons: SEQUENCE

…

229:d=3 hl=3 l= 141 prim: BIT STRING
373:d=2 hl=3 l= 162 cons: cont [3]
376:d=3 hl=3 l= 159 cons: SEQUENCE
379:d=4 hl=2 l= 29 cons: SEQUENCE
381:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Subject Key Identifier
386:d=5 hl=2 l= 22 prim: OCTET STRING
410:d=4 hl=2 l= 112 cons: SEQUENCE
412:d=5 hl=2 l= 3 prim: OBJECT :X509v3 Authority Key Identifier
417:d=5 hl=2 l= 105 prim: OCTET STRING
524:d=4 hl=2 l= 12 cons: SEQUENCE

…..

This example is part of a self signed certificate. Each line starts with the offset in decimal. d=XX specifies the current depth.
The depth is increased within the scope of any SET or SEQUENCE. hl=XX gives the header length (tag and length octets) of
the current type. l=XX gives the length of the contents octets.

The -i option can be used to make the output more readable.

Some knowledge of the ASN.1 structure is needed to interpret the output.

In this example the BIT STRING at offset 229 is the certificate public key. The contents octets of this will contain the public
key information. This can be examined using the option -strparse 229 to yield:

 0:d=0 hl=3 l= 137 cons: SEQUENCE
 3:d=1 hl=3 l= 129 prim: INTEGER :E5D21E1F5C8D208EA7A2166C7FAF9F6BDF2059669C60876DDB70840F1A5AAFA59699FE471F379F1D \
 D6A487E7D5409AB6A88D4A9746E24B91D8CF55DB3521015460C8EDE44EE8A4189F7A7BE77D6CD3A9 \
 AF2696F486855CF58BF0EDF2B4068058C7A947F52548DDF7E15E96B385F86422BEA9064A3EE9E115 \
 8A56E4A6F47E5897
135:d=1 hl=2 l= 3 prim: INTEGER :010001

NOTES

If an OID is not part of OpenSSL's internal table it will be represented in numerical form (for example 1.2.3.4). The file passed
to the -oid option allows additional OIDs to be included. Each line consists of three columns, the first column is the OID
in numerical format and should be followed by white space. The second column is the "short name" which is a single word
followed by white space. The final column is the rest of the line and is the "long name". asn1parse displays the long name.
Example:

1.2.3.4 shortName A long name

EXAMPLES

Parse a file:

1054

OpenSSL Manual

openssl asn1parse -in file.pem

Parse a DER file:

openssl asn1parse -inform DER -in file.der

Generate a simple UTF8String:

openssl asn1parse -genstr 'UTF8:Hello World'

Generate and write out a UTF8String, don't print parsed output:

openssl asn1parse -genstr 'UTF8:Hello World' -noout -out utf8.der

Generate using a config file:

openssl asn1parse -genconf asn1.cnf -noout -out asn1.der

Example config file:

asn1=SEQUENCE:seq_sect

[seq_sect]

field1=BOOL:TRUE
field2=EXP:0, UTF8:some random string

BUGS

There should be options to change the format of output lines. The output of some ASN.1 types is not well handled (if at all).

SEE ALSO

ASN1_generate_nconf(3)

1055

OpenSSL Manual

Name
ca — sample minimal CA application

Synopsis
opensslca
[-verbose]
[-config filename]
[-name section]
[-gencrl]
[-revoke file]
[-status serial]
[-updatedb]
[-crl_reason reason]
[-crl_hold instruction]
[-crl_compromise time]
[-crl_CA_compromise time]
[-crldays days]
[-crlhours hours]
[-crlexts section]
[-startdate date]
[-enddate date]
[-days arg]
[-md arg]
[-policy arg]
[-keyfile arg]
[-keyform PEM|DER]
[-key arg]
[-passin arg]
[-cert file]
[-selfsign]
[-in file]
[-out file]
[-notext]
[-outdir dir]
[-infiles]
[-spkac file]
[-ss_cert file]
[-preserveDN]
[-noemailDN]
[-batch]
[-msie_hack]
[-extensions section]
[-extfile section]
[-engine id]
[-subj arg]
[-utf8]
[-multivalue-rdn]

DESCRIPTION

The ca command is a minimal CA application. It can be used to sign certificate requests in a variety of forms and generate
CRLs it also maintains a text database of issued certificates and their status.

The options descriptions will be divided into each purpose.

CA OPTIONS

-config filename

specifies the configuration file to use.

-name section

specifies the configuration file section to use (overrides default_ca in the ca section).

1056

OpenSSL Manual

-in filename

an input filename containing a single certificate request to be signed by the CA.

-ss_cert filename

a single self signed certificate to be signed by the CA.

-spkac filename

a file containing a single Netscape signed public key and challenge and additional field values to be signed by the CA. See
the SPKAC FORMAT section for information on the required input and output format.

-infiles

if present this should be the last option, all subsequent arguments are assumed to the the names of files containing certificate
requests.

-out filename

the output file to output certificates to. The default is standard output. The certificate details will also be printed out to this
file in PEM format (except that -spkac outputs DER format).

-outdir directory

the directory to output certificates to. The certificate will be written to a filename consisting of the serial number in hex
with ".pem" appended.

-cert

the CA certificate file.

-keyfile filename

the private key to sign requests with.

-keyform PEM|DER

the format of the data in the private key file. The default is PEM.

-key password

the password used to encrypt the private key. Since on some systems the command line arguments are visible (e.g. Unix
with the 'ps' utility) this option should be used with caution.

-selfsign

indicates the issued certificates are to be signed with the key the certificate requests were signed with (given with -keyfile).
Cerificate requests signed with a different key are ignored. If -spkac, -ss_cert or -gencrl are given, -selfsign is ignored.

A consequence of using -selfsign is that the self-signed certificate appears among the entries in the certificate database
(see the configuration option database), and uses the same serial number counter as all other certificates sign with the
self-signed certificate.

-passin arg

the key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS section
in openssl(1).

-verbose

this prints extra details about the operations being performed.

1057

OpenSSL Manual

-notext

don't output the text form of a certificate to the output file.

-startdate date

this allows the start date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same as an ASN1
UTCTime structure).

-enddate date

this allows the expiry date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same as an ASN1
UTCTime structure).

-days arg

the number of days to certify the certificate for.

-md alg

the message digest to use. Possible values include md5, sha1 and mdc2. This option also applies to CRLs.

-policy arg

this option defines the CA "policy" to use. This is a section in the configuration file which decides which fields should be
mandatory or match the CA certificate. Check out the POLICY FORMAT section for more information.

-msie_hack

this is a legacy option to make ca work with very old versions of the IE certificate enrollment control "certenr3". It used
UniversalStrings for almost everything. Since the old control has various security bugs its use is strongly discouraged.
The newer control "Xenroll" does not need this option.

-preserveDN

Normally the DN order of a certificate is the same as the order of the fields in the relevant policy section. When this option
is set the order is the same as the request. This is largely for compatibility with the older IE enrollment control which
would only accept certificates if their DNs match the order of the request. This is not needed for Xenroll.

-noemailDN

The DN of a certificate can contain the EMAIL field if present in the request DN, however it is good policy just having
the e-mail set into the altName extension of the certificate. When this option is set the EMAIL field is removed from
the certificate' subject and set only in the, eventually present, extensions. The email_in_dn keyword can be used in the
configuration file to enable this behaviour.

-batch

this sets the batch mode. In this mode no questions will be asked and all certificates will be certified automatically.

-extensions section

the section of the configuration file containing certificate extensions to be added when a certificate is issued (defaults to
x509_extensions unless the -extfile option is used). If no extension section is present then, a V1 certificate is created. If
the extension section is present (even if it is empty), then a V3 certificate is created. See the:w x509v3_config(5) manual
page for details of the extension section format.

-extfile file

an additional configuration file to read certificate extensions from (using the default section unless the -extensions option
is also used).

1058

OpenSSL Manual

-engine id

specifying an engine (by its unique id string) will cause ca to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

-subj arg

supersedes subject name given in the request. The arg must be formatted as /type0=value0/type1=value1/type2=…, char-
acters may be escaped by \ (backslash), no spaces are skipped.

-utf8

this option causes field values to be interpreted as UTF8 strings, by default they are interpreted as ASCII. This means that
the field values, whether prompted from a terminal or obtained from a configuration file, must be valid UTF8 strings.

-multivalue-rdn

this option causes the -subj argument to be interpretedt with full support for multivalued RDNs. Example:

/DC=org/DC=OpenSSL/DC=users/UID=123456+CN=John Doe

If -multi-rdn is not used then the UID value is 123456+CN=John Doe.

CRL OPTIONS

-gencrl

this option generates a CRL based on information in the index file.

-crldays num

the number of days before the next CRL is due. That is the days from now to place in the CRL nextUpdate field.

-crlhours num

the number of hours before the next CRL is due.

-revoke filename

a filename containing a certificate to revoke.

-status serial

displays the revocation status of the certificate with the specified serial number and exits.

-updatedb

Updates the database index to purge expired certificates.

-crl_reason reason

revocation reason, where reason is one of: unspecified, keyCompromise, CACompromise, affiliationChanged, super-
seded, cessationOfOperation, certificateHold or removeFromCRL. The matching of reason is case insensitive. Setting
any revocation reason will make the CRL v2.

In practive removeFromCRL is not particularly useful because it is only used in delta CRLs which are not currently
implemented.

-crl_hold instruction

This sets the CRL revocation reason code to certificateHold and the hold instruction to instruction which must be an
OID. Although any OID can be used only holdInstructionNone (the use of which is discouraged by RFC2459) holdIn-
structionCallIssuer or holdInstructionReject will normally be used.

1059

OpenSSL Manual

-crl_compromise time

This sets the revocation reason to keyCompromise and the compromise time to time. time should be in GeneralizedTime
format that is YYYYMMDDHHMMSSZ.

-crl_CA_compromise time

This is the same as crl_compromise except the revocation reason is set to CACompromise.

-crlexts section

the section of the configuration file containing CRL extensions to include. If no CRL extension section is present then a V1
CRL is created, if the CRL extension section is present (even if it is empty) then a V2 CRL is created. The CRL extensions
specified are CRL extensions and not CRL entry extensions. It should be noted that some software (for example Netscape)
can't handle V2 CRLs. See x509v3_config(5) manual page for details of the extension section format.

CONFIGURATION FILE OPTIONS

The section of the configuration file containing options for ca is found as follows: If the -name command line option is used,
then it names the section to be used. Otherwise the section to be used must be named in the default_ca option of the ca section
of the configuration file (or in the default section of the configuration file). Besides default_ca, the following options are read
directly from the ca section: RANDFILE preserve msie_hack With the exception of RANDFILE, this is probably a bug and
may change in future releases.

Many of the configuration file options are identical to command line options. Where the option is present in the configuration
file and the command line the command line value is used. Where an option is described as mandatory then it must be present
in the configuration file or the command line equivalent (if any) used.

oid_file

This specifies a file containing additional OBJECT IDENTIFIERS. Each line of the file should consist of the numerical
form of the object identifier followed by white space then the short name followed by white space and finally the long name.

oid_section

This specifies a section in the configuration file containing extra object identifiers. Each line should consist of the short
name of the object identifier followed by = and the numerical form. The short and long names are the same when this
option is used.

new_certs_dir

the same as the -outdir command line option. It specifies the directory where new certificates will be placed. Mandatory.

certificate

the same as -cert. It gives the file containing the CA certificate. Mandatory.

private_key

same as the -keyfile option. The file containing the CA private key. Mandatory.

RANDFILE

a file used to read and write random number seed information, or an EGD socket (see RAND_egd(3)).

default_days

the same as the -days option. The number of days to certify a certificate for.

default_startdate

the same as the -startdate option. The start date to certify a certificate for. If not set the current time is used.

1060

OpenSSL Manual

default_enddate

the same as the -enddate option. Either this option or default_days (or the command line equivalents) must be present.

default_crl_hours default_crl_days

the same as the -crlhours and the -crldays options. These will only be used if neither command line option is present. At
least one of these must be present to generate a CRL.

default_md

the same as the -md option. The message digest to use. Mandatory.

database

the text database file to use. Mandatory. This file must be present though initially it will be empty.

unique_subject

if the value yes is given, the valid certificate entries in the database must have unique subjects. if the value no is given,
several valid certificate entries may have the exact same subject. The default value is yes, to be compatible with older
(pre 0.9.8) versions of OpenSSL. However, to make CA certificate roll-over easier, it's recommended to use the value no,
especially if combined with the -selfsign command line option.

serial

a text file containing the next serial number to use in hex. Mandatory. This file must be present and contain a valid serial
number.

crlnumber

a text file containing the next CRL number to use in hex. The crl number will be inserted in the CRLs only if this file
exists. If this file is present, it must contain a valid CRL number.

x509_extensions

the same as -extensions.

crl_extensions

the same as -crlexts.

preserve

the same as -preserveDN

email_in_dn

the same as -noemailDN. If you want the EMAIL field to be removed from the DN of the certificate simply set this to
'no'. If not present the default is to allow for the EMAIL filed in the certificate's DN.

msie_hack

the same as -msie_hack

policy

the same as -policy. Mandatory. See the POLICY FORMAT section for more information.

name_opt, cert_opt

these options allow the format used to display the certificate details when asking the user to confirm signing. All the
options supported by the x509 utilities -nameopt and -certopt switches can be used here, except the no_signame and

1061

OpenSSL Manual

no_sigdump are permanently set and cannot be disabled (this is because the certificate signature cannot be displayed
because the certificate has not been signed at this point).

For convenience the values ca_default are accepted by both to produce a reasonable output.

If neither option is present the format used in earlier versions of OpenSSL is used. Use of the old format is strongly
discouraged because it only displays fields mentioned in the policy section, mishandles multicharacter string types and
does not display extensions.

copy_extensions

determines how extensions in certificate requests should be handled. If set to none or this option is not present then
extensions are ignored and not copied to the certificate. If set to copy then any extensions present in the request that are not
already present are copied to the certificate. If set to copyall then all extensions in the request are copied to the certificate:
if the extension is already present in the certificate it is deleted first. See the WARNINGS section before using this option.

The main use of this option is to allow a certificate request to supply values for certain extensions such as subjectAltName.

POLICY FORMAT

The policy section consists of a set of variables corresponding to certificate DN fields. If the value is "match" then the field
value must match the same field in the CA certificate. If the value is "supplied" then it must be present. If the value is "optional"
then it may be present. Any fields not mentioned in the policy section are silently deleted, unless the -preserveDN option is
set but this can be regarded more of a quirk than intended behaviour.

SPKAC FORMAT

The input to the -spkac command line option is a Netscape signed public key and challenge. This will usually come from the
KEYGEN tag in an HTML form to create a new private key. It is however possible to create SPKACs using the spkac utility.

The file should contain the variable SPKAC set to the value of the SPKAC and also the required DN components as name
value pairs. If you need to include the same component twice then it can be preceded by a number and a '.'.

When processing SPKAC format, the output is DER if the -out flag is used, but PEM format if sending to stdout or the -
outdir flag is used.

EXAMPLES

Note: these examples assume that the ca directory structure is already set up and the relevant files already exist. This usually
involves creating a CA certificate and private key with req, a serial number file and an empty index file and placing them
in the relevant directories.

To use the sample configuration file below the directories demoCA, demoCA/private and demoCA/newcerts would be created.
The CA certificate would be copied to demoCA/cacert.pem and its private key to demoCA/private/cakey.pem. A file demo-
CA/serial would be created containing for example "01" and the empty index file demoCA/index.txt.

Sign a certificate request:

openssl ca -in req.pem -out newcert.pem

Sign a certificate request, using CA extensions:

openssl ca -in req.pem -extensions v3_ca -out newcert.pem

Generate a CRL

openssl ca -gencrl -out crl.pem

Sign several requests:

openssl ca -infiles req1.pem req2.pem req3.pem

Certify a Netscape SPKAC:

1062

OpenSSL Manual

openssl ca -spkac spkac.txt

A sample SPKAC file (the SPKAC line has been truncated for clarity):

SPKAC=MIG0MGAwXDANBgkqhkiG9w0BAQEFAANLADBIAkEAn7PDhCeV/xIxUg8V70YRxK2A5
CN=Steve Test
emailAddress=steve@openssl.org
0.OU=OpenSSL Group
1.OU=Another Group

A sample configuration file with the relevant sections for ca:

[ca]
default_ca = CA_default # The default ca section

[CA_default]

dir = ./demoCA # top dir
database = $dir/index.txt # index file.
new_certs_dir = $dir/newcerts # new certs dir

certificate = $dir/cacert.pem # The CA cert
serial = $dir/serial # serial no file
private_key = $dir/private/cakey.pem# CA private key
RANDFILE = $dir/private/.rand # random number file

default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # md to use

policy = policy_any # default policy
email_in_dn = no # Don't add the email into cert DN

name_opt = ca_default # Subject name display option
cert_opt = ca_default # Certificate display option
copy_extensions = none # Don't copy extensions from request

[policy_any]
countryName = supplied
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

FILES

Note: the location of all files can change either by compile time options, configuration file entries, environment variables or
command line options. The values below reflect the default values.

/usr/local/ssl/lib/openssl.cnf - master configuration file
./demoCA - main CA directory
./demoCA/cacert.pem - CA certificate
./demoCA/private/cakey.pem - CA private key
./demoCA/serial - CA serial number file
./demoCA/serial.old - CA serial number backup file
./demoCA/index.txt - CA text database file
./demoCA/index.txt.old - CA text database backup file
./demoCA/certs - certificate output file
./demoCA/.rnd - CA random seed information

ENVIRONMENT VARIABLES

OPENSSL_CONF reflects the location of master configuration file it can be overridden by the -config command line option.

RESTRICTIONS

The text database index file is a critical part of the process and if corrupted it can be difficult to fix. It is theoretically possible
to rebuild the index file from all the issued certificates and a current CRL: however there is no option to do this.

1063

OpenSSL Manual

V2 CRL features like delta CRLs are not currently supported.

Although several requests can be input and handled at once it is only possible to include one SPKAC or self signed certificate.

BUGS

The use of an in memory text database can cause problems when large numbers of certificates are present because, as the name
implies the database has to be kept in memory.

The ca command really needs rewriting or the required functionality exposed at either a command or interface level so a more
friendly utility (perl script or GUI) can handle things properly. The scripts CA.sh and CA.pl help a little but not very much.

Any fields in a request that are not present in a policy are silently deleted. This does not happen if the -preserveDN option is
used. To enforce the absence of the EMAIL field within the DN, as suggested by RFCs, regardless the contents of the request'
subject the -noemailDN option can be used. The behaviour should be more friendly and configurable.

Cancelling some commands by refusing to certify a certificate can create an empty file.

WARNINGS

The ca command is quirky and at times downright unfriendly.

The ca utility was originally meant as an example of how to do things in a CA. It was not supposed to be used as a full blown
CA itself: nevertheless some people are using it for this purpose.

The ca command is effectively a single user command: no locking is done on the various files and attempts to run more than
one ca command on the same database can have unpredictable results.

The copy_extensions option should be used with caution. If care is not taken then it can be a security risk. For example if a
certificate request contains a basicConstraints extension with CA:TRUE and the copy_extensions value is set to copyall and
the user does not spot this when the certificate is displayed then this will hand the requestor a valid CA certificate.

This situation can be avoided by setting copy_extensions to copy and including basicConstraints with CA:FALSE in the
configuration file. Then if the request contains a basicConstraints extension it will be ignored.

It is advisable to also include values for other extensions such as keyUsage to prevent a request supplying its own values.

Additional restrictions can be placed on the CA certificate itself. For example if the CA certificate has:

basicConstraints = CA:TRUE, pathlen:0

then even if a certificate is issued with CA:TRUE it will not be valid.

SEE ALSO

req(1), spkac(1), x509(1), config(5), x509v3_config(5)

1064

OpenSSL Manual

Name
ciphers — SSL cipher display and cipher list tool.

Synopsis
opensslciphers
[-v]
[-V]
[-ssl2]
[-ssl3]
[-tls1]
[cipherlist]

DESCRIPTION

The ciphers command converts textual OpenSSL cipher lists into ordered SSL cipher preference lists. It can be used as a test
tool to determine the appropriate cipherlist.

COMMAND OPTIONS

-v

Verbose option. List ciphers with a complete description of protocol version (SSLv2 or SSLv3; the latter includes TLS),
key exchange, authentication, encryption and mac algorithms used along with any key size restrictions and whether the
algorithm is classed as an "export" cipher. Note that without the -v option, ciphers may seem to appear twice in a cipher
list; this is when similar ciphers are available for SSL v2 and for SSL v3/TLS v1.

-V

Like -v, but include cipher suite codes in output (hex format).

-ssl3, -tls1

This lists ciphers compatible with any of SSLv3, TLSv1, TLSv1.1 or TLSv1.2.

-ssl2

Only include SSLv2 ciphers.

-h, -?

Print a brief usage message.

cipherlist

A cipher list to convert to a cipher preference list. If it is not included then the default cipher list will be used. The format
is described below.

CIPHER LIST FORMAT

The cipher list consists of one or more cipher strings separated by colons. Commas or spaces are also acceptable separators
but colons are normally used.

The actual cipher string can take several different forms.

It can consist of a single cipher suite such as RC4-SHA.

It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain type. For example SHA1
represents all ciphers suites using the digest algorithm SHA1 and SSLv3 represents all SSL v3 algorithms.

Lists of cipher suites can be combined in a single cipher string using the + character. This is used as a logical and operation.
For example SHA1+DES represents all cipher suites containing the SHA1 and the DES algorithms.

1065

OpenSSL Manual

Each cipher string can be optionally preceded by the characters !, - or +.

If ! is used then the ciphers are permanently deleted from the list. The ciphers deleted can never reappear in the list even if
they are explicitly stated.

If - is used then the ciphers are deleted from the list, but some or all of the ciphers can be added again by later options.

If + is used then the ciphers are moved to the end of the list. This option doesn't add any new ciphers it just moves matching
existing ones.

If none of these characters is present then the string is just interpreted as a list of ciphers to be appended to the current preference
list. If the list includes any ciphers already present they will be ignored: that is they will not moved to the end of the list.

Additionally the cipher string @STRENGTH can be used at any point to sort the current cipher list in order of encryption
algorithm key length.

CIPHER STRINGS

The following is a list of all permitted cipher strings and their meanings.

DEFAULT

The default cipher list. This is determined at compile time and is normally ALL:!EXPORT:!LOW:!aNULL:!eNULL:!
SSLv2. When used, this must be the first cipherstring specified.

COMPLEMENTOFDEFAULT

the ciphers included in ALL, but not enabled by default. Currently this is ADH and AECDH. Note that this rule does not
cover eNULL, which is not included by ALL (use COMPLEMENTOFALL if necessary).

ALL

all cipher suites except the eNULL ciphers which must be explicitly enabled; as of OpenSSL, the ALL cipher suites are
reasonably ordered by default

COMPLEMENTOFALL

the cipher suites not enabled by ALL, currently being eNULL.

HIGH

"high" encryption cipher suites. This currently means those with key lengths larger than 128 bits, and some cipher suites
with 128-bit keys.

MEDIUM

"medium" encryption cipher suites, currently some of those using 128 bit encryption.

LOW

Low strength encryption cipher suites, currently those using 64 or 56 bit encryption algorithms but excluding export cipher
suites. As of OpenSSL 1.0.1s, these are disabled in default builds.

EXP, EXPORT

Export strength encryption algorithms. Including 40 and 56 bits algorithms. As of OpenSSL 1.0.1s, these are disabled in
default builds.

EXPORT40

40-bit export encryption algorithms As of OpenSSL 1.0.1s, these are disabled in default builds.

1066

OpenSSL Manual

EXPORT56

56-bit export encryption algorithms. In OpenSSL 0.9.8c and later the set of 56 bit export ciphers is empty unless OpenSSL
has been explicitly configured with support for experimental ciphers. As of OpenSSL 1.0.1s, these are disabled in default
builds.

eNULL, NULL

The "NULL" ciphers that is those offering no encryption. Because these offer no encryption at all and are a security
risk they are not enabled via either the DEFAULT or ALL cipher strings. Be careful when building cipherlists out of
lower-level primitives such as kRSA or aECDSA as these do overlap with the eNULL ciphers. When in doubt, include
!eNULL in your cipherlist.

aNULL

The cipher suites offering no authentication. This is currently the anonymous DH algorithms and anonymous ECDH
algorithms. These cipher suites are vulnerable to a "man in the middle" attack and so their use is normally discouraged.
These are excluded from the DEFAULT ciphers, but included in the ALL ciphers. Be careful when building cipherlists
out of lower-level primitives such as kDHE or AES as these do overlap with the aNULL ciphers. When in doubt, include
!aNULL in your cipherlist.

kRSA, RSA

cipher suites using RSA key exchange.

kDHr, kDHd, kDH

cipher suites using DH key agreement and DH certificates signed by CAs with RSA and DSS keys or either respectively.
Not implemented.

kEDH

cipher suites using ephemeral DH key agreement, including anonymous cipher suites.

EDH

cipher suites using authenticated ephemeral DH key agreement.

ADH

anonymous DH cipher suites, note that this does not include anonymous Elliptic Curve DH (ECDH) cipher suites.

DH

cipher suites using DH, including anonymous DH, ephemeral DH and fixed DH.

kECDHr, kECDHe, kECDH

cipher suites using fixed ECDH key agreement signed by CAs with RSA and ECDSA keys or either respectively.

kEECDH

cipher suites using ephemeral ECDH key agreement, including anonymous cipher suites.

EECDH

cipher suites using authenticated ephemeral ECDH key agreement.

AECDH

anonymous Elliptic Curve Diffie Hellman cipher suites.

1067

OpenSSL Manual

ECDH

cipher suites using ECDH key exchange, including anonymous, ephemeral and fixed ECDH.

aRSA

cipher suites using RSA authentication, i.e. the certificates carry RSA keys.

aDSS, DSS

cipher suites using DSS authentication, i.e. the certificates carry DSS keys.

aDH

cipher suites effectively using DH authentication, i.e. the certificates carry DH keys. Not implemented.

aECDH

cipher suites effectively using ECDH authentication, i.e. the certificates carry ECDH keys.

aECDSA, ECDSA

cipher suites using ECDSA authentication, i.e. the certificates carry ECDSA keys.

kFZA, aFZA, eFZA, FZA

ciphers suites using FORTEZZA key exchange, authentication, encryption or all FORTEZZA algorithms. Not implement-
ed.

TLSv1.2, TLSv1, SSLv3, SSLv2

TLS v1.2, TLS v1.0, SSL v3.0 or SSL v2.0 cipher suites respectively. Note: there are no ciphersuites specific to TLS v1.1.

AES128, AES256, AES

cipher suites using 128 bit AES, 256 bit AES or either 128 or 256 bit AES.

AESGCM

AES in Galois Counter Mode (GCM): these ciphersuites are only supported in TLS v1.2.

CAMELLIA128, CAMELLIA256, CAMELLIA

cipher suites using 128 bit CAMELLIA, 256 bit CAMELLIA or either 128 or 256 bit CAMELLIA.

3DES

cipher suites using triple DES.

DES

cipher suites using DES (not triple DES).

RC4

cipher suites using RC4.

RC2

cipher suites using RC2.

IDEA

cipher suites using IDEA.

1068

OpenSSL Manual

SEED

cipher suites using SEED.

MD5

cipher suites using MD5.

SHA1, SHA

cipher suites using SHA1.

SHA256, SHA384

ciphersuites using SHA256 or SHA384.

aGOST

cipher suites using GOST R 34.10 (either 2001 or 94) for authenticaction (needs an engine supporting GOST algorithms).

aGOST01

cipher suites using GOST R 34.10-2001 authentication.

aGOST94

cipher suites using GOST R 34.10-94 authentication (note that R 34.10-94 standard has been expired so use GOST R
34.10-2001)

kGOST

cipher suites, using VKO 34.10 key exchange, specified in the RFC 4357.

GOST94

cipher suites, using HMAC based on GOST R 34.11-94.

GOST89MAC

cipher suites using GOST 28147-89 MAC instead of HMAC.

PSK

cipher suites using pre-shared keys (PSK).

CIPHER SUITE NAMES

The following lists give the SSL or TLS cipher suites names from the relevant specification and their OpenSSL equivalents. It
should be noted, that several cipher suite names do not include the authentication used, e.g. DES-CBC3-SHA. In these cases,
RSA authentication is used.

SSL v3.0 cipher suites.

SSL_RSA_WITH_NULL_MD5 NULL-MD5
SSL_RSA_WITH_NULL_SHA NULL-SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
SSL_RSA_WITH_RC4_128_MD5 RC4-MD5
SSL_RSA_WITH_RC4_128_SHA RC4-SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
SSL_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
SSL_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA

1069

OpenSSL Manual

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_DES_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_DES_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
SSL_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
SSL_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

SSL_FORTEZZA_KEA_WITH_NULL_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA Not implemented.
SSL_FORTEZZA_KEA_WITH_RC4_128_SHA Not implemented.

TLS v1.0 cipher suites.

TLS_RSA_WITH_NULL_MD5 NULL-MD5
TLS_RSA_WITH_NULL_SHA NULL-SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
TLS_RSA_WITH_RC4_128_MD5 RC4-MD5
TLS_RSA_WITH_RC4_128_SHA RC4-SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
TLS_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
TLS_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA

TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_DES_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_DES_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
TLS_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
TLS_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

AES ciphersuites from RFC3268, extending TLS v1.0

TLS_RSA_WITH_AES_128_CBC_SHA AES128-SHA
TLS_RSA_WITH_AES_256_CBC_SHA AES256-SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_AES_256_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_AES_128_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_AES_256_CBC_SHA Not implemented.

TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE-DSS-AES128-SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE-DSS-AES256-SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA DHE-RSA-AES128-SHA
TLS_DHE_RSA_WITH_AES_256_CBC_SHA DHE-RSA-AES256-SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA ADH-AES128-SHA
TLS_DH_anon_WITH_AES_256_CBC_SHA ADH-AES256-SHA

1070

OpenSSL Manual

Camellia ciphersuites from RFC4132, extending TLS v1.0

TLS_RSA_WITH_CAMELLIA_128_CBC_SHA CAMELLIA128-SHA
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA CAMELLIA256-SHA

TLS_DH_DSS_WITH_CAMELLIA_128_CBC_SHA Not implemented.
TLS_DH_DSS_WITH_CAMELLIA_256_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_CAMELLIA_128_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_CAMELLIA_256_CBC_SHA Not implemented.

TLS_DHE_DSS_WITH_CAMELLIA_128_CBC_SHA DHE-DSS-CAMELLIA128-SHA
TLS_DHE_DSS_WITH_CAMELLIA_256_CBC_SHA DHE-DSS-CAMELLIA256-SHA
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA DHE-RSA-CAMELLIA128-SHA
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA DHE-RSA-CAMELLIA256-SHA

TLS_DH_anon_WITH_CAMELLIA_128_CBC_SHA ADH-CAMELLIA128-SHA
TLS_DH_anon_WITH_CAMELLIA_256_CBC_SHA ADH-CAMELLIA256-SHA

SEED ciphersuites from RFC4162, extending TLS v1.0

TLS_RSA_WITH_SEED_CBC_SHA SEED-SHA

TLS_DH_DSS_WITH_SEED_CBC_SHA Not implemented.
TLS_DH_RSA_WITH_SEED_CBC_SHA Not implemented.

TLS_DHE_DSS_WITH_SEED_CBC_SHA DHE-DSS-SEED-SHA
TLS_DHE_RSA_WITH_SEED_CBC_SHA DHE-RSA-SEED-SHA

TLS_DH_anon_WITH_SEED_CBC_SHA ADH-SEED-SHA

GOST ciphersuites from draft-chudov-cryptopro-cptls, extending TLS v1.0

Note: these ciphers require an engine which including GOST cryptographic algorithms, such as the ccgost engine, included
in the OpenSSL distribution.

TLS_GOSTR341094_WITH_28147_CNT_IMIT GOST94-GOST89-GOST89
TLS_GOSTR341001_WITH_28147_CNT_IMIT GOST2001-GOST89-GOST89
TLS_GOSTR341094_WITH_NULL_GOSTR3411 GOST94-NULL-GOST94
TLS_GOSTR341001_WITH_NULL_GOSTR3411 GOST2001-NULL-GOST94

Additional Export 1024 and other cipher suites

Note: these ciphers can also be used in SSL v3.

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DES-CBC-SHA
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA EXP1024-RC4-SHA
TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DHE-DSS-DES-CBC-SHA
TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA EXP1024-DHE-DSS-RC4-SHA
TLS_DHE_DSS_WITH_RC4_128_SHA DHE-DSS-RC4-SHA

Elliptic curve cipher suites.

TLS_ECDH_RSA_WITH_NULL_SHA ECDH-RSA-NULL-SHA
TLS_ECDH_RSA_WITH_RC4_128_SHA ECDH-RSA-RC4-SHA
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA ECDH-RSA-DES-CBC3-SHA
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA ECDH-RSA-AES128-SHA
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA ECDH-RSA-AES256-SHA

TLS_ECDH_ECDSA_WITH_NULL_SHA ECDH-ECDSA-NULL-SHA
TLS_ECDH_ECDSA_WITH_RC4_128_SHA ECDH-ECDSA-RC4-SHA
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA ECDH-ECDSA-DES-CBC3-SHA
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA ECDH-ECDSA-AES128-SHA
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA ECDH-ECDSA-AES256-SHA

TLS_ECDHE_RSA_WITH_NULL_SHA ECDHE-RSA-NULL-SHA
TLS_ECDHE_RSA_WITH_RC4_128_SHA ECDHE-RSA-RC4-SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA ECDHE-RSA-DES-CBC3-SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA ECDHE-RSA-AES128-SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA ECDHE-RSA-AES256-SHA

1071

OpenSSL Manual

TLS_ECDHE_ECDSA_WITH_NULL_SHA ECDHE-ECDSA-NULL-SHA
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA ECDHE-ECDSA-RC4-SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA ECDHE-ECDSA-DES-CBC3-SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE-ECDSA-AES128-SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE-ECDSA-AES256-SHA

TLS_ECDH_anon_WITH_NULL_SHA AECDH-NULL-SHA
TLS_ECDH_anon_WITH_RC4_128_SHA AECDH-RC4-SHA
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA AECDH-DES-CBC3-SHA
TLS_ECDH_anon_WITH_AES_128_CBC_SHA AECDH-AES128-SHA
TLS_ECDH_anon_WITH_AES_256_CBC_SHA AECDH-AES256-SHA

TLS v1.2 cipher suites

TLS_RSA_WITH_NULL_SHA256 NULL-SHA256

TLS_RSA_WITH_AES_128_CBC_SHA256 AES128-SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256 AES256-SHA256
TLS_RSA_WITH_AES_128_GCM_SHA256 AES128-GCM-SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384 AES256-GCM-SHA384

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 Not implemented.
TLS_DH_RSA_WITH_AES_256_CBC_SHA256 Not implemented.
TLS_DH_RSA_WITH_AES_128_GCM_SHA256 Not implemented.
TLS_DH_RSA_WITH_AES_256_GCM_SHA384 Not implemented.

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 Not implemented.
TLS_DH_DSS_WITH_AES_256_CBC_SHA256 Not implemented.
TLS_DH_DSS_WITH_AES_128_GCM_SHA256 Not implemented.
TLS_DH_DSS_WITH_AES_256_GCM_SHA384 Not implemented.

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 DHE-RSA-AES128-SHA256
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 DHE-RSA-AES256-SHA256
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 DHE-RSA-AES128-GCM-SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 DHE-RSA-AES256-GCM-SHA384

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 DHE-DSS-AES128-SHA256
TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 DHE-DSS-AES256-SHA256
TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 DHE-DSS-AES128-GCM-SHA256
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 DHE-DSS-AES256-GCM-SHA384

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 ECDH-RSA-AES128-SHA256
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 ECDH-RSA-AES256-SHA384
TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 ECDH-RSA-AES128-GCM-SHA256
TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 ECDH-RSA-AES256-GCM-SHA384

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 ECDH-ECDSA-AES128-SHA256
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 ECDH-ECDSA-AES256-SHA384
TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 ECDH-ECDSA-AES128-GCM-SHA256
TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 ECDH-ECDSA-AES256-GCM-SHA384

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 ECDHE-RSA-AES128-SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 ECDHE-RSA-AES256-SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ECDHE-RSA-AES128-GCM-SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 ECDHE-RSA-AES256-GCM-SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 ECDHE-ECDSA-AES128-SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 ECDHE-ECDSA-AES256-SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 ECDHE-ECDSA-AES128-GCM-SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 ECDHE-ECDSA-AES256-GCM-SHA384

TLS_DH_anon_WITH_AES_128_CBC_SHA256 ADH-AES128-SHA256
TLS_DH_anon_WITH_AES_256_CBC_SHA256 ADH-AES256-SHA256
TLS_DH_anon_WITH_AES_128_GCM_SHA256 ADH-AES128-GCM-SHA256
TLS_DH_anon_WITH_AES_256_GCM_SHA384 ADH-AES256-GCM-SHA384

Pre shared keying (PSK) cipheruites

TLS_PSK_WITH_RC4_128_SHA PSK-RC4-SHA
TLS_PSK_WITH_3DES_EDE_CBC_SHA PSK-3DES-EDE-CBC-SHA
TLS_PSK_WITH_AES_128_CBC_SHA PSK-AES128-CBC-SHA
TLS_PSK_WITH_AES_256_CBC_SHA PSK-AES256-CBC-SHA

1072

OpenSSL Manual

Deprecated SSL v2.0 cipher suites.

SSL_CK_RC4_128_WITH_MD5 RC4-MD5
SSL_CK_RC4_128_EXPORT40_WITH_MD5 Not implemented.
SSL_CK_RC2_128_CBC_WITH_MD5 RC2-CBC-MD5
SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5 Not implemented.
SSL_CK_IDEA_128_CBC_WITH_MD5 IDEA-CBC-MD5
SSL_CK_DES_64_CBC_WITH_MD5 Not implemented.
SSL_CK_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5

NOTES

The non-ephemeral DH modes are currently unimplemented in OpenSSL because there is no support for DH certificates.

Some compiled versions of OpenSSL may not include all the ciphers listed here because some ciphers were excluded at compile
time.

EXAMPLES

Verbose listing of all OpenSSL ciphers including NULL ciphers:

openssl ciphers -v 'ALL:eNULL'

Include all ciphers except NULL and anonymous DH then sort by strength:

openssl ciphers -v 'ALL:!ADH:@STRENGTH'

Include all ciphers except ones with no encryption (eNULL) or no authentication (aNULL):

openssl ciphers -v 'ALL:!aNULL'

Include only 3DES ciphers and then place RSA ciphers last:

openssl ciphers -v '3DES:+RSA'

Include all RC4 ciphers but leave out those without authentication:

openssl ciphers -v 'RC4:!COMPLEMENTOFDEFAULT'

Include all chiphers with RSA authentication but leave out ciphers without encryption.

openssl ciphers -v 'RSA:!COMPLEMENTOFALL'

SEE ALSO

s_client(1), s_server(1), ssl(3)

HISTORY

The COMPLENTOFALL and COMPLEMENTOFDEFAULT selection options for cipherlist strings were added in
OpenSSL 0.9.7. The -V option for the ciphers command was added in OpenSSL 1.0.0.

1073

OpenSSL Manual

Name
cms — CMS utility

Synopsis
opensslcms
[-encrypt]
[-decrypt]
[-sign]
[-verify]
[-cmsout]
[-resign]
[-data_create]
[-data_out]
[-digest_create]
[-digest_verify]
[-compress]
[-uncompress]
[-EncryptedData_encrypt]
[-sign_receipt]
[-verify_receipt receipt]
[-in filename]
[-inform SMIME|PEM|DER]
[-rctform SMIME|PEM|DER]
[-out filename]
[-outform SMIME|PEM|DER]
[-stream -indef -noindef]
[-noindef]
[-content filename]
[-text]
[-noout]
[-print]
[-CAfile file]
[-CApath dir]
[-no_alt_chains]
[-md digest]
[-[cipher]]
[-nointern]
[-no_signer_cert_verify]
[-nocerts]
[-noattr]
[-nosmimecap]
[-binary]
[-nodetach]
[-certfile file]
[-certsout file]
[-signer file]
[-recip file]
[-keyid]
[-receipt_request_all -receipt_request_first]
[-receipt_request_from emailaddress]
[-receipt_request_to emailaddress]
[-receipt_request_print]
[-secretkey key]
[-secretkeyid id]
[-econtent_type type]
[-inkey file]
[-passin arg]
[-rand file(s)]
[cert.pem…]
[-to addr]
[-from addr]
[-subject subj]
[cert.pem]…

DESCRIPTION

The cms command handles S/MIME v3.1 mail. It can encrypt, decrypt, sign and verify, compress and uncompress S/MIME
messages.

1074

OpenSSL Manual

COMMAND OPTIONS

There are fourteen operation options that set the type of operation to be performed. The meaning of the other options varies
according to the operation type.

-encrypt

encrypt mail for the given recipient certificates. Input file is the message to be encrypted. The output file is the encrypted
mail in MIME format. The actual CMS type is EnvelopedData.

Note that no revocation check is done for the recipient cert, so if that key has been compromised, others may be able to
decrypt the text.

-decrypt

decrypt mail using the supplied certificate and private key. Expects an encrypted mail message in MIME format for the
input file. The decrypted mail is written to the output file.

-debug_decrypt

this option sets the CMS_DEBUG_DECRYPT flag. This option should be used with caution: see the notes section below.

-sign

sign mail using the supplied certificate and private key. Input file is the message to be signed. The signed message in
MIME format is written to the output file.

-verify

verify signed mail. Expects a signed mail message on input and outputs the signed data. Both clear text and opaque signing
is supported.

-cmsout

takes an input message and writes out a PEM encoded CMS structure.

-resign

resign a message: take an existing message and one or more new signers.

-data_create

Create a CMS Data type.

-data_out

Data type and output the content.

-digest_create

Create a CMS DigestedData type.

-digest_verify

Verify a CMS DigestedData type and output the content.

-compress

Create a CMS CompressedData type. OpenSSL must be compiled with zlib support for this option to work, otherwise
it will output an error.

1075

OpenSSL Manual

-uncompress

Uncompress a CMS CompressedData type and output the content. OpenSSL must be compiled with zlib support for this
option to work, otherwise it will output an error.

-EncryptedData_encrypt

Encrypt content using supplied symmetric key and algorithm using a CMS EncrytedData type and output the content.

-sign_receipt

Generate and output a signed receipt for the supplied message. The input message must contain a signed receipt request.
Functionality is otherwise similar to the -sign operation.

-verify_receipt receipt

Verify a signed receipt in filename receipt. The input message must contain the original receipt request. Functionality
is otherwise similar to the -verify operation.

-in filename

the input message to be encrypted or signed or the message to be decrypted or verified.

-inform SMIME|PEM|DER

this specifies the input format for the CMS structure. The default is SMIME which reads an S/MIME format message.
PEM and DER format change this to expect PEM and DER format CMS structures instead. This currently only affects
the input format of the CMS structure, if no CMS structure is being input (for example with -encrypt or -sign) this option
has no effect.

-rctform SMIME|PEM|DER

specify the format for a signed receipt for use with the -receipt_verify operation.

-out filename

the message text that has been decrypted or verified or the output MIME format message that has been signed or verified.

-outform SMIME|PEM|DER

this specifies the output format for the CMS structure. The default is SMIME which writes an S/MIME format message.
PEM and DER format change this to write PEM and DER format CMS structures instead. This currently only affects
the output format of the CMS structure, if no CMS structure is being output (for example with -verify or -decrypt) this
option has no effect.

-stream -indef -noindef

the -stream and -indef options are equivalent and enable streaming I/O for encoding operations. This permits single pass
processing of data without the need to hold the entire contents in memory, potentially supporting very large files. Streaming
is automatically set for S/MIME signing with detached data if the output format is SMIME it is currently off by default
for all other operations.

-noindef

disable streaming I/O where it would produce and indefinite length constructed encoding. This option currently has no
effect. In future streaming will be enabled by default on all relevant operations and this option will disable it.

-content filename

This specifies a file containing the detached content, this is only useful with the -verify command. This is only usable if
the CMS structure is using the detached signature form where the content is not included. This option will override any
content if the input format is S/MIME and it uses the multipart/signed MIME content type.

1076

OpenSSL Manual

-text

this option adds plain text (text/plain) MIME headers to the supplied message if encrypting or signing. If decrypting or
verifying it strips off text headers: if the decrypted or verified message is not of MIME type text/plain then an error occurs.

-noout

for the -cmsout operation do not output the parsed CMS structure. This is useful when combined with the -print option
or if the syntax of the CMS structure is being checked.

-print

for the -cmsout operation print out all fields of the CMS structure. This is mainly useful for testing purposes.

-CAfile file

a file containing trusted CA certificates, only used with -verify.

-CApath dir

a directory containing trusted CA certificates, only used with -verify. This directory must be a standard certificate directory:
that is a hash of each subject name (using x509 -hash) should be linked to each certificate.

-md digest

digest algorithm to use when signing or resigning. If not present then the default digest algorithm for the signing key will
be used (usually SHA1).

-[cipher]

the encryption algorithm to use. For example triple DES (168 bits) - -des3 or 256 bit AES - -aes256. Any standard algorithm
name (as used by the EVP_get_cipherbyname() function) can also be used preceded by a dash, for example -aes_128_cbc.
See enc for a list of ciphers supported by your version of OpenSSL.

If not specified triple DES is used. Only used with -encrypt and -EncryptedData_create commands.

-nointern

when verifying a message normally certificates (if any) included in the message are searched for the signing certificate.
With this option only the certificates specified in the -certfile option are used. The supplied certificates can still be used
as untrusted CAs however.

-no_signer_cert_verify

do not verify the signers certificate of a signed message.

-nocerts

when signing a message the signer's certificate is normally included with this option it is excluded. This will reduce the
size of the signed message but the verifier must have a copy of the signers certificate available locally (passed using the
-certfile option for example).

-noattr

normally when a message is signed a set of attributes are included which include the signing time and supported symmetric
algorithms. With this option they are not included.

-nosmimecap

exclude the list of supported algorithms from signed attributes, other options such as signing time and content type are
still included.

1077

OpenSSL Manual

-binary

normally the input message is converted to "canonical" format which is effectively using CR and LF as end of line: as
required by the S/MIME specification. When this option is present no translation occurs. This is useful when handling
binary data which may not be in MIME format.

-nodetach

when signing a message use opaque signing: this form is more resistant to translation by mail relays but it cannot be read
by mail agents that do not support S/MIME. Without this option cleartext signing with the MIME type multipart/signed
is used.

-certfile file

allows additional certificates to be specified. When signing these will be included with the message. When verifying these
will be searched for the signers certificates. The certificates should be in PEM format.

-certsout file

any certificates contained in the message are written to file.

-signer file

a signing certificate when signing or resigning a message, this option can be used multiple times if more than one signer
is required. If a message is being verified then the signers certificates will be written to this file if the verification was
successful.

-recip file

the recipients certificate when decrypting a message. This certificate must match one of the recipients of the message or
an error occurs.

-keyid

use subject key identifier to identify certificates instead of issuer name and serial number. The supplied certificate must
include a subject key identifier extension. Supported by -sign and -encrypt options.

-receipt_request_all -receipt_request_first

for -sign option include a signed receipt request. Indicate requests should be provided by all receipient or first tier recipients
(those mailed directly and not from a mailing list). Ignored it -receipt_request_from is included.

-receipt_request_from emailaddress

for -sign option include a signed receipt request. Add an explicit email address where receipts should be supplied.

-receipt_request_to emailaddress

Add an explicit email address where signed receipts should be sent to. This option must but supplied if a signed receipt
it requested.

-receipt_request_print

For the -verify operation print out the contents of any signed receipt requests.

-secretkey key

specify symmetric key to use. The key must be supplied in hex format and be consistent with the algorithm used. Sup-
ported by the -EncryptedData_encrypt -EncrryptedData_decrypt, -encrypt and -decrypt options. When used with -
encrypt or -decrypt the supplied key is used to wrap or unwrap the content encryption key using an AES key in the
KEKRecipientInfo type.

1078

OpenSSL Manual

-secretkeyid id

the key identifier for the supplied symmetric key for KEKRecipientInfo type. This option must be present if the -se-
cretkey option is used with -encrypt. With -decrypt operations the id is used to locate the relevant key if it is not supplied
then an attempt is used to decrypt any KEKRecipientInfo structures.

-econtent_type type

set the encapsulated content type to type if not supplied the Data type is used. The type argument can be any valid OID
name in either text or numerical format.

-inkey file

the private key to use when signing or decrypting. This must match the corresponding certificate. If this option is not
specified then the private key must be included in the certificate file specified with the -recip or -signer file. When signing
this option can be used multiple times to specify successive keys.

-passin arg

the private key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

cert.pem…

one or more certificates of message recipients: used when encrypting a message.

-to, -from, -subject

the relevant mail headers. These are included outside the signed portion of a message so they may be included manually.
If signing then many S/MIME mail clients check the signers certificate's email address matches that specified in the From:
address.

-purpose, -ignore_critical, -issuer_checks, -crl_check, -crl_check_all, -policy_check, -extended_crl, -x509_strict, -policy
-check_ss_sig -no_alt_chains

Set various certificate chain valiadition option. See the verify manual page for details.

NOTES

The MIME message must be sent without any blank lines between the headers and the output. Some mail programs will
automatically add a blank line. Piping the mail directly to sendmail is one way to achieve the correct format.

The supplied message to be signed or encrypted must include the necessary MIME headers or many S/MIME clients wont
display it properly (if at all). You can use the -text option to automatically add plain text headers.

A "signed and encrypted" message is one where a signed message is then encrypted. This can be produced by encrypting an
already signed message: see the examples section.

This version of the program only allows one signer per message but it will verify multiple signers on received messages. Some
S/MIME clients choke if a message contains multiple signers. It is possible to sign messages "in parallel" by signing an already
signed message.

The options -encrypt and -decrypt reflect common usage in S/MIME clients. Strictly speaking these process CMS enveloped
data: CMS encrypted data is used for other purposes.

1079

OpenSSL Manual

The -resign option uses an existing message digest when adding a new signer. This means that attributes must be present in at
least one existing signer using the same message digest or this operation will fail.

The -stream and -indef options enable experimental streaming I/O support. As a result the encoding is BER using indefinite
length constructed encoding and no longer DER. Streaming is supported for the -encrypt operation and the -sign operation
if the content is not detached.

Streaming is always used for the -sign operation with detached data but since the content is no longer part of the CMS structure
the encoding remains DER.

If the -decrypt option is used without a recipient certificate then an attempt is made to locate the recipient by trying each
potential recipient in turn using the supplied private key. To thwart the MMA attack (Bleichenbacher's attack on PKCS #1
v1.5 RSA padding) all recipients are tried whether they succeed or not and if no recipients match the message is "decrypted"
using a random key which will typically output garbage. The -debug_decrypt option can be used to disable the MMA attack
protection and return an error if no recipient can be found: this option should be used with caution. For a fuller description
see CMS_decrypt(3)).

EXIT CODES

0 the operation was completely successfully.

1 an error occurred parsing the command options.

2 one of the input files could not be read.

3 an error occurred creating the CMS file or when reading the MIME message.

4 an error occurred decrypting or verifying the message.

5 the message was verified correctly but an error occurred writing out the signers certificates.

COMPATIBILITY WITH PKCS#7 format.

The smime utility can only process the older PKCS#7 format. The cms utility supports Cryptographic Message Syntax format.
Use of some features will result in messages which cannot be processed by applications which only support the older format.
These are detailed below.

The use of the -keyid option with -sign or -encrypt.

The -outform PEM option uses different headers.

The -compress option.

The -secretkey option when used with -encrypt.

Additionally the -EncryptedData_create and -data_create type cannot be processed by the older smime command.

EXAMPLES

Create a cleartext signed message:

openssl cms -sign -in message.txt -text -out mail.msg \
 -signer mycert.pem

Create an opaque signed message

openssl cms -sign -in message.txt -text -out mail.msg -nodetach \
 -signer mycert.pem

Create a signed message, include some additional certificates and read the private key from another file:

openssl cms -sign -in in.txt -text -out mail.msg \
 -signer mycert.pem -inkey mykey.pem -certfile mycerts.pem

1080

OpenSSL Manual

Create a signed message with two signers, use key identifier:

openssl cms -sign -in message.txt -text -out mail.msg \
 -signer mycert.pem -signer othercert.pem -keyid

Send a signed message under Unix directly to sendmail, including headers:

openssl cms -sign -in in.txt -text -signer mycert.pem \
 -from steve@openssl.org -to someone@somewhere \
 -subject "Signed message" | sendmail someone@somewhere

Verify a message and extract the signer's certificate if successful:

openssl cms -verify -in mail.msg -signer user.pem -out signedtext.txt

Send encrypted mail using triple DES:

openssl cms -encrypt -in in.txt -from steve@openssl.org \
 -to someone@somewhere -subject "Encrypted message" \
 -des3 user.pem -out mail.msg

Sign and encrypt mail:

openssl cms -sign -in ml.txt -signer my.pem -text \
 | openssl cms -encrypt -out mail.msg \
 -from steve@openssl.org -to someone@somewhere \
 -subject "Signed and Encrypted message" -des3 user.pem

Note: the encryption command does not include the -text option because the message being encrypted already has MIME
headers.

Decrypt mail:

openssl cms -decrypt -in mail.msg -recip mycert.pem -inkey key.pem

The output from Netscape form signing is a PKCS#7 structure with the detached signature format. You can use this program
to verify the signature by line wrapping the base64 encoded structure and surrounding it with:

-----BEGIN PKCS7-----
-----END PKCS7-----

and using the command,

openssl cms -verify -inform PEM -in signature.pem -content content.txt

alternatively you can base64 decode the signature and use

openssl cms -verify -inform DER -in signature.der -content content.txt

Create an encrypted message using 128 bit Camellia:

openssl cms -encrypt -in plain.txt -camellia128 -out mail.msg cert.pem

Add a signer to an existing message:

openssl cms -resign -in mail.msg -signer newsign.pem -out mail2.msg

BUGS

The MIME parser isn't very clever: it seems to handle most messages that I've thrown at it but it may choke on others.

The code currently will only write out the signer's certificate to a file: if the signer has a separate encryption certificate this
must be manually extracted. There should be some heuristic that determines the correct encryption certificate.

Ideally a database should be maintained of a certificates for each email address.

The code doesn't currently take note of the permitted symmetric encryption algorithms as supplied in the SMIMECapabilities
signed attribute. this means the user has to manually include the correct encryption algorithm. It should store the list of permitted
ciphers in a database and only use those.

1081

OpenSSL Manual

No revocation checking is done on the signer's certificate.

HISTORY

The use of multiple -signer options and the -resign command were first added in OpenSSL 1.0.0

The -no_alt_chains options was first added to OpenSSL 1.0.1n and 1.0.2b.

1082

OpenSSL Manual

Name
crl — CRL utility

Synopsis
opensslcrl
[-inform PEM|DER]
[-outform PEM|DER]
[-text]
[-in filename]
[-out filename]
[-nameopt option]
[-noout]
[-hash]
[-issuer]
[-lastupdate]
[-nextupdate]
[-CAfile file]
[-CApath dir]

DESCRIPTION

The crl command processes CRL files in DER or PEM format.

COMMAND OPTIONS

-inform DER|PEM

This specifies the input format. DER format is DER encoded CRL structure. PEM (the default) is a base64 encoded
version of the DER form with header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read from or standard input if this option is not specified.

-out filename

specifies the output filename to write to or standard output by default.

-text

print out the CRL in text form.

-nameopt option

option which determines how the subject or issuer names are displayed. See the description of -nameopt in x509(1).

-noout

don't output the encoded version of the CRL.

-hash

output a hash of the issuer name. This can be use to lookup CRLs in a directory by issuer name.

-hash_old

outputs the "hash" of the CRL issuer name using the older algorithm as used by OpenSSL versions before 1.0.0.

1083

OpenSSL Manual

-issuer

output the issuer name.

-lastupdate

output the lastUpdate field.

-nextupdate

output the nextUpdate field.

-CAfile file

verify the signature on a CRL by looking up the issuing certificate in file

-CApath dir

verify the signature on a CRL by looking up the issuing certificate in dir. This directory must be a standard certificate
directory: that is a hash of each subject name (using x509 -hash) should be linked to each certificate.

NOTES

The PEM CRL format uses the header and footer lines:

-----BEGIN X509 CRL-----
-----END X509 CRL-----

EXAMPLES

Convert a CRL file from PEM to DER:

openssl crl -in crl.pem -outform DER -out crl.der

Output the text form of a DER encoded certificate:

openssl crl -in crl.der -text -noout

BUGS

Ideally it should be possible to create a CRL using appropriate options and files too.

SEE ALSO

crl2pkcs7(1), ca(1), x509(1)

1084

OpenSSL Manual

Name
crl2pkcs7 — Create a PKCS#7 structure from a CRL and certificates.

Synopsis
opensslcrl2pkcs7
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-out filename]
[-certfile filename]
[-nocrl]

DESCRIPTION

The crl2pkcs7 command takes an optional CRL and one or more certificates and converts them into a PKCS#7 degenerate
"certificates only" structure.

COMMAND OPTIONS

-inform DER|PEM

This specifies the CRL input format. DER format is DER encoded CRL structure.PEM (the default) is a base64 encoded
version of the DER form with header and footer lines.

-outform DER|PEM

This specifies the PKCS#7 structure output format. DER format is DER encoded PKCS#7 structure.PEM (the default) is
a base64 encoded version of the DER form with header and footer lines.

-in filename

This specifies the input filename to read a CRL from or standard input if this option is not specified.

-out filename

specifies the output filename to write the PKCS#7 structure to or standard output by default.

-certfile filename

specifies a filename containing one or more certificates in PEM format. All certificates in the file will be added to the
PKCS#7 structure. This option can be used more than once to read certificates form multiple files.

-nocrl

normally a CRL is included in the output file. With this option no CRL is included in the output file and a CRL is not
read from the input file.

EXAMPLES

Create a PKCS#7 structure from a certificate and CRL:

openssl crl2pkcs7 -in crl.pem -certfile cert.pem -out p7.pem

Creates a PKCS#7 structure in DER format with no CRL from several different certificates:

openssl crl2pkcs7 -nocrl -certfile newcert.pem
 -certfile demoCA/cacert.pem -outform DER -out p7.der

NOTES

The output file is a PKCS#7 signed data structure containing no signers and just certificates and an optional CRL.

1085

OpenSSL Manual

This utility can be used to send certificates and CAs to Netscape as part of the certificate enrollment process. This involves
sending the DER encoded output as MIME type application/x-x509-user-cert.

The PEM encoded form with the header and footer lines removed can be used to install user certificates and CAs in MSIE
using the Xenroll control.

SEE ALSO

pkcs7(1)

1086

OpenSSL Manual

Name
dgst, sha, sha1, mdc2, ripemd160, sha224, sha256, sha384, sha512, md2, md4, md5 and dss1 — message digests

Synopsis
openssldgst
[-sha|-sha1|-mdc2|-ripemd160|-sha224|-sha256|-sha384|-sha512|-md2|-md4|-md5|-dss1]
[-c]
[-d]
[-hex]
[-binary]
[-r]
[-non-fips-allow]
[-out filename]
[-sign filename]
[-keyform arg]
[-passin arg]
[-verify filename]
[-prverify filename]
[-signature filename]
[-hmac key]
[-non-fips-allow]
[-fips-fingerprint]
[file…]

openssl
[digest]
[…]

DESCRIPTION

The digest functions output the message digest of a supplied file or files in hexadecimal. The digest functions also generate
and verify digital signatures using message digests.

OPTIONS

-c

print out the digest in two digit groups separated by colons, only relevant if hex format output is used.

-d

print out BIO debugging information.

-hex

digest is to be output as a hex dump. This is the default case for a "normal" digest as opposed to a digital signature. See
NOTES below for digital signatures using -hex.

-binary

output the digest or signature in binary form.

-r

output the digest in the "coreutils" format used by programs like sha1sum.

-non-fips-allow

Allow use of non FIPS digest when in FIPS mode. This has no effect when not in FIPS mode.

-out filename

filename to output to, or standard output by default.

1087

OpenSSL Manual

-sign filename

digitally sign the digest using the private key in "filename".

-keyform arg

Specifies the key format to sign digest with. The DER, PEM, P12, and ENGINE formats are supported.

-engine id

Use engine id for operations (including private key storage). This engine is not used as source for digest algorithms, unless
it is also specified in the configuration file.

-sigopt nm:v

Pass options to the signature algorithm during sign or verify operations. Names and values of these options are algo-
rithm-specific.

-passin arg

the private key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-verify filename

verify the signature using the the public key in "filename". The output is either "Verification OK" or "Verification Failure".

-prverify filename

verify the signature using the the private key in "filename".

-signature filename

the actual signature to verify.

-hmac key

create a hashed MAC using "key".

-mac alg

create MAC (keyed Message Authentication Code). The most popular MAC algorithm is HMAC (hash-based MAC),
but there are other MAC algorithms which are not based on hash, for instance gost-mac algorithm, supported by ccgost
engine. MAC keys and other options should be set via -macopt parameter.

-macopt nm:v

Passes options to MAC algorithm, specified by -mac key. Following options are supported by both by HMAC and gost-
mac:

key:string

Specifies MAC key as alphnumeric string (use if key contain printable characters only). String length must conform
to any restrictions of the MAC algorithm for example exactly 32 chars for gost-mac.

hexkey:string

Specifies MAC key in hexadecimal form (two hex digits per byte). Key length must conform to any restrictions of
the MAC algorithm for example exactly 32 chars for gost-mac.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

1088

OpenSSL Manual

-non-fips-allow

enable use of non-FIPS algorithms such as MD5 even in FIPS mode.

-fips-fingerprint

compute HMAC using a specific key for certain OpenSSL-FIPS operations.

file…

file or files to digest. If no files are specified then standard input is used.

EXAMPLES

To create a hex-encoded message digest of a file: openssl dgst -md5 -hex file.txt

To sign a file using SHA-256 with binary file output: openssl dgst -sha256 -sign privatekey.pem -out signature.sign file.txt

To verify a signature: openssl dgst -sha256 -verify publickey.pem \ -signature signature.sign \ file.txt

NOTES

The digest of choice for all new applications is SHA1. Other digests are however still widely used.

When signing a file, dgst will automatically determine the algorithm (RSA, ECC, etc) to use for signing based on the private
key's ASN.1 info. When verifying signatures, it only handles the RSA, DSA, or ECDSA signature itself, not the related data
to identify the signer and algorithm used in formats such as x.509, CMS, and S/MIME.

A source of random numbers is required for certain signing algorithms, in particular ECDSA and DSA.

The signing and verify options should only be used if a single file is being signed or verified.

Hex signatures cannot be verified using openssl. Instead, use "xxd -r" or similar program to transform the hex signature into
a binary signature prior to verification.

1089

OpenSSL Manual

Name
dhparam — DH parameter manipulation and generation

Synopsis
openssl dhparam
[-inform DER|PEM]
[-outform DER|PEM]
[-in filename]
[-out filename]
[-dsaparam]
[-check]
[-noout]
[-text]
[-C]
[-2]
[-5]
[-rand file(s)]
[-engine id]
[numbits]

DESCRIPTION

This command is used to manipulate DH parameter files.

OPTIONS

-inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with the PKCS#3 DHpa-
rameter structure. The PEM form is the default format: it consists of the DER format base64 encoded with additional
header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read parameters from or standard input if this option is not specified.

-out filename

This specifies the output filename parameters to. Standard output is used if this option is not present. The output filename
should not be the same as the input filename.

-dsaparam

If this option is used, DSA rather than DH parameters are read or created; they are converted to DH format. Otherwise,
"strong" primes (such that (p-1)/2 is also prime) will be used for DH parameter generation.

DH parameter generation with the -dsaparam option is much faster, and the recommended exponent length is shorter,
which makes DH key exchange more efficient. Beware that with such DSA-style DH parameters, a fresh DH key should
be created for each use to avoid small-subgroup attacks that may be possible otherwise.

-check

check if the parameters are valid primes and generator.

-2, -5

The generator to use, either 2 or 5. If present then the input file is ignored and parameters are generated instead. If not
present but numbits is present, parameters are generated with the default generator 2.

1090

OpenSSL Manual

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

numbits

this option specifies that a parameter set should be generated of size numbits. It must be the last option. If this option is
present then the input file is ignored and parameters are generated instead. If this option is not present but a generator (-2
or -5) is present, parameters are generated with a default length of 2048 bits.

-noout

this option inhibits the output of the encoded version of the parameters.

-text

this option prints out the DH parameters in human readable form.

-C

this option converts the parameters into C code. The parameters can then be loaded by calling the get_dhnumbits() function.

-engine id

specifying an engine (by its unique id string) will cause dhparam to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

WARNINGS

The program dhparam combines the functionality of the programs dh and gendh in previous versions of OpenSSL and SSLeay.
The dh and gendh programs are retained for now but may have different purposes in future versions of OpenSSL.

NOTES

PEM format DH parameters use the header and footer lines:

-----BEGIN DH PARAMETERS-----
-----END DH PARAMETERS-----

OpenSSL currently only supports the older PKCS#3 DH, not the newer X9.42 DH.

This program manipulates DH parameters not keys.

BUGS

There should be a way to generate and manipulate DH keys.

SEE ALSO

dsaparam(1)

HISTORY

The dhparam command was added in OpenSSL 0.9.5. The -dsaparam option was added in OpenSSL 0.9.6.

1091

OpenSSL Manual

Name
dsa — DSA key processing

Synopsis
openssldsa
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-passin arg]
[-out filename]
[-passout arg]
[-aes128]
[-aes192]
[-aes256]
[-camellia128]
[-camellia192]
[-camellia256]
[-des]
[-des3]
[-idea]
[-text]
[-noout]
[-modulus]
[-pubin]
[-pubout]
[-engine id]

DESCRIPTION

The dsa command processes DSA keys. They can be converted between various forms and their components printed out. Note
This command uses the traditional SSLeay compatible format for private key encryption: newer applications should use the
more secure PKCS#8 format using the pkcs8

COMMAND OPTIONS

-inform DER|PEM

This specifies the input format. The DER option with a private key uses an ASN1 DER encoded form of an ASN.1
SEQUENCE consisting of the values of version (currently zero), p, q, g, the public and private key components respectively
as ASN.1 INTEGERs. When used with a public key it uses a SubjectPublicKeyInfo structure: it is an error if the key is
not DSA.

The PEM form is the default format: it consists of the DER format base64 encoded with additional header and footer
lines. In the case of a private key PKCS#8 format is also accepted.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the key is encrypted
a pass phrase will be prompted for.

-passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-out filename

This specifies the output filename to write a key to or standard output by is not specified. If any encryption options are set
then a pass phrase will be prompted for. The output filename should not be the same as the input filename.

1092

OpenSSL Manual

-passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-aes128|-aes192|-aes256|-camellia128|-camellia192|-camellia256|-des|-des3|-idea

These options encrypt the private key with the specified cipher before outputting it. A pass phrase is prompted for. If none
of these options is specified the key is written in plain text. This means that using the dsa utility to read in an encrypted
key with no encryption option can be used to remove the pass phrase from a key, or by setting the encryption options it
can be use to add or change the pass phrase. These options can only be used with PEM format output files.

-text

prints out the public, private key components and parameters.

-noout

this option prevents output of the encoded version of the key.

-modulus

this option prints out the value of the public key component of the key.

-pubin

by default a private key is read from the input file: with this option a public key is read instead.

-pubout

by default a private key is output. With this option a public key will be output instead. This option is automatically set
if the input is a public key.

-engine id

specifying an engine (by its unique id string) will cause dsa to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

NOTES

The PEM private key format uses the header and footer lines:

-----BEGIN DSA PRIVATE KEY-----
-----END DSA PRIVATE KEY-----

The PEM public key format uses the header and footer lines:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

EXAMPLES

To remove the pass phrase on a DSA private key:

openssl dsa -in key.pem -out keyout.pem

To encrypt a private key using triple DES:

openssl dsa -in key.pem -des3 -out keyout.pem

To convert a private key from PEM to DER format:

openssl dsa -in key.pem -outform DER -out keyout.der

To print out the components of a private key to standard output:

1093

OpenSSL Manual

openssl dsa -in key.pem -text -noout

To just output the public part of a private key:

openssl dsa -in key.pem -pubout -out pubkey.pem

SEE ALSO

dsaparam(1), gendsa(1), rsa(1), genrsa(1)

1094

OpenSSL Manual

Name
dsaparam — DSA parameter manipulation and generation

Synopsis
openssl dsaparam
[-inform DER|PEM]
[-outform DER|PEM]
[-in filename]
[-out filename]
[-noout]
[-text]
[-C]
[-rand file(s)]
[-genkey]
[-engine id]
[numbits]

DESCRIPTION

This command is used to manipulate or generate DSA parameter files.

OPTIONS

-inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with RFC2459 (PKIX)
DSS-Parms that is a SEQUENCE consisting of p, q and g respectively. The PEM form is the default format: it consists of
the DER format base64 encoded with additional header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read parameters from or standard input if this option is not specified. If the numbits
parameter is included then this option will be ignored.

-out filename

This specifies the output filename parameters to. Standard output is used if this option is not present. The output filename
should not be the same as the input filename.

-noout

this option inhibits the output of the encoded version of the parameters.

-text

this option prints out the DSA parameters in human readable form.

-C

this option converts the parameters into C code. The parameters can then be loaded by calling the get_dsaXXX() function.

-genkey

this option will generate a DSA either using the specified or generated parameters.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

1095

OpenSSL Manual

numbits

this option specifies that a parameter set should be generated of size numbits. It must be the last option. If this option is
included then the input file (if any) is ignored.

-engine id

specifying an engine (by its unique id string) will cause dsaparam to attempt to obtain a functional reference to the
specified engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

NOTES

PEM format DSA parameters use the header and footer lines:

-----BEGIN DSA PARAMETERS-----
-----END DSA PARAMETERS-----

DSA parameter generation is a slow process and as a result the same set of DSA parameters is often used to generate several
distinct keys.

SEE ALSO

gendsa(1), dsa(1), genrsa(1), rsa(1)

1096

OpenSSL Manual

Name
ec — EC key processing

Synopsis
opensslec
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-passin arg]
[-out filename]
[-passout arg]
[-des]
[-des3]
[-idea]
[-text]
[-noout]
[-param_out]
[-pubin]
[-pubout]
[-conv_form arg]
[-param_enc arg]
[-engine id]

DESCRIPTION

The ec command processes EC keys. They can be converted between various forms and their components printed out. Note
OpenSSL uses the private key format specified in 'SEC 1: Elliptic Curve Cryptography' (http://www.secg.org/). To convert a
OpenSSL EC private key into the PKCS#8 private key format use the pkcs8 command.

COMMAND OPTIONS

-inform DER|PEM

This specifies the input format. The DER option with a private key uses an ASN.1 DER encoded SEC1 private key. When
used with a public key it uses the SubjectPublicKeyInfo structure as specified in RFC 3280. The PEM form is the default
format: it consists of the DER format base64 encoded with additional header and footer lines. In the case of a private key
PKCS#8 format is also accepted.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the key is encrypted
a pass phrase will be prompted for.

-passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-out filename

This specifies the output filename to write a key to or standard output by is not specified. If any encryption options are set
then a pass phrase will be prompted for. The output filename should not be the same as the input filename.

-passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

1097

OpenSSL Manual

-des|-des3|-idea

These options encrypt the private key with the DES, triple DES, IDEA or any other cipher supported by OpenSSL before
outputting it. A pass phrase is prompted for. If none of these options is specified the key is written in plain text. This
means that using the ec utility to read in an encrypted key with no encryption option can be used to remove the pass phrase
from a key, or by setting the encryption options it can be use to add or change the pass phrase. These options can only
be used with PEM format output files.

-text

prints out the public, private key components and parameters.

-noout

this option prevents output of the encoded version of the key.

-modulus

this option prints out the value of the public key component of the key.

-pubin

by default a private key is read from the input file: with this option a public key is read instead.

-pubout

by default a private key is output. With this option a public key will be output instead. This option is automatically set
if the input is a public key.

-conv_form

This specifies how the points on the elliptic curve are converted into octet strings. Possible values are: compressed (the
default value), uncompressed and hybrid. For more information regarding the point conversion forms please read the
X9.62 standard. Note Due to patent issues the compressed option is disabled by default for binary curves and can be
enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at compile time.

-param_enc arg

This specifies how the elliptic curve parameters are encoded. Possible value are: named_curve, i.e. the ec parameters are
specified by a OID, or explicit where the ec parameters are explicitly given (see RFC 3279 for the definition of the EC
parameters structures). The default value is named_curve. Note the implicitlyCA alternative ,as specified in RFC 3279,
is currently not implemented in OpenSSL.

-engine id

specifying an engine (by its unique id string) will cause ec to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

NOTES

The PEM private key format uses the header and footer lines:

-----BEGIN EC PRIVATE KEY-----
-----END EC PRIVATE KEY-----

The PEM public key format uses the header and footer lines:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

EXAMPLES

To encrypt a private key using triple DES:

1098

OpenSSL Manual

openssl ec -in key.pem -des3 -out keyout.pem

To convert a private key from PEM to DER format:

openssl ec -in key.pem -outform DER -out keyout.der

To print out the components of a private key to standard output:

openssl ec -in key.pem -text -noout

To just output the public part of a private key:

openssl ec -in key.pem -pubout -out pubkey.pem

To change the parameters encoding to explicit:

openssl ec -in key.pem -param_enc explicit -out keyout.pem

To change the point conversion form to compressed:

openssl ec -in key.pem -conv_form compressed -out keyout.pem

SEE ALSO

ecparam(1), dsa(1), rsa(1)

HISTORY

The ec command was first introduced in OpenSSL 0.9.8.

AUTHOR

Nils Larsch for the OpenSSL project (http://www.openssl.org).

1099

OpenSSL Manual

Name
ecparam — EC parameter manipulation and generation

Synopsis
openssl ecparam
[-inform DER|PEM]
[-outform DER|PEM]
[-in filename]
[-out filename]
[-noout]
[-text]
[-C]
[-check]
[-name arg]
[-list_curves]
[-conv_form arg]
[-param_enc arg]
[-no_seed]
[-rand file(s)]
[-genkey]
[-engine id]

DESCRIPTION

This command is used to manipulate or generate EC parameter files.

OPTIONS

-inform DER|PEM

This specifies the input format. The DER option uses an ASN.1 DER encoded form compatible with RFC 3279
EcpkParameters. The PEM form is the default format: it consists of the DER format base64 encoded with additional
header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read parameters from or standard input if this option is not specified.

-out filename

This specifies the output filename parameters to. Standard output is used if this option is not present. The output filename
should not be the same as the input filename.

-noout

This option inhibits the output of the encoded version of the parameters.

-text

This option prints out the EC parameters in human readable form.

-C

This option converts the EC parameters into C code. The parameters can then be loaded by calling the
get_ec_group_XXX() function.

-check

Validate the elliptic curve parameters.

1100

OpenSSL Manual

-name arg

Use the EC parameters with the specified 'short' name. Use -list_curves to get a list of all currently implemented EC
parameters.

-list_curves

If this options is specified ecparam will print out a list of all currently implemented EC parameters names and exit.

-conv_form

This specifies how the points on the elliptic curve are converted into octet strings. Possible values are: compressed (the
default value), uncompressed and hybrid. For more information regarding the point conversion forms please read the
X9.62 standard. Note Due to patent issues the compressed option is disabled by default for binary curves and can be
enabled by defining the preprocessor macro OPENSSL_EC_BIN_PT_COMP at compile time.

-param_enc arg

This specifies how the elliptic curve parameters are encoded. Possible value are: named_curve, i.e. the ec parameters are
specified by a OID, or explicit where the ec parameters are explicitly given (see RFC 3279 for the definition of the EC
parameters structures). The default value is named_curve. Note the implicitlyCA alternative ,as specified in RFC 3279,
is currently not implemented in OpenSSL.

-no_seed

This option inhibits that the 'seed' for the parameter generation is included in the ECParameters structure (see RFC 3279).

-genkey

This option will generate a EC private key using the specified parameters.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-engine id

specifying an engine (by its unique id string) will cause ecparam to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

NOTES

PEM format EC parameters use the header and footer lines:

-----BEGIN EC PARAMETERS-----
-----END EC PARAMETERS-----

OpenSSL is currently not able to generate new groups and therefore ecparam can only create EC parameters from known
(named) curves.

EXAMPLES

To create EC parameters with the group 'prime192v1':

openssl ecparam -out ec_param.pem -name prime192v1

To create EC parameters with explicit parameters:

openssl ecparam -out ec_param.pem -name prime192v1 -param_enc explicit

To validate given EC parameters:

1101

OpenSSL Manual

openssl ecparam -in ec_param.pem -check

To create EC parameters and a private key:

openssl ecparam -out ec_key.pem -name prime192v1 -genkey

To change the point encoding to 'compressed':

openssl ecparam -in ec_in.pem -out ec_out.pem -conv_form compressed

To print out the EC parameters to standard output:

openssl ecparam -in ec_param.pem -noout -text

SEE ALSO

ec(1), dsaparam(1)

HISTORY

The ecparam command was first introduced in OpenSSL 0.9.8.

AUTHOR

Nils Larsch for the OpenSSL project (http://www.openssl.org)

1102

OpenSSL Manual

Name
enc — symmetric cipher routines

Synopsis
openssl enc -ciphername
[-in filename]
[-out filename]
[-pass arg]
[-e]
[-d]
[-a/-base64]
[-A]
[-k password]
[-kfile filename]
[-K key]
[-iv IV]
[-S salt]
[-salt]
[-nosalt]
[-z]
[-md]
[-p]
[-P]
[-bufsize number]
[-nopad]
[-debug]
[-none]
[-engine id]

DESCRIPTION

The symmetric cipher commands allow data to be encrypted or decrypted using various block and stream ciphers using keys
based on passwords or explicitly provided. Base64 encoding or decoding can also be performed either by itself or in addition
to the encryption or decryption.

OPTIONS

-in filename

the input filename, standard input by default.

-out filename

the output filename, standard output by default.

-pass arg

the password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS section in
openssl(1).

-salt

use a salt in the key derivation routines. This is the default.

-nosalt

don't use a salt in the key derivation routines. This option SHOULD NOT be used except for test purposes or compatibility
with ancient versions of OpenSSL and SSLeay.

-e

encrypt the input data: this is the default.

1103

OpenSSL Manual

-d

decrypt the input data.

-a

base64 process the data. This means that if encryption is taking place the data is base64 encoded after encryption. If
decryption is set then the input data is base64 decoded before being decrypted.

-base64

same as -a

-A

if the -a option is set then base64 process the data on one line.

-k password

the password to derive the key from. This is for compatibility with previous versions of OpenSSL. Superseded by the -
pass argument.

-kfile filename

read the password to derive the key from the first line of filename. This is for compatibility with previous versions of
OpenSSL. Superseded by the -pass argument.

-nosalt

do not use a salt

-salt

use salt (randomly generated or provide with -S option) when encrypting (this is the default).

-S salt

the actual salt to use: this must be represented as a string of hex digits.

-K key

the actual key to use: this must be represented as a string comprised only of hex digits. If only the key is specified, the
IV must additionally specified using the -iv option. When both a key and a password are specified, the key given with
the -K option will be used and the IV generated from the password will be taken. It probably does not make much sense
to specify both key and password.

-iv IV

the actual IV to use: this must be represented as a string comprised only of hex digits. When only the key is specified
using the -K option, the IV must explicitly be defined. When a password is being specified using one of the other options,
the IV is generated from this password.

-p

print out the key and IV used.

-P

print out the key and IV used then immediately exit: don't do any encryption or decryption.

-bufsize number

set the buffer size for I/O

1104

OpenSSL Manual

-nopad

disable standard block padding

-debug

debug the BIOs used for I/O.

-z

Compress or decompress clear text using zlib before encryption or after decryption. This option exists only if OpenSSL
with compiled with zlib or zlib-dynamic option.

-none

Use NULL cipher (no encryption or decryption of input).

NOTES

The program can be called either as openssl ciphername or openssl enc -ciphername. But the first form doesn't work with
engine-provided ciphers, because this form is processed before the configuration file is read and any ENGINEs loaded.

Engines which provide entirely new encryption algorithms (such as ccgost engine which provides gost89 algorithm) should
be configured in the configuration file. Engines, specified in the command line using -engine options can only be used for
hadrware-assisted implementations of ciphers, which are supported by OpenSSL core or other engine, specified in the config-
uration file.

When enc command lists supported ciphers, ciphers provided by engines, specified in the configuration files are listed too.

A password will be prompted for to derive the key and IV if necessary.

The -salt option should ALWAYS be used if the key is being derived from a password unless you want compatibility with
previous versions of OpenSSL and SSLeay.

Without the -salt option it is possible to perform efficient dictionary attacks on the password and to attack stream cipher
encrypted data. The reason for this is that without the salt the same password always generates the same encryption key.
When the salt is being used the first eight bytes of the encrypted data are reserved for the salt: it is generated at random when
encrypting a file and read from the encrypted file when it is decrypted.

Some of the ciphers do not have large keys and others have security implications if not used correctly. A beginner is advised
to just use a strong block cipher in CBC mode such as bf or des3.

All the block ciphers normally use PKCS#5 padding also known as standard block padding: this allows a rudimentary integrity
or password check to be performed. However since the chance of random data passing the test is better than 1 in 256 it isn't
a very good test.

If padding is disabled then the input data must be a multiple of the cipher block length.

All RC2 ciphers have the same key and effective key length.

Blowfish and RC5 algorithms use a 128 bit key.

SUPPORTED CIPHERS

Note that some of these ciphers can be disabled at compile time and some are available only if an appropriate engine is
configured in the configuration file. The output of the enc command run with unsupported options (for example openssl enc
-help) includes a list of ciphers, supported by your versesion of OpenSSL, including ones provided by configured engines.

The enc program does not support authenticated encryption modes like CCM and GCM. The utility does not store or retrieve
the authentication tag.

base64 Base 64

1105

OpenSSL Manual

bf-cbc Blowfish in CBC mode
bf Alias for bf-cbc
bf-cfb Blowfish in CFB mode
bf-ecb Blowfish in ECB mode
bf-ofb Blowfish in OFB mode

cast-cbc CAST in CBC mode
cast Alias for cast-cbc
cast5-cbc CAST5 in CBC mode
cast5-cfb CAST5 in CFB mode
cast5-ecb CAST5 in ECB mode
cast5-ofb CAST5 in OFB mode

des-cbc DES in CBC mode
des Alias for des-cbc
des-cfb DES in CBC mode
des-ofb DES in OFB mode
des-ecb DES in ECB mode

des-ede-cbc Two key triple DES EDE in CBC mode
des-ede Two key triple DES EDE in ECB mode
des-ede-cfb Two key triple DES EDE in CFB mode
des-ede-ofb Two key triple DES EDE in OFB mode

des-ede3-cbc Three key triple DES EDE in CBC mode
des-ede3 Three key triple DES EDE in ECB mode
des3 Alias for des-ede3-cbc
des-ede3-cfb Three key triple DES EDE CFB mode
des-ede3-ofb Three key triple DES EDE in OFB mode

desx DESX algorithm.

gost89 GOST 28147-89 in CFB mode (provided by ccgost engine)
gost89-cnt `GOST 28147-89 in CNT mode (provided by ccgost engine)

idea-cbc IDEA algorithm in CBC mode
idea same as idea-cbc
idea-cfb IDEA in CFB mode
idea-ecb IDEA in ECB mode
idea-ofb IDEA in OFB mode

rc2-cbc 128 bit RC2 in CBC mode
rc2 Alias for rc2-cbc
rc2-cfb 128 bit RC2 in CFB mode
rc2-ecb 128 bit RC2 in ECB mode
rc2-ofb 128 bit RC2 in OFB mode
rc2-64-cbc 64 bit RC2 in CBC mode
rc2-40-cbc 40 bit RC2 in CBC mode

rc4 128 bit RC4
rc4-64 64 bit RC4
rc4-40 40 bit RC4

rc5-cbc RC5 cipher in CBC mode
rc5 Alias for rc5-cbc
rc5-cfb RC5 cipher in CFB mode
rc5-ecb RC5 cipher in ECB mode
rc5-ofb RC5 cipher in OFB mode

aes-[128|192|256]-cbc 128/192/256 bit AES in CBC mode
aes-[128|192|256] Alias for aes-[128|192|256]-cbc
aes-[128|192|256]-cfb 128/192/256 bit AES in 128 bit CFB mode
aes-[128|192|256]-cfb1 128/192/256 bit AES in 1 bit CFB mode
aes-[128|192|256]-cfb8 128/192/256 bit AES in 8 bit CFB mode
aes-[128|192|256]-ecb 128/192/256 bit AES in ECB mode
aes-[128|192|256]-ofb 128/192/256 bit AES in OFB mode

EXAMPLES

Just base64 encode a binary file:

openssl base64 -in file.bin -out file.b64

1106

OpenSSL Manual

Decode the same file

openssl base64 -d -in file.b64 -out file.bin

Encrypt a file using triple DES in CBC mode using a prompted password:

openssl des3 -salt -in file.txt -out file.des3

Decrypt a file using a supplied password:

openssl des3 -d -salt -in file.des3 -out file.txt -k mypassword

Encrypt a file then base64 encode it (so it can be sent via mail for example) using Blowfish in CBC mode:

openssl bf -a -salt -in file.txt -out file.bf

Base64 decode a file then decrypt it:

openssl bf -d -salt -a -in file.bf -out file.txt

Decrypt some data using a supplied 40 bit RC4 key:

openssl rc4-40 -in file.rc4 -out file.txt -K 0102030405

BUGS

The -A option when used with large files doesn't work properly.

There should be an option to allow an iteration count to be included.

The enc program only supports a fixed number of algorithms with certain parameters. So if, for example, you want to use RC2
with a 76 bit key or RC4 with an 84 bit key you can't use this program.

1107

OpenSSL Manual

Name
errstr — lookup error codes

Synopsis

 openssl errstr error_code

DESCRIPTION

Sometimes an application will not load error message and only numerical forms will be available. The errstr utility can be
used to display the meaning of the hex code. The hex code is the hex digits after the second colon.

EXAMPLE

The error code:

27594:error:2006D080:lib(32):func(109):reason(128):bss_file.c:107:

can be displayed with:

openssl errstr 2006D080

to produce the error message:

error:2006D080:BIO routines:BIO_new_file:no such file

SEE ALSO

err(3), ERR_load_crypto_strings(3), SSL_load_error_strings(3)

1108

OpenSSL Manual

Name
gendsa — generate a DSA private key from a set of parameters

Synopsis
opensslgendsa
[-out filename]
[-aes128]
[-aes192]
[-aes256]
[-camellia128]
[-camellia192]
[-camellia256]
[-des]
[-des3]
[-idea]
[-rand file(s)]
[-engine id]
[paramfile]

DESCRIPTION

The gendsa command generates a DSA private key from a DSA parameter file (which will be typically generated by the
openssl dsaparam command).

OPTIONS

-aes128|-aes192|-aes256|-camellia128|-camellia192|-camellia256|-des|-des3|-idea

These options encrypt the private key with specified cipher before outputting it. A pass phrase is prompted for. If none
of these options is specified no encryption is used.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-engine id

specifying an engine (by its unique id string) will cause gendsa to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

paramfile

This option specifies the DSA parameter file to use. The parameters in this file determine the size of the private key. DSA
parameters can be generated and examined using the openssl dsaparam command.

NOTES

DSA key generation is little more than random number generation so it is much quicker that RSA key generation for example.

SEE ALSO

dsaparam(1), dsa(1), genrsa(1), rsa(1)

1109

OpenSSL Manual

Name
genpkey — generate a private key

Synopsis
opensslgenpkey
[-out filename]
[-outform PEM|DER]
[-pass arg]
[-cipher]
[-engine id]
[-paramfile file]
[-algorithm alg]
[-pkeyopt opt:value]
[-genparam]
[-text]

DESCRIPTION

The genpkey command generates a private key.

OPTIONS

-out filename

the output filename. If this argument is not specified then standard output is used.

-outform DER|PEM

This specifies the output format DER or PEM.

-pass arg

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-cipher

This option encrypts the private key with the supplied cipher. Any algorithm name accepted by EVP_get_cipherbyname()
is acceptable such as des3.

-engine id

specifying an engine (by its unique id string) will cause genpkey to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms. If used this
option should precede all other options.

-algorithm alg

public key algorithm to use such as RSA, DSA or DH. If used this option must precede any -pkeyopt options. The options
-paramfile and -algorithm are mutually exclusive.

-pkeyopt opt:value

set the public key algorithm option opt to value. The precise set of options supported depends on the public key algorithm
used and its implementation. See KEY GENERATION OPTIONS below for more details.

-genparam

generate a set of parameters instead of a private key. If used this option must precede and -algorithm, -paramfile or -
pkeyopt options.

1110

OpenSSL Manual

-paramfile filename

Some public key algorithms generate a private key based on a set of parameters. They can be supplied using this option.
If this option is used the public key algorithm used is determined by the parameters. If used this option must precede and
-pkeyopt options. The options -paramfile and -algorithm are mutually exclusive.

-text

Print an (unencrypted) text representation of private and public keys and parameters along with the PEM or DER structure.

KEY GENERATION OPTIONS

The options supported by each algorith and indeed each implementation of an algorithm can vary. The options for the OpenSSL
implementations are detailed below.

RSA KEY GENERATION OPTIONS

rsa_keygen_bits:numbits

The number of bits in the generated key. If not specified 1024 is used.

rsa_keygen_pubexp:value

The RSA public exponent value. This can be a large decimal or hexadecimal value if preceded by 0x. Default value is
65537.

DSA PARAMETER GENERATION OPTIONS

dsa_paramgen_bits:numbits

The number of bits in the generated parameters. If not specified 1024 is used.

DH PARAMETER GENERATION OPTIONS

dh_paramgen_prime_len:numbits

The number of bits in the prime parameter p.

dh_paramgen_generator:value

The value to use for the generator g.

EC PARAMETER GENERATION OPTIONS

ec_paramgen_curve:curve

the EC curve to use.

GOST2001 KEY GENERATION AND PARAMETER OPTIONS

Gost 2001 support is not enabled by default. To enable this algorithm, one should load the ccgost engine in the OpenSSL
configuration file. See README.gost file in the engines/ccgost directiry of the source distribution for more details.

Use of a parameter file for the GOST R 34.10 algorithm is optional. Parameters can be specified during key generation directly
as well as during generation of parameter file.

paramset:name

Specifies GOST R 34.10-2001 parameter set according to RFC 4357. Parameter set can be specified using abbreviated
name, object short name or numeric OID. Following parameter sets are supported:

1111

OpenSSL Manual

paramset OID Usage
A 1.2.643.2.2.35.1 Signature
B 1.2.643.2.2.35.2 Signature
C 1.2.643.2.2.35.3 Signature
XA 1.2.643.2.2.36.0 Key exchange
XB 1.2.643.2.2.36.1 Key exchange
test 1.2.643.2.2.35.0 Test purposes

NOTES

The use of the genpkey program is encouraged over the algorithm specific utilities because additional algorithm options and
ENGINE provided algorithms can be used.

EXAMPLES

Generate an RSA private key using default parameters:

openssl genpkey -algorithm RSA -out key.pem

Encrypt output private key using 128 bit AES and the passphrase "hello":

openssl genpkey -algorithm RSA -out key.pem -aes-128-cbc -pass pass:hello

Generate a 2048 bit RSA key using 3 as the public exponent:

openssl genpkey -algorithm RSA -out key.pem -pkeyopt rsa_keygen_bits:2048 \
 -pkeyopt rsa_keygen_pubexp:3

Generate 1024 bit DSA parameters:

openssl genpkey -genparam -algorithm DSA -out dsap.pem \
 -pkeyopt dsa_paramgen_bits:1024

Generate DSA key from parameters:

openssl genpkey -paramfile dsap.pem -out dsakey.pem

Generate 1024 bit DH parameters:

openssl genpkey -genparam -algorithm DH -out dhp.pem \
 -pkeyopt dh_paramgen_prime_len:1024

Generate DH key from parameters:

openssl genpkey -paramfile dhp.pem -out dhkey.pem

1112

OpenSSL Manual

Name
genrsa — generate an RSA private key

Synopsis
opensslgenrsa
[-out filename]
[-passout arg]
[-aes128]
[-aes192]
[-aes256]
[-camellia128]
[-camellia192]
[-camellia256]
[-des]
[-des3]
[-idea]
[-f4]
[-3]
[-rand file(s)]
[-engine id]
[numbits]

DESCRIPTION

The genrsa command generates an RSA private key.

OPTIONS

-out filename

the output filename. If this argument is not specified then standard output is used.

-passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-aes128|-aes192|-aes256|-camellia128|-camellia192|-camellia256|-des|-des3|-idea

These options encrypt the private key with specified cipher before outputting it. If none of these options is specified no
encryption is used. If encryption is used a pass phrase is prompted for if it is not supplied via the -passout argument.

-F4|-3

the public exponent to use, either 65537 or 3. The default is 65537.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-engine id

specifying an engine (by its unique id string) will cause genrsa to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

numbits

the size of the private key to generate in bits. This must be the last option specified. The default is 512.

1113

OpenSSL Manual

NOTES

RSA private key generation essentially involves the generation of two prime numbers. When generating a private key various
symbols will be output to indicate the progress of the generation. A . represents each number which has passed an initial sieve
test, + means a number has passed a single round of the Miller-Rabin primality test. A newline means that the number has
passed all the prime tests (the actual number depends on the key size).

Because key generation is a random process the time taken to generate a key may vary somewhat.

BUGS

A quirk of the prime generation algorithm is that it cannot generate small primes. Therefore the number of bits should not be less
that 64. For typical private keys this will not matter because for security reasons they will be much larger (typically 1024 bits).

SEE ALSO

gendsa(1)

1114

OpenSSL Manual

Name
nseq — create or examine a netscape certificate sequence

Synopsis
opensslnseq
[-in filename]
[-out filename]
[-toseq]

DESCRIPTION

The nseq command takes a file containing a Netscape certificate sequence and prints out the certificates contained in it or takes
a file of certificates and converts it into a Netscape certificate sequence.

COMMAND OPTIONS

-in filename

This specifies the input filename to read or standard input if this option is not specified.

-out filename

specifies the output filename or standard output by default.

-toseq

normally a Netscape certificate sequence will be input and the output is the certificates contained in it. With the -toseq
option the situation is reversed: a Netscape certificate sequence is created from a file of certificates.

EXAMPLES

Output the certificates in a Netscape certificate sequence

openssl nseq -in nseq.pem -out certs.pem

Create a Netscape certificate sequence

openssl nseq -in certs.pem -toseq -out nseq.pem

NOTES

The PEM encoded form uses the same headers and footers as a certificate:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

A Netscape certificate sequence is a Netscape specific form that can be sent to browsers as an alternative to the standard
PKCS#7 format when several certificates are sent to the browser: for example during certificate enrollment. It is used by
Netscape certificate server for example.

BUGS

This program needs a few more options: like allowing DER or PEM input and output files and allowing multiple certificate
files to be used.

1115

OpenSSL Manual

Name
ocsp — Online Certificate Status Protocol utility

Synopsis
opensslocsp
[-out file]
[-issuer file]
[-cert file]
[-serial n]
[-signer file]
[-signkey file]
[-sign_other file]
[-no_certs]
[-req_text]
[-resp_text]
[-text]
[-reqout file]
[-respout file]
[-reqin file]
[-respin file]
[-nonce]
[-no_nonce]
[-url URL]
[-host host:n]
[-path]
[-CApath dir]
[-CAfile file]
[-no_alt_chains]]
[-VAfile file]
[-validity_period n]
[-status_age n]
[-noverify]
[-verify_other file]
[-trust_other]
[-no_intern]
[-no_signature_verify]
[-no_cert_verify]
[-no_chain]
[-no_cert_checks]
[-no_explicit]
[-port num]
[-index file]
[-CA file]
[-rsigner file]
[-rkey file]
[-rother file]
[-resp_no_certs]
[-nmin n]
[-ndays n]
[-resp_key_id]
[-nrequest n]
[-md5|-sha1|…]

DESCRIPTION

The Online Certificate Status Protocol (OCSP) enables applications to determine the (revocation) state of an identified certifi-
cate (RFC 2560).

The ocsp command performs many common OCSP tasks. It can be used to print out requests and responses, create requests
and send queries to an OCSP responder and behave like a mini OCSP server itself.

OCSP CLIENT OPTIONS

-out filename

specify output filename, default is standard output.

1116

OpenSSL Manual

-issuer filename

This specifies the current issuer certificate. This option can be used multiple times. The certificate specified in filename
must be in PEM format. This option MUST come before any -cert options.

-cert filename

Add the certificate filename to the request. The issuer certificate is taken from the previous issuer option, or an error
occurs if no issuer certificate is specified.

-serial num

Same as the cert option except the certificate with serial number num is added to the request. The serial number is
interpreted as a decimal integer unless preceded by 0x. Negative integers can also be specified by preceding the value
by a - sign.

-signer filename, -signkey filename

Sign the OCSP request using the certificate specified in the signer option and the private key specified by the signkey
option. If the signkey option is not present then the private key is read from the same file as the certificate. If neither
option is specified then the OCSP request is not signed.

-sign_other filename

Additional certificates to include in the signed request.

-nonce, -no_nonce

Add an OCSP nonce extension to a request or disable OCSP nonce addition. Normally if an OCSP request is input using
the respin option no nonce is added: using the nonce option will force addition of a nonce. If an OCSP request is being
created (using cert and serial options) a nonce is automatically added specifying no_nonce overrides this.

-req_text, -resp_text, -text

print out the text form of the OCSP request, response or both respectively.

-reqout file, -respout file

write out the DER encoded certificate request or response to file.

-reqin file, -respin file

read OCSP request or response file from file. These option are ignored if OCSP request or response creation is implied
by other options (for example with serial, cert and host options).

-url responder_url

specify the responder URL. Both HTTP and HTTPS (SSL/TLS) URLs can be specified.

-host hostname:port, -path pathname

if the host option is present then the OCSP request is sent to the host hostname on port port. path specifies the HTTP
path name to use or "/" by default.

-timeout seconds

connection timeout to the OCSP responder in seconds

-CAfile file, -CApath pathname

file or pathname containing trusted CA certificates. These are used to verify the signature on the OCSP response.

1117

OpenSSL Manual

-no_alt_chains

See verify manual page for details.

-verify_other file

file containing additional certificates to search when attempting to locate the OCSP response signing certificate. Some
responders omit the actual signer's certificate from the response: this option can be used to supply the necessary certificate
in such cases.

-trust_other

the certificates specified by the -verify_other option should be explicitly trusted and no additional checks will be per-
formed on them. This is useful when the complete responder certificate chain is not available or trusting a root CA is
not appropriate.

-VAfile file

file containing explicitly trusted responder certificates. Equivalent to the -verify_other and -trust_other options.

-noverify

don't attempt to verify the OCSP response signature or the nonce values. This option will normally only be used for
debugging since it disables all verification of the responders certificate.

-no_intern

ignore certificates contained in the OCSP response when searching for the signers certificate. With this option the signers
certificate must be specified with either the -verify_other or -VAfile options.

-no_signature_verify

don't check the signature on the OCSP response. Since this option tolerates invalid signatures on OCSP responses it will
normally only be used for testing purposes.

-no_cert_verify

don't verify the OCSP response signers certificate at all. Since this option allows the OCSP response to be signed by any
certificate it should only be used for testing purposes.

-no_chain

do not use certificates in the response as additional untrusted CA certificates.

-no_explicit

do not explicitly trust the root CA if it is set to be trusted for OCSP signing.

-no_cert_checks

don't perform any additional checks on the OCSP response signers certificate. That is do not make any checks to see if
the signers certificate is authorised to provide the necessary status information: as a result this option should only be used
for testing purposes.

-validity_period nsec, -status_age age

these options specify the range of times, in seconds, which will be tolerated in an OCSP response. Each certificate status
response includes a notBefore time and an optional notAfter time. The current time should fall between these two values,
but the interval between the two times may be only a few seconds. In practice the OCSP responder and clients clocks
may not be precisely synchronised and so such a check may fail. To avoid this the -validity_period option can be used to
specify an acceptable error range in seconds, the default value is 5 minutes.

1118

OpenSSL Manual

If the notAfter time is omitted from a response then this means that new status information is immediately available. In
this case the age of the notBefore field is checked to see it is not older than age seconds old. By default this additional
check is not performed.

-md5|-sha1|-sha256|-ripemod160|…

this option sets digest algorithm to use for certificate identification in the OCSP request. By default SHA-1 is used.

OCSP SERVER OPTIONS

-index indexfile

indexfile is a text index file in ca format containing certificate revocation information.

If the index option is specified the ocsp utility is in responder mode, otherwise it is in client mode. The request(s) the
responder processes can be either specified on the command line (using issuer and serial options), supplied in a file (using
the respin option) or via external OCSP clients (if port or url is specified).

If the index option is present then the CA and rsigner options must also be present.

-CA file

CA certificate corresponding to the revocation information in indexfile.

-rsigner file

The certificate to sign OCSP responses with.

-rother file

Additional certificates to include in the OCSP response.

-resp_no_certs

Don't include any certificates in the OCSP response.

-resp_key_id

Identify the signer certificate using the key ID, default is to use the subject name.

-rkey file

The private key to sign OCSP responses with: if not present the file specified in the rsigner option is used.

-port portnum

Port to listen for OCSP requests on. The port may also be specified using the url option.

-nrequest number

The OCSP server will exit after receiving number requests, default unlimited.

-nmin minutes, -ndays days

Number of minutes or days when fresh revocation information is available: used in the nextUpdate field. If neither option
is present then the nextUpdate field is omitted meaning fresh revocation information is immediately available.

OCSP Response verification.

OCSP Response follows the rules specified in RFC2560.

Initially the OCSP responder certificate is located and the signature on the OCSP request checked using the responder certifi-
cate's public key.

1119

OpenSSL Manual

Then a normal certificate verify is performed on the OCSP responder certificate building up a certificate chain in the process.
The locations of the trusted certificates used to build the chain can be specified by the CAfile and CApath options or they will
be looked for in the standard OpenSSL certificates directory.

If the initial verify fails then the OCSP verify process halts with an error.

Otherwise the issuing CA certificate in the request is compared to the OCSP responder certificate: if there is a match then
the OCSP verify succeeds.

Otherwise the OCSP responder certificate's CA is checked against the issuing CA certificate in the request. If there is a match
and the OCSPSigning extended key usage is present in the OCSP responder certificate then the OCSP verify succeeds.

Otherwise, if -no_explicit is not set the root CA of the OCSP responders CA is checked to see if it is trusted for OCSP signing.
If it is the OCSP verify succeeds.

If none of these checks is successful then the OCSP verify fails.

What this effectively means if that if the OCSP responder certificate is authorised directly by the CA it is issuing revocation
information about (and it is correctly configured) then verification will succeed.

If the OCSP responder is a "global responder" which can give details about multiple CAs and has its own separate certificate
chain then its root CA can be trusted for OCSP signing. For example:

openssl x509 -in ocspCA.pem -addtrust OCSPSigning -out trustedCA.pem

Alternatively the responder certificate itself can be explicitly trusted with the -VAfile option.

NOTES

As noted, most of the verify options are for testing or debugging purposes. Normally only the -CApath, -CAfile and (if the
responder is a 'global VA') -VAfile options need to be used.

The OCSP server is only useful for test and demonstration purposes: it is not really usable as a full OCSP responder. It contains
only a very simple HTTP request handling and can only handle the POST form of OCSP queries. It also handles requests
serially meaning it cannot respond to new requests until it has processed the current one. The text index file format of revocation
is also inefficient for large quantities of revocation data.

It is possible to run the ocsp application in responder mode via a CGI script using the respin and respout options.

EXAMPLES

Create an OCSP request and write it to a file:

openssl ocsp -issuer issuer.pem -cert c1.pem -cert c2.pem -reqout req.der

Send a query to an OCSP responder with URL http://ocsp.myhost.com/ save the response to a file and print it out in text form

openssl ocsp -issuer issuer.pem -cert c1.pem -cert c2.pem \
 -url http://ocsp.myhost.com/ -resp_text -respout resp.der

Read in an OCSP response and print out text form:

openssl ocsp -respin resp.der -text

OCSP server on port 8888 using a standard ca configuration, and a separate responder certificate. All requests and responses
are printed to a file.

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem \
 -text -out log.txt

As above but exit after processing one request:

openssl ocsp -index demoCA/index.txt -port 8888 -rsigner rcert.pem -CA demoCA/cacert.pem \
 -nrequest 1

1120

OpenSSL Manual

Query status information using internally generated request:

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem \
 -issuer demoCA/cacert.pem -serial 1

Query status information using request read from a file, write response to a second file.

openssl ocsp -index demoCA/index.txt -rsigner rcert.pem -CA demoCA/cacert.pem \
 -reqin req.der -respout resp.der

HISTORY

The -no_alt_chains options was first added to OpenSSL 1.0.1n and 1.0.2b.

1121

OpenSSL Manual

Name
passwd — compute password hashes

Synopsis
openssl passwd
[-crypt]
[-1]
[-apr1]
[-salt string]
[-in file]
[-stdin]
[-noverify]
[-quiet]
[-table]
{password}

DESCRIPTION

The passwd command computes the hash of a password typed at run-time or the hash of each password in a list. The password
list is taken from the named file for option -in file, from stdin for option -stdin, or from the command line, or from the terminal
otherwise. The Unix standard algorithm crypt and the MD5-based BSD password algorithm 1 and its Apache variant apr1
are available.

OPTIONS

-crypt

Use the crypt algorithm (default).

-1

Use the MD5 based BSD password algorithm 1.

-apr1

Use the apr1 algorithm (Apache variant of the BSD algorithm).

-salt string

Use the specified salt. When reading a password from the terminal, this implies -noverify.

-in file

Read passwords from file.

-stdin

Read passwords from stdin.

-noverify

Don't verify when reading a password from the terminal.

-quiet

Don't output warnings when passwords given at the command line are truncated.

-table

In the output list, prepend the cleartext password and a TAB character to each password hash.

1122

OpenSSL Manual

EXAMPLES

openssl passwd -crypt -salt xx password prints xxj31ZMTZzkVA.

openssl passwd -1 -salt xxxxxxxx password prints 1xxxxxxxx$UYCIxa628.9qXjpQCjM4a..

openssl passwd -apr1 -salt xxxxxxxx password prints $apr1$xxxxxxxx$dxHfLAsjHkDRmG83UXe8K0.

1123

OpenSSL Manual

Name
pkcs12 — PKCS#12 file utility

Synopsis
opensslpkcs12
[-export]
[-chain]
[-inkey filename]
[-certfile filename]
[-name name]
[-caname name]
[-in filename]
[-out filename]
[-noout]
[-nomacver]
[-nocerts]
[-clcerts]
[-cacerts]
[-nokeys]
[-info]
[-des|-des3|-idea|-aes128|-aes192|-aes256|-camellia128|-camellia192|-camellia256|-nodes]
[-noiter]
[-maciter | -nomaciter | -nomac]
[-twopass]
[-descert]
[-certpbe cipher]
[-keypbe cipher]
[-macalg digest]
[-keyex]
[-keysig]
[-password arg]
[-passin arg]
[-passout arg]
[-rand file(s)]
[-CAfile file]
[-CApath dir]
[-CSP name]

DESCRIPTION

The pkcs12 command allows PKCS#12 files (sometimes referred to as PFX files) to be created and parsed. PKCS#12 files are
used by several programs including Netscape, MSIE and MS Outlook.

COMMAND OPTIONS

There are a lot of options the meaning of some depends of whether a PKCS#12 file is being created or parsed. By default a
PKCS#12 file is parsed. A PKCS#12 file can be created by using the -export option (see below).

PARSING OPTIONS

-in filename

This specifies filename of the PKCS#12 file to be parsed. Standard input is used by default.

-out filename

The filename to write certificates and private keys to, standard output by default. They are all written in PEM format.

-passin arg

the PKCS#12 file (i.e. input file) password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl(1).

1124

OpenSSL Manual

-passout arg

pass phrase source to encrypt any outputted private keys with. For more information about the format of arg see the PASS
PHRASE ARGUMENTS section in openssl(1).

-password arg

With -export, -password is equivalent to -passout. Otherwise, -password is equivalent to -passin.

-noout

this option inhibits output of the keys and certificates to the output file version of the PKCS#12 file.

-clcerts

only output client certificates (not CA certificates).

-cacerts

only output CA certificates (not client certificates).

-nocerts

no certificates at all will be output.

-nokeys

no private keys will be output.

-info

output additional information about the PKCS#12 file structure, algorithms used and iteration counts.

-des

use DES to encrypt private keys before outputting.

-des3

use triple DES to encrypt private keys before outputting, this is the default.

-idea

use IDEA to encrypt private keys before outputting.

-aes128, -aes192, -aes256

use AES to encrypt private keys before outputting.

-camellia128, -camellia192, -camellia256

use Camellia to encrypt private keys before outputting.

-nodes

don't encrypt the private keys at all.

-nomacver

don't attempt to verify the integrity MAC before reading the file.

-twopass

prompt for separate integrity and encryption passwords: most software always assumes these are the same so this option
will render such PKCS#12 files unreadable.

1125

OpenSSL Manual

FILE CREATION OPTIONS

-export

This option specifies that a PKCS#12 file will be created rather than parsed.

-out filename

This specifies filename to write the PKCS#12 file to. Standard output is used by default.

-in filename

The filename to read certificates and private keys from, standard input by default. They must all be in PEM format. The
order doesn't matter but one private key and its corresponding certificate should be present. If additional certificates are
present they will also be included in the PKCS#12 file.

-inkey filename

file to read private key from. If not present then a private key must be present in the input file.

-name friendlyname

This specifies the "friendly name" for the certificate and private key. This name is typically displayed in list boxes by
software importing the file.

-certfile filename

A filename to read additional certificates from.

-caname friendlyname

This specifies the "friendly name" for other certificates. This option may be used multiple times to specify names for all
certificates in the order they appear. Netscape ignores friendly names on other certificates whereas MSIE displays them.

-pass arg, -passout arg

the PKCS#12 file (i.e. output file) password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl(1).

-passin password

pass phrase source to decrypt any input private keys with. For more information about the format of arg see the PASS
PHRASE ARGUMENTS section in openssl(1).

-chain

if this option is present then an attempt is made to include the entire certificate chain of the user certificate. The standard
CA store is used for this search. If the search fails it is considered a fatal error.

-descert

encrypt the certificate using triple DES, this may render the PKCS#12 file unreadable by some "export grade" software.
By default the private key is encrypted using triple DES and the certificate using 40 bit RC2.

-keypbe alg, -certpbe alg

these options allow the algorithm used to encrypt the private key and certificates to be selected. Any PKCS#5 v1.5 or
PKCS#12 PBE algorithm name can be used (see NOTES section for more information). If a a cipher name (as output
by the list-cipher-algorithms command is specified then it is used with PKCS#5 v2.0. For interoperability reasons it is
advisable to only use PKCS#12 algorithms.

1126

OpenSSL Manual

-keyex|-keysig

specifies that the private key is to be used for key exchange or just signing. This option is only interpreted by MSIE
and similar MS software. Normally "export grade" software will only allow 512 bit RSA keys to be used for encryption
purposes but arbitrary length keys for signing. The -keysig option marks the key for signing only. Signing only keys can
be used for S/MIME signing, authenticode (ActiveX control signing) and SSL client authentication, however due to a bug
only MSIE 5.0 and later support the use of signing only keys for SSL client authentication.

-macalg digest

specify the MAC digest algorithm. If not included them SHA1 will be used.

-nomaciter, -noiter

these options affect the iteration counts on the MAC and key algorithms. Unless you wish to produce files compatible
with MSIE 4.0 you should leave these options alone.

To discourage attacks by using large dictionaries of common passwords the algorithm that derives keys from passwords
can have an iteration count applied to it: this causes a certain part of the algorithm to be repeated and slows it down. The
MAC is used to check the file integrity but since it will normally have the same password as the keys and certificates it
could also be attacked. By default both MAC and encryption iteration counts are set to 2048, using these options the MAC
and encryption iteration counts can be set to 1, since this reduces the file security you should not use these options unless
you really have to. Most software supports both MAC and key iteration counts. MSIE 4.0 doesn't support MAC iteration
counts so it needs the -nomaciter option.

-maciter

This option is included for compatibility with previous versions, it used to be needed to use MAC iterations counts but
they are now used by default.

-nomac

don't attempt to provide the MAC integrity.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-CAfile file

CA storage as a file.

-CApath dir

CA storage as a directory. This directory must be a standard certificate directory: that is a hash of each subject name (using
x509 -hash) should be linked to each certificate.

-CSP name

write name as a Microsoft CSP name.

NOTES

Although there are a large number of options most of them are very rarely used. For PKCS#12 file parsing only -in and -out
need to be used for PKCS#12 file creation -export and -name are also used.

If none of the -clcerts, -cacerts or -nocerts options are present then all certificates will be output in the order they appear in the
input PKCS#12 files. There is no guarantee that the first certificate present is the one corresponding to the private key. Certain
software which requires a private key and certificate and assumes the first certificate in the file is the one corresponding to the

1127

OpenSSL Manual

private key: this may not always be the case. Using the -clcerts option will solve this problem by only outputting the certificate
corresponding to the private key. If the CA certificates are required then they can be output to a separate file using the -nokeys
-cacerts options to just output CA certificates.

The -keypbe and -certpbe algorithms allow the precise encryption algorithms for private keys and certificates to be specified.
Normally the defaults are fine but occasionally software can't handle triple DES encrypted private keys, then the option -keypbe
PBE-SHA1-RC2-40 can be used to reduce the private key encryption to 40 bit RC2. A complete description of all algorithms
is contained in the pkcs8 manual page.

EXAMPLES

Parse a PKCS#12 file and output it to a file:

openssl pkcs12 -in file.p12 -out file.pem

Output only client certificates to a file:

openssl pkcs12 -in file.p12 -clcerts -out file.pem

Don't encrypt the private key:

openssl pkcs12 -in file.p12 -out file.pem -nodes

Print some info about a PKCS#12 file:

openssl pkcs12 -in file.p12 -info -noout

Create a PKCS#12 file:

openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate"

Include some extra certificates:

openssl pkcs12 -export -in file.pem -out file.p12 -name "My Certificate" \
 -certfile othercerts.pem

BUGS

Some would argue that the PKCS#12 standard is one big bug :-)

Versions of OpenSSL before 0.9.6a had a bug in the PKCS#12 key generation routines. Under rare circumstances this could
produce a PKCS#12 file encrypted with an invalid key. As a result some PKCS#12 files which triggered this bug from other
implementations (MSIE or Netscape) could not be decrypted by OpenSSL and similarly OpenSSL could produce PKCS#12
files which could not be decrypted by other implementations. The chances of producing such a file are relatively small: less
than 1 in 256.

A side effect of fixing this bug is that any old invalidly encrypted PKCS#12 files cannot no longer be parsed by the fixed
version. Under such circumstances the pkcs12 utility will report that the MAC is OK but fail with a decryption error when
extracting private keys.

This problem can be resolved by extracting the private keys and certificates from the PKCS#12 file using an older version of
OpenSSL and recreating the PKCS#12 file from the keys and certificates using a newer version of OpenSSL. For example:

old-openssl -in bad.p12 -out keycerts.pem
openssl -in keycerts.pem -export -name "My PKCS#12 file" -out fixed.p12

SEE ALSO

pkcs8(1)

1128

OpenSSL Manual

Name
pkcs7 — PKCS#7 utility

Synopsis
opensslpkcs7
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-out filename]
[-print_certs]
[-text]
[-noout]
[-engine id]

DESCRIPTION

The pkcs7 command processes PKCS#7 files in DER or PEM format.

COMMAND OPTIONS

-inform DER|PEM

This specifies the input format. DER format is DER encoded PKCS#7 v1.5 structure.PEM (the default) is a base64
encoded version of the DER form with header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read from or standard input if this option is not specified.

-out filename

specifies the output filename to write to or standard output by default.

-print_certs

prints out any certificates or CRLs contained in the file. They are preceded by their subject and issuer names in one line
format.

-text

prints out certificates details in full rather than just subject and issuer names.

-noout

don't output the encoded version of the PKCS#7 structure (or certificates is -print_certs is set).

-engine id

specifying an engine (by its unique id string) will cause pkcs7 to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

EXAMPLES

Convert a PKCS#7 file from PEM to DER:

openssl pkcs7 -in file.pem -outform DER -out file.der

1129

OpenSSL Manual

Output all certificates in a file:

openssl pkcs7 -in file.pem -print_certs -out certs.pem

NOTES

The PEM PKCS#7 format uses the header and footer lines:

-----BEGIN PKCS7-----
-----END PKCS7-----

For compatibility with some CAs it will also accept:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

RESTRICTIONS

There is no option to print out all the fields of a PKCS#7 file.

This PKCS#7 routines only understand PKCS#7 v 1.5 as specified in RFC2315 they cannot currently parse, for example, the
new CMS as described in RFC2630.

SEE ALSO

crl2pkcs7(1)

1130

OpenSSL Manual

Name
pkcs8 — PKCS#8 format private key conversion tool

Synopsis
opensslpkcs8
[-topk8]
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-passin arg]
[-out filename]
[-passout arg]
[-noiter]
[-nocrypt]
[-nooct]
[-embed]
[-nsdb]
[-v2 alg]
[-v1 alg]
[-engine id]

DESCRIPTION

The pkcs8 command processes private keys in PKCS#8 format. It can handle both unencrypted PKCS#8 PrivateKeyInfo format
and EncryptedPrivateKeyInfo format with a variety of PKCS#5 (v1.5 and v2.0) and PKCS#12 algorithms.

COMMAND OPTIONS

-topk8

Normally a PKCS#8 private key is expected on input and a traditional format private key will be written. With the -topk8
option the situation is reversed: it reads a traditional format private key and writes a PKCS#8 format key.

-inform DER|PEM

This specifies the input format. If a PKCS#8 format key is expected on input then either a DER or PEM encoded version
of a PKCS#8 key will be expected. Otherwise the DER or PEM format of the traditional format private key is used.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the key is encrypted
a pass phrase will be prompted for.

-passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-out filename

This specifies the output filename to write a key to or standard output by default. If any encryption options are set then a
pass phrase will be prompted for. The output filename should not be the same as the input filename.

-passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

1131

OpenSSL Manual

-nocrypt

PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo structures using an appropriate password
based encryption algorithm. With this option an unencrypted PrivateKeyInfo structure is expected or output. This option
does not encrypt private keys at all and should only be used when absolutely necessary. Certain software such as some
versions of Java code signing software used unencrypted private keys.

-nooct

This option generates RSA private keys in a broken format that some software uses. Specifically the private key should
be enclosed in a OCTET STRING but some software just includes the structure itself without the surrounding OCTET
STRING.

-embed

This option generates DSA keys in a broken format. The DSA parameters are embedded inside the PrivateKey structure.
In this form the OCTET STRING contains an ASN1 SEQUENCE consisting of two structures: a SEQUENCE containing
the parameters and an ASN1 INTEGER containing the private key.

-nsdb

This option generates DSA keys in a broken format compatible with Netscape private key databases. The PrivateKey
contains a SEQUENCE consisting of the public and private keys respectively.

-v2 alg

This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8 private keys are encrypted with the password
based encryption algorithm called pbeWithMD5AndDES-CBC this uses 56 bit DES encryption but it was the strongest
encryption algorithm supported in PKCS#5 v1.5. Using the -v2 option PKCS#5 v2.0 algorithms are used which can use
any encryption algorithm such as 168 bit triple DES or 128 bit RC2 however not many implementations support PKCS#5
v2.0 yet. If you are just using private keys with OpenSSL then this doesn't matter.

The alg argument is the encryption algorithm to use, valid values include des, des3 and rc2. It is recommended that des3
is used.

-v1 alg

This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete list of possible algorithms is included
below.

-engine id

specifying an engine (by its unique id string) will cause pkcs8 to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

NOTES

The encrypted form of a PEM encode PKCS#8 files uses the following headers and footers:

-----BEGIN ENCRYPTED PRIVATE KEY-----
-----END ENCRYPTED PRIVATE KEY-----

The unencrypted form uses:

-----BEGIN PRIVATE KEY-----
-----END PRIVATE KEY-----

Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration counts are more secure that those encrypted using the
traditional SSLeay compatible formats. So if additional security is considered important the keys should be converted.

The default encryption is only 56 bits because this is the encryption that most current implementations of PKCS#8 will support.

1132

OpenSSL Manual

Some software may use PKCS#12 password based encryption algorithms with PKCS#8 format private keys: these are handled
automatically but there is no option to produce them.

It is possible to write out DER encoded encrypted private keys in PKCS#8 format because the encryption details are included
at an ASN1 level whereas the traditional format includes them at a PEM level.

PKCS#5 v1.5 and PKCS#12 algorithms.

Various algorithms can be used with the -v1 command line option, including PKCS#5 v1.5 and PKCS#12. These are described
in more detail below.

PBE-MD2-DES PBE-MD5-DES

These algorithms were included in the original PKCS#5 v1.5 specification. They only offer 56 bits of protection since
they both use DES.

PBE-SHA1-RC2-64 PBE-MD2-RC2-64 PBE-MD5-RC2-64 PBE-SHA1-DES

These algorithms are not mentioned in the original PKCS#5 v1.5 specification but they use the same key derivation algo-
rithm and are supported by some software. They are mentioned in PKCS#5 v2.0. They use either 64 bit RC2 or 56 bit DES.

PBE-SHA1-RC4-128 PBE-SHA1-RC4-40 PBE-SHA1-3DES PBE-SHA1-2DES PBE-SHA1-RC2-128
PBE-SHA1-RC2-40

These algorithms use the PKCS#12 password based encryption algorithm and allow strong encryption algorithms like
triple DES or 128 bit RC2 to be used.

EXAMPLES

Convert a private from traditional to PKCS#5 v2.0 format using triple DES:

openssl pkcs8 -in key.pem -topk8 -v2 des3 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm (DES):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem

Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm (3DES):

openssl pkcs8 -in key.pem -topk8 -out enckey.pem -v1 PBE-SHA1-3DES

Read a DER unencrypted PKCS#8 format private key:

openssl pkcs8 -inform DER -nocrypt -in key.der -out key.pem

Convert a private key from any PKCS#8 format to traditional format:

openssl pkcs8 -in pk8.pem -out key.pem

STANDARDS

Test vectors from this PKCS#5 v2.0 implementation were posted to the pkcs-tng mailing list using triple DES, DES and RC2
with high iteration counts, several people confirmed that they could decrypt the private keys produced and Therefore it can be
assumed that the PKCS#5 v2.0 implementation is reasonably accurate at least as far as these algorithms are concerned.

The format of PKCS#8 DSA (and other) private keys is not well documented: it is hidden away in PKCS#11 v2.01, section
11.9. OpenSSL's default DSA PKCS#8 private key format complies with this standard.

BUGS

There should be an option that prints out the encryption algorithm in use and other details such as the iteration count.

PKCS#8 using triple DES and PKCS#5 v2.0 should be the default private key format for OpenSSL: for compatibility several
of the utilities use the old format at present.

1133

OpenSSL Manual

SEE ALSO

dsa(1), rsa(1), genrsa(1), gendsa(1)

1134

OpenSSL Manual

Name
pkey — public or private key processing tool

Synopsis
opensslpkey
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-passin arg]
[-out filename]
[-passout arg]
[-cipher]
[-text]
[-text_pub]
[-noout]
[-pubin]
[-pubout]
[-engine id]

DESCRIPTION

The pkey command processes public or private keys. They can be converted between various forms and their components
printed out.

COMMAND OPTIONS

-inform DER|PEM

This specifies the input format DER or PEM.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the key is encrypted
a pass phrase will be prompted for.

-passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-out filename

This specifies the output filename to write a key to or standard output if this option is not specified. If any encryption
options are set then a pass phrase will be prompted for. The output filename should not be the same as the input filename.

-passout password

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-cipher

These options encrypt the private key with the supplied cipher. Any algorithm name accepted by EVP_get_cipherbyname()
is acceptable such as des3.

-text

prints out the various public or private key components in plain text in addition to the encoded version.

1135

OpenSSL Manual

-text_pub

print out only public key components even if a private key is being processed.

-noout

do not output the encoded version of the key.

-pubin

by default a private key is read from the input file: with this option a public key is read instead.

-pubout

by default a private key is output: with this option a public key will be output instead. This option is automatically set
if the input is a public key.

-engine id

specifying an engine (by its unique id string) will cause pkey to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

EXAMPLES

To remove the pass phrase on an RSA private key:

openssl pkey -in key.pem -out keyout.pem

To encrypt a private key using triple DES:

openssl pkey -in key.pem -des3 -out keyout.pem

To convert a private key from PEM to DER format:

openssl pkey -in key.pem -outform DER -out keyout.der

To print out the components of a private key to standard output:

openssl pkey -in key.pem -text -noout

To print out the public components of a private key to standard output:

openssl pkey -in key.pem -text_pub -noout

To just output the public part of a private key:

openssl pkey -in key.pem -pubout -out pubkey.pem

SEE ALSO

genpkey(1), rsa(1), pkcs8(1), dsa(1), genrsa(1), gendsa(1)

1136

OpenSSL Manual

Name
pkeyparam — public key algorithm parameter processing tool

Synopsis
opensslpkeyparam
[-in filename]
[-out filename]
[-text]
[-noout]
[-engine id]

DESCRIPTION

The pkey command processes public or private keys. They can be converted between various forms and their components
printed out.

COMMAND OPTIONS

-in filename

This specifies the input filename to read parameters from or standard input if this option is not specified.

-out filename

This specifies the output filename to write parameters to or standard output if this option is not specified.

-text

prints out the parameters in plain text in addition to the encoded version.

-noout

do not output the encoded version of the parameters.

-engine id

specifying an engine (by its unique id string) will cause pkeyparam to attempt to obtain a functional reference to the
specified engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

EXAMPLE

Print out text version of parameters:

openssl pkeyparam -in param.pem -text

NOTES

There are no -inform or -outform options for this command because only PEM format is supported because the key type is
determined by the PEM headers.

SEE ALSO

genpkey(1), rsa(1), pkcs8(1), dsa(1), genrsa(1), gendsa(1)

1137

OpenSSL Manual

Name
pkeyutl — public key algorithm utility

Synopsis
opensslpkeyutl
[-in file]
[-out file]
[-sigfile file]
[-inkey file]
[-keyform PEM|DER]
[-passin arg]
[-peerkey file]
[-peerform PEM|DER]
[-pubin]
[-certin]
[-rev]
[-sign]
[-verify]
[-verifyrecover]
[-encrypt]
[-decrypt]
[-derive]
[-pkeyopt opt:value]
[-hexdump]
[-asn1parse]
[-engine id]

DESCRIPTION

The pkeyutl command can be used to perform public key operations using any supported algorithm.

COMMAND OPTIONS

-in filename

This specifies the input filename to read data from or standard input if this option is not specified.

-out filename

specifies the output filename to write to or standard output by default.

-inkey file

the input key file, by default it should be a private key.

-keyform PEM|DER

the key format PEM, DER or ENGINE.

-passin arg

the input key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-peerkey file

the peer key file, used by key derivation (agreement) operations.

-peerform PEM|DER

the peer key format PEM, DER or ENGINE.

1138

OpenSSL Manual

-engine id

specifying an engine (by its unique id string) will cause pkeyutl to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

-pubin

the input file is a public key.

-certin

the input is a certificate containing a public key.

-rev

reverse the order of the input buffer. This is useful for some libraries (such as CryptoAPI) which represent the buffer in
little endian format.

-sign

sign the input data and output the signed result. This requires a private key.

-verify

verify the input data against the signature file and indicate if the verification succeeded or failed.

-verifyrecover

verify the input data and output the recovered data.

-encrypt

encrypt the input data using a public key.

-decrypt

decrypt the input data using a private key.

-derive

derive a shared secret using the peer key.

-hexdump

hex dump the output data.

-asn1parse

asn1parse the output data, this is useful when combined with the -verifyrecover option when an ASN1 structure is signed.

NOTES

The operations and options supported vary according to the key algorithm and its implementation. The OpenSSL operations
and options are indicated below.

Unless otherwise mentioned all algorithms support the digest:alg option which specifies the digest in use for sign, verify and
verifyrecover operations. The value alg should represent a digest name as used in the EVP_get_digestbyname() function for
example sha1.

RSA ALGORITHM

The RSA algorithm supports encrypt, decrypt, sign, verify and verifyrecover operations in general. Some padding modes only
support some of these operations however.

1139

OpenSSL Manual

-rsa_padding_mode:mode

This sets the RSA padding mode. Acceptable values for mode are pkcs1 for PKCS#1 padding, sslv23 for SSLv23 padding,
none for no padding, oaep for OAEP mode, x931 for X9.31 mode and pss for PSS.

In PKCS#1 padding if the message digest is not set then the supplied data is signed or verified directly instead of using
a DigestInfo structure. If a digest is set then the a DigestInfo structure is used and its the length must correspond to the
digest type.

For oeap mode only encryption and decryption is supported.

For x931 if the digest type is set it is used to format the block data otherwise the first byte is used to specify the X9.31
digest ID. Sign, verify and verifyrecover are can be performed in this mode.

For pss mode only sign and verify are supported and the digest type must be specified.

rsa_pss_saltlen:len

For pss mode only this option specifies the salt length. Two special values are supported: -1 sets the salt length to the
digest length. When signing -2 sets the salt length to the maximum permissible value. When verifying -2 causes the salt
length to be automatically determined based on the PSS block structure.

DSA ALGORITHM

The DSA algorithm supports signing and verification operations only. Currently there are no additional options other than
digest. Only the SHA1 digest can be used and this digest is assumed by default.

DH ALGORITHM

The DH algorithm only supports the derivation operation and no additional options.

EC ALGORITHM

The EC algorithm supports sign, verify and derive operations. The sign and verify operations use ECDSA and derive uses
ECDH. Currently there are no additional options other than digest. Only the SHA1 digest can be used and this digest is assumed
by default.

EXAMPLES

Sign some data using a private key:

openssl pkeyutl -sign -in file -inkey key.pem -out sig

Recover the signed data (e.g. if an RSA key is used):

openssl pkeyutl -verifyrecover -in sig -inkey key.pem

Verify the signature (e.g. a DSA key):

openssl pkeyutl -verify -in file -sigfile sig -inkey key.pem

Sign data using a message digest value (this is currently only valid for RSA):

openssl pkeyutl -sign -in file -inkey key.pem -out sig -pkeyopt digest:sha256

Derive a shared secret value:

openssl pkeyutl -derive -inkey key.pem -peerkey pubkey.pem -out secret

SEE ALSO

genpkey(1), pkey(1), rsautl(1)dgst(1), rsa(1), genrsa(1)

1140

OpenSSL Manual

Name
rand — generate pseudo-random bytes

Synopsis
openssl rand
[-out file]
[-rand file(s)]
[-base64]
[-hex]
num

DESCRIPTION

The rand command outputs num pseudo-random bytes after seeding the random number generator once. As in other openssl
command line tools, PRNG seeding uses the file $HOME/.rnd or .rnd in addition to the files given in the -rand option. A new
$HOME/.rnd or .rnd file will be written back if enough seeding was obtained from these sources.

OPTIONS

-out file

Write to file instead of standard output.

-rand file(s)

Use specified file or files or EGD socket (see RAND_egd(3)) for seeding the random number generator. Multiple files
can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS, and : for
all others.

-base64

Perform base64 encoding on the output.

-hex

Show the output as a hex string.

SEE ALSO

RAND_bytes(3)

1141

OpenSSL Manual

Name
req — PKCS#10 certificate request and certificate generating utility.

Synopsis
opensslreq
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-passin arg]
[-out filename]
[-passout arg]
[-text]
[-pubkey]
[-noout]
[-verify]
[-modulus]
[-new]
[-rand file(s)]
[-newkey rsa:bits]
[-newkey alg:file]
[-nodes]
[-key filename]
[-keyform PEM|DER]
[-keyout filename]
[-keygen_engine id]
[-[digest]]
[-config filename]
[-subj arg]
[-multivalue-rdn]
[-x509]
[-days n]
[-set_serial n]
[-asn1-kludge]
[-no-asn1-kludge]
[-newhdr]
[-extensions section]
[-reqexts section]
[-utf8]
[-nameopt]
[-reqopt]
[-subject]
[-subj arg]
[-batch]
[-verbose]
[-engine id]

DESCRIPTION

The req command primarily creates and processes certificate requests in PKCS#10 format. It can additionally create self signed
certificates for use as root CAs for example.

COMMAND OPTIONS

-inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with the PKCS#10. The
PEM form is the default format: it consists of the DER format base64 encoded with additional header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a request from or standard input if this option is not specified. A request is only
read if the creation options (-new and -newkey) are not specified.

1142

OpenSSL Manual

-passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-out filename

This specifies the output filename to write to or standard output by default.

-passout arg

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-text

prints out the certificate request in text form.

-subject

prints out the request subject (or certificate subject if -x509 is specified)

-pubkey

outputs the public key.

-noout

this option prevents output of the encoded version of the request.

-modulus

this option prints out the value of the modulus of the public key contained in the request.

-verify

verifies the signature on the request.

-new

this option generates a new certificate request. It will prompt the user for the relevant field values. The actual fields
prompted for and their maximum and minimum sizes are specified in the configuration file and any requested extensions.

If the -key option is not used it will generate a new RSA private key using information specified in the configuration file.

-subj arg

Replaces subject field of input request with specified data and outputs modified request. The arg must be formatted as
/type0=value0/type1=value1/type2=…, characters may be escaped by \ (backslash), no spaces are skipped.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-newkey arg

this option creates a new certificate request and a new private key. The argument takes one of several forms. rsa:nbits,
where nbits is the number of bits, generates an RSA key nbits in size. If nbits is omitted, i.e. -newkey rsa specified, the
default key size, specified in the configuration file is used.

All other algorithms support the -newkey alg:file form, where file may be an algorithm parameter file, created by the
genpkey -genparam command or and X.509 certificate for a key with approriate algorithm.

1143

OpenSSL Manual

param:file generates a key using the parameter file or certificate file, the algorithm is determined by the parameters.
algname:file use algorithm algname and parameter file file: the two algorithms must match or an error occurs. algname
just uses algorithm algname, and parameters, if neccessary should be specified via -pkeyopt parameter.

dsa:filename generates a DSA key using the parameters in the file filename. ec:filename generates EC key (usable both
with ECDSA or ECDH algorithms), gost2001:filename generates GOST R 34.10-2001 key (requires ccgost engine con-
figured in the configuration file). If just gost2001 is specified a parameter set should be specified by -pkeyopt paramset:X

-pkeyopt opt:value

set the public key algorithm option opt to value. The precise set of options supported depends on the public key algorithm
used and its implementation. See KEY GENERATION OPTIONS in the genpkey manual page for more details.

-key filename

This specifies the file to read the private key from. It also accepts PKCS#8 format private keys for PEM format files.

-keyform PEM|DER

the format of the private key file specified in the -key argument. PEM is the default.

-keyout filename

this gives the filename to write the newly created private key to. If this option is not specified then the filename present
in the configuration file is used.

-nodes

if this option is specified then if a private key is created it will not be encrypted.

-[digest]

this specifies the message digest to sign the request with (such as -md5, -sha1). This overrides the digest algorithm spec-
ified in the configuration file.

Some public key algorithms may override this choice. For instance, DSA signatures always use SHA1, GOST R 34.10
signatures always use GOST R 34.11-94 (-md_gost94).

-config filename

this allows an alternative configuration file to be specified, this overrides the compile time filename or any specified in
the OPENSSL_CONF environment variable.

-subj arg

sets subject name for new request or supersedes the subject name when processing a request. The arg must be formatted
as /type0=value0/type1=value1/type2=…, characters may be escaped by \ (backslash), no spaces are skipped.

-multivalue-rdn

this option causes the -subj argument to be interpreted with full support for multivalued RDNs. Example:

/DC=org/DC=OpenSSL/DC=users/UID=123456+CN=John Doe

If -multi-rdn is not used then the UID value is 123456+CN=John Doe.

-x509

this option outputs a self signed certificate instead of a certificate request. This is typically used to generate a test certificate
or a self signed root CA. The extensions added to the certificate (if any) are specified in the configuration file. Unless
specified using the set_serial option 0 will be used for the serial number.

1144

OpenSSL Manual

-days n

when the -x509 option is being used this specifies the number of days to certify the certificate for. The default is 30 days.

-set_serial n

serial number to use when outputting a self signed certificate. This may be specified as a decimal value or a hex value if
preceded by 0x. It is possible to use negative serial numbers but this is not recommended.

-extensions section
-reqexts section

these options specify alternative sections to include certificate extensions (if the -x509 option is present) or certificate
request extensions. This allows several different sections to be used in the same configuration file to specify requests for
a variety of purposes.

-utf8

this option causes field values to be interpreted as UTF8 strings, by default they are interpreted as ASCII. This means that
the field values, whether prompted from a terminal or obtained from a configuration file, must be valid UTF8 strings.

-nameopt option

option which determines how the subject or issuer names are displayed. The option argument can be a single option or
multiple options separated by commas. Alternatively the -nameopt switch may be used more than once to set multiple
options. See the x509(1) manual page for details.

-reqopt

customise the output format used with -text. The option argument can be a single option or multiple options separated
by commas.

See discission of the -certopt parameter in the x509 command.

-asn1-kludge

by default the req command outputs certificate requests containing no attributes in the correct PKCS#10 format. However
certain CAs will only accept requests containing no attributes in an invalid form: this option produces this invalid format.

More precisely the Attributes in a PKCS#10 certificate request are defined as a SET OF Attribute. They are not OP-
TIONAL so if no attributes are present then they should be encoded as an empty SET OF. The invalid form does not
include the empty SET OF whereas the correct form does.

It should be noted that very few CAs still require the use of this option.

-no-asn1-kludge

Reverses effect of -asn1-kludge

-newhdr

Adds the word NEW to the PEM file header and footer lines on the outputted request. Some software (Netscape certificate
server) and some CAs need this.

-batch

non-interactive mode.

-verbose

print extra details about the operations being performed.

1145

OpenSSL Manual

-engine id

specifying an engine (by its unique id string) will cause req to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

-keygen_engine id

specifies an engine (by its unique id string) which would be used for key generation operations.

CONFIGURATION FILE FORMAT

The configuration options are specified in the req section of the configuration file. As with all configuration files if no value
is specified in the specific section (i.e. req) then the initial unnamed or default section is searched too.

The options available are described in detail below.

input_password output_password

The passwords for the input private key file (if present) and the output private key file (if one will be created). The command
line options passin and passout override the configuration file values.

default_bits

This specifies the default key size in bits. If not specified then 512 is used. It is used if the -new option is used. It can
be overridden by using the -newkey option.

default_keyfile

This is the default filename to write a private key to. If not specified the key is written to standard output. This can be
overridden by the -keyout option.

oid_file

This specifies a file containing additional OBJECT IDENTIFIERS. Each line of the file should consist of the numerical
form of the object identifier followed by white space then the short name followed by white space and finally the long name.

oid_section

This specifies a section in the configuration file containing extra object identifiers. Each line should consist of the short
name of the object identifier followed by = and the numerical form. The short and long names are the same when this
option is used.

RANDFILE

This specifies a filename in which random number seed information is placed and read from, or an EGD socket (see
RAND_egd(3)). It is used for private key generation.

encrypt_key

If this is set to no then if a private key is generated it is not encrypted. This is equivalent to the -nodes command line
option. For compatibility encrypt_rsa_key is an equivalent option.

default_md

This option specifies the digest algorithm to use. Possible values include md5 sha1 mdc2. If not present then MD5 is
used. This option can be overridden on the command line.

string_mask

This option masks out the use of certain string types in certain fields. Most users will not need to change this option.

It can be set to several values default which is also the default option uses PrintableStrings, T61Strings and BMPStrings
if the pkix value is used then only PrintableStrings and BMPStrings will be used. This follows the PKIX recommendation

1146

OpenSSL Manual

in RFC2459. If the utf8only option is used then only UTF8Strings will be used: this is the PKIX recommendation in
RFC2459 after 2003. Finally the nombstr option just uses PrintableStrings and T61Strings: certain software has problems
with BMPStrings and UTF8Strings: in particular Netscape.

req_extensions

this specifies the configuration file section containing a list of extensions to add to the certificate request. It can be over-
ridden by the -reqexts command line switch. See the x509v3_config(5) manual page for details of the extension section
format.

x509_extensions

this specifies the configuration file section containing a list of extensions to add to certificate generated when the -x509
switch is used. It can be overridden by the -extensions command line switch.

prompt

if set to the value no this disables prompting of certificate fields and just takes values from the config file directly. It also
changes the expected format of the distinguished_name and attributes sections.

utf8

if set to the value yes then field values to be interpreted as UTF8 strings, by default they are interpreted as ASCII. This
means that the field values, whether prompted from a terminal or obtained from a configuration file, must be valid UTF8
strings.

attributes

this specifies the section containing any request attributes: its format is the same as distinguished_name. Typically these
may contain the challengePassword or unstructuredName types. They are currently ignored by OpenSSL's request signing
utilities but some CAs might want them.

distinguished_name

This specifies the section containing the distinguished name fields to prompt for when generating a certificate or certificate
request. The format is described in the next section.

DISTINGUISHED NAME AND ATTRIBUTE SECTION FORMAT

There are two separate formats for the distinguished name and attribute sections. If the prompt option is set to no then these
sections just consist of field names and values: for example,

CN=My Name
OU=My Organization
emailAddress=someone@somewhere.org

This allows external programs (e.g. GUI based) to generate a template file with all the field names and values and just pass it
to req. An example of this kind of configuration file is contained in the EXAMPLES section.

Alternatively if the prompt option is absent or not set to no then the file contains field prompting information. It consists of
lines of the form:

fieldName="prompt"
fieldName_default="default field value"
fieldName_min= 2
fieldName_max= 4

"fieldName" is the field name being used, for example commonName (or CN). The "prompt" string is used to ask the user to
enter the relevant details. If the user enters nothing then the default value is used if no default value is present then the field is
omitted. A field can still be omitted if a default value is present if the user just enters the '.' character.

The number of characters entered must be between the fieldName_min and fieldName_max limits: there may be additional
restrictions based on the field being used (for example countryName can only ever be two characters long and must fit in a
PrintableString).

1147

OpenSSL Manual

Some fields (such as organizationName) can be used more than once in a DN. This presents a problem because configuration
files will not recognize the same name occurring twice. To avoid this problem if the fieldName contains some characters fol-
lowed by a full stop they will be ignored. So for example a second organizationName can be input by calling it "1.organiza-
tionName".

The actual permitted field names are any object identifier short or long names. These are compiled into OpenSSL and include
the usual values such as commonName, countryName, localityName, organizationName, organizationalUnitName, stateOr-
ProvinceName. Additionally emailAddress is include as well as name, surname, givenName initials and dnQualifier.

Additional object identifiers can be defined with the oid_file or oid_section options in the configuration file. Any additional
fields will be treated as though they were a DirectoryString.

EXAMPLES

Examine and verify certificate request:

openssl req -in req.pem -text -verify -noout

Create a private key and then generate a certificate request from it:

openssl genrsa -out key.pem 1024
openssl req -new -key key.pem -out req.pem

The same but just using req:

openssl req -newkey rsa:1024 -keyout key.pem -out req.pem

Generate a self signed root certificate:

openssl req -x509 -newkey rsa:1024 -keyout key.pem -out req.pem

Example of a file pointed to by the oid_file option:

1.2.3.4 shortName A longer Name
1.2.3.6 otherName Other longer Name

Example of a section pointed to by oid_section making use of variable expansion:

testoid1=1.2.3.5
testoid2=${testoid1}.6

Sample configuration file prompting for field values:

[req]
default_bits = 1024
default_keyfile = privkey.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
x509_extensions = v3_ca

dirstring_type = nobmp

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
countryName_min = 2
countryName_max = 2

localityName = Locality Name (eg, city)

organizationalUnitName = Organizational Unit Name (eg, section)

commonName = Common Name (eg, YOUR name)
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 40

1148

OpenSSL Manual

[req_attributes]
challengePassword = A challenge password
challengePassword_min = 4
challengePassword_max = 20

[v3_ca]

subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid:always,issuer:always
basicConstraints = CA:true

Sample configuration containing all field values:

RANDFILE = $ENV::HOME/.rnd

[req]
default_bits = 1024
default_keyfile = keyfile.pem
distinguished_name = req_distinguished_name
attributes = req_attributes
prompt = no
output_password = mypass

[req_distinguished_name]
C = GB
ST = Test State or Province
L = Test Locality
O = Organization Name
OU = Organizational Unit Name
CN = Common Name
emailAddress = test@email.address

[req_attributes]
challengePassword = A challenge password

NOTES

The header and footer lines in the PEM format are normally:

-----BEGIN CERTIFICATE REQUEST-----
-----END CERTIFICATE REQUEST-----

some software (some versions of Netscape certificate server) instead needs:

-----BEGIN NEW CERTIFICATE REQUEST-----
-----END NEW CERTIFICATE REQUEST-----

which is produced with the -newhdr option but is otherwise compatible. Either form is accepted transparently on input.

The certificate requests generated by Xenroll with MSIE have extensions added. It includes the keyUsage extension which
determines the type of key (signature only or general purpose) and any additional OIDs entered by the script in an extended-
KeyUsage extension.

DIAGNOSTICS

The following messages are frequently asked about:

Using configuration from /some/path/openssl.cnf
Unable to load config info

This is followed some time later by…

unable to find 'distinguished_name' in config
problems making Certificate Request

The first error message is the clue: it can't find the configuration file! Certain operations (like examining a certificate request)
don't need a configuration file so its use isn't enforced. Generation of certificates or requests however does need a configuration
file. This could be regarded as a bug.

1149

OpenSSL Manual

Another puzzling message is this:

Attributes:
 a0:00

this is displayed when no attributes are present and the request includes the correct empty SET OF structure (the DER encoding
of which is 0xa0 0x00). If you just see:

Attributes:

then the SET OF is missing and the encoding is technically invalid (but it is tolerated). See the description of the command
line option -asn1-kludge for more information.

ENVIRONMENT VARIABLES

The variable OPENSSL_CONF if defined allows an alternative configuration file location to be specified, it will be overridden
by the -config command line switch if it is present. For compatibility reasons the SSLEAY_CONF environment variable
serves the same purpose but its use is discouraged.

BUGS

OpenSSL's handling of T61Strings (aka TeletexStrings) is broken: it effectively treats them as ISO-8859-1 (Latin 1), Netscape
and MSIE have similar behaviour. This can cause problems if you need characters that aren't available in PrintableStrings and
you don't want to or can't use BMPStrings.

As a consequence of the T61String handling the only correct way to represent accented characters in OpenSSL is to use a
BMPString: unfortunately Netscape currently chokes on these. If you have to use accented characters with Netscape and MSIE
then you currently need to use the invalid T61String form.

The current prompting is not very friendly. It doesn't allow you to confirm what you've just entered. Other things like extensions
in certificate requests are statically defined in the configuration file. Some of these: like an email address in subjectAltName
should be input by the user.

SEE ALSO

x509(1), ca(1), genrsa(1), gendsa(1), config(5), x509v3_config(5)

1150

OpenSSL Manual

Name
rsa — RSA key processing tool

Synopsis
opensslrsa
[-inform PEM|NET|DER]
[-outform PEM|NET|DER]
[-in filename]
[-passin arg]
[-out filename]
[-passout arg]
[-sgckey]
[-aes128]
[-aes192]
[-aes256]
[-camellia128]
[-camellia192]
[-camellia256]
[-des]
[-des3]
[-idea]
[-text]
[-noout]
[-modulus]
[-check]
[-pubin]
[-pubout]
[-RSAPublicKey_in]
[-RSAPublicKey_out]
[-engine id]

DESCRIPTION

The rsa command processes RSA keys. They can be converted between various forms and their components printed out. Note
this command uses the traditional SSLeay compatible format for private key encryption: newer applications should use the
more secure PKCS#8 format using the pkcs8 utility.

COMMAND OPTIONS

-inform DER|NET|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded form compatible with the PKCS#1
RSAPrivateKey or SubjectPublicKeyInfo format. The PEM form is the default format: it consists of the DER format
base64 encoded with additional header and footer lines. On input PKCS#8 format private keys are also accepted. The NET
form is a format is described in the NOTES section.

-outform DER|NET|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a key from or standard input if this option is not specified. If the key is encrypted
a pass phrase will be prompted for.

-passin arg

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-out filename

This specifies the output filename to write a key to or standard output if this option is not specified. If any encryption
options are set then a pass phrase will be prompted for. The output filename should not be the same as the input filename.

1151

OpenSSL Manual

-passout password

the output file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-sgckey

use the modified NET algorithm used with some versions of Microsoft IIS and SGC keys.

-aes128|-aes192|-aes256|-camellia128|-camellia192|-camellia256|-des|-des3|-idea

These options encrypt the private key with the specified cipher before outputting it. A pass phrase is prompted for. If none
of these options is specified the key is written in plain text. This means that using the rsa utility to read in an encrypted
key with no encryption option can be used to remove the pass phrase from a key, or by setting the encryption options it
can be use to add or change the pass phrase. These options can only be used with PEM format output files.

-text

prints out the various public or private key components in plain text in addition to the encoded version.

-noout

this option prevents output of the encoded version of the key.

-modulus

this option prints out the value of the modulus of the key.

-check

this option checks the consistency of an RSA private key.

-pubin

by default a private key is read from the input file: with this option a public key is read instead.

-pubout

by default a private key is output: with this option a public key will be output instead. This option is automatically set
if the input is a public key.

-RSAPublicKey_in, -RSAPublicKey_out

like -pubin and -pubout except RSAPublicKey format is used instead.

-engine id

specifying an engine (by its unique id string) will cause rsa to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

NOTES

The PEM private key format uses the header and footer lines:

-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----

The PEM public key format uses the header and footer lines:

-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----

The PEM RSAPublicKey format uses the header and footer lines:

1152

OpenSSL Manual

-----BEGIN RSA PUBLIC KEY-----
-----END RSA PUBLIC KEY-----

The NET form is a format compatible with older Netscape servers and Microsoft IIS .key files, this uses unsalted RC4 for its
encryption. It is not very secure and so should only be used when necessary.

Some newer version of IIS have additional data in the exported .key files. To use these with the utility, view the file with a binary
editor and look for the string "private-key", then trace back to the byte sequence 0x30, 0x82 (this is an ASN1 SEQUENCE).
Copy all the data from this point onwards to another file and use that as the input to the rsa utility with the -inform NET
option. If you get an error after entering the password try the -sgckey option.

EXAMPLES

To remove the pass phrase on an RSA private key:

openssl rsa -in key.pem -out keyout.pem

To encrypt a private key using triple DES:

openssl rsa -in key.pem -des3 -out keyout.pem

To convert a private key from PEM to DER format:

openssl rsa -in key.pem -outform DER -out keyout.der

To print out the components of a private key to standard output:

openssl rsa -in key.pem -text -noout

To just output the public part of a private key:

openssl rsa -in key.pem -pubout -out pubkey.pem

Output the public part of a private key in RSAPublicKey format:

openssl rsa -in key.pem -RSAPublicKey_out -out pubkey.pem

BUGS

The command line password arguments don't currently work with NET format.

There should be an option that automatically handles .key files, without having to manually edit them.

SEE ALSO

pkcs8(1), dsa(1), genrsa(1), gendsa(1)

1153

OpenSSL Manual

Name
rsautl — RSA utility

Synopsis
opensslrsautl
[-in file]
[-out file]
[-inkey file]
[-pubin]
[-certin]
[-sign]
[-verify]
[-encrypt]
[-decrypt]
[-pkcs]
[-ssl]
[-raw]
[-hexdump]
[-asn1parse]

DESCRIPTION

The rsautl command can be used to sign, verify, encrypt and decrypt data using the RSA algorithm.

COMMAND OPTIONS

-in filename

This specifies the input filename to read data from or standard input if this option is not specified.

-out filename

specifies the output filename to write to or standard output by default.

-inkey file

the input key file, by default it should be an RSA private key.

-pubin

the input file is an RSA public key.

-certin

the input is a certificate containing an RSA public key.

-sign

sign the input data and output the signed result. This requires and RSA private key.

-verify

verify the input data and output the recovered data.

-encrypt

encrypt the input data using an RSA public key.

-decrypt

decrypt the input data using an RSA private key.

1154

OpenSSL Manual

-pkcs, -oaep, -ssl, -raw

the padding to use: PKCS#1 v1.5 (the default), PKCS#1 OAEP, special padding used in SSL v2 backwards compatible
handshakes, or no padding, respectively. For signatures, only -pkcs and -raw can be used.

-hexdump

hex dump the output data.

-asn1parse

asn1parse the output data, this is useful when combined with the -verify option.

NOTES

rsautl because it uses the RSA algorithm directly can only be used to sign or verify small pieces of data.

EXAMPLES

Sign some data using a private key:

openssl rsautl -sign -in file -inkey key.pem -out sig

Recover the signed data

openssl rsautl -verify -in sig -inkey key.pem

Examine the raw signed data:

openssl rsautl -verify -in file -inkey key.pem -raw -hexdump

0000 - 00 01 ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0010 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0020 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0030 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0040 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0050 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0060 - ff ff ff ff ff ff ff ff-ff ff ff ff ff ff ff ff ……..........
0070 - ff ff ff ff 00 68 65 6c-6c 6f 20 77 6f 72 6c 64 …..hello world

The PKCS#1 block formatting is evident from this. If this was done using encrypt and decrypt the block would have been of
type 2 (the second byte) and random padding data visible instead of the 0xff bytes.

It is possible to analyse the signature of certificates using this utility in conjunction with asn1parse. Consider the self signed
example in certs/pca-cert.pem . Running asn1parse as follows yields:

openssl asn1parse -in pca-cert.pem

 0:d=0 hl=4 l= 742 cons: SEQUENCE
 4:d=1 hl=4 l= 591 cons: SEQUENCE
 8:d=2 hl=2 l= 3 cons: cont [0]
 10:d=3 hl=2 l= 1 prim: INTEGER :02
 13:d=2 hl=2 l= 1 prim: INTEGER :00
 16:d=2 hl=2 l= 13 cons: SEQUENCE
 18:d=3 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
 29:d=3 hl=2 l= 0 prim: NULL
 31:d=2 hl=2 l= 92 cons: SEQUENCE
 33:d=3 hl=2 l= 11 cons: SET
 35:d=4 hl=2 l= 9 cons: SEQUENCE
 37:d=5 hl=2 l= 3 prim: OBJECT :countryName
 42:d=5 hl=2 l= 2 prim: PRINTABLESTRING :AU
….
599:d=1 hl=2 l= 13 cons: SEQUENCE
601:d=2 hl=2 l= 9 prim: OBJECT :md5WithRSAEncryption
612:d=2 hl=2 l= 0 prim: NULL
614:d=1 hl=3 l= 129 prim: BIT STRING

The final BIT STRING contains the actual signature. It can be extracted with:

1155

OpenSSL Manual

openssl asn1parse -in pca-cert.pem -out sig -noout -strparse 614

The certificate public key can be extracted with:

openssl x509 -in test/testx509.pem -pubkey -noout >pubkey.pem

The signature can be analysed with:

openssl rsautl -in sig -verify -asn1parse -inkey pubkey.pem -pubin

 0:d=0 hl=2 l= 32 cons: SEQUENCE
 2:d=1 hl=2 l= 12 cons: SEQUENCE
 4:d=2 hl=2 l= 8 prim: OBJECT :md5
14:d=2 hl=2 l= 0 prim: NULL
16:d=1 hl=2 l= 16 prim: OCTET STRING
 0000 - f3 46 9e aa 1a 4a 73 c9-37 ea 93 00 48 25 08 b5 .F…Js.7…H%..

This is the parsed version of an ASN1 DigestInfo structure. It can be seen that the digest used was md5. The actual part of
the certificate that was signed can be extracted with:

openssl asn1parse -in pca-cert.pem -out tbs -noout -strparse 4

and its digest computed with:

openssl md5 -c tbs
MD5(tbs)= f3:46:9e:aa:1a:4a:73:c9:37:ea:93:00:48:25:08:b5

which it can be seen agrees with the recovered value above.

SEE ALSO

dgst(1), rsa(1), genrsa(1)

1156

OpenSSL Manual

Name
s_client — SSL/TLS client program

Synopsis
openssls_client
[-connect host:port]
[-servername name]
[-verify depth]
[-verify_return_error]
[-cert filename]
[-certform DER|PEM]
[-key filename]
[-keyform DER|PEM]
[-pass arg]
[-CApath directory]
[-CAfile filename]
[-no_alt_chains]
[-reconnect]
[-pause]
[-showcerts]
[-debug]
[-msg]
[-nbio_test]
[-state]
[-nbio]
[-crlf]
[-ign_eof]
[-no_ign_eof]
[-quiet]
[-ssl2]
[-ssl3]
[-tls1]
[-no_ssl2]
[-no_ssl3]
[-no_tls1]
[-bugs]
[-cipher cipherlist]
[-serverpref]
[-starttls protocol]
[-engine id]
[-tlsextdebug]
[-no_ticket]
[-sess_out filename]
[-sess_in filename]
[-rand file(s)]
[-status]
[-nextprotoneg protocols]

DESCRIPTION
The s_client command implements a generic SSL/TLS client which connects to a remote host using SSL/TLS. It is a very
useful diagnostic tool for SSL servers.

OPTIONS
-connect host:port

This specifies the host and optional port to connect to. If not specified then an attempt is made to connect to the local
host on port 4433.

-servername name

Set the TLS SNI (Server Name Indication) extension in the ClientHello message.

-cert certname

The certificate to use, if one is requested by the server. The default is not to use a certificate.

1157

OpenSSL Manual

-certform format

The certificate format to use: DER or PEM. PEM is the default.

-key keyfile

The private key to use. If not specified then the certificate file will be used.

-keyform format

The private format to use: DER or PEM. PEM is the default.

-pass arg

the private key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-verify depth

The verify depth to use. This specifies the maximum length of the server certificate chain and turns on server certificate
verification. Currently the verify operation continues after errors so all the problems with a certificate chain can be seen.
As a side effect the connection will never fail due to a server certificate verify failure.

-verify_return_error

Return verification errors instead of continuing. This will typically abort the handshake with a fatal error.

-CApath directory

The directory to use for server certificate verification. This directory must be in "hash format", see verify for more infor-
mation. These are also used when building the client certificate chain.

-CAfile file

A file containing trusted certificates to use during server authentication and to use when attempting to build the client
certificate chain.

-purpose, -ignore_critical, -issuer_checks, -crl_check, -crl_check_all, -policy_check, -extended_crl, -x509_strict, -policy,
-check_ss_sig, -no_alt_chains

Set various certificate chain valiadition option. See the verify manual page for details.

-reconnect

reconnects to the same server 5 times using the same session ID, this can be used as a test that session caching is working.

-pause

pauses 1 second between each read and write call.

-showcerts

display the whole server certificate chain: normally only the server certificate itself is displayed.

-prexit

print session information when the program exits. This will always attempt to print out information even if the connection
fails. Normally information will only be printed out once if the connection succeeds. This option is useful because the
cipher in use may be renegotiated or the connection may fail because a client certificate is required or is requested only
after an attempt is made to access a certain URL. Note: the output produced by this option is not always accurate because
a connection might never have been established.

1158

OpenSSL Manual

-state

prints out the SSL session states.

-debug

print extensive debugging information including a hex dump of all traffic.

-msg

show all protocol messages with hex dump.

-nbio_test

tests non-blocking I/O

-nbio

turns on non-blocking I/O

-crlf

this option translated a line feed from the terminal into CR+LF as required by some servers.

-ign_eof

inhibit shutting down the connection when end of file is reached in the input.

-quiet

inhibit printing of session and certificate information. This implicitly turns on -ign_eof as well.

-no_ign_eof

shut down the connection when end of file is reached in the input. Can be used to override the implicit -ign_eof after -quiet.

-psk_identity identity

Use the PSK identity identity when using a PSK cipher suite.

-psk key

Use the PSK key key when using a PSK cipher suite. The key is given as a hexadecimal number without leading 0x, for
example -psk 1a2b3c4d.

-ssl2, -ssl3, -tls1, -tls1_1, -tls1_2, -no_ssl2, -no_ssl3, -no_tls1, -no_tls1_1, -no_tls1_2

These options require or disable the use of the specified SSL or TLS protocols. By default the initial handshake uses a
version-flexible method which will negotiate the highest mutually supported protocol version.

-bugs

there are several known bug in SSL and TLS implementations. Adding this option enables various workarounds.

-cipher cipherlist

this allows the cipher list sent by the client to be modified. Although the server determines which cipher suite is used it
should take the first supported cipher in the list sent by the client. See the ciphers command for more information.

-serverpref

use the server's cipher preferences; only used for SSLV2.

1159

OpenSSL Manual

-starttls protocol

send the protocol-specific message(s) to switch to TLS for communication. protocol is a keyword for the intended protocol.
Currently, the only supported keywords are "smtp", "pop3", "imap", and "ftp".

-tlsextdebug

print out a hex dump of any TLS extensions received from the server.

-no_ticket

disable RFC4507bis session ticket support.

-sess_out filename

output SSL session to filename

-sess_in sess.pem

load SSL session from filename. The client will attempt to resume a connection from this session.

-engine id

specifying an engine (by its unique id string) will cause s_client to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-status

sends a certificate status request to the server (OCSP stapling). The server response (if any) is printed out.

-nextprotoneg protocols

enable Next Protocol Negotiation TLS extension and provide a list of comma-separated protocol names that the client
should advertise support for. The list should contain most wanted protocols first. Protocol names are printable ASCII
strings, for example "http/1.1" or "spdy/3". Empty list of protocols is treated specially and will cause the client to advertise
support for the TLS extension but disconnect just after reciving ServerHello with a list of server supported protocols.

CONNECTED COMMANDS

If a connection is established with an SSL server then any data received from the server is displayed and any key presses will
be sent to the server. When used interactively (which means neither -quiet nor -ign_eof have been given), the session will
be renegotiated if the line begins with an R, and if the line begins with a Q or if end of file is reached, the connection will
be closed down.

NOTES

s_client can be used to debug SSL servers. To connect to an SSL HTTP server the command:

openssl s_client -connect servername:443

would typically be used (https uses port 443). If the connection succeeds then an HTTP command can be given such as "GET /"
to retrieve a web page.

If the handshake fails then there are several possible causes, if it is nothing obvious like no client certificate then the -bugs,
-ssl2, -ssl3, -tls1, -no_ssl2, -no_ssl3, -no_tls1 options can be tried in case it is a buggy server. In particular you should play
with these options before submitting a bug report to an OpenSSL mailing list.

1160

OpenSSL Manual

A frequent problem when attempting to get client certificates working is that a web client complains it has no certificates or
gives an empty list to choose from. This is normally because the server is not sending the clients certificate authority in its
"acceptable CA list" when it requests a certificate. By using s_client the CA list can be viewed and checked. However some
servers only request client authentication after a specific URL is requested. To obtain the list in this case it is necessary to use
the -prexit option and send an HTTP request for an appropriate page.

If a certificate is specified on the command line using the -cert option it will not be used unless the server specifically requests
a client certificate. Therefor merely including a client certificate on the command line is no guarantee that the certificate works.

If there are problems verifying a server certificate then the -showcerts option can be used to show the whole chain.

Since the SSLv23 client hello cannot include compression methods or extensions these will only be supported if its use is
disabled, for example by using the -no_sslv2 option.

The s_client utility is a test tool and is designed to continue the handshake after any certificate verification errors. As a result
it will accept any certificate chain (trusted or not) sent by the peer. None test applications should not do this as it makes them
vulnerable to a MITM attack. This behaviour can be changed by with the -verify_return_error option: any verify errors are
then returned aborting the handshake.

BUGS

Because this program has a lot of options and also because some of the techniques used are rather old, the C source of s_client
is rather hard to read and not a model of how things should be done. A typical SSL client program would be much simpler.

The -prexit option is a bit of a hack. We should really report information whenever a session is renegotiated.

SEE ALSO

sess_id(1), s_server(1), ciphers(1)

HISTORY

The -no_alt_chains options was first added to OpenSSL 1.0.1n and 1.0.2b.

1161

OpenSSL Manual

Name
s_server — SSL/TLS server program

Synopsis
openssls_server
[-accept port]
[-context id]
[-verify depth]
[-Verify depth]
[-crl_check]
[-crl_check_all]
[-cert filename]
[-certform DER|PEM]
[-key keyfile]
[-keyform DER|PEM]
[-pass arg]
[-dcert filename]
[-dcertform DER|PEM]
[-dkey keyfile]
[-dkeyform DER|PEM]
[-dpass arg]
[-dhparam filename]
[-nbio]
[-nbio_test]
[-crlf]
[-debug]
[-msg]
[-state]
[-CApath directory]
[-CAfile filename]
[-no_alt_chains]
[-nocert]
[-cipher cipherlist]
[-serverpref]
[-quiet]
[-no_tmp_rsa]
[-ssl2]
[-ssl3]
[-tls1]
[-no_ssl2]
[-no_ssl3]
[-no_tls1]
[-no_dhe]
[-no_ecdhe]
[-bugs]
[-hack]
[-www]
[-WWW]
[-HTTP]
[-engine id]
[-tlsextdebug]
[-no_ticket]
[-id_prefix arg]
[-rand file(s)]
[-status]
[-status_verbose]
[-status_timeout nsec]
[-status_url url]
[-nextprotoneg protocols]

DESCRIPTION

The s_server command implements a generic SSL/TLS server which listens for connections on a given port using SSL/TLS.

1162

OpenSSL Manual

OPTIONS

-accept port

the TCP port to listen on for connections. If not specified 4433 is used.

-context id

sets the SSL context id. It can be given any string value. If this option is not present a default value will be used.

-cert certname

The certificate to use, most servers cipher suites require the use of a certificate and some require a certificate with a certain
public key type: for example the DSS cipher suites require a certificate containing a DSS (DSA) key. If not specified then
the filename "server.pem" will be used.

-certform format

The certificate format to use: DER or PEM. PEM is the default.

-key keyfile

The private key to use. If not specified then the certificate file will be used.

-keyform format

The private format to use: DER or PEM. PEM is the default.

-pass arg

the private key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-dcert filename, -dkey keyname

specify an additional certificate and private key, these behave in the same manner as the -cert and -key options except
there is no default if they are not specified (no additional certificate and key is used). As noted above some cipher suites
require a certificate containing a key of a certain type. Some cipher suites need a certificate carrying an RSA key and some
a DSS (DSA) key. By using RSA and DSS certificates and keys a server can support clients which only support RSA or
DSS cipher suites by using an appropriate certificate.

-dcertform format, -dkeyform format, -dpass arg

additional certificate and private key format and passphrase respectively.

-nocert

if this option is set then no certificate is used. This restricts the cipher suites available to the anonymous ones (currently
just anonymous DH).

-dhparam filename

the DH parameter file to use. The ephemeral DH cipher suites generate keys using a set of DH parameters. If not specified
then an attempt is made to load the parameters from the server certificate file. If this fails then a static set of parameters
hard coded into the s_server program will be used.

-no_dhe

if this option is set then no DH parameters will be loaded effectively disabling the ephemeral DH cipher suites.

-no_ecdhe

if this option is set then no ECDH parameters will be loaded effectively disabling the ephemeral ECDH cipher suites.

1163

OpenSSL Manual

-no_tmp_rsa

certain export cipher suites sometimes use a temporary RSA key, this option disables temporary RSA key generation.

-verify depth, -Verify depth

The verify depth to use. This specifies the maximum length of the client certificate chain and makes the server request a
certificate from the client. With the -verify option a certificate is requested but the client does not have to send one, with
the -Verify option the client must supply a certificate or an error occurs.

If the ciphersuite cannot request a client certificate (for example an anonymous ciphersuite or PSK) this option has no
effect.

-crl_check, -crl_check_all

Check the peer certificate has not been revoked by its CA. The CRL(s) are appended to the certificate file. With the -
crl_check_all option all CRLs of all CAs in the chain are checked.

-CApath directory

The directory to use for client certificate verification. This directory must be in "hash format", see verify for more infor-
mation. These are also used when building the server certificate chain.

-CAfile file

A file containing trusted certificates to use during client authentication and to use when attempting to build the server
certificate chain. The list is also used in the list of acceptable client CAs passed to the client when a certificate is requested.

-no_alt_chains

See the verify manual page for details.

-state

prints out the SSL session states.

-debug

print extensive debugging information including a hex dump of all traffic.

-msg

show all protocol messages with hex dump.

-nbio_test

tests non blocking I/O

-nbio

turns on non blocking I/O

-crlf

this option translated a line feed from the terminal into CR+LF.

-quiet

inhibit printing of session and certificate information.

-psk_hint hint

Use the PSK identity hint hint when using a PSK cipher suite.

1164

OpenSSL Manual

-psk key

Use the PSK key key when using a PSK cipher suite. The key is given as a hexadecimal number without leading 0x, for
example -psk 1a2b3c4d.

-ssl2, -ssl3, -tls1, -tls1_1, -tls1_2, -no_ssl2, -no_ssl3, -no_tls1, -no_tls1_1, -no_tls1_2

These options require or disable the use of the specified SSL or TLS protocols. By default the initial handshake uses a
version-flexible method which will negotiate the highest mutually supported protocol version.

-bugs

there are several known bug in SSL and TLS implementations. Adding this option enables various workarounds.

-hack

this option enables a further workaround for some some early Netscape SSL code (?).

-cipher cipherlist

this allows the cipher list used by the server to be modified. When the client sends a list of supported ciphers the first client
cipher also included in the server list is used. Because the client specifies the preference order, the order of the server
cipherlist irrelevant. See the ciphers command for more information.

-serverpref

use the server's cipher preferences, rather than the client's preferences.

-tlsextdebug

print out a hex dump of any TLS extensions received from the server.

-no_ticket

disable RFC4507bis session ticket support.

-www

sends a status message back to the client when it connects. This includes lots of information about the ciphers used and
various session parameters. The output is in HTML format so this option will normally be used with a web browser.

-WWW

emulates a simple web server. Pages will be resolved relative to the current directory, for example if the URL https://
myhost/page.html is requested the file ./page.html will be loaded.

-HTTP

emulates a simple web server. Pages will be resolved relative to the current directory, for example if the URL https://
myhost/page.html is requested the file ./page.html will be loaded. The files loaded are assumed to contain a complete and
correct HTTP response (lines that are part of the HTTP response line and headers must end with CRLF).

-engine id

specifying an engine (by its unique id string) will cause s_server to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

-id_prefix arg

generate SSL/TLS session IDs prefixed by arg. This is mostly useful for testing any SSL/TLS code (eg. proxies) that
wish to deal with multiple servers, when each of which might be generating a unique range of session IDs (eg. with a
certain prefix).

1165

OpenSSL Manual

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

-status

enables certificate status request support (aka OCSP stapling).

-status_verbose

enables certificate status request support (aka OCSP stapling) and gives a verbose printout of the OCSP response.

-status_timeout nsec

sets the timeout for OCSP response to nsec seconds.

-status_url url

sets a fallback responder URL to use if no responder URL is present in the server certificate. Without this option an error
is returned if the server certificate does not contain a responder address.

-nextprotoneg protocols

enable Next Protocol Negotiation TLS extension and provide a comma-separated list of supported protocol names. The list
should contain most wanted protocols first. Protocol names are printable ASCII strings, for example "http/1.1" or "spdy/3".

CONNECTED COMMANDS

If a connection request is established with an SSL client and neither the -www nor the -WWW option has been used then
normally any data received from the client is displayed and any key presses will be sent to the client.

Certain single letter commands are also recognized which perform special operations: these are listed below.

q end the current SSL connection but still accept new connections.

Q end the current SSL connection and exit.

r renegotiate the SSL session.

R renegotiate the SSL session and request a client certificate.

P send some plain text down the underlying TCP connection: this should cause the client
to disconnect due to a protocol violation.

S print out some session cache status information.

NOTES

s_server can be used to debug SSL clients. To accept connections from a web browser the command:

openssl s_server -accept 443 -www

can be used for example.

Most web browsers (in particular Netscape and MSIE) only support RSA cipher suites, so they cannot connect to servers which
don't use a certificate carrying an RSA key or a version of OpenSSL with RSA disabled.

Although specifying an empty list of CAs when requesting a client certificate is strictly speaking a protocol violation, some
SSL clients interpret this to mean any CA is acceptable. This is useful for debugging purposes.

The session parameters can printed out using the sess_id program.

1166

OpenSSL Manual

BUGS

Because this program has a lot of options and also because some of the techniques used are rather old, the C source of s_server
is rather hard to read and not a model of how things should be done. A typical SSL server program would be much simpler.

The output of common ciphers is wrong: it just gives the list of ciphers that OpenSSL recognizes and the client supports.

There should be a way for the s_server program to print out details of any unknown cipher suites a client says it supports.

SEE ALSO

sess_id(1), s_client(1), ciphers(1)

HISTORY

The -no_alt_chains options was first added to OpenSSL 1.0.1n and 1.0.2b.

1167

OpenSSL Manual

Name
s_time — SSL/TLS performance timing program

Synopsis
openssls_time
[-connect host:port]
[-www page]
[-cert filename]
[-key filename]
[-CApath directory]
[-CAfile filename]
[-reuse]
[-new]
[-verify depth]
[-nbio]
[-time seconds]
[-ssl2]
[-ssl3]
[-bugs]
[-cipher cipherlist]

DESCRIPTION

The s_time command implements a generic SSL/TLS client which connects to a remote host using SSL/TLS. It can request
a page from the server and includes the time to transfer the payload data in its timing measurements. It measures the number
of connections within a given timeframe, the amount of data transferred (if any), and calculates the average time spent for
one connection.

OPTIONS

-connect host:port

This specifies the host and optional port to connect to.

-www page

This specifies the page to GET from the server. A value of '/' gets the index.htm[l] page. If this parameter is not specified,
then s_time will only perform the handshake to establish SSL connections but not transfer any payload data.

-cert certname

The certificate to use, if one is requested by the server. The default is not to use a certificate. The file is in PEM format.

-key keyfile

The private key to use. If not specified then the certificate file will be used. The file is in PEM format.

-verify depth

The verify depth to use. This specifies the maximum length of the server certificate chain and turns on server certificate
verification. Currently the verify operation continues after errors so all the problems with a certificate chain can be seen.
As a side effect the connection will never fail due to a server certificate verify failure.

-CApath directory

The directory to use for server certificate verification. This directory must be in "hash format", see verify for more infor-
mation. These are also used when building the client certificate chain.

-CAfile file

A file containing trusted certificates to use during server authentication and to use when attempting to build the client
certificate chain.

1168

OpenSSL Manual

-new

performs the timing test using a new session ID for each connection. If neither -new nor -reuse are specified, they are
both on by default and executed in sequence.

-reuse

performs the timing test using the same session ID; this can be used as a test that session caching is working. If neither -
new nor -reuse are specified, they are both on by default and executed in sequence.

-nbio

turns on non-blocking I/O.

-ssl2, -ssl3

these options disable the use of certain SSL or TLS protocols. By default the initial handshake uses a method which should
be compatible with all servers and permit them to use SSL v3, SSL v2 or TLS as appropriate. The timing program is not
as rich in options to turn protocols on and off as the s_client(1) program and may not connect to all servers.

Unfortunately there are a lot of ancient and broken servers in use which cannot handle this technique and will fail to
connect. Some servers only work if TLS is turned off with the -ssl3 option; others will only support SSL v2 and may
need the -ssl2 option.

-bugs

there are several known bug in SSL and TLS implementations. Adding this option enables various workarounds.

-cipher cipherlist

this allows the cipher list sent by the client to be modified. Although the server determines which cipher suite is used it
should take the first supported cipher in the list sent by the client. See the ciphers(1) command for more information.

-time length

specifies how long (in seconds) s_time should establish connections and optionally transfer payload data from a server.
Server and client performance and the link speed determine how many connections s_time can establish.

NOTES

s_time can be used to measure the performance of an SSL connection. To connect to an SSL HTTP server and get the default
page the command

openssl s_time -connect servername:443 -www / -CApath yourdir -CAfile yourfile.pem \
 -cipher commoncipher [-ssl3]

would typically be used (https uses port 443). 'commoncipher' is a cipher to which both client and server can agree, see the
ciphers(1) command for details.

If the handshake fails then there are several possible causes, if it is nothing obvious like no client certificate then the -bugs, -
ssl2, -ssl3 options can be tried in case it is a buggy server. In particular you should play with these options before submitting
a bug report to an OpenSSL mailing list.

A frequent problem when attempting to get client certificates working is that a web client complains it has no certificates or
gives an empty list to choose from. This is normally because the server is not sending the clients certificate authority in its
"acceptable CA list" when it requests a certificate. By using s_client(1) the CA list can be viewed and checked. However some
servers only request client authentication after a specific URL is requested. To obtain the list in this case it is necessary to use
the -prexit option of s_client(1) and send an HTTP request for an appropriate page.

If a certificate is specified on the command line using the -cert option it will not be used unless the server specifically requests
a client certificate. Therefor merely including a client certificate on the command line is no guarantee that the certificate works.

1169

OpenSSL Manual

BUGS

Because this program does not have all the options of the s_client(1) program to turn protocols on and off, you may not be
able to measure the performance of all protocols with all servers.

The -verify option should really exit if the server verification fails.

SEE ALSO

s_client(1), s_server(1), ciphers(1)

1170

OpenSSL Manual

Name
sess_id — SSL/TLS session handling utility

Synopsis
opensslsess_id
[-inform PEM|DER]
[-outform PEM|DER]
[-in filename]
[-out filename]
[-text]
[-noout]
[-context ID]

DESCRIPTION

The sess_id process the encoded version of the SSL session structure and optionally prints out SSL session details (for example
the SSL session master key) in human readable format. Since this is a diagnostic tool that needs some knowledge of the SSL
protocol to use properly, most users will not need to use it.

-inform DER|PEM

This specifies the input format. The DER option uses an ASN1 DER encoded format containing session details. The
precise format can vary from one version to the next. The PEM form is the default format: it consists of the DER format
base64 encoded with additional header and footer lines.

-outform DER|PEM

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read session information from or standard input by default.

-out filename

This specifies the output filename to write session information to or standard output if this option is not specified.

-text

prints out the various public or private key components in plain text in addition to the encoded version.

-cert

if a certificate is present in the session it will be output using this option, if the -text option is also present then it will
be printed out in text form.

-noout

this option prevents output of the encoded version of the session.

-context ID

this option can set the session id so the output session information uses the supplied ID. The ID can be any string of
characters. This option wont normally be used.

OUTPUT

Typical output:

SSL-Session:
 Protocol : TLSv1
 Cipher : 0016

1171

OpenSSL Manual

 Session-ID: 871E62626C554CE95488823752CBD5F3673A3EF3DCE9C67BD916C809914B40ED
 Session-ID-ctx: 01000000
 Master-Key: A7CEFC571974BE02CAC305269DC59F76EA9F0B180CB6642697A68251F2D2BB57E51DBBB4C7885573192AE9AEE220FACD
 Key-Arg : None
 Start Time: 948459261
 Timeout : 300 (sec)
 Verify return code 0 (ok)

Theses are described below in more detail.

Protocol

this is the protocol in use TLSv1, SSLv3 or SSLv2.

Cipher

the cipher used this is the actual raw SSL or TLS cipher code, see the SSL or TLS specifications for more information.

Session-ID

the SSL session ID in hex format.

Session-ID-ctx

the session ID context in hex format.

Master-Key

this is the SSL session master key.

Key-Arg

the key argument, this is only used in SSL v2.

Start Time

this is the session start time represented as an integer in standard Unix format.

Timeout

the timeout in seconds.

Verify return code

this is the return code when an SSL client certificate is verified.

NOTES

The PEM encoded session format uses the header and footer lines:

-----BEGIN SSL SESSION PARAMETERS-----
-----END SSL SESSION PARAMETERS-----

Since the SSL session output contains the master key it is possible to read the contents of an encrypted session using this in-
formation. Therefore appropriate security precautions should be taken if the information is being output by a "real" application.
This is however strongly discouraged and should only be used for debugging purposes.

BUGS

The cipher and start time should be printed out in human readable form.

SEE ALSO

ciphers(1), s_server(1)

1172

OpenSSL Manual

Name
smime — S/MIME utility

Synopsis
opensslsmime
[-encrypt]
[-decrypt]
[-sign]
[-resign]
[-verify]
[-pk7out]
[-[cipher]]
[-in file]
[-no_alt_chains]
[-certfile file]
[-signer file]
[-recip file]
[-inform SMIME|PEM|DER]
[-passin arg]
[-inkey file]
[-out file]
[-outform SMIME|PEM|DER]
[-content file]
[-to addr]
[-from ad]
[-subject s]
[-text]
[-indef]
[-noindef]
[-stream]
[-rand file(s)]
[-md digest]
[cert.pem]…

DESCRIPTION

The smime command handles S/MIME mail. It can encrypt, decrypt, sign and verify S/MIME messages.

COMMAND OPTIONS

There are six operation options that set the type of operation to be performed. The meaning of the other options varies according
to the operation type.

-encrypt

encrypt mail for the given recipient certificates. Input file is the message to be encrypted. The output file is the encrypted
mail in MIME format.

Note that no revocation check is done for the recipient cert, so if that key has been compromised, others may be able to
decrypt the text.

-decrypt

decrypt mail using the supplied certificate and private key. Expects an encrypted mail message in MIME format for the
input file. The decrypted mail is written to the output file.

-sign

sign mail using the supplied certificate and private key. Input file is the message to be signed. The signed message in
MIME format is written to the output file.

-verify

verify signed mail. Expects a signed mail message on input and outputs the signed data. Both clear text and opaque signing
is supported.

1173

OpenSSL Manual

-pk7out

takes an input message and writes out a PEM encoded PKCS#7 structure.

-resign

resign a message: take an existing message and one or more new signers.

-in filename

the input message to be encrypted or signed or the MIME message to be decrypted or verified.

-inform SMIME|PEM|DER

this specifies the input format for the PKCS#7 structure. The default is SMIME which reads an S/MIME format message.
PEM and DER format change this to expect PEM and DER format PKCS#7 structures instead. This currently only affects
the input format of the PKCS#7 structure, if no PKCS#7 structure is being input (for example with -encrypt or -sign)
this option has no effect.

-out filename

the message text that has been decrypted or verified or the output MIME format message that has been signed or verified.

-outform SMIME|PEM|DER

this specifies the output format for the PKCS#7 structure. The default is SMIME which write an S/MIME format message.
PEM and DER format change this to write PEM and DER format PKCS#7 structures instead. This currently only affects
the output format of the PKCS#7 structure, if no PKCS#7 structure is being output (for example with -verify or -decrypt)
this option has no effect.

-stream -indef -noindef

the -stream and -indef options are equivalent and enable streaming I/O for encoding operations. This permits single pass
processing of data without the need to hold the entire contents in memory, potentially supporting very large files. Streaming
is automatically set for S/MIME signing with detached data if the output format is SMIME it is currently off by default
for all other operations.

-noindef

disable streaming I/O where it would produce and indefinite length constructed encoding. This option currently has no
effect. In future streaming will be enabled by default on all relevant operations and this option will disable it.

-content filename

This specifies a file containing the detached content, this is only useful with the -verify command. This is only usable if
the PKCS#7 structure is using the detached signature form where the content is not included. This option will override
any content if the input format is S/MIME and it uses the multipart/signed MIME content type.

-text

this option adds plain text (text/plain) MIME headers to the supplied message if encrypting or signing. If decrypting or
verifying it strips off text headers: if the decrypted or verified message is not of MIME type text/plain then an error occurs.

-CAfile file

a file containing trusted CA certificates, only used with -verify.

-CApath dir

a directory containing trusted CA certificates, only used with -verify. This directory must be a standard certificate directory:
that is a hash of each subject name (using x509 -hash) should be linked to each certificate.

1174

OpenSSL Manual

-md digest

digest algorithm to use when signing or resigning. If not present then the default digest algorithm for the signing key will
be used (usually SHA1).

-[cipher]

the encryption algorithm to use. For example DES (56 bits) - -des, triple DES (168 bits) - -des3, EVP_get_cipherbyname()
function) can also be used preceded by a dash, for example -aes_128_cbc. See enc for list of ciphers supported by your
version of OpenSSL.

If not specified triple DES is used. Only used with -encrypt.

-nointern

when verifying a message normally certificates (if any) included in the message are searched for the signing certificate.
With this option only the certificates specified in the -certfile option are used. The supplied certificates can still be used
as untrusted CAs however.

-noverify

do not verify the signers certificate of a signed message.

-nochain

do not do chain verification of signers certificates: that is don't use the certificates in the signed message as untrusted CAs.

-nosigs

don't try to verify the signatures on the message.

-nocerts

when signing a message the signer's certificate is normally included with this option it is excluded. This will reduce the
size of the signed message but the verifier must have a copy of the signers certificate available locally (passed using the
-certfile option for example).

-noattr

normally when a message is signed a set of attributes are included which include the signing time and supported symmetric
algorithms. With this option they are not included.

-binary

normally the input message is converted to "canonical" format which is effectively using CR and LF as end of line: as
required by the S/MIME specification. When this option is present no translation occurs. This is useful when handling
binary data which may not be in MIME format.

-nodetach

when signing a message use opaque signing: this form is more resistant to translation by mail relays but it cannot be read
by mail agents that do not support S/MIME. Without this option cleartext signing with the MIME type multipart/signed
is used.

-certfile file

allows additional certificates to be specified. When signing these will be included with the message. When verifying these
will be searched for the signers certificates. The certificates should be in PEM format.

-signer file

a signing certificate when signing or resigning a message, this option can be used multiple times if more than one signer
is required. If a message is being verified then the signers certificates will be written to this file if the verification was
successful.

1175

OpenSSL Manual

-recip file

the recipients certificate when decrypting a message. This certificate must match one of the recipients of the message or
an error occurs.

-inkey file

the private key to use when signing or decrypting. This must match the corresponding certificate. If this option is not
specified then the private key must be included in the certificate file specified with the -recip or -signer file. When signing
this option can be used multiple times to specify successive keys.

-passin arg

the private key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-rand file(s)

a file or files containing random data used to seed the random number generator, or an EGD socket (see RAND_egd(3)).
Multiple files can be specified separated by a OS-dependent character. The separator is ; for MS-Windows, , for OpenVMS,
and : for all others.

cert.pem…

one or more certificates of message recipients: used when encrypting a message.

-to, -from, -subject

the relevant mail headers. These are included outside the signed portion of a message so they may be included manually.
If signing then many S/MIME mail clients check the signers certificate's email address matches that specified in the From:
address.

-purpose, -ignore_critical, -issuer_checks, -crl_check, -crl_check_all, -policy_check, -extended_crl, -x509_strict, -policy
-check_ss_sig -no_alt_chains

Set various options of certificate chain verification. See verify manual page for details.

NOTES

The MIME message must be sent without any blank lines between the headers and the output. Some mail programs will
automatically add a blank line. Piping the mail directly to sendmail is one way to achieve the correct format.

The supplied message to be signed or encrypted must include the necessary MIME headers or many S/MIME clients wont
display it properly (if at all). You can use the -text option to automatically add plain text headers.

A "signed and encrypted" message is one where a signed message is then encrypted. This can be produced by encrypting an
already signed message: see the examples section.

This version of the program only allows one signer per message but it will verify multiple signers on received messages. Some
S/MIME clients choke if a message contains multiple signers. It is possible to sign messages "in parallel" by signing an already
signed message.

The options -encrypt and -decrypt reflect common usage in S/MIME clients. Strictly speaking these process PKCS#7 en-
veloped data: PKCS#7 encrypted data is used for other purposes.

The -resign option uses an existing message digest when adding a new signer. This means that attributes must be present in at
least one existing signer using the same message digest or this operation will fail.

The -stream and -indef options enable experimental streaming I/O support. As a result the encoding is BER using indefinite
length constructed encoding and no longer DER. Streaming is supported for the -encrypt operation and the -sign operation
if the content is not detached.

1176

OpenSSL Manual

Streaming is always used for the -sign operation with detached data but since the content is no longer part of the PKCS#7
structure the encoding remains DER.

EXIT CODES

0 the operation was completely successfully.

1 an error occurred parsing the command options.

2 one of the input files could not be read.

3 an error occurred creating the PKCS#7 file or when reading the MIME message.

4 an error occurred decrypting or verifying the message.

5 the message was verified correctly but an error occurred writing out the signers certificates.

EXAMPLES

Create a cleartext signed message:

openssl smime -sign -in message.txt -text -out mail.msg \
 -signer mycert.pem

Create an opaque signed message:

openssl smime -sign -in message.txt -text -out mail.msg -nodetach \
 -signer mycert.pem

Create a signed message, include some additional certificates and read the private key from another file:

openssl smime -sign -in in.txt -text -out mail.msg \
 -signer mycert.pem -inkey mykey.pem -certfile mycerts.pem

Create a signed message with two signers:

openssl smime -sign -in message.txt -text -out mail.msg \
 -signer mycert.pem -signer othercert.pem

Send a signed message under Unix directly to sendmail, including headers:

openssl smime -sign -in in.txt -text -signer mycert.pem \
 -from steve@openssl.org -to someone@somewhere \
 -subject "Signed message" | sendmail someone@somewhere

Verify a message and extract the signer's certificate if successful:

openssl smime -verify -in mail.msg -signer user.pem -out signedtext.txt

Send encrypted mail using triple DES:

openssl smime -encrypt -in in.txt -from steve@openssl.org \
 -to someone@somewhere -subject "Encrypted message" \
 -des3 user.pem -out mail.msg

Sign and encrypt mail:

openssl smime -sign -in ml.txt -signer my.pem -text \
 | openssl smime -encrypt -out mail.msg \
 -from steve@openssl.org -to someone@somewhere \
 -subject "Signed and Encrypted message" -des3 user.pem

Note: the encryption command does not include the -text option because the message being encrypted already has MIME
headers.

Decrypt mail:

openssl smime -decrypt -in mail.msg -recip mycert.pem -inkey key.pem

1177

OpenSSL Manual

The output from Netscape form signing is a PKCS#7 structure with the detached signature format. You can use this program
to verify the signature by line wrapping the base64 encoded structure and surrounding it with:

-----BEGIN PKCS7-----
-----END PKCS7-----

and using the command:

openssl smime -verify -inform PEM -in signature.pem -content content.txt

Alternatively you can base64 decode the signature and use:

openssl smime -verify -inform DER -in signature.der -content content.txt

Create an encrypted message using 128 bit Camellia:

openssl smime -encrypt -in plain.txt -camellia128 -out mail.msg cert.pem

Add a signer to an existing message:

openssl smime -resign -in mail.msg -signer newsign.pem -out mail2.msg

BUGS

The MIME parser isn't very clever: it seems to handle most messages that I've thrown at it but it may choke on others.

The code currently will only write out the signer's certificate to a file: if the signer has a separate encryption certificate this
must be manually extracted. There should be some heuristic that determines the correct encryption certificate.

Ideally a database should be maintained of a certificates for each email address.

The code doesn't currently take note of the permitted symmetric encryption algorithms as supplied in the SMIMECapabilities
signed attribute. This means the user has to manually include the correct encryption algorithm. It should store the list of
permitted ciphers in a database and only use those.

No revocation checking is done on the signer's certificate.

The current code can only handle S/MIME v2 messages, the more complex S/MIME v3 structures may cause parsing errors.

HISTORY

The use of multiple -signer options and the -resign command were first added in OpenSSL 1.0.0

The -no_alt_chains options was first added to OpenSSL 1.0.1n and 1.0.2b.

1178

OpenSSL Manual

Name
speed — test library performance

Synopsis
openssl speed
[-engine id]
[md2]
[mdc2]
[md5]
[hmac]
[sha1]
[rmd160]
[idea-cbc]
[rc2-cbc]
[rc5-cbc]
[bf-cbc]
[des-cbc]
[des-ede3]
[rc4]
[rsa512]
[rsa1024]
[rsa2048]
[rsa4096]
[dsa512]
[dsa1024]
[dsa2048]
[idea]
[rc2]
[des]
[rsa]
[blowfish]

DESCRIPTION

This command is used to test the performance of cryptographic algorithms.

OPTIONS

-engine id

specifying an engine (by its unique id string) will cause speed to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

[zero or more test algorithms]

If any options are given, speed tests those algorithms, otherwise all of the above are tested.

1179

OpenSSL Manual

Name
spkac — SPKAC printing and generating utility

Synopsis
opensslspkac
[-in filename]
[-out filename]
[-key keyfile]
[-passin arg]
[-challenge string]
[-pubkey]
[-spkac spkacname]
[-spksect section]
[-noout]
[-verify]
[-engine id]

DESCRIPTION

The spkac command processes Netscape signed public key and challenge (SPKAC) files. It can print out their contents, verify
the signature and produce its own SPKACs from a supplied private key.

COMMAND OPTIONS

-in filename

This specifies the input filename to read from or standard input if this option is not specified. Ignored if the -key option
is used.

-out filename

specifies the output filename to write to or standard output by default.

-key keyfile

create an SPKAC file using the private key in keyfile. The -in, -noout, -spksect and -verify options are ignored if present.

-passin password

the input file password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS
section in openssl(1).

-challenge string

specifies the challenge string if an SPKAC is being created.

-spkac spkacname

allows an alternative name form the variable containing the SPKAC. The default is "SPKAC". This option affects both
generated and input SPKAC files.

-spksect section

allows an alternative name form the section containing the SPKAC. The default is the default section.

-noout

don't output the text version of the SPKAC (not used if an SPKAC is being created).

-pubkey

output the public key of an SPKAC (not used if an SPKAC is being created).

1180

OpenSSL Manual

-verify

verifies the digital signature on the supplied SPKAC.

-engine id

specifying an engine (by its unique id string) will cause spkac to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

EXAMPLES

Print out the contents of an SPKAC:

openssl spkac -in spkac.cnf

Verify the signature of an SPKAC:

openssl spkac -in spkac.cnf -noout -verify

Create an SPKAC using the challenge string "hello":

openssl spkac -key key.pem -challenge hello -out spkac.cnf

Example of an SPKAC, (long lines split up for clarity):

SPKAC=MIG5MGUwXDANBgkqhkiG9w0BAQEFAANLADBIAkEA1cCoq2Wa3Ixs47uI7F\
PVwHVIPDx5yso105Y6zpozam135a8R0CpoRvkkigIyXfcCjiVi5oWk+6FfPaD03u\
PFoQIDAQABFgVoZWxsbzANBgkqhkiG9w0BAQQFAANBAFpQtY/FojdwkJh1bEIYuc\
2EeM2KHTWPEepWYeawvHD0gQ3DngSC75YCWnnDdq+NQ3F+X4deMx9AaEglZtULwV\
4=

NOTES

A created SPKAC with suitable DN components appended can be fed into the ca utility.

SPKACs are typically generated by Netscape when a form is submitted containing the KEYGEN tag as part of the certificate
enrollment process.

The challenge string permits a primitive form of proof of possession of private key. By checking the SPKAC signature and
a random challenge string some guarantee is given that the user knows the private key corresponding to the public key being
certified. This is important in some applications. Without this it is possible for a previous SPKAC to be used in a "replay attack".

SEE ALSO

ca(1)

1181

OpenSSL Manual

Name
ts — Time Stamping Authority tool (client/server)

Synopsis
opensslts-query
[-rand file:file…]
[-config configfile]
[-data file_to_hash]
[-digest digest_bytes]
[-md2|-md4|-md5|-sha|-sha1|-mdc2|-ripemd160|…]
[-policy object_id]
[-no_nonce]
[-cert]
[-in request.tsq]
[-out request.tsq]
[-text]

opensslts-reply
[-config configfile]
[-section tsa_section]
[-queryfile request.tsq]
[-passin password_src]
[-signer tsa_cert.pem]
[-inkey private.pem]
[-chain certs_file.pem]
[-policy object_id]
[-in response.tsr]
[-token_in]
[-out response.tsr]
[-token_out]
[-text]
[-engine id]

opensslts-verify
[-data file_to_hash]
[-digest digest_bytes]
[-queryfile request.tsq]
[-in response.tsr]
[-token_in]
[-CApath trusted_cert_path]
[-CAfile trusted_certs.pem]
[-untrusted cert_file.pem]

DESCRIPTION

The ts command is a basic Time Stamping Authority (TSA) client and server application as specified in RFC 3161 (Time-
Stamp Protocol, TSP). A TSA can be part of a PKI deployment and its role is to provide long term proof of the existence of a
certain datum before a particular time. Here is a brief description of the protocol:

1. The TSA client computes a one-way hash value for a data file and sends the hash to the TSA.

2. The TSA attaches the current date and time to the received hash value, signs them and sends the time stamp token back to
the client. By creating this token the TSA certifies the existence of the original data file at the time of response generation.

3. The TSA client receives the time stamp token and verifies the signature on it. It also checks if the token contains the same
hash value that it had sent to the TSA.

There is one DER encoded protocol data unit defined for transporting a time stamp request to the TSA and one for sending the
time stamp response back to the client. The ts command has three main functions: creating a time stamp request based on a data
file, creating a time stamp response based on a request, verifying if a response corresponds to a particular request or a data file.

There is no support for sending the requests/responses automatically over HTTP or TCP yet as suggested in RFC 3161. The
users must send the requests either by ftp or e-mail.

1182

OpenSSL Manual

OPTIONS

Time Stamp Request generation

The -query switch can be used for creating and printing a time stamp request with the following options:

-rand file:file…

The files containing random data for seeding the random number generator. Multiple files can be specified, the separator
is ; for MS-Windows, , for VMS and : for all other platforms. (Optional)

-config configfile

The configuration file to use, this option overrides the OPENSSL_CONF environment variable. Only the OID section of
the config file is used with the -query command. (Optional)

-data file_to_hash

The data file for which the time stamp request needs to be created. stdin is the default if neither the -data nor the -digest
parameter is specified. (Optional)

-digest digest_bytes

It is possible to specify the message imprint explicitly without the data file. The imprint must be specified in a hexadecimal
format, two characters per byte, the bytes optionally separated by colons (e.g. 1A:F6:01:… or 1AF601…). The number
of bytes must match the message digest algorithm in use. (Optional)

-md2|-md4|-md5|-sha|-sha1|-mdc2|-ripemd160|…

The message digest to apply to the data file, it supports all the message digest algorithms that are supported by the openssl
dgst command. The default is SHA-1. (Optional)

-policy object_id

The policy that the client expects the TSA to use for creating the time stamp token. Either the dotted OID notation or OID
names defined in the config file can be used. If no policy is requested the TSA will use its own default policy. (Optional)

-no_nonce

No nonce is specified in the request if this option is given. Otherwise a 64 bit long pseudo-random none is included in the
request. It is recommended to use nonce to protect against replay-attacks. (Optional)

-cert

The TSA is expected to include its signing certificate in the response. (Optional)

-in request.tsq

This option specifies a previously created time stamp request in DER format that will be printed into the output file. Useful
when you need to examine the content of a request in human-readable

format. (Optional)

-out request.tsq

Name of the output file to which the request will be written. Default is stdout. (Optional)

-text

If this option is specified the output is human-readable text format instead of DER. (Optional)

Time Stamp Response generation

A time stamp response (TimeStampResp) consists of a response status and the time stamp token itself (ContentInfo), if the
token generation was successful. The -reply command is for creating a time stamp response or time stamp token based on a

1183

OpenSSL Manual

request and printing the response/token in human-readable format. If -token_out is not specified the output is always a time
stamp response (TimeStampResp), otherwise it is a time stamp token (ContentInfo).

-config configfile

The configuration file to use, this option overrides the OPENSSL_CONF environment variable. See CONFIGURATION
FILE OPTIONS for configurable variables. (Optional)

-section tsa_section

The name of the config file section conatining the settings for the response generation. If not specified the default TSA
section is used, see CONFIGURATION FILE OPTIONS for details. (Optional)

-queryfile request.tsq

The name of the file containing a DER encoded time stamp request. (Optional)

-passin password_src

Specifies the password source for the private key of the TSA. See PASS PHRASE ARGUMENTS in openssl(1). (Op-
tional)

-signer tsa_cert.pem

The signer certificate of the TSA in PEM format. The TSA signing certificate must have exactly one extended key usage
assigned to it: timeStamping. The extended key usage must also be critical, otherwise the certificate is going to be refused.
Overrides the signer_cert variable of the config file. (Optional)

-inkey private.pem

The signer private key of the TSA in PEM format. Overrides the signer_key config file option. (Optional)

-chain certs_file.pem

The collection of certificates in PEM format that will all be included in the response in addition to the signer certificate
if the -cert option was used for the request. This file is supposed to contain the certificate chain for the signer certificate
from its issuer upwards. The -reply command does not build a certificate chain automatically. (Optional)

-policy object_id

The default policy to use for the response unless the client explicitly requires a particular TSA policy. The OID can be
specified either in dotted notation or with its name. Overrides the default_policy config file option. (Optional)

-in response.tsr

Specifies a previously created time stamp response or time stamp token (if -token_in is also specified) in DER format that
will be written to the output file. This option does not require a request, it is useful e.g. when you need to examine the
content of a response or token or you want to extract the time stamp token from a response. If the input is a token and the
output is a time stamp response a default 'granted' status info is added to the token. (Optional)

-token_in

This flag can be used together with the -in option and indicates that the input is a DER encoded time stamp token (Con-
tentInfo) instead of a time stamp response (TimeStampResp). (Optional)

-out response.tsr

The response is written to this file. The format and content of the file depends on other options (see -text, -token_out).
The default is stdout. (Optional)

-token_out

The output is a time stamp token (ContentInfo) instead of time stamp response (TimeStampResp). (Optional)

1184

OpenSSL Manual

-text

If this option is specified the output is human-readable text format instead of DER. (Optional)

-engine id

Specifying an engine (by its unique id string) will cause ts to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms. Default is
builtin. (Optional)

Time Stamp Response verification

The -verify command is for verifying if a time stamp response or time stamp token is valid and matches a particular time stamp
request or data file. The -verify command does not use the configuration file.

-data file_to_hash

The response or token must be verified against file_to_hash. The file is hashed with the message digest algorithm specified
in the token. The -digest and -queryfile options must not be specified with this one. (Optional)

-digest digest_bytes

The response or token must be verified against the message digest specified with this option. The number of bytes must
match the message digest algorithm specified in the token. The -data and -queryfile options must not be specified with
this one. (Optional)

-queryfile request.tsq

The original time stamp request in DER format. The -data and -digest options must not be specified with this one. (Op-
tional)

-in response.tsr

The time stamp response that needs to be verified in DER format. (Mandatory)

-token_in

This flag can be used together with the -in option and indicates that the input is a DER encoded time stamp token (Con-
tentInfo) instead of a time stamp response (TimeStampResp). (Optional)

-CApath trusted_cert_path

The name of the directory containing the trused CA certificates of the client. See the similar option of verify(1) for addi-
tional details. Either this option or -CAfile must be specified. (Optional)

-CAfile trusted_certs.pem

The name of the file containing a set of trusted self-signed CA certificates in PEM format. See the similar option of
verify(1) for additional details. Either this option or -CApath must be specified. (Optional)

-untrusted cert_file.pem

Set of additional untrusted certificates in PEM format which may be needed when building the certificate chain for the
TSA's signing certificate. This file must contain the TSA signing certificate and all intermediate CA certificates unless
the response includes them. (Optional)

CONFIGURATION FILE OPTIONS

The -query and -reply commands make use of a configuration file defined by the OPENSSL_CONF environment variable.
See config(5) for a general description of the syntax of the config file. The -query command uses only the symbolic OID
names section and it can work without it. However, the -reply command needs the config file for its operation.

1185

OpenSSL Manual

When there is a command line switch equivalent of a variable the switch always overrides the settings in the config file.

tsa section, default_tsa

This is the main section and it specifies the name of another section that contains all the options for the -reply command.
This default section can be overridden with the -section command line switch. (Optional)

oid_file

See ca(1) for description. (Optional)

oid_section

See ca(1) for description. (Optional)

RANDFILE

See ca(1) for description. (Optional)

serial

The name of the file containing the hexadecimal serial number of the last time stamp response created. This number is
incremented by 1 for each response. If the file does not exist at the time of response generation a new file is created with
serial number 1. (Mandatory)

crypto_device

Specifies the OpenSSL engine that will be set as the default for all available algorithms. The default value is builtin, you
can specify any other engines supported by OpenSSL (e.g. use chil for the NCipher HSM). (Optional)

signer_cert

TSA signing certificate in PEM format. The same as the -signer command line option. (Optional)

certs

A file containing a set of PEM encoded certificates that need to be included in the response. The same as the -chain
command line option. (Optional)

signer_key

The private key of the TSA in PEM format. The same as the -inkey command line option. (Optional)

default_policy

The default policy to use when the request does not mandate any policy. The same as the -policy command line option.
(Optional)

other_policies

Comma separated list of policies that are also acceptable by the TSA and used only if the request explicitly specifies one
of them. (Optional)

digests

The list of message digest algorithms that the TSA accepts. At least one algorithm must be specified. (Mandatory)

accuracy

The accuracy of the time source of the TSA in seconds, milliseconds and microseconds. E.g. secs:1, millisecs:500, mi-
crosecs:100. If any of the components is missing zero is assumed for that field. (Optional)

1186

OpenSSL Manual

clock_precision_digits

Specifies the maximum number of digits, which represent the fraction of seconds, that need to be included in the time
field. The trailing zeroes must be removed from the time, so there might actually be fewer digits, or no fraction of seconds
at all. Supported only on UNIX platforms. The maximum value is 6, default is 0. (Optional)

ordering

If this option is yes the responses generated by this TSA can always be ordered, even if the time difference between two
responses is less than the sum of their accuracies. Default is no. (Optional)

tsa_name

Set this option to yes if the subject name of the TSA must be included in the TSA name field of the response. Default
is no. (Optional)

ess_cert_id_chain

The SignedData objects created by the TSA always contain the certificate identifier of the signing certificate in a signed
attribute (see RFC 2634, Enhanced Security Services). If this option is set to yes and either the certs variable or the -
chain option is specified then the certificate identifiers of the chain will also be included in the SigningCertificate signed
attribute. If this variable is set to no, only the signing certificate identifier is included. Default is no. (Optional)

ENVIRONMENT VARIABLES

OPENSSL_CONF contains the path of the configuration file and can be overridden by the -config command line option.

EXAMPLES

All the examples below presume that OPENSSL_CONF is set to a proper configuration file, e.g. the example configuration
file openssl/apps/openssl.cnf will do.

Time Stamp Request

To create a time stamp request for design1.txt with SHA-1 without nonce and policy and no certificate is required in the
response:

openssl ts -query -data design1.txt -no_nonce \
 -out design1.tsq

To create a similar time stamp request with specifying the message imprint explicitly:

openssl ts -query -digest b7e5d3f93198b38379852f2c04e78d73abdd0f4b \
 -no_nonce -out design1.tsq

To print the content of the previous request in human readable format:

openssl ts -query -in design1.tsq -text

To create a time stamp request which includes the MD-5 digest of design2.txt, requests the signer certificate and nonce, specifies
a policy id (assuming the tsa_policy1 name is defined in the OID section of the config file):

openssl ts -query -data design2.txt -md5 \
 -policy tsa_policy1 -cert -out design2.tsq

Time Stamp Response

Before generating a response a signing certificate must be created for the TSA that contains the timeStamping critical extended
key usage extension without any other key usage extensions. You can add the 'extendedKeyUsage = critical,timeStamping'
line to the user certificate section of the config file to generate a proper certificate. See req(1), ca(1), x509(1) for instructions.
The examples below assume that cacert.pem contains the certificate of the CA, tsacert.pem is the signing certificate issued by
cacert.pem and tsakey.pem is the private key of the TSA.

1187

OpenSSL Manual

To create a time stamp response for a request:

openssl ts -reply -queryfile design1.tsq -inkey tsakey.pem \
 -signer tsacert.pem -out design1.tsr

If you want to use the settings in the config file you could just write:

openssl ts -reply -queryfile design1.tsq -out design1.tsr

To print a time stamp reply to stdout in human readable format:

openssl ts -reply -in design1.tsr -text

To create a time stamp token instead of time stamp response:

openssl ts -reply -queryfile design1.tsq -out design1_token.der -token_out

To print a time stamp token to stdout in human readable format:

openssl ts -reply -in design1_token.der -token_in -text -token_out

To extract the time stamp token from a response:

openssl ts -reply -in design1.tsr -out design1_token.der -token_out

To add 'granted' status info to a time stamp token thereby creating a valid response:

openssl ts -reply -in design1_token.der -token_in -out design1.tsr

Time Stamp Verification

To verify a time stamp reply against a request:

openssl ts -verify -queryfile design1.tsq -in design1.tsr \
 -CAfile cacert.pem -untrusted tsacert.pem

To verify a time stamp reply that includes the certificate chain:

openssl ts -verify -queryfile design2.tsq -in design2.tsr \
 -CAfile cacert.pem

To verify a time stamp token against the original data file: openssl ts -verify -data design2.txt -in design2.tsr \ -CAfile cacert.pem

To verify a time stamp token against a message imprint: openssl ts -verify -digest b7e5d3f93198b38379852f2c04e78d73abd-
d0f4b \ -in design2.tsr -CAfile cacert.pem

You could also look at the 'test' directory for more examples.

BUGS

If you find any bugs or you have suggestions please write to Zoltan Glozik <zglozik@opentsa.org>. Known issues:

• No support for time stamps over SMTP, though it is quite easy to implement an automatic e-mail based TSA with procmail
and perl. HTTP server support is provided in the form of a separate apache module. HTTP client support is provided by
tsget(1). Pure TCP/IP protocol is not supported.

• The file containing the last serial number of the TSA is not locked when being read or written. This is a problem if more
than one instance of openssl(1) is trying to create a time stamp response at the same time. This is not an issue when using
the apache server module, it does proper locking.

• Look for the FIXME word in the source files.

• The source code should really be reviewed by somebody else, too.

• More testing is needed, I have done only some basic tests (see test/testtsa).

1188

OpenSSL Manual

AUTHOR

Zoltan Glozik <zglozik@opentsa.org>, OpenTSA project (http://www.opentsa.org)

SEE ALSO

tsget(1), openssl(1), req(1), x509(1), ca(1), genrsa(1), config(5)

1189

OpenSSL Manual

Name
verify — Utility to verify certificates.

Synopsis
opensslverify
[-CApath directory]
[-CAfile file]
[-purpose purpose]
[-policy arg]
[-ignore_critical]
[-crl_check]
[-crl_check_all]
[-policy_check]
[-explicit_policy]
[-inhibit_any]
[-inhibit_map]
[-x509_strict]
[-extended_crl]
[-use_deltas]
[-policy_print]
[-no_alt_chains]
[-allow_proxy_certs]
[-untrusted file]
[-help]
[-issuer_checks]
[-attime timestamp]
[-verbose]
[-]
[certificates]

DESCRIPTION

The verify command verifies certificate chains.

COMMAND OPTIONS

-CApath directory

A directory of trusted certificates. The certificates should have names of the form: hash.0 or have symbolic links to them of
this form ("hash" is the hashed certificate subject name: see the -hash option of the x509 utility). Under Unix the c_rehash
script will automatically create symbolic links to a directory of certificates.

-CAfile file A file of trusted certificates. The file should contain multiple certificates in PEM format concatenated together.

-untrusted file

A file of untrusted certificates. The file should contain multiple certificates in PEM format concatenated together.

-purpose purpose

The intended use for the certificate. If this option is not specified, verify will not consider certificate purpose during chain
verification. Currently accepted uses are sslclient, sslserver, nssslserver, smimesign, smimeencrypt. See the VERIFY
OPERATION section for more information.

-help

Print out a usage message.

-verbose

Print extra information about the operations being performed.

1190

OpenSSL Manual

-issuer_checks

Print out diagnostics relating to searches for the issuer certificate of the current certificate. This shows why each candidate
issuer certificate was rejected. The presence of rejection messages does not itself imply that anything is wrong; during the
normal verification process, several rejections may take place.

-attime timestamp

Perform validation checks using time specified by timestamp and not current system time. timestamp is the number of
seconds since 01.01.1970 (UNIX time).

-policy arg

Enable policy processing and add arg to the user-initial-policy-set (see RFC5280). The policy arg can be an object name
an OID in numeric form. This argument can appear more than once.

-policy_check

Enables certificate policy processing.

-explicit_policy

Set policy variable require-explicit-policy (see RFC5280).

-inhibit_any

Set policy variable inhibit-any-policy (see RFC5280).

-inhibit_map

Set policy variable inhibit-policy-mapping (see RFC5280).

-no_alt_chains

When building a certificate chain, if the first certificate chain found is not trusted, then OpenSSL will continue to check to
see if an alternative chain can be found that is trusted. With this option that behaviour is suppressed so that only the first
chain found is ever used. Using this option will force the behaviour to match that of previous OpenSSL versions.

-allow_proxy_certs

Allow the verification of proxy certificates.

-policy_print

Print out diagnostics related to policy processing.

-crl_check

Checks end entity certificate validity by attempting to look up a valid CRL. If a valid CRL cannot be found an error occurs.

-crl_check_all

Checks the validity of all certificates in the chain by attempting to look up valid CRLs.

-ignore_critical

Normally if an unhandled critical extension is present which is not supported by OpenSSL the certificate is rejected (as
required by RFC5280). If this option is set critical extensions are ignored.

-x509_strict

For strict X.509 compliance, disable non-compliant workarounds for broken certificates.

1191

OpenSSL Manual

-extended_crl

Enable extended CRL features such as indirect CRLs and alternate CRL signing keys.

-use_deltas

Enable support for delta CRLs.

-check_ss_sig

Verify the signature on the self-signed root CA. This is disabled by default because it doesn't add any security.

-

Indicates the last option. All arguments following this are assumed to be certificate files. This is useful if the first certificate
filename begins with a -.

certificates

One or more certificates to verify. If no certificates are given, verify will attempt to read a certificate from standard input.
Certificates must be in PEM format.

VERIFY OPERATION

The verify program uses the same functions as the internal SSL and S/MIME verification, therefore this description applies
to these verify operations too.

There is one crucial difference between the verify operations performed by the verify program: wherever possible an attempt is
made to continue after an error whereas normally the verify operation would halt on the first error. This allows all the problems
with a certificate chain to be determined.

The verify operation consists of a number of separate steps.

Firstly a certificate chain is built up starting from the supplied certificate and ending in the root CA. It is an error if the whole
chain cannot be built up. The chain is built up by looking up the issuers certificate of the current certificate. If a certificate is
found which is its own issuer it is assumed to be the root CA.

The process of 'looking up the issuers certificate' itself involves a number of steps. In versions of OpenSSL before 0.9.5a the
first certificate whose subject name matched the issuer of the current certificate was assumed to be the issuers certificate. In
OpenSSL 0.9.6 and later all certificates whose subject name matches the issuer name of the current certificate are subject to
further tests. The relevant authority key identifier components of the current certificate (if present) must match the subject key
identifier (if present) and issuer and serial number of the candidate issuer, in addition the keyUsage extension of the candidate
issuer (if present) must permit certificate signing.

The lookup first looks in the list of untrusted certificates and if no match is found the remaining lookups are from the trusted
certificates. The root CA is always looked up in the trusted certificate list: if the certificate to verify is a root certificate then
an exact match must be found in the trusted list.

The second operation is to check every untrusted certificate's extensions for consistency with the supplied purpose. If the -
purpose option is not included then no checks are done. The supplied or "leaf" certificate must have extensions compatible
with the supplied purpose and all other certificates must also be valid CA certificates. The precise extensions required are
described in more detail in the CERTIFICATE EXTENSIONS section of the x509 utility.

The third operation is to check the trust settings on the root CA. The root CA should be trusted for the supplied purpose. For
compatibility with previous versions of SSLeay and OpenSSL a certificate with no trust settings is considered to be valid for
all purposes.

The final operation is to check the validity of the certificate chain. The validity period is checked against the current system
time and the notBefore and notAfter dates in the certificate. The certificate signatures are also checked at this point.

If all operations complete successfully then certificate is considered valid. If any operation fails then the certificate is not valid.

1192

OpenSSL Manual

DIAGNOSTICS

When a verify operation fails the output messages can be somewhat cryptic. The general form of the error message is:

server.pem: /C=AU/ST=Queensland/O=CryptSoft Pty Ltd/CN=Test CA (1024 bit)
error 24 at 1 depth lookup:invalid CA certificate

The first line contains the name of the certificate being verified followed by the subject name of the certificate. The second line
contains the error number and the depth. The depth is number of the certificate being verified when a problem was detected
starting with zero for the certificate being verified itself then 1 for the CA that signed the certificate and so on. Finally a text
version of the error number is presented.

An exhaustive list of the error codes and messages is shown below, this also includes the name of the error code as defined in
the header file x509_vfy.h Some of the error codes are defined but never returned: these are described as "unused".

0 X509_V_OK: ok

the operation was successful.

2 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: unable to get issuer certificate

the issuer certificate of a looked up certificate could not be found. This normally means the list of trusted certificates is
not complete.

3 X509_V_ERR_UNABLE_TO_GET_CRL: unable to get certificate CRL

the CRL of a certificate could not be found.

4 X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: unable to decrypt certificate's signature

the certificate signature could not be decrypted. This means that the actual signature value could not be determined rather
than it not matching the expected value, this is only meaningful for RSA keys.

5 X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: unable to decrypt CRL's signature

the CRL signature could not be decrypted: this means that the actual signature value could not be determined rather than
it not matching the expected value. Unused.

6 X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: unable to decode issuer public key

the public key in the certificate SubjectPublicKeyInfo could not be read.

7 X509_V_ERR_CERT_SIGNATURE_FAILURE: certificate signature failure

the signature of the certificate is invalid.

8 X509_V_ERR_CRL_SIGNATURE_FAILURE: CRL signature failure

the signature of the certificate is invalid.

9 X509_V_ERR_CERT_NOT_YET_VALID: certificate is not yet valid

the certificate is not yet valid: the notBefore date is after the current time.

10 X509_V_ERR_CERT_HAS_EXPIRED: certificate has expired

the certificate has expired: that is the notAfter date is before the current time.

11 X509_V_ERR_CRL_NOT_YET_VALID: CRL is not yet valid

the CRL is not yet valid.

1193

OpenSSL Manual

12 X509_V_ERR_CRL_HAS_EXPIRED: CRL has expired

the CRL has expired.

13 X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: format error in certificate's notBefore field

the certificate notBefore field contains an invalid time.

14 X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: format error in certificate's notAfter field

the certificate notAfter field contains an invalid time.

15 X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: format error in CRL's lastUpdate field

the CRL lastUpdate field contains an invalid time.

16 X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: format error in CRL's nextUpdate field

the CRL nextUpdate field contains an invalid time.

17 X509_V_ERR_OUT_OF_MEM: out of memory

an error occurred trying to allocate memory. This should never happen.

18 X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: self signed certificate

the passed certificate is self signed and the same certificate cannot be found in the list of trusted certificates.

19 X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: self signed certificate in certificate chain

the certificate chain could be built up using the untrusted certificates but the root could not be found locally.

20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local issuer certificate

the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate cannot be found.

21 X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: unable to verify the first certificate

no signatures could be verified because the chain contains only one certificate and it is not self signed.

22 X509_V_ERR_CERT_CHAIN_TOO_LONG: certificate chain too long

the certificate chain length is greater than the supplied maximum depth. Unused.

23 X509_V_ERR_CERT_REVOKED: certificate revoked

the certificate has been revoked.

24 X509_V_ERR_INVALID_CA: invalid CA certificate

a CA certificate is invalid. Either it is not a CA or its extensions are not consistent with the supplied purpose.

25 X509_V_ERR_PATH_LENGTH_EXCEEDED: path length constraint exceeded

the basicConstraints pathlength parameter has been exceeded.

26 X509_V_ERR_INVALID_PURPOSE: unsupported certificate purpose

the supplied certificate cannot be used for the specified purpose.

27 X509_V_ERR_CERT_UNTRUSTED: certificate not trusted

the root CA is not marked as trusted for the specified purpose.

1194

OpenSSL Manual

28 X509_V_ERR_CERT_REJECTED: certificate rejected

the root CA is marked to reject the specified purpose.

29 X509_V_ERR_SUBJECT_ISSUER_MISMATCH: subject issuer mismatch

the current candidate issuer certificate was rejected because its subject name did not match the issuer name of the current
certificate. Only displayed when the -issuer_checks option is set.

30 X509_V_ERR_AKID_SKID_MISMATCH: authority and subject key identifier mismatch

the current candidate issuer certificate was rejected because its subject key identifier was present and did not match the
authority key identifier current certificate. Only displayed when the -issuer_checks option is set.

31 X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: authority and issuer serial number mismatch

the current candidate issuer certificate was rejected because its issuer name and serial number was present and did not
match the authority key identifier of the current certificate. Only displayed when the -issuer_checks option is set.

32 X509_V_ERR_KEYUSAGE_NO_CERTSIGN:key usage does not include certificate signing

the current candidate issuer certificate was rejected because its keyUsage extension does not permit certificate signing.

50 X509_V_ERR_APPLICATION_VERIFICATION: application verification failure

an application specific error. Unused.

BUGS

Although the issuer checks are a considerable improvement over the old technique they still suffer from limitations in the
underlying X509_LOOKUP API. One consequence of this is that trusted certificates with matching subject name must either
appear in a file (as specified by the -CAfile option) or a directory (as specified by -CApath. If they occur in both then only
the certificates in the file will be recognised.

Previous versions of OpenSSL assume certificates with matching subject name are identical and mishandled them.

Previous versions of this documentation swapped the meaning of the X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT
and 20 X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY error codes.

SEE ALSO

x509(1)

HISTORY

The -no_alt_chains options was first added to OpenSSL 1.0.1n and 1.0.2b.

1195

OpenSSL Manual

Name
version — print OpenSSL version information

Synopsis
openssl version
[-a]
[-v]
[-b]
[-o]
[-f]
[-p]
[-d]

DESCRIPTION

This command is used to print out version information about OpenSSL.

OPTIONS

-a

all information, this is the same as setting all the other flags.

-v

the current OpenSSL version.

-b

the date the current version of OpenSSL was built.

-o

option information: various options set when the library was built.

-f

compilation flags.

-p

platform setting.

-d

OPENSSLDIR setting.

NOTES

The output of openssl version -a would typically be used when sending in a bug report.

HISTORY

The -d option was added in OpenSSL 0.9.7.

1196

OpenSSL Manual

Name
x509 — Certificate display and signing utility

Synopsis
opensslx509
[-inform DER|PEM|NET]
[-outform DER|PEM|NET]
[-keyform DER|PEM]
[-CAform DER|PEM]
[-CAkeyform DER|PEM]
[-in filename]
[-out filename]
[-serial]
[-hash]
[-subject_hash]
[-issuer_hash]
[-ocspid]
[-subject]
[-issuer]
[-nameopt option]
[-email]
[-ocsp_uri]
[-startdate]
[-enddate]
[-purpose]
[-dates]
[-checkend num]
[-modulus]
[-pubkey]
[-fingerprint]
[-alias]
[-noout]
[-trustout]
[-clrtrust]
[-clrreject]
[-addtrust arg]
[-addreject arg]
[-setalias arg]
[-days arg]
[-set_serial n]
[-signkey filename]
[-passin arg]
[-x509toreq]
[-req]
[-CA filename]
[-CAkey filename]
[-CAcreateserial]
[-CAserial filename]
[-text]
[-certopt option]
[-C]
[-md2|-md5|-sha1|-mdc2]
[-clrext]
[-extfile filename]
[-extensions section]
[-engine id]

DESCRIPTION

The x509 command is a multi purpose certificate utility. It can be used to display certificate information, convert certificates
to various forms, sign certificate requests like a "mini CA" or edit certificate trust settings.

Since there are a large number of options they will split up into various sections.

1197

OpenSSL Manual

OPTIONS

INPUT, OUTPUT AND GENERAL PURPOSE OPTIONS

-inform DER|PEM|NET

This specifies the input format normally the command will expect an X509 certificate but this can change if other options
such as -req are present. The DER format is the DER encoding of the certificate and PEM is the base64 encoding of
the DER encoding with header and footer lines added. The NET option is an obscure Netscape server format that is now
obsolete.

-outform DER|PEM|NET

This specifies the output format, the options have the same meaning as the -inform option.

-in filename

This specifies the input filename to read a certificate from or standard input if this option is not specified.

-out filename

This specifies the output filename to write to or standard output by default.

-md2|-md5|-sha1|-mdc2

the digest to use. This affects any signing or display option that uses a message digest, such as the -fingerprint, -signkey
and -CA options. If not specified then SHA1 is used. If the key being used to sign with is a DSA key then this option has
no effect: SHA1 is always used with DSA keys.

-engine id

specifying an engine (by its unique id string) will cause x509 to attempt to obtain a functional reference to the specified
engine, thus initialising it if needed. The engine will then be set as the default for all available algorithms.

DISPLAY OPTIONS

Note: the -alias and -purpose options are also display options but are described in the TRUST SETTINGS section.

-text

prints out the certificate in text form. Full details are output including the public key, signature algorithms, issuer and
subject names, serial number any extensions present and any trust settings.

-certopt option

customise the output format used with -text. The option argument can be a single option or multiple options separated
by commas. The -certopt switch may be also be used more than once to set multiple options. See the TEXT OPTIONS
section for more information.

-noout

this option prevents output of the encoded version of the request.

-pubkey

outputs the the certificate's SubjectPublicKeyInfo block in PEM format.

-modulus

this option prints out the value of the modulus of the public key contained in the certificate.

-serial

outputs the certificate serial number.

1198

OpenSSL Manual

-subject_hash

outputs the "hash" of the certificate subject name. This is used in OpenSSL to form an index to allow certificates in a
directory to be looked up by subject name.

-issuer_hash

outputs the "hash" of the certificate issuer name.

-ocspid

outputs the OCSP hash values for the subject name and public key.

-hash

synonym for "-subject_hash" for backward compatibility reasons.

-subject_hash_old

outputs the "hash" of the certificate subject name using the older algorithm as used by OpenSSL versions before 1.0.0.

-issuer_hash_old

outputs the "hash" of the certificate issuer name using the older algorithm as used by OpenSSL versions before 1.0.0.

-subject

outputs the subject name.

-issuer

outputs the issuer name.

-nameopt option

option which determines how the subject or issuer names are displayed. The option argument can be a single option or
multiple options separated by commas. Alternatively the -nameopt switch may be used more than once to set multiple
options. See the NAME OPTIONS section for more information.

-email

outputs the email address(es) if any.

-ocsp_uri

outputs the OCSP responder address(es) if any.

-startdate

prints out the start date of the certificate, that is the notBefore date.

-enddate

prints out the expiry date of the certificate, that is the notAfter date.

-dates

prints out the start and expiry dates of a certificate.

-checkend arg

checks if the certificate expires within the next arg seconds and exits non-zero if yes it will expire or zero if not.

1199

OpenSSL Manual

-fingerprint

prints out the digest of the DER encoded version of the whole certificate (see digest options).

-C

this outputs the certificate in the form of a C source file.

TRUST SETTINGS

Please note these options are currently experimental and may well change.

A trusted certificate is an ordinary certificate which has several additional pieces of information attached to it such as the
permitted and prohibited uses of the certificate and an "alias".

Normally when a certificate is being verified at least one certificate must be "trusted". By default a trusted certificate must be
stored locally and must be a root CA: any certificate chain ending in this CA is then usable for any purpose.

Trust settings currently are only used with a root CA. They allow a finer control over the purposes the root CA can be used
for. For example a CA may be trusted for SSL client but not SSL server use.

See the description of the verify utility for more information on the meaning of trust settings.

Future versions of OpenSSL will recognize trust settings on any certificate: not just root CAs.

-trustout

this causes x509 to output a trusted certificate. An ordinary or trusted certificate can be input but by default an ordinary
certificate is output and any trust settings are discarded. With the -trustout option a trusted certificate is output. A trusted
certificate is automatically output if any trust settings are modified.

-setalias arg

sets the alias of the certificate. This will allow the certificate to be referred to using a nickname for example "Steve's
Certificate".

-alias

outputs the certificate alias, if any.

-clrtrust

clears all the permitted or trusted uses of the certificate.

-clrreject

clears all the prohibited or rejected uses of the certificate.

-addtrust arg

adds a trusted certificate use. Any object name can be used here but currently only clientAuth (SSL client use), serverAuth
(SSL server use) and emailProtection (S/MIME email) are used. Other OpenSSL applications may define additional uses.

-addreject arg

adds a prohibited use. It accepts the same values as the -addtrust option.

-purpose

this option performs tests on the certificate extensions and outputs the results. For a more complete description see the
CERTIFICATE EXTENSIONS section.

1200

OpenSSL Manual

SIGNING OPTIONS

The x509 utility can be used to sign certificates and requests: it can thus behave like a "mini CA".

-signkey filename

this option causes the input file to be self signed using the supplied private key.

If the input file is a certificate it sets the issuer name to the subject name (i.e. makes it self signed) changes the public key
to the supplied value and changes the start and end dates. The start date is set to the current time and the end date is set to
a value determined by the -days option. Any certificate extensions are retained unless the -clrext option is supplied.

If the input is a certificate request then a self signed certificate is created using the supplied private key using the subject
name in the request.

-passin arg

the key password source. For more information about the format of arg see the PASS PHRASE ARGUMENTS section
in openssl(1).

-clrext

delete any extensions from a certificate. This option is used when a certificate is being created from another certificate
(for example with the -signkey or the -CA options). Normally all extensions are retained.

-keyform PEM|DER

specifies the format (DER or PEM) of the private key file used in the -signkey option.

-days arg

specifies the number of days to make a certificate valid for. The default is 30 days.

-x509toreq

converts a certificate into a certificate request. The -signkey option is used to pass the required private key.

-req

by default a certificate is expected on input. With this option a certificate request is expected instead.

-set_serial n

specifies the serial number to use. This option can be used with either the -signkey or -CA options. If used in conjunction
with the -CA option the serial number file (as specified by the -CAserial or -CAcreateserial options) is not used.

The serial number can be decimal or hex (if preceded by 0x). Negative serial numbers can also be specified but their use
is not recommended.

-CA filename

specifies the CA certificate to be used for signing. When this option is present x509 behaves like a "mini CA". The input
file is signed by this CA using this option: that is its issuer name is set to the subject name of the CA and it is digitally
signed using the CAs private key.

This option is normally combined with the -req option. Without the -req option the input is a certificate which must be
self signed.

-CAkey filename

sets the CA private key to sign a certificate with. If this option is not specified then it is assumed that the CA private key
is present in the CA certificate file.

1201

OpenSSL Manual

-CAserial filename

sets the CA serial number file to use.

When the -CA option is used to sign a certificate it uses a serial number specified in a file. This file consist of one line
containing an even number of hex digits with the serial number to use. After each use the serial number is incremented
and written out to the file again.

The default filename consists of the CA certificate file base name with ".srl" appended. For example if the CA certificate
file is called "mycacert.pem" it expects to find a serial number file called "mycacert.srl".

-CAcreateserial

with this option the CA serial number file is created if it does not exist: it will contain the serial number "02" and the
certificate being signed will have the 1 as its serial number. Normally if the -CA option is specified and the serial number
file does not exist it is an error.

-extfile filename

file containing certificate extensions to use. If not specified then no extensions are added to the certificate.

-extensions section

the section to add certificate extensions from. If this option is not specified then the extensions should either be contained
in the unnamed (default) section or the default section should contain a variable called "extensions" which contains the
section to use. See the x509v3_config(5) manual page for details of the extension section format.

NAME OPTIONS

The nameopt command line switch determines how the subject and issuer names are displayed. If no nameopt switch is present
the default "oneline" format is used which is compatible with previous versions of OpenSSL. Each option is described in detail
below, all options can be preceded by a - to turn the option off. Only the first four will normally be used.

compat

use the old format. This is equivalent to specifying no name options at all.

RFC2253

displays names compatible with RFC2253 equivalent to esc_2253, esc_ctrl, esc_msb, utf8, dump_nostr,
dump_unknown, dump_der, sep_comma_plus, dn_rev and sname.

oneline

a oneline format which is more readable than RFC2253. It is equivalent to specifying the esc_2253, esc_ctrl, esc_msb,
utf8, dump_nostr, dump_der, use_quote, sep_comma_plus_space, space_eq and sname options.

multiline

a multiline format. It is equivalent esc_ctrl, esc_msb, sep_multiline, space_eq, lname and align.

esc_2253

escape the "special" characters required by RFC2253 in a field That is ,+"<>;. Additionally # is escaped at the beginning
of a string and a space character at the beginning or end of a string.

esc_ctrl

escape control characters. That is those with ASCII values less than 0x20 (space) and the delete (0x7f) character. They are
escaped using the RFC2253 \XX notation (where XX are two hex digits representing the character value).

esc_msb

escape characters with the MSB set, that is with ASCII values larger than 127.

1202

OpenSSL Manual

use_quote

escapes some characters by surrounding the whole string with " characters, without the option all escaping is done with
the \ character.

utf8

convert all strings to UTF8 format first. This is required by RFC2253. If you are lucky enough to have a UTF8 compatible
terminal then the use of this option (and not setting esc_msb) may result in the correct display of multibyte (international)
characters. Is this option is not present then multibyte characters larger than 0xff will be represented using the format
\UXXXX for 16 bits and \WXXXXXXXX for 32 bits. Also if this option is off any UTF8Strings will be converted to
their character form first.

ignore_type

this option does not attempt to interpret multibyte characters in any way. That is their content octets are merely dumped
as though one octet represents each character. This is useful for diagnostic purposes but will result in rather odd looking
output.

show_type

show the type of the ASN1 character string. The type precedes the field contents. For example "BMPSTRING: Hello
World".

dump_der

when this option is set any fields that need to be hexdumped will be dumped using the DER encoding of the field. Otherwise
just the content octets will be displayed. Both options use the RFC2253 #XXXX… format.

dump_nostr

dump non character string types (for example OCTET STRING) if this option is not set then non character string types
will be displayed as though each content octet represents a single character.

dump_all

dump all fields. This option when used with dump_der allows the DER encoding of the structure to be unambiguously
determined.

dump_unknown

dump any field whose OID is not recognised by OpenSSL.

sep_comma_plus, sep_comma_plus_space, sep_semi_plus_space, sep_multiline

these options determine the field separators. The first character is between RDNs and the second between multiple AVAs
(multiple AVAs are very rare and their use is discouraged). The options ending in "space" additionally place a space
after the separator to make it more readable. The sep_multiline uses a linefeed character for the RDN separator and
a spaced + for the AVA separator. It also indents the fields by four characters. If no field separator is specified then
sep_comma_plus_space is used by default.

dn_rev

reverse the fields of the DN. This is required by RFC2253. As a side effect this also reverses the order of multiple AVAs
but this is permissible.

nofname, sname, lname, oid

these options alter how the field name is displayed. nofname does not display the field at all. sname uses the "short name"
form (CN for commonName for example). lname uses the long form. oid represents the OID in numerical form and is
useful for diagnostic purpose.

1203

OpenSSL Manual

align

align field values for a more readable output. Only usable with sep_multiline.

space_eq

places spaces round the = character which follows the field name.

TEXT OPTIONS

As well as customising the name output format, it is also possible to customise the actual fields printed using the certopt
options when the text option is present. The default behaviour is to print all fields.

compatible

use the old format. This is equivalent to specifying no output options at all.

no_header

don't print header information: that is the lines saying "Certificate" and "Data".

no_version

don't print out the version number.

no_serial

don't print out the serial number.

no_signame

don't print out the signature algorithm used.

no_validity

don't print the validity, that is the notBefore and notAfter fields.

no_subject

don't print out the subject name.

no_issuer

don't print out the issuer name.

no_pubkey

don't print out the public key.

no_sigdump

don't give a hexadecimal dump of the certificate signature.

no_aux

don't print out certificate trust information.

no_extensions

don't print out any X509V3 extensions.

ext_default

retain default extension behaviour: attempt to print out unsupported certificate extensions.

1204

OpenSSL Manual

ext_error

print an error message for unsupported certificate extensions.

ext_parse

ASN1 parse unsupported extensions.

ext_dump

hex dump unsupported extensions.

ca_default

the value used by the ca utility, equivalent to no_issuer, no_pubkey, no_header, no_version, no_sigdump and
no_signame.

EXAMPLES

Note: in these examples the '\' means the example should be all on one line.

Display the contents of a certificate:

openssl x509 -in cert.pem -noout -text

Display the certificate serial number:

openssl x509 -in cert.pem -noout -serial

Display the certificate subject name:

openssl x509 -in cert.pem -noout -subject

Display the certificate subject name in RFC2253 form:

openssl x509 -in cert.pem -noout -subject -nameopt RFC2253

Display the certificate subject name in oneline form on a terminal supporting UTF8:

openssl x509 -in cert.pem -noout -subject -nameopt oneline,-esc_msb

Display the certificate MD5 fingerprint:

openssl x509 -in cert.pem -noout -fingerprint

Display the certificate SHA1 fingerprint:

openssl x509 -sha1 -in cert.pem -noout -fingerprint

Convert a certificate from PEM to DER format:

openssl x509 -in cert.pem -inform PEM -out cert.der -outform DER

Convert a certificate to a certificate request:

openssl x509 -x509toreq -in cert.pem -out req.pem -signkey key.pem

Convert a certificate request into a self signed certificate using extensions for a CA:

openssl x509 -req -in careq.pem -extfile openssl.cnf -extensions v3_ca \
 -signkey key.pem -out cacert.pem

Sign a certificate request using the CA certificate above and add user certificate extensions:

openssl x509 -req -in req.pem -extfile openssl.cnf -extensions v3_usr \
 -CA cacert.pem -CAkey key.pem -CAcreateserial

Set a certificate to be trusted for SSL client use and change set its alias to "Steve's Class 1 CA"

1205

OpenSSL Manual

openssl x509 -in cert.pem -addtrust clientAuth \
 -setalias "Steve's Class 1 CA" -out trust.pem

NOTES

The PEM format uses the header and footer lines:

-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----

it will also handle files containing:

-----BEGIN X509 CERTIFICATE-----
-----END X509 CERTIFICATE-----

Trusted certificates have the lines

-----BEGIN TRUSTED CERTIFICATE-----
-----END TRUSTED CERTIFICATE-----

The conversion to UTF8 format used with the name options assumes that T61Strings use the ISO8859-1 character set. This
is wrong but Netscape and MSIE do this as do many certificates. So although this is incorrect it is more likely to display the
majority of certificates correctly.

The -fingerprint option takes the digest of the DER encoded certificate. This is commonly called a "fingerprint". Because
of the nature of message digests the fingerprint of a certificate is unique to that certificate and two certificates with the same
fingerprint can be considered to be the same.

The Netscape fingerprint uses MD5 whereas MSIE uses SHA1.

The -email option searches the subject name and the subject alternative name extension. Only unique email addresses will be
printed out: it will not print the same address more than once.

CERTIFICATE EXTENSIONS

The -purpose option checks the certificate extensions and determines what the certificate can be used for. The actual checks
done are rather complex and include various hacks and workarounds to handle broken certificates and software.

The same code is used when verifying untrusted certificates in chains so this section is useful if a chain is rejected by the
verify code.

The basicConstraints extension CA flag is used to determine whether the certificate can be used as a CA. If the CA flag is true
then it is a CA, if the CA flag is false then it is not a CA. All CAs should have the CA flag set to true.

If the basicConstraints extension is absent then the certificate is considered to be a "possible CA" other extensions are checked
according to the intended use of the certificate. A warning is given in this case because the certificate should really not be
regarded as a CA: however it is allowed to be a CA to work around some broken software.

If the certificate is a V1 certificate (and thus has no extensions) and it is self signed it is also assumed to be a CA but a warning
is again given: this is to work around the problem of Verisign roots which are V1 self signed certificates.

If the keyUsage extension is present then additional restraints are made on the uses of the certificate. A CA certificate must
have the keyCertSign bit set if the keyUsage extension is present.

The extended key usage extension places additional restrictions on the certificate uses. If this extension is present (whether
critical or not) the key can only be used for the purposes specified.

A complete description of each test is given below. The comments about basicConstraints and keyUsage and V1 certificates
above apply to all CA certificates.

SSL Client

The extended key usage extension must be absent or include the "web client authentication" OID. keyUsage must be absent
or it must have the digitalSignature bit set. Netscape certificate type must be absent or it must have the SSL client bit set.

1206

OpenSSL Manual

SSL Client CA

The extended key usage extension must be absent or include the "web client authentication" OID. Netscape certificate type
must be absent or it must have the SSL CA bit set: this is used as a work around if the basicConstraints extension is absent.

SSL Server

The extended key usage extension must be absent or include the "web server authentication" and/or one of the SGC OIDs.
keyUsage must be absent or it must have the digitalSignature, the keyEncipherment set or both bits set. Netscape certificate
type must be absent or have the SSL server bit set.

SSL Server CA

The extended key usage extension must be absent or include the "web server authentication" and/or one of the SGC OIDs.
Netscape certificate type must be absent or the SSL CA bit must be set: this is used as a work around if the basicConstraints
extension is absent.

Netscape SSL Server

For Netscape SSL clients to connect to an SSL server it must have the keyEncipherment bit set if the keyUsage extension
is present. This isn't always valid because some cipher suites use the key for digital signing. Otherwise it is the same as
a normal SSL server.

Common S/MIME Client Tests

The extended key usage extension must be absent or include the "email protection" OID. Netscape certificate type must be
absent or should have the S/MIME bit set. If the S/MIME bit is not set in netscape certificate type then the SSL client bit
is tolerated as an alternative but a warning is shown: this is because some Verisign certificates don't set the S/MIME bit.

S/MIME Signing

In addition to the common S/MIME client tests the digitalSignature bit must be set if the keyUsage extension is present.

S/MIME Encryption

In addition to the common S/MIME tests the keyEncipherment bit must be set if the keyUsage extension is present.

S/MIME CA

The extended key usage extension must be absent or include the "email protection" OID. Netscape certificate type must
be absent or must have the S/MIME CA bit set: this is used as a work around if the basicConstraints extension is absent.

CRL Signing

The keyUsage extension must be absent or it must have the CRL signing bit set.

CRL Signing CA

The normal CA tests apply. Except in this case the basicConstraints extension must be present.

BUGS

Extensions in certificates are not transferred to certificate requests and vice versa.

It is possible to produce invalid certificates or requests by specifying the wrong private key or using inconsistent options in
some cases: these should be checked.

There should be options to explicitly set such things as start and end dates rather than an offset from the current time.

The code to implement the verify behaviour described in the TRUST SETTINGS is currently being developed. It thus describes
the intended behaviour rather than the current behaviour. It is hoped that it will represent reality in OpenSSL 0.9.5 and later.

1207

OpenSSL Manual

SEE ALSO

req(1), ca(1), genrsa(1), gendsa(1), verify(1), x509v3_config(5)

HISTORY

Before OpenSSL 0.9.8, the default digest for RSA keys was MD5.

The hash algorithm used in the -subject_hash and -issuer_hash options before OpenSSL 1.0.0 was based on the deprecated
MD5 algorithm and the encoding of the distinguished name. In OpenSSL 1.0.0 and later it is based on a canonical version of
the DN using SHA1. This means that any directories using the old form must have their links rebuilt using c_rehash or similar.

1208

OpenSSL Manual

Name
config — OpenSSL CONF library configuration files

DESCRIPTION

The OpenSSL CONF library can be used to read configuration files. It is used for the OpenSSL master configuration file
openssl.cnf and in a few other places like SPKAC files and certificate extension files for the x509 utility. OpenSSL applications
can also use the CONF library for their own purposes.

A configuration file is divided into a number of sections. Each section starts with a line [section_name] and ends when a new
section is started or end of file is reached. A section name can consist of alphanumeric characters and underscores.

The first section of a configuration file is special and is referred to as the default section this is usually unnamed and is from
the start of file until the first named section. When a name is being looked up it is first looked up in a named section (if any)
and then the default section.

The environment is mapped onto a section called ENV.

Comments can be included by preceding them with the # character

Each section in a configuration file consists of a number of name and value pairs of the form name=value

The name string can contain any alphanumeric characters as well as a few punctuation symbols such as . , ; and _.

The value string consists of the string following the = character until end of line with any leading and trailing white space
removed.

The value string undergoes variable expansion. This can be done by including the form $var or ${var}: this will substitute
the value of the named variable in the current section. It is also possible to substitute a value from another section using the
syntax $section::name or ${section::name}. By using the form $ENV::name environment variables can be substituted. It is
also possible to assign values to environment variables by using the name ENV::name, this will work if the program looks up
environment variables using the CONF library instead of calling getenv() directly.

It is possible to escape certain characters by using any kind of quote or the \ character. By making the last character of a line a
\ a value string can be spread across multiple lines. In addition the sequences \n, \r, \b and \t are recognized.

OPENSSL LIBRARY CONFIGURATION

In OpenSSL 0.9.7 and later applications can automatically configure certain aspects of OpenSSL using the master OpenSSL
configuration file, or optionally an alternative configuration file. The openssl utility includes this functionality: any sub com-
mand uses the master OpenSSL configuration file unless an option is used in the sub command to use an alternative config-
uration file.

To enable library configuration the default section needs to contain an appropriate line which points to the main configuration
section. The default name is openssl_conf which is used by the openssl utility. Other applications may use an alternative name
such as myapplicaton_conf.

The configuration section should consist of a set of name value pairs which contain specific module configuration information.
The name represents the name of the configuration module the meaning of the value is module specific: it may, for example,
represent a further configuration section containing configuration module specific information. E.g.

openssl_conf = openssl_init

[openssl_init]

oid_section = new_oids
engines = engine_section

[new_oids]

… new oids here …

1209

OpenSSL Manual

[engine_section]

… engine stuff here …

The features of each configuration module are described below.

ASN1 OBJECT CONFIGURATION MODULE

This module has the name oid_section. The value of this variable points to a section containing name value pairs of OIDs: the
name is the OID short and long name, the value is the numerical form of the OID. Although some of the openssl utility sub
commands already have their own ASN1 OBJECT section functionality not all do. By using the ASN1 OBJECT configuration
module all the openssl utility sub commands can see the new objects as well as any compliant applications. For example:

[new_oids]

some_new_oid = 1.2.3.4
some_other_oid = 1.2.3.5

In OpenSSL 0.9.8 it is also possible to set the value to the long name followed by a comma and the numerical OID form.
For example:

shortName = some object long name, 1.2.3.4

ENGINE CONFIGURATION MODULE

This ENGINE configuration module has the name engines. The value of this variable points to a section containing further
ENGINE configuration information.

The section pointed to by engines is a table of engine names (though see engine_id below) and further sections containing
configuration information specific to each ENGINE.

Each ENGINE specific section is used to set default algorithms, load dynamic, perform initialization and send ctrls. The
actual operation performed depends on the command name which is the name of the name value pair. The currently supported
commands are listed below.

For example:

[engine_section]

Configure ENGINE named "foo"
foo = foo_section
Configure ENGINE named "bar"
bar = bar_section

[foo_section]
… foo ENGINE specific commands …

[bar_section]
… "bar" ENGINE specific commands …

The command engine_id is used to give the ENGINE name. If used this command must be first. For example:

[engine_section]
This would normally handle an ENGINE named "foo"
foo = foo_section

[foo_section]
Override default name and use "myfoo" instead.
engine_id = myfoo

The command dynamic_path loads and adds an ENGINE from the given path. It is equivalent to sending the ctrls SO_PATH
with the path argument followed by LIST_ADD with value 2 and LOAD to the dynamic ENGINE. If this is not the required
behaviour then alternative ctrls can be sent directly to the dynamic ENGINE using ctrl commands.

The command init determines whether to initialize the ENGINE. If the value is 0 the ENGINE will not be initialized, if 1 and
attempt it made to initialized the ENGINE immediately. If the init command is not present then an attempt will be made to
initialize the ENGINE after all commands in its section have been processed.

1210

OpenSSL Manual

The command default_algorithms sets the default algorithms an ENGINE will supply using the functions
ENGINE_set_default_string()

If the name matches none of the above command names it is assumed to be a ctrl command which is sent to the ENGINE.
The value of the command is the argument to the ctrl command. If the value is the string EMPTY then no value is sent to
the command.

For example:

[engine_section]

Configure ENGINE named "foo"
foo = foo_section

[foo_section]
Load engine from DSO
dynamic_path = /some/path/fooengine.so
A foo specific ctrl.
some_ctrl = some_value
Another ctrl that doesn't take a value.
other_ctrl = EMPTY
Supply all default algorithms
default_algorithms = ALL

EVP CONFIGURATION MODULE

This modules has the name alg_section which points to a section containing algorithm commands.

Currently the only algorithm command supported is fips_mode whose value should be a boolean string such as on or off. If
the value is on this attempt to enter FIPS mode. If the call fails or the library is not FIPS capable then an error occurs.

For example:

alg_section = evp_settings

[evp_settings]

fips_mode = on

NOTES

If a configuration file attempts to expand a variable that doesn't exist then an error is flagged and the file will not load. This
can happen if an attempt is made to expand an environment variable that doesn't exist. For example in a previous version of
OpenSSL the default OpenSSL master configuration file used the value of HOME which may not be defined on non Unix
systems and would cause an error.

This can be worked around by including a default section to provide a default value: then if the environment lookup fails the
default value will be used instead. For this to work properly the default value must be defined earlier in the configuration file
than the expansion. See the EXAMPLES section for an example of how to do this.

If the same variable exists in the same section then all but the last value will be silently ignored. In certain circumstances
such as with DNs the same field may occur multiple times. This is usually worked around by ignoring any characters before
an initial . e.g.

1.OU="My first OU"
2.OU="My Second OU"

EXAMPLES

Here is a sample configuration file using some of the features mentioned above.

This is the default section.

HOME=/temp

1211

OpenSSL Manual

RANDFILE= ${ENV::HOME}/.rnd
configdir=$ENV::HOME/config

[section_one]

We are now in section one.

Quotes permit leading and trailing whitespace
any = " any variable name "

other = A string that can \
cover several lines \
by including \\ characters

message = Hello World\n

[section_two]

greeting = $section_one::message

This next example shows how to expand environment variables safely.

Suppose you want a variable called tmpfile to refer to a temporary filename. The directory it is placed in can determined by
the the TEMP or TMP environment variables but they may not be set to any value at all. If you just include the environment
variable names and the variable doesn't exist then this will cause an error when an attempt is made to load the configuration
file. By making use of the default section both values can be looked up with TEMP taking priority and /tmp used if neither
is defined:

TMP=/tmp
The above value is used if TMP isn't in the environment
TEMP=$ENV::TMP
The above value is used if TEMP isn't in the environment
tmpfile=${ENV::TEMP}/tmp.filename

Simple OpenSSL library configuration example to enter FIPS mode:

Default appname: should match "appname" parameter (if any)
supplied to CONF_modules_load_file et al.
openssl_conf = openssl_conf_section

[openssl_conf_section]
Configuration module list
alg_section = evp_sect

[evp_sect]
Set to "yes" to enter FIPS mode if supported
fips_mode = yes

Note: in the above example you will get an error in non FIPS capable versions of OpenSSL.

More complex OpenSSL library configuration. Add OID and don't enter FIPS mode:

Default appname: should match "appname" parameter (if any)
supplied to CONF_modules_load_file et al.
openssl_conf = openssl_conf_section

[openssl_conf_section]
Configuration module list
alg_section = evp_sect
oid_section = new_oids

[evp_sect]
This will have no effect as FIPS mode is off by default.
Set to "yes" to enter FIPS mode, if supported
fips_mode = no

[new_oids]
New OID, just short name
newoid1 = 1.2.3.4.1
New OID shortname and long name
newoid2 = New OID 2 long name, 1.2.3.4.2

1212

OpenSSL Manual

The above examples can be used with with any application supporting library configuration if "openssl_conf" is modified to
match the appropriate "appname".

For example if the second sample file above is saved to "example.cnf" then the command line:

OPENSSL_CONF=example.cnf openssl asn1parse -genstr OID:1.2.3.4.1

will output:

0:d=0 hl=2 l= 4 prim: OBJECT :newoid1

showing that the OID "newoid1" has been added as "1.2.3.4.1".

BUGS

Currently there is no way to include characters using the octal \nnn form. Strings are all null terminated so nulls cannot form
part of the value.

The escaping isn't quite right: if you want to use sequences like \n you can't use any quote escaping on the same line.

Files are loaded in a single pass. This means that an variable expansion will only work if the variables referenced are defined
earlier in the file.

SEE ALSO

x509(1), req(1), ca(1)

1213

OpenSSL Manual

Name
x509v3_config — X509 V3 certificate extension configuration format

DESCRIPTION

Several of the OpenSSL utilities can add extensions to a certificate or certificate request based on the contents of a configuration
file.

Typically the application will contain an option to point to an extension section. Each line of the extension section takes the
form:

extension_name=[critical,] extension_options

If critical is present then the extension will be critical.

The format of extension_options depends on the value of extension_name.

There are four main types of extension: string extensions, multi-valued extensions, raw and arbitrary extensions.

String extensions simply have a string which contains either the value itself or how it is obtained.

For example:

nsComment="This is a Comment"

Multi-valued extensions have a short form and a long form. The short form is a list of names and values:

basicConstraints=critical,CA:true,pathlen:1

The long form allows the values to be placed in a separate section:

basicConstraints=critical,@bs_section

[bs_section]

CA=true
pathlen=1

Both forms are equivalent.

The syntax of raw extensions is governed by the extension code: it can for example contain data in multiple sections. The
correct syntax to use is defined by the extension code itself: check out the certificate policies extension for an example.

If an extension type is unsupported then the arbitrary extension syntax must be used, see the “ARBITRARY EXTENSIONS”
section for more details.

STANDARD EXTENSIONS

The following sections describe each supported extension in detail.

Basic Constraints.

This is a multi valued extension which indicates whether a certificate is a CA certificate. The first (mandatory) name is CA
followed by TRUE or FALSE. If CA is TRUE then an optional pathlen name followed by an non-negative value can be
included.

For example:

basicConstraints=CA:TRUE

basicConstraints=CA:FALSE

basicConstraints=critical,CA:TRUE, pathlen:0

1214

OpenSSL Manual

A CA certificate must include the basicConstraints value with the CA field set to TRUE. An end user certificate must either
set CA to FALSE or exclude the extension entirely. Some software may require the inclusion of basicConstraints with CA set
to FALSE for end entity certificates.

The pathlen parameter indicates the maximum number of CAs that can appear below this one in a chain. So if you have a CA
with a pathlen of zero it can only be used to sign end user certificates and not further CAs.

Key Usage.

Key usage is a multi valued extension consisting of a list of names of the permitted key usages.

The supporte names are: digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment, keyAgreement, keyCertSign,
cRLSign, encipherOnly and decipherOnly.

Examples:

keyUsage=digitalSignature, nonRepudiation

keyUsage=critical, keyCertSign

Extended Key Usage.

This extensions consists of a list of usages indicating purposes for which the certificate public key can be used for,

These can either be object short names of the dotted numerical form of OIDs. While any OID can be used only certain values
make sense. In particular the following PKIX, NS and MS values are meaningful:

Value Meaning
----- -------
serverAuth SSL/TLS Web Server Authentication.
clientAuth SSL/TLS Web Client Authentication.
codeSigning Code signing.
emailProtection E-mail Protection (S/MIME).
timeStamping Trusted Timestamping
msCodeInd Microsoft Individual Code Signing (authenticode)
msCodeCom Microsoft Commercial Code Signing (authenticode)
msCTLSign Microsoft Trust List Signing
msSGC Microsoft Server Gated Crypto
msEFS Microsoft Encrypted File System
nsSGC Netscape Server Gated Crypto

Examples:

extendedKeyUsage=critical,codeSigning,1.2.3.4
extendedKeyUsage=nsSGC,msSGC

Subject Key Identifier.

This is really a string extension and can take two possible values. Either the word hash which will automatically follow the
guidelines in RFC3280 or a hex string giving the extension value to include. The use of the hex string is strongly discouraged.

Example:

subjectKeyIdentifier=hash

Authority Key Identifier.

The authority key identifier extension permits two options. keyid and issuer: both can take the optional value "always".

If the keyid option is present an attempt is made to copy the subject key identifier from the parent certificate. If the value
"always" is present then an error is returned if the option fails.

The issuer option copies the issuer and serial number from the issuer certificate. This will only be done if the keyid option fails
or is not included unless the "always" flag will always include the value.

Example:

1215

OpenSSL Manual

authorityKeyIdentifier=keyid,issuer

Subject Alternative Name.

The subject alternative name extension allows various literal values to be included in the configuration file. These include
email (an email address) URI a uniform resource indicator, DNS (a DNS domain name), RID (a registered ID: OBJECT
IDENTIFIER), IP (an IP address), dirName (a distinguished name) and otherName.

The email option include a special 'copy' value. This will automatically include and email addresses contained in the certificate
subject name in the extension.

The IP address used in the IP options can be in either IPv4 or IPv6 format.

The value of dirName should point to a section containing the distinguished name to use as a set of name value pairs. Multi
values AVAs can be formed by prefacing the name with a + character.

otherName can include arbitrary data associated with an OID: the value should be the OID followed by a semicolon and the
content in standard ASN1_generate_nconf(3) format.

Examples:

subjectAltName=email:copy,email:my@other.address,URI:http://my.url.here/
subjectAltName=IP:192.168.7.1
subjectAltName=IP:13::17
subjectAltName=email:my@other.address,RID:1.2.3.4
subjectAltName=otherName:1.2.3.4;UTF8:some other identifier

subjectAltName=dirName:dir_sect

[dir_sect]
C=UK
O=My Organization
OU=My Unit
CN=My Name

Issuer Alternative Name.

The issuer alternative name option supports all the literal options of subject alternative name. It does not support the email:copy
option because that would not make sense. It does support an additional issuer:copy option that will copy all the subject
alternative name values from the issuer certificate (if possible).

Example:

issuserAltName = issuer:copy

Authority Info Access.

The authority information access extension gives details about how to access certain information relating to the CA. Its syntax
is accessOID;location where location has the same syntax as subject alternative name (except that email:copy is not supported).
accessOID can be any valid OID but only certain values are meaningful, for example OCSP and caIssuers.

Example:

authorityInfoAccess = OCSP;URI:http://ocsp.my.host/
authorityInfoAccess = caIssuers;URI:http://my.ca/ca.html

CRL distribution points.

This is a multi-valued extension whose options can be either in name:value pair using the same form as subject alternative
name or a single value representing a section name containing all the distribution point fields.

For a name:value pair a new DistributionPoint with the fullName field set to the given value both the cRLissuer and reasons
fields are omitted in this case.

In the single option case the section indicated contains values for each field. In this section:

1216

OpenSSL Manual

If the name is "fullname" the value field should contain the full name of the distribution point in the same format as subject
alternative name.

If the name is "relativename" then the value field should contain a section name whose contents represent a DN fragment to
be placed in this field.

The name "CRLIssuer" if present should contain a value for this field in subject alternative name format.

If the name is "reasons" the value field should consist of a comma separated field containing the reasons. Valid reasons are:
"keyCompromise", "CACompromise", "affiliationChanged", "superseded", "cessationOfOperation", "certificateHold", "priv-
ilegeWithdrawn" and "AACompromise".

Simple examples:

crlDistributionPoints=URI:http://myhost.com/myca.crl
crlDistributionPoints=URI:http://my.com/my.crl,URI:http://oth.com/my.crl

Full distribution point example:

crlDistributionPoints=crldp1_section

[crldp1_section]

fullname=URI:http://myhost.com/myca.crl
CRLissuer=dirName:issuer_sect
reasons=keyCompromise, CACompromise

[issuer_sect]
C=UK
O=Organisation
CN=Some Name

Issuing Distribution Point

This extension should only appear in CRLs. It is a multi valued extension whose syntax is similar to the "section" pointed to
by the CRL distribution points extension with a few differences.

The names "reasons" and "CRLissuer" are not recognized.

The name "onlysomereasons" is accepted which sets this field. The value is in the same format as the CRL distribution point
"reasons" field.

The names "onlyuser", "onlyCA", "onlyAA" and "indirectCRL" are also accepted the values should be a boolean value (TRUE
or FALSE) to indicate the value of the corresponding field.

Example:

issuingDistributionPoint=critical, @idp_section

[idp_section]

fullname=URI:http://myhost.com/myca.crl
indirectCRL=TRUE
onlysomereasons=keyCompromise, CACompromise

[issuer_sect]
C=UK
O=Organisation
CN=Some Name

Certificate Policies.

This is a raw extension. All the fields of this extension can be set by using the appropriate syntax.

If you follow the PKIX recommendations and just using one OID then you just include the value of that OID. Multiple OIDs
can be set separated by commas, for example:

1217

OpenSSL Manual

certificatePolicies= 1.2.4.5, 1.1.3.4

If you wish to include qualifiers then the policy OID and qualifiers need to be specified in a separate section: this is done by
using the @section syntax instead of a literal OID value.

The section referred to must include the policy OID using the name policyIdentifier, cPSuri qualifiers can be included using
the syntax:

CPS.nnn=value

userNotice qualifiers can be set using the syntax:

userNotice.nnn=@notice

The value of the userNotice qualifier is specified in the relevant section. This section can include explicitText, organization and
noticeNumbers options. explicitText and organization are text strings, noticeNumbers is a comma separated list of numbers.
The organization and noticeNumbers options (if included) must BOTH be present. If you use the userNotice option with IE5
then you need the 'ia5org' option at the top level to modify the encoding: otherwise it will not be interpreted properly.

Example:

certificatePolicies=ia5org,1.2.3.4,1.5.6.7.8,@polsect

[polsect]

policyIdentifier = 1.3.5.8
CPS.1="http://my.host.name/"
CPS.2="http://my.your.name/"
userNotice.1=@notice

[notice]

explicitText="Explicit Text Here"
organization="Organisation Name"
noticeNumbers=1,2,3,4

The ia5org option changes the type of the organization field. In RFC2459 it can only be of type DisplayText. In RFC3280
IA5Strring is also permissible. Some software (for example some versions of MSIE) may require ia5org.

Policy Constraints

This is a multi-valued extension which consisting of the names requireExplicitPolicy or inhibitPolicyMapping and a non
negative intger value. At least one component must be present.

Example:

policyConstraints = requireExplicitPolicy:3

Inhibit Any Policy

This is a string extension whose value must be a non negative integer.

Example:

inhibitAnyPolicy = 2

Name Constraints

The name constraints extension is a multi-valued extension. The name should begin with the word permitted or excluded
followed by a ;. The rest of the name and the value follows the syntax of subjectAltName except email:copy is not supported
and the IP form should consist of an IP addresses and subnet mask separated by a /.

Examples:

nameConstraints=permitted;IP:192.168.0.0/255.255.0.0

1218

OpenSSL Manual

nameConstraints=permitted;email:.somedomain.com

nameConstraints=excluded;email:.com

OCSP No Check

The OCSP No Check extension is a string extension but its value is ignored.

Example:

noCheck = ignored

DEPRECATED EXTENSIONS

The following extensions are non standard, Netscape specific and largely obsolete. Their use in new applications is discouraged.

Netscape String extensions.

Netscape Comment (nsComment) is a string extension containing a comment which will be displayed when the certificate
is viewed in some browsers.

Example:

nsComment = "Some Random Comment"

Other supported extensions in this category are: nsBaseUrl, nsRevocationUrl, nsCaRevocationUrl, nsRenewalUrl,
nsCaPolicyUrl and nsSslServerName.

Netscape Certificate Type

This is a multi-valued extensions which consists of a list of flags to be included. It was used to indicate the purposes for which
a certificate could be used. The basicConstraints, keyUsage and extended key usage extensions are now used instead.

Acceptable values for nsCertType are: client, server, email, objsign, reserved, sslCA, emailCA, objCA.

ARBITRARY EXTENSIONS

If an extension is not supported by the OpenSSL code then it must be encoded using the arbitrary extension format. It is also
possible to use the arbitrary format for supported extensions. Extreme care should be taken to ensure that the data is formatted
correctly for the given extension type.

There are two ways to encode arbitrary extensions.

The first way is to use the word ASN1 followed by the extension content using the same syntax as ASN1_generate_nconf(3).
For example:

1.2.3.4=critical,ASN1:UTF8String:Some random data

1.2.3.4=ASN1:SEQUENCE:seq_sect

[seq_sect]

field1 = UTF8:field1
field2 = UTF8:field2

It is also possible to use the word DER to include the raw encoded data in any extension.

1.2.3.4=critical,DER:01:02:03:04
1.2.3.4=DER:01020304

The value following DER is a hex dump of the DER encoding of the extension Any extension can be placed in this form to
override the default behaviour. For example:

basicConstraints=critical,DER:00:01:02:03

1219

OpenSSL Manual

WARNING

There is no guarantee that a specific implementation will process a given extension. It may therefore be sometimes possible
to use certificates for purposes prohibited by their extensions because a specific application does not recognize or honour the
values of the relevant extensions.

The DER and ASN1 options should be used with caution. It is possible to create totally invalid extensions if they are not used
carefully.

NOTES

If an extension is multi-value and a field value must contain a comma the long form must be used otherwise the comma would
be misinterpreted as a field separator. For example:

subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar

will produce an error but the equivalent form:

subjectAltName=@subject_alt_section

[subject_alt_section]
subjectAltName=URI:ldap://somehost.com/CN=foo,OU=bar

is valid.

Due to the behaviour of the OpenSSL conf library the same field name can only occur once in a section. This means that:

subjectAltName=@alt_section

[alt_section]

email=steve@here
email=steve@there

will only recognize the last value. This can be worked around by using the form:

[alt_section]

email.1=steve@here
email.2=steve@there

HISTORY

The X509v3 extension code was first added to OpenSSL 0.9.2.

Policy mappings, inhibit any policy and name constraints support was added in OpenSSL 0.9.8

The directoryName and otherName option as well as the ASN1 option for arbitrary extensions was added in OpenSSL 0.9.8

SEE ALSO

req(1), ca(1), x509(1), ASN1_generate_nconf(3)

1220

OpenSSL Manual

Cryptographic functions

1221

OpenSSL Manual

Name
crypto — OpenSSL cryptographic library

Synopsis

DESCRIPTION

The OpenSSL crypto library implements a wide range of cryptographic algorithms used in various Internet standards. The
services provided by this library are used by the OpenSSL implementations of SSL, TLS and S/MIME, and they have also
been used to implement SSH, OpenPGP, and other cryptographic standards.

OVERVIEW

libcrypto consists of a number of sub-libraries that implement the individual algorithms.

The functionality includes symmetric encryption, public key cryptography and key agreement, certificate handling, crypto-
graphic hash functions and a cryptographic pseudo-random number generator.

SYMMETRIC CIPHERS

blowfish(3), cast(3), des(3), idea(3), rc2(3), rc4(3), rc5(3)

PUBLIC KEY CRYPTOGRAPHY AND KEY AGREEMENT

dsa(3), dh(3), rsa(3)

CERTIFICATES

x509(3), x509v3(3)

AUTHENTICATION CODES
HASH FUNCTIONS

hmac(3), md2(3), md4(3), md5(3), mdc2(3), ripemd(3), sha(3)

AUXILIARY FUNCTIONS

err(3), threads(3), rand(3), OPENSSL_VERSION_NUMBER(3)

INPUT/OUTPUT
DATA ENCODING

asn1(3), bio(3), evp(3), pem(3), pkcs7(3), pkcs12(3)

INTERNAL FUNCTIONS

bn(3), buffer(3), lhash(3), objects(3), stack(3), txt_db(3)

NOTES

Some of the newer functions follow a naming convention using the numbers 0 and 1. For example the functions:

int X509_CRL_add0_revoked(X509_CRL *crl, X509_REVOKED *rev);
int X509_add1_trust_object(X509 *x, ASN1_OBJECT *obj);

The 0 version uses the supplied structure pointer directly in the parent and it will be freed up when the parent is freed. In the
above example crl would be freed but rev would not.

The 1 function uses a copy of the supplied structure pointer (or in some cases increases its link count) in the parent and so
both (x and obj above) should be freed up.

1222

OpenSSL Manual

SEE ALSO
openssl(1), ssl(3)

1223

OpenSSL Manual

Name
ASN1_generate_nconf and ASN1_generate_v3 — ASN1 generation functions

Synopsis
#include <openssl/asn1.h>

ASN1_TYPE *ASN1_generate_nconf(char *str, CONF *nconf);
ASN1_TYPE *ASN1_generate_v3(char *str, X509V3_CTX *cnf);

DESCRIPTION

These functions generate the ASN1 encoding of a string in an ASN1_TYPE structure.

str contains the string to encode nconf or cnf contains the optional configuration information where additional strings will be
read from. nconf will typically come from a config file wherease cnf is obtained from an X509V3_CTX structure which will
typically be used by X509 v3 certificate extension functions. cnf or nconf can be set to NULL if no additional configuration
will be used.

GENERATION STRING FORMAT

The actual data encoded is determined by the string str and the configuration information. The general format of the string is:

[modifier,]type[:value]

That is zero or more comma separated modifiers followed by a type followed by an optional colon and a value. The formats
of type, value and modifier are explained below.

SUPPORTED TYPES

The supported types are listed below. Unless otherwise specified only the ASCII format is permissible.

BOOLEAN
BOOL

This encodes a boolean type. The value string is mandatory and should be TRUE or FALSE. Additionally TRUE, true,
Y, y, YES, yes, FALSE, false, N, n, NO and no are acceptable.

NULL

Encode the NULL type, the value string must not be present.

INTEGER
INT

Encodes an ASN1 INTEGER type. The value string represents the value of the integer, it can be prefaced by a minus
sign and is normally interpreted as a decimal value unless the prefix 0x is included.

ENUMERATED
ENUM

Encodes the ASN1 ENUMERATED type, it is otherwise identical to INTEGER.

OBJECT
OID

Encodes an ASN1 OBJECT IDENTIFIER, the value string can be a short name, a long name or numerical format.

UTCTIME
UTC

Encodes an ASN1 UTCTime structure, the value should be in the format YYMMDDHHMMSSZ.

1224

OpenSSL Manual

GENERALIZEDTIME
GENTIME

Encodes an ASN1 GeneralizedTime structure, the value should be in the format YYYYMMDDHHMMSSZ.

OCTETSTRING
OCT

Encodes an ASN1 OCTET STRING. value represents the contents of this structure, the format strings ASCII and HEX
can be used to specify the format of value.

BITSTRING
BITSTR

Encodes an ASN1 BIT STRING. value represents the contents of this structure, the format strings ASCII, HEX and
BITLIST can be used to specify the format of value.

If the format is anything other than BITLIST the number of unused bits is set to zero.

UNIVERSALSTRING, UNIV, IA5, IA5STRING, UTF8, UTF8String, BMP, BMPSTRING, VISIBLESTRING,
VISIBLE, PRINTABLESTRING, PRINTABLE, T61, T61STRING, TELETEXSTRING, GeneralString,
NUMERICSTRING, NUMERIC

These encode the corresponding string types. value represents the contents of this structure. The format can be ASCII
or UTF8.

SEQUENCE
SEQ
SET

Formats the result as an ASN1 SEQUENCE or SET type. value should be a section name which will contain the contents.
The field names in the section are ignored and the values are in the generated string format. If value is absent then an
empty SEQUENCE will be encoded.

MODIFIERS

Modifiers affect the following structure, they can be used to add EXPLICIT or IMPLICIT tagging, add wrappers or to change
the string format of the final type and value. The supported formats are documented below.

EXPLICIT
EXP

Add an explicit tag to the following structure. This string should be followed by a colon and the tag value to use as a
decimal value.

By following the number with U, A, P or C UNIVERSAL, APPLICATION, PRIVATE or CONTEXT SPECIFIC tagging
can be used, the default is CONTEXT SPECIFIC.

IMPLICIT
IMP

This is the same as EXPLICIT except IMPLICIT tagging is used instead.

OCTWRAP
SEQWRAP
SETWRAP
BITWRAP

The following structure is surrounded by an OCTET STRING, a SEQUENCE, a SET or a BIT STRING respectively. For
a BIT STRING the number of unused bits is set to zero.

1225

OpenSSL Manual

FORMAT

This specifies the format of the ultimate value. It should be followed by a colon and one of the strings ASCII, UTF8,
HEX or BITLIST.

If no format specifier is included then ASCII is used. If UTF8 is specified then the value string must be a valid UTF8
string. For HEX the output must be a set of hex digits. BITLIST (which is only valid for a BIT STRING) is a comma
separated list of the indices of the set bits, all other bits are zero.

EXAMPLES

A simple IA5String:

IA5STRING:Hello World

An IA5String explicitly tagged:

EXPLICIT:0,IA5STRING:Hello World

An IA5String explicitly tagged using APPLICATION tagging:

EXPLICIT:0A,IA5STRING:Hello World

A BITSTRING with bits 1 and 5 set and all others zero:

FORMAT:BITLIST,BITSTRING:1,5

A more complex example using a config file to produce a SEQUENCE consiting of a BOOL an OID and a UTF8String:

asn1 = SEQUENCE:seq_section

[seq_section]

field1 = BOOLEAN:TRUE
field2 = OID:commonName
field3 = UTF8:Third field

This example produces an RSAPrivateKey structure, this is the key contained in the file client.pem in all OpenSSL distributions
(note: the field names such as 'coeff' are ignored and are present just for clarity):

asn1=SEQUENCE:private_key
[private_key]
version=INTEGER:0

n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9

e=INTEGER:0x010001

d=INTEGER:0x6F05EAD2F27FFAEC84BEC360C4B928FD5F3A9865D0FCAAD291E2A52F4A\
F810DC6373278C006A0ABBA27DC8C63BF97F7E666E27C5284D7D3B1FFFE16B7A87B51D

p=INTEGER:0xF3929B9435608F8A22C208D86795271D54EBDFB09DDEF539AB083DA912\
D4BD57

q=INTEGER:0xC50016F89DFF2561347ED1186A46E150E28BF2D0F539A1594BBD7FE467\
46EC4F

exp1=INTEGER:0x9E7D4326C924AFC1DEA40B45650134966D6F9DFA3A7F9D698CD4ABEA\
9C0A39B9

exp2=INTEGER:0xBA84003BB95355AFB7C50DF140C60513D0BA51D637272E355E397779\
E7B2458F

coeff=INTEGER:0x30B9E4F2AFA5AC679F920FC83F1F2DF1BAF1779CF989447FABC2F5\
628657053A

This example is the corresponding public key in a SubjectPublicKeyInfo structure:

Start with a SEQUENCE

1226

OpenSSL Manual

asn1=SEQUENCE:pubkeyinfo

pubkeyinfo contains an algorithm identifier and the public key wrapped
in a BIT STRING
[pubkeyinfo]
algorithm=SEQUENCE:rsa_alg
pubkey=BITWRAP,SEQUENCE:rsapubkey

algorithm ID for RSA is just an OID and a NULL
[rsa_alg]
algorithm=OID:rsaEncryption
parameter=NULL

Actual public key: modulus and exponent
[rsapubkey]
n=INTEGER:0xBB6FE79432CC6EA2D8F970675A5A87BFBE1AFF0BE63E879F2AFFB93644\
D4D2C6D000430DEC66ABF47829E74B8C5108623A1C0EE8BE217B3AD8D36D5EB4FCA1D9

e=INTEGER:0x010001

RETURN VALUES

ASN1_generate_nconf() and ASN1_generate_v3() return the encoded data as an ASN1_TYPE structure or NULL if an error
occurred.

The error codes that can be obtained by ERR_get_error(3).

SEE ALSO

ERR_get_error(3)

HISTORY

ASN1_generate_nconf() and ASN1_generate_v3() were added to OpenSSL 0.9.8

1227

OpenSSL Manual

Name
ASN1_OBJECT_new and ASN1_OBJECT_free — object allocation functions

Synopsis
#include <openssl/asn1.h>

ASN1_OBJECT *ASN1_OBJECT_new(void);
void ASN1_OBJECT_free(ASN1_OBJECT *a);

DESCRIPTION

The ASN1_OBJECT allocation routines, allocate and free an ASN1_OBJECT structure, which represents an ASN1 OBJECT
IDENTIFIER.

ASN1_OBJECT_new() allocates and initializes a ASN1_OBJECT structure.

ASN1_OBJECT_free() frees up the ASN1_OBJECT structure a.

NOTES

Although ASN1_OBJECT_new() allocates a new ASN1_OBJECT structure it is almost never used in applications. The ASN1
object utility functions such as OBJ_nid2obj() are used instead.

RETURN VALUES

If the allocation fails, ASN1_OBJECT_new() returns NULL and sets an error code that can be obtained by ERR_get_error(3).
Otherwise it returns a pointer to the newly allocated structure.

ASN1_OBJECT_free() returns no value.

SEE ALSO

ERR_get_error(3), d2i_ASN1_OBJECT(3)

HISTORY

ASN1_OBJECT_new() and ASN1_OBJECT_free() are available in all versions of SSLeay and OpenSSL.

1228

OpenSSL Manual

Name
ASN1_STRING_dup, ASN1_STRING_cmp, ASN1_STRING_set, ASN1_STRING_length, ASN1_STRING_length_set,
ASN1_STRING_type and ASN1_STRING_data — ASN1_STRING utility functions

Synopsis
#include <openssl/asn1.h>

int ASN1_STRING_length(ASN1_STRING *x);
unsigned char * ASN1_STRING_data(ASN1_STRING *x);

ASN1_STRING * ASN1_STRING_dup(ASN1_STRING *a);

int ASN1_STRING_cmp(ASN1_STRING *a, ASN1_STRING *b);

int ASN1_STRING_set(ASN1_STRING *str, const void *data, int len);

int ASN1_STRING_type(ASN1_STRING *x);

int ASN1_STRING_to_UTF8(unsigned char **out, ASN1_STRING *in);

DESCRIPTION

These functions allow an ASN1_STRING structure to be manipulated.

ASN1_STRING_length() returns the length of the content of x.

ASN1_STRING_data() returns an internal pointer to the data of x. Since this is an internal pointer it should not be freed or
modified in any way.

ASN1_STRING_dup() returns a copy of the structure a.

ASN1_STRING_cmp() compares a and b returning 0 if the two are identical. The string types and content are compared.

ASN1_STRING_set() sets the data of string str to the buffer data or length len. The supplied data is copied. If len is -1 then
the length is determined by strlen(data).

ASN1_STRING_type() returns the type of x, using standard constants such as V_ASN1_OCTET_STRING.

ASN1_STRING_to_UTF8() converts the string in to UTF8 format, the converted data is allocated in a buffer in *out. The
length of out is returned or a negative error code. The buffer *out should be free using OPENSSL_free().

NOTES

Almost all ASN1 types in OpenSSL are represented as an ASN1_STRING structure. Other types such as
ASN1_OCTET_STRING are simply typedefed to ASN1_STRING and the functions call the ASN1_STRING equivalents.
ASN1_STRING is also used for some CHOICE types which consist entirely of primitive string types such as DirectoryString
and Time.

These functions should not be used to examine or modify ASN1_INTEGER or ASN1_ENUMERATED types: the relevant
INTEGER or ENUMERATED utility functions should be used instead.

In general it cannot be assumed that the data returned by ASN1_STRING_data() is null terminated or does not contain embed-
ded nulls. The actual format of the data will depend on the actual string type itself: for example for and IA5String the data will
be ASCII, for a BMPString two bytes per character in big endian format, UTF8String will be in UTF8 format.

Similar care should be take to ensure the data is in the correct format when calling ASN1_STRING_set().

RETURN VALUES

SEE ALSO

ERR_get_error(3)

1229

OpenSSL Manual

HISTORY

1230

OpenSSL Manual

Name
ASN1_STRING_new, ASN1_STRING_type_new and ASN1_STRING_free — ASN1_STRING allocation functions

Synopsis
#include <openssl/asn1.h>

ASN1_STRING * ASN1_STRING_new(void);
ASN1_STRING * ASN1_STRING_type_new(int type);
void ASN1_STRING_free(ASN1_STRING *a);

DESCRIPTION

ASN1_STRING_new() returns an allocated ASN1_STRING structure. Its type is undefined.

ASN1_STRING_type_new() returns an allocated ASN1_STRING structure of type type.

ASN1_STRING_free() frees up a.

NOTES

Other string types call the ASN1_STRING functions. For example ASN1_OCTET_STRING_new() calls
ASN1_STRING_type(V_ASN1_OCTET_STRING).

RETURN VALUES

ASN1_STRING_new() and ASN1_STRING_type_new() return a valid ASN1_STRING structure or NULL if an error oc-
curred.

ASN1_STRING_free() does not return a value.

SEE ALSO

ERR_get_error(3)

HISTORY

TBA

1231

OpenSSL Manual

Name
ASN1_STRING_print_ex and ASN1_STRING_print_ex_fp — ASN1_STRING output routines.

Synopsis
#include <openssl/asn1.h>

int ASN1_STRING_print_ex(BIO *out, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print_ex_fp(FILE *fp, ASN1_STRING *str, unsigned long flags);
int ASN1_STRING_print(BIO *out, ASN1_STRING *str);

DESCRIPTION

These functions output an ASN1_STRING structure. ASN1_STRING is used to represent all the ASN1 string types.

ASN1_STRING_print_ex() outputs str to out, the format is determined by the options flags. ASN1_STRING_print_ex_fp()
is identical except it outputs to fp instead.

ASN1_STRING_print() prints str to out but using a different format to ASN1_STRING_print_ex(). It replaces unprintable
characters (other than CR, LF) with '.'.

NOTES

ASN1_STRING_print() is a legacy function which should be avoided in new applications.

Although there are a large number of options frequently ASN1_STRFLGS_RFC2253 is suitable, or on UTF8 terminals
ASN1_STRFLGS_RFC2253 & ~ASN1_STRFLGS_ESC_MSB.

The complete set of supported options for flags is listed below.

Various characters can be escaped. If ASN1_STRFLGS_ESC_2253 is set the characters determined by RFC2253 are escaped.
If ASN1_STRFLGS_ESC_CTRL is set control characters are escaped. If ASN1_STRFLGS_ESC_MSB is set characters
with the MSB set are escaped: this option should not be used if the terminal correctly interprets UTF8 sequences.

Escaping takes several forms.

If the character being escaped is a 16 bit character then the form "\UXXXX" is used using exactly four characters for the hex
representation. If it is 32 bits then "\WXXXXXXXX" is used using eight characters of its hex representation. These forms will
only be used if UTF8 conversion is not set (see below).

Printable characters are normally escaped using the backslash '\' character. If ASN1_STRFLGS_ESC_QUOTE is set then
the whole string is instead surrounded by double quote characters: this is arguably more readable than the backslash notation.
Other characters use the "\XX" using exactly two characters of the hex representation.

If ASN1_STRFLGS_UTF8_CONVERT is set then characters are converted to UTF8 format first. If the terminal supports
the display of UTF8 sequences then this option will correctly display multi byte characters.

If ASN1_STRFLGS_IGNORE_TYPE is set then the string type is not interpreted at all: everything is assumed to be one byte
per character. This is primarily for debugging purposes and can result in confusing output in multi character strings.

If ASN1_STRFLGS_SHOW_TYPE is set then the string type itself is printed out before its value (for example "BM-
PSTRING"), this actually uses ASN1_tag2str().

The content of a string instead of being interpreted can be "dumped": this just outputs the value of the string using the form
#XXXX using hex format for each octet.

If ASN1_STRFLGS_DUMP_ALL is set then any type is dumped.

Normally non character string types (such as OCTET STRING) are assumed to be one byte per character, if
ASN1_STRFLGS_DUMP_UNKNOWN is set then they will be dumped instead.

1232

OpenSSL Manual

When a type is dumped normally just the content octets are printed, if ASN1_STRFLGS_DUMP_DER is set then the complete
encoding is dumped instead (including tag and length octets).

ASN1_STRFLGS_RFC2253 includes all the flags required by RFC2253. It is equivalent to: ASN1_STRFLGS_ESC_2253
| ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT |
ASN1_STRFLGS_DUMP_UNKNOWN ASN1_STRFLGS_DUMP_DER

SEE ALSO

X509_NAME_print_ex(3), ASN1_tag2str(3)

HISTORY

TBA

1233

OpenSSL Manual

Name
bio — I/O abstraction

Synopsis
#include <openssl/bio.h>

TBA

DESCRIPTION

A BIO is an I/O abstraction, it hides many of the underlying I/O details from an application. If an application uses a BIO for
its I/O it can transparently handle SSL connections, unencrypted network connections and file I/O.

There are two type of BIO, a source/sink BIO and a filter BIO.

As its name implies a source/sink BIO is a source and/or sink of data, examples include a socket BIO and a file BIO.

A filter BIO takes data from one BIO and passes it through to another, or the application. The data may be left unmodified
(for example a message digest BIO) or translated (for example an encryption BIO). The effect of a filter BIO may change
according to the I/O operation it is performing: for example an encryption BIO will encrypt data if it is being written to and
decrypt data if it is being read from.

BIOs can be joined together to form a chain (a single BIO is a chain with one component). A chain normally consist of one
source/sink BIO and one or more filter BIOs. Data read from or written to the first BIO then traverses the chain to the end
(normally a source/sink BIO).

SEE ALSO
BIO_ctrl(3), BIO_f_base64(3), BIO_f_buffer(3), BIO_f_cipher(3), BIO_f_md(3), BIO_f_null(3), BIO_f_ssl(3),
BIO_find_type(3), BIO_new(3), BIO_new_bio_pair(3), BIO_push(3), BIO_read(3), BIO_s_accept(3), BIO_s_bio(3),
BIO_s_connect(3), BIO_s_fd(3), BIO_s_file(3), BIO_s_mem(3), BIO_s_null(3), BIO_s_socket(3), BIO_set_callback(3),
BIO_should_retry(3)

1234

OpenSSL Manual

Name
BIO_ctrl, BIO_callback_ctrl, BIO_ptr_ctrl, BIO_int_ctrl, BIO_reset, BIO_seek, BIO_tell, BIO_flush,
BIO_eof, BIO_set_close, BIO_get_close, BIO_pending, BIO_wpending, BIO_ctrl_pending, BIO_ctrl_wpending,
BIO_get_info_callback and BIO_set_info_callback — BIO control operations

Synopsis
#include <openssl/bio.h>

long BIO_ctrl(BIO *bp,int cmd,long larg,void *parg);
long BIO_callback_ctrl(BIO *b,int cmd,void (*fp)(struct bio_st *,int,const char *,int,long,long));
char * BIO_ptr_ctrl(BIO *bp,int cmd,long larg);
long BIO_int_ctrl(BIO *bp,int cmd,long larg,int iarg);

int BIO_reset(BIO *b);
int BIO_seek(BIO *b, int ofs);
int BIO_tell(BIO *b);
int BIO_flush(BIO *b);
int BIO_eof(BIO *b);
int BIO_set_close(BIO *b,long flag);
int BIO_get_close(BIO *b);
int BIO_pending(BIO *b);
int BIO_wpending(BIO *b);
size_t BIO_ctrl_pending(BIO *b);
size_t BIO_ctrl_wpending(BIO *b);

int BIO_get_info_callback(BIO *b,bio_info_cb **cbp);
int BIO_set_info_callback(BIO *b,bio_info_cb *cb);

typedef void bio_info_cb(BIO *b, int oper, const char *ptr, int arg1, long arg2, long arg3);

DESCRIPTION

BIO_ctrl(), BIO_callback_ctrl(), BIO_ptr_ctrl() and BIO_int_ctrl() are BIO "control" operations taking arguments of various
types. These functions are not normally called directly, various macros are used instead. The standard macros are described
below, macros specific to a particular type of BIO are described in the specific BIOs manual page as well as any special features
of the standard calls.

BIO_reset() typically resets a BIO to some initial state, in the case of file related BIOs for example it rewinds the file pointer
to the start of the file.

BIO_seek() resets a file related BIO's (that is file descriptor and FILE BIOs) file position pointer to ofs bytes from start of file.

BIO_tell() returns the current file position of a file related BIO.

BIO_flush() normally writes out any internally buffered data, in some cases it is used to signal EOF and that no more data
will be written.

BIO_eof() returns 1 if the BIO has read EOF, the precise meaning of "EOF" varies according to the BIO type.

BIO_set_close() sets the BIO b close flag to flag. flag can take the value BIO_CLOSE or BIO_NOCLOSE. Typically
BIO_CLOSE is used in a source/sink BIO to indicate that the underlying I/O stream should be closed when the BIO is freed.

BIO_get_close() returns the BIOs close flag.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending() and BIO_ctrl_wpending() return the number of pending characters in
the BIOs read and write buffers. Not all BIOs support these calls. BIO_ctrl_pending() and BIO_ctrl_wpending() return a size_t
type and are functions, BIO_pending() and BIO_wpending() are macros which call BIO_ctrl().

RETURN VALUES

BIO_reset() normally returns 1 for success and 0 or -1 for failure. File BIOs are an exception, they return 0 for success and
-1 for failure.

1235

OpenSSL Manual

BIO_seek() and BIO_tell() both return the current file position on success and -1 for failure, except file BIOs which for
BIO_seek() always return 0 for success and -1 for failure.

BIO_flush() returns 1 for success and 0 or -1 for failure.

BIO_eof() returns 1 if EOF has been reached 0 otherwise.

BIO_set_close() always returns 1.

BIO_get_close() returns the close flag value: BIO_CLOSE or BIO_NOCLOSE.

BIO_pending(), BIO_ctrl_pending(), BIO_wpending() and BIO_ctrl_wpending() return the amount of pending data.

NOTES

BIO_flush(), because it can write data may return 0 or -1 indicating that the call should be retried later in a similar manner to
BIO_write(). The BIO_should_retry() call should be used and appropriate action taken is the call fails.

The return values of BIO_pending() and BIO_wpending() may not reliably determine the amount of pending data in all cases.
For example in the case of a file BIO some data may be available in the FILE structures internal buffers but it is not possible
to determine this in a portably way. For other types of BIO they may not be supported.

Filter BIOs if they do not internally handle a particular BIO_ctrl() operation usually pass the operation to the next BIO in the
chain. This often means there is no need to locate the required BIO for a particular operation, it can be called on a chain and
it will be automatically passed to the relevant BIO. However this can cause unexpected results: for example no current filter
BIOs implement BIO_seek(), but this may still succeed if the chain ends in a FILE or file descriptor BIO.

Source/sink BIOs return an 0 if they do not recognize the BIO_ctrl() operation.

BUGS

Some of the return values are ambiguous and care should be taken. In particular a return value of 0 can be returned if an
operation is not supported, if an error occurred, if EOF has not been reached and in the case of BIO_seek() on a file BIO for
a successful operation.

SEE ALSO

TBA

1236

OpenSSL Manual

Name
BIO_f_base64 — base64 BIO filter

Synopsis
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_base64(void);

DESCRIPTION

BIO_f_base64() returns the base64 BIO method. This is a filter BIO that base64 encodes any data written through it and
decodes any data read through it.

Base64 BIOs do not support BIO_gets() or BIO_puts().

BIO_flush() on a base64 BIO that is being written through is used to signal that no more data is to be encoded: this is used
to flush the final block through the BIO.

The flag BIO_FLAGS_BASE64_NO_NL can be set with BIO_set_flags() to encode the data all on one line or expect the data
to be all on one line.

NOTES

Because of the format of base64 encoding the end of the encoded block cannot always be reliably determined.

RETURN VALUES

BIO_f_base64() returns the base64 BIO method.

EXAMPLES

Base64 encode the string "Hello World\n" and write the result to standard output:

BIO *bio, *b64;
char message[] = "Hello World \n";

b64 = BIO_new(BIO_f_base64());
bio = BIO_new_fp(stdout, BIO_NOCLOSE);
BIO_push(b64, bio);
BIO_write(b64, message, strlen(message));
BIO_flush(b64);

BIO_free_all(b64);

Read Base64 encoded data from standard input and write the decoded data to standard output:

BIO *bio, *b64, *bio_out;
char inbuf[512];
int inlen;

b64 = BIO_new(BIO_f_base64());
bio = BIO_new_fp(stdin, BIO_NOCLOSE);
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
BIO_push(b64, bio);
while((inlen = BIO_read(b64, inbuf, 512)) > 0)
 BIO_write(bio_out, inbuf, inlen);

BIO_flush(bio_out);
BIO_free_all(b64);

BUGS

The ambiguity of EOF in base64 encoded data can cause additional data following the base64 encoded block to be misinter-
preted.

1237

OpenSSL Manual

There should be some way of specifying a test that the BIO can perform to reliably determine EOF (for example a MIME
boundary).

SEE ALSO

TBA

1238

OpenSSL Manual

Name
BIO_f_buffer — buffering BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_f_buffer(void);

#define BIO_get_buffer_num_lines(b) BIO_ctrl(b,BIO_C_GET_BUFF_NUM_LINES,0,NULL)
#define BIO_set_read_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,0)
#define BIO_set_write_buffer_size(b,size) BIO_int_ctrl(b,BIO_C_SET_BUFF_SIZE,size,1)
#define BIO_set_buffer_size(b,size) BIO_ctrl(b,BIO_C_SET_BUFF_SIZE,size,NULL)
#define BIO_set_buffer_read_data(b,buf,num) BIO_ctrl(b,BIO_C_SET_BUFF_READ_DATA,num,buf)

DESCRIPTION

BIO_f_buffer() returns the buffering BIO method.

Data written to a buffering BIO is buffered and periodically written to the next BIO in the chain. Data read from a buffering BIO
comes from an internal buffer which is filled from the next BIO in the chain. Both BIO_gets() and BIO_puts() are supported.

Calling BIO_reset() on a buffering BIO clears any buffered data.

BIO_get_buffer_num_lines() returns the number of lines currently buffered.

BIO_set_read_buffer_size(), BIO_set_write_buffer_size() and BIO_set_buffer_size() set the read, write or both read and write
buffer sizes to size. The initial buffer size is DEFAULT_BUFFER_SIZE, currently 4096. Any attempt to reduce the buffer
size below DEFAULT_BUFFER_SIZE is ignored. Any buffered data is cleared when the buffer is resized.

BIO_set_buffer_read_data() clears the read buffer and fills it with num bytes of buf. If num is larger than the current buffer
size the buffer is expanded.

NOTES

Buffering BIOs implement BIO_gets() by using BIO_read() operations on the next BIO in the chain. By prepending a buffering
BIO to a chain it is therefore possible to provide BIO_gets() functionality if the following BIOs do not support it (for example
SSL BIOs).

Data is only written to the next BIO in the chain when the write buffer fills or when BIO_flush() is called. It is therefore
important to call BIO_flush() whenever any pending data should be written such as when removing a buffering BIO using
BIO_pop(). BIO_flush() may need to be retried if the ultimate source/sink BIO is non blocking.

RETURN VALUES

BIO_f_buffer() returns the buffering BIO method.

BIO_get_buffer_num_lines() returns the number of lines buffered (may be 0).

BIO_set_read_buffer_size(), BIO_set_write_buffer_size() and BIO_set_buffer_size() return 1 if the buffer was successfully
resized or 0 for failure.

BIO_set_buffer_read_data() returns 1 if the data was set correctly or 0 if there was an error.

SEE ALSO

BIO(3), BIO_reset(3), BIO_flush(3), BIO_pop(3), BIO_ctrl(3), BIO_int_ctrl(3)

1239

OpenSSL Manual

Name
BIO_f_cipher, BIO_set_cipher, BIO_get_cipher_status and BIO_get_cipher_ctx — cipher BIO filter

Synopsis
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_cipher(void);
void BIO_set_cipher(BIO *b,const EVP_CIPHER *cipher,
 unsigned char *key, unsigned char *iv, int enc);
int BIO_get_cipher_status(BIO *b)
int BIO_get_cipher_ctx(BIO *b, EVP_CIPHER_CTX **pctx)

DESCRIPTION

BIO_f_cipher() returns the cipher BIO method. This is a filter BIO that encrypts any data written through it, and decrypts any
data read from it. It is a BIO wrapper for the cipher routines EVP_CipherInit(), EVP_CipherUpdate() and EVP_CipherFinal().

Cipher BIOs do not support BIO_gets() or BIO_puts().

BIO_flush() on an encryption BIO that is being written through is used to signal that no more data is to be encrypted: this is
used to flush and possibly pad the final block through the BIO.

BIO_set_cipher() sets the cipher of BIO b to cipher using key key and IV iv. enc should be set to 1 for encryption and zero
for decryption.

When reading from an encryption BIO the final block is automatically decrypted and checked when EOF is detected.
BIO_get_cipher_status() is a BIO_ctrl() macro which can be called to determine whether the decryption operation was suc-
cessful.

BIO_get_cipher_ctx() is a BIO_ctrl() macro which retrieves the internal BIO cipher context. The retrieved context can be used
in conjunction with the standard cipher routines to set it up. This is useful when BIO_set_cipher() is not flexible enough for
the applications needs.

NOTES

When encrypting BIO_flush() must be called to flush the final block through the BIO. If it is not then the final block will
fail a subsequent decrypt.

When decrypting an error on the final block is signalled by a zero return value from the read operation. A successful decrypt
followed by EOF will also return zero for the final read. BIO_get_cipher_status() should be called to determine if the decrypt
was successful.

As always, if BIO_gets() or BIO_puts() support is needed then it can be achieved by preceding the cipher BIO with a buffering
BIO.

RETURN VALUES

BIO_f_cipher() returns the cipher BIO method.

BIO_set_cipher() does not return a value.

BIO_get_cipher_status() returns 1 for a successful decrypt and 0 for failure.

BIO_get_cipher_ctx() currently always returns 1.

EXAMPLES

TBA

1240

OpenSSL Manual

SEE ALSO

TBA

1241

OpenSSL Manual

Name
BIO_find_type and BIO_next — BIO chain traversal

Synopsis
#include <openssl/bio.h>

BIO * BIO_find_type(BIO *b,int bio_type);
BIO * BIO_next(BIO *b);

#define BIO_method_type(b) ((b)->method->type)

#define BIO_TYPE_NONE 0
#define BIO_TYPE_MEM (1|0x0400)
#define BIO_TYPE_FILE (2|0x0400)

#define BIO_TYPE_FD (4|0x0400|0x0100)
#define BIO_TYPE_SOCKET (5|0x0400|0x0100)
#define BIO_TYPE_NULL (6|0x0400)
#define BIO_TYPE_SSL (7|0x0200)
#define BIO_TYPE_MD (8|0x0200)
#define BIO_TYPE_BUFFER (9|0x0200)
#define BIO_TYPE_CIPHER (10|0x0200)
#define BIO_TYPE_BASE64 (11|0x0200)
#define BIO_TYPE_CONNECT (12|0x0400|0x0100)
#define BIO_TYPE_ACCEPT (13|0x0400|0x0100)
#define BIO_TYPE_PROXY_CLIENT (14|0x0200)
#define BIO_TYPE_PROXY_SERVER (15|0x0200)
#define BIO_TYPE_NBIO_TEST (16|0x0200)
#define BIO_TYPE_NULL_FILTER (17|0x0200)
#define BIO_TYPE_BER (18|0x0200)
#define BIO_TYPE_BIO (19|0x0400)

#define BIO_TYPE_DESCRIPTOR 0x0100
#define BIO_TYPE_FILTER 0x0200
#define BIO_TYPE_SOURCE_SINK 0x0400

DESCRIPTION

The BIO_find_type() searches for a BIO of a given type in a chain, starting at BIO b. If type is a specific type
(such as BIO_TYPE_MEM) then a search is made for a BIO of that type. If type is a general type (such as
BIO_TYPE_SOURCE_SINK) then the next matching BIO of the given general type is searched for. BIO_find_type() returns
the next matching BIO or NULL if none is found.

Note: not all the BIO_TYPE_* types above have corresponding BIO implementations.

BIO_next() returns the next BIO in a chain. It can be used to traverse all BIOs in a chain or used in conjunction with
BIO_find_type() to find all BIOs of a certain type.

BIO_method_type() returns the type of a BIO.

RETURN VALUES

BIO_find_type() returns a matching BIO or NULL for no match.

BIO_next() returns the next BIO in a chain.

BIO_method_type() returns the type of the BIO b.

NOTES

BIO_next() was added to OpenSSL 0.9.6 to provide a 'clean' way to traverse a BIO chain or find multiple matches using
BIO_find_type(). Previous versions had to use:

next = bio->next_bio;

1242

OpenSSL Manual

BUGS

BIO_find_type() in OpenSSL 0.9.5a and earlier could not be safely passed a NULL pointer for the b argument.

EXAMPLE

Traverse a chain looking for digest BIOs:

BIO *btmp;
btmp = in_bio; /* in_bio is chain to search through */

do {
 btmp = BIO_find_type(btmp, BIO_TYPE_MD);
 if(btmp == NULL) break; /* Not found */
 /* btmp is a digest BIO, do something with it …*/
 …

 btmp = BIO_next(btmp);
} while(btmp);

SEE ALSO

TBA

1243

OpenSSL Manual

Name
BIO_f_md, BIO_set_md, BIO_get_md and BIO_get_md_ctx — message digest BIO filter

Synopsis
#include <openssl/bio.h>
#include <openssl/evp.h>

BIO_METHOD * BIO_f_md(void);
int BIO_set_md(BIO *b,EVP_MD *md);
int BIO_get_md(BIO *b,EVP_MD **mdp);
int BIO_get_md_ctx(BIO *b,EVP_MD_CTX **mdcp);

DESCRIPTION

BIO_f_md() returns the message digest BIO method. This is a filter BIO that digests any data passed through it, it is a BIO
wrapper for the digest routines EVP_DigestInit(), EVP_DigestUpdate() and EVP_DigestFinal().

Any data written or read through a digest BIO using BIO_read() and BIO_write() is digested.

BIO_gets(), if its size parameter is large enough finishes the digest calculation and returns the digest value. BIO_puts() is not
supported.

BIO_reset() reinitialises a digest BIO.

BIO_set_md() sets the message digest of BIO b to md: this must be called to initialize a digest BIO before any data is passed
through it. It is a BIO_ctrl() macro.

BIO_get_md() places the a pointer to the digest BIOs digest method in mdp, it is a BIO_ctrl() macro.

BIO_get_md_ctx() returns the digest BIOs context into mdcp.

NOTES

The context returned by BIO_get_md_ctx() can be used in calls to EVP_DigestFinal() and also the signature routines
EVP_SignFinal() and EVP_VerifyFinal().

The context returned by BIO_get_md_ctx() is an internal context structure. Changes made to this context will affect the digest
BIO itself and the context pointer will become invalid when the digest BIO is freed.

After the digest has been retrieved from a digest BIO it must be reinitialized by calling BIO_reset(), or BIO_set_md() before
any more data is passed through it.

If an application needs to call BIO_gets() or BIO_puts() through a chain containing digest BIOs then this can be done by
prepending a buffering BIO.

Before OpenSSL 1.0.0 the call to BIO_get_md_ctx() would only work if the BIO had been initialized for example by calling
BIO_set_md()). In OpenSSL 1.0.0 and later the context is always returned and the BIO is state is set to initialized. This allows
applications to initialize the context externally if the standard calls such as BIO_set_md() are not sufficiently flexible.

RETURN VALUES

BIO_f_md() returns the digest BIO method.

BIO_set_md(), BIO_get_md() and BIO_md_ctx() return 1 for success and 0 for failure.

EXAMPLES

The following example creates a BIO chain containing an SHA1 and MD5 digest BIO and passes the string "Hello World"
through it. Error checking has been omitted for clarity.

1244

OpenSSL Manual

BIO *bio, *mdtmp;
char message[] = "Hello World";
bio = BIO_new(BIO_s_null());
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_sha1());
/* For BIO_push() we want to append the sink BIO and keep a note of
 * the start of the chain.
 */
bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
/* Note: mdtmp can now be discarded */
BIO_write(bio, message, strlen(message));

The next example digests data by reading through a chain instead:

BIO *bio, *mdtmp;
char buf[1024];
int rdlen;
bio = BIO_new_file(file, "rb");
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_sha1());
bio = BIO_push(mdtmp, bio);
mdtmp = BIO_new(BIO_f_md());
BIO_set_md(mdtmp, EVP_md5());
bio = BIO_push(mdtmp, bio);
do {
 rdlen = BIO_read(bio, buf, sizeof(buf));
 /* Might want to do something with the data here */
} while(rdlen > 0);

This next example retrieves the message digests from a BIO chain and outputs them. This could be used with the examples
above.

BIO *mdtmp;
unsigned char mdbuf[EVP_MAX_MD_SIZE];
int mdlen;
int i;
mdtmp = bio; /* Assume bio has previously been set up */
do {
 EVP_MD *md;
 mdtmp = BIO_find_type(mdtmp, BIO_TYPE_MD);
 if(!mdtmp) break;
 BIO_get_md(mdtmp, &md);
 printf("%s digest", OBJ_nid2sn(EVP_MD_type(md)));
 mdlen = BIO_gets(mdtmp, mdbuf, EVP_MAX_MD_SIZE);
 for(i = 0; i < mdlen; i++) printf(":%02X", mdbuf[i]);
 printf("\n");
 mdtmp = BIO_next(mdtmp);
} while(mdtmp);

BIO_free_all(bio);

BUGS

The lack of support for BIO_puts() and the non standard behaviour of BIO_gets() could be regarded as anomalous. It could
be argued that BIO_gets() and BIO_puts() should be passed to the next BIO in the chain and digest the data passed through
and that digests should be retrieved using a separate BIO_ctrl() call.

SEE ALSO

TBA

1245

OpenSSL Manual

Name
BIO_f_null — null filter

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_f_null(void);

DESCRIPTION

BIO_f_null() returns the null filter BIO method. This is a filter BIO that does nothing.

All requests to a null filter BIO are passed through to the next BIO in the chain: this means that a BIO chain containing a null
filter BIO behaves just as though the BIO was not there.

NOTES

As may be apparent a null filter BIO is not particularly useful.

RETURN VALUES

BIO_f_null() returns the null filter BIO method.

SEE ALSO

TBA

1246

OpenSSL Manual

Name
BIO_f_ssl, BIO_set_ssl, BIO_get_ssl, BIO_set_ssl_mode, BIO_set_ssl_renegotiate_bytes, BIO_get_num_renegotiates,
BIO_set_ssl_renegotiate_timeout, BIO_new_ssl, BIO_new_ssl_connect, BIO_new_buffer_ssl_connect,
BIO_ssl_copy_session_id and BIO_ssl_shutdown — SSL BIO

Synopsis
#include <openssl/bio.h>
#include <openssl/ssl.h>

BIO_METHOD *BIO_f_ssl(void);

#define BIO_set_ssl(b,ssl,c) BIO_ctrl(b,BIO_C_SET_SSL,c,(char *)ssl)
#define BIO_get_ssl(b,sslp) BIO_ctrl(b,BIO_C_GET_SSL,0,(char *)sslp)
#define BIO_set_ssl_mode(b,client) BIO_ctrl(b,BIO_C_SSL_MODE,client,NULL)
#define BIO_set_ssl_renegotiate_bytes(b,num) \
 BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_BYTES,num,NULL);
#define BIO_set_ssl_renegotiate_timeout(b,seconds) \
 BIO_ctrl(b,BIO_C_SET_SSL_RENEGOTIATE_TIMEOUT,seconds,NULL);
#define BIO_get_num_renegotiates(b) \
 BIO_ctrl(b,BIO_C_SET_SSL_NUM_RENEGOTIATES,0,NULL);

BIO *BIO_new_ssl(SSL_CTX *ctx,int client);
BIO *BIO_new_ssl_connect(SSL_CTX *ctx);
BIO *BIO_new_buffer_ssl_connect(SSL_CTX *ctx);
int BIO_ssl_copy_session_id(BIO *to,BIO *from);
void BIO_ssl_shutdown(BIO *bio);

#define BIO_do_handshake(b) BIO_ctrl(b,BIO_C_DO_STATE_MACHINE,0,NULL)

DESCRIPTION

BIO_f_ssl() returns the SSL BIO method. This is a filter BIO which is a wrapper round the OpenSSL SSL routines adding
a BIO "flavour" to SSL I/O.

I/O performed on an SSL BIO communicates using the SSL protocol with the SSLs read and write BIOs. If an SSL connection
is not established then an attempt is made to establish one on the first I/O call.

If a BIO is appended to an SSL BIO using BIO_push() it is automatically used as the SSL BIOs read and write BIOs.

Calling BIO_reset() on an SSL BIO closes down any current SSL connection by calling SSL_shutdown(). BIO_reset() is then
sent to the next BIO in the chain: this will typically disconnect the underlying transport. The SSL BIO is then reset to the
initial accept or connect state.

If the close flag is set when an SSL BIO is freed then the internal SSL structure is also freed using SSL_free().

BIO_set_ssl() sets the internal SSL pointer of BIO b to ssl using the close flag c.

BIO_get_ssl() retrieves the SSL pointer of BIO b, it can then be manipulated using the standard SSL library functions.

BIO_set_ssl_mode() sets the SSL BIO mode to client. If client is 1 client mode is set. If client is 0 server mode is set.

BIO_set_ssl_renegotiate_bytes() sets the renegotiate byte count to num. When set after every num bytes of I/O (read and
write) the SSL session is automatically renegotiated. num must be at least 512 bytes.

BIO_set_ssl_renegotiate_timeout() sets the renegotiate timeout to seconds. When the renegotiate timeout elapses the session
is automatically renegotiated.

BIO_get_num_renegotiates() returns the total number of session renegotiations due to I/O or timeout.

BIO_new_ssl() allocates an SSL BIO using SSL_CTX ctx and using client mode if client is non zero.

BIO_new_ssl_connect() creates a new BIO chain consisting of an SSL BIO (using ctx) followed by a connect BIO.

BIO_new_buffer_ssl_connect() creates a new BIO chain consisting of a buffering BIO, an SSL BIO (using ctx) and a connect
BIO.

1247

OpenSSL Manual

BIO_ssl_copy_session_id() copies an SSL session id between BIO chains from and to. It does this by locating the SSL BIOs
in each chain and calling SSL_copy_session_id() on the internal SSL pointer.

BIO_ssl_shutdown() closes down an SSL connection on BIO chain bio. It does this by locating the SSL BIO in the chain and
calling SSL_shutdown() on its internal SSL pointer.

BIO_do_handshake() attempts to complete an SSL handshake on the supplied BIO and establish the SSL connection. It returns
1 if the connection was established successfully. A zero or negative value is returned if the connection could not be established,
the call BIO_should_retry() should be used for non blocking connect BIOs to determine if the call should be retried. If an SSL
connection has already been established this call has no effect.

NOTES

SSL BIOs are exceptional in that if the underlying transport is non blocking they can still request a retry in exceptional cir-
cumstances. Specifically this will happen if a session renegotiation takes place during a BIO_read() operation, one case where
this happens is when SGC or step up occurs.

In OpenSSL 0.9.6 and later the SSL flag SSL_AUTO_RETRY can be set to disable this behaviour. That is when this flag is
set an SSL BIO using a blocking transport will never request a retry.

Since unknown BIO_ctrl() operations are sent through filter BIOs the servers name and port can be set using BIO_set_host()
on the BIO returned by BIO_new_ssl_connect() without having to locate the connect BIO first.

Applications do not have to call BIO_do_handshake() but may wish to do so to separate the handshake process from other
I/O processing.

RETURN VALUES

TBA

EXAMPLE

This SSL/TLS client example, attempts to retrieve a page from an SSL/TLS web server. The I/O routines are identical to those
of the unencrypted example in BIO_s_connect(3).

BIO *sbio, *out;
int len;
char tmpbuf[1024];
SSL_CTX *ctx;
SSL *ssl;

ERR_load_crypto_strings();
ERR_load_SSL_strings();
OpenSSL_add_all_algorithms();

/* We would seed the PRNG here if the platform didn't
 * do it automatically
 */

ctx = SSL_CTX_new(SSLv23_client_method());

/* We'd normally set some stuff like the verify paths and
 * mode here because as things stand this will connect to
 * any server whose certificate is signed by any CA.
 */

sbio = BIO_new_ssl_connect(ctx);

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
 fprintf(stderr, "Can't locate SSL pointer\n");
 /* whatever … */
}

/* Don't want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

1248

OpenSSL Manual

/* We might want to do other things with ssl here */

BIO_set_conn_hostname(sbio, "localhost:https");

out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(sbio) <= 0) {
 fprintf(stderr, "Error connecting to server\n");
 ERR_print_errors_fp(stderr);
 /* whatever … */
}

if(BIO_do_handshake(sbio) <= 0) {
 fprintf(stderr, "Error establishing SSL connection\n");
 ERR_print_errors_fp(stderr);
 /* whatever … */
}

/* Could examine ssl here to get connection info */

BIO_puts(sbio, "GET / HTTP/1.0\n\n");
for(;;) {
 len = BIO_read(sbio, tmpbuf, 1024);
 if(len <= 0) break;
 BIO_write(out, tmpbuf, len);
}
BIO_free_all(sbio);
BIO_free(out);

Here is a simple server example. It makes use of a buffering BIO to allow lines to be read from the SSL BIO using BIO_gets.
It creates a pseudo web page containing the actual request from a client and also echoes the request to standard output.

BIO *sbio, *bbio, *acpt, *out;
int len;
char tmpbuf[1024];
SSL_CTX *ctx;
SSL *ssl;

ERR_load_crypto_strings();
ERR_load_SSL_strings();
OpenSSL_add_all_algorithms();

/* Might seed PRNG here */

ctx = SSL_CTX_new(SSLv23_server_method());

if (!SSL_CTX_use_certificate_file(ctx,"server.pem",SSL_FILETYPE_PEM)
 || !SSL_CTX_use_PrivateKey_file(ctx,"server.pem",SSL_FILETYPE_PEM)
 || !SSL_CTX_check_private_key(ctx)) {

 fprintf(stderr, "Error setting up SSL_CTX\n");
 ERR_print_errors_fp(stderr);
 return 0;
}

/* Might do other things here like setting verify locations and
 * DH and/or RSA temporary key callbacks
 */

/* New SSL BIO setup as server */
sbio=BIO_new_ssl(ctx,0);

BIO_get_ssl(sbio, &ssl);

if(!ssl) {
 fprintf(stderr, "Can't locate SSL pointer\n");
 /* whatever … */
}

/* Don't want any retries */
SSL_set_mode(ssl, SSL_MODE_AUTO_RETRY);

1249

OpenSSL Manual

/* Create the buffering BIO */

bbio = BIO_new(BIO_f_buffer());

/* Add to chain */
sbio = BIO_push(bbio, sbio);

acpt=BIO_new_accept("4433");

/* By doing this when a new connection is established
 * we automatically have sbio inserted into it. The
 * BIO chain is now 'swallowed' by the accept BIO and
 * will be freed when the accept BIO is freed.
 */

BIO_set_accept_bios(acpt,sbio);

out = BIO_new_fp(stdout, BIO_NOCLOSE);

/* Setup accept BIO */
if(BIO_do_accept(acpt) <= 0) {
 fprintf(stderr, "Error setting up accept BIO\n");
 ERR_print_errors_fp(stderr);
 return 0;
}

/* Now wait for incoming connection */
if(BIO_do_accept(acpt) <= 0) {
 fprintf(stderr, "Error in connection\n");
 ERR_print_errors_fp(stderr);
 return 0;
}

/* We only want one connection so remove and free
 * accept BIO
 */

sbio = BIO_pop(acpt);

BIO_free_all(acpt);

if(BIO_do_handshake(sbio) <= 0) {
 fprintf(stderr, "Error in SSL handshake\n");
 ERR_print_errors_fp(stderr);
 return 0;
}

BIO_puts(sbio, "HTTP/1.0 200 OK\r\nContent-type: text/plain\r\n\r\n");
BIO_puts(sbio, "\r\nConnection Established\r\nRequest headers:\r\n");
BIO_puts(sbio, "--\r\n");

for(;;) {
 len = BIO_gets(sbio, tmpbuf, 1024);
 if(len <= 0) break;
 BIO_write(sbio, tmpbuf, len);
 BIO_write(out, tmpbuf, len);
 /* Look for blank line signifying end of headers*/
 if((tmpbuf[0] == '\r') || (tmpbuf[0] == '\n')) break;
}

BIO_puts(sbio, "--\r\n");
BIO_puts(sbio, "\r\n");

/* Since there is a buffering BIO present we had better flush it */
BIO_flush(sbio);

BIO_free_all(sbio);

1250

OpenSSL Manual

BUGS

In OpenSSL versions before 1.0.0 the BIO_pop() call was handled incorrectly, the I/O BIO reference count was incorrectly
incremented (instead of decremented) and dissociated with the SSL BIO even if the SSL BIO was not explicitly being popped
(e.g. a pop higher up the chain). Applications which included workarounds for this bug (e.g. freeing BIOs more than once)
should be modified to handle this fix or they may free up an already freed BIO.

SEE ALSO

TBA

1251

OpenSSL Manual

Name
BIO_new_CMS — CMS streaming filter BIO

Synopsis
#include <openssl/cms.h>

BIO *BIO_new_CMS(BIO *out, CMS_ContentInfo *cms);

DESCRIPTION

BIO_new_CMS() returns a streaming filter BIO chain based on cms. The output of the filter is written to out. Any data written
to the chain is automatically translated to a BER format CMS structure of the appropriate type.

NOTES

The chain returned by this function behaves like a standard filter BIO. It supports non blocking I/O. Content is processed and
streamed on the fly and not all held in memory at once: so it is possible to encode very large structures. After all content has
been written through the chain BIO_flush() must be called to finalise the structure.

The CMS_STREAM flag must be included in the corresponding flags parameter of the cms creation function.

If an application wishes to write additional data to out BIOs should be removed from the chain using BIO_pop() and freed with
BIO_free() until out is reached. If no additional data needs to be written BIO_free_all() can be called to free up the whole chain.

Any content written through the filter is used verbatim: no canonical translation is performed.

It is possible to chain multiple BIOs to, for example, create a triple wrapped signed, enveloped, signed structure. In this case
it is the applications responsibility to set the inner content type of any outer CMS_ContentInfo structures.

Large numbers of small writes through the chain should be avoided as this will produce an output consisting of lots of OCTET
STRING structures. Prepending a BIO_f_buffer() buffering BIO will prevent this.

BUGS

There is currently no corresponding inverse BIO: i.e. one which can decode a CMS structure on the fly.

RETURN VALUES

BIO_new_CMS() returns a BIO chain when successful or NULL if an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_encrypt(3)

HISTORY

BIO_new_CMS() was added to OpenSSL 1.0.0

1252

OpenSSL Manual

Name
BIO_new, BIO_set, BIO_free, BIO_vfree and BIO_free_all — BIO allocation and freeing functions

Synopsis
#include <openssl/bio.h>

BIO * BIO_new(BIO_METHOD *type);
int BIO_set(BIO *a,BIO_METHOD *type);
int BIO_free(BIO *a);
void BIO_vfree(BIO *a);
void BIO_free_all(BIO *a);

DESCRIPTION

BIO_set() sets the method of an already existing BIO.

BIO_free() frees up a single BIO, BIO_vfree() also frees up a single BIO but it does not return a value. Calling BIO_free()
may also have some effect on the underlying I/O structure, for example it may close the file being referred to under certain
circumstances. For more details see the individual BIO_METHOD descriptions.

BIO_free_all() frees up an entire BIO chain, it does not halt if an error occurs freeing up an individual BIO in the chain.

RETURN VALUES

BIO_new() returns a newly created BIO or NULL if the call fails.

BIO_set(), BIO_free() return 1 for success and 0 for failure.

BIO_free_all() and BIO_vfree() do not return values.

NOTES

Some BIOs (such as memory BIOs) can be used immediately after calling BIO_new(). Others (such as file BIOs) need some
additional initialization, and frequently a utility function exists to create and initialize such BIOs.

If BIO_free() is called on a BIO chain it will only free one BIO resulting in a memory leak.

Calling BIO_free_all() a single BIO has the same effect as calling BIO_free() on it other than the discarded return value.

Normally the type argument is supplied by a function which returns a pointer to a BIO_METHOD. There is a naming conven-
tion for such functions: a source/sink BIO is normally called BIO_s_*() and a filter BIO BIO_f_*();

EXAMPLE

Create a memory BIO:

BIO *mem = BIO_new(BIO_s_mem());

SEE ALSO

TBA

1253

OpenSSL Manual

Name
BIO_push and BIO_pop — add and remove BIOs from a chain.

Synopsis
#include <openssl/bio.h>

BIO * BIO_push(BIO *b,BIO *append);
BIO * BIO_pop(BIO *b);

DESCRIPTION

The BIO_push() function appends the BIO append to b, it returns b.

BIO_pop() removes the BIO b from a chain and returns the next BIO in the chain, or NULL if there is no next BIO. The removed
BIO then becomes a single BIO with no association with the original chain, it can thus be freed or attached to a different chain.

NOTES

The names of these functions are perhaps a little misleading. BIO_push() joins two BIO chains whereas BIO_pop() deletes a
single BIO from a chain, the deleted BIO does not need to be at the end of a chain.

The process of calling BIO_push() and BIO_pop() on a BIO may have additional consequences (a control call is made to the
affected BIOs) any effects will be noted in the descriptions of individual BIOs.

EXAMPLES

For these examples suppose md1 and md2 are digest BIOs, b64 is a base64 BIO and f is a file BIO.

If the call:

BIO_push(b64, f);

is made then the new chain will be b64-f. After making the calls

BIO_push(md2, b64);
BIO_push(md1, md2);

the new chain is md1-md2-b64-f. Data written to md1 will be digested by md1 and md2, base64 encoded and written to f.

It should be noted that reading causes data to pass in the reverse direction, that is data is read from f, base64 decoded and
digested by md1 and md2. If the call:

BIO_pop(md2);

The call will return b64 and the new chain will be md1-b64-f data can be written to md1 as before.

RETURN VALUES

BIO_push() returns the end of the chain, b.

BIO_pop() returns the next BIO in the chain, or NULL if there is no next BIO.

SEE ALSO

TBA

1254

OpenSSL Manual

Name
BIO_read, BIO_write, BIO_gets and BIO_puts — BIO I/O functions

Synopsis
#include <openssl/bio.h>

int BIO_read(BIO *b, void *buf, int len);
int BIO_gets(BIO *b, char *buf, int size);
int BIO_write(BIO *b, const void *buf, int len);
int BIO_puts(BIO *b, const char *buf);

DESCRIPTION

BIO_read() attempts to read len bytes from BIO b and places the data in buf.

BIO_gets() performs the BIOs "gets" operation and places the data in buf. Usually this operation will attempt to read a line of
data from the BIO of maximum length len. There are exceptions to this however, for example BIO_gets() on a digest BIO will
calculate and return the digest and other BIOs may not support BIO_gets() at all.

BIO_write() attempts to write len bytes from buf to BIO b.

BIO_puts() attempts to write a null terminated string buf to BIO b.

RETURN VALUES

All these functions return either the amount of data successfully read or written (if the return value is positive) or that no data
was successfully read or written if the result is 0 or -1. If the return value is -2 then the operation is not implemented in the
specific BIO type.

NOTES

A 0 or -1 return is not necessarily an indication of an error. In particular when the source/sink is non-blocking or of a certain
type it may merely be an indication that no data is currently available and that the application should retry the operation later.

One technique sometimes used with blocking sockets is to use a system call (such as select(), poll() or equivalent) to determine
when data is available and then call read() to read the data. The equivalent with BIOs (that is call select() on the underlying
I/O structure and then call BIO_read() to read the data) should not be used because a single call to BIO_read() can cause
several reads (and writes in the case of SSL BIOs) on the underlying I/O structure and may block as a result. Instead select()
(or equivalent) should be combined with non blocking I/O so successive reads will request a retry instead of blocking.

See BIO_should_retry(3) for details of how to determine the cause of a retry and other I/O issues.

If the BIO_gets() function is not supported by a BIO then it possible to work around this by adding a buffering BIO
BIO_f_buffer(3) to the chain.

SEE ALSO

BIO_should_retry(3)

TBA

1255

OpenSSL Manual

Name
BIO_s_accept, BIO_set_accept_port, BIO_get_accept_port, BIO_set_nbio_accept, BIO_set_accept_bios,
BIO_set_bind_mode, BIO_get_bind_mode and BIO_do_accept — accept BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD *BIO_s_accept(void);

long BIO_set_accept_port(BIO *b, char *name);
char *BIO_get_accept_port(BIO *b);

BIO *BIO_new_accept(char *host_port);

long BIO_set_nbio_accept(BIO *b, int n);
long BIO_set_accept_bios(BIO *b, char *bio);

long BIO_set_bind_mode(BIO *b, long mode);
long BIO_get_bind_mode(BIO *b, long dummy);

#define BIO_BIND_NORMAL 0
#define BIO_BIND_REUSEADDR_IF_UNUSED 1
#define BIO_BIND_REUSEADDR 2

int BIO_do_accept(BIO *b);

DESCRIPTION

BIO_s_accept() returns the accept BIO method. This is a wrapper round the platform's TCP/IP socket accept routines.

Using accept BIOs, TCP/IP connections can be accepted and data transferred using only BIO routines. In this way any platform
specific operations are hidden by the BIO abstraction.

Read and write operations on an accept BIO will perform I/O on the underlying connection. If no connection is established and
the port (see below) is set up properly then the BIO waits for an incoming connection.

Accept BIOs support BIO_puts() but not BIO_gets().

If the close flag is set on an accept BIO then any active connection on that chain is shutdown and the socket closed when
the BIO is freed.

Calling BIO_reset() on a accept BIO will close any active connection and reset the BIO into a state where it awaits another
incoming connection.

BIO_get_fd() and BIO_set_fd() can be called to retrieve or set the accept socket. See BIO_s_fd(3)

BIO_set_accept_port() uses the string name to set the accept port. The port is represented as a string of the form "host:port",
where "host" is the interface to use and "port" is the port. The host can be can be "*" which is interpreted as meaning any
interface; "port" has the same syntax as the port specified in BIO_set_conn_port() for connect BIOs, that is it can be a numerical
port string or a string to lookup using getservbyname() and a string table.

BIO_new_accept() combines BIO_new() and BIO_set_accept_port() into a single call: that is it creates a new accept BIO with
port host_port.

BIO_set_nbio_accept() sets the accept socket to blocking mode (the default) if n is 0 or non blocking mode if n is 1.

BIO_set_accept_bios() can be used to set a chain of BIOs which will be duplicated and prepended to the chain when an
incoming connection is received. This is useful if, for example, a buffering or SSL BIO is required for each connection. The
chain of BIOs must not be freed after this call, they will be automatically freed when the accept BIO is freed.

BIO_set_bind_mode() and BIO_get_bind_mode() set and retrieve the current bind mode. If BIO_BIND_NORMAL (the
default) is set then another socket cannot be bound to the same port. If BIO_BIND_REUSEADDR is set then other

1256

OpenSSL Manual

sockets can bind to the same port. If BIO_BIND_REUSEADDR_IF_UNUSED is set then and attempt is first made to use
BIO_BIN_NORMAL, if this fails and the port is not in use then a second attempt is made using BIO_BIND_REUSEADDR.

BIO_do_accept() serves two functions. When it is first called, after the accept BIO has been setup, it will attempt to create the
accept socket and bind an address to it. Second and subsequent calls to BIO_do_accept() will await an incoming connection,
or request a retry in non blocking mode.

NOTES

When an accept BIO is at the end of a chain it will await an incoming connection before processing I/O calls. When an accept
BIO is not at then end of a chain it passes I/O calls to the next BIO in the chain.

When a connection is established a new socket BIO is created for the connection and appended to the chain. That is the chain is
now accept->socket. This effectively means that attempting I/O on an initial accept socket will await an incoming connection
then perform I/O on it.

If any additional BIOs have been set using BIO_set_accept_bios() then they are placed between the socket and the accept BIO,
that is the chain will be accept->otherbios->socket.

If a server wishes to process multiple connections (as is normally the case) then the accept BIO must be made available for
further incoming connections. This can be done by waiting for a connection and then calling:

connection = BIO_pop(accept);

After this call connection will contain a BIO for the recently established connection and accept will now be a single BIO
again which can be used to await further incoming connections. If no further connections will be accepted the accept can be
freed using BIO_free().

If only a single connection will be processed it is possible to perform I/O using the accept BIO itself. This is often undesirable
however because the accept BIO will still accept additional incoming connections. This can be resolved by using BIO_pop()
(see above) and freeing up the accept BIO after the initial connection.

If the underlying accept socket is non-blocking and BIO_do_accept() is called to await an incoming connection it is possible
for BIO_should_io_special() with the reason BIO_RR_ACCEPT. If this happens then it is an indication that an accept attempt
would block: the application should take appropriate action to wait until the underlying socket has accepted a connection and
retry the call.

BIO_set_accept_port(), BIO_get_accept_port(), BIO_set_nbio_accept(), BIO_set_accept_bios(), BIO_set_bind_mode(),
BIO_get_bind_mode() and BIO_do_accept() are macros.

RETURN VALUES

TBA

EXAMPLE

This example accepts two connections on port 4444, sends messages down each and finally closes both down.

BIO *abio, *cbio, *cbio2;
ERR_load_crypto_strings();
abio = BIO_new_accept("4444");

/* First call to BIO_accept() sets up accept BIO */
if(BIO_do_accept(abio) <= 0) {
 fprintf(stderr, "Error setting up accept\n");
 ERR_print_errors_fp(stderr);
 exit(0);
}

/* Wait for incoming connection */
if(BIO_do_accept(abio) <= 0) {
 fprintf(stderr, "Error accepting connection\n");
 ERR_print_errors_fp(stderr);

1257

OpenSSL Manual

 exit(0);
}
fprintf(stderr, "Connection 1 established\n");
/* Retrieve BIO for connection */
cbio = BIO_pop(abio);
BIO_puts(cbio, "Connection 1: Sending out Data on initial connection\n");
fprintf(stderr, "Sent out data on connection 1\n");
/* Wait for another connection */
if(BIO_do_accept(abio) <= 0) {
 fprintf(stderr, "Error accepting connection\n");
 ERR_print_errors_fp(stderr);
 exit(0);
}
fprintf(stderr, "Connection 2 established\n");
/* Close accept BIO to refuse further connections */
cbio2 = BIO_pop(abio);
BIO_free(abio);
BIO_puts(cbio2, "Connection 2: Sending out Data on second\n");
fprintf(stderr, "Sent out data on connection 2\n");

BIO_puts(cbio, "Connection 1: Second connection established\n");
/* Close the two established connections */
BIO_free(cbio);
BIO_free(cbio2);

SEE ALSO

TBA

1258

OpenSSL Manual

Name
BIO_s_bio, BIO_make_bio_pair, BIO_destroy_bio_pair, BIO_shutdown_wr, BIO_set_write_buf_size,
BIO_get_write_buf_size, BIO_new_bio_pair, BIO_get_write_guarantee, BIO_ctrl_get_write_guarantee,
BIO_get_read_request, BIO_ctrl_get_read_request and BIO_ctrl_reset_read_request — BIO pair BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD *BIO_s_bio(void);

#define BIO_make_bio_pair(b1,b2) (int)BIO_ctrl(b1,BIO_C_MAKE_BIO_PAIR,0,b2)
#define BIO_destroy_bio_pair(b) (int)BIO_ctrl(b,BIO_C_DESTROY_BIO_PAIR,0,NULL)

#define BIO_shutdown_wr(b) (int)BIO_ctrl(b, BIO_C_SHUTDOWN_WR, 0, NULL)

#define BIO_set_write_buf_size(b,size) (int)BIO_ctrl(b,BIO_C_SET_WRITE_BUF_SIZE,size,NULL)
#define BIO_get_write_buf_size(b,size) (size_t)BIO_ctrl(b,BIO_C_GET_WRITE_BUF_SIZE,size,NULL)

int BIO_new_bio_pair(BIO **bio1, size_t writebuf1, BIO **bio2, size_t writebuf2);

#define BIO_get_write_guarantee(b) (int)BIO_ctrl(b,BIO_C_GET_WRITE_GUARANTEE,0,NULL)
size_t BIO_ctrl_get_write_guarantee(BIO *b);

#define BIO_get_read_request(b) (int)BIO_ctrl(b,BIO_C_GET_READ_REQUEST,0,NULL)
size_t BIO_ctrl_get_read_request(BIO *b);

int BIO_ctrl_reset_read_request(BIO *b);

DESCRIPTION

BIO_s_bio() returns the method for a BIO pair. A BIO pair is a pair of source/sink BIOs where data written to either half of
the pair is buffered and can be read from the other half. Both halves must usually by handled by the same application thread
since no locking is done on the internal data structures.

Since BIO chains typically end in a source/sink BIO it is possible to make this one half of a BIO pair and have all the data
processed by the chain under application control.

One typical use of BIO pairs is to place TLS/SSL I/O under application control, this can be used when the application wishes
to use a non standard transport for TLS/SSL or the normal socket routines are inappropriate.

Calls to BIO_read() will read data from the buffer or request a retry if no data is available.

Calls to BIO_write() will place data in the buffer or request a retry if the buffer is full.

The standard calls BIO_ctrl_pending() and BIO_ctrl_wpending() can be used to determine the amount of pending data in the
read or write buffer.

BIO_reset() clears any data in the write buffer.

BIO_make_bio_pair() joins two separate BIOs into a connected pair.

BIO_destroy_pair() destroys the association between two connected BIOs. Freeing up any half of the pair will automatically
destroy the association.

BIO_shutdown_wr() is used to close down a BIO b. After this call no further writes on BIO b are allowed (they will return an
error). Reads on the other half of the pair will return any pending data or EOF when all pending data has been read.

BIO_set_write_buf_size() sets the write buffer size of BIO b to size. If the size is not initialized a default value is used. This
is currently 17K, sufficient for a maximum size TLS record.

BIO_get_write_buf_size() returns the size of the write buffer.

BIO_new_bio_pair() combines the calls to BIO_new(), BIO_make_bio_pair() and BIO_set_write_buf_size() to create a con-
nected pair of BIOs bio1, bio2 with write buffer sizes writebuf1 and writebuf2. If either size is zero then the default size

1259

OpenSSL Manual

is used. BIO_new_bio_pair() does not check whether bio1 or bio2 do point to some other BIO, the values are overwritten,
BIO_free() is not called.

BIO_get_write_guarantee() and BIO_ctrl_get_write_guarantee() return the maximum length of data that can be currently writ-
ten to the BIO. Writes larger than this value will return a value from BIO_write() less than the amount requested or if the buffer
is full request a retry. BIO_ctrl_get_write_guarantee() is a function whereas BIO_get_write_guarantee() is a macro.

BIO_get_read_request() and BIO_ctrl_get_read_request() return the amount of data requested, or the buffer size if it is less, if
the last read attempt at the other half of the BIO pair failed due to an empty buffer. This can be used to determine how much
data should be written to the BIO so the next read will succeed: this is most useful in TLS/SSL applications where the amount
of data read is usually meaningful rather than just a buffer size. After a successful read this call will return zero. It also will
return zero once new data has been written satisfying the read request or part of it. Note that BIO_get_read_request() never
returns an amount larger than that returned by BIO_get_write_guarantee().

BIO_ctrl_reset_read_request() can also be used to reset the value returned by BIO_get_read_request() to zero.

NOTES

Both halves of a BIO pair should be freed. That is even if one half is implicit freed due to a BIO_free_all() or SSL_free() call
the other half needs to be freed.

When used in bidirectional applications (such as TLS/SSL) care should be taken to flush any data in the write buffer. This
can be done by calling BIO_pending() on the other half of the pair and, if any data is pending, reading it and sending it to
the underlying transport. This must be done before any normal processing (such as calling select()) due to a request and
BIO_should_read() being true.

To see why this is important consider a case where a request is sent using BIO_write() and a response read with BIO_read(), this
can occur during an TLS/SSL handshake for example. BIO_write() will succeed and place data in the write buffer. BIO_read()
will initially fail and BIO_should_read() will be true. If the application then waits for data to be available on the underlying
transport before flushing the write buffer it will never succeed because the request was never sent!

RETURN VALUES

BIO_new_bio_pair() returns 1 on success, with the new BIOs available in bio1 and bio2, or 0 on failure, with NULL pointers
stored into the locations for bio1 and bio2. Check the error stack for more information.

[XXXXX: More return values need to be added here]

EXAMPLE

The BIO pair can be used to have full control over the network access of an application. The application can call select() on
the socket as required without having to go through the SSL-interface.

BIO *internal_bio, *network_bio;
…
BIO_new_bio_pair(internal_bio, 0, network_bio, 0);
SSL_set_bio(ssl, internal_bio, internal_bio);
SSL_operations();
…

application | TLS-engine
 | |
 +----------> SSL_operations()
 | /\ ||
 | || \/
 | BIO-pair (internal_bio)
 +----------< BIO-pair (network_bio)
 | |
 socket |

…
SSL_free(ssl); /* implicitly frees internal_bio */
BIO_free(network_bio);

1260

OpenSSL Manual

…

As the BIO pair will only buffer the data and never directly access the connection, it behaves non-blocking and will return
as soon as the write buffer is full or the read buffer is drained. Then the application has to flush the write buffer and/or fill
the read buffer.

Use the BIO_ctrl_pending(), to find out whether data is buffered in the BIO and must be transfered to the network. Use
BIO_ctrl_get_read_request() to find out, how many bytes must be written into the buffer before the SSL_operation() can
successfully be continued.

WARNING

As the data is buffered, SSL_operation() may return with a ERROR_SSL_WANT_READ condition, but there is still data in
the write buffer. An application must not rely on the error value of SSL_operation() but must assure that the write buffer is
always flushed first. Otherwise a deadlock may occur as the peer might be waiting for the data before being able to continue.

SEE ALSO

SSL_set_bio(3), ssl(3), bio(3), BIO_should_retry(3), BIO_read(3)

1261

OpenSSL Manual

Name
BIO_s_connect, BIO_set_conn_hostname, BIO_set_conn_port, BIO_set_conn_ip, BIO_set_conn_int_port,
BIO_get_conn_hostname, BIO_get_conn_port, BIO_get_conn_ip, BIO_get_conn_int_port, BIO_set_nbio and
BIO_do_connect — connect BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_s_connect(void);

BIO *BIO_new_connect(char *name);

long BIO_set_conn_hostname(BIO *b, char *name);
long BIO_set_conn_port(BIO *b, char *port);
long BIO_set_conn_ip(BIO *b, char *ip);
long BIO_set_conn_int_port(BIO *b, char *port);
char *BIO_get_conn_hostname(BIO *b);
char *BIO_get_conn_port(BIO *b);
char *BIO_get_conn_ip(BIO *b);
long BIO_get_conn_int_port(BIO *b);

long BIO_set_nbio(BIO *b, long n);

int BIO_do_connect(BIO *b);

DESCRIPTION

BIO_s_connect() returns the connect BIO method. This is a wrapper round the platform's TCP/IP socket connection routines.

Using connect BIOs, TCP/IP connections can be made and data transferred using only BIO routines. In this way any platform
specific operations are hidden by the BIO abstraction.

Read and write operations on a connect BIO will perform I/O on the underlying connection. If no connection is established
and the port and hostname (see below) is set up properly then a connection is established first.

Connect BIOs support BIO_puts() but not BIO_gets().

If the close flag is set on a connect BIO then any active connection is shutdown and the socket closed when the BIO is freed.

Calling BIO_reset() on a connect BIO will close any active connection and reset the BIO into a state where it can connect
to the same host again.

BIO_get_fd() places the underlying socket in c if it is not NULL, it also returns the socket . If c is not NULL it should be
of type (int *).

BIO_set_conn_hostname() uses the string name to set the hostname. The hostname can be an IP address. The hostname can also
include the port in the form hostname:port . It is also acceptable to use the form "hostname/any/other/path" or "hostname:port/
any/other/path".

BIO_set_conn_port() sets the port to port. port can be the numerical form or a string such as "http". A string will be looked
up first using getservbyname() on the host platform but if that fails a standard table of port names will be used. Currently the
list is http, telnet, socks, https, ssl, ftp, gopher and wais.

BIO_set_conn_ip() sets the IP address to ip using binary form, that is four bytes specifying the IP address in big-endian form.

BIO_set_conn_int_port() sets the port using port. port should be of type (int *).

BIO_get_conn_hostname() returns the hostname of the connect BIO or NULL if the BIO is initialized but no hostname is set.
This return value is an internal pointer which should not be modified.

BIO_get_conn_port() returns the port as a string.

BIO_get_conn_ip() returns the IP address in binary form.

1262

OpenSSL Manual

BIO_get_conn_int_port() returns the port as an int.

BIO_set_nbio() sets the non blocking I/O flag to n. If n is zero then blocking I/O is set. If n is 1 then non blocking I/O is
set. Blocking I/O is the default. The call to BIO_set_nbio() should be made before the connection is established because non
blocking I/O is set during the connect process.

BIO_new_connect() combines BIO_new() and BIO_set_conn_hostname() into a single call: that is it creates a new connect
BIO with name.

BIO_do_connect() attempts to connect the supplied BIO. It returns 1 if the connection was established successfully. A zero
or negative value is returned if the connection could not be established, the call BIO_should_retry() should be used for non
blocking connect BIOs to determine if the call should be retried.

NOTES

If blocking I/O is set then a non positive return value from any I/O call is caused by an error condition, although a zero return
will normally mean that the connection was closed.

If the port name is supplied as part of the host name then this will override any value set with BIO_set_conn_port(). This may
be undesirable if the application does not wish to allow connection to arbitrary ports. This can be avoided by checking for the
presence of the ':' character in the passed hostname and either indicating an error or truncating the string at that point.

The values returned by BIO_get_conn_hostname(), BIO_get_conn_port(), BIO_get_conn_ip() and BIO_get_conn_int_port()
are updated when a connection attempt is made. Before any connection attempt the values returned are those set by the appli-
cation itself.

Applications do not have to call BIO_do_connect() but may wish to do so to separate the connection process from other I/
O processing.

If non blocking I/O is set then retries will be requested as appropriate.

It addition to BIO_should_read() and BIO_should_write() it is also possible for BIO_should_io_special() to be true during the
initial connection process with the reason BIO_RR_CONNECT. If this is returned then this is an indication that a connection
attempt would block, the application should then take appropriate action to wait until the underlying socket has connected
and retry the call.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip(), BIO_set_conn_int_port(), BIO_get_conn_hostname(),
BIO_get_conn_port(), BIO_get_conn_ip(), BIO_get_conn_int_port(), BIO_set_nbio() and BIO_do_connect() are macros.

RETURN VALUES

BIO_s_connect() returns the connect BIO method.

BIO_get_fd() returns the socket or -1 if the BIO has not been initialized.

BIO_set_conn_hostname(), BIO_set_conn_port(), BIO_set_conn_ip() and BIO_set_conn_int_port() always return 1.

BIO_get_conn_hostname() returns the connected hostname or NULL is none was set.

BIO_get_conn_port() returns a string representing the connected port or NULL if not set.

BIO_get_conn_ip() returns a pointer to the connected IP address in binary form or all zeros if not set.

BIO_get_conn_int_port() returns the connected port or 0 if none was set.

BIO_set_nbio() always returns 1.

BIO_do_connect() returns 1 if the connection was successfully established and 0 or -1 if the connection failed.

EXAMPLE

This is example connects to a webserver on the local host and attempts to retrieve a page and copy the result to standard output.

1263

OpenSSL Manual

BIO *cbio, *out;
int len;
char tmpbuf[1024];
ERR_load_crypto_strings();
cbio = BIO_new_connect("localhost:http");
out = BIO_new_fp(stdout, BIO_NOCLOSE);
if(BIO_do_connect(cbio) <= 0) {
 fprintf(stderr, "Error connecting to server\n");
 ERR_print_errors_fp(stderr);
 /* whatever … */
 }
BIO_puts(cbio, "GET / HTTP/1.0\n\n");
for(;;) {
 len = BIO_read(cbio, tmpbuf, 1024);
 if(len <= 0) break;
 BIO_write(out, tmpbuf, len);
}
BIO_free(cbio);
BIO_free(out);

SEE ALSO

TBA

1264

OpenSSL Manual

Name
BIO_set_callback, BIO_get_callback, BIO_set_callback_arg, BIO_get_callback_arg and BIO_debug_callback — BIO
callback functions

Synopsis
#include <openssl/bio.h>

#define BIO_set_callback(b,cb) ((b)->callback=(cb))
#define BIO_get_callback(b) ((b)->callback)
#define BIO_set_callback_arg(b,arg) ((b)->cb_arg=(char *)(arg))
#define BIO_get_callback_arg(b) ((b)->cb_arg)

long BIO_debug_callback(BIO *bio,int cmd,const char *argp,int argi,
 long argl,long ret);

typedef long (*callback)(BIO *b, int oper, const char *argp,
 int argi, long argl, long retvalue);

DESCRIPTION

BIO_set_callback() and BIO_get_callback() set and retrieve the BIO callback, they are both macros. The callback is called
during most high level BIO operations. It can be used for debugging purposes to trace operations on a BIO or to modify its
operation.

BIO_set_callback_arg() and BIO_get_callback_arg() are macros which can be used to set and retrieve an argument for use
in the callback.

BIO_debug_callback() is a standard debugging callback which prints out information relating to each BIO operation. If the
callback argument is set if is interpreted as a BIO to send the information to, otherwise stderr is used.

callback() is the callback function itself. The meaning of each argument is described below.

The BIO the callback is attached to is passed in b.

oper is set to the operation being performed. For some operations the callback is called twice, once before and once after the
actual operation, the latter case has oper or'ed with BIO_CB_RETURN.

The meaning of the arguments argp, argi and argl depends on the value of oper, that is the operation being performed.

retvalue is the return value that would be returned to the application if no callback were present. The actual value returned is
the return value of the callback itself. In the case of callbacks called before the actual BIO operation 1 is placed in retvalue, if
the return value is not positive it will be immediately returned to the application and the BIO operation will not be performed.

The callback should normally simply return retvalue when it has finished processing, unless if specifically wishes to modify
the value returned to the application.

CALLBACK OPERATIONS

BIO_free(b)

callback(b,BIO_CB_FREE,NULL,0L,0L,1L) is called before the free operation.

BIO_read(b, out, outl)

callback(b,BIO_CB_READ,out,outl,0L,1L) is called before the read.

callback(b,BIO_CB_READ|BIO_CB_RETURN,out outl,0L,retvalue) after the read.

BIO_write(b, in, inl)

callback(b,BIO_CB_WRITE,in,inl,0L,1L) is called before the write.

1265

OpenSSL Manual

callback(b,BIO_CB_WRITE|BIO_CB_RETURN,in,inl,0L,retvalue) after the write.

BIO_gets(b, out, outl)

callback(b,BIO_CB_GETS,out,outl,0L,1L) is called before the operation.

callback(b,BIO_CB_GETS|BIO_CB_RETURN,out,outl,0L,retvalue) is called after the operation.

BIO_puts(b, in)

callback(b,BIO_CB_WRITE,in,0,0L 1L) is called before the operation.

callback(b, BIO_CB_WRITE|BIO_CB_RETURN, in, 0, 0L, retvalue) is called after the operation.

BIO_ctrl(BIO *b, int cmd, long larg, void *parg)

callback(b,BIO_CB_CTRL,parg,cmd,larg,1L) is called before the call.

callback(b,BIO_CB_CTRL|BIO_CB_RETURN,parg,cmd,larg,ret) is called after the call.

EXAMPLE

The BIO_debug_callback() function is a good example, its source is in crypto/bio/bio_cb.c

SEE ALSO

TBA

1266

OpenSSL Manual

Name
BIO_s_fd, BIO_set_fd, BIO_get_fd and BIO_new_fd — file descriptor BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_s_fd(void);

#define BIO_set_fd(b,fd,c) BIO_int_ctrl(b,BIO_C_SET_FD,c,fd)
#define BIO_get_fd(b,c) BIO_ctrl(b,BIO_C_GET_FD,0,(char *)c)

BIO *BIO_new_fd(int fd, int close_flag);

DESCRIPTION

BIO_s_fd() returns the file descriptor BIO method. This is a wrapper round the platforms file descriptor routines such as read()
and write().

BIO_read() and BIO_write() read or write the underlying descriptor. BIO_puts() is supported but BIO_gets() is not.

If the close flag is set then then close() is called on the underlying file descriptor when the BIO is freed.

BIO_reset() attempts to change the file pointer to the start of file using lseek(fd, 0, 0).

BIO_seek() sets the file pointer to position ofs from start of file using lseek(fd, ofs, 0).

BIO_tell() returns the current file position by calling lseek(fd, 0, 1).

BIO_set_fd() sets the file descriptor of BIO b to fd and the close flag to c.

BIO_get_fd() places the file descriptor in c if it is not NULL, it also returns the file descriptor. If c is not NULL it should
be of type (int *).

BIO_new_fd() returns a file descriptor BIO using fd and close_flag.

NOTES

The behaviour of BIO_read() and BIO_write() depends on the behavior of the platforms read() and write() calls on the
descriptor. If the underlying file descriptor is in a non blocking mode then the BIO will behave in the manner described in the
BIO_read(3) and BIO_should_retry(3) manual pages.

File descriptor BIOs should not be used for socket I/O. Use socket BIOs instead.

RETURN VALUES

BIO_s_fd() returns the file descriptor BIO method.

BIO_reset() returns zero for success and -1 if an error occurred. BIO_seek() and BIO_tell() return the current file position or
-1 is an error occurred. These values reflect the underlying lseek() behaviour.

BIO_set_fd() always returns 1.

BIO_get_fd() returns the file descriptor or -1 if the BIO has not been initialized.

BIO_new_fd() returns the newly allocated BIO or NULL is an error occurred.

EXAMPLE

This is a file descriptor BIO version of "Hello World":

BIO *out;

1267

OpenSSL Manual

out = BIO_new_fd(fileno(stdout), BIO_NOCLOSE);
BIO_printf(out, "Hello World\n");
BIO_free(out);

SEE ALSO

BIO_seek(3), BIO_tell(3), BIO_reset(3), BIO_read(3), BIO_write(3), BIO_puts(3), BIO_gets(3), BIO_printf(3),
BIO_set_close(3), BIO_get_close(3)

1268

OpenSSL Manual

Name
BIO_s_file, BIO_new_file, BIO_new_fp, BIO_set_fp, BIO_get_fp, BIO_read_filename, BIO_write_filename,
BIO_append_filename and BIO_rw_filename — FILE bio

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_s_file(void);
BIO *BIO_new_file(const char *filename, const char *mode);
BIO *BIO_new_fp(FILE *stream, int flags);

BIO_set_fp(BIO *b,FILE *fp, int flags);
BIO_get_fp(BIO *b,FILE **fpp);

int BIO_read_filename(BIO *b, char *name)
int BIO_write_filename(BIO *b, char *name)
int BIO_append_filename(BIO *b, char *name)
int BIO_rw_filename(BIO *b, char *name)

DESCRIPTION

BIO_s_file() returns the BIO file method. As its name implies it is a wrapper round the stdio FILE structure and it is a source/
sink BIO.

Calls to BIO_read() and BIO_write() read and write data to the underlying stream. BIO_gets() and BIO_puts() are supported
on file BIOs.

BIO_flush() on a file BIO calls the fflush() function on the wrapped stream.

BIO_reset() attempts to change the file pointer to the start of file using fseek(stream, 0, 0).

BIO_seek() sets the file pointer to position ofs from start of file using fseek(stream, ofs, 0).

BIO_eof() calls feof().

Setting the BIO_CLOSE flag calls fclose() on the stream when the BIO is freed.

BIO_new_file() creates a new file BIO with mode mode the meaning of mode is the same as the stdio function fopen(). The
BIO_CLOSE flag is set on the returned BIO.

BIO_new_fp() creates a file BIO wrapping stream. Flags can be: BIO_CLOSE, BIO_NOCLOSE (the close flag)
BIO_FP_TEXT (sets the underlying stream to text mode, default is binary: this only has any effect under Win32).

BIO_set_fp() set the fp of a file BIO to fp. flags has the same meaning as in BIO_new_fp(), it is a macro.

BIO_get_fp() retrieves the fp of a file BIO, it is a macro.

BIO_seek() is a macro that sets the position pointer to offset bytes from the start of file.

BIO_tell() returns the value of the position pointer.

BIO_read_filename(), BIO_write_filename(), BIO_append_filename() and BIO_rw_filename() set the file BIO b to use file
name for reading, writing, append or read write respectively.

NOTES

When wrapping stdout, stdin or stderr the underlying stream should not normally be closed so the BIO_NOCLOSE flag should
be set.

Because the file BIO calls the underlying stdio functions any quirks in stdio behaviour will be mirrored by the corresponding
BIO.

1269

OpenSSL Manual

On Windows BIO_new_files reserves for the filename argument to be UTF-8 encoded. In other words if you have to make it
work in multi- lingual environment, encode file names in UTF-8.

EXAMPLES

File BIO "hello world":

BIO *bio_out;
bio_out = BIO_new_fp(stdout, BIO_NOCLOSE);
BIO_printf(bio_out, "Hello World\n");

Alternative technique:

BIO *bio_out;
bio_out = BIO_new(BIO_s_file());
if(bio_out == NULL) /* Error … */
if(!BIO_set_fp(bio_out, stdout, BIO_NOCLOSE)) /* Error … */
BIO_printf(bio_out, "Hello World\n");

Write to a file:

BIO *out;
out = BIO_new_file("filename.txt", "w");
if(!out) /* Error occurred */
BIO_printf(out, "Hello World\n");
BIO_free(out);

Alternative technique:

BIO *out;
out = BIO_new(BIO_s_file());
if(out == NULL) /* Error … */
if(!BIO_write_filename(out, "filename.txt")) /* Error … */
BIO_printf(out, "Hello World\n");
BIO_free(out);

RETURN VALUES

BIO_s_file() returns the file BIO method.

BIO_new_file() and BIO_new_fp() return a file BIO or NULL if an error occurred.

BIO_set_fp() and BIO_get_fp() return 1 for success or 0 for failure (although the current implementation never return 0).

BIO_seek() returns the same value as the underlying fseek() function: 0 for success or -1 for failure.

BIO_tell() returns the current file position.

BIO_read_filename(), BIO_write_filename(), BIO_append_filename() and BIO_rw_filename() return 1 for success or 0 for
failure.

BUGS

BIO_reset() and BIO_seek() are implemented using fseek() on the underlying stream. The return value for fseek() is 0 for
success or -1 if an error occurred this differs from other types of BIO which will typically return 1 for success and a non
positive value if an error occurred.

SEE ALSO

BIO_seek(3), BIO_tell(3), BIO_reset(3), BIO_flush(3), BIO_read(3), BIO_write(3), BIO_puts(3), BIO_gets(3),
BIO_printf(3), BIO_set_close(3), BIO_get_close(3)

1270

OpenSSL Manual

Name
BIO_should_retry, BIO_should_read, BIO_should_write, BIO_should_io_special, BIO_retry_type, BIO_should_retry,
BIO_get_retry_BIO and BIO_get_retry_reason — BIO retry functions

Synopsis
#include <openssl/bio.h>

#define BIO_should_read(a) ((a)->flags & BIO_FLAGS_READ)
#define BIO_should_write(a) ((a)->flags & BIO_FLAGS_WRITE)
#define BIO_should_io_special(a) ((a)->flags & BIO_FLAGS_IO_SPECIAL)
#define BIO_retry_type(a) ((a)->flags & BIO_FLAGS_RWS)
#define BIO_should_retry(a) ((a)->flags & BIO_FLAGS_SHOULD_RETRY)

#define BIO_FLAGS_READ 0x01
#define BIO_FLAGS_WRITE 0x02
#define BIO_FLAGS_IO_SPECIAL 0x04
#define BIO_FLAGS_RWS (BIO_FLAGS_READ|BIO_FLAGS_WRITE|BIO_FLAGS_IO_SPECIAL)
#define BIO_FLAGS_SHOULD_RETRY 0x08

BIO * BIO_get_retry_BIO(BIO *bio, int *reason);
int BIO_get_retry_reason(BIO *bio);

DESCRIPTION

These functions determine why a BIO is not able to read or write data. They will typically be called after a failed BIO_read()
or BIO_write() call.

BIO_should_retry() is true if the call that produced this condition should then be retried at a later time.

If BIO_should_retry() is false then the cause is an error condition.

BIO_should_read() is true if the cause of the condition is that a BIO needs to read data.

BIO_should_write() is true if the cause of the condition is that a BIO needs to read data.

BIO_should_io_special() is true if some "special" condition, that is a reason other than reading or writing is the cause of the
condition.

BIO_retry_type() returns a mask of the cause of a retry condition consisting of the values BIO_FLAGS_READ,
BIO_FLAGS_WRITE, BIO_FLAGS_IO_SPECIAL though current BIO types will only set one of these.

BIO_get_retry_BIO() determines the precise reason for the special condition, it returns the BIO that caused this condition and
if reason is not NULL it contains the reason code. The meaning of the reason code and the action that should be taken depends
on the type of BIO that resulted in this condition.

BIO_get_retry_reason() returns the reason for a special condition if passed the relevant BIO, for example as returned by
BIO_get_retry_BIO().

NOTES

If BIO_should_retry() returns false then the precise "error condition" depends on the BIO type that caused it and the return
code of the BIO operation. For example if a call to BIO_read() on a socket BIO returns 0 and BIO_should_retry() is false then
the cause will be that the connection closed. A similar condition on a file BIO will mean that it has reached EOF. Some BIO
types may place additional information on the error queue. For more details see the individual BIO type manual pages.

If the underlying I/O structure is in a blocking mode almost all current BIO types will not request a retry, because the underlying
I/O calls will not. If the application knows that the BIO type will never signal a retry then it need not call BIO_should_retry()
after a failed BIO I/O call. This is typically done with file BIOs.

SSL BIOs are the only current exception to this rule: they can request a retry even if the underlying I/O structure is blocking,
if a handshake occurs during a call to BIO_read(). An application can retry the failed call immediately or avoid this situation
by setting SSL_MODE_AUTO_RETRY on the underlying SSL structure.

1271

OpenSSL Manual

While an application may retry a failed non blocking call immediately this is likely to be very inefficient because the call will
fail repeatedly until data can be processed or is available. An application will normally wait until the necessary condition is
satisfied. How this is done depends on the underlying I/O structure.

For example if the cause is ultimately a socket and BIO_should_read() is true then a call to select() may be made to wait until
data is available and then retry the BIO operation. By combining the retry conditions of several non blocking BIOs in a single
select() call it is possible to service several BIOs in a single thread, though the performance may be poor if SSL BIOs are
present because long delays can occur during the initial handshake process.

It is possible for a BIO to block indefinitely if the underlying I/O structure cannot process or return any data. This depends
on the behaviour of the platforms I/O functions. This is often not desirable: one solution is to use non blocking I/O and use
a timeout on the select() (or equivalent) call.

BUGS

The OpenSSL ASN1 functions cannot gracefully deal with non blocking I/O: that is they cannot retry after a partial read or
write. This is usually worked around by only passing the relevant data to ASN1 functions when the entire structure can be
read or written.

SEE ALSO

TBA

1272

OpenSSL Manual

Name
BIO_s_mem, BIO_set_mem_eof_return, BIO_get_mem_data, BIO_set_mem_buf, BIO_get_mem_ptr and
BIO_new_mem_buf — memory BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_s_mem(void);

BIO_set_mem_eof_return(BIO *b,int v)
long BIO_get_mem_data(BIO *b, char **pp)
BIO_set_mem_buf(BIO *b,BUF_MEM *bm,int c)
BIO_get_mem_ptr(BIO *b,BUF_MEM **pp)

BIO *BIO_new_mem_buf(void *buf, int len);

DESCRIPTION

BIO_s_mem() return the memory BIO method function.

A memory BIO is a source/sink BIO which uses memory for its I/O. Data written to a memory BIO is stored in a BUF_MEM
structure which is extended as appropriate to accommodate the stored data.

Any data written to a memory BIO can be recalled by reading from it. Unless the memory BIO is read only any data read
from it is deleted from the BIO.

Memory BIOs support BIO_gets() and BIO_puts().

If the BIO_CLOSE flag is set when a memory BIO is freed then the underlying BUF_MEM structure is also freed.

Calling BIO_reset() on a read write memory BIO clears any data in it. On a read only BIO it restores the BIO to its original
state and the read only data can be read again.

BIO_eof() is true if no data is in the BIO.

BIO_ctrl_pending() returns the number of bytes currently stored.

BIO_set_mem_eof_return() sets the behaviour of memory BIO b when it is empty. If the v is zero then an empty memory BIO
will return EOF (that is it will return zero and BIO_should_retry(b) will be false. If v is non zero then it will return v when it
is empty and it will set the read retry flag (that is BIO_read_retry(b) is true). To avoid ambiguity with a normal positive return
value v should be set to a negative value, typically -1.

BIO_get_mem_data() sets pp to a pointer to the start of the memory BIOs data and returns the total amount of data available.
It is implemented as a macro.

BIO_set_mem_buf() sets the internal BUF_MEM structure to bm and sets the close flag to c, that is c should be either
BIO_CLOSE or BIO_NOCLOSE. It is a macro.

BIO_get_mem_ptr() places the underlying BUF_MEM structure in pp. It is a macro.

BIO_new_mem_buf() creates a memory BIO using len bytes of data at buf, if len is -1 then the buf is assumed to be null
terminated and its length is determined by strlen. The BIO is set to a read only state and as a result cannot be written to. This is
useful when some data needs to be made available from a static area of memory in the form of a BIO. The supplied data is read
directly from the supplied buffer: it is not copied first, so the supplied area of memory must be unchanged until the BIO is freed.

NOTES

Writes to memory BIOs will always succeed if memory is available: that is their size can grow indefinitely.

Every read from a read write memory BIO will remove the data just read with an internal copy operation, if a BIO contains
a lot of data and it is read in small chunks the operation can be very slow. The use of a read only memory BIO avoids this
problem. If the BIO must be read write then adding a buffering BIO to the chain will speed up the process.

1273

OpenSSL Manual

BUGS

There should be an option to set the maximum size of a memory BIO.

There should be a way to "rewind" a read write BIO without destroying its contents.

The copying operation should not occur after every small read of a large BIO to improve efficiency.

EXAMPLE

Create a memory BIO and write some data to it:

BIO *mem = BIO_new(BIO_s_mem());
BIO_puts(mem, "Hello World\n");

Create a read only memory BIO:

char data[] = "Hello World";
BIO *mem;
mem = BIO_new_mem_buf(data, -1);

Extract the BUF_MEM structure from a memory BIO and then free up the BIO:

BUF_MEM *bptr;
BIO_get_mem_ptr(mem, &bptr);
BIO_set_close(mem, BIO_NOCLOSE); /* So BIO_free() leaves BUF_MEM alone */
BIO_free(mem);

SEE ALSO

TBA

1274

OpenSSL Manual

Name
BIO_s_null — null data sink

Synopsis
#include <openssl/bio.h>

BIO_METHOD * BIO_s_null(void);

DESCRIPTION

BIO_s_null() returns the null sink BIO method. Data written to the null sink is discarded, reads return EOF.

NOTES

A null sink BIO behaves in a similar manner to the Unix /dev/null device.

A null bio can be placed on the end of a chain to discard any data passed through it.

A null sink is useful if, for example, an application wishes to digest some data by writing through a digest bio but not send
the digested data anywhere. Since a BIO chain must normally include a source/sink BIO this can be achieved by adding a null
sink BIO to the end of the chain

RETURN VALUES

BIO_s_null() returns the null sink BIO method.

SEE ALSO

TBA

1275

OpenSSL Manual

Name
BIO_s_socket and BIO_new_socket — socket BIO

Synopsis
#include <openssl/bio.h>

BIO_METHOD *BIO_s_socket(void);

long BIO_set_fd(BIO *b, int fd, long close_flag);
long BIO_get_fd(BIO *b, int *c);

BIO *BIO_new_socket(int sock, int close_flag);

DESCRIPTION

BIO_s_socket() returns the socket BIO method. This is a wrapper round the platform's socket routines.

BIO_read() and BIO_write() read or write the underlying socket. BIO_puts() is supported but BIO_gets() is not.

If the close flag is set then the socket is shut down and closed when the BIO is freed.

BIO_set_fd() sets the socket of BIO b to fd and the close flag to close_flag.

BIO_get_fd() places the socket in c if it is not NULL, it also returns the socket. If c is not NULL it should be of type (int *).

BIO_new_socket() returns a socket BIO using sock and close_flag.

NOTES

Socket BIOs also support any relevant functionality of file descriptor BIOs.

The reason for having separate file descriptor and socket BIOs is that on some platforms sockets are not file descriptors and
use distinct I/O routines, Windows is one such platform. Any code mixing the two will not work on all platforms.

BIO_set_fd() and BIO_get_fd() are macros.

RETURN VALUES

BIO_s_socket() returns the socket BIO method.

BIO_set_fd() always returns 1.

BIO_get_fd() returns the socket or -1 if the BIO has not been initialized.

BIO_new_socket() returns the newly allocated BIO or NULL is an error occurred.

SEE ALSO

TBA

1276

OpenSSL Manual

Name
blowfish, BF_set_key, BF_encrypt, BF_decrypt, BF_ecb_encrypt, BF_cbc_encrypt, BF_cfb64_encrypt, BF_ofb64_encrypt
and BF_options — Blowfish encryption

Synopsis
#include <openssl/blowfish.h>

void BF_set_key(BF_KEY *key, int len, const unsigned char *data);

void BF_ecb_encrypt(const unsigned char *in, unsigned char *out,
 BF_KEY *key, int enc);
void BF_cbc_encrypt(const unsigned char *in, unsigned char *out,
 long length, BF_KEY *schedule, unsigned char *ivec, int enc);
void BF_cfb64_encrypt(const unsigned char *in, unsigned char *out,
 long length, BF_KEY *schedule, unsigned char *ivec, int *num,
 int enc);
void BF_ofb64_encrypt(const unsigned char *in, unsigned char *out,
 long length, BF_KEY *schedule, unsigned char *ivec, int *num);
const char *BF_options(void);

void BF_encrypt(BF_LONG *data,const BF_KEY *key);
void BF_decrypt(BF_LONG *data,const BF_KEY *key);

DESCRIPTION

This library implements the Blowfish cipher, which was invented and described by Counterpane (see http://
www.counterpane.com/blowfish.html).

Blowfish is a block cipher that operates on 64 bit (8 byte) blocks of data. It uses a variable size key, but typically, 128 bit (16
byte) keys are considered good for strong encryption. Blowfish can be used in the same modes as DES (see des_modes(7)).
Blowfish is currently one of the faster block ciphers. It is quite a bit faster than DES, and much faster than IDEA or RC2.

Blowfish consists of a key setup phase and the actual encryption or decryption phase.

BF_set_key() sets up the BF_KEY key using the len bytes long key at data.

BF_ecb_encrypt() is the basic Blowfish encryption and decryption function. It encrypts or decrypts the first 64 bits of in using
the key key, putting the result in out. enc decides if encryption (BF_ENCRYPT) or decryption (BF_DECRYPT) shall be
performed. The vector pointed at by in and out must be 64 bits in length, no less. If they are larger, everything after the first
64 bits is ignored.

The mode functions BF_cbc_encrypt(), BF_cfb64_encrypt() and BF_ofb64_encrypt() all operate on variable length data. They
all take an initialization vector ivec which needs to be passed along into the next call of the same function for the same message.
ivec may be initialized with anything, but the recipient needs to know what it was initialized with, or it won't be able to decrypt.
Some programs and protocols simplify this, like SSH, where ivec is simply initialized to zero. BF_cbc_encrypt() operates on
data that is a multiple of 8 bytes long, while BF_cfb64_encrypt() and BF_ofb64_encrypt() are used to encrypt an variable
number of bytes (the amount does not have to be an exact multiple of 8). The purpose of the latter two is to simulate stream
ciphers, and therefore, they need the parameter num, which is a pointer to an integer where the current offset in ivec is stored
between calls. This integer must be initialized to zero when ivec is initialized.

BF_cbc_encrypt() is the Cipher Block Chaining function for Blowfish. It encrypts or decrypts the 64 bits chunks of in using
the key schedule, putting the result in out. enc decides if encryption (BF_ENCRYPT) or decryption (BF_DECRYPT) shall
be performed. ivec must point at an 8 byte long initialization vector.

BF_cfb64_encrypt() is the CFB mode for Blowfish with 64 bit feedback. It encrypts or decrypts the bytes in in using the
key schedule, putting the result in out. enc decides if encryption (BF_ENCRYPT) or decryption (BF_DECRYPT) shall be
performed. ivec must point at an 8 byte long initialization vector. num must point at an integer which must be initially zero.

BF_ofb64_encrypt() is the OFB mode for Blowfish with 64 bit feedback. It uses the same parameters as BF_cfb64_encrypt(),
which must be initialized the same way.

1277

OpenSSL Manual

BF_encrypt() and BF_decrypt() are the lowest level functions for Blowfish encryption. They encrypt/decrypt the first 64 bits of
the vector pointed by data, using the key key. These functions should not be used unless you implement 'modes' of Blowfish.
The alternative is to use BF_ecb_encrypt(). If you still want to use these functions, you should be aware that they take each
32-bit chunk in host-byte order, which is little-endian on little-endian platforms and big-endian on big-endian ones.

RETURN VALUES

None of the functions presented here return any value.

NOTE

Applications should use the higher level functions EVP_EncryptInit(3) etc. instead of calling the blowfish functions directly.

SEE ALSO

des_modes(7)

HISTORY

The Blowfish functions are available in all versions of SSLeay and OpenSSL.

1278

OpenSSL Manual

Name
bn — multiprecision integer arithmetics

Synopsis
#include <openssl/bn.h>

BIGNUM *BN_new(void);
void BN_free(BIGNUM *a);
void BN_init(BIGNUM *);
void BN_clear(BIGNUM *a);
void BN_clear_free(BIGNUM *a);

BN_CTX *BN_CTX_new(void);
void BN_CTX_init(BN_CTX *c);
void BN_CTX_free(BN_CTX *c);

BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b);
BIGNUM *BN_dup(const BIGNUM *a);

BIGNUM *BN_swap(BIGNUM *a, BIGNUM *b);

int BN_num_bytes(const BIGNUM *a);
int BN_num_bits(const BIGNUM *a);
int BN_num_bits_word(BN_ULONG w);

void BN_set_negative(BIGNUM *a, int n);
int BN_is_negative(const BIGNUM *a);

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
 BN_CTX *ctx);
int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_nnmod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_add(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
 BN_CTX *ctx);
int BN_mod_sub(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
 BN_CTX *ctx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
 BN_CTX *ctx);
int BN_mod_sqr(BIGNUM *ret, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx);
int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_add_word(BIGNUM *a, BN_ULONG w);
int BN_sub_word(BIGNUM *a, BN_ULONG w);
int BN_mul_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);
BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);
int BN_is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

int BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);
const BIGNUM *BN_value_one(void);
int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get_word(BIGNUM *a);

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);
int BN_rand_range(BIGNUM *rnd, BIGNUM *range);

1279

OpenSSL Manual

int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

BIGNUM *BN_generate_prime(BIGNUM *ret, int bits,int safe, BIGNUM *add,
 BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);
int BN_is_prime(const BIGNUM *p, int nchecks,
 void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg);

int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);
int BN_is_bit_set(const BIGNUM *a, int n);
int BN_mask_bits(BIGNUM *a, int n);
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, BIGNUM *a);
int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, BIGNUM *a);

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);
char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);
int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);
int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
 BN_CTX *ctx);

BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);
int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);
int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
 BN_RECP_CTX *recp, BN_CTX *ctx);

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);
int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);
int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
 BN_MONT_CTX *mont, BN_CTX *ctx);
int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
 BN_CTX *ctx);
int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
 BN_CTX *ctx);

BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai,
 BIGNUM *mod);
void BN_BLINDING_free(BN_BLINDING *b);
int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx);
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b,
 BN_CTX *ctx);
int BN_BLINDING_invert_ex(BIGNUM *n,const BIGNUM *r,BN_BLINDING *b,
 BN_CTX *ctx);
unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *);
void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long);
unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
 int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
 BN_MONT_CTX *m_ctx);

DESCRIPTION

This library performs arithmetic operations on integers of arbitrary size. It was written for use in public key cryptography,
such as RSA and Diffie-Hellman.

1280

OpenSSL Manual

It uses dynamic memory allocation for storing its data structures. That means that there is no limit on the size of the numbers
manipulated by these functions, but return values must always be checked in case a memory allocation error has occurred.

The basic object in this library is a BIGNUM. It is used to hold a single large integer. This type should be considered opaque
and fields should not be modified or accessed directly.

The creation of BIGNUM objects is described in BN_new(3); BN_add(3) describes most of the arithmetic operations. Com-
parison is described in BN_cmp(3); BN_zero(3) describes certain assignments, BN_rand(3) the generation of random numbers,
BN_generate_prime(3) deals with prime numbers and BN_set_bit(3) with bit operations. The conversion of BIGNUMs to
external formats is described in BN_bn2bin(3).

SEE ALSO

bn_internal(3), dh(3), err(3), rand(3), rsa(3), BN_new(3), BN_CTX_new(3), BN_copy(3), BN_swap(3), BN_num_bytes(3),
BN_add(3), BN_add_word(3), BN_cmp(3), BN_zero(3), BN_rand(3), BN_generate_prime(3), BN_set_bit(3), BN_bn2bin(3),
BN_mod_inverse(3), BN_mod_mul_reciprocal(3), BN_mod_mul_montgomery(3), BN_BLINDING_new(3)

1281

OpenSSL Manual

Name
bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words, bn_mul_comba4,
bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, bn_mul_low_normal,
bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, bn_print, bn_dump, bn_set_max, bn_set_high and
bn_set_low — BIGNUM library internal functions

Synopsis
#include <openssl/bn.h>

BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
 BN_ULONG w);
void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
 int num);
BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
 int num);

void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);

int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);

void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
 int nb);
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
 int dna,int dnb,BN_ULONG *tmp);
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
 int n, int tna,int tnb, BN_ULONG *tmp);
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
 int n2, BN_ULONG *tmp);
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
 int n2, BN_ULONG *tmp);

void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);

void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);

BIGNUM *bn_expand(BIGNUM *a, int bits);
BIGNUM *bn_wexpand(BIGNUM *a, int n);
BIGNUM *bn_expand2(BIGNUM *a, int n);
void bn_fix_top(BIGNUM *a);

void bn_check_top(BIGNUM *a);
void bn_print(BIGNUM *a);
void bn_dump(BN_ULONG *d, int n);
void bn_set_max(BIGNUM *a);
void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
void bn_set_low(BIGNUM *r, BIGNUM *a, int n);

DESCRIPTION

This page documents the internal functions used by the OpenSSL BIGNUM implementation. They are described here to
facilitate debugging and extending the library. They are not to be used by applications.

The BIGNUM structure

typedef struct bignum_st BIGNUM;

1282

OpenSSL Manual

struct bignum_st
 {
 BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit chunks. */
 int top; /* Index of last used d +1. */
 /* The next are internal book keeping for bn_expand. */
 int dmax; /* Size of the d array. */
 int neg; /* one if the number is negative */
 int flags;
 };

The integer value is stored in d, a malloc()ed array of words (BN_ULONG), least significant word first. A BN_ULONG can
be either 16, 32 or 64 bits in size, depending on the 'number of bits' (BITS2) specified in openssl/bn.h.

dmax is the size of the d array that has been allocated. top is the number of words being used, so for a value of 4, bn.d[0]=4
and bn.top=1. neg is 1 if the number is negative. When a BIGNUM is 0, the d field can be NULL and top == 0.

flags is a bit field of flags which are defined in openssl/bn.h. The flags begin with BN_FLG_. The macros
BN_set_flags(b,n) and BN_get_flags(b,n) exist to enable or fetch flag(s) n from BIGNUM structure b.

Various routines in this library require the use of temporary BIGNUM variables during their execution. Since dynamic memory
allocation to create BIGNUMs is rather expensive when used in conjunction with repeated subroutine calls, the BN_CTX
structure is used. This structure contains BN_CTX_NUM BIGNUMs, see BN_CTX_start(3).

Low-level arithmetic operations

These functions are implemented in C and for several platforms in assembly language:

bn_mul_words(rp, ap, num, w) operates on the num word arrays rp and ap. It computes ap * w, places the result in rp, and
returns the high word (carry).

bn_mul_add_words(rp, ap, num, w) operates on the num word arrays rp and ap. It computes ap * w + rp, places the result
in rp, and returns the high word (carry).

bn_sqr_words(rp, ap, n) operates on the num word array ap and the 2*num word array ap. It computes ap * ap word-wise,
and places the low and high bytes of the result in rp.

bn_div_words(h, l, d) divides the two word number (h,l) by d and returns the result.

bn_add_words(rp, ap, bp, num) operates on the num word arrays ap, bp and rp. It computes ap + bp, places the result in
rp, and returns the high word (carry).

bn_sub_words(rp, ap, bp, num) operates on the num word arrays ap, bp and rp. It computes ap - bp, places the result in
rp, and returns the carry (1 if bp > ap, 0 otherwise).

bn_mul_comba4(r, a, b) operates on the 4 word arrays a and b and the 8 word array r. It computes a*b and places the result in r.

bn_mul_comba8(r, a, b) operates on the 8 word arrays a and b and the 16 word array r. It computes a*b and places the result
in r.

bn_sqr_comba4(r, a, b) operates on the 4 word arrays a and b and the 8 word array r.

bn_sqr_comba8(r, a, b) operates on the 8 word arrays a and b and the 16 word array r.

The following functions are implemented in C:

bn_cmp_words(a, b, n) operates on the n word arrays a and b. It returns 1, 0 and -1 if a is greater than, equal and less than b.

bn_mul_normal(r, a, na, b, nb) operates on the na word array a, the nb word array b and the na+nb word array r. It computes
a*b and places the result in r.

bn_mul_low_normal(r, a, b, n) operates on the n word arrays r, a and b. It computes the n low words of a*b and places the
result in r.

1283

OpenSSL Manual

bn_mul_recursive(r, a, b, n2, dna, dnb, t) operates on the word arrays a and b of length n2+dna and n2+dnb (dna and dnb
are currently allowed to be 0 or negative) and the 2*n2 word arrays r and t. n2 must be a power of 2. It computes a*b and
places the result in r.

bn_mul_part_recursive(r, a, b, n, tna, tnb, tmp) operates on the word arrays a and b of length n+tna and n+tnb and the 4*n
word arrays r and tmp.

bn_mul_low_recursive(r, a, b, n2, tmp) operates on the n2 word arrays r and tmp and the n2/2 word arrays a and b.

bn_mul_high(r, a, b, l, n2, tmp) operates on the n2 word arrays r, a, b and l (?) and the 3*n2 word array tmp.

BN_mul() calls bn_mul_normal(), or an optimized implementation if the factors have the same size: bn_mul_comba8() is used
if they are 8 words long, bn_mul_recursive() if they are larger than BN_MULL_SIZE_NORMAL and the size is an exact
multiple of the word size, and bn_mul_part_recursive() for others that are larger than BN_MULL_SIZE_NORMAL.

bn_sqr_normal(r, a, n, tmp) operates on the n word array a and the 2*n word arrays tmp and r.

The implementations use the following macros which, depending on the architecture, may use "long long" C operations or
inline assembler. They are defined in bn_lcl.h.

mul(r, a, w, c) computes w*a+c and places the low word of the result in r and the high word in c.

mul_add(r, a, w, c) computes w*a+r+c and places the low word of the result in r and the high word in c.

sqr(r0, r1, a) computes a*a and places the low word of the result in r0 and the high word in r1.

Size changes

bn_expand() ensures that b has enough space for a bits bit number. bn_wexpand() ensures that b has enough space for an n
word number. If the number has to be expanded, both macros call bn_expand2(), which allocates a new d array and copies
the data. They return NULL on error, b otherwise.

The bn_fix_top() macro reduces a->top to point to the most significant non-zero word plus one when a has shrunk.

Debugging

bn_check_top() verifies that ((a)->top >= 0 && (a)->top <= (a)->dmax). A violation
will cause the program to abort.

bn_print() prints a to stderr. bn_dump() prints n words at d (in reverse order, i.e. most significant word first) to stderr.

bn_set_max() makes a a static number with a dmax of its current size. This is used by bn_set_low() and bn_set_high() to make
r a read-only BIGNUM that contains the n low or high words of a.

If BN_DEBUG is not defined, bn_check_top(), bn_print(), bn_dump() and bn_set_max() are defined as empty macros.

SEE ALSO

bn(3)

1284

OpenSSL Manual

Name
BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub, BN_mod_mul,
BN_mod_sqr, BN_exp, BN_mod_exp and BN_gcd — arithmetic operations on BIGNUMs

Synopsis
#include <openssl/bn.h>

int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
 BN_CTX *ctx);

int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
 BN_CTX *ctx);

int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
 BN_CTX *ctx);

int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
 BN_CTX *ctx);

int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx);

int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

DESCRIPTION

BN_add() adds a and b and places the result in r (r=a+b). r may be the same BIGNUM as a or b.

BN_sub() subtracts b from a and places the result in r (r=a-b).

BN_mul() multiplies a and b and places the result in r (r=a*b). r may be the same BIGNUM as a or b. For multiplication
by powers of 2, use BN_lshift(3).

BN_sqr() takes the square of a and places the result in r (r=a^2). r and a may be the same BIGNUM. This function is faster
than BN_mul(r,a,a).

BN_div() divides a by d and places the result in dv and the remainder in rem (dv=a/d, rem=a%d). Either of dv and rem
may be NULL, in which case the respective value is not returned. The result is rounded towards zero; thus if a is negative, the
remainder will be zero or negative. For division by powers of 2, use BN_rshift(3).

BN_mod() corresponds to BN_div() with dv set to NULL.

BN_nnmod() reduces a modulo m and places the non-negative remainder in r.

BN_mod_add() adds a to b modulo m and places the non-negative result in r.

BN_mod_sub() subtracts b from a modulo m and places the non-negative result in r.

BN_mod_mul() multiplies a by b and finds the non-negative remainder respective to modulus m (r=(a*b) mod m). r
may be the same BIGNUM as a or b. For more efficient algorithms for repeated computations using the same modulus, see
BN_mod_mul_montgomery(3) and BN_mod_mul_reciprocal(3).

1285

OpenSSL Manual

BN_mod_sqr() takes the square of a modulo m and places the result in r.

BN_exp() raises a to the p-th power and places the result in r (r=a^p). This function is faster than repeated applications of
BN_mul().

 BN_mod_exp() computes a to the p-th power modulo m (r=a^p % m). This function uses less time and space than BN_exp().

BN_gcd() computes the greatest common divisor of a and b and places the result in r. r may be the same BIGNUM as a or b.

For all functions, ctx is a previously allocated BN_CTX used for temporary variables; see BN_CTX_new(3).

Unless noted otherwise, the result BIGNUM must be different from the arguments.

RETURN VALUES

For all functions, 1 is returned for success, 0 on error. The return value should always be checked (e.g., if (!
BN_add(r,a,b)) goto err;). The error codes can be obtained by ERR_get_error(3).

SEE ALSO

bn(3), ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)

HISTORY

BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), BN_mod_exp() and BN_gcd() are available in all
versions of SSLeay and OpenSSL. The ctx argument to BN_mul() was added in SSLeay 0.9.1b. BN_exp() appeared in SSLeay
0.9.0. BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in OpenSSL 0.9.7.

1286

OpenSSL Manual

Name
BN_add_word, BN_sub_word, BN_mul_word, BN_div_word and BN_mod_word — arithmetic functions on BIGNUMs with
integers

Synopsis
#include <openssl/bn.h>

int BN_add_word(BIGNUM *a, BN_ULONG w);

int BN_sub_word(BIGNUM *a, BN_ULONG w);

int BN_mul_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w);

BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w);

DESCRIPTION

These functions perform arithmetic operations on BIGNUMs with unsigned integers. They are much more efficient than the
normal BIGNUM arithmetic operations.

BN_add_word() adds w to a (a+=w).

BN_sub_word() subtracts w from a (a-=w).

BN_mul_word() multiplies a and w (a*=w).

BN_div_word() divides a by w (a/=w) and returns the remainder.

BN_mod_word() returns the remainder of a divided by w (a%w).

For BN_div_word() and BN_mod_word(), w must not be 0.

RETURN VALUES

BN_add_word(), BN_sub_word() and BN_mul_word() return 1 for success, 0 on error. The error codes can be obtained by
ERR_get_error(3).

BN_mod_word() and BN_div_word() return a%w on success and (BN_ULONG)-1 if an error occurred.

SEE ALSO

bn(3), ERR_get_error(3), BN_add(3)

HISTORY

BN_add_word() and BN_mod_word() are available in all versions of SSLeay and OpenSSL. BN_div_word() was added in
SSLeay 0.8, and BN_sub_word() and BN_mul_word() in SSLeay 0.9.0.

Before 0.9.8a the return value for BN_div_word() and BN_mod_word() in case of an error was 0.

1287

OpenSSL Manual

Name
BN_BLINDING_new, BN_BLINDING_free, BN_BLINDING_update, BN_BLINDING_convert, BN_BLINDING_invert,
BN_BLINDING_convert_ex, BN_BLINDING_invert_ex, BN_BLINDING_get_thread_id, BN_BLINDING_set_thread_id,
BN_BLINDING_get_flags, BN_BLINDING_set_flags and BN_BLINDING_create_param — blinding related BIGNUM
functions.

Synopsis
#include <openssl/bn.h>

BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai,
 BIGNUM *mod);
void BN_BLINDING_free(BN_BLINDING *b);
int BN_BLINDING_update(BN_BLINDING *b,BN_CTX *ctx);
int BN_BLINDING_convert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_invert(BIGNUM *n, BN_BLINDING *b, BN_CTX *ctx);
int BN_BLINDING_convert_ex(BIGNUM *n, BIGNUM *r, BN_BLINDING *b,
 BN_CTX *ctx);
int BN_BLINDING_invert_ex(BIGNUM *n, const BIGNUM *r, BN_BLINDING *b,
 BN_CTX *ctx);
#ifndef OPENSSL_NO_DEPRECATED
unsigned long BN_BLINDING_get_thread_id(const BN_BLINDING *);
void BN_BLINDING_set_thread_id(BN_BLINDING *, unsigned long);
#endif
CRYPTO_THREADID *BN_BLINDING_thread_id(BN_BLINDING *);
unsigned long BN_BLINDING_get_flags(const BN_BLINDING *);
void BN_BLINDING_set_flags(BN_BLINDING *, unsigned long);
BN_BLINDING *BN_BLINDING_create_param(BN_BLINDING *b,
 const BIGNUM *e, BIGNUM *m, BN_CTX *ctx,
 int (*bn_mod_exp)(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx),
 BN_MONT_CTX *m_ctx);

DESCRIPTION

BN_BLINDING_new() allocates a new BN_BLINDING structure and copies the A and Ai values into the newly created
BN_BLINDING object.

BN_BLINDING_free() frees the BN_BLINDING structure.

BN_BLINDING_update() updates the BN_BLINDING parameters by squaring the A and Ai or, after specific number of uses
and if the necessary parameters are set, by re-creating the blinding parameters.

BN_BLINDING_convert_ex() multiplies n with the blinding factor A. If r is not NULL a copy the inverse blinding factor Ai
will be returned in r (this is useful if a RSA object is shared among several threads). BN_BLINDING_invert_ex() multiplies
n with the inverse blinding factor Ai. If r is not NULL it will be used as the inverse blinding.

BN_BLINDING_convert() and BN_BLINDING_invert() are wrapper functions for BN_BLINDING_convert_ex() and
BN_BLINDING_invert_ex() with r set to NULL.

BN_BLINDING_thread_id() provides access to the CRYPTO_THREADID object within the BN_BLINDING structure.
This is to help users provide proper locking if needed for multi-threaded use. The "thread id" object of a newly allocated
BN_BLINDING structure is initialised to the thread id in which BN_BLINDING_new() was called.

BN_BLINDING_get_flags() returns the BN_BLINDING flags. Currently there are two supported flags:
BN_BLINDING_NO_UPDATE and BN_BLINDING_NO_RECREATE. BN_BLINDING_NO_UPDATE inhibits the
automatic update of the BN_BLINDING parameters after each use and BN_BLINDING_NO_RECREATE inhibits the
automatic re-creation of the BN_BLINDING parameters after a fixed number of uses (currently 32). In newly allocated
BN_BLINDING objects no flags are set. BN_BLINDING_set_flags() sets the BN_BLINDING parameters flags.

BN_BLINDING_create_param() creates new BN_BLINDING parameters using the exponent e and the modulus m.
bn_mod_exp and m_ctx can be used to pass special functions for exponentiation (normally BN_mod_exp_mont() and
BN_MONT_CTX).

1288

OpenSSL Manual

RETURN VALUES

BN_BLINDING_new() returns the newly allocated BN_BLINDING structure or NULL in case of an error.

BN_BLINDING_update(), BN_BLINDING_convert(), BN_BLINDING_invert(), BN_BLINDING_convert_ex() and
BN_BLINDING_invert_ex() return 1 on success and 0 if an error occured.

BN_BLINDING_thread_id() returns a pointer to the thread id object within a BN_BLINDING object.

BN_BLINDING_get_flags() returns the currently set BN_BLINDING flags (a unsigned long value).

BN_BLINDING_create_param() returns the newly created BN_BLINDING parameters or NULL on error.

SEE ALSO

bn(3)

HISTORY

BN_BLINDING_thread_id was first introduced in OpenSSL 1.0.0, and it deprecates BN_BLINDING_set_thread_id and
BN_BLINDING_get_thread_id.

BN_BLINDING_convert_ex, BN_BLINDIND_invert_ex, BN_BLINDING_get_thread_id, BN_BLINDING_set_thread_id,
BN_BLINDING_set_flags, BN_BLINDING_get_flags and BN_BLINDING_create_param were first introduced in OpenSSL
0.9.8

AUTHOR

Nils Larsch for the OpenSSL project (http://www.openssl.org).

1289

OpenSSL Manual

Name
BN_bn2bin, BN_bin2bn, BN_bn2hex, BN_bn2dec, BN_hex2bn, BN_dec2bn, BN_print, BN_print_fp, BN_bn2mpi and
BN_mpi2bn — format conversions

Synopsis
#include <openssl/bn.h>

int BN_bn2bin(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret);

char *BN_bn2hex(const BIGNUM *a);
char *BN_bn2dec(const BIGNUM *a);
int BN_hex2bn(BIGNUM **a, const char *str);
int BN_dec2bn(BIGNUM **a, const char *str);

int BN_print(BIO *fp, const BIGNUM *a);
int BN_print_fp(FILE *fp, const BIGNUM *a);

int BN_bn2mpi(const BIGNUM *a, unsigned char *to);
BIGNUM *BN_mpi2bn(unsigned char *s, int len, BIGNUM *ret);

DESCRIPTION

BN_bn2bin() converts the absolute value of a into big-endian form and stores it at to. to must point to BN_num_bytes(a)
bytes of memory.

BN_bin2bn() converts the positive integer in big-endian form of length len at s into a BIGNUM and places it in ret. If ret
is NULL, a new BIGNUM is created.

BN_bn2hex() and BN_bn2dec() return printable strings containing the hexadecimal and decimal encoding of a respectively.
For negative numbers, the string is prefaced with a leading '-'. The string must be freed later using OPENSSL_free().

BN_hex2bn() converts the string str containing a hexadecimal number to a BIGNUM and stores it in **bn. If *bn is NULL, a
new BIGNUM is created. If bn is NULL, it only computes the number's length in hexadecimal digits. If the string starts with
'-', the number is negative. BN_dec2bn() is the same using the decimal system.

BN_print() and BN_print_fp() write the hexadecimal encoding of a, with a leading '-' for negative numbers, to the BIO or
FILE fp.

BN_bn2mpi() and BN_mpi2bn() convert BIGNUMs from and to a format that consists of the number's length in bytes rep-
resented as a 4-byte big-endian number, and the number itself in big-endian format, where the most significant bit signals a
negative number (the representation of numbers with the MSB set is prefixed with null byte).

BN_bn2mpi() stores the representation of a at to, where to must be large enough to hold the result. The size can be determined
by calling BN_bn2mpi(a, NULL).

BN_mpi2bn() converts the len bytes long representation at s to a BIGNUM and stores it at ret, or in a newly allocated BIGNUM
if ret is NULL.

RETURN VALUES

BN_bn2bin() returns the length of the big-endian number placed at to. BN_bin2bn() returns the BIGNUM, NULL on error.

BN_bn2hex() and BN_bn2dec() return a null-terminated string, or NULL on error. BN_hex2bn() and BN_dec2bn() return the
number's length in hexadecimal or decimal digits, and 0 on error.

BN_print_fp() and BN_print() return 1 on success, 0 on write errors.

BN_bn2mpi() returns the length of the representation. BN_mpi2bn() returns the BIGNUM, and NULL on error.

The error codes can be obtained by ERR_get_error(3).

1290

OpenSSL Manual

SEE ALSO

bn(3), ERR_get_error(3), BN_zero(3), ASN1_INTEGER_to_BN(3), BN_num_bytes(3)

HISTORY

BN_bn2bin(), BN_bin2bn(), BN_print_fp() and BN_print() are available in all versions of SSLeay and OpenSSL.

BN_bn2hex(), BN_bn2dec(), BN_hex2bn(), BN_dec2bn(), BN_bn2mpi() and BN_mpi2bn() were added in SSLeay 0.9.0.

1291

OpenSSL Manual

Name
BN_cmp, BN_ucmp, BN_is_zero, BN_is_one, BN_is_word and BN_is_odd — BIGNUM comparison and test functions

Synopsis
#include <openssl/bn.h>

int BN_cmp(BIGNUM *a, BIGNUM *b);
int BN_ucmp(BIGNUM *a, BIGNUM *b);

int BN_is_zero(BIGNUM *a);
int BN_is_one(BIGNUM *a);
int BN_is_word(BIGNUM *a, BN_ULONG w);
int BN_is_odd(BIGNUM *a);

DESCRIPTION

BN_cmp() compares the numbers a and b. BN_ucmp() compares their absolute values.

BN_is_zero(), BN_is_one() and BN_is_word() test if a equals 0, 1, or w respectively. BN_is_odd() tests if a is odd.

BN_is_zero(), BN_is_one(), BN_is_word() and BN_is_odd() are macros.

RETURN VALUES

BN_cmp() returns -1 if a < b, 0 if a == b and 1 if a > b. BN_ucmp() is the same using the absolute values of a and b.

BN_is_zero(), BN_is_one() BN_is_word() and BN_is_odd() return 1 if the condition is true, 0 otherwise.

SEE ALSO

bn(3)

HISTORY

BN_cmp(), BN_ucmp(), BN_is_zero(), BN_is_one() and BN_is_word() are available in all versions of SSLeay and OpenSSL.
BN_is_odd() was added in SSLeay 0.8.

1292

OpenSSL Manual

Name
BN_copy and BN_dup — copy BIGNUMs

Synopsis
#include <openssl/bn.h>

BIGNUM *BN_copy(BIGNUM *to, const BIGNUM *from);

BIGNUM *BN_dup(const BIGNUM *from);

DESCRIPTION

BN_copy() copies from to to. BN_dup() creates a new BIGNUM containing the value from.

RETURN VALUES

BN_copy() returns to on success, NULL on error. BN_dup() returns the new BIGNUM, and NULL on error. The error codes
can be obtained by ERR_get_error(3).

SEE ALSO

bn(3), ERR_get_error(3)

HISTORY

BN_copy() and BN_dup() are available in all versions of SSLeay and OpenSSL.

1293

OpenSSL Manual

Name
BN_CTX_new, BN_CTX_init and BN_CTX_free — allocate and free BN_CTX structures

Synopsis
#include <openssl/bn.h>

BN_CTX *BN_CTX_new(void);

void BN_CTX_init(BN_CTX *c);

void BN_CTX_free(BN_CTX *c);

DESCRIPTION

A BN_CTX is a structure that holds BIGNUM temporary variables used by library functions. Since dynamic memory alloca-
tion to create BIGNUMs is rather expensive when used in conjunction with repeated subroutine calls, the BN_CTX structure
is used.

BN_CTX_new() allocates and initializes a BN_CTX structure. BN_CTX_init() initializes an existing uninitialized BN_CTX.

BN_CTX_free() frees the components of the BN_CTX, and if it was created by BN_CTX_new(), also the structure itself. If
BN_CTX_start(3) has been used on the BN_CTX, BN_CTX_end(3) must be called before the BN_CTX may be freed by
BN_CTX_free().

RETURN VALUES

BN_CTX_new() returns a pointer to the BN_CTX. If the allocation fails, it returns NULL and sets an error code that can be
obtained by ERR_get_error(3).

BN_CTX_init() and BN_CTX_free() have no return values.

SEE ALSO

bn(3), ERR_get_error(3), BN_add(3), BN_CTX_start(3)

HISTORY

BN_CTX_new() and BN_CTX_free() are available in all versions on SSLeay and OpenSSL. BN_CTX_init() was added in
SSLeay 0.9.1b.

1294

OpenSSL Manual

Name
BN_CTX_start, BN_CTX_get and BN_CTX_end — use temporary BIGNUM variables

Synopsis
#include <openssl/bn.h>

void BN_CTX_start(BN_CTX *ctx);

BIGNUM *BN_CTX_get(BN_CTX *ctx);

void BN_CTX_end(BN_CTX *ctx);

DESCRIPTION

These functions are used to obtain temporary BIGNUM variables from a BN_CTX (which can been created by using
BN_CTX_new(3)) in order to save the overhead of repeatedly creating and freeing BIGNUMs in functions that are called
from inside a loop.

A function must call BN_CTX_start() first. Then, BN_CTX_get() may be called repeatedly to obtain temporary BIGNUMs.
All BN_CTX_get() calls must be made before calling any other functions that use the ctx as an argument.

Finally, BN_CTX_end() must be called before returning from the function. When BN_CTX_end() is called, the BIGNUM
pointers obtained from BN_CTX_get() become invalid.

RETURN VALUES

BN_CTX_start() and BN_CTX_end() return no values.

BN_CTX_get() returns a pointer to the BIGNUM, or NULL on error. Once BN_CTX_get() has failed, the subsequent calls
will return NULL as well, so it is sufficient to check the return value of the last BN_CTX_get() call. In case of an error, an
error code is set, which can be obtained by ERR_get_error(3).

SEE ALSO

BN_CTX_new(3)

HISTORY

BN_CTX_start(), BN_CTX_get() and BN_CTX_end() were added in OpenSSL 0.9.5.

1295

OpenSSL Manual

Name
BN_generate_prime, BN_is_prime and BN_is_prime_fasttest — generate primes and test for primality

Synopsis
#include <openssl/bn.h>

BIGNUM *BN_generate_prime(BIGNUM *ret, int num, int safe, BIGNUM *add,
 BIGNUM *rem, void (*callback)(int, int, void *), void *cb_arg);

int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int, int,
 void *), BN_CTX *ctx, void *cb_arg);

int BN_is_prime_fasttest(const BIGNUM *a, int checks,
 void (*callback)(int, int, void *), BN_CTX *ctx, void *cb_arg,
 int do_trial_division);

DESCRIPTION

BN_generate_prime() generates a pseudo-random prime number of num bits. If ret is not NULL, it will be used to store the
number.

If callback is not NULL, it is called as follows:

• callback(0, i, cb_arg) is called after generating the i-th potential prime number.

• While the number is being tested for primality, callback(1, j, cb_arg) is called as described below.

• When a prime has been found, callback(2, i, cb_arg) is called.

The prime may have to fulfill additional requirements for use in Diffie-Hellman key exchange:

If add is not NULL, the prime will fulfill the condition p % add == rem (p % add == 1 if rem == NULL) in order to suit
a given generator.

If safe is true, it will be a safe prime (i.e. a prime p so that (p-1)/2 is also prime).

The PRNG must be seeded prior to calling BN_generate_prime(). The prime number generation has a negligible error prob-
ability.

BN_is_prime() and BN_is_prime_fasttest() test if the number a is prime. The following tests are performed until one of them
shows that a is composite; if a passes all these tests, it is considered prime.

BN_is_prime_fasttest(), when called with do_trial_division == 1, first attempts trial division by a number of small primes;
if no divisors are found by this test and callback is not NULL, callback(1, -1, cb_arg) is called. If do_trial_division == 0,
this test is skipped.

Both BN_is_prime() and BN_is_prime_fasttest() perform a Miller-Rabin probabilistic primality test with checks iterations. If
checks == BN_prime_checks, a number of iterations is used that yields a false positive rate of at most 2^-80 for random input.

If callback is not NULL, callback(1, j, cb_arg) is called after the j-th iteration (j = 0, 1, …). ctx is a pre-allocated BN_CTX
(to save the overhead of allocating and freeing the structure in a loop), or NULL.

RETURN VALUES

BN_generate_prime() returns the prime number on success, NULL otherwise.

BN_is_prime() returns 0 if the number is composite, 1 if it is prime with an error probability of less than 0.25^checks, and
-1 on error.

The error codes can be obtained by ERR_get_error(3).

1296

OpenSSL Manual

SEE ALSO

bn(3), ERR_get_error(3), rand(3)

HISTORY

The cb_arg arguments to BN_generate_prime() and to BN_is_prime() were added in SSLeay 0.9.0. The ret argument to
BN_generate_prime() was added in SSLeay 0.9.1. BN_is_prime_fasttest() was added in OpenSSL 0.9.5.

1297

OpenSSL Manual

Name
BN_mod_inverse — compute inverse modulo n

Synopsis
#include <openssl/bn.h>

BIGNUM *BN_mod_inverse(BIGNUM *r, BIGNUM *a, const BIGNUM *n,
 BN_CTX *ctx);

DESCRIPTION

BN_mod_inverse() computes the inverse of a modulo n places the result in r ((a*r)%n==1). If r is NULL, a new BIGNUM
is created.

ctx is a previously allocated BN_CTX used for temporary variables. r may be the same BIGNUM as a or n.

RETURN VALUES

BN_mod_inverse() returns the BIGNUM containing the inverse, and NULL on error. The error codes can be obtained by
ERR_get_error(3).

SEE ALSO

bn(3), ERR_get_error(3), BN_add(3)

HISTORY

BN_mod_inverse() is available in all versions of SSLeay and OpenSSL.

1298

OpenSSL Manual

Name
BN_mod_mul_montgomery, BN_MONT_CTX_new, BN_MONT_CTX_init, BN_MONT_CTX_free,
BN_MONT_CTX_set, BN_MONT_CTX_copy, BN_from_montgomery and BN_to_montgomery — Montgomery
multiplication

Synopsis
#include <openssl/bn.h>

BN_MONT_CTX *BN_MONT_CTX_new(void);
void BN_MONT_CTX_init(BN_MONT_CTX *ctx);
void BN_MONT_CTX_free(BN_MONT_CTX *mont);

int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *m, BN_CTX *ctx);
BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from);

int BN_mod_mul_montgomery(BIGNUM *r, BIGNUM *a, BIGNUM *b,
 BN_MONT_CTX *mont, BN_CTX *ctx);

int BN_from_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
 BN_CTX *ctx);

int BN_to_montgomery(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mont,
 BN_CTX *ctx);

DESCRIPTION

These functions implement Montgomery multiplication. They are used automatically when BN_mod_exp(3) is called with
suitable input, but they may be useful when several operations are to be performed using the same modulus.

BN_MONT_CTX_new() allocates and initializes a BN_MONT_CTX structure. BN_MONT_CTX_init() initializes an exist-
ing uninitialized BN_MONT_CTX.

BN_MONT_CTX_set() sets up the mont structure from the modulus m by precomputing its inverse and a value R.

BN_MONT_CTX_copy() copies the BN_MONT_CTX from to to.

BN_MONT_CTX_free() frees the components of the BN_MONT_CTX, and, if it was created by BN_MONT_CTX_new(),
also the structure itself.

BN_mod_mul_montgomery() computes Mont(a,b):=a*b*R^-1 and places the result in r.

BN_from_montgomery() performs the Montgomery reduction r = a*R^-1.

BN_to_montgomery() computes Mont(a,R^2), i.e. a*R. Note that a must be non-negative and smaller than the modulus.

For all functions, ctx is a previously allocated BN_CTX used for temporary variables.

The BN_MONT_CTX structure is defined as follows:

typedef struct bn_mont_ctx_st
 {
 int ri; /* number of bits in R */
 BIGNUM RR; /* R^2 (used to convert to Montgomery form) */
 BIGNUM N; /* The modulus */
 BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1
 * (Ni is only stored for bignum algorithm) */
 BN_ULONG n0; /* least significant word of Ni */
 int flags;
 } BN_MONT_CTX;

BN_to_montgomery() is a macro.

RETURN VALUES

BN_MONT_CTX_new() returns the newly allocated BN_MONT_CTX, and NULL on error.

1299

OpenSSL Manual

BN_MONT_CTX_init() and BN_MONT_CTX_free() have no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by ERR_get_error(3).

WARNING

The inputs must be reduced modulo m, otherwise the result will be outside the expected range.

SEE ALSO

bn(3), ERR_get_error(3), BN_add(3), BN_CTX_new(3)

HISTORY

BN_MONT_CTX_new(), BN_MONT_CTX_free(), BN_MONT_CTX_set(), BN_mod_mul_montgomery(),
BN_from_montgomery() and BN_to_montgomery() are available in all versions of SSLeay and OpenSSL.

BN_MONT_CTX_init() and BN_MONT_CTX_copy() were added in SSLeay 0.9.1b.

1300

OpenSSL Manual

Name
BN_mod_mul_reciprocal, BN_div_recp, BN_RECP_CTX_new, BN_RECP_CTX_init, BN_RECP_CTX_free and
BN_RECP_CTX_set — modular multiplication using reciprocal

Synopsis
#include <openssl/bn.h>

BN_RECP_CTX *BN_RECP_CTX_new(void);
void BN_RECP_CTX_init(BN_RECP_CTX *recp);
void BN_RECP_CTX_free(BN_RECP_CTX *recp);

int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *m, BN_CTX *ctx);

int BN_div_recp(BIGNUM *dv, BIGNUM *rem, BIGNUM *a, BN_RECP_CTX *recp,
 BN_CTX *ctx);

int BN_mod_mul_reciprocal(BIGNUM *r, BIGNUM *a, BIGNUM *b,
 BN_RECP_CTX *recp, BN_CTX *ctx);

DESCRIPTION

BN_mod_mul_reciprocal() can be used to perform an efficient BN_mod_mul(3) operation when the operation will be per-
formed repeatedly with the same modulus. It computes r=(a*b)%m using recp=1/m, which is set as described below. ctx is
a previously allocated BN_CTX used for temporary variables.

BN_RECP_CTX_new() allocates and initializes a BN_RECP structure. BN_RECP_CTX_init() initializes an existing unini-
tialized BN_RECP.

BN_RECP_CTX_free() frees the components of the BN_RECP, and, if it was created by BN_RECP_CTX_new(), also the
structure itself.

BN_RECP_CTX_set() stores m in recp and sets it up for computing 1/m and shifting it left by BN_num_bits(m)+1 to make
it an integer. The result and the number of bits it was shifted left will later be stored in recp.

BN_div_recp() divides a by m using recp. It places the quotient in dv and the remainder in rem.

The BN_RECP_CTX structure is defined as follows:

typedef struct bn_recp_ctx_st
 {
 BIGNUM N; /* the divisor */
 BIGNUM Nr; /* the reciprocal */
 int num_bits;
 int shift;
 int flags;
 } BN_RECP_CTX;

It cannot be shared between threads.

RETURN VALUES

BN_RECP_CTX_new() returns the newly allocated BN_RECP_CTX, and NULL on error.

BN_RECP_CTX_init() and BN_RECP_CTX_free() have no return values.

For the other functions, 1 is returned for success, 0 on error. The error codes can be obtained by ERR_get_error(3).

SEE ALSO

bn(3), ERR_get_error(3), BN_add(3), BN_CTX_new(3)

1301

OpenSSL Manual

HISTORY

BN_RECP_CTX was added in SSLeay 0.9.0. Before that, the function BN_reciprocal() was used instead, and the
BN_mod_mul_reciprocal() arguments were different.

1302

OpenSSL Manual

Name
BN_new, BN_init, BN_clear, BN_free and BN_clear_free — allocate and free BIGNUMs

Synopsis
#include <openssl/bn.h>

BIGNUM *BN_new(void);

void BN_init(BIGNUM *);

void BN_clear(BIGNUM *a);

void BN_free(BIGNUM *a);

void BN_clear_free(BIGNUM *a);

DESCRIPTION

BN_new() allocates and initializes a BIGNUM structure. BN_init() initializes an existing uninitialized BIGNUM.

BN_clear() is used to destroy sensitive data such as keys when they are no longer needed. It erases the memory used by a
and sets it to the value 0.

BN_free() frees the components of the BIGNUM, and if it was created by BN_new(), also the structure itself. BN_clear_free()
additionally overwrites the data before the memory is returned to the system.

RETURN VALUES

BN_new() returns a pointer to the BIGNUM. If the allocation fails, it returns NULL and sets an error code that can be obtained
by ERR_get_error(3).

BN_init(), BN_clear(), BN_free() and BN_clear_free() have no return values.

SEE ALSO

bn(3), ERR_get_error(3)

HISTORY

BN_new(), BN_clear(), BN_free() and BN_clear_free() are available in all versions on SSLeay and OpenSSL. BN_init() was
added in SSLeay 0.9.1b.

1303

OpenSSL Manual

Name
BN_num_bits, BN_num_bytes and BN_num_bits_word — get BIGNUM size

Synopsis
#include <openssl/bn.h>

int BN_num_bytes(const BIGNUM *a);

int BN_num_bits(const BIGNUM *a);

int BN_num_bits_word(BN_ULONG w);

DESCRIPTION

BN_num_bytes() returns the size of a BIGNUM in bytes.

BN_num_bits_word() returns the number of significant bits in a word. If we take 0x00000432 as an example, it returns 11, not
16, not 32. Basically, except for a zero, it returns floor(log2(w))+1.

BN_num_bits() returns the number of significant bits in a BIGNUM, following the same principle as BN_num_bits_word().

BN_num_bytes() is a macro.

RETURN VALUES

The size.

NOTES

Some have tried using BN_num_bits() on individual numbers in RSA keys, DH keys and DSA keys, and found that they don't
always come up with the number of bits they expected (something like 512, 1024, 2048, …). This is because generating a
number with some specific number of bits doesn't always set the highest bits, thereby making the number of significant bits a
little lower. If you want to know the "key size" of such a key, either use functions like RSA_size(), DH_size() and DSA_size(),
or use BN_num_bytes() and multiply with 8 (although there's no real guarantee that will match the "key size", just a lot more
probability).

SEE ALSO

bn(3), DH_size(3), DSA_size(3), RSA_size(3)

HISTORY

BN_num_bytes(), BN_num_bits() and BN_num_bits_word() are available in all versions of SSLeay and OpenSSL.

1304

OpenSSL Manual

Name
BN_rand and BN_pseudo_rand — generate pseudo-random number

Synopsis
#include <openssl/bn.h>

int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom);

int BN_rand_range(BIGNUM *rnd, BIGNUM *range);

int BN_pseudo_rand_range(BIGNUM *rnd, BIGNUM *range);

DESCRIPTION

BN_rand() generates a cryptographically strong pseudo-random number of bits in length and stores it in rnd. If top is -1, the
most significant bit of the random number can be zero. If top is 0, it is set to 1, and if top is 1, the two most significant bits of
the number will be set to 1, so that the product of two such random numbers will always have 2*bits length. If bottom is true,
the number will be odd. The value of bits must be zero or greater. If bits is 1 then top cannot also be 1.

BN_pseudo_rand() does the same, but pseudo-random numbers generated by this function are not necessarily unpredictable.
They can be used for non-cryptographic purposes and for certain purposes in cryptographic protocols, but usually not for key
generation etc.

BN_rand_range() generates a cryptographically strong pseudo-random number rnd in the range 0 <= rnd < range. BN_pseu-
do_rand_range() does the same, but is based on BN_pseudo_rand(), and hence numbers generated by it are not necessarily
unpredictable.

The PRNG must be seeded prior to calling BN_rand() or BN_rand_range().

RETURN VALUES

The functions return 1 on success, 0 on error. The error codes can be obtained by ERR_get_error(3).

SEE ALSO

bn(3), ERR_get_error(3), rand(3), RAND_add(3), RAND_bytes(3)

HISTORY

BN_rand() is available in all versions of SSLeay and OpenSSL. BN_pseudo_rand() was added in OpenSSL 0.9.5. The top ==
-1 case and the function BN_rand_range() were added in OpenSSL 0.9.6a. BN_pseudo_rand_range() was added in OpenSSL
0.9.6c.

1305

OpenSSL Manual

Name
BN_set_bit, BN_clear_bit, BN_is_bit_set, BN_mask_bits, BN_lshift, BN_lshift1, BN_rshift and BN_rshift1 — bit operations
on BIGNUMs

Synopsis
#include <openssl/bn.h>

int BN_set_bit(BIGNUM *a, int n);
int BN_clear_bit(BIGNUM *a, int n);

int BN_is_bit_set(const BIGNUM *a, int n);

int BN_mask_bits(BIGNUM *a, int n);

int BN_lshift(BIGNUM *r, const BIGNUM *a, int n);
int BN_lshift1(BIGNUM *r, BIGNUM *a);

int BN_rshift(BIGNUM *r, BIGNUM *a, int n);
int BN_rshift1(BIGNUM *r, BIGNUM *a);

DESCRIPTION

BN_set_bit() sets bit n in a to 1 (a|=(1<<n)). The number is expanded if necessary.

BN_clear_bit() sets bit n in a to 0 (a&=~(1<<n)). An error occurs if a is shorter than n bits.

BN_is_bit_set() tests if bit n in a is set.

BN_mask_bits() truncates a to an n bit number (a&=~((~0)>>n)). An error occurs if a already is shorter than n bits.

BN_lshift() shifts a left by n bits and places the result in r (r=a*2^n). Note that n must be non-negative. BN_lshift1() shifts
a left by one and places the result in r (r=2*a).

BN_rshift() shifts a right by n bits and places the result in r (r=a/2^n). Note that n must be non-negative. BN_rshift1() shifts
a right by one and places the result in r (r=a/2).

For the shift functions, r and a may be the same variable.

RETURN VALUES

BN_is_bit_set() returns 1 if the bit is set, 0 otherwise.

All other functions return 1 for success, 0 on error. The error codes can be obtained by ERR_get_error(3).

SEE ALSO

bn(3), BN_num_bytes(3), BN_add(3)

HISTORY

BN_set_bit(), BN_clear_bit(), BN_is_bit_set(), BN_mask_bits(), BN_lshift(), BN_lshift1(), BN_rshift(), and BN_rshift1() are
available in all versions of SSLeay and OpenSSL.

1306

OpenSSL Manual

Name
BN_swap — exchange BIGNUMs

Synopsis
#include <openssl/bn.h>

void BN_swap(BIGNUM *a, BIGNUM *b);

DESCRIPTION

BN_swap() exchanges the values of a and b.

bn(3)

HISTORY

BN_swap was added in OpenSSL 0.9.7.

1307

OpenSSL Manual

Name
BN_zero, BN_one, BN_value_one, BN_set_word and BN_get_word — BIGNUM assignment operations

Synopsis
#include <openssl/bn.h>

int BN_zero(BIGNUM *a);
int BN_one(BIGNUM *a);

const BIGNUM *BN_value_one(void);

int BN_set_word(BIGNUM *a, unsigned long w);
unsigned long BN_get_word(BIGNUM *a);

DESCRIPTION

BN_zero(), BN_one() and BN_set_word() set a to the values 0, 1 and w respectively. BN_zero() and BN_one() are macros.

BN_value_one() returns a BIGNUM constant of value 1. This constant is useful for use in comparisons and assignment.

BN_get_word() returns a, if it can be represented as an unsigned long.

RETURN VALUES

BN_get_word() returns the value a, and 0xffffffffL if a cannot be represented as an unsigned long.

BN_zero(), BN_one() and BN_set_word() return 1 on success, 0 otherwise. BN_value_one() returns the constant.

BUGS

Someone might change the constant.

If a BIGNUM is equal to 0xffffffffL it can be represented as an unsigned long but this value is also returned on error.

SEE ALSO

bn(3), BN_bn2bin(3)

HISTORY

BN_zero(), BN_one() and BN_set_word() are available in all versions of SSLeay and OpenSSL. BN_value_one() and
BN_get_word() were added in SSLeay 0.8.

BN_value_one() was changed to return a true const BIGNUM * in OpenSSL 0.9.7.

1308

OpenSSL Manual

Name
BUF_MEM_new, BUF_MEM_new_ex, BUF_MEM_free, BUF_MEM_grow, BUF_strdup, BUF_strndup, BUF_memdup,
BUF_strlcpy and BUF_strlcat — simple character array structure, with some standard C library equivalents

Synopsis
#include <openssl/buffer.h>

BUF_MEM *BUF_MEM_new(void);

void BUF_MEM_free(BUF_MEM *a);

int BUF_MEM_grow(BUF_MEM *str, int len);

char *BUF_strdup(const char *str);

char *BUF_strndup(const char *str, size_t siz);

void *BUF_memdup(const void *data, size_t siz);

size_t BUF_strlcpy(char *dst, const char *src, size_t size);

size_t BUF_strlcat(char *dst, const char *src, size_t size);

DESCRIPTION

The buffer library handles simple character arrays. Buffers are used for various purposes in the library, most notably memory
BIOs.

BUF_MEM_new() allocates a new buffer of zero size.

BUF_MEM_free() frees up an already existing buffer. The data is zeroed before freeing up in case the buffer contains sensitive
data.

BUF_MEM_grow() changes the size of an already existing buffer to len. Any data already in the buffer is preserved if it
increases in size.

BUF_strdup(), BUF_strndup(), BUF_memdup(), BUF_strlcpy() and BUF_strlcat() are equivalents of the standard C library
functions. The dup() functions use OPENSSL_malloc() underneath and so should be used in preference to the standard library
for memory leak checking or replacing the malloc() function.

Memory allocated from these functions should be freed up using the OPENSSL_free() function.

BUF_strndup makes the explicit guarantee that it will never read past the first siz bytes of str.

RETURN VALUES

BUF_MEM_new() returns the buffer or NULL on error.

BUF_MEM_free() has no return value.

BUF_MEM_grow() returns zero on error or the new size (i.e. len).

SEE ALSO

bio(3)

HISTORY

BUF_MEM_new(), BUF_MEM_free() and BUF_MEM_grow() are available in all versions of SSLeay and OpenSSL.
BUF_strdup() was added in SSLeay 0.8.

1309

OpenSSL Manual

Name
CMS_add0_cert, CMS_add1_cert, CMS_get1_certs, CMS_add0_crl and CMS_get1_crls — CMS certificate and CRL utility
functions

Synopsis
#include <openssl/cms.h>

int CMS_add0_cert(CMS_ContentInfo *cms, X509 *cert);
int CMS_add1_cert(CMS_ContentInfo *cms, X509 *cert);
STACK_OF(X509) *CMS_get1_certs(CMS_ContentInfo *cms);

int CMS_add0_crl(CMS_ContentInfo *cms, X509_CRL *crl);
int CMS_add1_crl(CMS_ContentInfo *cms, X509_CRL *crl);
STACK_OF(X509_CRL) *CMS_get1_crls(CMS_ContentInfo *cms);

DESCRIPTION

CMS_add0_cert() and CMS_add1_cert() add certificate cert to cms. must be of type signed data or enveloped data.

CMS_get1_certs() returns all certificates in cms.

CMS_add0_crl() and CMS_add1_crl() add CRL crl to cms. CMS_get1_crls() returns any CRLs in cms.

NOTES

The CMS_ContentInfo structure cms must be of type signed data or enveloped data or an error will be returned.

For signed data certificates and CRLs are added to the certificates and crls fields of SignedData structure. For enveloped data
they are added to OriginatorInfo.

As the 0 implies CMS_add0_cert() adds cert internally to cms and it must not be freed up after the call as opposed to CMS_ad-
d1_cert() where cert must be freed up.

The same certificate or CRL must not be added to the same cms structure more than once.

RETURN VALUES

CMS_add0_cert(), CMS_add1_cert() and CMS_add0_crl() and CMS_add1_crl() return 1 for success and 0 for failure.

CMS_get1_certs() and CMS_get1_crls() return the STACK of certificates or CRLs or NULL if there are none or an error
occurs. The only error which will occur in practice is if the cms type is invalid.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_encrypt(3)

HISTORY

CMS_add0_cert(), CMS_add1_cert(), CMS_get1_certs(), CMS_add0_crl() and CMS_get1_crls() were all first added to
OpenSSL 0.9.8

1310

OpenSSL Manual

Name
CMS_add1_recipient_cert and CMS_add0_recipient_key — add recipients to a CMS enveloped data structure

Synopsis
#include <openssl/cms.h>

CMS_RecipientInfo *CMS_add1_recipient_cert(CMS_ContentInfo *cms, X509 *recip, unsigned int flags);

CMS_RecipientInfo *CMS_add0_recipient_key(CMS_ContentInfo *cms, int nid, unsigned char *key,
 size_t keylen, unsigned char *id, size_t idlen, ASN1_GENERALIZEDTIME *date,
 WASN1_OBJECT *otherTypeId, ASN1_TYPE *otherType);

DESCRIPTION

CMS_add1_recipient_cert() adds recipient recip to CMS_ContentInfo enveloped data structure cms as a
KeyTransRecipientInfo structure.

CMS_add0_recipient_key() adds symmetric key key of length keylen using wrapping algorithm nid, identifier id of length
idlen and optional values date, otherTypeId and otherType to CMS_ContentInfo enveloped data structure cms as a
KEKRecipientInfo structure.

The CMS_ContentInfo structure should be obtained from an initial call to CMS_encrypt() with the flag CMS_PARTIAL set.

NOTES

The main purpose of this function is to provide finer control over a CMS enveloped data structure where the simpler CMS_en-
crypt() function defaults are not appropriate. For example if one or more KEKRecipientInfo structures need to be added. New
attributes can also be added using the returned CMS_RecipientInfo structure and the CMS attribute utility functions.

OpenSSL will by default identify recipient certificates using issuer name and serial number. If CMS_USE_KEYID is set it
will use the subject key identifier value instead. An error occurs if all recipient certificates do not have a subject key identifier
extension.

Currently only AES based key wrapping algorithms are supported for nid, specifically: NID_id_aes128_wrap,
NID_id_aes192_wrap and NID_id_aes256_wrap. If nid is set to NID_undef then an AES wrap algorithm will be used con-
sistent with keylen.

RETURN VALUES

CMS_add1_recipient_cert() and CMS_add0_recipient_key() return an internal pointer to the CMS_RecipientInfo structure just
added or NULL if an error occurs.

SEE ALSO

ERR_get_error(3), CMS_decrypt(3), CMS_final(3)

HISTORY

CMS_add1_recipient_cert() and CMS_add0_recipient_key() were added to OpenSSL 0.9.8

1311

OpenSSL Manual

Name
CMS_compress — create a CMS CompressedData structure

Synopsis
#include <openssl/cms.h>

CMS_ContentInfo *CMS_compress(BIO *in, int comp_nid, unsigned int flags);

DESCRIPTION

CMS_compress() creates and returns a CMS CompressedData structure. comp_nid is the compression algorithm to use or
NID_undef to use the default algorithm (zlib compression). in is the content to be compressed. flags is an optional set of flags.

NOTES

The only currently supported compression algorithm is zlib using the NID NID_zlib_compression.

If zlib support is not compiled into OpenSSL then CMS_compress() will return an error.

If the CMS_TEXT flag is set MIME headers for type text/plain are prepended to the data.

Normally the supplied content is translated into MIME canonical format (as required by the S/MIME specifications) if
CMS_BINARY is set no translation occurs. This option should be used if the supplied data is in binary format otherwise the
translation will corrupt it. If CMS_BINARY is set then CMS_TEXT is ignored.

If the CMS_STREAM flag is set a partial CMS_ContentInfo structure is returned suitable for streaming I/O: no data is read
from the BIO in.

The compressed data is included in the CMS_ContentInfo structure, unless CMS_DETACHED is set in which case it is
omitted. This is rarely used in practice and is not supported by SMIME_write_CMS().

NOTES

If the flag CMS_STREAM is set the returned CMS_ContentInfo structure is not complete and outputting its contents via a
function that does not properly finalize the CMS_ContentInfo structure will give unpredictable results.

Several functions including SMIME_write_CMS(), i2d_CMS_bio_stream(), PEM_write_bio_CMS_stream() finalize the
structure. Alternatively finalization can be performed by obtaining the streaming ASN1 BIO directly using BIO_new_CMS().

Additional compression parameters such as the zlib compression level cannot currently be set.

RETURN VALUES

CMS_compress() returns either a CMS_ContentInfo structure or NULL if an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_uncompress(3)

HISTORY

CMS_compress() was added to OpenSSL 0.9.8 The CMS_STREAM flag was first supported in OpenSSL 1.0.0.

1312

OpenSSL Manual

Name
CMS_decrypt — decrypt content from a CMS envelopedData structure

Synopsis
#include <openssl/cms.h>

int CMS_decrypt(CMS_ContentInfo *cms, EVP_PKEY *pkey, X509 *cert, BIO *dcont, BIO *out,
 unsigned int flags);

DESCRIPTION

CMS_decrypt() extracts and decrypts the content from a CMS EnvelopedData structure. pkey is the private key of the recipient,
cert is the recipient's certificate, out is a BIO to write the content to and flags is an optional set of flags.

The dcont parameter is used in the rare case where the encrypted content is detached. It will normally be set to NULL.

NOTES

OpenSSL_add_all_algorithms() (or equivalent) should be called before using this function or errors about unknown algorithms
will occur.

Although the recipients certificate is not needed to decrypt the data it is needed to locate the appropriate (of possible several)
recipients in the CMS structure.

If cert is set to NULL all possible recipients are tried. This case however is problematic. To thwart the MMA attack (Bleichen-
bacher's attack on PKCS #1 v1.5 RSA padding) all recipients are tried whether they succeed or not. If no recipient succeeds
then a random symmetric key is used to decrypt the content: this will typically output garbage and may (but is not guaranteed
to) ultimately return a padding error only. If CMS_decrypt() just returned an error when all recipient encrypted keys failed
to decrypt an attacker could use this in a timing attack. If the special flag CMS_DEBUG_DECRYPT is set then the above
behaviour is modified and an error is returned if no recipient encrypted key can be decrypted without generating a random
content encryption key. Applications should use this flag with extreme caution especially in automated gateways as it can
leave them open to attack.

It is possible to determine the correct recipient key by other means (for example looking them up in a database) and setting
them in the CMS structure in advance using the CMS utility functions such as CMS_set1_pkey(). In this case both cert and
pkey should be set to NULL.

To process KEKRecipientInfo types CMS_set1_key() or CMS_RecipientInfo_set0_key() and CMS_ReceipientInfo_decrypt()
should be called before CMS_decrypt() and cert and pkey set to NULL.

The following flags can be passed in the flags parameter.

If the CMS_TEXT flag is set MIME headers for type text/plain are deleted from the content. If the content is not of type
text/plain then an error is returned.

RETURN VALUES

CMS_decrypt() returns either 1 for success or 0 for failure. The error can be obtained from ERR_get_error(3)

BUGS

The lack of single pass processing and the need to hold all data in memory as mentioned in CMS_verify() also applies to
CMS_decrypt().

SEE ALSO

ERR_get_error(3), CMS_encrypt(3)

1313

OpenSSL Manual

HISTORY

CMS_decrypt() was added to OpenSSL 0.9.8

1314

OpenSSL Manual

Name
CMS_encrypt — create a CMS envelopedData structure

Synopsis
#include <openssl/cms.h>

CMS_ContentInfo *CMS_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER *cipher,
 unsigned int flags);

DESCRIPTION

CMS_encrypt() creates and returns a CMS EnvelopedData structure. certs is a list of recipient certificates. in is the content to
be encrypted. cipher is the symmetric cipher to use. flags is an optional set of flags.

NOTES

Only certificates carrying RSA keys are supported so the recipient certificates supplied to this function must all contain RSA
public keys, though they do not have to be signed using the RSA algorithm.

EVP_des_ede3_cbc() (triple DES) is the algorithm of choice for S/MIME use because most clients will support it.

The algorithm passed in the cipher parameter must support ASN1 encoding of its parameters.

Many browsers implement a "sign and encrypt" option which is simply an S/MIME envelopedData containing an S/MIME
signed message. This can be readily produced by storing the S/MIME signed message in a memory BIO and passing it to
CMS_encrypt().

The following flags can be passed in the flags parameter.

If the CMS_TEXT flag is set MIME headers for type text/plain are prepended to the data.

Normally the supplied content is translated into MIME canonical format (as required by the S/MIME specifications) if
CMS_BINARY is set no translation occurs. This option should be used if the supplied data is in binary format otherwise the
translation will corrupt it. If CMS_BINARY is set then CMS_TEXT is ignored.

OpenSSL will by default identify recipient certificates using issuer name and serial number. If CMS_USE_KEYID is set it
will use the subject key identifier value instead. An error occurs if all recipient certificates do not have a subject key identifier
extension.

If the CMS_STREAM flag is set a partial CMS_ContentInfo structure is returned suitable for streaming I/O: no data is read
from the BIO in.

If the CMS_PARTIAL flag is set a partial CMS_ContentInfo structure is returned to which additional recipients and attributes
can be added before finalization.

The data being encrypted is included in the CMS_ContentInfo structure, unless CMS_DETACHED is set in which case it is
omitted. This is rarely used in practice and is not supported by SMIME_write_CMS().

NOTES

If the flag CMS_STREAM is set the returned CMS_ContentInfo structure is not complete and outputting its contents via a
function that does not properly finalize the CMS_ContentInfo structure will give unpredictable results.

Several functions including SMIME_write_CMS(), i2d_CMS_bio_stream(), PEM_write_bio_CMS_stream() finalize the
structure. Alternatively finalization can be performed by obtaining the streaming ASN1 BIO directly using BIO_new_CMS().

The recipients specified in certs use a CMS KeyTransRecipientInfo info structure. KEKRecipientInfo is also supported using
the flag CMS_PARTIAL and CMS_add0_recipient_key().

1315

OpenSSL Manual

The parameter certs may be NULL if CMS_PARTIAL is set and recipients added later using CMS_add1_recipient_cert()
or CMS_add0_recipient_key().

RETURN VALUES

CMS_encrypt() returns either a CMS_ContentInfo structure or NULL if an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_decrypt(3)

HISTORY

CMS_decrypt() was added to OpenSSL 0.9.8 The CMS_STREAM flag was first supported in OpenSSL 1.0.0.

1316

OpenSSL Manual

Name
CMS_final — finalise a CMS_ContentInfo structure

Synopsis
#include <openssl/cms.h>

int CMS_final(CMS_ContentInfo *cms, BIO *data, BIO *dcont, unsigned int flags);

DESCRIPTION

CMS_final() finalises the structure cms. It's purpose is to perform any operations necessary on cms (digest computation for
example) and set the appropriate fields. The parameter data contains the content to be processed. The dcont parameter contains
a BIO to write content to after processing: this is only used with detached data and will usually be set to NULL.

NOTES

This function will normally be called when the CMS_PARTIAL flag is used. It should only be used when streaming is not
performed because the streaming I/O functions perform finalisation operations internally.

RETURN VALUES

CMS_final() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_encrypt(3)

HISTORY

CMS_final() was added to OpenSSL 0.9.8

1317

OpenSSL Manual

Name
CMS_get0_RecipientInfos, CMS_RecipientInfo_type, CMS_RecipientInfo_ktri_get0_signer_id,
CMS_RecipientInfo_ktri_cert_cmp, CMS_RecipientInfo_set0_pkey, CMS_RecipientInfo_kekri_get0_id,
CMS_RecipientInfo_kekri_id_cmp, CMS_RecipientInfo_set0_key and CMS_RecipientInfo_decrypt — CMS envelopedData
RecipientInfo routines

Synopsis
#include <openssl/cms.h>

STACK_OF(CMS_RecipientInfo) *CMS_get0_RecipientInfos(CMS_ContentInfo *cms);
int CMS_RecipientInfo_type(CMS_RecipientInfo *ri);

int CMS_RecipientInfo_ktri_get0_signer_id(CMS_RecipientInfo *ri, ASN1_OCTET_STRING **keyid,
 X509_NAME **issuer, ASN1_INTEGER **sno);
int CMS_RecipientInfo_ktri_cert_cmp(CMS_RecipientInfo *ri, X509 *cert);
int CMS_RecipientInfo_set0_pkey(CMS_RecipientInfo *ri, EVP_PKEY *pkey);

int CMS_RecipientInfo_kekri_get0_id(CMS_RecipientInfo *ri, X509_ALGOR **palg, ASN1_OCTET_STRING **pid,
 ASN1_GENERALIZEDTIME **pdate, ASN1_OBJECT **potherid, ASN1_TYPE **pothertype);
int CMS_RecipientInfo_kekri_id_cmp(CMS_RecipientInfo *ri, const unsigned char *id, size_t idlen);
int CMS_RecipientInfo_set0_key(CMS_RecipientInfo *ri, unsigned char *key, size_t keylen);

int CMS_RecipientInfo_decrypt(CMS_ContentInfo *cms, CMS_RecipientInfo *ri);

DESCRIPTION

The function CMS_get0_RecipientInfos() returns all the CMS_RecipientInfo structures associated with a CMS EnvelopedData
structure.

CMS_RecipientInfo_type() returns the type of CMS_RecipientInfo structure ri. It will currently return
CMS_RECIPINFO_TRANS, CMS_RECIPINFO_AGREE, CMS_RECIPINFO_KEK, CMS_RECIPINFO_PASS, or
CMS_RECIPINFO_OTHER.

CMS_RecipientInfo_ktri_get0_signer_id() retrieves the certificate recipient identifier associated with a specific CMS_Recip-
ientInfo structure ri, which must be of type CMS_RECIPINFO_TRANS. Either the keyidentifier will be set in keyid or both
issuer name and serial number in issuer and sno.

CMS_RecipientInfo_ktri_cert_cmp() compares the certificate cert against the CMS_RecipientInfo structure ri, which must be
of type CMS_RECIPINFO_TRANS. It returns zero if the comparison is successful and non zero if not.

CMS_RecipientInfo_set0_pkey() associates the private key pkey with the CMS_RecipientInfo structure ri, which must be of
type CMS_RECIPINFO_TRANS.

CMS_RecipientInfo_kekri_get0_id() retrieves the key information from the CMS_RecipientInfo structure ri which must be of
type CMS_RECIPINFO_KEK. Any of the remaining parameters can be NULL if the application is not interested in the value of
a field. Where a field is optional and absent NULL will be written to the corresponding parameter. The keyEncryptionAlgorithm
field is written to palg, the keyIdentifier field is written to pid, the date field if present is written to pdate, if the other field
is present the components keyAttrId and keyAttr are written to parameters potherid and pothertype.

CMS_RecipientInfo_kekri_id_cmp() compares the ID in the id and idlen parameters against the keyIdentifier CMS_Recipi-
entInfo structure ri, which must be of type CMS_RECIPINFO_KEK. It returns zero if the comparison is successful and non
zero if not.

CMS_RecipientInfo_set0_key() associates the symmetric key key of length keylen with the CMS_RecipientInfo structure ri,
which must be of type CMS_RECIPINFO_KEK.

CMS_RecipientInfo_decrypt() attempts to decrypt CMS_RecipientInfo structure ri in structure cms. A key must have been
associated with the structure first.

NOTES

The main purpose of these functions is to enable an application to lookup recipient keys using any appropriate technique when
the simpler method of CMS_decrypt() is not appropriate.

1318

OpenSSL Manual

In typical usage and application will retrieve all CMS_RecipientInfo structures using CMS_get0_RecipientInfos() and check
the type of each using CMS_RecpientInfo_type(). Depending on the type the CMS_RecipientInfo structure can be ignored or
its key identifier data retrieved using an appropriate function. Then if the corresponding secret or private key can be obtained
by any appropriate means it can then associated with the structure and CMS_RecpientInfo_decrypt() called. If successful
CMS_decrypt() can be called with a NULL key to decrypt the enveloped content.

RETURN VALUES

CMS_get0_RecipientInfos() returns all CMS_RecipientInfo structures, or NULL if an error occurs.

CMS_RecipientInfo_ktri_get0_signer_id(), CMS_RecipientInfo_set0_pkey(), CMS_RecipientInfo_kekri_get0_id(),
CMS_RecipientInfo_set0_key() and CMS_RecipientInfo_decrypt() return 1 for success or 0 if an error occurs.

CMS_RecipientInfo_ktri_cert_cmp() and CMS_RecipientInfo_kekri_cmp() return 0 for a successful comparison and non zero
otherwise.

Any error can be obtained from ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_decrypt(3)

HISTORY

These functions were first was added to OpenSSL 0.9.8

1319

OpenSSL Manual

Name
CMS_get0_SignerInfos, CMS_SignerInfo_get0_signer_id, CMS_SignerInfo_cert_cmp and CMS_set1_signer_certs — CMS
signedData signer functions.

Synopsis
#include <openssl/cms.h>

STACK_OF(CMS_SignerInfo) *CMS_get0_SignerInfos(CMS_ContentInfo *cms);

int CMS_SignerInfo_get0_signer_id(CMS_SignerInfo *si, ASN1_OCTET_STRING **keyid, X509_NAME **issuer,
 ASN1_INTEGER **sno);
int CMS_SignerInfo_cert_cmp(CMS_SignerInfo *si, X509 *cert);
void CMS_SignerInfo_set1_signer_cert(CMS_SignerInfo *si, X509 *signer);

DESCRIPTION

The function CMS_get0_SignerInfos() returns all the CMS_SignerInfo structures associated with a CMS signedData structure.

CMS_SignerInfo_get0_signer_id() retrieves the certificate signer identifier associated with a specific CMS_SignerInfo struc-
ture si. Either the keyidentifier will be set in keyid or both issuer name and serial number in issuer and sno.

CMS_SignerInfo_cert_cmp() compares the certificate cert against the signer identifier si. It returns zero if the comparison is
successful and non zero if not.

CMS_SignerInfo_set1_signer_cert() sets the signers certificate of si to signer.

NOTES

The main purpose of these functions is to enable an application to lookup signers certificates using any appropriate technique
when the simpler method of CMS_verify() is not appropriate.

In typical usage and application will retrieve all CMS_SignerInfo structures using CMS_get0_SignerInfo() and retrieve the
identifier information using CMS. It will then obtain the signer certificate by some unspecified means (or return and error if
it cannot be found) and set it using CMS_SignerInfo_set1_signer_cert().

Once all signer certificates have been set CMS_verify() can be used.

Although CMS_get0_SignerInfos() can return NULL is an error occur or if there are no signers this is not a problem in practice
because the only error which can occur is if the cms structure is not of type signedData due to application error.

RETURN VALUES

CMS_get0_SignerInfos() returns all CMS_SignerInfo structures, or NULL there are no signers or an error occurs.

CMS_SignerInfo_get0_signer_id() returns 1 for success and 0 for failure.

CMS_SignerInfo_cert_cmp() returns 0 for a successful comparison and non zero otherwise.

CMS_SignerInfo_set1_signer_cert() does not return a value.

Any error can be obtained from ERR_get_error(3)

SEE ALSO

ERR_get_error(3), CMS_verify(3)

HISTORY

These functions were first was added to OpenSSL 0.9.8

1320

OpenSSL Manual

Name
CMS_get0_type, CMS_set1_eContentType, CMS_get0_eContentType and CMS_get0_content — get and set CMS content
types and content

Synopsis
#include <openssl/cms.h>

const ASN1_OBJECT *CMS_get0_type(CMS_ContentInfo *cms);
int CMS_set1_eContentType(CMS_ContentInfo *cms, const ASN1_OBJECT *oid);
const ASN1_OBJECT *CMS_get0_eContentType(CMS_ContentInfo *cms);
ASN1_OCTET_STRING **CMS_get0_content(CMS_ContentInfo *cms);

DESCRIPTION

CMS_get0_type() returns the content type of a CMS_ContentInfo structure as and ASN1_OBJECT pointer. An application
can then decide how to process the CMS_ContentInfo structure based on this value.

CMS_set1_eContentType() sets the embedded content type of a CMS_ContentInfo structure. It should be called with CMS
functions with the CMS_PARTIAL flag and before the structure is finalised, otherwise the results are undefined.

ASN1_OBJECT *CMS_get0_eContentType() returns a pointer to the embedded content type.

CMS_get0_content() returns a pointer to the ASN1_OCTET_STRING pointer containing the embedded content.

NOTES

As the 0 implies CMS_get0_type(), CMS_get0_eContentType() and CMS_get0_content() return internal pointers which should
not be freed up. CMS_set1_eContentType() copies the supplied OID and it should be freed up after use.

The ASN1_OBJECT values returned can be converted to an integer NID value using OBJ_obj2nid(). For the currently sup-
ported content types the following values are returned:

NID_pkcs7_data
NID_pkcs7_signed
NID_pkcs7_digest
NID_id_smime_ct_compressedData:
NID_pkcs7_encrypted
NID_pkcs7_enveloped

The return value of CMS_get0_content() is a pointer to the ASN1_OCTET_STRING content pointer. That means that for
example:

ASN1_OCTET_STRING **pconf = CMS_get0_content(cms);

*pconf could be NULL if there is no embedded content. Applications can access, modify or create the embedded content in
a CMS_ContentInfo structure using this function. Applications usually will not need to modify the embedded content as it
is normally set by higher level functions.

RETURN VALUES

CMS_get0_type() and CMS_get0_eContentType() return and ASN1_OBJECT structure.

CMS_set1_eContentType() returns 1 for success or 0 if an error occurred. The error can be obtained from ERR_get_error(3).

SEE ALSO

ERR_get_error(3)

HISTORY

CMS_get0_type(), CMS_set1_eContentType() and CMS_get0_eContentType() were all first added to OpenSSL 0.9.8

1321

OpenSSL Manual

Name
CMS_ReceiptRequest_create0, CMS_add1_ReceiptRequest, CMS_get1_ReceiptRequest and
CMS_ReceiptRequest_get0_values — CMS signed receipt request functions.

Synopsis
#include <openssl/cms.h>

CMS_ReceiptRequest *CMS_ReceiptRequest_create0(unsigned char *id, int idlen, int allorfirst,
 STACK_OF(GENERAL_NAMES) *receiptList, STACK_OF(GENERAL_NAMES) *receiptsTo);
int CMS_add1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest *rr);
int CMS_get1_ReceiptRequest(CMS_SignerInfo *si, CMS_ReceiptRequest **prr);
void CMS_ReceiptRequest_get0_values(CMS_ReceiptRequest *rr, ASN1_STRING **pcid, int *pallorfirst,
 STACK_OF(GENERAL_NAMES) **plist, STACK_OF(GENERAL_NAMES) **prto);

DESCRIPTION

CMS_ReceiptRequest_create0() creates a signed receipt request structure. The signedContentIdentifier field is set using id
and idlen, or it is set to 32 bytes of pseudo random data if id is NULL. If receiptList is NULL the allOrFirstTier option in
receiptsFrom is used and set to the value of the allorfirst parameter. If receiptList is not NULL the receiptList option in
receiptsFrom is used. The receiptsTo parameter specifies the receiptsTo field value.

The CMS_add1_ReceiptRequest() function adds a signed receipt request rr to SignerInfo structure si.

int CMS_get1_ReceiptRequest() looks for a signed receipt request in si, if any is found it is decoded and written to prr.

CMS_ReceiptRequest_get0_values() retrieves the values of a receipt request. The signedContentIdentifier is copied to pcid. If
the allOrFirstTier option of receiptsFrom is used its value is copied to pallorfirst otherwise the receiptList field is copied
to plist. The receiptsTo parameter is copied to prto.

NOTES

For more details of the meaning of the fields see RFC2634.

The contents of a signed receipt should only be considered meaningful if the corresponding CMS_ContentInfo structure can
be successfully verified using CMS_verify().

RETURN VALUES

CMS_ReceiptRequest_create0() returns a signed receipt request structure or NULL if an error occurred.

CMS_add1_ReceiptRequest() returns 1 for success or 0 is an error occurred.

CMS_get1_ReceiptRequest() returns 1 is a signed receipt request is found and decoded. It returns 0 if a signed receipt request
is not present and -1 if it is present but malformed.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_sign_receipt(3), CMS_verify(3), CMS_verify_receipt(3)

HISTORY

CMS_ReceiptRequest_create0(), CMS_add1_ReceiptRequest(), CMS_get1_ReceiptRequest() and
CMS_ReceiptRequest_get0_values() were added to OpenSSL 0.9.8

1322

OpenSSL Manual

Name
CMS_add1_signer and CMS_SignerInfo_sign — add a signer to a CMS_ContentInfo signed data structure.

Synopsis
#include <openssl/cms.h>

CMS_SignerInfo *CMS_add1_signer(CMS_ContentInfo *cms, X509 *signcert, EVP_PKEY *pkey, const EVP_MD *md,
 unsigned int flags);

int CMS_SignerInfo_sign(CMS_SignerInfo *si);

DESCRIPTION

CMS_add1_signer() adds a signer with certificate signcert and private key pkey using message digest md to CMS_ContentInfo
SignedData structure cms.

The CMS_ContentInfo structure should be obtained from an initial call to CMS_sign() with the flag CMS_PARTIAL set or
in the case or re-signing a valid CMS_ContentInfo SignedData structure.

If the md parameter is NULL then the default digest for the public key algorithm will be used.

Unless the CMS_REUSE_DIGEST flag is set the returned CMS_ContentInfo structure is not complete and must be finalized
either by streaming (if applicable) or a call to CMS_final().

The CMS_SignerInfo_sign() function will explicitly sign a CMS_SignerInfo structure, its main use is when
CMS_REUSE_DIGEST and CMS_PARTIAL flags are both set.

NOTES

The main purpose of CMS_add1_signer() is to provide finer control over a CMS signed data structure where the simpler
CMS_sign() function defaults are not appropriate. For example if multiple signers or non default digest algorithms are needed.
New attributes can also be added using the returned CMS_SignerInfo structure and the CMS attribute utility functions or the
CMS signed receipt request functions.

Any of the following flags (ored together) can be passed in the flags parameter.

If CMS_REUSE_DIGEST is set then an attempt is made to copy the content digest value from the CMS_ContentInfo structure:
to add a signer to an existing structure. An error occurs if a matching digest value cannot be found to copy. The returned
CMS_ContentInfo structure will be valid and finalized when this flag is set.

If CMS_PARTIAL is set in addition to CMS_REUSE_DIGEST then the CMS_SignerInfo structure will not be finalized so
additional attributes can be added. In this case an explicit call to CMS_SignerInfo_sign() is needed to finalize it.

If CMS_NOCERTS is set the signer's certificate will not be included in the CMS_ContentInfo structure, the signer's certificate
must still be supplied in the signcert parameter though. This can reduce the size of the signature if the signers certificate can
be obtained by other means: for example a previously signed message.

The SignedData structure includes several CMS signedAttributes including the signing time, the CMS content type and the
supported list of ciphers in an SMIMECapabilities attribute. If CMS_NOATTR is set then no signedAttributes will be used.
If CMS_NOSMIMECAP is set then just the SMIMECapabilities are omitted.

OpenSSL will by default identify signing certificates using issuer name and serial number. If CMS_USE_KEYID is set it
will use the subject key identifier value instead. An error occurs if the signing certificate does not have a subject key identifier
extension.

If present the SMIMECapabilities attribute indicates support for the following algorithms in preference order: 256 bit AES,
Gost R3411-94, Gost 28147-89, 192 bit AES, 128 bit AES, triple DES, 128 bit RC2, 64 bit RC2, DES and 40 bit RC2. If any
of these algorithms is not available then it will not be included: for example the GOST algorithms will not be included if the
GOST ENGINE is not loaded.

1323

OpenSSL Manual

CMS_add1_signer() returns an internal pointer to the CMS_SignerInfo structure just added, this can be used to set additional
attributes before it is finalized.

RETURN VALUES

CMS_add1_signer() returns an internal pointer to the CMS_SignerInfo structure just added or NULL if an error occurs.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_final(3)

HISTORY

CMS_add1_signer() was added to OpenSSL 0.9.8

1324

OpenSSL Manual

Name
CMS_sign — create a CMS SignedData structure

Synopsis
#include <openssl/cms.h>

CMS_ContentInfo *CMS_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs, BIO *data,
 unsigned int flags);

DESCRIPTION

CMS_sign() creates and returns a CMS SignedData structure. signcert is the certificate to sign with, pkey is the corresponding
private key. certs is an optional additional set of certificates to include in the CMS structure (for example any intermediate
CAs in the chain). Any or all of these parameters can be NULL, see NOTES below.

The data to be signed is read from BIO data.

flags is an optional set of flags.

NOTES

Any of the following flags (ored together) can be passed in the flags parameter.

Many S/MIME clients expect the signed content to include valid MIME headers. If the CMS_TEXT flag is set MIME headers
for type text/plain are prepended to the data.

If CMS_NOCERTS is set the signer's certificate will not be included in the CMS_ContentInfo structure, the signer's certificate
must still be supplied in the signcert parameter though. This can reduce the size of the signature if the signers certificate can
be obtained by other means: for example a previously signed message.

The data being signed is included in the CMS_ContentInfo structure, unless CMS_DETACHED is set in which case it is
omitted. This is used for CMS_ContentInfo detached signatures which are used in S/MIME plaintext signed messages for
example.

Normally the supplied content is translated into MIME canonical format (as required by the S/MIME specifications) if
CMS_BINARY is set no translation occurs. This option should be used if the supplied data is in binary format otherwise the
translation will corrupt it.

The SignedData structure includes several CMS signedAttributes including the signing time, the CMS content type and the
supported list of ciphers in an SMIMECapabilities attribute. If CMS_NOATTR is set then no signedAttributes will be used.
If CMS_NOSMIMECAP is set then just the SMIMECapabilities are omitted.

If present the SMIMECapabilities attribute indicates support for the following algorithms in preference order: 256 bit AES,
Gost R3411-94, Gost 28147-89, 192 bit AES, 128 bit AES, triple DES, 128 bit RC2, 64 bit RC2, DES and 40 bit RC2. If any
of these algorithms is not available then it will not be included: for example the GOST algorithms will not be included if the
GOST ENGINE is not loaded.

OpenSSL will by default identify signing certificates using issuer name and serial number. If CMS_USE_KEYID is set it
will use the subject key identifier value instead. An error occurs if the signing certificate does not have a subject key identifier
extension.

If the flags CMS_STREAM is set then the returned CMS_ContentInfo structure is just initialized ready to perform the signing
operation. The signing is however not performed and the data to be signed is not read from the data parameter. Signing is
deferred until after the data has been written. In this way data can be signed in a single pass.

If the CMS_PARTIAL flag is set a partial CMS_ContentInfo structure is output to which additional signers and capabilities
can be added before finalization.

If the flag CMS_STREAM is set the returned CMS_ContentInfo structure is not complete and outputting its contents via a
function that does not properly finalize the CMS_ContentInfo structure will give unpredictable results.

1325

OpenSSL Manual

Several functions including SMIME_write_CMS(), i2d_CMS_bio_stream(), PEM_write_bio_CMS_stream() finalize the
structure. Alternatively finalization can be performed by obtaining the streaming ASN1 BIO directly using BIO_new_CMS().

If a signer is specified it will use the default digest for the signing algorithm. This is SHA1 for both RSA and DSA keys.

If signcert and pkey are NULL then a certificates only CMS structure is output.

The function CMS_sign() is a basic CMS signing function whose output will be suitable for many purposes. For finer control
of the output format the certs, signcert and pkey parameters can all be NULL and the CMS_PARTIAL flag set. Then one or
more signers can be added using the function CMS_sign_add1_signer(), non default digests can be used and custom attributes
added. CMS_final() must then be called to finalize the structure if streaming is not enabled.

BUGS

Some attributes such as counter signatures are not supported.

RETURN VALUES

CMS_sign() returns either a valid CMS_ContentInfo structure or NULL if an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_verify(3)

HISTORY

CMS_sign() was added to OpenSSL 0.9.8

The CMS_STREAM flag is only supported for detached data in OpenSSL 0.9.8, it is supported for embedded data in OpenSSL
1.0.0 and later.

1326

OpenSSL Manual

Name
CMS_sign_receipt — create a CMS signed receipt

Synopsis
#include <openssl/cms.h>

CMS_ContentInfo *CMS_sign_receipt(CMS_SignerInfo *si, X509 *signcert, EVP_PKEY *pkey,
 STACK_OF(X509) *certs, unsigned int flags);

DESCRIPTION

CMS_sign_receipt() creates and returns a CMS signed receipt structure. si is the CMS_SignerInfo structure containing the
signed receipt request. signcert is the certificate to sign with, pkey is the corresponding private key. certs is an optional
additional set of certificates to include in the CMS structure (for example any intermediate CAs in the chain).

flags is an optional set of flags.

NOTES

This functions behaves in a similar way to CMS_sign() except the flag values CMS_DETACHED, CMS_BINARY,
CMS_NOATTR, CMS_TEXT and CMS_STREAM are not supported since they do not make sense in the context of signed
receipts.

RETURN VALUES

CMS_sign_receipt() returns either a valid CMS_ContentInfo structure or NULL if an error occurred. The error can be obtained
from ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_verify_receipt(3), CMS_sign(3)

HISTORY

CMS_sign_receipt() was added to OpenSSL 0.9.8

1327

OpenSSL Manual

Name
CMS_uncompress — uncompress a CMS CompressedData structure

Synopsis
#include <openssl/cms.h>

int CMS_uncompress(CMS_ContentInfo *cms, BIO *dcont, BIO *out, unsigned int flags);

DESCRIPTION

CMS_uncompress() extracts and uncompresses the content from a CMS CompressedData structure cms. data is a BIO to write
the content to and flags is an optional set of flags.

The dcont parameter is used in the rare case where the compressed content is detached. It will normally be set to NULL.

NOTES

The only currently supported compression algorithm is zlib: if the structure indicates the use of any other algorithm an error
is returned.

If zlib support is not compiled into OpenSSL then CMS_uncompress() will always return an error.

The following flags can be passed in the flags parameter.

If the CMS_TEXT flag is set MIME headers for type text/plain are deleted from the content. If the content is not of type
text/plain then an error is returned.

RETURN VALUES

CMS_uncompress() returns either 1 for success or 0 for failure. The error can be obtained from ERR_get_error(3)

BUGS

The lack of single pass processing and the need to hold all data in memory as mentioned in CMS_verify() also applies to
CMS_decompress().

SEE ALSO

ERR_get_error(3), CMS_compress(3)

HISTORY

CMS_uncompress() was added to OpenSSL 0.9.8

1328

OpenSSL Manual

Name
CMS_verify — verify a CMS SignedData structure

Synopsis
#include <openssl/cms.h>

int CMS_verify(CMS_ContentInfo *cms, STACK_OF(X509) *certs, X509_STORE *store, BIO *indata,
 BIO *out, unsigned int flags);

STACK_OF(X509) *CMS_get0_signers(CMS_ContentInfo *cms);

DESCRIPTION

CMS_verify() verifies a CMS SignedData structure. cms is the CMS_ContentInfo structure to verify. certs is a set of certificates
in which to search for the signing certificate(s). store is a trusted certificate store used for chain verification. indata is the
detached content if the content is not present in cms. The content is written to out if it is not NULL.

flags is an optional set of flags, which can be used to modify the verify operation.

CMS_get0_signers() retrieves the signing certificate(s) from cms, it must be called after a successful CMS_verify() operation.

VERIFY PROCESS

Normally the verify process proceeds as follows.

Initially some sanity checks are performed on cms. The type of cms must be SignedData. There must be at least one signature
on the data and if the content is detached indata cannot be NULL.

An attempt is made to locate all the signing certificate(s), first looking in the certs parameter (if it is not NULL) and then
looking in any certificates contained in the cms structure itself. If any signing certificate cannot be located the operation fails.

Each signing certificate is chain verified using the smimesign purpose and the supplied trusted certificate store. Any internal
certificates in the message are used as untrusted CAs. If CRL checking is enabled in store any internal CRLs are used in
addition to attempting to look them up in store. If any chain verify fails an error code is returned.

Finally the signed content is read (and written to out is it is not NULL) and the signature's checked.

If all signature's verify correctly then the function is successful.

Any of the following flags (ored together) can be passed in the flags parameter to change the default verify behaviour.

If CMS_NOINTERN is set the certificates in the message itself are not searched when locating the signing certificate(s). This
means that all the signing certificates must be in the certs parameter.

If CMS_NOCRL is set and CRL checking is enabled in store then any CRLs in the message itself are ignored.

If the CMS_TEXT flag is set MIME headers for type text/plain are deleted from the content. If the content is not of type
text/plain then an error is returned.

If CMS_NO_SIGNER_CERT_VERIFY is set the signing certificates are not verified.

If CMS_NO_ATTR_VERIFY is set the signed attributes signature is not verified.

If CMS_NO_CONTENT_VERIFY is set then the content digest is not checked.

NOTES

One application of CMS_NOINTERN is to only accept messages signed by a small number of certificates. The acceptable
certificates would be passed in the certs parameter. In this case if the signer is not one of the certificates supplied in certs then
the verify will fail because the signer cannot be found.

1329

OpenSSL Manual

In some cases the standard techniques for looking up and validating certificates are not appropriate: for example an application
may wish to lookup certificates in a database or perform customised verification. This can be achieved by setting and verifying
the signers certificates manually using the signed data utility functions.

Care should be taken when modifying the default verify behaviour, for example setting CMS_NO_CONTENT_VERIFY will
totally disable all content verification and any modified content will be considered valid. This combination is however useful
if one merely wishes to write the content to out and its validity is not considered important.

Chain verification should arguably be performed using the signing time rather than the current time. However since the signing
time is supplied by the signer it cannot be trusted without additional evidence (such as a trusted timestamp).

RETURN VALUES

CMS_verify() returns 1 for a successful verification and zero if an error occurred.

CMS_get0_signers() returns all signers or NULL if an error occurred.

The error can be obtained from ERR_get_error(3)

BUGS

The trusted certificate store is not searched for the signing certificate, this is primarily due to the inadequacies of the current
X509_STORE functionality.

The lack of single pass processing means that the signed content must all be held in memory if it is not detached.

SEE ALSO

ERR_get_error(3), CMS_sign(3)

HISTORY

CMS_verify() was added to OpenSSL 0.9.8

1330

OpenSSL Manual

Name
CMS_verify_receipt — verify a CMS signed receipt

Synopsis
#include <openssl/cms.h>

int CMS_verify_receipt(CMS_ContentInfo *rcms, CMS_ContentInfo *ocms, STACK_OF(X509) *certs,
 X509_STORE *store, unsigned int flags);

DESCRIPTION

CMS_verify_receipt() verifies a CMS signed receipt. rcms is the signed receipt to verify. ocms is the original SignedData
structure containing the receipt request. certs is a set of certificates in which to search for the signing certificate. store is a
trusted certificate store (used for chain verification).

flags is an optional set of flags, which can be used to modify the verify operation.

NOTES

This functions behaves in a similar way to CMS_verify() except the flag values CMS_DETACHED, CMS_BINARY,
CMS_TEXT and CMS_STREAM are not supported since they do not make sense in the context of signed receipts.

RETURN VALUES

CMS_verify_receipt() returns 1 for a successful verification and zero if an error occurred.

The error can be obtained from ERR_get_error(3)

SEE ALSO

ERR_get_error(3), CMS_sign_receipt(3), CMS_verify(3)

HISTORY

CMS_verify_receipt() was added to OpenSSL 0.9.8

1331

OpenSSL Manual

Name
CONF_modules_free, CONF_modules_finish and CONF_modules_unload — OpenSSL configuration cleanup functions

Synopsis
#include <openssl/conf.h>

void CONF_modules_free(void);
void CONF_modules_finish(void);
void CONF_modules_unload(int all);

DESCRIPTION

CONF_modules_free() closes down and frees up all memory allocated by all configuration modules.

CONF_modules_finish() calls each configuration modules finish handler to free up any configuration that module may have
performed.

CONF_modules_unload() finishes and unloads configuration modules. If all is set to 0 only modules loaded from DSOs will
be unloads. If all is 1 all modules, including builtin modules will be unloaded.

NOTES

Normally applications will only call CONF_modules_free() at application to tidy up any configuration performed.

RETURN VALUE

None of the functions return a value.

SEE ALSO

conf(5), OPENSSL_config(3), CONF_modules_load_file(3)

HISTORY

CONF_modules_free(), CONF_modules_unload(), and CONF_modules_finish() first appeared in OpenSSL 0.9.7.

1332

OpenSSL Manual

Name
CONF_modules_load_file and CONF_modules_load — OpenSSL configuration functions

Synopsis
#include <openssl/conf.h>

int CONF_modules_load_file(const char *filename, const char *appname,
 unsigned long flags);
int CONF_modules_load(const CONF *cnf, const char *appname,
 unsigned long flags);

DESCRIPTION

The function CONF_modules_load_file() configures OpenSSL using file filename and application name appname. If file-
name is NULL the standard OpenSSL configuration file is used. If appname is NULL the standard OpenSSL application
name openssl_conf is used. The behaviour can be cutomized using flags.

CONF_modules_load() is idential to CONF_modules_load_file() except it reads configuration information from cnf.

NOTES

The following flags are currently recognized:

CONF_MFLAGS_IGNORE_ERRORS if set errors returned by individual configuration modules are ignored. If not set the
first module error is considered fatal and no further modules are loaded.

Normally any modules errors will add error information to the error queue. If CONF_MFLAGS_SILENT is set no error
information is added.

If CONF_MFLAGS_NO_DSO is set configuration module loading from DSOs is disabled.

CONF_MFLAGS_IGNORE_MISSING_FILE if set will make CONF_load_modules_file() ignore missing configuration
files. Normally a missing configuration file return an error.

CONF_MFLAGS_DEFAULT_SECTION if set and appname is not NULL will use the default section pointed to by openss-
l_conf if appname does not exist.

Applications should call these functions after loading builtin modules using OPENSSL_load_builtin_modules(), any ENGINEs
for example using ENGINE_load_builtin_engines(), any algorithms for example OPENSSL_add_all_algorithms() and (if the
application uses libssl) SSL_library_init().

By using CONF_modules_load_file() with appropriate flags an application can customise application configuration to best
suit its needs. In some cases the use of a configuration file is optional and its absence is not an error: in this case CONF_M-
FLAGS_IGNORE_MISSING_FILE would be set.

Errors during configuration may also be handled differently by different applications. For example in some cases an error may
simply print out a warning message and the application continue. In other cases an application might consider a configuration
file error as fatal and exit immediately.

Applications can use the CONF_modules_load() function if they wish to load a configuration file themselves and have finer
control over how errors are treated.

EXAMPLES

Load a configuration file and print out any errors and exit (missing file considered fatal):

if (CONF_modules_load_file(NULL, NULL, 0) <= 0) {
 fprintf(stderr, "FATAL: error loading configuration file\n");
 ERR_print_errors_fp(stderr);
 exit(1);

1333

OpenSSL Manual

}

Load default configuration file using the section indicated by "myapp", tolerate missing files, but exit on other errors:

if (CONF_modules_load_file(NULL, "myapp",
 CONF_MFLAGS_IGNORE_MISSING_FILE) <= 0) {
 fprintf(stderr, "FATAL: error loading configuration file\n");
 ERR_print_errors_fp(stderr);
 exit(1);
}

Load custom configuration file and section, only print warnings on error, missing configuration file ignored:

if (CONF_modules_load_file("/something/app.cnf", "myapp",
 CONF_MFLAGS_IGNORE_MISSING_FILE) <= 0) {
 fprintf(stderr, "WARNING: error loading configuration file\n");
 ERR_print_errors_fp(stderr);
}

Load and parse configuration file manually, custom error handling:

FILE *fp;
CONF *cnf = NULL;
long eline;
fp = fopen("/somepath/app.cnf", "r");
if (fp == NULL) {
 fprintf(stderr, "Error opening configuration file\n");
 /* Other missing configuration file behaviour */
} else {
 cnf = NCONF_new(NULL);
 if (NCONF_load_fp(cnf, fp, &eline) == 0) {
 fprintf(stderr, "Error on line %ld of configuration file\n", eline);
 ERR_print_errors_fp(stderr);
 /* Other malformed configuration file behaviour */
 } else if (CONF_modules_load(cnf, "appname", 0) <= 0) {
 fprintf(stderr, "Error configuring application\n");
 ERR_print_errors_fp(stderr);
 /* Other configuration error behaviour */
 }
 fclose(fp);
 NCONF_free(cnf);
 }

RETURN VALUES

These functions return 1 for success and a zero or negative value for failure. If module errors are not ignored the return code
will reflect the return value of the failing module (this will always be zero or negative).

SEE ALSO

conf(5), OPENSSL_config(3), CONF_free(3), err(3)

HISTORY

CONF_modules_load_file and CONF_modules_load first appeared in OpenSSL 0.9.7.

1334

OpenSSL Manual

Name
CRYPTO_set_ex_data and CRYPTO_get_ex_data — internal application specific data functions

Synopsis
#include <openssl/crypto.h>

int CRYPTO_set_ex_data(CRYPTO_EX_DATA *r, int idx, void *arg);

void *CRYPTO_get_ex_data(CRYPTO_EX_DATA *r, int idx);

DESCRIPTION

Several OpenSSL structures can have application specific data attached to them. These functions are used internally by
OpenSSL to manipulate application specific data attached to a specific structure.

These functions should only be used by applications to manipulate CRYPTO_EX_DATA structures passed to the new_func(),
free_func() and dup_func() callbacks: as passed to RSA_get_ex_new_index() for example.

CRYPTO_set_ex_data() is used to set application specific data, the data is supplied in the arg parameter and its precise
meaning is up to the application.

CRYPTO_get_ex_data() is used to retrieve application specific data. The data is returned to the application, this will be the
same value as supplied to a previous CRYPTO_set_ex_data() call.

RETURN VALUES

CRYPTO_set_ex_data() returns 1 on success or 0 on failure.

CRYPTO_get_ex_data() returns the application data or 0 on failure. 0 may also be valid application data but currently it can
only fail if given an invalid idx parameter.

On failure an error code can be obtained from ERR_get_error(3).

SEE ALSO

RSA_get_ex_new_index(3), DSA_get_ex_new_index(3), DH_get_ex_new_index(3)

HISTORY

CRYPTO_set_ex_data() and CRYPTO_get_ex_data() have been available since SSLeay 0.9.0.

1335

OpenSSL Manual

Name
d2i_ASN1_OBJECT and i2d_ASN1_OBJECT — ASN1 OBJECT IDENTIFIER functions

Synopsis
#include <openssl/objects.h>

ASN1_OBJECT *d2i_ASN1_OBJECT(ASN1_OBJECT **a, unsigned char **pp, long length);
int i2d_ASN1_OBJECT(ASN1_OBJECT *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode an ASN1 OBJECT IDENTIFIER.

Othewise these behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1336

OpenSSL Manual

Name
d2i_CMS_ContentInfo and i2d_CMS_ContentInfo — CMS ContentInfo functions

Synopsis
#include <openssl/cms.h>

CMS_ContentInfo *d2i_CMS_ContentInfo(CMS_ContentInfo **a, unsigned char **pp, long length);
int i2d_CMS_ContentInfo(CMS_ContentInfo *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode an CMS ContentInfo structure.

Otherwise they behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

These functions were first added to OpenSSL 0.9.8

1337

OpenSSL Manual

Name
d2i_DHparams and i2d_DHparams — PKCS#3 DH parameter functions.

Synopsis
#include <openssl/dh.h>

DH *d2i_DHparams(DH **a, unsigned char **pp, long length);
int i2d_DHparams(DH *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode PKCS#3 DH parameters using the DHparameter structure described in PKCS#3.

Othewise these behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1338

OpenSSL Manual

Name
d2i_DSAPrivateKey, i2d_DSAPrivateKey, d2i_DSAPrivateKey, i2d_DSAPrivateKey, d2i_DSA_PUBKEY,
i2d_DSA_PUBKEY, d2i_DSA_SIG and i2d_DSA_SIG — DSA key encoding and parsing functions.

Synopsis
#include <openssl/dsa.h>
#include <openssl/x509.h>

DSA * d2i_DSAPublicKey(DSA **a, const unsigned char **pp, long length);

int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length);

int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp);

DSA * d2i_DSAPrivateKey(DSA **a, const unsigned char **pp, long length);

int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);

DSA * d2i_DSAparams(DSA **a, const unsigned char **pp, long length);

int i2d_DSAparams(const DSA *a, unsigned char **pp);

DSA * d2i_DSA_SIG(DSA_SIG **a, const unsigned char **pp, long length);

int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);

DESCRIPTION

d2i_DSAPublicKey() and i2d_DSAPublicKey() decode and encode the DSA public key components structure.

d2i_DSA_PUBKEY() and i2d_DSA_PUBKEY() decode and encode an DSA public key using a SubjectPublicKeyInfo (cer-
tificate public key) structure.

d2i_DSAPrivateKey(), i2d_DSAPrivateKey() decode and encode the DSA private key components.

d2i_DSAparams(), i2d_DSAparams() decode and encode the DSA parameters using a Dss-Parms structure as defined in
RFC2459.

d2i_DSA_SIG(), i2d_DSA_SIG() decode and encode a DSA signature using a Dss-Sig-Value structure as defined in RFC2459.

The usage of all of these functions is similar to the d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

NOTES

The DSA structure passed to the private key encoding functions should have all the private key components present.

The data encoded by the private key functions is unencrypted and therefore offers no private key security.

The DSA_PUBKEY functions should be used in preference to the DSAPublicKey functions when encoding public keys
because they use a standard format.

The DSAPublicKey functions use an non standard format the actual data encoded depends on the value of the write_params
field of the a key parameter. If write_params is zero then only the pub_key field is encoded as an INTEGER. If write_params
is 1 then a SEQUENCE consisting of the p, q, g and pub_key respectively fields are encoded.

The DSAPrivateKey functions also use a non standard structure consiting consisting of a SEQUENCE containing the p, q,
g and pub_key and priv_key fields respectively.

SEE ALSO

d2i_X509(3)

1339

OpenSSL Manual

HISTORY

TBA

1340

OpenSSL Manual

Name
i2d_ECPrivateKey and d2i_ECPrivate_key — Encode and decode functions for saving and reading EC_KEY structures

Synopsis
#include <openssl/ec.h>

EC_KEY *d2i_ECPrivateKey(EC_KEY **key, const unsigned char **in, long len);
int i2d_ECPrivateKey(EC_KEY *key, unsigned char **out);

unsigned int EC_KEY_get_enc_flags(const EC_KEY *key);
void EC_KEY_set_enc_flags(EC_KEY *eckey, unsigned int flags);

DESCRIPTION

The ECPrivateKey encode and decode routines encode and parse an EC_KEY structure into a binary format (ASN.1 DER)
and back again.

These functions are similar to the d2i_X509() functions, and you should refer to that page for a detailed description (see
d2i_X509(3)).

The format of the external representation of the public key written by i2d_ECPrivateKey (such as whether it is stored in a
compressed form or not) is described by the point_conversion_form. See EC_GROUP_copy(3) for a description of point_con-
version_form.

When reading a private key encoded without an associated public key (e.g. if EC_PKEY_NO_PUBKEY has been used - see
below), then d2i_ECPrivateKey generates the missing public key automatically. Private keys encoded without parameters (e.g.
if EC_PKEY_NO_PARAMETERS has been used - see below) cannot be loaded using d2i_ECPrivateKey.

The functions EC_KEY_get_enc_flags and EC_KEY_set_enc_flags get and set the value of the encoding flags for the key.
There are two encoding flags currently defined - EC_PKEY_NO_PARAMETERS and EC_PKEY_NO_PUBKEY. These flags
define the behaviour of how the key is converted into ASN1 in a call to i2d_ECPrivateKey. If EC_PKEY_NO_PARAMETERS
is set then the public parameters for the curve are not encoded along with the private key. If EC_PKEY_NO_PUBKEY is set
then the public key is not encoded along with the private key.

RETURN VALUES

d2i_ECPrivateKey() returns a valid EC_KEY structure or NULL if an error occurs. The error code that can be obtained by
ERR_get_error(3).

i2d_ECPrivateKey() returns the number of bytes successfully encoded or a negative value if an error occurs. The error code
can be obtained by ERR_get_error(3).

EC_KEY_get_enc_flags returns the value of the current encoding flags for the EC_KEY.

SEE ALSO

crypto(3), ec(3), EC_GROUP_new(3), EC_GROUP_copy(3), EC_POINT_new(3), EC_POINT_add(3),
EC_GFp_simple_method(3), d2i_ECPKParameters(3), d2i_ECPrivateKey(3)

1341

OpenSSL Manual

Name
d2i_PKCS8PrivateKey_bio, d2i_PKCS8PrivateKey_fp, i2d_PKCS8PrivateKey_bio, i2d_PKCS8PrivateKey_fp,
i2d_PKCS8PrivateKey_nid_bio and i2d_PKCS8PrivateKey_nid_fp — PKCS#8 format private key functions

Synopsis
#include <openssl/evp.h>

EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u);
EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

DESCRIPTION

The PKCS#8 functions encode and decode private keys in PKCS#8 format using both PKCS#5 v1.5 and PKCS#5 v2.0 password
based encryption algorithms.

Other than the use of DER as opposed to PEM these functions are identical to the corresponding PEM function as described
in the pem(3) manual page.

NOTES

Before using these functions OpenSSL_add_all_algorithms(3) should be called to initialize the internal algorithm lookup tables
otherwise errors about unknown algorithms will occur if an attempt is made to decrypt a private key.

These functions are currently the only way to store encrypted private keys using DER format.

Currently all the functions use BIOs or FILE pointers, there are no functions which work directly on memory: this can be
readily worked around by converting the buffers to memory BIOs, see BIO_s_mem(3) for details.

SEE ALSO

pem(3)

1342

OpenSSL Manual

Name
d2i_Private_key, d2i_AutoPrivateKey and i2d_PrivateKey — decode and encode functions for reading and saving EVP_PKEY
structures.

Synopsis
#include <openssl/evp.h>

EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **a, const unsigned char **pp,
 long length);
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp,
 long length);
int i2d_PrivateKey(EVP_PKEY *a, unsigned char **pp);

DESCRIPTION

d2i_PrivateKey() decodes a private key using algorithm type. It attempts to use any key specific format or PKCS#8 unencrypted
PrivateKeyInfo format. The type parameter should be a public key algorithm constant such as EVP_PKEY_RSA. An error
occurs if the decoded key does not match type.

d2i_AutoPrivateKey() is similar to d2i_PrivateKey() except it attempts to automatically detect the private key format.

i2d_PrivateKey() encodes key. It uses a key specific format or, if none is defined for that key type, PKCS#8 unencrypted
PrivateKeyInfo format.

These functions are similar to the d2i_X509() functions, and you should refer to that page for a detailed description (see
d2i_X509(3)).

NOTES

All these functions use DER format and unencrypted keys. Applications wishing to encrypt or decrypt private keys should use
other functions such as d2i_PKC8PrivateKey() instead.

If the *a is not NULL when calling d2i_PrivateKey() or d2i_AutoPrivateKey() (i.e. an existing structure is being reused) and
the key format is PKCS#8 then *a will be freed and replaced on a successful call.

RETURN VALUES

d2i_PrivateKey() and d2i_AutoPrivateKey() return a valid EVP_KEY structure or NULL if an error occurs. The error code
can be obtained by calling ERR_get_error(3).

i2d_PrivateKey() returns the number of bytes successfully encoded or a negative value if an error occurs. The error code can
be obtained by calling ERR_get_error(3).

SEE ALSO

crypto(3), d2i_PKCS8PrivateKey(3)

1343

OpenSSL Manual

Name
d2i_RSAPublicKey, i2d_RSAPublicKey, d2i_RSAPrivateKey, i2d_RSAPrivateKey, d2i_RSA_PUBKEY,
i2d_RSA_PUBKEY, i2d_Netscape_RSA and d2i_Netscape_RSA — RSA public and private key encoding functions.

Synopsis
#include <openssl/rsa.h>
#include <openssl/x509.h>

RSA * d2i_RSAPublicKey(RSA **a, const unsigned char **pp, long length);

int i2d_RSAPublicKey(RSA *a, unsigned char **pp);

RSA * d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length);

int i2d_RSA_PUBKEY(RSA *a, unsigned char **pp);

RSA * d2i_RSAPrivateKey(RSA **a, const unsigned char **pp, long length);

int i2d_RSAPrivateKey(RSA *a, unsigned char **pp);

int i2d_Netscape_RSA(RSA *a, unsigned char **pp, int (*cb)());

RSA * d2i_Netscape_RSA(RSA **a, const unsigned char **pp, long length, int (*cb)());

DESCRIPTION

d2i_RSAPublicKey() and i2d_RSAPublicKey() decode and encode a PKCS#1 RSAPublicKey structure.

d2i_RSA_PUBKEY() and i2d_RSA_PUBKEY() decode and encode an RSA public key using a SubjectPublicKeyInfo (cer-
tificate public key) structure.

d2i_RSAPrivateKey(), i2d_RSAPrivateKey() decode and encode a PKCS#1 RSAPrivateKey structure.

d2i_Netscape_RSA(), i2d_Netscape_RSA() decode and encode an RSA private key in NET format.

The usage of all of these functions is similar to the d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

NOTES

The RSA structure passed to the private key encoding functions should have all the PKCS#1 private key components present.

The data encoded by the private key functions is unencrypted and therefore offers no private key security.

The NET format functions are present to provide compatibility with certain very old software. This format has some severe
security weaknesses and should be avoided if possible.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1344

OpenSSL Manual

Name
d2i_X509_ALGOR and i2d_X509_ALGOR — AlgorithmIdentifier functions.

Synopsis
#include <openssl/x509.h>

X509_ALGOR *d2i_X509_ALGOR(X509_ALGOR **a, unsigned char **pp, long length);
int i2d_X509_ALGOR(X509_ALGOR *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode an X509_ALGOR structure which is equivalent to the AlgorithmIdentifier structure.

Othewise these behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1345

OpenSSL Manual

Name
d2i_X509_CRL, i2d_X509_CRL, d2i_X509_CRL_bio, d2i_509_CRL_fp, i2d_X509_CRL_bio and i2d_X509_CRL_fp —
PKCS#10 certificate request functions.

Synopsis
#include <openssl/x509.h>

X509_CRL *d2i_X509_CRL(X509_CRL **a, const unsigned char **pp, long length);
int i2d_X509_CRL(X509_CRL *a, unsigned char **pp);

X509_CRL *d2i_X509_CRL_bio(BIO *bp, X509_CRL **x);
X509_CRL *d2i_X509_CRL_fp(FILE *fp, X509_CRL **x);

int i2d_X509_CRL_bio(BIO *bp, X509_CRL *x);
int i2d_X509_CRL_fp(FILE *fp, X509_CRL *x);

DESCRIPTION

These functions decode and encode an X509 CRL (certificate revocation list).

Othewise the functions behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1346

OpenSSL Manual

Name
d2i_X509_NAME and i2d_X509_NAME — X509_NAME encoding functions

Synopsis
#include <openssl/x509.h>

X509_NAME *d2i_X509_NAME(X509_NAME **a, unsigned char **pp, long length);
int i2d_X509_NAME(X509_NAME *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode an X509_NAME structure which is the same as the Name type defined in RFC2459 (and
elsewhere) and used for example in certificate subject and issuer names.

Othewise the functions behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1347

OpenSSL Manual

Name
d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio and i2d_X509_fp — X509 encode and decode functions

Synopsis
#include <openssl/x509.h>

X509 *d2i_X509(X509 **px, const unsigned char **in, int len);
int i2d_X509(X509 *x, unsigned char **out);

X509 *d2i_X509_bio(BIO *bp, X509 **x);
X509 *d2i_X509_fp(FILE *fp, X509 **x);

int i2d_X509_bio(BIO *bp, X509 *x);
int i2d_X509_fp(FILE *fp, X509 *x);

DESCRIPTION

The X509 encode and decode routines encode and parse an X509 structure, which represents an X509 certificate.

d2i_X509() attempts to decode len bytes at *in. If successful a pointer to the X509 structure is returned. If an error occurred
then NULL is returned. If px is not NULL then the returned structure is written to *px. If *px is not NULL then it is assumed
that *px contains a valid X509 structure and an attempt is made to reuse it. This "reuse" capability is present for historical
compatibility but its use is strongly discouraged (see BUGS below, and the discussion in the RETURN VALUES section).

If the call is successful *in is incremented to the byte following the parsed data.

i2d_X509() encodes the structure pointed to by x into DER format. If out is not NULL is writes the DER encoded data to the
buffer at *out, and increments it to point after the data just written. If the return value is negative an error occurred, otherwise
it returns the length of the encoded data.

For OpenSSL 0.9.7 and later if *out is NULL memory will be allocated for a buffer and the encoded data written to it. In this
case *out is not incremented and it points to the start of the data just written.

d2i_X509_bio() is similar to d2i_X509() except it attempts to parse data from BIO bp.

d2i_X509_fp() is similar to d2i_X509() except it attempts to parse data from FILE pointer fp.

i2d_X509_bio() is similar to i2d_X509() except it writes the encoding of the structure x to BIO bp and it returns 1 for success
and 0 for failure.

i2d_X509_fp() is similar to i2d_X509() except it writes the encoding of the structure x to BIO bp and it returns 1 for success
and 0 for failure.

NOTES

The letters i and d in for example i2d_X509 stand for "internal" (that is an internal C structure) and "DER". So that i2d_X509
converts from internal to DER.

The functions can also understand BER forms.

The actual X509 structure passed to i2d_X509() must be a valid populated X509 structure it can not simply be fed with an
empty structure such as that returned by X509_new().

The encoded data is in binary form and may contain embedded zeroes. Therefore any FILE pointers or BIOs should be opened
in binary mode. Functions such as strlen() will not return the correct length of the encoded structure.

The ways that *in and *out are incremented after the operation can trap the unwary. See the WARNINGS section for some
common errors.

The reason for the auto increment behaviour is to reflect a typical usage of ASN1 functions: after one structure is encoded or
decoded another will processed after it.

1348

OpenSSL Manual

EXAMPLES

Allocate and encode the DER encoding of an X509 structure:

int len;
unsigned char *buf, *p;

len = i2d_X509(x, NULL);

buf = OPENSSL_malloc(len);

if (buf == NULL)
 /* error */

p = buf;

i2d_X509(x, &p);

If you are using OpenSSL 0.9.7 or later then this can be simplified to:

int len;
unsigned char *buf;

buf = NULL;

len = i2d_X509(x, &buf);

if (len < 0)
 /* error */

Attempt to decode a buffer:

X509 *x;

unsigned char *buf, *p;

int len;

/* Something to setup buf and len */

p = buf;

x = d2i_X509(NULL, &p, len);

if (x == NULL)
 /* Some error */

Alternative technique:

X509 *x;

unsigned char *buf, *p;

int len;

/* Something to setup buf and len */

p = buf;

x = NULL;

if(!d2i_X509(&x, &p, len))
 /* Some error */

WARNINGS

The use of temporary variable is mandatory. A common mistake is to attempt to use a buffer directly as follows:

int len;
unsigned char *buf;

1349

OpenSSL Manual

len = i2d_X509(x, NULL);

buf = OPENSSL_malloc(len);

if (buf == NULL)
 /* error */

i2d_X509(x, &buf);

/* Other stuff … */

OPENSSL_free(buf);

This code will result in buf apparently containing garbage because it was incremented after the call to point after the da-
ta just written. Also buf will no longer contain the pointer allocated by OPENSSL_malloc() and the subsequent call to
OPENSSL_free() may well crash.

The auto allocation feature (setting buf to NULL) only works on OpenSSL 0.9.7 and later. Attempts to use it on earlier versions
will typically cause a segmentation violation.

Another trap to avoid is misuse of the xp argument to d2i_X509():

X509 *x;

if (!d2i_X509(&x, &p, len))
 /* Some error */

This will probably crash somewhere in d2i_X509(). The reason for this is that the variable x is uninitialized and an attempt will
be made to interpret its (invalid) value as an X509 structure, typically causing a segmentation violation. If x is set to NULL
first then this will not happen.

BUGS

In some versions of OpenSSL the "reuse" behaviour of d2i_X509() when *px is valid is broken and some parts of the reused
structure may persist if they are not present in the new one. As a result the use of this "reuse" behaviour is strongly discouraged.

i2d_X509() will not return an error in many versions of OpenSSL, if mandatory fields are not initialized due to a programming
error then the encoded structure may contain invalid data or omit the fields entirely and will not be parsed by d2i_X509(). This
may be fixed in future so code should not assume that i2d_X509() will always succeed.

RETURN VALUES

d2i_X509(), d2i_X509_bio() and d2i_X509_fp() return a valid X509 structure or NULL if an error occurs. The error code that
can be obtained by ERR_get_error(3). If the "reuse" capability has been used with a valid X509 structure being passed in via
px then the object is not freed in the event of error but may be in a potentially invalid or inconsistent state.

i2d_X509() returns the number of bytes successfully encoded or a negative value if an error occurs. The error code can be
obtained by ERR_get_error(3).

i2d_X509_bio() and i2d_X509_fp() return 1 for success and 0 if an error occurs The error code can be obtained by ERR_get_er-
ror(3).

SEE ALSO

ERR_get_error(3)

HISTORY

d2i_X509, i2d_X509, d2i_X509_bio, d2i_X509_fp, i2d_X509_bio and i2d_X509_fp are available in all versions of SSLeay
and OpenSSL.

1350

OpenSSL Manual

Name
d2i_X509_REQ, i2d_X509_REQ, d2i_X509_REQ_bio, d2i_X509_REQ_fp, i2d_X509_REQ_bio and i2d_X509_REQ_fp —
PKCS#10 certificate request functions.

Synopsis
#include <openssl/x509.h>

X509_REQ *d2i_X509_REQ(X509_REQ **a, const unsigned char **pp, long length);
int i2d_X509_REQ(X509_REQ *a, unsigned char **pp);

X509_REQ *d2i_X509_REQ_bio(BIO *bp, X509_REQ **x);
X509_REQ *d2i_X509_REQ_fp(FILE *fp, X509_REQ **x);

int i2d_X509_REQ_bio(BIO *bp, X509_REQ *x);
int i2d_X509_REQ_fp(FILE *fp, X509_REQ *x);

DESCRIPTION

These functions decode and encode a PKCS#10 certificate request.

Othewise these behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1351

OpenSSL Manual

Name
d2i_X509_SIG and i2d_X509_SIG — DigestInfo functions.

Synopsis
#include <openssl/x509.h>

X509_SIG *d2i_X509_SIG(X509_SIG **a, unsigned char **pp, long length);
int i2d_X509_SIG(X509_SIG *a, unsigned char **pp);

DESCRIPTION

These functions decode and encode an X509_SIG structure which is equivalent to the DigestInfo structure defined in PKCS#1
and PKCS#7.

Othewise these behave in a similar way to d2i_X509() and i2d_X509() described in the d2i_X509(3) manual page.

SEE ALSO

d2i_X509(3)

HISTORY

TBA

1352

OpenSSL Manual

Name
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked, DES_set_key_unchecked,
DES_set_odd_parity, DES_is_weak_key, DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt,
DES_ncbc_encrypt, DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt, DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt,
DES_ede3_cbc_encrypt, DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt, DES_cbc_cksum,
DES_quad_cksum, DES_string_to_key, DES_string_to_2keys, DES_fcrypt, DES_crypt, DES_enc_read and DES_enc_write
— DES encryption

Synopsis
#include <openssl/des.h>

void DES_random_key(DES_cblock *ret);

int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
int DES_set_key_checked(const_DES_cblock *key,
 DES_key_schedule *schedule);
void DES_set_key_unchecked(const_DES_cblock *key,
 DES_key_schedule *schedule);

void DES_set_odd_parity(DES_cblock *key);
int DES_is_weak_key(const_DES_cblock *key);

void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output,
 DES_key_schedule *ks, int enc);
void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output,
 DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output,
 DES_key_schedule *ks1, DES_key_schedule *ks2,
 DES_key_schedule *ks3, int enc);

void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output,
 long length, DES_key_schedule *schedule, DES_cblock *ivec,
 int enc);
void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
 int numbits, long length, DES_key_schedule *schedule,
 DES_cblock *ivec, int enc);
void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
 int numbits, long length, DES_key_schedule *schedule,
 DES_cblock *ivec);
void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output,
 long length, DES_key_schedule *schedule, DES_cblock *ivec,
 int enc);
void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
 long length, DES_key_schedule *schedule, DES_cblock *ivec,
 int *num, int enc);
void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
 long length, DES_key_schedule *schedule, DES_cblock *ivec,
 int *num);

void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output,
 long length, DES_key_schedule *schedule, DES_cblock *ivec,
 const_DES_cblock *inw, const_DES_cblock *outw, int enc);

void DES_ede2_cbc_encrypt(const unsigned char *input,
 unsigned char *output, long length, DES_key_schedule *ks1,
 DES_key_schedule *ks2, DES_cblock *ivec, int enc);
void DES_ede2_cfb64_encrypt(const unsigned char *in,
 unsigned char *out, long length, DES_key_schedule *ks1,
 DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
void DES_ede2_ofb64_encrypt(const unsigned char *in,
 unsigned char *out, long length, DES_key_schedule *ks1,
 DES_key_schedule *ks2, DES_cblock *ivec, int *num);

void DES_ede3_cbc_encrypt(const unsigned char *input,
 unsigned char *output, long length, DES_key_schedule *ks1,
 DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
 int enc);

1353

OpenSSL Manual

void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
 long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
 DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2,
 int enc);
void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
 long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
 DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
 long length, DES_key_schedule *ks1,
 DES_key_schedule *ks2, DES_key_schedule *ks3,
 DES_cblock *ivec, int *num);

DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output,
 long length, DES_key_schedule *schedule,
 const_DES_cblock *ivec);
DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[],
 long length, int out_count, DES_cblock *seed);
void DES_string_to_key(const char *str, DES_cblock *key);
void DES_string_to_2keys(const char *str, DES_cblock *key1,
 DES_cblock *key2);

char *DES_fcrypt(const char *buf, const char *salt, char *ret);
char *DES_crypt(const char *buf, const char *salt);

int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
 DES_cblock *iv);
int DES_enc_write(int fd, const void *buf, int len,
 DES_key_schedule *sched, DES_cblock *iv);

DESCRIPTION

This library contains a fast implementation of the DES encryption algorithm.

There are two phases to the use of DES encryption. The first is the generation of a DES_key_schedule from a key, the second is
the actual encryption. A DES key is of type DES_cblock. This type is consists of 8 bytes with odd parity. The least significant
bit in each byte is the parity bit. The key schedule is an expanded form of the key; it is used to speed the encryption process.

DES_random_key() generates a random key. The PRNG must be seeded prior to using this function (see rand(3)). If the PRNG
could not generate a secure key, 0 is returned.

Before a DES key can be used, it must be converted into the architecture dependent DES_key_schedule via the
DES_set_key_checked() or DES_set_key_unchecked() function.

DES_set_key_checked() will check that the key passed is of odd parity and is not a week or semi-weak key. If the parity is
wrong, then -1 is returned. If the key is a weak key, then -2 is returned. If an error is returned, the key schedule is not generated.

DES_set_key() works like DES_set_key_checked() if the DES_check_key flag is non-zero, otherwise like
DES_set_key_unchecked(). These functions are available for compatibility; it is recommended to use a function that does not
depend on a global variable.

DES_set_odd_parity() sets the parity of the passed key to odd.

DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it is ok.

The following routines mostly operate on an input and output stream of DES_cblocks.

DES_ecb_encrypt() is the basic DES encryption routine that encrypts or decrypts a single 8-byte DES_cblock in electronic
code book (ECB) mode. It always transforms the input data, pointed to by input, into the output data, pointed to by the output
argument. If the encrypt argument is non-zero (DES_ENCRYPT), the input (cleartext) is encrypted in to the output (cipher-
text) using the key_schedule specified by the schedule argument, previously set via DES_set_key. If encrypt is zero (DES_DE-
CRYPT), the input (now ciphertext) is decrypted into the output (now cleartext). Input and output may overlap. DES_ecb_en-
crypt() does not return a value.

DES_ecb3_encrypt() encrypts/decrypts the input block by using three-key Triple-DES encryption in ECB mode. This involves
encrypting the input with ks1, decrypting with the key schedule ks2, and then encrypting with ks3. This routine greatly reduces

1354

OpenSSL Manual

the chances of brute force breaking of DES and has the advantage of if ks1, ks2 and ks3 are the same, it is equivalent to just
encryption using ECB mode and ks1 as the key.

The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES encryption by using ks1 for the final encryption.

DES_ncbc_encrypt() encrypts/decrypts using the cipher-block-chaining (CBC) mode of DES. If the encrypt argument is non-
zero, the routine cipher-block-chain encrypts the cleartext data pointed to by the input argument into the ciphertext pointed to
by the output argument, using the key schedule provided by the schedule argument, and initialization vector provided by the
ivec argument. If the length argument is not an integral multiple of eight bytes, the last block is copied to a temporary area and
zero filled. The output is always an integral multiple of eight bytes.

DES_xcbc_encrypt() is RSA's DESX mode of DES. It uses inw and outw to 'whiten' the encryption. inw and outw are secret
(unlike the iv) and are as such, part of the key. So the key is sort of 24 bytes. This is much better than CBC DES.

DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with three keys. This means that each DES operation
inside the CBC mode is an C=E(ks3,D(ks2,E(ks1,M))). This mode is used by SSL.

The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by reusing ks1 for the final encryption. C=E(k-
s1,D(ks2,E(ks1,M))). This form of Triple-DES is used by the RSAREF library.

DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block chaining mode used by Kerberos v4. Its parameters
are the same as DES_ncbc_encrypt().

DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode. This method takes an array of characters as input and outputs
and array of characters. It does not require any padding to 8 character groups. Note: the ivec variable is changed and the new
changed value needs to be passed to the next call to this function. Since this function runs a complete DES ECB encryption
per numbits, this function is only suggested for use when sending small numbers of characters.

DES_cfb64_encrypt() implements CFB mode of DES with 64bit feedback. Why is this useful you ask? Because this routine
will allow you to encrypt an arbitrary number of bytes, no 8 byte padding. Each call to this routine will encrypt the input bytes
to output and then update ivec and num. num contains 'how far' we are though ivec. If this does not make much sense, read
more about cfb mode of DES :-).

DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as DES_cfb64_encrypt() except that Triple-DES is
used.

DES_ofb_encrypt() encrypts using output feedback mode. This method takes an array of characters as input and outputs and
array of characters. It does not require any padding to 8 character groups. Note: the ivec variable is changed and the new
changed value needs to be passed to the next call to this function. Since this function runs a complete DES ECB encryption
per numbits, this function is only suggested for use when sending small numbers of characters.

DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output Feed Back mode.

DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as DES_ofb64_encrypt(), using Triple-DES.

The following functions are included in the DES library for compatibility with the MIT Kerberos library.

DES_cbc_cksum() produces an 8 byte checksum based on the input stream (via CBC encryption). The last 4 bytes of the
checksum are returned and the complete 8 bytes are placed in output. This function is used by Kerberos v4. Other applications
should use EVP_DigestInit(3) etc. instead.

DES_quad_cksum() is a Kerberos v4 function. It returns a 4 byte checksum from the input bytes. The algorithm can be iterated
over the input, depending on out_count, 1, 2, 3 or 4 times. If output is non-NULL, the 8 bytes generated by each pass are
written into output.

The following are DES-based transformations:

DES_fcrypt() is a fast version of the Unix crypt(3) function. This version takes only a small amount of space relative to other
fast crypt() implementations. This is different to the normal crypt in that the third parameter is the buffer that the return value
is written into. It needs to be at least 14 bytes long. This function is thread safe, unlike the normal crypt.

1355

OpenSSL Manual

DES_crypt() is a faster replacement for the normal system crypt(). This function calls DES_fcrypt() with a static array passed
as the third parameter. This emulates the normal non-thread safe semantics of crypt(3).

DES_enc_write() writes len bytes to file descriptor fd from buffer buf. The data is encrypted via pcbc_encrypt (default) using
sched for the key and iv as a starting vector. The actual data send down fd consists of 4 bytes (in network byte order) containing
the length of the following encrypted data. The encrypted data then follows, padded with random data out to a multiple of
8 bytes.

DES_enc_read() is used to read len bytes from file descriptor fd into buffer buf. The data being read from fd is assumed to have
come from DES_enc_write() and is decrypted using sched for the key schedule and iv for the initial vector.

Warning: The data format used by DES_enc_write() and DES_enc_read() has a cryptographic weakness: When asked to write
more than MAXWRITE bytes, DES_enc_write() will split the data into several chunks that are all encrypted using the same IV.
So don't use these functions unless you are sure you know what you do (in which case you might not want to use them anyway).
They cannot handle non-blocking sockets. DES_enc_read() uses an internal state and thus cannot be used on multiple files.

DES_rw_mode is used to specify the encryption mode to use with DES_enc_read() and DES_end_write(). If set to
DES_PCBC_MODE (the default), DES_pcbc_encrypt is used. If set to DES_CBC_MODE DES_cbc_encrypt is used.

NOTES

Single-key DES is insecure due to its short key size. ECB mode is not suitable for most applications; see des_modes(7).

The evp(3) library provides higher-level encryption functions.

BUGS

DES_3cbc_encrypt() is flawed and must not be used in applications.

DES_cbc_encrypt() does not modify ivec; use DES_ncbc_encrypt() instead.

DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits. What this means is that if you set numbits to 12, and
length to 2, the first 12 bits will come from the 1st input byte and the low half of the second input byte. The second 12 bits
will have the low 8 bits taken from the 3rd input byte and the top 4 bits taken from the 4th input byte. The same holds for
output. This function has been implemented this way because most people will be using a multiple of 8 and because once you
get into pulling bytes input bytes apart things get ugly!

DES_string_to_key() is available for backward compatibility with the MIT library. New applications should use a cryptograph-
ic hash function. The same applies for DES_string_to_2key().

CONFORMING TO

ANSI X3.106

The des library was written to be source code compatible with the MIT Kerberos library.

SEE ALSO

crypt(3), des_modes(7), evp(3), rand(3)

HISTORY

In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid clashes with older versions of libdes. Compatibility des_
functions are provided for a short while, as well as crypt(). Declarations for these are in <openssl/des_old.h>. There is no DES_
variant for des_random_seed(). This will happen to other functions as well if they are deemed redundant (des_random_seed()
just calls RAND_seed() and is present for backward compatibility only), buggy or already scheduled for removal.

des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(), des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
des_quad_cksum(), des_random_key() and des_string_to_key() are available in the MIT Kerberos library;
des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key() are available in newer versions of that library.

1356

OpenSSL Manual

des_set_key_checked() and des_set_key_unchecked() were added in OpenSSL 0.9.5.

des_generate_random_block(), des_init_random_number_generator(), des_new_random_key(),
des_set_random_generator_seed() and des_set_sequence_number() and des_rand_data() are used in newer versions of
Kerberos but are not implemented here.

des_random_key() generated cryptographically weak random data in SSLeay and in OpenSSL prior version 0.9.5, as well as
in the original MIT library.

AUTHOR

Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project (http://www.openssl.org).

1357

OpenSSL Manual

Name
des_modes — the variants of DES and other crypto algorithms of OpenSSL

DESCRIPTION

Several crypto algorithms for OpenSSL can be used in a number of modes. Those are used for using block ciphers in a way
similar to stream ciphers, among other things.

OVERVIEW

Electronic Codebook Mode (ECB)

Normally, this is found as the function algorithm_ecb_encrypt().

• 64 bits are enciphered at a time.

• The order of the blocks can be rearranged without detection.

• The same plaintext block always produces the same ciphertext block (for the same key) making it vulnerable to a 'dictionary
attack'.

• An error will only affect one ciphertext block.

Cipher Block Chaining Mode (CBC)

Normally, this is found as the function algorithm_cbc_encrypt(). Be aware that des_cbc_encrypt() is not really DES CBC (it
does not update the IV); use des_ncbc_encrypt() instead.

• a multiple of 64 bits are enciphered at a time.

• The CBC mode produces the same ciphertext whenever the same plaintext is encrypted using the same key and starting
variable.

• The chaining operation makes the ciphertext blocks dependent on the current and all preceding plaintext blocks and therefore
blocks can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• An error will affect the current and the following ciphertext blocks.

Cipher Feedback Mode (CFB)

Normally, this is found as the function algorithm_cfb_encrypt().

• a number of bits (j) <= 64 are enciphered at a time.

• The CFB mode produces the same ciphertext whenever the same plaintext is encrypted using the same key and starting
variable.

• The chaining operation makes the ciphertext variables dependent on the current and all preceding variables and therefore j-
bit variables are chained together and can not be rearranged.

• The use of different starting variables prevents the same plaintext enciphering to the same ciphertext.

• The strength of the CFB mode depends on the size of k (maximal if j == k). In my implementation this is always the case.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit of plaintext and thus
cause greater processing overheads.

• Only multiples of j bits can be enciphered.

1358

OpenSSL Manual

• An error will affect the current and the following ciphertext variables.

Output Feedback Mode (OFB)

Normally, this is found as the function algorithm_ofb_encrypt().

• a number of bits (j) <= 64 are enciphered at a time.

• The OFB mode produces the same ciphertext whenever the same plaintext enciphered using the same key and starting
variable. More over, in the OFB mode the same key stream is produced when the same key and start variable are used.
Consequently, for security reasons a specific start variable should be used only once for a given key.

• The absence of chaining makes the OFB more vulnerable to specific attacks.

• The use of different start variables values prevents the same plaintext enciphering to the same ciphertext, by producing
different key streams.

• Selection of a small value for j will require more cycles through the encipherment algorithm per unit of plaintext and thus
cause greater processing overheads.

• Only multiples of j bits can be enciphered.

• OFB mode of operation does not extend ciphertext errors in the resultant plaintext output. Every bit error in the ciphertext
causes only one bit to be in error in the deciphered plaintext.

• OFB mode is not self-synchronizing. If the two operation of encipherment and decipherment get out of synchronism, the
system needs to be re-initialized.

• Each re-initialization should use a value of the start variable different from the start variable values used before with the
same key. The reason for this is that an identical bit stream would be produced each time from the same parameters. This
would be susceptible to a 'known plaintext' attack.

Triple ECB Mode

Normally, this is found as the function algorithm_ecb3_encrypt().

• Encrypt with key1, decrypt with key2 and encrypt with key3 again.

• As for ECB encryption but increases the key length to 168 bits. There are theoretic attacks that can be used that make the
effective key length 112 bits, but this attack also requires 2^56 blocks of memory, not very likely, even for the NSA.

• If both keys are the same it is equivalent to encrypting once with just one key.

• If the first and last key are the same, the key length is 112 bits. There are attacks that could reduce the effective key strength
to only slightly more than 56 bits, but these require a lot of memory.

• If all 3 keys are the same, this is effectively the same as normal ecb mode.

Triple CBC Mode

Normally, this is found as the function algorithm_ede3_cbc_encrypt().

• Encrypt with key1, decrypt with key2 and then encrypt with key3.

• As for CBC encryption but increases the key length to 168 bits with the same restrictions as for triple ecb mode.

NOTES

This text was been written in large parts by Eric Young in his original documentation for SSLeay, the predecessor of OpenSSL.
In turn, he attributed it to:

AS 2805.5.2

1359

OpenSSL Manual

Australian Standard
Electronic funds transfer - Requirements for interfaces,
Part 5.2: Modes of operation for an n-bit block cipher algorithm
Appendix A

SEE ALSO

blowfish(3), des(3), idea(3), rc2(3)

1360

OpenSSL Manual

Name
dh — Diffie-Hellman key agreement

Synopsis
#include <openssl/dh.h>
#include <openssl/engine.h>

DH * DH_new(void);
void DH_free(DH *dh);

int DH_size(const DH *dh);

DH * DH_generate_parameters(int prime_len, int generator,
 void (*callback)(int, int, void *), void *cb_arg);
int DH_check(const DH *dh, int *codes);

int DH_generate_key(DH *dh);
int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

void DH_set_default_method(const DH_METHOD *meth);
const DH_METHOD *DH_get_default_method(void);
int DH_set_method(DH *dh, const DH_METHOD *meth);
DH *DH_new_method(ENGINE *engine);
const DH_METHOD *DH_OpenSSL(void);

int DH_get_ex_new_index(long argl, char *argp, int (*new_func)(),
 int (*dup_func)(), void (*free_func)());
int DH_set_ex_data(DH *d, int idx, char *arg);
char *DH_get_ex_data(DH *d, int idx);

DH * d2i_DHparams(DH **a, unsigned char **pp, long length);
int i2d_DHparams(const DH *a, unsigned char **pp);

int DHparams_print_fp(FILE *fp, const DH *x);
int DHparams_print(BIO *bp, const DH *x);

DESCRIPTION

These functions implement the Diffie-Hellman key agreement protocol. The generation of shared DH parameters is described
in DH_generate_parameters(3); DH_generate_key(3) describes how to perform a key agreement.

The DH structure consists of several BIGNUM components.

struct
 {
 BIGNUM *p; // prime number (shared)
 BIGNUM *g; // generator of Z_p (shared)
 BIGNUM *priv_key; // private DH value x
 BIGNUM *pub_key; // public DH value g^x
 // ...
 };
DH

Note that DH keys may use non-standard DH_METHOD implementations, either directly or by the use of ENGINE modules.
In some cases (eg. an ENGINE providing support for hardware-embedded keys), these BIGNUM values will not be used by
the implementation or may be used for alternative data storage. For this reason, applications should generally avoid using DH
structure elements directly and instead use API functions to query or modify keys.

SEE ALSO

dhparam(1), bn(3), dsa(3), err(3), rand(3), rsa(3), engine(3), DH_set_method(3), DH_new(3), DH_get_ex_new_index(3),
DH_generate_parameters(3), DH_compute_key(3), d2i_DHparams(3), RSA_print(3)

1361

OpenSSL Manual

Name
DH_generate_key and DH_compute_key — perform Diffie-Hellman key exchange

Synopsis
#include <openssl/dh.h>

int DH_generate_key(DH *dh);

int DH_compute_key(unsigned char *key, BIGNUM *pub_key, DH *dh);

DESCRIPTION

DH_generate_key() performs the first step of a Diffie-Hellman key exchange by generating private and public DH values. By
calling DH_compute_key(), these are combined with the other party's public value to compute the shared key.

DH_generate_key() expects dh to contain the shared parameters dh->p and dh->g. It generates a random private DH value
unless dh->priv_key is already set, and computes the corresponding public value dh->pub_key, which can then be published.

DH_compute_key() computes the shared secret from the private DH value in dh and the other party's public value in pub_key
and stores it in key. key must point to DH_size(dh) bytes of memory.

RETURN VALUES

DH_generate_key() returns 1 on success, 0 otherwise.

DH_compute_key() returns the size of the shared secret on success, -1 on error.

The error codes can be obtained by ERR_get_error(3).

SEE ALSO

dh(3), ERR_get_error(3), rand(3), DH_size(3)

HISTORY

DH_generate_key() and DH_compute_key() are available in all versions of SSLeay and OpenSSL.

1362

OpenSSL Manual

Name
DH_generate_parameters and DH_check — generate and check Diffie-Hellman parameters

Synopsis
#include <openssl/dh.h>

DH *DH_generate_parameters(int prime_len, int generator,
 void (*callback)(int, int, void *), void *cb_arg);

int DH_check(DH *dh, int *codes);

DESCRIPTION

DH_generate_parameters() generates Diffie-Hellman parameters that can be shared among a group of users, and returns them
in a newly allocated DH structure. The pseudo-random number generator must be seeded prior to calling DH_generate_para-
meters().

prime_len is the length in bits of the safe prime to be generated. generator is a small number > 1, typically 2 or 5.

A callback function may be used to provide feedback about the progress of the key generation. If callback is not NULL, it
will be called as described in BN_generate_prime(3) while a random prime number is generated, and when a prime has been
found, callback(3, 0, cb_arg) is called.

DH_check() validates Diffie-Hellman parameters. It checks that p is a safe prime, and that g is a suitable generator. In the case
of an error, the bit flags DH_CHECK_P_NOT_SAFE_PRIME or DH_NOT_SUITABLE_GENERATOR are set in *codes.
DH_UNABLE_TO_CHECK_GENERATOR is set if the generator cannot be checked, i.e. it does not equal 2 or 5.

RETURN VALUES

DH_generate_parameters() returns a pointer to the DH structure, or NULL if the parameter generation fails. The error codes
can be obtained by ERR_get_error(3).

DH_check() returns 1 if the check could be performed, 0 otherwise.

NOTES

DH_generate_parameters() may run for several hours before finding a suitable prime.

The parameters generated by DH_generate_parameters() are not to be used in signature schemes.

BUGS

If generator is not 2 or 5, dh->g=generator is not a usable generator.

SEE ALSO

dh(3), ERR_get_error(3), rand(3), DH_free(3)

HISTORY

DH_check() is available in all versions of SSLeay and OpenSSL. The cb_arg argument to DH_generate_parameters() was
added in SSLeay 0.9.0.

In versions before OpenSSL 0.9.5, DH_CHECK_P_NOT_STRONG_PRIME is used instead of
DH_CHECK_P_NOT_SAFE_PRIME.

1363

OpenSSL Manual

Name
DH_get_ex_new_index, DH_set_ex_data and DH_get_ex_data — add application specific data to DH structures

Synopsis
#include <openssl/dh.h>

int DH_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int DH_set_ex_data(DH *d, int idx, void *arg);

char *DH_get_ex_data(DH *d, int idx);

DESCRIPTION

These functions handle application specific data in DH structures. Their usage is identical to that of RSA_get_ex_new_index(),
RSA_set_ex_data() and RSA_get_ex_data() as described in RSA_get_ex_new_index(3).

SEE ALSO

RSA_get_ex_new_index(3), dh(3)

HISTORY

DH_get_ex_new_index(), DH_set_ex_data() and DH_get_ex_data() are available since OpenSSL 0.9.5.

1364

OpenSSL Manual

Name
DH_new and DH_free — allocate and free DH objects

Synopsis
#include <openssl/dh.h>

DH* DH_new(void);

void DH_free(DH *dh);

DESCRIPTION

DH_new() allocates and initializes a DH structure.

DH_free() frees the DH structure and its components. The values are erased before the memory is returned to the system.

RETURN VALUES

If the allocation fails, DH_new() returns NULL and sets an error code that can be obtained by ERR_get_error(3). Otherwise
it returns a pointer to the newly allocated structure.

DH_free() returns no value.

SEE ALSO

dh(3), ERR_get_error(3), DH_generate_parameters(3), DH_generate_key(3)

HISTORY

DH_new() and DH_free() are available in all versions of SSLeay and OpenSSL.

1365

OpenSSL Manual

Name
DH_set_default_method, DH_get_default_method, DH_set_method, DH_new_method and DH_OpenSSL — select DH
method

Synopsis
#include <openssl/dh.h>
#include <openssl/engine.h>

void DH_set_default_method(const DH_METHOD *meth);

const DH_METHOD *DH_get_default_method(void);

int DH_set_method(DH *dh, const DH_METHOD *meth);

DH *DH_new_method(ENGINE *engine);

const DH_METHOD *DH_OpenSSL(void);

DESCRIPTION

A DH_METHOD specifies the functions that OpenSSL uses for Diffie-Hellman operations. By modifying the method, al-
ternative implementations such as hardware accelerators may be used. IMPORTANT: See the NOTES section for important
information about how these DH API functions are affected by the use of ENGINE API calls.

Initially, the default DH_METHOD is the OpenSSL internal implementation, as returned by DH_OpenSSL().

DH_set_default_method() makes meth the default method for all DH structures created later. NB: This is true only whilst no
ENGINE has been set as a default for DH, so this function is no longer recommended.

DH_get_default_method() returns a pointer to the current default DH_METHOD. However, the meaningfulness of this result
is dependent on whether the ENGINE API is being used, so this function is no longer recommended.

DH_set_method() selects meth to perform all operations using the key dh. This will replace the DH_METHOD used by the
DH key and if the previous method was supplied by an ENGINE, the handle to that ENGINE will be released during the
change. It is possible to have DH keys that only work with certain DH_METHOD implementations (eg. from an ENGINE
module that supports embedded hardware-protected keys), and in such cases attempting to change the DH_METHOD for the
key can have unexpected results.

DH_new_method() allocates and initializes a DH structure so that engine will be used for the DH operations. If engine is
NULL, the default ENGINE for DH operations is used, and if no default ENGINE is set, the DH_METHOD controlled by
DH_set_default_method() is used.

THE DH_METHOD STRUCTURE
typedef struct dh_meth_st
{
 /* name of the implementation */
 const char *name;

/* generate private and public DH values for key agreement */
 int (*generate_key)(DH *dh);

/* compute shared secret */
 int (*compute_key)(unsigned char *key, BIGNUM *pub_key, DH *dh);

/* compute r = a ^ p mod m (May be NULL for some implementations) */
 int (*bn_mod_exp)(DH *dh, BIGNUM *r, BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx,
 BN_MONT_CTX *m_ctx);

/* called at DH_new */
 int (*init)(DH *dh);

/* called at DH_free */

1366

OpenSSL Manual

 int (*finish)(DH *dh);

int flags;

char *app_data; /* ?? */

} DH_METHOD;

RETURN VALUES

DH_OpenSSL() and DH_get_default_method() return pointers to the respective DH_METHODs.

DH_set_default_method() returns no value.

DH_set_method() returns non-zero if the provided meth was successfully set as the method for dh (including unloading the
ENGINE handle if the previous method was supplied by an ENGINE).

DH_new_method() returns NULL and sets an error code that can be obtained by ERR_get_error(3) if the allocation fails.
Otherwise it returns a pointer to the newly allocated structure.

NOTES

As of version 0.9.7, DH_METHOD implementations are grouped together with other algorithmic APIs (eg. RSA_METHOD,
EVP_CIPHER, etc) in ENGINE modules. If a default ENGINE is specified for DH functionality using an ENGINE API
function, that will override any DH defaults set using the DH API (ie. DH_set_default_method()). For this reason, the ENGINE
API is the recommended way to control default implementations for use in DH and other cryptographic algorithms.

SEE ALSO

dh(3), DH_new(3)

HISTORY

DH_set_default_method(), DH_get_default_method(), DH_set_method(), DH_new_method() and DH_OpenSSL() were
added in OpenSSL 0.9.4.

DH_set_default_openssl_method() and DH_get_default_openssl_method() replaced DH_set_default_method() and
DH_get_default_method() respectively, and DH_set_method() and DH_new_method() were altered to use ENGINEs rather
than DH_METHODs during development of the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults in the
ENGINE API was restructured so that this change was reversed, and behaviour of the other functions resembled more closely
the previous behaviour. The behaviour of defaults in the ENGINE API now transparently overrides the behaviour of defaults
in the DH API without requiring changing these function prototypes.

1367

OpenSSL Manual

Name
DH_size — get Diffie-Hellman prime size

Synopsis
#include <openssl/dh.h>

int DH_size(DH *dh);

DESCRIPTION

This function returns the Diffie-Hellman size in bytes. It can be used to determine how much memory must be allocated for
the shared secret computed by DH_compute_key().

dh->p must not be NULL.

RETURN VALUE

The size in bytes.

SEE ALSO

dh(3), DH_generate_key(3)

HISTORY

DH_size() is available in all versions of SSLeay and OpenSSL.

1368

OpenSSL Manual

Name
dsa — Digital Signature Algorithm

Synopsis
#include <openssl/dsa.h>
#include <openssl/engine.h>

DSA * DSA_new(void);
void DSA_free(DSA *dsa);

int DSA_size(const DSA *dsa);

DSA * DSA_generate_parameters(int bits, unsigned char *seed,
 int seed_len, int *counter_ret, unsigned long *h_ret,
 void (*callback)(int, int, void *), void *cb_arg);

DH * DSA_dup_DH(const DSA *r);

int DSA_generate_key(DSA *dsa);

int DSA_sign(int dummy, const unsigned char *dgst, int len,
 unsigned char *sigret, unsigned int *siglen, DSA *dsa);
int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
 BIGNUM **rp);
int DSA_verify(int dummy, const unsigned char *dgst, int len,
 const unsigned char *sigbuf, int siglen, DSA *dsa);

void DSA_set_default_method(const DSA_METHOD *meth);
const DSA_METHOD *DSA_get_default_method(void);
int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);
DSA *DSA_new_method(ENGINE *engine);
const DSA_METHOD *DSA_OpenSSL(void);

int DSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
 int (*dup_func)(), void (*free_func)());
int DSA_set_ex_data(DSA *d, int idx, char *arg);
char *DSA_get_ex_data(DSA *d, int idx);

DSA_SIG *DSA_SIG_new(void);
void DSA_SIG_free(DSA_SIG *a);
int i2d_DSA_SIG(const DSA_SIG *a, unsigned char **pp);
DSA_SIG *d2i_DSA_SIG(DSA_SIG **v, unsigned char **pp, long length);

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
int DSA_do_verify(const unsigned char *dgst, int dgst_len,
 DSA_SIG *sig, DSA *dsa);

DSA * d2i_DSAPublicKey(DSA **a, unsigned char **pp, long length);
DSA * d2i_DSAPrivateKey(DSA **a, unsigned char **pp, long length);
DSA * d2i_DSAparams(DSA **a, unsigned char **pp, long length);
int i2d_DSAPublicKey(const DSA *a, unsigned char **pp);
int i2d_DSAPrivateKey(const DSA *a, unsigned char **pp);
int i2d_DSAparams(const DSA *a,unsigned char **pp);

int DSAparams_print(BIO *bp, const DSA *x);
int DSAparams_print_fp(FILE *fp, const DSA *x);
int DSA_print(BIO *bp, const DSA *x, int off);
int DSA_print_fp(FILE *bp, const DSA *x, int off);

DESCRIPTION

These functions implement the Digital Signature Algorithm (DSA). The generation of shared DSA parameters is described
in DSA_generate_parameters(3); DSA_generate_key(3) describes how to generate a signature key. Signature generation and
verification are described in DSA_sign(3).

The DSA structure consists of several BIGNUM components.

struct
 {

1369

OpenSSL Manual

 BIGNUM *p; // prime number (public)
 BIGNUM *q; // 160-bit subprime, q | p-1 (public)
 BIGNUM *g; // generator of subgroup (public)
 BIGNUM *priv_key; // private key x
 BIGNUM *pub_key; // public key y = g^x
 // ...
 }
DSA;

In public keys, priv_key is NULL.

Note that DSA keys may use non-standard DSA_METHOD implementations, either directly or by the use of ENGINE mod-
ules. In some cases (eg. an ENGINE providing support for hardware-embedded keys), these BIGNUM values will not be used
by the implementation or may be used for alternative data storage. For this reason, applications should generally avoid using
DSA structure elements directly and instead use API functions to query or modify keys.

CONFORMING TO

US Federal Information Processing Standard FIPS 186 (Digital Signature Standard, DSS), ANSI X9.30

SEE ALSO

bn(3), dh(3), err(3), rand(3), rsa(3), sha(3), engine(3), DSA_new(3), DSA_size(3), DSA_generate_parameters(3),
DSA_dup_DH(3), DSA_generate_key(3), DSA_sign(3), DSA_set_method(3), DSA_get_ex_new_index(3), RSA_print(3)

1370

OpenSSL Manual

Name
DSA_do_sign and DSA_do_verify — raw DSA signature operations

Synopsis
#include <openssl/dsa.h>

DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);

int DSA_do_verify(const unsigned char *dgst, int dgst_len,
 DSA_SIG *sig, DSA *dsa);

DESCRIPTION

DSA_do_sign() computes a digital signature on the len byte message digest dgst using the private key dsa and returns it in
a newly allocated DSA_SIG structure.

DSA_sign_setup(3) may be used to precompute part of the signing operation in case signature generation is time-critical.

DSA_do_verify() verifies that the signature sig matches a given message digest dgst of size len. dsa is the signer's public key.

RETURN VALUES

DSA_do_sign() returns the signature, NULL on error. DSA_do_verify() returns 1 for a valid signature, 0 for an incorrect
signature and -1 on error. The error codes can be obtained by ERR_get_error(3).

SEE ALSO

dsa(3), ERR_get_error(3), rand(3), DSA_SIG_new(3), DSA_sign(3)

HISTORY

DSA_do_sign() and DSA_do_verify() were added in OpenSSL 0.9.3.

1371

OpenSSL Manual

Name
DSA_dup_DH — create a DH structure out of DSA structure

Synopsis
#include <openssl/dsa.h>

DH * DSA_dup_DH(const DSA *r);

DESCRIPTION

DSA_dup_DH() duplicates DSA parameters/keys as DH parameters/keys. q is lost during that conversion, but the resulting
DH parameters contain its length.

RETURN VALUE

DSA_dup_DH() returns the new DH structure, and NULL on error. The error codes can be obtained by ERR_get_error(3).

NOTE

Be careful to avoid small subgroup attacks when using this.

SEE ALSO

dh(3), dsa(3), ERR_get_error(3)

HISTORY

DSA_dup_DH() was added in OpenSSL 0.9.4.

1372

OpenSSL Manual

Name
DSA_generate_key — generate DSA key pair

Synopsis
#include <openssl/dsa.h>

int DSA_generate_key(DSA *a);

DESCRIPTION

DSA_generate_key() expects a to contain DSA parameters. It generates a new key pair and stores it in a->pub_key and
a->priv_key.

The PRNG must be seeded prior to calling DSA_generate_key().

RETURN VALUE

DSA_generate_key() returns 1 on success, 0 otherwise. The error codes can be obtained by ERR_get_error(3).

SEE ALSO

dsa(3), ERR_get_error(3), rand(3), DSA_generate_parameters(3)

HISTORY

DSA_generate_key() is available since SSLeay 0.8.

1373

OpenSSL Manual

Name
DSA_generate_parameters — generate DSA parameters

Synopsis
#include <openssl/dsa.h>

DSA *DSA_generate_parameters(int bits, unsigned char *seed,
 int seed_len, int *counter_ret, unsigned long *h_ret,
 void (*callback)(int, int, void *), void *cb_arg);

DESCRIPTION

DSA_generate_parameters() generates primes p and q and a generator g for use in the DSA.

bits is the length of the prime to be generated; the DSS allows a maximum of 1024 bits.

If seed is NULL or seed_len < 20, the primes will be generated at random. Otherwise, the seed is used to generate them. If
the given seed does not yield a prime q, a new random seed is chosen.

DSA_generate_parameters() places the iteration count in *counter_ret and a counter used for finding a generator in *h_ret,
unless these are NULL.

A callback function may be used to provide feedback about the progress of the key generation. If callback is not NULL, it
will be called as follows:

• When a candidate for q is generated, callback(0, m++, cb_arg) is called (m is 0 for the first candidate).

• When a candidate for q has passed a test by trial division, callback(1, -1, cb_arg) is called. While a candidate for q is tested
by Miller-Rabin primality tests, callback(1, i, cb_arg) is called in the outer loop (once for each witness that confirms that
the candidate may be prime); i is the loop counter (starting at 0).

• When a prime q has been found, callback(2, 0, cb_arg) and callback(3, 0, cb_arg) are called.

• Before a candidate for p (other than the first) is generated and tested, callback(0, counter, cb_arg) is called.

• When a candidate for p has passed the test by trial division, callback(1, -1, cb_arg) is called. While it is tested by the Miller-
Rabin primality test, callback(1, i, cb_arg) is called in the outer loop (once for each witness that confirms that the candidate
may be prime). i is the loop counter (starting at 0).

• When p has been found, callback(2, 1, cb_arg) is called.

• When the generator has been found, callback(3, 1, cb_arg) is called.

RETURN VALUE

DSA_generate_parameters() returns a pointer to the DSA structure, or NULL if the parameter generation fails. The error codes
can be obtained by ERR_get_error(3).

BUGS

Seed lengths > 20 are not supported.

SEE ALSO

dsa(3), ERR_get_error(3), rand(3), DSA_free(3)

HISTORY

DSA_generate_parameters() appeared in SSLeay 0.8. The cb_arg argument was added in SSLeay 0.9.0. In versions up to
OpenSSL 0.9.4, callback(1, …) was called in the inner loop of the Miller-Rabin test whenever it reached the squaring step (the

1374

OpenSSL Manual

parameters to callback did not reveal how many witnesses had been tested); since OpenSSL 0.9.5, callback(1, …) is called
as in BN_is_prime(3), i.e. once for each witness. =cut

1375

OpenSSL Manual

Name
DSA_get_ex_new_index, DSA_set_ex_data and DSA_get_ex_data — add application specific data to DSA structures

Synopsis
#include <openssl/dsa.h>

int DSA_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int DSA_set_ex_data(DSA *d, int idx, void *arg);

char *DSA_get_ex_data(DSA *d, int idx);

DESCRIPTION

These functions handle application specific data in DSA structures. Their usage is identical to that of RSA_get_ex_new_index(),
RSA_set_ex_data() and RSA_get_ex_data() as described in RSA_get_ex_new_index(3).

SEE ALSO

RSA_get_ex_new_index(3), dsa(3)

HISTORY

DSA_get_ex_new_index(), DSA_set_ex_data() and DSA_get_ex_data() are available since OpenSSL 0.9.5.

1376

OpenSSL Manual

Name
DSA_new and DSA_free — allocate and free DSA objects

Synopsis
#include <openssl/dsa.h>

DSA* DSA_new(void);

void DSA_free(DSA *dsa);

DESCRIPTION

DSA_new() allocates and initializes a DSA structure. It is equivalent to calling DSA_new_method(NULL).

DSA_free() frees the DSA structure and its components. The values are erased before the memory is returned to the system.

RETURN VALUES

If the allocation fails, DSA_new() returns NULL and sets an error code that can be obtained by ERR_get_error(3). Otherwise
it returns a pointer to the newly allocated structure.

DSA_free() returns no value.

SEE ALSO

dsa(3), ERR_get_error(3), DSA_generate_parameters(3), DSA_generate_key(3)

HISTORY

DSA_new() and DSA_free() are available in all versions of SSLeay and OpenSSL.

1377

OpenSSL Manual

Name
DSA_set_default_method, DSA_get_default_method, DSA_set_method, DSA_new_method and DSA_OpenSSL — select
DSA method

Synopsis
#include <openssl/dsa.h>
#include <openssl/engine.h>

void DSA_set_default_method(const DSA_METHOD *meth);

const DSA_METHOD *DSA_get_default_method(void);

int DSA_set_method(DSA *dsa, const DSA_METHOD *meth);

DSA *DSA_new_method(ENGINE *engine);

DSA_METHOD *DSA_OpenSSL(void);

DESCRIPTION

A DSA_METHOD specifies the functions that OpenSSL uses for DSA operations. By modifying the method, alternative
implementations such as hardware accelerators may be used. IMPORTANT: See the NOTES section for important information
about how these DSA API functions are affected by the use of ENGINE API calls.

Initially, the default DSA_METHOD is the OpenSSL internal implementation, as returned by DSA_OpenSSL().

DSA_set_default_method() makes meth the default method for all DSA structures created later. NB: This is true only whilst
no ENGINE has been set as a default for DSA, so this function is no longer recommended.

DSA_get_default_method() returns a pointer to the current default DSA_METHOD. However, the meaningfulness of this
result is dependent on whether the ENGINE API is being used, so this function is no longer recommended.

DSA_set_method() selects meth to perform all operations using the key rsa. This will replace the DSA_METHOD used by
the DSA key and if the previous method was supplied by an ENGINE, the handle to that ENGINE will be released during the
change. It is possible to have DSA keys that only work with certain DSA_METHOD implementations (eg. from an ENGINE
module that supports embedded hardware-protected keys), and in such cases attempting to change the DSA_METHOD for
the key can have unexpected results.

DSA_new_method() allocates and initializes a DSA structure so that engine will be used for the DSA operations. If engine
is NULL, the default engine for DSA operations is used, and if no default ENGINE is set, the DSA_METHOD controlled by
DSA_set_default_method() is used.

THE DSA_METHOD STRUCTURE

struct { /* name of the implementation */ const char *name;

/* sign */
 DSA_SIG *(*dsa_do_sign)(const unsigned char *dgst, int dlen,
 DSA *dsa);

/* pre-compute k^-1 and r */
 int (*dsa_sign_setup)(DSA *dsa, BN_CTX *ctx_in, BIGNUM **kinvp,
 BIGNUM **rp);

/* verify */
 int (*dsa_do_verify)(const unsigned char *dgst, int dgst_len,
 DSA_SIG *sig, DSA *dsa);

/* compute rr = a1^p1 * a2^p2 mod m (May be NULL for some
 implementations) */
 int (*dsa_mod_exp)(DSA *dsa, BIGNUM *rr, BIGNUM *a1, BIGNUM *p1,
 BIGNUM *a2, BIGNUM *p2, BIGNUM *m,
 BN_CTX *ctx, BN_MONT_CTX *in_mont);

1378

OpenSSL Manual

/* compute r = a ^ p mod m (May be NULL for some implementations) */
 int (*bn_mod_exp)(DSA *dsa, BIGNUM *r, BIGNUM *a,
 const BIGNUM *p, const BIGNUM *m,
 BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at DSA_new */
 int (*init)(DSA *DSA);

/* called at DSA_free */
 int (*finish)(DSA *DSA);

int flags;

char *app_data; /* ?? */

} DSA_METHOD;

RETURN VALUES

DSA_OpenSSL() and DSA_get_default_method() return pointers to the respective DSA_METHODs.

DSA_set_default_method() returns no value.

DSA_set_method() returns non-zero if the provided meth was successfully set as the method for dsa (including unloading the
ENGINE handle if the previous method was supplied by an ENGINE).

DSA_new_method() returns NULL and sets an error code that can be obtained by ERR_get_error(3) if the allocation fails.
Otherwise it returns a pointer to the newly allocated structure.

NOTES

As of version 0.9.7, DSA_METHOD implementations are grouped together with other algorithmic APIs (eg. RSA_METHOD,
EVP_CIPHER, etc) in ENGINE modules. If a default ENGINE is specified for DSA functionality using an ENGINE API
function, that will override any DSA defaults set using the DSA API (ie. DSA_set_default_method()). For this reason, the
ENGINE API is the recommended way to control default implementations for use in DSA and other cryptographic algorithms.

SEE ALSO

dsa(3), DSA_new(3)

HISTORY

DSA_set_default_method(), DSA_get_default_method(), DSA_set_method(), DSA_new_method() and DSA_OpenSSL()
were added in OpenSSL 0.9.4.

DSA_set_default_openssl_method() and DSA_get_default_openssl_method() replaced DSA_set_default_method() and
DSA_get_default_method() respectively, and DSA_set_method() and DSA_new_method() were altered to use ENGINEs
rather than DSA_METHODs during development of the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults
in the ENGINE API was restructured so that this change was reversed, and behaviour of the other functions resembled more
closely the previous behaviour. The behaviour of defaults in the ENGINE API now transparently overrides the behaviour of
defaults in the DSA API without requiring changing these function prototypes.

1379

OpenSSL Manual

Name
DSA_SIG_new and DSA_SIG_free — allocate and free DSA signature objects

Synopsis
#include <openssl/dsa.h>

DSA_SIG *DSA_SIG_new(void);

void DSA_SIG_free(DSA_SIG *a);

DESCRIPTION

DSA_SIG_new() allocates and initializes a DSA_SIG structure.

DSA_SIG_free() frees the DSA_SIG structure and its components. The values are erased before the memory is returned to
the system.

RETURN VALUES

If the allocation fails, DSA_SIG_new() returns NULL and sets an error code that can be obtained by ERR_get_error(3).
Otherwise it returns a pointer to the newly allocated structure.

DSA_SIG_free() returns no value.

SEE ALSO

dsa(3), ERR_get_error(3), DSA_do_sign(3)

HISTORY

DSA_SIG_new() and DSA_SIG_free() were added in OpenSSL 0.9.3.

1380

OpenSSL Manual

Name
DSA_sign, DSA_sign_setup and DSA_verify — DSA signatures

Synopsis
#include <openssl/dsa.h>

int DSA_sign(int type, const unsigned char *dgst, int len,
 unsigned char *sigret, unsigned int *siglen, DSA *dsa);

int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
 BIGNUM **rp);

int DSA_verify(int type, const unsigned char *dgst, int len,
 unsigned char *sigbuf, int siglen, DSA *dsa);

DESCRIPTION

DSA_sign() computes a digital signature on the len byte message digest dgst using the private key dsa and places its ASN.1
DER encoding at sigret. The length of the signature is places in *siglen. sigret must point to DSA_size(dsa) bytes of memory.

DSA_sign_setup() may be used to precompute part of the signing operation in case signature generation is time-critical. It
expects dsa to contain DSA parameters. It places the precomputed values in newly allocated BIGNUMs at *kinvp and *rp,
after freeing the old ones unless *kinvp and *rp are NULL. These values may be passed to DSA_sign() in dsa->kinv and
dsa->r. ctx is a pre-allocated BN_CTX or NULL.

DSA_verify() verifies that the signature sigbuf of size siglen matches a given message digest dgst of size len. dsa is the
signer's public key.

The type parameter is ignored.

The PRNG must be seeded before DSA_sign() (or DSA_sign_setup()) is called.

RETURN VALUES

DSA_sign() and DSA_sign_setup() return 1 on success, 0 on error. DSA_verify() returns 1 for a valid signature, 0 for an
incorrect signature and -1 on error. The error codes can be obtained by ERR_get_error(3).

CONFORMING TO

US Federal Information Processing Standard FIPS 186 (Digital Signature Standard, DSS), ANSI X9.30

SEE ALSO

dsa(3), ERR_get_error(3), rand(3), DSA_do_sign(3)

HISTORY

DSA_sign() and DSA_verify() are available in all versions of SSLeay. DSA_sign_setup() was added in SSLeay 0.8.

1381

OpenSSL Manual

Name
DSA_size — get DSA signature size

Synopsis
#include <openssl/dsa.h>

int DSA_size(const DSA *dsa);

DESCRIPTION

This function returns the size of an ASN.1 encoded DSA signature in bytes. It can be used to determine how much memory
must be allocated for a DSA signature.

dsa->q must not be NULL.

RETURN VALUE

The size in bytes.

SEE ALSO

dsa(3), DSA_sign(3)

HISTORY

DSA_size() is available in all versions of SSLeay and OpenSSL.

1382

OpenSSL Manual

Name
ecdsa — Elliptic Curve Digital Signature Algorithm

Synopsis
#include <openssl/ecdsa.h>

ECDSA_SIG* ECDSA_SIG_new(void);
void ECDSA_SIG_free(ECDSA_SIG *sig);
int i2d_ECDSA_SIG(const ECDSA_SIG *sig, unsigned char **pp);
ECDSA_SIG* d2i_ECDSA_SIG(ECDSA_SIG **sig, const unsigned char **pp,
 long len);

ECDSA_SIG* ECDSA_do_sign(const unsigned char *dgst, int dgst_len,
 EC_KEY *eckey);
ECDSA_SIG* ECDSA_do_sign_ex(const unsigned char *dgst, int dgstlen,
 const BIGNUM *kinv, const BIGNUM *rp,
 EC_KEY *eckey);
int ECDSA_do_verify(const unsigned char *dgst, int dgst_len,
 const ECDSA_SIG *sig, EC_KEY* eckey);
int ECDSA_sign_setup(EC_KEY *eckey, BN_CTX *ctx,
 BIGNUM **kinv, BIGNUM **rp);
int ECDSA_sign(int type, const unsigned char *dgst,
 int dgstlen, unsigned char *sig,
 unsigned int *siglen, EC_KEY *eckey);
int ECDSA_sign_ex(int type, const unsigned char *dgst,
 int dgstlen, unsigned char *sig,
 unsigned int *siglen, const BIGNUM *kinv,
 const BIGNUM *rp, EC_KEY *eckey);
int ECDSA_verify(int type, const unsigned char *dgst,
 int dgstlen, const unsigned char *sig,
 int siglen, EC_KEY *eckey);
int ECDSA_size(const EC_KEY *eckey);

const ECDSA_METHOD* ECDSA_OpenSSL(void);
void ECDSA_set_default_method(const ECDSA_METHOD *meth);
const ECDSA_METHOD* ECDSA_get_default_method(void);
int ECDSA_set_method(EC_KEY *eckey,const ECDSA_METHOD *meth);

int ECDSA_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);
int ECDSA_set_ex_data(EC_KEY *d, int idx, void *arg);
void* ECDSA_get_ex_data(EC_KEY *d, int idx);

DESCRIPTION

The ECDSA_SIG structure consists of two BIGNUMs for the r and s value of a ECDSA signature (see X9.62 or FIPS 186-2).

struct
 {
 BIGNUM *r;
 BIGNUM *s;
} ECDSA_SIG;

ECDSA_SIG_new() allocates a new ECDSA_SIG structure (note: this function also allocates the BIGNUMs) and initialize it.

ECDSA_SIG_free() frees the ECDSA_SIG structure sig.

i2d_ECDSA_SIG() creates the DER encoding of the ECDSA signature sig and writes the encoded signature to *pp (note: if
pp is NULL i2d_ECDSA_SIG returns the expected length in bytes of the DER encoded signature). i2d_ECDSA_SIG returns
the length of the DER encoded signature (or 0 on error).

d2i_ECDSA_SIG() decodes a DER encoded ECDSA signature and returns the decoded signature in a newly allocated
ECDSA_SIG structure. *sig points to the buffer containing the DER encoded signature of size len.

ECDSA_size() returns the maximum length of a DER encoded ECDSA signature created with the private EC key eckey.

1383

OpenSSL Manual

ECDSA_sign_setup() may be used to precompute parts of the signing operation. eckey is the private EC key and ctx is a
pointer to BN_CTX structure (or NULL). The precomputed values or returned in kinv and rp and can be used in a later call
to ECDSA_sign_ex or ECDSA_do_sign_ex.

ECDSA_sign() is wrapper function for ECDSA_sign_ex with kinv and rp set to NULL.

ECDSA_sign_ex() computes a digital signature of the dgstlen bytes hash value dgst using the private EC key eckey and the
optional pre-computed values kinv and rp. The DER encoded signatures is stored in sig and it's length is returned in sig_len.
Note: sig must point to ECDSA_size bytes of memory. The parameter type is ignored.

ECDSA_verify() verifies that the signature in sig of size siglen is a valid ECDSA signature of the hash value dgst of size
dgstlen using the public key eckey. The parameter type is ignored.

ECDSA_do_sign() is wrapper function for ECDSA_do_sign_ex with kinv and rp set to NULL.

ECDSA_do_sign_ex() computes a digital signature of the dgst_len bytes hash value dgst using the private key eckey and the
optional pre-computed values kinv and rp. The signature is returned in a newly allocated ECDSA_SIG structure (or NULL
on error).

ECDSA_do_verify() verifies that the signature sig is a valid ECDSA signature of the hash value dgst of size dgst_len using
the public key eckey.

RETURN VALUES

ECDSA_size() returns the maximum length signature or 0 on error.

ECDSA_sign_setup() and ECDSA_sign() return 1 if successful or 0 on error.

ECDSA_verify() and ECDSA_do_verify() return 1 for a valid signature, 0 for an invalid signature and -1 on error. The error
codes can be obtained by ERR_get_error(3).

EXAMPLES

Creating a ECDSA signature of given SHA-1 hash value using the named curve secp192k1.

First step: create a EC_KEY object (note: this part is not ECDSA specific)

int ret;
ECDSA_SIG *sig;
EC_KEY *eckey;
eckey = EC_KEY_new_by_curve_name(NID_secp192k1);
if (eckey == NULL)
 {
 /* error */
 }
if (!EC_KEY_generate_key(eckey))
 {
 /* error */
 }

Second step: compute the ECDSA signature of a SHA-1 hash value using ECDSA_do_sign

sig = ECDSA_do_sign(digest, 20, eckey);
if (sig == NULL)
 {
 /* error */
 }

or using ECDSA_sign

unsigned char *buffer, *pp;
int buf_len;
buf_len = ECDSA_size(eckey);
buffer = OPENSSL_malloc(buf_len);
pp = buffer;

1384

OpenSSL Manual

if (!ECDSA_sign(0, dgst, dgstlen, pp, &buf_len, eckey);
 {
 /* error */
 }

Third step: verify the created ECDSA signature using ECDSA_do_verify

ret = ECDSA_do_verify(digest, 20, sig, eckey);

or using ECDSA_verify

ret = ECDSA_verify(0, digest, 20, buffer, buf_len, eckey);

and finally evaluate the return value:

if (ret == -1)
 {
 /* error */
 }
else if (ret == 0)
 {
 /* incorrect signature */
 }
else /* ret == 1 */
 {
 /* signature ok */
 }

CONFORMING TO

ANSI X9.62, US Federal Information Processing Standard FIPS 186-2 (Digital Signature Standard, DSS)

SEE ALSO

dsa(3), rsa(3)

HISTORY

The ecdsa implementation was first introduced in OpenSSL 0.9.8

AUTHOR

Nils Larsch for the OpenSSL project (http://www.openssl.org).

1385

OpenSSL Manual

Name
engine — ENGINE cryptographic module support

Synopsis
#include <openssl/engine.h>

ENGINE *ENGINE_get_first(void);
ENGINE *ENGINE_get_last(void);
ENGINE *ENGINE_get_next(ENGINE *e);
ENGINE *ENGINE_get_prev(ENGINE *e);

int ENGINE_add(ENGINE *e);
int ENGINE_remove(ENGINE *e);

ENGINE *ENGINE_by_id(const char *id);

int ENGINE_init(ENGINE *e);
int ENGINE_finish(ENGINE *e);

void ENGINE_load_openssl(void);
void ENGINE_load_dynamic(void);
#ifndef OPENSSL_NO_STATIC_ENGINE
void ENGINE_load_4758cca(void);
void ENGINE_load_aep(void);
void ENGINE_load_atalla(void);
void ENGINE_load_chil(void);
void ENGINE_load_cswift(void);
void ENGINE_load_gmp(void);
void ENGINE_load_nuron(void);
void ENGINE_load_sureware(void);
void ENGINE_load_ubsec(void);
#endif
void ENGINE_load_cryptodev(void);
void ENGINE_load_builtin_engines(void);

void ENGINE_cleanup(void);

ENGINE *ENGINE_get_default_RSA(void);
ENGINE *ENGINE_get_default_DSA(void);
ENGINE *ENGINE_get_default_ECDH(void);
ENGINE *ENGINE_get_default_ECDSA(void);
ENGINE *ENGINE_get_default_DH(void);
ENGINE *ENGINE_get_default_RAND(void);
ENGINE *ENGINE_get_cipher_engine(int nid);
ENGINE *ENGINE_get_digest_engine(int nid);

int ENGINE_set_default_RSA(ENGINE *e);
int ENGINE_set_default_DSA(ENGINE *e);
int ENGINE_set_default_ECDH(ENGINE *e);
int ENGINE_set_default_ECDSA(ENGINE *e);
int ENGINE_set_default_DH(ENGINE *e);
int ENGINE_set_default_RAND(ENGINE *e);
int ENGINE_set_default_ciphers(ENGINE *e);
int ENGINE_set_default_digests(ENGINE *e);
int ENGINE_set_default_string(ENGINE *e, const char *list);

int ENGINE_set_default(ENGINE *e, unsigned int flags);

unsigned int ENGINE_get_table_flags(void);
void ENGINE_set_table_flags(unsigned int flags);

int ENGINE_register_RSA(ENGINE *e);
void ENGINE_unregister_RSA(ENGINE *e);
void ENGINE_register_all_RSA(void);
int ENGINE_register_DSA(ENGINE *e);
void ENGINE_unregister_DSA(ENGINE *e);
void ENGINE_register_all_DSA(void);
int ENGINE_register_ECDH(ENGINE *e);
void ENGINE_unregister_ECDH(ENGINE *e);
void ENGINE_register_all_ECDH(void);
int ENGINE_register_ECDSA(ENGINE *e);

1386

OpenSSL Manual

void ENGINE_unregister_ECDSA(ENGINE *e);
void ENGINE_register_all_ECDSA(void);
int ENGINE_register_DH(ENGINE *e);
void ENGINE_unregister_DH(ENGINE *e);
void ENGINE_register_all_DH(void);
int ENGINE_register_RAND(ENGINE *e);
void ENGINE_unregister_RAND(ENGINE *e);
void ENGINE_register_all_RAND(void);
int ENGINE_register_STORE(ENGINE *e);
void ENGINE_unregister_STORE(ENGINE *e);
void ENGINE_register_all_STORE(void);
int ENGINE_register_ciphers(ENGINE *e);
void ENGINE_unregister_ciphers(ENGINE *e);
void ENGINE_register_all_ciphers(void);
int ENGINE_register_digests(ENGINE *e);
void ENGINE_unregister_digests(ENGINE *e);
void ENGINE_register_all_digests(void);
int ENGINE_register_complete(ENGINE *e);
int ENGINE_register_all_complete(void);

int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
 long i, void *p, void (*f)(void), int cmd_optional);
int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
 int cmd_optional);

int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
void *ENGINE_get_ex_data(const ENGINE *e, int idx);

int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);

ENGINE *ENGINE_new(void);
int ENGINE_free(ENGINE *e);
int ENGINE_up_ref(ENGINE *e);

int ENGINE_set_id(ENGINE *e, const char *id);
int ENGINE_set_name(ENGINE *e, const char *name);
int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
int ENGINE_set_ECDH(ENGINE *e, const ECDH_METHOD *dh_meth);
int ENGINE_set_ECDSA(ENGINE *e, const ECDSA_METHOD *dh_meth);
int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *rand_meth);
int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
int ENGINE_set_flags(ENGINE *e, int flags);
int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);

const char *ENGINE_get_id(const ENGINE *e);
const char *ENGINE_get_name(const ENGINE *e);
const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
const ECDH_METHOD *ENGINE_get_ECDH(const ENGINE *e);
const ECDSA_METHOD *ENGINE_get_ECDSA(const ENGINE *e);
const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);

1387

OpenSSL Manual

const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
int ENGINE_get_flags(const ENGINE *e);
const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);

EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
 UI_METHOD *ui_method, void *callback_data);
EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
 UI_METHOD *ui_method, void *callback_data);

void ENGINE_add_conf_module(void);

DESCRIPTION

These functions create, manipulate, and use cryptographic modules in the form of ENGINE objects. These objects act as
containers for implementations of cryptographic algorithms, and support a reference-counted mechanism to allow them to be
dynamically loaded in and out of the running application.

The cryptographic functionality that can be provided by an ENGINE implementation includes the following abstractions;

RSA_METHOD - for providing alternative RSA implementations
DSA_METHOD, DH_METHOD, RAND_METHOD, ECDH_METHOD, ECDSA_METHOD,
 STORE_METHOD - similarly for other OpenSSL APIs
EVP_CIPHER - potentially multiple cipher algorithms (indexed by 'nid')
EVP_DIGEST - potentially multiple hash algorithms (indexed by 'nid')
key-loading - loading public and/or private EVP_PKEY keys

Reference counting and handles

Due to the modular nature of the ENGINE API, pointers to ENGINEs need to be treated as handles - ie. not only as pointers,
but also as references to the underlying ENGINE object. Ie. one should obtain a new reference when making copies of an
ENGINE pointer if the copies will be used (and released) independently.

ENGINE objects have two levels of reference-counting to match the way in which the objects are used. At the most basic level,
each ENGINE pointer is inherently a structural reference - a structural reference is required to use the pointer value at all, as
this kind of reference is a guarantee that the structure can not be deallocated until the reference is released.

However, a structural reference provides no guarantee that the ENGINE is initiliased and able to use any of its cryptographic
implementations. Indeed it's quite possible that most ENGINEs will not initialise at all in typical environments, as ENGINEs are
typically used to support specialised hardware. To use an ENGINE's functionality, you need a functional reference. This kind
of reference can be considered a specialised form of structural reference, because each functional reference implicitly contains
a structural reference as well - however to avoid difficult-to-find programming bugs, it is recommended to treat the two kinds
of reference independently. If you have a functional reference to an ENGINE, you have a guarantee that the ENGINE has been
initialised ready to perform cryptographic operations and will remain uninitialised until after you have released your reference.

Structural references

This basic type of reference is used for instantiating new ENGINEs, iterating across OpenSSL's internal linked-list of loaded
ENGINEs, reading information about an ENGINE, etc. Essentially a structural reference is sufficient if you only need to query
or manipulate the data of an ENGINE implementation rather than use its functionality.

The ENGINE_new() function returns a structural reference to a new (empty) ENGINE object. There are other ENGINE
API functions that return structural references such as; ENGINE_by_id(), ENGINE_get_first(), ENGINE_get_last(),
ENGINE_get_next(), ENGINE_get_prev(). All structural references should be released by a corresponding to call to the
ENGINE_free() function - the ENGINE object itself will only actually be cleaned up and deallocated when the last structural
reference is released.

It should also be noted that many ENGINE API function calls that accept a structural reference will internally obtain another
reference - typically this happens whenever the supplied ENGINE will be needed by OpenSSL after the function has returned.
Eg. the function to add a new ENGINE to OpenSSL's internal list is ENGINE_add() - if this function returns success, then
OpenSSL will have stored a new structural reference internally so the caller is still responsible for freeing their own reference
with ENGINE_free() when they are finished with it. In a similar way, some functions will automatically release the structural
reference passed to it if part of the function's job is to do so. Eg. the ENGINE_get_next() and ENGINE_get_prev() functions
are used for iterating across the internal ENGINE list - they will return a new structural reference to the next (or previous)

1388

OpenSSL Manual

ENGINE in the list or NULL if at the end (or beginning) of the list, but in either case the structural reference passed to the
function is released on behalf of the caller.

To clarify a particular function's handling of references, one should always consult that function's documentation "man" page,
or failing that the openssl/engine.h header file includes some hints.

Functional references

As mentioned, functional references exist when the cryptographic functionality of an ENGINE is required to be available. A
functional reference can be obtained in one of two ways; from an existing structural reference to the required ENGINE, or by
asking OpenSSL for the default operational ENGINE for a given cryptographic purpose.

To obtain a functional reference from an existing structural reference, call the ENGINE_init() function. This returns zero if the
ENGINE was not already operational and couldn't be successfully initialised (eg. lack of system drivers, no special hardware
attached, etc), otherwise it will return non-zero to indicate that the ENGINE is now operational and will have allocated a new
functional reference to the ENGINE. All functional references are released by calling ENGINE_finish() (which removes the
implicit structural reference as well).

The second way to get a functional reference is by asking OpenSSL for a default implementation for a given task, eg. by
ENGINE_get_default_RSA(), ENGINE_get_default_cipher_engine(), etc. These are discussed in the next section, though they
are not usually required by application programmers as they are used automatically when creating and using the relevant
algorithm-specific types in OpenSSL, such as RSA, DSA, EVP_CIPHER_CTX, etc.

Default implementations

For each supported abstraction, the ENGINE code maintains an internal table of state to control which implementations are
available for a given abstraction and which should be used by default. These implementations are registered in the tables and
indexed by an 'nid' value, because abstractions like EVP_CIPHER and EVP_DIGEST support many distinct algorithms and
modes, and ENGINEs can support arbitrarily many of them. In the case of other abstractions like RSA, DSA, etc, there is only
one "algorithm" so all implementations implicitly register using the same 'nid' index.

When a default ENGINE is requested for a given abstraction/algorithm/mode, (eg. when calling RSA_new_method(NULL)),
a "get_default" call will be made to the ENGINE subsystem to process the corresponding state table and return a functional
reference to an initialised ENGINE whose implementation should be used. If no ENGINE should (or can) be used, it will return
NULL and the caller will operate with a NULL ENGINE handle - this usually equates to using the conventional software
implementation. In the latter case, OpenSSL will from then on behave the way it used to before the ENGINE API existed.

Each state table has a flag to note whether it has processed this "get_default" query since the table was last modified, because to
process this question it must iterate across all the registered ENGINEs in the table trying to initialise each of them in turn, in case
one of them is operational. If it returns a functional reference to an ENGINE, it will also cache another reference to speed up
processing future queries (without needing to iterate across the table). Likewise, it will cache a NULL response if no ENGINE
was available so that future queries won't repeat the same iteration unless the state table changes. This behaviour can also be
changed; if the ENGINE_TABLE_FLAG_NOINIT flag is set (using ENGINE_set_table_flags()), no attempted initialisations
will take place, instead the only way for the state table to return a non-NULL ENGINE to the "get_default" query will be if
one is expressly set in the table. Eg. ENGINE_set_default_RSA() does the same job as ENGINE_register_RSA() except that
it also sets the state table's cached response for the "get_default" query. In the case of abstractions like EVP_CIPHER, where
implementations are indexed by 'nid', these flags and cached-responses are distinct for each 'nid' value.

Application requirements

This section will explain the basic things an application programmer should support to make the most useful elements of the
ENGINE functionality available to the user. The first thing to consider is whether the programmer wishes to make alternative
ENGINE modules available to the application and user. OpenSSL maintains an internal linked list of "visible" ENGINEs from
which it has to operate - at start-up, this list is empty and in fact if an application does not call any ENGINE API calls and it
uses static linking against openssl, then the resulting application binary will not contain any alternative ENGINE code at all.
So the first consideration is whether any/all available ENGINE implementations should be made visible to OpenSSL - this is
controlled by calling the various "load" functions, eg.

/* Make the "dynamic" ENGINE available */
void ENGINE_load_dynamic(void);

1389

OpenSSL Manual

/* Make the CryptoSwift hardware acceleration support available */
void ENGINE_load_cswift(void);
/* Make support for nCipher's "CHIL" hardware available */
void ENGINE_load_chil(void);
…
/* Make ALL ENGINE implementations bundled with OpenSSL available */
void ENGINE_load_builtin_engines(void);

Having called any of these functions, ENGINE objects would have been dynamically allocated and populated with these
implementations and linked into OpenSSL's internal linked list. At this point it is important to mention an important API
function;

void ENGINE_cleanup(void);

If no ENGINE API functions are called at all in an application, then there are no inherent memory leaks to worry about from the
ENGINE functionality, however if any ENGINEs are loaded, even if they are never registered or used, it is necessary to use the
ENGINE_cleanup() function to correspondingly cleanup before program exit, if the caller wishes to avoid memory leaks. This
mechanism uses an internal callback registration table so that any ENGINE API functionality that knows it requires cleanup can
register its cleanup details to be called during ENGINE_cleanup(). This approach allows ENGINE_cleanup() to clean up after
any ENGINE functionality at all that your program uses, yet doesn't automatically create linker dependencies to all possible
ENGINE functionality - only the cleanup callbacks required by the functionality you do use will be required by the linker.

The fact that ENGINEs are made visible to OpenSSL (and thus are linked into the program and loaded into memory at run-
time) does not mean they are "registered" or called into use by OpenSSL automatically - that behaviour is something for the
application to control. Some applications will want to allow the user to specify exactly which ENGINE they want used if any
is to be used at all. Others may prefer to load all support and have OpenSSL automatically use at run-time any ENGINE that
is able to successfully initialise - ie. to assume that this corresponds to acceleration hardware attached to the machine or some
such thing. There are probably numerous other ways in which applications may prefer to handle things, so we will simply
illustrate the consequences as they apply to a couple of simple cases and leave developers to consider these and the source
code to openssl's builtin utilities as guides.

Using a specific ENGINE implementation

Here we'll assume an application has been configured by its user or admin to want to use the "ACME" ENGINE if it is available
in the version of OpenSSL the application was compiled with. If it is available, it should be used by default for all RSA, DSA,
and symmetric cipher operation, otherwise OpenSSL should use its builtin software as per usual. The following code illustrates
how to approach this;

ENGINE *e;
const char *engine_id = "ACME";
ENGINE_load_builtin_engines();
e = ENGINE_by_id(engine_id);
if(!e)
 /* the engine isn't available */
 return;
if(!ENGINE_init(e)) {
 /* the engine couldn't initialise, release 'e' */
 ENGINE_free(e);
 return;
}
if(!ENGINE_set_default_RSA(e))
 /* This should only happen when 'e' can't initialise, but the previous
 * statement suggests it did. */
 abort();
ENGINE_set_default_DSA(e);
ENGINE_set_default_ciphers(e);
/* Release the functional reference from ENGINE_init() */
ENGINE_finish(e);
/* Release the structural reference from ENGINE_by_id() */
ENGINE_free(e);

Automatically using builtin ENGINE implementations

Here we'll assume we want to load and register all ENGINE implementations bundled with OpenSSL, such that for any cryp-
tographic algorithm required by OpenSSL - if there is an ENGINE that implements it and can be initialise, it should be used.
The following code illustrates how this can work;

1390

OpenSSL Manual

/* Load all bundled ENGINEs into memory and make them visible */
ENGINE_load_builtin_engines();
/* Register all of them for every algorithm they collectively implement */
ENGINE_register_all_complete();

That's all that's required. Eg. the next time OpenSSL tries to set up an RSA key, any bundled ENGINEs that implement
RSA_METHOD will be passed to ENGINE_init() and if any of those succeed, that ENGINE will be set as the default for
RSA use from then on.

Advanced configuration support

There is a mechanism supported by the ENGINE framework that allows each ENGINE implementation to define an arbitrary
set of configuration "commands" and expose them to OpenSSL and any applications based on OpenSSL. This mechanism is
entirely based on the use of name-value pairs and assumes ASCII input (no unicode or UTF for now!), so it is ideal if applications
want to provide a transparent way for users to provide arbitrary configuration "directives" directly to such ENGINEs. It is also
possible for the application to dynamically interrogate the loaded ENGINE implementations for the names, descriptions, and
input flags of their available "control commands", providing a more flexible configuration scheme. However, if the user is
expected to know which ENGINE device he/she is using (in the case of specialised hardware, this goes without saying) then
applications may not need to concern themselves with discovering the supported control commands and simply prefer to pass
settings into ENGINEs exactly as they are provided by the user.

Before illustrating how control commands work, it is worth mentioning what they are typically used for. Broadly speaking
there are two uses for control commands; the first is to provide the necessary details to the implementation (which may know
nothing at all specific to the host system) so that it can be initialised for use. This could include the path to any driver or config
files it needs to load, required network addresses, smart-card identifiers, passwords to initialise protected devices, logging
information, etc etc. This class of commands typically needs to be passed to an ENGINE before attempting to initialise it, ie.
before calling ENGINE_init(). The other class of commands consist of settings or operations that tweak certain behaviour or
cause certain operations to take place, and these commands may work either before or after ENGINE_init(), or in some cases
both. ENGINE implementations should provide indications of this in the descriptions attached to builtin control commands
and/or in external product documentation.

Issuing control commands to an ENGINE

Let's illustrate by example; a function for which the caller supplies the name of the ENGINE it wishes to use, a table of
string-pairs for use before initialisation, and another table for use after initialisation. Note that the string-pairs used for control
commands consist of a command "name" followed by the command "parameter" - the parameter could be NULL in some cases
but the name can not. This function should initialise the ENGINE (issuing the "pre" commands beforehand and the "post"
commands afterwards) and set it as the default for everything except RAND and then return a boolean success or failure.

int generic_load_engine_fn(const char *engine_id,
 const char **pre_cmds, int pre_num,
 const char **post_cmds, int post_num)
{
 ENGINE *e = ENGINE_by_id(engine_id);
 if(!e) return 0;
 while(pre_num--) {
 if(!ENGINE_ctrl_cmd_string(e, pre_cmds[0], pre_cmds[1], 0)) {
 fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,
 pre_cmds[0], pre_cmds[1] ? pre_cmds[1] : "(NULL)");
 ENGINE_free(e);
 return 0;
 }
 pre_cmds += 2;
 }
 if(!ENGINE_init(e)) {
 fprintf(stderr, "Failed initialisation\n");
 ENGINE_free(e);
 return 0;
 }
 /* ENGINE_init() returned a functional reference, so free the structural
 * reference from ENGINE_by_id(). */
 ENGINE_free(e);
 while(post_num--) {
 if(!ENGINE_ctrl_cmd_string(e, post_cmds[0], post_cmds[1], 0)) {
 fprintf(stderr, "Failed command (%s - %s:%s)\n", engine_id,

1391

OpenSSL Manual

 post_cmds[0], post_cmds[1] ? post_cmds[1] : "(NULL)");
 ENGINE_finish(e);
 return 0;
 }
 post_cmds += 2;
 }
 ENGINE_set_default(e, ENGINE_METHOD_ALL & ~ENGINE_METHOD_RAND);
 /* Success */
 return 1;
}

Note that ENGINE_ctrl_cmd_string() accepts a boolean argument that can relax the semantics of the function - if set non-zero
it will only return failure if the ENGINE supported the given command name but failed while executing it, if the ENGINE
doesn't support the command name it will simply return success without doing anything. In this case we assume the user is
only supplying commands specific to the given ENGINE so we set this to FALSE.

Discovering supported control commands

It is possible to discover at run-time the names, numerical-ids, descriptions and input parameters of the control commands
supported by an ENGINE using a structural reference. Note that some control commands are defined by OpenSSL itself and
it will intercept and handle these control commands on behalf of the ENGINE, ie. the ENGINE's ctrl() handler is not used
for the control command. openssl/engine.h defines an index, ENGINE_CMD_BASE, that all control commands implemented
by ENGINEs should be numbered from. Any command value lower than this symbol is considered a "generic" command is
handled directly by the OpenSSL core routines.

It is using these "core" control commands that one can discover the the control commands implemented by a given ENGINE,
specifically the commands;

#define ENGINE_HAS_CTRL_FUNCTION 10
#define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
#define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
#define ENGINE_CTRL_GET_CMD_FROM_NAME 13
#define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
#define ENGINE_CTRL_GET_NAME_FROM_CMD 15
#define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
#define ENGINE_CTRL_GET_DESC_FROM_CMD 17
#define ENGINE_CTRL_GET_CMD_FLAGS 18

Whilst these commands are automatically processed by the OpenSSL framework code, they use various properties exposed by
each ENGINE to process these queries. An ENGINE has 3 properties it exposes that can affect how this behaves; it can supply
a ctrl() handler, it can specify ENGINE_FLAGS_MANUAL_CMD_CTRL in the ENGINE's flags, and it can expose an array
of control command descriptions. If an ENGINE specifies the ENGINE_FLAGS_MANUAL_CMD_CTRL flag, then it will
simply pass all these "core" control commands directly to the ENGINE's ctrl() handler (and thus, it must have supplied one),
so it is up to the ENGINE to reply to these "discovery" commands itself. If that flag is not set, then the OpenSSL framework
code will work with the following rules;

if no ctrl() handler supplied;
 ENGINE_HAS_CTRL_FUNCTION returns FALSE (zero),
 all other commands fail.
if a ctrl() handler was supplied but no array of control commands;
 ENGINE_HAS_CTRL_FUNCTION returns TRUE,
 all other commands fail.
if a ctrl() handler and array of control commands was supplied;
 ENGINE_HAS_CTRL_FUNCTION returns TRUE,
 all other commands proceed processing …

If the ENGINE's array of control commands is empty then all other commands will fail, otherwise;
ENGINE_CTRL_GET_FIRST_CMD_TYPE returns the identifier of the first command supported by the ENGINE,
ENGINE_GET_NEXT_CMD_TYPE takes the identifier of a command supported by the ENGINE and returns the next
command identifier or fails if there are no more, ENGINE_CMD_FROM_NAME takes a string name for a command and
returns the corresponding identifier or fails if no such command name exists, and the remaining commands take a command
identifier and return properties of the corresponding commands. All except ENGINE_CTRL_GET_FLAGS return the string
length of a command name or description, or populate a supplied character buffer with a copy of the command name or
description. ENGINE_CTRL_GET_FLAGS returns a bitwise-OR'd mask of the following possible values;

#define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001

1392

OpenSSL Manual

#define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
#define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
#define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008

If the ENGINE_CMD_FLAG_INTERNAL flag is set, then any other flags are purely informational to the caller - this flag will
prevent the command being usable for any higher-level ENGINE functions such as ENGINE_ctrl_cmd_string(). "INTERNAL"
commands are not intended to be exposed to text-based configuration by applications, administrations, users, etc. These can
support arbitrary operations via ENGINE_ctrl(), including passing to and/or from the control commands data of any arbitrary
type. These commands are supported in the discovery mechanisms simply to allow applications determinie if an ENGINE
supports certain specific commands it might want to use (eg. application "foo" might query various ENGINEs to see if they
implement "FOO_GET_VENDOR_LOGO_GIF" - and ENGINE could therefore decide whether or not to support this "foo"-
specific extension).

Future developments

The ENGINE API and internal architecture is currently being reviewed. Slated for possible release in 0.9.8 is support for
transparent loading of "dynamic" ENGINEs (built as self-contained shared-libraries). This would allow ENGINE implemen-
tations to be provided independently of OpenSSL libraries and/or OpenSSL-based applications, and would also remove any
requirement for applications to explicitly use the "dynamic" ENGINE to bind to shared-library implementations.

SEE ALSO

rsa(3), dsa(3), dh(3), rand(3)

1393

OpenSSL Manual

Name
err — error codes

Synopsis
#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_get_error_line_data(const char **file, int *line,
 const char **data, int *flags);
unsigned long ERR_peek_error_line_data(const char **file, int *line,
 const char **data, int *flags);

int ERR_GET_LIB(unsigned long e);
int ERR_GET_FUNC(unsigned long e);
int ERR_GET_REASON(unsigned long e);

void ERR_clear_error(void);

char *ERR_error_string(unsigned long e, char *buf);
const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

void ERR_load_crypto_strings(void);
void ERR_free_strings(void);

void ERR_remove_state(unsigned long pid);

void ERR_put_error(int lib, int func, int reason, const char *file,
 int line);
void ERR_add_error_data(int num, …);

void ERR_load_strings(int lib,ERR_STRING_DATA str[]);
unsigned long ERR_PACK(int lib, int func, int reason);
int ERR_get_next_error_library(void);

DESCRIPTION

When a call to the OpenSSL library fails, this is usually signalled by the return value, and an error code is stored in an error queue
associated with the current thread. The err library provides functions to obtain these error codes and textual error messages.

The ERR_get_error(3) manpage describes how to access error codes.

Error codes contain information about where the error occurred, and what went wrong. ERR_GET_LIB(3) describes how to
extract this information. A method to obtain human-readable error messages is described in ERR_error_string(3).

ERR_clear_error(3) can be used to clear the error queue.

Note that ERR_remove_state(3) should be used to avoid memory leaks when threads are terminated.

ADDING NEW ERROR CODES TO OPENSSL

See ERR_put_error(3) if you want to record error codes in the OpenSSL error system from within your application.

The remainder of this section is of interest only if you want to add new error codes to OpenSSL or add error codes from
external libraries.

Reporting errors

Each sub-library has a specific macro XXXerr() that is used to report errors. Its first argument is a function code XXX_F_…,
the second argument is a reason code XXX_R_…. Function codes are derived from the function names; reason codes consist
of textual error descriptions. For example, the function ssl23_read() reports a "handshake failure" as follows:

1394

OpenSSL Manual

SSLerr(SSL_F_SSL23_READ, SSL_R_SSL_HANDSHAKE_FAILURE);

Function and reason codes should consist of upper case characters, numbers and underscores only. The error file generation
script translates function codes into function names by looking in the header files for an appropriate function name, if none is
found it just uses the capitalized form such as "SSL23_READ" in the above example.

The trailing section of a reason code (after the "_R_") is translated into lower case and underscores changed to spaces.

When you are using new function or reason codes, run make errors. The necessary #defines will then automatically be added
to the sub-library's header file.

Although a library will normally report errors using its own specific XXXerr macro, another library's macro can be used. This
is normally only done when a library wants to include ASN1 code which must use the ASN1err() macro.

Adding new libraries

When adding a new sub-library to OpenSSL, assign it a library number ERR_LIB_XXX, define a macro XXXerr() (both
in err.h), add its name to ERR_str_libraries[] (in crypto/err/err.c), and add ERR_load_XXX_strings() to the
ERR_load_crypto_strings() function (in crypto/err/err_all.c). Finally, add an entry

L XXX xxx.h xxx_err.c

to crypto/err/openssl.ec, and add xxx_err.c to the Makefile. Running make errors will then generate a file xxx_err.c, and
add all error codes used in the library to xxx.h.

Additionally the library include file must have a certain form. Typically it will initially look like this:

#ifndef HEADER_XXX_H
#define HEADER_XXX_H

#ifdef __cplusplus
extern "C" {
#endif

/* Include files */

#include <openssl/bio.h>
#include <openssl/x509.h>

/* Macros, structures and function prototypes */

/* BEGIN ERROR CODES */

The BEGIN ERROR CODES sequence is used by the error code generation script as the point to place new error codes,
any text after this point will be overwritten when make errors is run. The closing #endif etc will be automatically added by
the script.

The generated C error code file xxx_err.c will load the header files stdio.h, openssl/err.h and openssl/xxx.h so the header
file must load any additional header files containing any definitions it uses.

USING ERROR CODES IN EXTERNAL LIBRARIES

It is also possible to use OpenSSL's error code scheme in external libraries. The library needs to load its own codes and call
the OpenSSL error code insertion script mkerr.pl explicitly to add codes to the header file and generate the C error code file.
This will normally be done if the external library needs to generate new ASN1 structures but it can also be used to add more
general purpose error code handling.

TBA more details

INTERNALS

The error queues are stored in a hash table with one ERR_STATE entry for each pid. ERR_get_state() returns the current
thread's ERR_STATE. An ERR_STATE can hold up to ERR_NUM_ERRORS error codes. When more error codes are
added, the old ones are overwritten, on the assumption that the most recent errors are most important.

1395

OpenSSL Manual

Error strings are also stored in hash table. The hash tables can be obtained by calling ERR_get_err_state_table(void) and
ERR_get_string_table(void) respectively.

SEE ALSO

CRYPTO_set_locking_callback(3), ERR_get_error(3), ERR_GET_LIB(3), ERR_clear_error(3), ERR_error_string(3),
ERR_print_errors(3), ERR_load_crypto_strings(3), ERR_remove_state(3), ERR_put_error(3), ERR_load_strings(3),
SSL_get_error(3)

1396

OpenSSL Manual

Name
ERR_clear_error — clear the error queue

Synopsis
#include <openssl/err.h>

void ERR_clear_error(void);

DESCRIPTION

ERR_clear_error() empties the current thread's error queue.

RETURN VALUES

ERR_clear_error() has no return value.

SEE ALSO

err(3), ERR_get_error(3)

HISTORY

ERR_clear_error() is available in all versions of SSLeay and OpenSSL.

1397

OpenSSL Manual

Name
ERR_error_string, ERR_error_string_n, ERR_lib_error_string, ERR_func_error_string and ERR_reason_error_string —
obtain human-readable error message

Synopsis
#include <openssl/err.h>

char *ERR_error_string(unsigned long e, char *buf);
void ERR_error_string_n(unsigned long e, char *buf, size_t len);

const char *ERR_lib_error_string(unsigned long e);
const char *ERR_func_error_string(unsigned long e);
const char *ERR_reason_error_string(unsigned long e);

DESCRIPTION

ERR_error_string() generates a human-readable string representing the error code e, and places it at buf. buf must be at least 120
bytes long. If buf is NULL, the error string is placed in a static buffer. ERR_error_string_n() is a variant of ERR_error_string()
that writes at most len characters (including the terminating 0) and truncates the string if necessary. For ERR_error_string_n(),
buf may not be NULL.

The string will have the following format:

error:[error code]:[library name]:[function name]:[reason string]

error code is an 8 digit hexadecimal number, library name, function name and reason string are ASCII text.

ERR_lib_error_string(), ERR_func_error_string() and ERR_reason_error_string() return the library name, function name and
reason string respectively.

The OpenSSL error strings should be loaded by calling ERR_load_crypto_strings(3) or, for SSL applications, SSL_load_er-
ror_strings(3) first. If there is no text string registered for the given error code, the error string will contain the numeric code.

ERR_print_errors(3) can be used to print all error codes currently in the queue.

RETURN VALUES

ERR_error_string() returns a pointer to a static buffer containing the string if buf == NULL, buf otherwise.

ERR_lib_error_string(), ERR_func_error_string() and ERR_reason_error_string() return the strings, and NULL if none is
registered for the error code.

SEE ALSO

err(3), ERR_get_error(3), ERR_load_crypto_strings(3), SSL_load_error_strings(3), ERR_print_errors(3)

HISTORY

ERR_error_string() is available in all versions of SSLeay and OpenSSL. ERR_error_string_n() was added in OpenSSL 0.9.6.

1398

OpenSSL Manual

Name
ERR_get_error, ERR_peek_error, ERR_peek_last_error, ERR_get_error_line, ERR_peek_error_line,
ERR_peek_last_error_line, ERR_get_error_line_data, ERR_peek_error_line_data and ERR_peek_last_error_line_data —
obtain error code and data

Synopsis
#include <openssl/err.h>

unsigned long ERR_get_error(void);
unsigned long ERR_peek_error(void);
unsigned long ERR_peek_last_error(void);

unsigned long ERR_get_error_line(const char **file, int *line);
unsigned long ERR_peek_error_line(const char **file, int *line);
unsigned long ERR_peek_last_error_line(const char **file, int *line);

unsigned long ERR_get_error_line_data(const char **file, int *line,
 const char **data, int *flags);
unsigned long ERR_peek_error_line_data(const char **file, int *line,
 const char **data, int *flags);
unsigned long ERR_peek_last_error_line_data(const char **file, int *line,
 const char **data, int *flags);

DESCRIPTION

ERR_get_error() returns the earliest error code from the thread's error queue and removes the entry. This function can be called
repeatedly until there are no more error codes to return.

ERR_peek_error() returns the earliest error code from the thread's error queue without modifying it.

ERR_peek_last_error() returns the latest error code from the thread's error queue without modifying it.

See ERR_GET_LIB(3) for obtaining information about location and reason of the error, and ERR_error_string(3) for human-
readable error messages.

ERR_get_error_line(), ERR_peek_error_line() and ERR_peek_last_error_line() are the same as the above, but they
additionally store the file name and line number where the error occurred in *file and *line, unless these are NULL.

ERR_get_error_line_data(), ERR_peek_error_line_data() and ERR_peek_last_error_line_data() store additional data and
flags associated with the error code in *data and *flags, unless these are NULL. *data contains a string if
*flags&ERR_TXT_STRING is true.

An application MUST NOT free the *data pointer (or any other pointers returned by these functions) with OPENSSL_free()
as freeing is handled automatically by the error library.

RETURN VALUES

The error code, or 0 if there is no error in the queue.

SEE ALSO

err(3), ERR_error_string(3), ERR_GET_LIB(3)

HISTORY

ERR_get_error(), ERR_peek_error(), ERR_get_error_line() and ERR_peek_error_line() are available in all versions
of SSLeay and OpenSSL. ERR_get_error_line_data() and ERR_peek_error_line_data() were added in SSLeay 0.9.0.
ERR_peek_last_error(), ERR_peek_last_error_line() and ERR_peek_last_error_line_data() were added in OpenSSL 0.9.7.

1399

OpenSSL Manual

Name
ERR_GET_LIB, ERR_GET_FUNC and ERR_GET_REASON — get library, function and reason code

Synopsis
#include <openssl/err.h>

int ERR_GET_LIB(unsigned long e);

int ERR_GET_FUNC(unsigned long e);

int ERR_GET_REASON(unsigned long e);

DESCRIPTION

The error code returned by ERR_get_error() consists of a library number, function code and reason code. ERR_GET_LIB(),
ERR_GET_FUNC() and ERR_GET_REASON() can be used to extract these.

The library number and function code describe where the error occurred, the reason code is the information about what went
wrong.

Each sub-library of OpenSSL has a unique library number; function and reason codes are unique within each sub-library. Note
that different libraries may use the same value to signal different functions and reasons.

ERR_R_… reason codes such as ERR_R_MALLOC_FAILURE are globally unique. However, when checking for sub-
library specific reason codes, be sure to also compare the library number.

ERR_GET_LIB(), ERR_GET_FUNC() and ERR_GET_REASON() are macros.

RETURN VALUES

The library number, function code and reason code respectively.

SEE ALSO

err(3), ERR_get_error(3)

HISTORY

ERR_GET_LIB(), ERR_GET_FUNC() and ERR_GET_REASON() are available in all versions of SSLeay and OpenSSL.

1400

OpenSSL Manual

Name
ERR_load_crypto_strings, SSL_load_error_strings and ERR_free_strings — load and free error strings

Synopsis
#include <openssl/err.h>

void ERR_load_crypto_strings(void);
void ERR_free_strings(void);

#include <openssl/ssl.h>

void SSL_load_error_strings(void);

DESCRIPTION

ERR_load_crypto_strings() registers the error strings for all libcrypto functions. SSL_load_error_strings() does the same, but
also registers the libssl error strings.

One of these functions should be called before generating textual error messages. However, this is not required when memory
usage is an issue.

ERR_free_strings() frees all previously loaded error strings.

RETURN VALUES

ERR_load_crypto_strings(), SSL_load_error_strings() and ERR_free_strings() return no values.

SEE ALSO

err(3), ERR_error_string(3)

HISTORY

ERR_load_error_strings(), SSL_load_error_strings() and ERR_free_strings() are available in all versions of SSLeay and
OpenSSL.

1401

OpenSSL Manual

Name
ERR_load_strings, ERR_PACK and ERR_get_next_error_library — load arbitrary error strings

Synopsis
#include <openssl/err.h>

void ERR_load_strings(int lib, ERR_STRING_DATA str[]);

int ERR_get_next_error_library(void);

unsigned long ERR_PACK(int lib, int func, int reason);

DESCRIPTION

ERR_load_strings() registers error strings for library number lib.

str is an array of error string data:

typedef struct ERR_string_data_st
{
 unsigned long error;
 char *string;
} ERR_STRING_DATA;

and reason code: error = ERR_PACK(lib, func, reason). ERR_PACK() is a macro.

The last entry in the array is {0,0}.

ERR_get_next_error_library() can be used to assign library numbers to user libraries at runtime.

RETURN VALUE

ERR_load_strings() returns no value. ERR_PACK() return the error code. ERR_get_next_error_library() returns a new library
number.

SEE ALSO

err(3), ERR_load_strings(3)

HISTORY

ERR_load_error_strings() and ERR_PACK() are available in all versions of SSLeay and OpenSSL.
ERR_get_next_error_library() was added in SSLeay 0.9.0.

1402

OpenSSL Manual

Name
ERR_print_errors and ERR_print_errors_fp — print error messages

Synopsis
#include <openssl/err.h>

void ERR_print_errors(BIO *bp);
void ERR_print_errors_fp(FILE *fp);

DESCRIPTION

ERR_print_errors() is a convenience function that prints the error strings for all errors that OpenSSL has recorded to bp, thus
emptying the error queue.

ERR_print_errors_fp() is the same, except that the output goes to a FILE.

The error strings will have the following format:

[pid]:error:[error code]:[library name]:[function name]:[reason string]:[file name]:[line]:[optional text message]

error code is an 8 digit hexadecimal number. library name, function name and reason string are ASCII text, as is optional text
message if one was set for the respective error code.

If there is no text string registered for the given error code, the error string will contain the numeric code.

RETURN VALUES

ERR_print_errors() and ERR_print_errors_fp() return no values.

SEE ALSO

err(3), ERR_error_string(3), ERR_get_error(3), ERR_load_crypto_strings(3), SSL_load_error_strings(3)

HISTORY

ERR_print_errors() and ERR_print_errors_fp() are available in all versions of SSLeay and OpenSSL.

1403

OpenSSL Manual

Name
ERR_put_error and ERR_add_error_data — record an error

Synopsis
#include <openssl/err.h>

void ERR_put_error(int lib, int func, int reason, const char *file,
 int line);

void ERR_add_error_data(int num, …);

DESCRIPTION

ERR_put_error() adds an error code to the thread's error queue. It signals that the error of reason code reason occurred in
function func of library lib, in line number line of file. This function is usually called by a macro.

ERR_add_error_data() associates the concatenation of its num string arguments with the error code added last.

ERR_load_strings(3) can be used to register error strings so that the application can a generate human-readable error messages
for the error code.

RETURN VALUES

ERR_put_error() and ERR_add_error_data() return no values.

SEE ALSO

err(3), ERR_load_strings(3)

HISTORY

ERR_put_error() is available in all versions of SSLeay and OpenSSL. ERR_add_error_data() was added in SSLeay 0.9.0.

1404

OpenSSL Manual

Name
ERR_remove_state — free a thread's error queue

Synopsis
#include <openssl/err.h>

void ERR_remove_state(unsigned long pid);

DESCRIPTION

ERR_remove_state() frees the error queue associated with thread pid. If pid == 0, the current thread will have its error queue
removed.

Since error queue data structures are allocated automatically for new threads, they must be freed when threads are terminated
in order to avoid memory leaks.

RETURN VALUE

ERR_remove_state() returns no value.

SEE ALSO

err(3)

HISTORY

ERR_remove_state() is available in all versions of SSLeay and OpenSSL.

1405

OpenSSL Manual

Name
ERR_set_mark and ERR_pop_to_mark — set marks and pop errors until mark

Synopsis
#include <openssl/err.h>

int ERR_set_mark(void);

int ERR_pop_to_mark(void);

DESCRIPTION

ERR_set_mark() sets a mark on the current topmost error record if there is one.

ERR_pop_to_mark() will pop the top of the error stack until a mark is found. The mark is then removed. If there is no mark,
the whole stack is removed.

RETURN VALUES

ERR_set_mark() returns 0 if the error stack is empty, otherwise 1.

ERR_pop_to_mark() returns 0 if there was no mark in the error stack, which implies that the stack became empty, otherwise 1.

SEE ALSO

err(3)

HISTORY

ERR_set_mark() and ERR_pop_to_mark() were added in OpenSSL 0.9.8.

1406

OpenSSL Manual

Name
evp — high-level cryptographic functions

Synopsis
#include <openssl/evp.h>

DESCRIPTION

The EVP library provides a high-level interface to cryptographic functions.

EVP_Seal… and EVP_Open… provide public key encryption and decryption to implement digital "envelopes".

The EVP_Sign… and EVP_Verify… functions implement digital signatures.

Symmetric encryption is available with the EVP_Encrypt… functions. The EVP_Digest… functions provide message digests.

The EVP_PKEY… functions provide a high level interface to asymmetric algorithms.

The EVP_Encode… and EVP_Decode… functions implement base 64 encoding and decoding.

Algorithms are loaded with OpenSSL_add_all_algorithms(3).

All the symmetric algorithms (ciphers), digests and asymmetric algorithms (public key algorithms) can be replaced by ENGINE
modules providing alternative implementations. If ENGINE implementations of ciphers or digests are registered as defaults,
then the various EVP functions will automatically use those implementations automatically in preference to built in software
implementations. For more information, consult the engine(3) man page.

Although low level algorithm specific functions exist for many algorithms their use is discouraged. They cannot be used with
an ENGINE and ENGINE versions of new algorithms cannot be accessed using the low level functions. Also makes code
harder to adapt to new algorithms and some options are not cleanly supported at the low level and some operations are more
efficient using the high level interface.

SEE ALSO

EVP_DigestInit(3), EVP_EncryptInit(3), EVP_OpenInit(3), EVP_SealInit(3), EVP_SignInit(3), EVP_VerifyInit(3),
EVP_EncodeInit(3), OpenSSL_add_all_algorithms(3), engine(3)

1407

OpenSSL Manual

Name
EVP_BytesToKey — password based encryption routine

Synopsis
#include <openssl/evp.h>

int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
 const unsigned char *salt,
 const unsigned char *data, int datal, int count,
 unsigned char *key,unsigned char *iv);

DESCRIPTION

EVP_BytesToKey() derives a key and IV from various parameters. type is the cipher to derive the key and IV for. md is the
message digest to use. The salt parameter is used as a salt in the derivation: it should point to an 8 byte buffer or NULL if no
salt is used. data is a buffer containing datal bytes which is used to derive the keying data. count is the iteration count to use.
The derived key and IV will be written to key and iv respectively.

NOTES

A typical application of this function is to derive keying material for an encryption algorithm from a password in the data
parameter.

Increasing the count parameter slows down the algorithm which makes it harder for an attacker to peform a brute force attack
using a large number of candidate passwords.

If the total key and IV length is less than the digest length and MD5 is used then the derivation algorithm is compatible with
PKCS#5 v1.5 otherwise a non standard extension is used to derive the extra data.

Newer applications should use more standard algorithms such as PKCS#5 v2.0 for key derivation.

KEY DERIVATION ALGORITHM

The key and IV is derived by concatenating D_1, D_2, etc until enough data is available for the key and IV. D_i is defined as:

D_i = HASH^count(D_(i-1) || data || salt)

where || denotes concatentaion, D_0 is empty, HASH is the digest algorithm in use, HASH^1(data) is simply HASH(data),
HASH^2(data) is HASH(HASH(data)) and so on.

The initial bytes are used for the key and the subsequent bytes for the IV.

RETURN VALUES

EVP_BytesToKey() returns the size of the derived key in bytes.

SEE ALSO

evp(3), rand(3), EVP_EncryptInit(3)

HISTORY

1408

OpenSSL Manual

Name
EVP_MD_CTX_init, EVP_MD_CTX_create, EVP_DigestInit_ex, EVP_DigestUpdate, EVP_DigestFinal_ex,
EVP_MD_CTX_cleanup, EVP_MD_CTX_destroy, EVP_MAX_MD_SIZE, EVP_MD_CTX_copy_ex,
EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey_type, EVP_MD_size, EVP_MD_block_size, EVP_MD_CTX_md,
EVP_MD_CTX_size, EVP_MD_CTX_block_size, EVP_MD_CTX_type, EVP_md_null, EVP_md2, EVP_md5, EVP_sha,
EVP_sha1, EVP_sha224, EVP_sha256, EVP_sha384, EVP_sha512, EVP_dss, EVP_dss1, EVP_mdc2, EVP_ripemd160,
EVP_get_digestbyname, EVP_get_digestbynid and EVP_get_digestbyobj — EVP digest routines

Synopsis
#include <openssl/evp.h>

void EVP_MD_CTX_init(EVP_MD_CTX *ctx);
EVP_MD_CTX *EVP_MD_CTX_create(void);

int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, size_t cnt);
int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md,
 unsigned int *s);

int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);

int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out,const EVP_MD_CTX *in);

int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
int EVP_DigestFinal(EVP_MD_CTX *ctx, unsigned char *md,
 unsigned int *s);

int EVP_MD_CTX_copy(EVP_MD_CTX *out,EVP_MD_CTX *in);

#define EVP_MAX_MD_SIZE 64 /* SHA512 */

int EVP_MD_type(const EVP_MD *md);
int EVP_MD_pkey_type(const EVP_MD *md);
int EVP_MD_size(const EVP_MD *md);
int EVP_MD_block_size(const EVP_MD *md);

const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx);
#define EVP_MD_CTX_size(e) EVP_MD_size(EVP_MD_CTX_md(e))
#define EVP_MD_CTX_block_size(e) EVP_MD_block_size((e)->digest)
#define EVP_MD_CTX_type(e) EVP_MD_type((e)->digest)

const EVP_MD *EVP_md_null(void);
const EVP_MD *EVP_md2(void);
const EVP_MD *EVP_md5(void);
const EVP_MD *EVP_sha(void);
const EVP_MD *EVP_sha1(void);
const EVP_MD *EVP_dss(void);
const EVP_MD *EVP_dss1(void);
const EVP_MD *EVP_mdc2(void);
const EVP_MD *EVP_ripemd160(void);

const EVP_MD *EVP_sha224(void);
const EVP_MD *EVP_sha256(void);
const EVP_MD *EVP_sha384(void);
const EVP_MD *EVP_sha512(void);

const EVP_MD *EVP_get_digestbyname(const char *name);
#define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a))
#define EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a))

DESCRIPTION

The EVP digest routines are a high level interface to message digests.

EVP_MD_CTX_init() initializes digest context ctx.

EVP_MD_CTX_create() allocates, initializes and returns a digest context.

1409

OpenSSL Manual

EVP_DigestInit_ex() sets up digest context ctx to use a digest type from ENGINE impl. ctx must be initialized before calling
this function. type will typically be supplied by a functionsuch as EVP_sha1(). If impl is NULL then the default implementation
of digest type is used.

EVP_DigestUpdate() hashes cnt bytes of data at d into the digest context ctx. This function can be called several times on
the same ctx to hash additional data.

EVP_DigestFinal_ex() retrieves the digest value from ctx and places it in md. If the s parameter is not NULL then the number of
bytes of data written (i.e. the length of the digest) will be written to the integer at s, at most EVP_MAX_MD_SIZE bytes will be
written. After calling EVP_DigestFinal_ex() no additional calls to EVP_DigestUpdate() can be made, but EVP_DigestInit_ex()
can be called to initialize a new digest operation.

EVP_MD_CTX_cleanup() cleans up digest context ctx, it should be called after a digest context is no longer needed.

EVP_MD_CTX_destroy() cleans up digest context ctx and frees up the space allocated to it, it should be called only on a
context created using EVP_MD_CTX_create().

EVP_MD_CTX_copy_ex() can be used to copy the message digest state from in to out. This is useful if large amounts of data
are to be hashed which only differ in the last few bytes. out must be initialized before calling this function.

EVP_DigestInit() behaves in the same way as EVP_DigestInit_ex() except the passed context ctx does not have to be initialized,
and it always uses the default digest implementation.

EVP_DigestFinal() is similar to EVP_DigestFinal_ex() except the digest context ctx is automatically cleaned up.

EVP_MD_CTX_copy() is similar to EVP_MD_CTX_copy_ex() except the destination out does not have to be initialized.

EVP_MD_size() and EVP_MD_CTX_size() return the size of the message digest when passed an EVP_MD or an
EVP_MD_CTX structure, i.e. the size of the hash.

EVP_MD_block_size() and EVP_MD_CTX_block_size() return the block size of the message digest when passed an
EVP_MD or an EVP_MD_CTX structure.

EVP_MD_type() and EVP_MD_CTX_type() return the NID of the OBJECT IDENTIFIER representing the given message
digest when passed an EVP_MD structure. For example EVP_MD_type(EVP_sha1()) returns NID_sha1. This function is
normally used when setting ASN1 OIDs.

EVP_MD_CTX_md() returns the EVP_MD structure corresponding to the passed EVP_MD_CTX.

EVP_MD_pkey_type() returns the NID of the public key signing algorithm associated with this digest. For example
EVP_sha1() is associated with RSA so this will return NID_sha1WithRSAEncryption. Since digests and signature algorithms
are no longer linked this function is only retained for compatibility reasons.

EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_sha224(), EVP_sha256(), EVP_sha384(), EVP_sha512(),
EVP_mdc2() and EVP_ripemd160() return EVP_MD structures for the MD2, MD5, SHA, SHA1, SHA224, SHA256,
SHA384, SHA512, MDC2 and RIPEMD160 digest algorithms respectively.

EVP_dss() and EVP_dss1() return EVP_MD structures for SHA and SHA1 digest algorithms but using DSS (DSA) for the
signature algorithm. Note: there is no need to use these pseudo-digests in OpenSSL 1.0.0 and later, they are however retained
for compatibility.

EVP_md_null() is a "null" message digest that does nothing: i.e. the hash it returns is of zero length.

EVP_get_digestbyname(), EVP_get_digestbynid() and EVP_get_digestbyobj() return an EVP_MD structure when passed a
digest name, a digest NID or an ASN1_OBJECT structure respectively. The digest table must be initialized using, for example,
OpenSSL_add_all_digests() for these functions to work.

RETURN VALUES

EVP_DigestInit_ex(), EVP_DigestUpdate() and EVP_DigestFinal_ex() return 1 for success and 0 for failure.

1410

OpenSSL Manual

EVP_MD_CTX_copy_ex() returns 1 if successful or 0 for failure.

EVP_MD_type(), EVP_MD_pkey_type() and EVP_MD_type() return the NID of the corresponding OBJECT IDENTIFIER
or NID_undef if none exists.

EVP_MD_size(), EVP_MD_block_size(), EVP_MD_CTX_size() and EVP_MD_CTX_block_size() return the digest or block
size in bytes.

EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_dss(), EVP_dss1(), EVP_mdc2() and
EVP_ripemd160() return pointers to the corresponding EVP_MD structures.

EVP_get_digestbyname(), EVP_get_digestbynid() and EVP_get_digestbyobj() return either an EVP_MD structure or NULL
if an error occurs.

NOTES

The EVP interface to message digests should almost always be used in preference to the low level interfaces. This is because
the code then becomes transparent to the digest used and much more flexible.

New applications should use the SHA2 digest algorithms such as SHA256. The other digest algorithms are still in common use.

For most applications the impl parameter to EVP_DigestInit_ex() will be set to NULL to use the default digest implementation.

The functions EVP_DigestInit(), EVP_DigestFinal() and EVP_MD_CTX_copy() are obsolete but are retained to
maintain compatibility with existing code. New applications should use EVP_DigestInit_ex(), EVP_DigestFinal_ex() and
EVP_MD_CTX_copy_ex() because they can efficiently reuse a digest context instead of initializing and cleaning it up on each
call and allow non default implementations of digests to be specified.

In OpenSSL 0.9.7 and later if digest contexts are not cleaned up after use memory leaks will occur.

Stack allocation of EVP_MD_CTX structures is common, for example:

EVP_MD_CTX mctx;
EVP_MD_CTX_init(&mctx);

This will cause binary compatibility issues if the size of EVP_MD_CTX structure changes (this will only happen with a major
release of OpenSSL). Applications wishing to avoid this should use EVP_MD_CTX_create() instead:

EVP_MD_CTX *mctx;
mctx = EVP_MD_CTX_create();

EXAMPLE

This example digests the data "Test Message\n" and "Hello World\n", using the digest name passed on the command line.

#include <stdio.h>
#include <openssl/evp.h>

main(int argc, char *argv[])
{
EVP_MD_CTX *mdctx;
const EVP_MD *md;
char mess1[] = "Test Message\n";
char mess2[] = "Hello World\n";
unsigned char md_value[EVP_MAX_MD_SIZE];
int md_len, i;

OpenSSL_add_all_digests();

if(!argv[1]) {
 printf("Usage: mdtest digestname\n");
 exit(1);
}

md = EVP_get_digestbyname(argv[1]);

1411

OpenSSL Manual

if(!md) {
 printf("Unknown message digest %s\n", argv[1]);
 exit(1);
}

mdctx = EVP_MD_CTX_create();
EVP_DigestInit_ex(mdctx, md, NULL);
EVP_DigestUpdate(mdctx, mess1, strlen(mess1));
EVP_DigestUpdate(mdctx, mess2, strlen(mess2));
EVP_DigestFinal_ex(mdctx, md_value, &md_len);
EVP_MD_CTX_destroy(mdctx);

printf("Digest is: ");
for(i = 0; i < md_len; i++)
 printf("%02x", md_value[i]);
printf("\n");

/* Call this once before exit. */
EVP_cleanup();
exit(0);
}

SEE ALSO

dgst(1), evp(3)

HISTORY

EVP_DigestInit(), EVP_DigestUpdate() and EVP_DigestFinal() are available in all versions of SSLeay and OpenSSL.

EVP_MD_CTX_init(), EVP_MD_CTX_create(), EVP_MD_CTX_copy_ex(), EVP_MD_CTX_cleanup(),
EVP_MD_CTX_destroy(), EVP_DigestInit_ex() and EVP_DigestFinal_ex() were added in OpenSSL 0.9.7.

EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_dss(), EVP_dss1(), EVP_mdc2() and
EVP_ripemd160() were changed to return truely const EVP_MD * in OpenSSL 0.9.7.

The link between digests and signing algorithms was fixed in OpenSSL 1.0 and later, so now EVP_sha1() can be used with
RSA and DSA; there is no need to use EVP_dss1() any more.

OpenSSL 1.0 and later does not include the MD2 digest algorithm in the default configuration due to its security weaknesses.

1412

OpenSSL Manual

Name
EVP_DigestSignInit, EVP_DigestSignUpdate and EVP_DigestSignFinal — EVP signing functions

Synopsis
#include <openssl/evp.h>

int EVP_DigestSignInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey);
int EVP_DigestSignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_DigestSignFinal(EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen);

DESCRIPTION

The EVP signature routines are a high level interface to digital signatures.

EVP_DigestSignInit() sets up signing context ctx to use digest type from ENGINE impl and private key pkey. ctx must be
initialized with EVP_MD_CTX_init() before calling this function. If pctx is not NULL the EVP_PKEY_CTX of the signing
operation will be written to *pctx: this can be used to set alternative signing options.

EVP_DigestSignUpdate() hashes cnt bytes of data at d into the signature context ctx. This function can be called several times
on the same ctx to include additional data. This function is currently implemented usig a macro.

EVP_DigestSignFinal() signs the data in ctx places the signature in sig. If sig is NULL then the maximum size of the output
buffer is written to the siglen parameter. If sig is not NULL then before the call the siglen parameter should contain the length
of the sig buffer, if the call is successful the signature is written to sig and the amount of data written to siglen.

RETURN VALUES

EVP_DigestSignInit() EVP_DigestSignUpdate() and EVP_DigestSignaFinal() return 1 for success and 0 or a negative value
for failure. In particular a return value of -2 indicates the operation is not supported by the public key algorithm.

The error codes can be obtained from ERR_get_error(3).

NOTES

The EVP interface to digital signatures should almost always be used in preference to the low level interfaces. This is because
the code then becomes transparent to the algorithm used and much more flexible.

In previous versions of OpenSSL there was a link between message digest types and public key algorithms. This meant that
"clone" digests such as EVP_dss1() needed to be used to sign using SHA1 and DSA. This is no longer necessary and the use
of clone digest is now discouraged.

For some key types and parameters the random number generator must be seeded or the operation will fail.

The call to EVP_DigestSignFinal() internally finalizes a copy of the digest context. This means that calls to EVP_Di-
gestSignUpdate() and EVP_DigestSignFinal() can be called later to digest and sign additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by calling EVP_MD_C-
TX_cleanup() or a memory leak will occur.

The use of EVP_PKEY_size() with these functions is discouraged because some signature operations may have a signature
length which depends on the parameters set. As a result EVP_PKEY_size() would have to return a value which indicates the
maximum possible signature for any set of parameters.

SEE ALSO

EVP_DigestVerifyInit(3), EVP_DigestInit(3), err(3), evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)

1413

OpenSSL Manual

HISTORY

EVP_DigestSignInit(), EVP_DigestSignUpdate() and EVP_DigestSignFinal() were first added to OpenSSL 1.0.0.

1414

OpenSSL Manual

Name
EVP_DigestVerifyInit, EVP_DigestVerifyUpdate and EVP_DigestVerifyFinal — EVP signature verification functions

Synopsis
#include <openssl/evp.h>

int EVP_DigestVerifyInit(EVP_MD_CTX *ctx, EVP_PKEY_CTX **pctx,
 const EVP_MD *type, ENGINE *e, EVP_PKEY *pkey);
int EVP_DigestVerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_DigestVerifyFinal(EVP_MD_CTX *ctx, unsigned char *sig, size_t siglen);

DESCRIPTION

The EVP signature routines are a high level interface to digital signatures.

EVP_DigestVerifyInit() sets up verification context ctx to use digest type from ENGINE impl and public key pkey. ctx
must be initialized with EVP_MD_CTX_init() before calling this function. If pctx is not NULL the EVP_PKEY_CTX of the
verification operation will be written to *pctx: this can be used to set alternative verification options.

EVP_DigestVerifyUpdate() hashes cnt bytes of data at d into the verification context ctx. This function can be called several
times on the same ctx to include additional data. This function is currently implemented using a macro.

EVP_DigestVerifyFinal() verifies the data in ctx against the signature in sig of length siglen.

RETURN VALUES

EVP_DigestVerifyInit() and EVP_DigestVerifyUpdate() return 1 for success and 0 or a negative value for failure. In particular
a return value of -2 indicates the operation is not supported by the public key algorithm.

EVP_DigestVerifyFinal() returns 1 for success; any other value indicates failure. A return value of zero indicates that the
signature did not verify successfully (that is, tbs did not match the original data or the signature had an invalid form), while
other values indicate a more serious error (and sometimes also indicate an invalid signature form).

The error codes can be obtained from ERR_get_error(3).

NOTES

The EVP interface to digital signatures should almost always be used in preference to the low level interfaces. This is because
the code then becomes transparent to the algorithm used and much more flexible.

In previous versions of OpenSSL there was a link between message digest types and public key algorithms. This meant that
"clone" digests such as EVP_dss1() needed to be used to sign using SHA1 and DSA. This is no longer necessary and the use
of clone digest is now discouraged.

For some key types and parameters the random number generator must be seeded or the operation will fail.

The call to EVP_DigestVerifyFinal() internally finalizes a copy of the digest context. This means that EVP_VerifyUpdate()
and EVP_VerifyFinal() can be called later to digest and verify additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by calling EVP_MD_C-
TX_cleanup() or a memory leak will occur.

SEE ALSO

EVP_DigestSignInit(3), EVP_DigestInit(3), err(3), evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)

HISTORY

EVP_DigestVerifyInit(), EVP_DigestVerifyUpdate() and EVP_DigestVerifyFinal() were first added to OpenSSL 1.0.0.

1415

OpenSSL Manual

Name
EVP_EncodeInit, EVP_EncodeUpdate, EVP_EncodeFinal, EVP_EncodeBlock, EVP_DecodeInit, EVP_DecodeUpdate,
EVP_DecodeFinal and EVP_DecodeBlock — EVP base 64 encode/decode routines

Synopsis
#include <openssl/evp.h>

void EVP_EncodeInit(EVP_ENCODE_CTX *ctx);
void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
 const unsigned char *in, int inl);
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl);
int EVP_EncodeBlock(unsigned char *t, const unsigned char *f, int n);

void EVP_DecodeInit(EVP_ENCODE_CTX *ctx);
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, unsigned char *out, int *outl,
 const unsigned char *in, int inl);
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, unsigned
 char *out, int *outl);
int EVP_DecodeBlock(unsigned char *t, const unsigned char *f, int n);

DESCRIPTION

The EVP encode routines provide a high level interface to base 64 encoding and decoding. Base 64 encoding converts binary
data into a printable form that uses the characters A-Z, a-z, 0-9, "+" and "/" to represent the data. For every 3 bytes of binary
data provided 4 bytes of base 64 encoded data will be produced plus some occasional newlines (see below). If the input data
length is not a multiple of 3 then the output data will be padded at the end using the "=" character.

Encoding of binary data is performed in blocks of 48 input bytes (or less for the final block). For each 48 byte input block
encoded 64 bytes of base 64 data is output plus an additional newline character (i.e. 65 bytes in total). The final block (which
may be less than 48 bytes) will output 4 bytes for every 3 bytes of input. If the data length is not divisible by 3 then a full 4
bytes is still output for the final 1 or 2 bytes of input. Similarly a newline character will also be output.

EVP_EncodeInit() initialises ctx for the start of a new encoding operation.

EVP_EncodeUpdate() encode inl bytes of data found in the buffer pointed to by in. The output is stored in the buffer out and
the number of bytes output is stored in *outl. It is the caller's responsibility to ensure that the buffer at out is sufficiently large to
accommodate the output data. Only full blocks of data (48 bytes) will be immediately processed and output by this function. Any
remainder is held in the ctx object and will be processed by a subsequent call to EVP_EncodeUpdate() or EVP_EncodeFinal().
To calculate the required size of the output buffer add together the value of inl with the amount of unprocessed data held in ctx
and divide the result by 48 (ignore any remainder). This gives the number of blocks of data that will be processed. Ensure the
output buffer contains 65 bytes of storage for each block, plus an additional byte for a NUL terminator. EVP_EncodeUpdate()
may be called repeatedly to process large amounts of input data. In the event of an error EVP_EncodeUpdate() will set *outl
to 0.

EVP_EncodeFinal() must be called at the end of an encoding operation. It will process any partial block of data remaining in
the ctx object. The output data will be stored in out and the length of the data written will be stored in *outl. It is the caller's
responsibility to ensure that out is sufficiently large to accommodate the output data which will never be more than 65 bytes
plus an additional NUL terminator (i.e. 66 bytes in total).

EVP_EncodeBlock() encodes a full block of input data in f and of length dlen and stores it in t. For every 3 bytes of input
provided 4 bytes of output data will be produced. If dlen is not divisible by 3 then the block is encoded as a final block of
data and the output is padded such that it is always divisible by 4. Additionally a NUL terminator character will be added. For
example if 16 bytes of input data is provided then 24 bytes of encoded data is created plus 1 byte for a NUL terminator (i.e. 25
bytes in total). The length of the data generated without the NUL terminator is returned from the function.

EVP_DecodeInit() initialises ctx for the start of a new decoding operation.

EVP_DecodeUpdate() decodes inl characters of data found in the buffer pointed to by in. The output is stored in the buffer out
and the number of bytes output is stored in *outl. It is the caller's responsibility to ensure that the buffer at out is sufficiently
large to accommodate the output data. This function will attempt to decode as much data as possible in 4 byte chunks. Any

1416

OpenSSL Manual

whitespace, newline or carriage return characters are ignored. Any partial chunk of unprocessed data (1, 2 or 3 bytes) that
remains at the end will be held in the ctx object and processed by a subsequent call to EVP_DecodeUpdate(). If any illegal
base 64 characters are encountered or if the base 64 padding character "=" is encountered in the middle of the data then the
function returns -1 to indicate an error. A return value of 0 or 1 indicates successful processing of the data. A return value of 0
additionally indicates that the last input data characters processed included the base 64 padding character "=" and therefore no
more non-padding character data is expected to be processed. For every 4 valid base 64 bytes processed (ignoring whitespace,
carriage returns and line feeds), 3 bytes of binary output data will be produced (or less at the end of the data where the padding
character "=" has been used).

EVP_DecodeFinal() must be called at the end of a decoding operation. If there is any unprocessed data still in ctx then the
input data must not have been a multiple of 4 and therefore an error has occurred. The function will return -1 in this case.
Otherwise the function returns 1 on success.

EVP_DecodeBlock() will decode the block of n characters of base 64 data contained in f and store the result in t. Any leading
whitespace will be trimmed as will any trailing whitespace, newlines, carriage returns or EOF characters. After such trimming
the length of the data in f must be divisbile by 4. For every 4 input bytes exactly 3 output bytes will be produced. The output
will be padded with 0 bits if necessary to ensure that the output is always 3 bytes for every 4 input bytes. This function will
return the length of the data decoded or -1 on error.

RETURN VALUES

EVP_EncodeBlock() returns the number of bytes encoded excluding the NUL terminator.

EVP_DecodeUpdate() returns -1 on error and 0 or 1 on success. If 0 is returned then no more non-padding base 64 characters
are expected.

EVP_DecodeFinal() returns -1 on error or 1 on success.

EVP_DecodeBlock() returns the length of the data decoded or -1 on error.

SEE ALSO

evp(3)

1417

OpenSSL Manual

Name
EVP_CIPHER_CTX_init, EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex, EVP_DecryptInit_ex,
EVP_DecryptUpdate, EVP_DecryptFinal_ex, EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex,
EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_CIPHER_CTX_cleanup, EVP_EncryptInit,
EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal, EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid, EVP_CIPHER_block_size, EVP_CIPHER_key_length,
EVP_CIPHER_iv_length, EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher,
EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data, EVP_CIPHER_CTX_set_app_data,
EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags, EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1,
EVP_CIPHER_asn1_to_param and EVP_CIPHER_CTX_set_padding — EVP cipher routines

Synopsis
#include <openssl/evp.h>

void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *a);

int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 ENGINE *impl, unsigned char *key, unsigned char *iv);
int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);
int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl);

int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 ENGINE *impl, unsigned char *key, unsigned char *iv);
int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);
int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
 int *outl);

int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 ENGINE *impl, unsigned char *key, unsigned char *iv, int enc);
int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);
int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
 int *outl);

int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 unsigned char *key, unsigned char *iv);
int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl);

int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 unsigned char *key, unsigned char *iv);
int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
 int *outl);

int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 unsigned char *key, unsigned char *iv, int enc);
int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
 int *outl);

int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *a);

const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
#define EVP_get_cipherbynid(a) EVP_get_cipherbyname(OBJ_nid2sn(a))
#define EVP_get_cipherbyobj(a) EVP_get_cipherbynid(OBJ_obj2nid(a))

#define EVP_CIPHER_nid(e) ((e)->nid)
#define EVP_CIPHER_block_size(e) ((e)->block_size)
#define EVP_CIPHER_key_length(e) ((e)->key_len)
#define EVP_CIPHER_iv_length(e) ((e)->iv_len)
#define EVP_CIPHER_flags(e) ((e)->flags)
#define EVP_CIPHER_mode(e) ((e)->flags) & EVP_CIPH_MODE)
int EVP_CIPHER_type(const EVP_CIPHER *ctx);

1418

OpenSSL Manual

#define EVP_CIPHER_CTX_cipher(e) ((e)->cipher)
#define EVP_CIPHER_CTX_nid(e) ((e)->cipher->nid)
#define EVP_CIPHER_CTX_block_size(e) ((e)->cipher->block_size)
#define EVP_CIPHER_CTX_key_length(e) ((e)->key_len)
#define EVP_CIPHER_CTX_iv_length(e) ((e)->cipher->iv_len)
#define EVP_CIPHER_CTX_get_app_data(e) ((e)->app_data)
#define EVP_CIPHER_CTX_set_app_data(e,d) ((e)->app_data=(char *)(d))
#define EVP_CIPHER_CTX_type(c) EVP_CIPHER_type(EVP_CIPHER_CTX_cipher(c))
#define EVP_CIPHER_CTX_flags(e) ((e)->cipher->flags)
#define EVP_CIPHER_CTX_mode(e) ((e)->cipher->flags & EVP_CIPH_MODE)

int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);

DESCRIPTION

The EVP cipher routines are a high level interface to certain symmetric ciphers.

EVP_CIPHER_CTX_init() initializes cipher contex ctx.

EVP_EncryptInit_ex() sets up cipher context ctx for encryption with cipher type from ENGINE impl. ctx must be initialized
before calling this function. type is normally supplied by a function such as EVP_des_cbc(). If impl is NULL then the default
implementation is used. key is the symmetric key to use and iv is the IV to use (if necessary), the actual number of bytes
used for the key and IV depends on the cipher. It is possible to set all parameters to NULL except type in an initial call and
supply the remaining parameters in subsequent calls, all of which have type set to NULL. This is done when the default cipher
parameters are not appropriate.

EVP_EncryptUpdate() encrypts inl bytes from the buffer in and writes the encrypted version to out. This function can be
called multiple times to encrypt successive blocks of data. The amount of data written depends on the block alignment of the
encrypted data: as a result the amount of data written may be anything from zero bytes to (inl + cipher_block_size - 1) so out
should contain sufficient room. The actual number of bytes written is placed in outl.

If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts the "final" data, that is any data that remains in a
partial block. It uses “standard block padding” (aka PKCS padding). The encrypted final data is written to out which should
have sufficient space for one cipher block. The number of bytes written is placed in outl. After this function is called the
encryption operation is finished and no further calls to EVP_EncryptUpdate() should be made.

If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more data and it will return an error if any data remains
in a partial block: that is if the total data length is not a multiple of the block size.

EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the corresponding decryption operations.
EVP_DecryptFinal() will return an error code if padding is enabled and the final block is not correctly formatted. The parameters
and restrictions are identical to the encryption operations except that if padding is enabled the decrypted data buffer out passed
to EVP_DecryptUpdate() should have sufficient room for (inl + cipher_block_size) bytes unless the cipher block size is 1 in
which case inl bytes is sufficient.

EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are functions that can be used for decryption or
encryption. The operation performed depends on the value of the enc parameter. It should be set to 1 for encryption, 0 for
decryption and -1 to leave the value unchanged (the actual value of 'enc' being supplied in a previous call).

EVP_CIPHER_CTX_cleanup() clears all information from a cipher context and free up any allocated memory associate with
it. It should be called after all operations using a cipher are complete so sensitive information does not remain in memory.

EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a similar way to EVP_EncryptInit_ex(),
EVP_DecryptInit_ex and EVP_CipherInit_ex() except the ctx parameter does not need to be initialized and they always use
the default cipher implementation.

EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() behave in a similar way to EVP_EncryptFinal_ex(),
EVP_DecryptFinal_ex() and EVP_CipherFinal_ex() except ctx is automatically cleaned up after the call.

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an EVP_CIPHER structure when
passed a cipher name, a NID or an ASN1_OBJECT structure.

1419

OpenSSL Manual

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when passed an EVP_CIPHER or
EVP_CIPHER_CTX structure. The actual NID value is an internal value which may not have a corresponding OBJECT
IDENTIFIER.

EVP_CIPHER_CTX_set_padding() enables or disables padding. By default encryption operations are padded using standard
block padding and the padding is checked and removed when decrypting. If the pad parameter is zero then no padding is
performed, the total amount of data encrypted or decrypted must then be a multiple of the block size or an error will occur.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key length of a cipher when passed
an EVP_CIPHER or EVP_CIPHER_CTX structure. The constant EVP_MAX_KEY_LENGTH is the maximum
key length for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a given cipher, the value of
EVP_CIPHER_CTX_key_length() may be different for variable key length ciphers.

EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx. If the cipher is a fixed length cipher then attempting
to set the key length to any value other than the fixed value is an error.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV length of a cipher when passed an
EVP_CIPHER or EVP_CIPHER_CTX. It will return zero if the cipher does not use an IV. The constant
EVP_MAX_IV_LENGTH is the maximum IV length for all ciphers.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block size of a cipher when passed an
EVP_CIPHER or EVP_CIPHER_CTX structure. The constant EVP_MAX_IV_LENGTH is also the maximum block
length for all ciphers.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed cipher or context. This "type" is the actual
NID of the cipher OBJECT IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and 128 bit RC2 have the
same NID. If the cipher does not have an object identifier or does not have ASN1 support this function will return NID_undef.

EVP_CIPHER_CTX_cipher() returns the EVP_CIPHER structure when passed an EVP_CIPHER_CTX structure.

EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode: EVP_CIPH_ECB_MODE,
EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then
EVP_CIPH_STREAM_CIPHER is returned.

EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based on the passed cipher. This will typically
include any parameters and an IV. The cipher IV (if any) must be set when this call is made. This call should be made before
the cipher is actually "used" (before any EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function may
fail if the cipher does not have any ASN1 support.

EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1 AlgorithmIdentifier "parameter". The precise
effect depends on the cipher In the case of RC2, for example, it will set the IV and effective key length. This function should be
called after the base cipher type is set but before the key is set. For example EVP_CipherInit() will be called with the IV and key
set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally EVP_CipherInit() again with all parameters except
the key set to NULL. It is possible for this function to fail if the cipher does not have any ASN1 support or the parameters
cannot be set (for example the RC2 effective key length is not supported.

EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined and set. Currently only the RC2 effec-
tive key length and the number of rounds of RC5 can be set.

RETURN VALUES

EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex() return 1 for success and 0 for failure.

EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure. EVP_DecryptFinal_ex() returns 0 if
the decrypt failed or 1 for success.

EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure. EVP_CipherFinal_ex() returns 0 for a
decryption failure or 1 for success.

EVP_CIPHER_CTX_cleanup() returns 1 for success and 0 for failure.

1420

OpenSSL Manual

EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj() return an EVP_CIPHER structure or NULL
on error.

EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.

EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block size.

EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key length.

EVP_CIPHER_CTX_set_padding() always returns 1.

EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV length or zero if the cipher does not use an IV.

EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's OBJECT IDENTIFIER or NID_undef
if it has no defined OBJECT IDENTIFIER.

EVP_CIPHER_CTX_cipher() returns an EVP_CIPHER structure.

EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return 1 for success or zero for failure.

CIPHER LISTING

All algorithms have a fixed key length unless otherwise stated.

EVP_enc_null()

Null cipher: does nothing.

EVP_des_cbc(void)
EVP_des_ecb(void)
EVP_des_cfb(void)
EVP_des_ofb(void)

DES in CBC, ECB, CFB and OFB modes respectively.

EVP_des_ede_cbc(void)
EVP_des_ede()
EVP_des_ede_ofb(void)
EVP_des_ede_cfb(void)

Two key triple DES in CBC, ECB, CFB and OFB modes respectively.

EVP_des_ede3_cbc(void)
EVP_des_ede3()
EVP_des_ede3_ofb(void)
EVP_des_ede3_cfb(void)

Three key triple DES in CBC, ECB, CFB and OFB modes respectively.

EVP_desx_cbc(void)

DESX algorithm in CBC mode.

EVP_rc4(void)

RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.

EVP_rc4_40(void)

RC4 stream cipher with 40 bit key length. This is obsolete and new code should use EVP_rc4() and the
EVP_CIPHER_CTX_set_key_length() function.

1421

OpenSSL Manual

EVP_idea_cbc() EVP_idea_ecb(void)
EVP_idea_cfb(void)
EVP_idea_ofb(void)
EVP_idea_cbc(void)

IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.

EVP_rc2_cbc(void)
EVP_rc2_ecb(void)
EVP_rc2_cfb(void)
EVP_rc2_ofb(void)

RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher with an
additional parameter called "effective key bits" or "effective key length". By default both are set to 128 bits.

EVP_rc2_40_cbc(void)
EVP_rc2_64_cbc(void)

RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits. These are obsolete and
new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and EVP_CIPHER_CTX_ctrl() to set the
key length and effective key length.

EVP_bf_cbc(void)
EVP_bf_ecb(void)
EVP_bf_cfb(void)
EVP_bf_ofb(void);

Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher.

EVP_cast5_cbc(void)
EVP_cast5_ecb(void)
EVP_cast5_cfb(void)
EVP_cast5_ofb(void)

CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher.

EVP_rc5_32_12_16_cbc(void)
EVP_rc5_32_12_16_ecb(void)
EVP_rc5_32_12_16_cfb(void)
EVP_rc5_32_12_16_ofb(void)

RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length cipher with an
additional "number of rounds" parameter. By default the key length is set to 128 bits and 12 rounds.

NOTES

Where possible the EVP interface to symmetric ciphers should be used in preference to the low level interfaces. This is because
the code then becomes transparent to the cipher used and much more flexible. Additionally, the EVP interface will ensure the
use of platform specific cryptographic acceleration such as AES-NI (the low level interfaces do not provide the guarantee).

 PKCS padding works by adding n padding bytes of value n to make the total length of the encrypted data a multiple of the
block size. Padding is always added so if the data is already a multiple of the block size n will equal the block size. For example
if the block size is 8 and 11 bytes are to be encrypted then 5 padding bytes of value 5 will be added.

When decrypting the final block is checked to see if it has the correct form.

Although the decryption operation can produce an error if padding is enabled, it is not a strong test that the input data or key
is correct. A random block has better than 1 in 256 chance of being of the correct format and problems with the input data
earlier on will not produce a final decrypt error.

If padding is disabled then the decryption operation will always succeed if the total amount of data decrypted is a multiple
of the block size.

1422

OpenSSL Manual

The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(), EVP_CipherInit() and EVP_CipherFinal()
are obsolete but are retained for compatibility with existing code. New code should use EVP_EncryptInit_ex(),
EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(), EVP_CipherInit_ex() and EVP_CipherFinal_ex()
because they can reuse an existing context without allocating and freeing it up on each call.

BUGS

For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is a limitation of the current RC5 code rather
than the EVP interface.

EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with default key lengths. If
custom ciphers exceed these values the results are unpredictable. This is because it has become standard practice to define a
generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.

The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested for certain common S/MIME ciphers (RC2,
DES, triple DES) in CBC mode.

EXAMPLES

Encrypt a string using IDEA:

int do_crypt(char *outfile)
 {
 unsigned char outbuf[1024];
 int outlen, tmplen;
 /* Bogus key and IV: we'd normally set these from
 * another source.
 */
 unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
 unsigned char iv[] = {1,2,3,4,5,6,7,8};
 char intext[] = "Some Crypto Text";
 EVP_CIPHER_CTX ctx;
 FILE *out;

EVP_CIPHER_CTX_init(&ctx);
EVP_EncryptInit_ex(&ctx, EVP_idea_cbc(), NULL, key, iv);

if(!EVP_EncryptUpdate(&ctx, outbuf, &outlen, intext, strlen(intext)))
 {
 /* Error */
 return 0;
 }
/* Buffer passed to EVP_EncryptFinal() must be after data just
 * encrypted to avoid overwriting it.
 */
if(!EVP_EncryptFinal_ex(&ctx, outbuf + outlen, &tmplen))
 {
 /* Error */
 return 0;
 }
outlen += tmplen;
EVP_CIPHER_CTX_cleanup(&ctx);
/* Need binary mode for fopen because encrypted data is
 * binary data. Also cannot use strlen() on it because
 * it wont be null terminated and may contain embedded
 * nulls.
 */
out = fopen(outfile, "wb");
fwrite(outbuf, 1, outlen, out);
fclose(out);
return 1;
}

The ciphertext from the above example can be decrypted using the openssl utility with the command line (shown on two lines
for clarity):

openssl idea -d <filename
 -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708

1423

OpenSSL Manual

General encryption and decryption function example using FILE I/O and AES128 with a 128-bit key:

int do_crypt(FILE *in, FILE *out, int do_encrypt)
 {
 /* Allow enough space in output buffer for additional block */
 unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
 int inlen, outlen;
 EVP_CIPHER_CTX ctx;
 /* Bogus key and IV: we'd normally set these from
 * another source.
 */
 unsigned char key[] = "0123456789abcdeF";
 unsigned char iv[] = "1234567887654321";

/* Don't set key or IV right away; we want to check lengths */
EVP_CIPHER_CTX_init(&ctx);
EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
 do_encrypt);
OPENSSL_assert(EVP_CIPHER_CTX_key_length(&ctx) == 16);
OPENSSL_assert(EVP_CIPHER_CTX_iv_length(&ctx) == 16);

/* Now we can set key and IV */
EVP_CipherInit_ex(&ctx, NULL, NULL, key, iv, do_encrypt);

for(;;)
 {
 inlen = fread(inbuf, 1, 1024, in);
 if(inlen <= 0) break;
 if(!EVP_CipherUpdate(&ctx, outbuf, &outlen, inbuf, inlen))
 {
 /* Error */
 EVP_CIPHER_CTX_cleanup(&ctx);
 return 0;
 }
 fwrite(outbuf, 1, outlen, out);
 }
if(!EVP_CipherFinal_ex(&ctx, outbuf, &outlen))
 {
 /* Error */
 EVP_CIPHER_CTX_cleanup(&ctx);
 return 0;
 }
fwrite(outbuf, 1, outlen, out);

EVP_CIPHER_CTX_cleanup(&ctx);
return 1;
}

SEE ALSO

evp(3)

HISTORY

EVP_CIPHER_CTX_init(), EVP_EncryptInit_ex(), EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(),
EVP_DecryptFinal_ex(), EVP_CipherInit_ex(), EVP_CipherFinal_ex() and EVP_CIPHER_CTX_set_padding() appeared in
OpenSSL 0.9.7.

IDEA appeared in OpenSSL 0.9.7 but was often disabled due to patent concerns; the last patents expired in 2012.

1424

OpenSSL Manual

Name
EVP_OpenInit, EVP_OpenUpdate and EVP_OpenFinal — EVP envelope decryption

Synopsis
#include <openssl/evp.h>

int EVP_OpenInit(EVP_CIPHER_CTX *ctx,EVP_CIPHER *type,unsigned char *ek,
 int ekl,unsigned char *iv,EVP_PKEY *priv);
int EVP_OpenUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);
int EVP_OpenFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl);

DESCRIPTION

The EVP envelope routines are a high level interface to envelope decryption. They decrypt a public key encrypted symmetric
key and then decrypt data using it.

EVP_OpenInit() initializes a cipher context ctx for decryption with cipher type. It decrypts the encrypted symmetric key of
length ekl bytes passed in the ek parameter using the private key priv. The IV is supplied in the iv parameter.

EVP_OpenUpdate() and EVP_OpenFinal() have exactly the same properties as the EVP_DecryptUpdate() and
EVP_DecryptFinal() routines, as documented on the EVP_EncryptInit(3) manual page.

NOTES

It is possible to call EVP_OpenInit() twice in the same way as EVP_DecryptInit(). The first call should have priv set to NULL
and (after setting any cipher parameters) it should be called again with type set to NULL.

If the cipher passed in the type parameter is a variable length cipher then the key length will be set to the value of the recovered
key length. If the cipher is a fixed length cipher then the recovered key length must match the fixed cipher length.

RETURN VALUES

EVP_OpenInit() returns 0 on error or a non zero integer (actually the recovered secret key size) if successful.

EVP_OpenUpdate() returns 1 for success or 0 for failure.

EVP_OpenFinal() returns 0 if the decrypt failed or 1 for success.

SEE ALSO

evp(3), rand(3), EVP_EncryptInit(3), EVP_SealInit(3)

HISTORY

1425

OpenSSL Manual

Name
EVP_PKEY_copy_parameters, EVP_PKEY_missing_parameters, EVP_PKEY_cmp_parameters and EVP_PKEY_cmp —
public key parameter and comparison functions

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_missing_parameters(const EVP_PKEY *pkey);
int EVP_PKEY_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from);

int EVP_PKEY_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b);
int EVP_PKEY_cmp(const EVP_PKEY *a, const EVP_PKEY *b);

DESCRIPTION

The function EVP_PKEY_missing_parameters() returns 1 if the public key parameters of pkey are missing and 0 if they are
present or the algorithm doesn't use parameters.

The function EVP_PKEY_copy_parameters() copies the parameters from key from to key to.

The funcion EVP_PKEY_cmp_parameters() compares the parameters of keys a and b.

The funcion EVP_PKEY_cmp() compares the public key components and paramters (if present) of keys a and b.

NOTES

The main purpose of the functions EVP_PKEY_missing_parameters() and EVP_PKEY_copy_parameters() is to handle public
keys in certificates where the parameters are sometimes omitted from a public key if they are inherited from the CA that signed
it.

Since OpenSSL private keys contain public key components too the function EVP_PKEY_cmp() can also be used to determine
if a private key matches a public key.

RETURN VALUES

The function EVP_PKEY_missing_parameters() returns 1 if the public key parameters of pkey are missing and 0 if they are
present or the algorithm doesn't use parameters.

These functions EVP_PKEY_copy_parameters() returns 1 for success and 0 for failure.

The function EVP_PKEY_cmp_parameters() and EVP_PKEY_cmp() return 1 if the keys match, 0 if they don't match, -1 if
the key types are different and -2 if the operation is not supported.

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_keygen(3)

1426

OpenSSL Manual

Name
EVP_PKEY_ctrl and EVP_PKEY_ctrl_str — algorithm specific control operations

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
 int cmd, int p1, void *p2);
int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
 const char *value);

int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid);

#include <openssl/rsa.h>

int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);

int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_set_rsa_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);

#include <openssl/dsa.h>
int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);

#include <openssl/dh.h>
int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);

#include <openssl/ec.h>
int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);

DESCRIPTION

The function EVP_PKEY_CTX_ctrl() sends a control operation to the context ctx. The key type used must match keytype if
it is not -1. The parameter optype is a mask indicating which operations the control can be applied to. The control command
is indicated in cmd and any additional arguments in p1 and p2.

Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will instead call one of the algorithm specific macros
below.

The function EVP_PKEY_ctrl_str() allows an application to send an algorithm specific control operation to a context ctx in
string form. This is intended to be used for options specified on the command line or in text files. The commands supported are
documented in the openssl utility command line pages for the option -pkeyopt which is supported by the pkeyutl, genpkey
and req commands.

All the remaining "functions" are implemented as macros.

The EVP_PKEY_CTX_set_signature_md() macro sets the message digest type used in a signature. It can be used with any
public key algorithm supporting signature operations.

The macro EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for ctx. The pad parameter can take the value
RSA_PKCS1_PADDING for PKCS#1 padding, RSA_SSLV23_PADDING for SSLv23 padding, RSA_NO_PADDING for no
padding, RSA_PKCS1_OAEP_PADDING for OAEP padding (encrypt and decrypt only), RSA_X931_PADDING for X9.31
padding (signature operations only) and RSA_PKCS1_PSS_PADDING (sign and verify only).

Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md() is used. If this macro is called for
PKCS#1 padding the plaintext buffer is an actual digest value and is encapsulated in a DigestInfo structure according to PKCS#1
when signing and this structure is expected (and stripped off) when verifying. If this control is not used with RSA and PKCS#1
padding then the supplied data is used directly and not encapsulated. In the case of X9.31 padding for RSA the algorithm
identifier byte is added or checked and removed if this control is called. If it is not called then the first byte of the plaintext
buffer is expected to be the algorithm identifier byte.

The EVP_PKEY_CTX_set_rsa_pss_saltlen() macro sets the RSA PSS salt length to len as its name implies it is only supported
for PSS padding. Two special values are supported: -1 sets the salt length to the digest length. When signing -2 sets the salt

1427

OpenSSL Manual

length to the maximum permissible value. When verifying -2 causes the salt length to be automatically determined based on
the PSS block structure. If this macro is not called a salt length value of -2 is used by default.

The EVP_PKEY_CTX_set_rsa_rsa_keygen_bits() macro sets the RSA key length for RSA key genration to bits. If not
specified 1024 bits is used.

The EVP_PKEY_CTX_set_rsa_keygen_pubexp() macro sets the public exponent value for RSA key generation to pubexp
currently it should be an odd integer. The pubexp pointer is used internally by this function so it should not be modified or
free after the call. If this macro is not called then 65537 is used.

The macro EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for DSA parameter generation to bits.
If not specified 1024 is used.

The macro EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH prime parameter p for DH parameter
generation. If this macro is not called then 1024 is used.

The EVP_PKEY_CTX_set_dh_paramgen_generator() macro sets DH generator to gen for DH parameter generation. If not
specified 2 is used.

The EVP_PKEY_CTX_set_ec_paramgen_curve_nid() sets the EC curve for EC parameter generation to nid. For EC parameter
generation this macro must be called or an error occurs because there is no default curve.

RETURN VALUES

EVP_PKEY_CTX_ctrl() and its macros return a positive value for success and 0 or a negative value for failure. In particular
a return value of -2 indicates the operation is not supported by the public key algorithm.

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3), EVP_PKEY_keygen(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1428

OpenSSL Manual

Name
EVP_PKEY_CTX_new, EVP_PKEY_CTX_new_id, EVP_PKEY_CTX_dup and EVP_PKEY_CTX_free — public key
algorithm context functions.

Synopsis
#include <openssl/evp.h>

EVP_PKEY_CTX *EVP_PKEY_CTX_new(EVP_PKEY *pkey, ENGINE *e);
EVP_PKEY_CTX *EVP_PKEY_CTX_new_id(int id, ENGINE *e);
EVP_PKEY_CTX *EVP_PKEY_CTX_dup(EVP_PKEY_CTX *ctx);
void EVP_PKEY_CTX_free(EVP_PKEY_CTX *ctx);

DESCRIPTION

The EVP_PKEY_CTX_new() function allocates public key algorithm context using the algorithm specified in pkey and EN-
GINE e.

The EVP_PKEY_CTX_new_id() function allocates public key algorithm context using the algorithm specified by id and
ENGINE e. It is normally used when no EVP_PKEY structure is associated with the operations, for example during parameter
generation of key genration for some algorithms.

EVP_PKEY_CTX_dup() duplicates the context ctx.

EVP_PKEY_CTX_free() frees up the context ctx.

NOTES

The EVP_PKEY_CTX structure is an opaque public key algorithm context used by the OpenSSL high level public key API.
Contexts MUST NOT be shared between threads: that is it is not permissible to use the same context simultaneously in two
threads.

RETURN VALUES

EVP_PKEY_CTX_new(), EVP_PKEY_CTX_new_id(), EVP_PKEY_CTX_dup() returns either the newly allocated
EVP_PKEY_CTX structure of NULL if an error occurred.

EVP_PKEY_CTX_free() does not return a value.

SEE ALSO

EVP_PKEY_new(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1429

OpenSSL Manual

Name
EVP_PKEY_decrypt_init and EVP_PKEY_decrypt — decrypt using a public key algorithm

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_decrypt_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_decrypt(EVP_PKEY_CTX *ctx,
 unsigned char *out, size_t *outlen,
 const unsigned char *in, size_t inlen);

DESCRIPTION

The EVP_PKEY_decrypt_init() function initializes a public key algorithm context using key pkey for a decryption operation.

The EVP_PKEY_decrypt() function performs a public key decryption operation using ctx. The data to be decrypted is specified
using the in and inlen parameters. If out is NULL then the maximum size of the output buffer is written to the outlen parameter.
If out is not NULL then before the call the outlen parameter should contain the length of the out buffer, if the call is successful
the decrypted data is written to out and the amount of data written to outlen.

NOTES

After the call to EVP_PKEY_decrypt_init() algorithm specific control operations can be performed to set any appropriate
parameters for the operation.

The function EVP_PKEY_decrypt() can be called more than once on the same context if several operations are performed
using the same parameters.

RETURN VALUES

EVP_PKEY_decrypt_init() and EVP_PKEY_decrypt() return 1 for success and 0 or a negative value for failure. In particular
a return value of -2 indicates the operation is not supported by the public key algorithm.

EXAMPLE

Decrypt data using OAEP (for RSA keys):

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
unsigned char *out, *in;
size_t outlen, inlen;
EVP_PKEY *key;
/* NB: assumes key in, inlen are already set up
 * and that key is an RSA private key
 */
ctx = EVP_PKEY_CTX_new(key);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_decrypt_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_OAEP_PADDING) <= 0)
 /* Error */

/* Determine buffer length */
if (EVP_PKEY_decrypt(ctx, NULL, &outlen, in, inlen) <= 0)
 /* Error */

out = OPENSSL_malloc(outlen);

if (!out)
 /* malloc failure */

1430

OpenSSL Manual

if (EVP_PKEY_decrypt(ctx, out, &outlen, in, inlen) <= 0)
 /* Error */

/* Decrypted data is outlen bytes written to buffer out */

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1431

OpenSSL Manual

Name
EVP_PKEY_derive_init, EVP_PKEY_derive_set_peer and EVP_PKEY_derive — derive public key algorithm shared secret.

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_derive_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_derive_set_peer(EVP_PKEY_CTX *ctx, EVP_PKEY *peer);
int EVP_PKEY_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen);

DESCRIPTION

The EVP_PKEY_derive_init() function initializes a public key algorithm context using key pkey for shared secret derivation.

The EVP_PKEY_derive_set_peer() function sets the peer key: this will normally be a public key.

The EVP_PKEY_derive() derives a shared secret using ctx. If key is NULL then the maximum size of the output buffer is
written to the keylen parameter. If key is not NULL then before the call the keylen parameter should contain the length of the
key buffer, if the call is successful the shared secret is written to key and the amount of data written to keylen.

NOTES

After the call to EVP_PKEY_derive_init() algorithm specific control operations can be performed to set any appropriate pa-
rameters for the operation.

The function EVP_PKEY_derive() can be called more than once on the same context if several operations are performed using
the same parameters.

RETURN VALUES

EVP_PKEY_derive_init() and EVP_PKEY_derive() return 1 for success and 0 or a negative value for failure. In particular a
return value of -2 indicates the operation is not supported by the public key algorithm.

EXAMPLE

Derive shared secret (for example DH or EC keys):

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
unsigned char *skey;
size_t skeylen;
EVP_PKEY *pkey, *peerkey;
/* NB: assumes pkey, peerkey have been already set up */

ctx = EVP_PKEY_CTX_new(pkey);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_derive_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_derive_set_peer(ctx, peerkey) <= 0)
 /* Error */

/* Determine buffer length */
if (EVP_PKEY_derive(ctx, NULL, &skeylen) <= 0)
 /* Error */

skey = OPENSSL_malloc(skeylen);

if (!skey)
 /* malloc failure */

1432

OpenSSL Manual

if (EVP_PKEY_derive(ctx, skey, &skeylen) <= 0)
 /* Error */

/* Shared secret is skey bytes written to buffer skey */

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
EVP_PKEY_verify_recover(3),

HISTORY

These functions were first added to OpenSSL 1.0.0.

1433

OpenSSL Manual

Name
EVP_PKEY_encrypt_init and EVP_PKEY_encrypt — encrypt using a public key algorithm

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_encrypt_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_encrypt(EVP_PKEY_CTX *ctx,
 unsigned char *out, size_t *outlen,
 const unsigned char *in, size_t inlen);

DESCRIPTION

The EVP_PKEY_encrypt_init() function initializes a public key algorithm context using key pkey for an encryption operation.

The EVP_PKEY_encrypt() function performs a public key encryption operation using ctx. The data to be encrypted is specified
using the in and inlen parameters. If out is NULL then the maximum size of the output buffer is written to the outlen parameter.
If out is not NULL then before the call the outlen parameter should contain the length of the out buffer, if the call is successful
the encrypted data is written to out and the amount of data written to outlen.

NOTES

After the call to EVP_PKEY_encrypt_init() algorithm specific control operations can be performed to set any appropriate
parameters for the operation.

The function EVP_PKEY_encrypt() can be called more than once on the same context if several operations are performed
using the same parameters.

RETURN VALUES

EVP_PKEY_encrypt_init() and EVP_PKEY_encrypt() return 1 for success and 0 or a negative value for failure. In particular
a return value of -2 indicates the operation is not supported by the public key algorithm.

EXAMPLE

Encrypt data using OAEP (for RSA keys). See also PEM_read_PUBKEY(3) or d2i_X509(3) for means to load a public key.
You may also simply set 'eng = NULL;' to start with the default OpenSSL RSA implementation:

#include <openssl/evp.h>
#include <openssl/rsa.h>
#include <openssl/engine.h>

EVP_PKEY_CTX *ctx;
ENGINE *eng;
unsigned char *out, *in;
size_t outlen, inlen;
EVP_PKEY *key;
/* NB: assumes eng, key, in, inlen are already set up,
 * and that key is an RSA public key
 */
ctx = EVP_PKEY_CTX_new(key,eng);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_encrypt_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_OAEP_PADDING) <= 0)
 /* Error */

/* Determine buffer length */
if (EVP_PKEY_encrypt(ctx, NULL, &outlen, in, inlen) <= 0)
 /* Error */

out = OPENSSL_malloc(outlen);

1434

OpenSSL Manual

if (!out)
 /* malloc failure */

if (EVP_PKEY_encrypt(ctx, out, &outlen, in, inlen) <= 0)
 /* Error */

/* Encrypted data is outlen bytes written to buffer out */

SEE ALSO

d2i_X509(3), engine(3), EVP_PKEY_CTX_new(3), EVP_PKEY_decrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1435

OpenSSL Manual

Name
EVP_PKEY_get_default_digest_nid — get default signature digest

Synopsis
#include <openssl/evp.h>
int EVP_PKEY_get_default_digest_nid(EVP_PKEY *pkey, int *pnid);

DESCRIPTION

The EVP_PKEY_get_default_digest_nid() function sets pnid to the default message digest NID for the public key signature
operations associated with key pkey.

NOTES

For all current standard OpenSSL public key algorithms SHA1 is returned.

RETURN VALUES

The EVP_PKEY_get_default_digest_nid() function returns 1 if the message digest is advisory (that is other digests can be
used) and 2 if it is mandatory (other digests can not be used). It returns 0 or a negative value for failure. In particular a return
value of -2 indicates the operation is not supported by the public key algorithm.

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3), EVP_PKEY_verify_recover(3),

HISTORY

This function was first added to OpenSSL 1.0.0.

1436

OpenSSL Manual

Name
EVP_PKEY_keygen_init, EVP_PKEY_keygen, EVP_PKEY_paramgen_init, EVP_PKEY_paramgen,
EVP_PKEY_CTX_set_cb, EVP_PKEY_CTX_get_cb, EVP_PKEY_CTX_get_keygen_info,
EVP_PKEVP_PKEY_CTX_set_app_data and EVP_PKEY_CTX_get_app_data — key and parameter generation functions

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey);
int EVP_PKEY_paramgen_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_paramgen(EVP_PKEY_CTX *ctx, EVP_PKEY **ppkey);

typedef int EVP_PKEY_gen_cb(EVP_PKEY_CTX *ctx);

void EVP_PKEY_CTX_set_cb(EVP_PKEY_CTX *ctx, EVP_PKEY_gen_cb *cb);
EVP_PKEY_gen_cb *EVP_PKEY_CTX_get_cb(EVP_PKEY_CTX *ctx);

int EVP_PKEY_CTX_get_keygen_info(EVP_PKEY_CTX *ctx, int idx);

void EVP_PKEY_CTX_set_app_data(EVP_PKEY_CTX *ctx, void *data);
void *EVP_PKEY_CTX_get_app_data(EVP_PKEY_CTX *ctx);

DESCRIPTION

The EVP_PKEY_keygen_init() function initializes a public key algorithm context using key pkey for a key genration operation.

The EVP_PKEY_keygen() function performs a key generation operation, the generated key is written to ppkey.

The functions EVP_PKEY_paramgen_init() and EVP_PKEY_paramgen() are similar except parameters are generated.

The function EVP_PKEY_set_cb() sets the key or parameter generation callback to cb. The function EVP_PKEY_C-
TX_get_cb() returns the key or parameter generation callback.

The function EVP_PKEY_CTX_get_keygen_info() returns parameters associated with the generation operation. If idx is -1 the
total number of parameters available is returned. Any non negative value returns the value of that parameter. EVP_PKEY_C-
TX_gen_keygen_info() with a non-negative value for idx should only be called within the generation callback.

If the callback returns 0 then the key genration operation is aborted and an error occurs. This might occur during a time
consuming operation where a user clicks on a "cancel" button.

The functions EVP_PKEY_CTX_set_app_data() and EVP_PKEY_CTX_get_app_data() set and retrieve an opaque pointer.
This can be used to set some application defined value which can be retrieved in the callback: for example a handle which
is used to update a "progress dialog".

NOTES

After the call to EVP_PKEY_keygen_init() or EVP_PKEY_paramgen_init() algorithm specific control operations can be per-
formed to set any appropriate parameters for the operation.

The functions EVP_PKEY_keygen() and EVP_PKEY_paramgen() can be called more than once on the same context if several
operations are performed using the same parameters.

The meaning of the parameters passed to the callback will depend on the algorithm and the specifiic implementation of the
algorithm. Some might not give any useful information at all during key or parameter generation. Others might not even call
the callback.

The operation performed by key or parameter generation depends on the algorithm used. In some cases (e.g. EC with a supplied
named curve) the "generation" option merely sets the appropriate fields in an EVP_PKEY structure.

In OpenSSL an EVP_PKEY structure containing a private key also contains the public key components and parameters (if
any). An OpenSSL private key is equivalent to what some libraries call a "key pair". A private key can be used in functions
which require the use of a public key or parameters.

1437

OpenSSL Manual

RETURN VALUES

EVP_PKEY_keygen_init(), EVP_PKEY_paramgen_init(), EVP_PKEY_keygen() and EVP_PKEY_paramgen() return 1 for
success and 0 or a negative value for failure. In particular a return value of -2 indicates the operation is not supported by the
public key algorithm.

EXAMPLES

Generate a 2048 bit RSA key:

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
EVP_PKEY *pkey = NULL;
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_keygen_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, 2048) <= 0)
 /* Error */

/* Generate key */
if (EVP_PKEY_keygen(ctx, &pkey) <= 0)
 /* Error */

Generate a key from a set of parameters:

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
EVP_PKEY *pkey = NULL, *param;
/* Assumed param is set up already */
ctx = EVP_PKEY_CTX_new(param);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_keygen_init(ctx) <= 0)
 /* Error */

/* Generate key */
if (EVP_PKEY_keygen(ctx, &pkey) <= 0)
 /* Error */

Example of generation callback for OpenSSL public key implementations:

/* Application data is a BIO to output status to */

EVP_PKEY_CTX_set_app_data(ctx, status_bio);

static int genpkey_cb(EVP_PKEY_CTX *ctx)
 {
 char c='*';
 BIO *b = EVP_PKEY_CTX_get_app_data(ctx);
 int p;
 p = EVP_PKEY_CTX_get_keygen_info(ctx, 0);
 if (p == 0) c='.';
 if (p == 1) c='+';
 if (p == 2) c='*';
 if (p == 3) c='\n';
 BIO_write(b,&c,1);
 (void)BIO_flush(b);
 return 1;
 }

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3)

1438

OpenSSL Manual

HISTORY

These functions were first added to OpenSSL 1.0.0.

1439

OpenSSL Manual

Name
EVP_PKEY_new and EVP_PKEY_free — private key allocation functions.

Synopsis
#include <openssl/evp.h>

EVP_PKEY *EVP_PKEY_new(void);
void EVP_PKEY_free(EVP_PKEY *key);

DESCRIPTION

The EVP_PKEY_new() function allocates an empty EVP_PKEY structure which is used by OpenSSL to store private keys.

EVP_PKEY_free() frees up the private key key.

NOTES

The EVP_PKEY structure is used by various OpenSSL functions which require a general private key without reference to
any particular algorithm.

The structure returned by EVP_PKEY_new() is empty. To add a private key to this empty structure the functions described
in EVP_PKEY_set1_RSA(3) should be used.

RETURN VALUES

EVP_PKEY_new() returns either the newly allocated EVP_PKEY structure of NULL if an error occurred.

EVP_PKEY_free() does not return a value.

SEE ALSO

EVP_PKEY_set1_RSA(3)

HISTORY

TBA

1440

OpenSSL Manual

Name
EVP_PKEY_print_public, EVP_PKEY_print_private and EVP_PKEY_print_params — public key algorithm printing
routines.

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey,
 int indent, ASN1_PCTX *pctx);
int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey,
 int indent, ASN1_PCTX *pctx);
int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey,
 int indent, ASN1_PCTX *pctx);

DESCRIPTION

The functions EVP_PKEY_print_public(), EVP_PKEY_print_private() and EVP_PKEY_print_params() print out the public,
private or parameter components of key pkey respectively. The key is sent to BIO out in human readable form. The parameter
indent indicated how far the printout should be indented.

The pctx parameter allows the print output to be finely tuned by using ASN1 printing options. If pctx is set to NULL then
default values will be used.

NOTES

Currently no public key algorithms include any options in the pctx parameter parameter.

If the key does not include all the components indicated by the function then only those contained in the key will be printed.
For example passing a public key to EVP_PKEY_print_private() will only print the public components.

RETURN VALUES

These functions all return 1 for success and 0 or a negative value for failure. In particular a return value of -2 indicates the
operation is not supported by the public key algorithm.

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_keygen(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1441

OpenSSL Manual

Name
EVP_PKEY_set1_RSA, EVP_PKEY_set1_DSA, EVP_PKEY_set1_DH, EVP_PKEY_set1_EC_KEY,
EVP_PKEY_get1_RSA, EVP_PKEY_get1_DSA, EVP_PKEY_get1_DH, EVP_PKEY_get1_EC_KEY,
EVP_PKEY_assign_RSA, EVP_PKEY_assign_DSA, EVP_PKEY_assign_DH, EVP_PKEY_assign_EC_KEY and
EVP_PKEY_type — EVP_PKEY assignment functions.

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_set1_RSA(EVP_PKEY *pkey,RSA *key);
int EVP_PKEY_set1_DSA(EVP_PKEY *pkey,DSA *key);
int EVP_PKEY_set1_DH(EVP_PKEY *pkey,DH *key);
int EVP_PKEY_set1_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

RSA *EVP_PKEY_get1_RSA(EVP_PKEY *pkey);
DSA *EVP_PKEY_get1_DSA(EVP_PKEY *pkey);
DH *EVP_PKEY_get1_DH(EVP_PKEY *pkey);
EC_KEY *EVP_PKEY_get1_EC_KEY(EVP_PKEY *pkey);

int EVP_PKEY_assign_RSA(EVP_PKEY *pkey,RSA *key);
int EVP_PKEY_assign_DSA(EVP_PKEY *pkey,DSA *key);
int EVP_PKEY_assign_DH(EVP_PKEY *pkey,DH *key);
int EVP_PKEY_assign_EC_KEY(EVP_PKEY *pkey,EC_KEY *key);

int EVP_PKEY_type(int type);

DESCRIPTION

EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and EVP_PKEY_set1_EC_KEY() set the key
referenced by pkey to key.

EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and EVP_PKEY_get1_EC_KEY() return the
referenced key in pkey or NULL if the key is not of the correct type.

EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and EVP_PKEY_assign_EC_KEY()
also set the referenced key to key however these use the supplied key internally and so key will be freed when the parent
pkey is freed.

EVP_PKEY_type() returns the type of key corresponding to the value type. The type of a key can be obtained
with EVP_PKEY_type(pkey->type). The return value will be EVP_PKEY_RSA, EVP_PKEY_DSA, EVP_PKEY_DH or
EVP_PKEY_EC for the corresponding key types or NID_undef if the key type is unassigned.

NOTES

In accordance with the OpenSSL naming convention the key obtained from or assigned to the pkey using the 1 functions must
be freed as well as pkey.

EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and EVP_PKEY_assign_EC_KEY() are
implemented as macros.

RETURN VALUES

EVP_PKEY_set1_RSA(), EVP_PKEY_set1_DSA(), EVP_PKEY_set1_DH() and EVP_PKEY_set1_EC_KEY() return 1 for
success or 0 for failure.

EVP_PKEY_get1_RSA(), EVP_PKEY_get1_DSA(), EVP_PKEY_get1_DH() and EVP_PKEY_get1_EC_KEY() return the
referenced key or NULL if an error occurred.

EVP_PKEY_assign_RSA(), EVP_PKEY_assign_DSA(), EVP_PKEY_assign_DH() and EVP_PKEY_assign_EC_KEY()
return 1 for success and 0 for failure.

1442

OpenSSL Manual

SEE ALSO

EVP_PKEY_new(3)

HISTORY

TBA

1443

OpenSSL Manual

Name
EVP_PKEY_sign_init and EVP_PKEY_sign — sign using a public key algorithm

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_sign_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_sign(EVP_PKEY_CTX *ctx,
 unsigned char *sig, size_t *siglen,
 const unsigned char *tbs, size_t tbslen);

DESCRIPTION

The EVP_PKEY_sign_init() function initializes a public key algorithm context using key pkey for a signing operation.

The EVP_PKEY_sign() function performs a public key signing operation using ctx. The data to be signed is specified using
the tbs and tbslen parameters. If sig is NULL then the maximum size of the output buffer is written to the siglen parameter.
If sig is not NULL then before the call the siglen parameter should contain the length of the sig buffer, if the call is successful
the signature is written to sig and the amount of data written to siglen.

NOTES

EVP_PKEY_sign() does not hash the data to be signed, and therefore is normally used to sign digests. For signing arbitrary
messages, see the EVP_DigestSignInit(3) and EVP_SignInit(3) signing interfaces instead.

After the call to EVP_PKEY_sign_init() algorithm specific control operations can be performed to set any appropriate
parameters for the operation (see EVP_PKEY_CTX_ctrl(3)).

The function EVP_PKEY_sign() can be called more than once on the same context if several operations are performed using
the same parameters.

RETURN VALUES

EVP_PKEY_sign_init() and EVP_PKEY_sign() return 1 for success and 0 or a negative value for failure. In particular a return
value of -2 indicates the operation is not supported by the public key algorithm.

EXAMPLE

Sign data using RSA with PKCS#1 padding and SHA256 digest:

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
/* md is a SHA-256 digest in this example. */
unsigned char *md, *sig;
size_t mdlen = 32, siglen;
EVP_PKEY *signing_key;

/*
 * NB: assumes signing_key and md are set up before the next
 * step. signing_key must be an RSA private key and md must
 * point to the SHA-256 digest to be signed.
 */
ctx = EVP_PKEY_CTX_new(signing_key, NULL /* no engine */);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_sign_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()) <= 0)

1444

OpenSSL Manual

 /* Error */

/* Determine buffer length */
if (EVP_PKEY_sign(ctx, NULL, &siglen, md, mdlen) <= 0)
 /* Error */

sig = OPENSSL_malloc(siglen);

if (!sig)
 /* malloc failure */

if (EVP_PKEY_sign(ctx, sig, &siglen, md, mdlen) <= 0)
 /* Error */

/* Signature is siglen bytes written to buffer sig */

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_CTX_ctrl(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3),
EVP_PKEY_verify(3), EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1445

OpenSSL Manual

Name
EVP_PKEY_verify_init and EVP_PKEY_verify — signature verification using a public key algorithm

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_verify_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_verify(EVP_PKEY_CTX *ctx,
 const unsigned char *sig, size_t siglen,
 const unsigned char *tbs, size_t tbslen);

DESCRIPTION

The EVP_PKEY_verify_init() function initializes a public key algorithm context using key pkey for a signature verification
operation.

The EVP_PKEY_verify() function performs a public key verification operation using ctx. The signature is specified using
the sig and siglen parameters. The verified data (i.e. the data believed originally signed) is specified using the tbs and tbslen
parameters.

NOTES

After the call to EVP_PKEY_verify_init() algorithm specific control operations can be performed to set any appropriate pa-
rameters for the operation.

The function EVP_PKEY_verify() can be called more than once on the same context if several operations are performed using
the same parameters.

RETURN VALUES

EVP_PKEY_verify_init() and EVP_PKEY_verify() return 1 if the verification was successful and 0 if it failed. Unlike other
functions the return value 0 from EVP_PKEY_verify() only indicates that the signature did not not verify successfully (that is
tbs did not match the original data or the signature was of invalid form) it is not an indication of a more serious error.

A negative value indicates an error other that signature verification failure. In particular a return value of -2 indicates the
operation is not supported by the public key algorithm.

EXAMPLE

Verify signature using PKCS#1 and SHA256 digest:

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
unsigned char *md, *sig;
size_t mdlen, siglen;
EVP_PKEY *verify_key;
/* NB: assumes verify_key, sig, siglen md and mdlen are already set up
 * and that verify_key is an RSA public key
 */
ctx = EVP_PKEY_CTX_new(verify_key);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_verify_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()) <= 0)
 /* Error */

/* Perform operation */

1446

OpenSSL Manual

ret = EVP_PKEY_verify(ctx, sig, siglen, md, mdlen);

/* ret == 1 indicates success, 0 verify failure and < 0 for some
 * other error.
 */

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3), EVP_PKEY_sign(3),
EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1447

OpenSSL Manual

Name
EVP_PKEY_verify_recover_init and EVP_PKEY_verify_recover — recover signature using a public key algorithm

Synopsis
#include <openssl/evp.h>

int EVP_PKEY_verify_recover_init(EVP_PKEY_CTX *ctx);
int EVP_PKEY_verify_recover(EVP_PKEY_CTX *ctx,
 unsigned char *rout, size_t *routlen,
 const unsigned char *sig, size_t siglen);

DESCRIPTION

The EVP_PKEY_verify_recover_init() function initializes a public key algorithm context using key pkey for a verify recover
operation.

The EVP_PKEY_verify_recover() function recovers signed data using ctx. The signature is specified using the sig and siglen
parameters. If rout is NULL then the maximum size of the output buffer is written to the routlen parameter. If rout is not
NULL then before the call the routlen parameter should contain the length of the rout buffer, if the call is successful recovered
data is written to rout and the amount of data written to routlen.

NOTES

Normally an application is only interested in whether a signature verification operation is successful in those cases the EVP_ver-
ify() function should be used.

Sometimes however it is useful to obtain the data originally signed using a signing operation. Only certain public key algorithms
can recover a signature in this way (for example RSA in PKCS padding mode).

After the call to EVP_PKEY_verify_recover_init() algorithm specific control operations can be performed to set any appro-
priate parameters for the operation.

The function EVP_PKEY_verify_recover() can be called more than once on the same context if several operations are per-
formed using the same parameters.

RETURN VALUES

EVP_PKEY_verify_recover_init() and EVP_PKEY_verify_recover() return 1 for success and 0 or a negative value for failure.
In particular a return value of -2 indicates the operation is not supported by the public key algorithm.

EXAMPLE

Recover digest originally signed using PKCS#1 and SHA256 digest:

#include <openssl/evp.h>
#include <openssl/rsa.h>

EVP_PKEY_CTX *ctx;
unsigned char *rout, *sig;
size_t routlen, siglen;
EVP_PKEY *verify_key;
/* NB: assumes verify_key, sig and siglen are already set up
 * and that verify_key is an RSA public key
 */
ctx = EVP_PKEY_CTX_new(verify_key);
if (!ctx)
 /* Error occurred */
if (EVP_PKEY_verify_recover_init(ctx) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING) <= 0)
 /* Error */
if (EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()) <= 0)

1448

OpenSSL Manual

 /* Error */

/* Determine buffer length */
if (EVP_PKEY_verify_recover(ctx, NULL, &routlen, sig, siglen) <= 0)
 /* Error */

rout = OPENSSL_malloc(routlen);

if (!rout)
 /* malloc failure */

if (EVP_PKEY_verify_recover(ctx, rout, &routlen, sig, siglen) <= 0)
 /* Error */

/* Recovered data is routlen bytes written to buffer rout */

SEE ALSO

EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
EVP_PKEY_derive(3)

HISTORY

These functions were first added to OpenSSL 1.0.0.

1449

OpenSSL Manual

Name
EVP_SealInit, EVP_SealUpdate and EVP_SealFinal — EVP envelope encryption

Synopsis
#include <openssl/evp.h>

int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
 unsigned char **ek, int *ekl, unsigned char *iv,
 EVP_PKEY **pubk, int npubk);
int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl, unsigned char *in, int inl);
int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
 int *outl);

DESCRIPTION

The EVP envelope routines are a high level interface to envelope encryption. They generate a random key and IV (if required)
then "envelope" it by using public key encryption. Data can then be encrypted using this key.

EVP_SealInit() initializes a cipher context ctx for encryption with cipher type using a random secret key and IV. type is
normally supplied by a function such as EVP_des_cbc(). The secret key is encrypted using one or more public keys, this allows
the same encrypted data to be decrypted using any of the corresponding private keys. ek is an array of buffers where the public
key encrypted secret key will be written, each buffer must contain enough room for the corresponding encrypted key: that is
ek[i] must have room for EVP_PKEY_size(pubk[i]) bytes. The actual size of each encrypted secret key is written to the array
ekl. pubk is an array of npubk public keys.

The iv parameter is a buffer where the generated IV is written to. It must contain enough room for the corresponding cipher's
IV, as determined by (for example) EVP_CIPHER_iv_length(type).

If the cipher does not require an IV then the iv parameter is ignored and can be NULL.

EVP_SealUpdate() and EVP_SealFinal() have exactly the same properties as the EVP_EncryptUpdate() and
EVP_EncryptFinal() routines, as documented on the EVP_EncryptInit(3) manual page.

RETURN VALUES

EVP_SealInit() returns 0 on error or npubk if successful.

EVP_SealUpdate() and EVP_SealFinal() return 1 for success and 0 for failure.

NOTES

Because a random secret key is generated the random number generator must be seeded before calling EVP_SealInit().

The public key must be RSA because it is the only OpenSSL public key algorithm that supports key transport.

Envelope encryption is the usual method of using public key encryption on large amounts of data, this is because public key
encryption is slow but symmetric encryption is fast. So symmetric encryption is used for bulk encryption and the small random
symmetric key used is transferred using public key encryption.

It is possible to call EVP_SealInit() twice in the same way as EVP_EncryptInit(). The first call should have npubk set to 0 and
(after setting any cipher parameters) it should be called again with type set to NULL.

SEE ALSO

evp(3), rand(3), EVP_EncryptInit(3), EVP_OpenInit(3)

HISTORY

EVP_SealFinal() did not return a value before OpenSSL 0.9.7.

1450

OpenSSL Manual

Name
EVP_SignInit, EVP_SignInit_ex, EVP_SignUpdate and EVP_SignFinal — EVP signing functions

Synopsis
#include <openssl/evp.h>

int EVP_SignInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_SignUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_SignFinal(EVP_MD_CTX *ctx,unsigned char *sig,unsigned int *s, EVP_PKEY *pkey);

void EVP_SignInit(EVP_MD_CTX *ctx, const EVP_MD *type);

int EVP_PKEY_size(EVP_PKEY *pkey);

DESCRIPTION

The EVP signature routines are a high level interface to digital signatures.

EVP_SignInit_ex() sets up signing context ctx to use digest type from ENGINE impl. ctx must be initialized with
EVP_MD_CTX_init() before calling this function.

EVP_SignUpdate() hashes cnt bytes of data at d into the signature context ctx. This function can be called several times on
the same ctx to include additional data.

EVP_SignFinal() signs the data in ctx using the private key pkey and places the signature in sig. sig must be at least
EVP_PKEY_size(pkey) bytes in size. s is an OUT paramter, and not used as an IN parameter. The number of bytes of data
written (i.e. the length of the signature) will be written to the integer at s, at most EVP_PKEY_size(pkey) bytes will be written.

EVP_SignInit() initializes a signing context ctx to use the default implementation of digest type.

EVP_PKEY_size() returns the maximum size of a signature in bytes. The actual signature returned by EVP_SignFinal() may
be smaller.

RETURN VALUES

EVP_SignInit_ex(), EVP_SignUpdate() and EVP_SignFinal() return 1 for success and 0 for failure.

EVP_PKEY_size() returns the maximum size of a signature in bytes.

The error codes can be obtained by ERR_get_error(3).

NOTES

The EVP interface to digital signatures should almost always be used in preference to the low level interfaces. This is because
the code then becomes transparent to the algorithm used and much more flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be used with the correct
public key type. A list of algorithms and associated public key algorithms appears in EVP_DigestInit(3).

When signing with DSA private keys the random number generator must be seeded or the operation will fail. The random
number generator does not need to be seeded for RSA signatures.

The call to EVP_SignFinal() internally finalizes a copy of the digest context. This means that calls to EVP_SignUpdate() and
EVP_SignFinal() can be called later to digest and sign additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by calling
EVP_MD_CTX_cleanup() or a memory leak will occur.

BUGS

Older versions of this documentation wrongly stated that calls to EVP_SignUpdate() could not be made after calling
EVP_SignFinal().

1451

OpenSSL Manual

Since the private key is passed in the call to EVP_SignFinal() any error relating to the private key (for example an unsuitable
key and digest combination) will not be indicated until after potentially large amounts of data have been passed through
EVP_SignUpdate().

It is not possible to change the signing parameters using these function.

The previous two bugs are fixed in the newer EVP_SignDigest*() function.

SEE ALSO

EVP_VerifyInit(3), EVP_DigestInit(3), err(3), evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)

HISTORY

EVP_SignInit(), EVP_SignUpdate() and EVP_SignFinal() are available in all versions of SSLeay and OpenSSL.

EVP_SignInit_ex() was added in OpenSSL 0.9.7.

1452

OpenSSL Manual

Name
EVP_VerifyInit, EVP_VerifyUpdate and EVP_VerifyFinal — EVP signature verification functions

Synopsis
#include <openssl/evp.h>

int EVP_VerifyInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int EVP_VerifyUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int EVP_VerifyFinal(EVP_MD_CTX *ctx,unsigned char *sigbuf, unsigned int siglen,EVP_PKEY *pkey);

int EVP_VerifyInit(EVP_MD_CTX *ctx, const EVP_MD *type);

DESCRIPTION

The EVP signature verification routines are a high level interface to digital signatures.

EVP_VerifyInit_ex() sets up verification context ctx to use digest type from ENGINE impl. ctx must be initialized by calling
EVP_MD_CTX_init() before calling this function.

EVP_VerifyUpdate() hashes cnt bytes of data at d into the verification context ctx. This function can be called several times
on the same ctx to include additional data.

EVP_VerifyFinal() verifies the data in ctx using the public key pkey and against the siglen bytes at sigbuf.

EVP_VerifyInit() initializes verification context ctx to use the default implementation of digest type.

RETURN VALUES

EVP_VerifyInit_ex() and EVP_VerifyUpdate() return 1 for success and 0 for failure.

EVP_VerifyFinal() returns 1 for a correct signature, 0 for failure and -1 if some other error occurred.

The error codes can be obtained by ERR_get_error(3).

NOTES

The EVP interface to digital signatures should almost always be used in preference to the low level interfaces. This is because
the code then becomes transparent to the algorithm used and much more flexible.

Due to the link between message digests and public key algorithms the correct digest algorithm must be used with the correct
public key type. A list of algorithms and associated public key algorithms appears in EVP_DigestInit(3).

The call to EVP_VerifyFinal() internally finalizes a copy of the digest context. This means that calls to EVP_VerifyUpdate()
and EVP_VerifyFinal() can be called later to digest and verify additional data.

Since only a copy of the digest context is ever finalized the context must be cleaned up after use by calling
EVP_MD_CTX_cleanup() or a memory leak will occur.

BUGS

Older versions of this documentation wrongly stated that calls to EVP_VerifyUpdate() could not be made after calling
EVP_VerifyFinal().

Since the public key is passed in the call to EVP_SignFinal() any error relating to the private key (for example an unsuitable
key and digest combination) will not be indicated until after potentially large amounts of data have been passed through
EVP_SignUpdate().

It is not possible to change the signing parameters using these function.

The previous two bugs are fixed in the newer EVP_VerifyDigest*() function.

1453

OpenSSL Manual

SEE ALSO

evp(3), EVP_SignInit(3), EVP_DigestInit(3), err(3), evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)

HISTORY

EVP_VerifyInit(), EVP_VerifyUpdate() and EVP_VerifyFinal() are available in all versions of SSLeay and OpenSSL.

EVP_VerifyInit_ex() was added in OpenSSL 0.9.7

1454

OpenSSL Manual

Name
HMAC, HMAC_Init, HMAC_Update, HMAC_Final and HMAC_cleanup — HMAC message authentication code

Synopsis
#include <openssl/hmac.h>

unsigned char *HMAC(const EVP_MD *evp_md, const void *key,
 int key_len, const unsigned char *d, int n,
 unsigned char *md, unsigned int *md_len);

void HMAC_CTX_init(HMAC_CTX *ctx);

int HMAC_Init(HMAC_CTX *ctx, const void *key, int key_len,
 const EVP_MD *md);
int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, int key_len,
 const EVP_MD *md, ENGINE *impl);
int HMAC_Update(HMAC_CTX *ctx, const unsigned char *data, int len);
int HMAC_Final(HMAC_CTX *ctx, unsigned char *md, unsigned int *len);

void HMAC_CTX_cleanup(HMAC_CTX *ctx);
void HMAC_cleanup(HMAC_CTX *ctx);

DESCRIPTION

HMAC is a MAC (message authentication code), i.e. a keyed hash function used for message authentication, which is based
on a hash function.

HMAC() computes the message authentication code of the n bytes at d using the hash function evp_md and the key key which
is key_len bytes long.

It places the result in md (which must have space for the output of the hash function, which is no more than
EVP_MAX_MD_SIZE bytes). If md is NULL, the digest is placed in a static array. The size of the output is placed in md_len,
unless it is NULL.

evp_md can be EVP_sha1(), EVP_ripemd160() etc.

HMAC_CTX_init() initialises a HMAC_CTX before first use. It must be called.

HMAC_CTX_cleanup() erases the key and other data from the HMAC_CTX and releases any associated resources. It must
be called when an HMAC_CTX is no longer required.

HMAC_cleanup() is an alias for HMAC_CTX_cleanup() included for back compatibility with 0.9.6b, it is deprecated.

The following functions may be used if the message is not completely stored in memory:

HMAC_Init() initializes a HMAC_CTX structure to use the hash function evp_md and the key key which is key_len bytes
long. It is deprecated and only included for backward compatibility with OpenSSL 0.9.6b.

HMAC_Init_ex() initializes or reuses a HMAC_CTX structure to use the function evp_md and key key. Either can be NULL,
in which case the existing one will be reused. HMAC_CTX_init() must have been called before the first use of an HMAC_CTX
in this function. N.B. HMAC_Init() had this undocumented behaviour in previous versions of OpenSSL - failure to switch
to HMAC_Init_ex() in programs that expect it will cause them to stop working.

HMAC_Update() can be called repeatedly with chunks of the message to be authenticated (len bytes at data).

HMAC_Final() places the message authentication code in md, which must have space for the hash function output.

RETURN VALUES

HMAC() returns a pointer to the message authentication code or NULL if an error occurred.

HMAC_Init_ex(), HMAC_Update() and HMAC_Final() return 1 for success or 0 if an error occurred.

1455

OpenSSL Manual

HMAC_CTX_init() and HMAC_CTX_cleanup() do not return values.

CONFORMING TO

RFC 2104

SEE ALSO

sha(3), evp(3)

HISTORY

HMAC(), HMAC_Init(), HMAC_Update(), HMAC_Final() and HMAC_cleanup() are available since SSLeay 0.9.0.

HMAC_CTX_init(), HMAC_Init_ex() and HMAC_CTX_cleanup() are available since OpenSSL 0.9.7.

HMAC_Init_ex(), HMAC_Update() and HMAC_Final() did not return values in versions of OpenSSL before 1.0.0.

1456

OpenSSL Manual

Name
i2d_CMS_bio_stream — output CMS_ContentInfo structure in BER format.

Synopsis
#include <openssl/cms.h>

int i2d_CMS_bio_stream(BIO *out, CMS_ContentInfo *cms, BIO *data, int flags);

DESCRIPTION

i2d_CMS_bio_stream() outputs a CMS_ContentInfo structure in BER format.

It is otherwise identical to the function SMIME_write_CMS().

NOTES

This function is effectively a version of the i2d_CMS_bio() supporting streaming.

BUGS

The prefix "i2d" is arguably wrong because the function outputs BER format.

RETURN VALUES

i2d_CMS_bio_stream() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_verify(3), CMS_encrypt(3), CMS_decrypt(3), SMIME_write_CMS(3),
PEM_write_bio_CMS_stream(3)

HISTORY

i2d_CMS_bio_stream() was added to OpenSSL 1.0.0

1457

OpenSSL Manual

Name
i2d_PKCS7_bio_stream — output PKCS7 structure in BER format.

Synopsis
#include <openssl/pkcs7.h>

int i2d_PKCS7_bio_stream(BIO *out, PKCS7 *p7, BIO *data, int flags);

DESCRIPTION

i2d_PKCS7_bio_stream() outputs a PKCS7 structure in BER format.

It is otherwise identical to the function SMIME_write_PKCS7().

NOTES

This function is effectively a version of the d2i_PKCS7_bio() supporting streaming.

BUGS

The prefix "d2i" is arguably wrong because the function outputs BER format.

RETURN VALUES

i2d_PKCS7_bio_stream() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), PKCS7_sign(3), PKCS7_verify(3), PKCS7_encrypt(3), PKCS7_decrypt(3), SMIME_write_PKCS7(3),
PEM_write_bio_PKCS7_stream(3)

HISTORY

i2d_PKCS7_bio_stream() was added to OpenSSL 1.0.0

1458

OpenSSL Manual

Name
lh_new, lh_free, lh_insert, lh_delete, lh_retrieve, lh_doall, lh_doall_arg and lh_error — dynamic hash table

Synopsis
#include <openssl/lhash.h>

DECLARE_LHASH_OF(<type>);

LHASH *lh_<type>_new();
void lh_<type>_free(LHASH_OF(<type> *table);

<type> *lh_<type>_insert(LHASH_OF(<type> *table, <type> *data);
<type> *lh_<type>_delete(LHASH_OF(<type> *table, <type> *data);
<type> *lh_retrieve(LHASH_OF<type> *table, <type> *data);

void lh_<type>_doall(LHASH_OF(<type> *table, LHASH_DOALL_FN_TYPE func);
void lh_<type>_doall_arg(LHASH_OF(<type> *table, LHASH_DOALL_ARG_FN_TYPE func,
 <type>, <type> *arg);

int lh_<type>_error(LHASH_OF(<type> *table);

typedef int (*LHASH_COMP_FN_TYPE)(const void *, const void *);
typedef unsigned long (*LHASH_HASH_FN_TYPE)(const void *);
typedef void (*LHASH_DOALL_FN_TYPE)(const void *);
typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);

DESCRIPTION

This library implements type-checked dynamic hash tables. The hash table entries can be arbitrary structures. Usually they
consist of key and value fields.

lh_<type>_new() creates a new LHASH_OF(type) structure to store arbitrary data entries, and provides the 'hash' and
'compare' callbacks to be used in organising the table's entries. The hash callback takes a pointer to a table entry as its argument
and returns an unsigned long hash value for its key field. The hash value is normally truncated to a power of 2, so make
sure that your hash function returns well mixed low order bits. The compare callback takes two arguments (pointers to two
hash table entries), and returns 0 if their keys are equal, non-zero otherwise. If your hash table will contain items of some
particular type and the hash and compare callbacks hash/compare these types, then the DECLARE_LHASH_HASH_FN
and IMPLEMENT_LHASH_COMP_FN macros can be used to create callback wrappers of the prototypes required by
lh_<type>_new(). These provide per-variable casts before calling the type-specific callbacks written by the application author.
These macros, as well as those used for the "doall" callbacks, are defined as;

#define DECLARE_LHASH_HASH_FN(name, o_type) \
 unsigned long name##_LHASH_HASH(const void *);
#define IMPLEMENT_LHASH_HASH_FN(name, o_type) \
 unsigned long name##_LHASH_HASH(const void *arg) { \
 const o_type *a = arg; \
 return name##_hash(a); }
#define LHASH_HASH_FN(name) name##_LHASH_HASH

#define DECLARE_LHASH_COMP_FN(name, o_type) \
 int name##_LHASH_COMP(const void *, const void *);
#define IMPLEMENT_LHASH_COMP_FN(name, o_type) \
 int name##_LHASH_COMP(const void *arg1, const void *arg2) { \
 const o_type *a = arg1; \
 const o_type *b = arg2; \
 return name##_cmp(a,b); }
#define LHASH_COMP_FN(name) name##_LHASH_COMP

#define DECLARE_LHASH_DOALL_FN(name, o_type) \
 void name##_LHASH_DOALL(void *);
#define IMPLEMENT_LHASH_DOALL_FN(name, o_type) \
 void name##_LHASH_DOALL(void *arg) { \
 o_type *a = arg; \
 name##_doall(a); }
#define LHASH_DOALL_FN(name) name##_LHASH_DOALL

#define DECLARE_LHASH_DOALL_ARG_FN(name, o_type, a_type) \

1459

OpenSSL Manual

 void name##_LHASH_DOALL_ARG(void *, void *);
#define IMPLEMENT_LHASH_DOALL_ARG_FN(name, o_type, a_type) \
 void name##_LHASH_DOALL_ARG(void *arg1, void *arg2) { \
 o_type *a = arg1; \
 a_type *b = arg2; \
 name##_doall_arg(a, b); }
#define LHASH_DOALL_ARG_FN(name) name##_LHASH_DOALL_ARG

An example of a hash table storing (pointers to) structures of type 'STUFF'
could be defined as follows;

/* Calculates the hash value of 'tohash' (implemented elsewhere) */
unsigned long STUFF_hash(const STUFF *tohash);
/* Orders 'arg1' and 'arg2' (implemented elsewhere) */
int stuff_cmp(const STUFF *arg1, const STUFF *arg2);
/* Create the type-safe wrapper functions for use in the LHASH internals */
static IMPLEMENT_LHASH_HASH_FN(stuff, STUFF);
static IMPLEMENT_LHASH_COMP_FN(stuff, STUFF);
/* … */
int main(int argc, char *argv[]) {
 /* Create the new hash table using the hash/compare wrappers */
 LHASH_OF(STUFF) *hashtable = lh_STUFF_new(LHASH_HASH_FN(STUFF_hash),
 LHASH_COMP_FN(STUFF_cmp));
 /* … */
}

lh_<type>_free() frees the LHASH_OF(type) structure table. Allocated hash table entries will not be freed; consider using
lh_<type>_doall() to deallocate any remaining entries in the hash table (see below).

lh_<type>_insert() inserts the structure pointed to by data into table. If there already is an entry with the same key, the old
value is replaced. Note that lh_<type>_insert() stores pointers, the data are not copied.

lh_<type>_delete() deletes an entry from table.

lh_<type>_retrieve() looks up an entry in table. Normally, data is a structure with the key field(s) set; the function will return
a pointer to a fully populated structure.

lh_<type>_doall() will, for every entry in the hash table, call func with the data item as its parameter. For lh_<type>_doall()
and lh_<type>_doall_arg(), function pointer casting should be avoided in the callbacks (see NOTE) - instead use the declare/
implement macros to create type-checked wrappers that cast variables prior to calling your type-specific callbacks. An example
of this is illustrated here where the callback is used to cleanup resources for items in the hash table prior to the hashtable itself
being deallocated:

/* Cleans up resources belonging to 'a' (this is implemented elsewhere) */
void STUFF_cleanup_doall(STUFF *a);
/* Implement a prototype-compatible wrapper for "STUFF_cleanup" */
IMPLEMENT_LHASH_DOALL_FN(STUFF_cleanup, STUFF)
 /* … then later in the code … */
/* So to run "STUFF_cleanup" against all items in a hash table … */
lh_STUFF_doall(hashtable, LHASH_DOALL_FN(STUFF_cleanup));
/* Then the hash table itself can be deallocated */
lh_STUFF_free(hashtable);

When doing this, be careful if you delete entries from the hash table in your callbacks: the table may decrease in size, moving
the item that you are currently on down lower in the hash table - this could cause some entries to be skipped during the iteration.
The second best solution to this problem is to set hash->down_load=0 before you start (which will stop the hash table ever
decreasing in size). The best solution is probably to avoid deleting items from the hash table inside a "doall" callback!

lh_<type>_doall_arg() is the same as lh_<type>_doall() except that func will be called with arg as the second argument and
func should be of type LHASH_DOALL_ARG_FN_TYPE (a callback prototype that is passed both the table entry and an
extra argument). As with lh_doall(), you can instead choose to declare your callback with a prototype matching the types you
are dealing with and use the declare/implement macros to create compatible wrappers that cast variables before calling your
type-specific callbacks. An example of this is demonstrated here (printing all hash table entries to a BIO that is provided by
the caller):

/* Prints item 'a' to 'output_bio' (this is implemented elsewhere) */
void STUFF_print_doall_arg(const STUFF *a, BIO *output_bio);

1460

OpenSSL Manual

/* Implement a prototype-compatible wrapper for "STUFF_print" */
static IMPLEMENT_LHASH_DOALL_ARG_FN(STUFF, const STUFF, BIO)
 /* … then later in the code … */
/* Print out the entire hashtable to a particular BIO */
lh_STUFF_doall_arg(hashtable, LHASH_DOALL_ARG_FN(STUFF_print), BIO,
 logging_bio);

lh_<type>_error() can be used to determine if an error occurred in the last operation. lh_<type>_error() is a macro.

RETURN VALUES

lh_<type>_new() returns NULL on error, otherwise a pointer to the new LHASH structure.

When a hash table entry is replaced, lh_<type>_insert() returns the value being replaced. NULL is returned on normal operation
and on error.

lh_<type>_delete() returns the entry being deleted. NULL is returned if there is no such value in the hash table.

lh_<type>_retrieve() returns the hash table entry if it has been found, NULL otherwise.

lh_<type>_error() returns 1 if an error occurred in the last operation, 0 otherwise.

lh_<type>_free(), lh_<type>_doall() and lh_<type>_doall_arg() return no values.

NOTE

The various LHASH macros and callback types exist to make it possible to write type-checked code without resorting to
function-prototype casting - an evil that makes application code much harder to audit/verify and also opens the window of
opportunity for stack corruption and other hard-to-find bugs. It also, apparently, violates ANSI-C.

The LHASH code regards table entries as constant data. As such, it internally represents lh_insert()'d items with a "const void
*" pointer type. This is why callbacks such as those used by lh_doall() and lh_doall_arg() declare their prototypes with "const",
even for the parameters that pass back the table items' data pointers - for consistency, user-provided data is "const" at all times
as far as the LHASH code is concerned. However, as callers are themselves providing these pointers, they can choose whether
they too should be treating all such parameters as constant.

As an example, a hash table may be maintained by code that, for reasons of encapsulation, has only "const" access to the data
being indexed in the hash table (ie. it is returned as "const" from elsewhere in their code) - in this case the LHASH prototypes
are appropriate as-is. Conversely, if the caller is responsible for the life-time of the data in question, then they may well wish to
make modifications to table item passed back in the lh_doall() or lh_doall_arg() callbacks (see the "STUFF_cleanup" example
above). If so, the caller can either cast the "const" away (if they're providing the raw callbacks themselves) or use the macros
to declare/implement the wrapper functions without "const" types.

Callers that only have "const" access to data they're indexing in a table, yet declare callbacks without constant types
(or cast the "const" away themselves), are therefore creating their own risks/bugs without being encouraged to do
so by the API. On a related note, those auditing code should pay special attention to any instances of DECLARE/
IMPLEMENT_LHASH_DOALL_[ARG_]_FN macros that provide types without any "const" qualifiers.

BUGS

lh_<type>_insert() returns NULL both for success and error.

INTERNALS

The following description is based on the SSLeay documentation:

The lhash library implements a hash table described in the Communications of the ACM in 1991. What makes this hash table
different is that as the table fills, the hash table is increased (or decreased) in size via OPENSSL_realloc(). When a 'resize' is
done, instead of all hashes being redistributed over twice as many 'buckets', one bucket is split. So when an 'expand' is done,
there is only a minimal cost to redistribute some values. Subsequent inserts will cause more single 'bucket' redistributions but
there will never be a sudden large cost due to redistributing all the 'buckets'.

1461

OpenSSL Manual

The state for a particular hash table is kept in the LHASH structure. The decision to increase or decrease the hash table
size is made depending on the 'load' of the hash table. The load is the number of items in the hash table divided by the size
of the hash table. The default values are as follows. If (hash->up_load < load) => expand. if (hash->down_load > load) =>
contract. The up_load has a default value of 1 and down_load has a default value of 2. These numbers can be modified by
the application by just playing with the up_load and down_load variables. The 'load' is kept in a form which is multiplied by
256. So hash->up_load=8*256; will cause a load of 8 to be set.

If you are interested in performance the field to watch is num_comp_calls. The hash library keeps track of the 'hash' value
for each item so when a lookup is done, the 'hashes' are compared, if there is a match, then a full compare is done, and
hash->num_comp_calls is incremented. If num_comp_calls is not equal to num_delete plus num_retrieve it means that your
hash function is generating hashes that are the same for different values. It is probably worth changing your hash function if
this is the case because even if your hash table has 10 items in a 'bucket', it can be searched with 10 unsigned long compares
and 10 linked list traverses. This will be much less expensive that 10 calls to your compare function.

lh_strhash() is a demo string hashing function:

unsigned long lh_strhash(const char *c);

Since the LHASH routines would normally be passed structures, this routine would not normally be passed to lh_<type>_new(),
rather it would be used in the function passed to lh_<type>_new().

SEE ALSO

lh_stats(3)

HISTORY

The lhash library is available in all versions of SSLeay and OpenSSL. lh_error() was added in SSLeay 0.9.1b.

This manpage is derived from the SSLeay documentation.

In OpenSSL 0.9.7, all lhash functions that were passed function pointers were changed for better type safety,
and the function types LHASH_COMP_FN_TYPE, LHASH_HASH_FN_TYPE, LHASH_DOALL_FN_TYPE and
LHASH_DOALL_ARG_FN_TYPE became available.

In OpenSSL 1.0.0, the lhash interface was revamped for even better type checking.

1462

OpenSSL Manual

Name
lh_stats, lh_node_stats, lh_node_usage_stats, lh_stats_bio, lh_node_stats_bio and lh_node_usage_stats_bio — LHASH
statistics

Synopsis
#include <openssl/lhash.h>

void lh_stats(LHASH *table, FILE *out);
void lh_node_stats(LHASH *table, FILE *out);
void lh_node_usage_stats(LHASH *table, FILE *out);

void lh_stats_bio(LHASH *table, BIO *out);
void lh_node_stats_bio(LHASH *table, BIO *out);
void lh_node_usage_stats_bio(LHASH *table, BIO *out);

DESCRIPTION

The LHASH structure records statistics about most aspects of accessing the hash table. This is mostly a legacy of Eric Young
writing this library for the reasons of implementing what looked like a nice algorithm rather than for a particular software
product.

lh_stats() prints out statistics on the size of the hash table, how many entries are in it, and the number and result of calls to
the routines in this library.

lh_node_stats() prints the number of entries for each 'bucket' in the hash table.

lh_node_usage_stats() prints out a short summary of the state of the hash table. It prints the 'load' and the 'actual load'. The load
is the average number of data items per 'bucket' in the hash table. The 'actual load' is the average number of items per 'bucket',
but only for buckets which contain entries. So the 'actual load' is the average number of searches that will need to find an item
in the hash table, while the 'load' is the average number that will be done to record a miss.

lh_stats_bio(), lh_node_stats_bio() and lh_node_usage_stats_bio() are the same as the above, except that the output goes to
a BIO.

RETURN VALUES

These functions do not return values.

SEE ALSO

bio(3), lhash(3)

HISTORY

These functions are available in all versions of SSLeay and OpenSSL.

This manpage is derived from the SSLeay documentation.

1463

OpenSSL Manual

Name
MD2, MD4, MD5, MD2_Init, MD2_Update, MD2_Final, MD4_Init, MD4_Update, MD4_Final, MD5_Init, MD5_Update and
MD5_Final — MD2, MD4, and MD5 hash functions

Synopsis
#include <openssl/md2.h>

unsigned char *MD2(const unsigned char *d, unsigned long n,
 unsigned char *md);

int MD2_Init(MD2_CTX *c);
int MD2_Update(MD2_CTX *c, const unsigned char *data,
 unsigned long len);
int MD2_Final(unsigned char *md, MD2_CTX *c);

#include <openssl/md4.h>

unsigned char *MD4(const unsigned char *d, unsigned long n,
 unsigned char *md);

int MD4_Init(MD4_CTX *c);
int MD4_Update(MD4_CTX *c, const void *data,
 unsigned long len);
int MD4_Final(unsigned char *md, MD4_CTX *c);

#include <openssl/md5.h>

unsigned char *MD5(const unsigned char *d, unsigned long n,
 unsigned char *md);

int MD5_Init(MD5_CTX *c);
int MD5_Update(MD5_CTX *c, const void *data,
 unsigned long len);
int MD5_Final(unsigned char *md, MD5_CTX *c);

DESCRIPTION

MD2, MD4, and MD5 are cryptographic hash functions with a 128 bit output.

MD2(), MD4(), and MD5() compute the MD2, MD4, and MD5 message digest of the n bytes at d and place it in md (which
must have space for MD2_DIGEST_LENGTH == MD4_DIGEST_LENGTH == MD5_DIGEST_LENGTH == 16 bytes of
output). If md is NULL, the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

MD2_Init() initializes a MD2_CTX structure.

MD2_Update() can be called repeatedly with chunks of the message to be hashed (len bytes at data).

MD2_Final() places the message digest in md, which must have space for MD2_DIGEST_LENGTH == 16 bytes of output,
and erases the MD2_CTX.

MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(), MD5_Update(), and MD5_Final() are analogous using an MD4_CTX
and MD5_CTX structure.

Applications should use the higher level functions EVP_DigestInit(3) etc. instead of calling the hash functions directly.

NOTE

MD2, MD4, and MD5 are recommended only for compatibility with existing applications. In new applications, SHA-1 or
RIPEMD-160 should be preferred.

RETURN VALUES

MD2(), MD4(), and MD5() return pointers to the hash value.

1464

OpenSSL Manual

MD2_Init(), MD2_Update(), MD2_Final(), MD4_Init(), MD4_Update(), MD4_Final(), MD5_Init(), MD5_Update(), and
MD5_Final() return 1 for success, 0 otherwise.

CONFORMING TO

RFC 1319, RFC 1320, RFC 1321

SEE ALSO

sha(3), ripemd(3), EVP_DigestInit(3)

HISTORY

MD2(), MD2_Init(), MD2_Update() MD2_Final(), MD5(), MD5_Init(), MD5_Update() and MD5_Final() are available in all
versions of SSLeay and OpenSSL.

MD4(), MD4_Init(), and MD4_Update() are available in OpenSSL 0.9.6 and above.

1465

OpenSSL Manual

Name
MDC2, MDC2_Init, MDC2_Update and MDC2_Final — MDC2 hash function

Synopsis
#include <openssl/mdc2.h>

unsigned char *MDC2(const unsigned char *d, unsigned long n,
 unsigned char *md);

int MDC2_Init(MDC2_CTX *c);
int MDC2_Update(MDC2_CTX *c, const unsigned char *data,
 unsigned long len);
int MDC2_Final(unsigned char *md, MDC2_CTX *c);

DESCRIPTION

MDC2 is a method to construct hash functions with 128 bit output from block ciphers. These functions are an implementation
of MDC2 with DES.

MDC2() computes the MDC2 message digest of the n bytes at d and places it in md (which must have space for
MDC2_DIGEST_LENGTH == 16 bytes of output). If md is NULL, the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

MDC2_Init() initializes a MDC2_CTX structure.

MDC2_Update() can be called repeatedly with chunks of the message to be hashed (len bytes at data).

MDC2_Final() places the message digest in md, which must have space for MDC2_DIGEST_LENGTH == 16 bytes of output,
and erases the MDC2_CTX.

Applications should use the higher level functions EVP_DigestInit(3) etc. instead of calling the hash functions directly.

RETURN VALUES

MDC2() returns a pointer to the hash value.

MDC2_Init(), MDC2_Update() and MDC2_Final() return 1 for success, 0 otherwise.

CONFORMING TO

ISO/IEC 10118-2, with DES

SEE ALSO

sha(3), EVP_DigestInit(3)

HISTORY

MDC2(), MDC2_Init(), MDC2_Update() and MDC2_Final() are available since SSLeay 0.8.

1466

OpenSSL Manual

Name
OBJ_nid2obj, OBJ_nid2ln, OBJ_nid2sn, OBJ_obj2nid, OBJ_txt2nid, OBJ_ln2nid, OBJ_sn2nid, OBJ_cmp, OBJ_dup,
OBJ_txt2obj, OBJ_obj2txt, OBJ_create and OBJ_cleanup — ASN1 object utility functions

Synopsis
#include <openssl/objects.h>

ASN1_OBJECT * OBJ_nid2obj(int n);
const char * OBJ_nid2ln(int n);
const char * OBJ_nid2sn(int n);

int OBJ_obj2nid(const ASN1_OBJECT *o);
int OBJ_ln2nid(const char *ln);
int OBJ_sn2nid(const char *sn);

int OBJ_txt2nid(const char *s);

ASN1_OBJECT * OBJ_txt2obj(const char *s, int no_name);
int OBJ_obj2txt(char *buf, int buf_len, const ASN1_OBJECT *a, int no_name);

int OBJ_cmp(const ASN1_OBJECT *a,const ASN1_OBJECT *b);
ASN1_OBJECT * OBJ_dup(const ASN1_OBJECT *o);

int OBJ_create(const char *oid,const char *sn,const char *ln);
void OBJ_cleanup(void);

DESCRIPTION

The ASN1 object utility functions process ASN1_OBJECT structures which are a representation of the ASN1 OBJECT
IDENTIFIER (OID) type.

OBJ_nid2obj(), OBJ_nid2ln() and OBJ_nid2sn() convert the NID n to an ASN1_OBJECT structure, its long name and its short
name respectively, or NULL is an error occurred.

OBJ_obj2nid(), OBJ_ln2nid(), OBJ_sn2nid() return the corresponding NID for the object o, the long name <ln> or the short
name <sn> respectively or NID_undef if an error occurred.

OBJ_txt2nid() returns NID corresponding to text string <s>. s can be a long name, a short name or the numerical respresentation
of an object.

OBJ_txt2obj() converts the text string s into an ASN1_OBJECT structure. If no_name is 0 then long names and short names
will be interpreted as well as numerical forms. If no_name is 1 only the numerical form is acceptable.

OBJ_obj2txt() converts the ASN1_OBJECT a into a textual representation. The representation is written as a null terminated
string to buf at most buf_len bytes are written, truncating the result if necessary. The total amount of space required is returned.
If no_name is 0 then if the object has a long or short name then that will be used, otherwise the numerical form will be used.
If no_name is 1 then the numerical form will always be used.

OBJ_cmp() compares a to b. If the two are identical 0 is returned.

OBJ_dup() returns a copy of o.

OBJ_create() adds a new object to the internal table. oid is the numerical form of the object, sn the short name and ln the long
name. A new NID is returned for the created object.

OBJ_cleanup() cleans up OpenSSLs internal object table: this should be called before an application exits if any new objects
were added using OBJ_create().

NOTES

Objects in OpenSSL can have a short name, a long name and a numerical identifier (NID) associated with them. A standard
set of objects is represented in an internal table. The appropriate values are defined in the header file objects.h.

1467

OpenSSL Manual

For example the OID for commonName has the following definitions:

#define SN_commonName "CN"
#define LN_commonName "commonName"
#define NID_commonName 13

New objects can be added by calling OBJ_create().

Table objects have certain advantages over other objects: for example their NIDs can be used in a C language switch statement.
They are also static constant structures which are shared: that is there is only a single constant structure for each table object.

Objects which are not in the table have the NID value NID_undef.

Objects do not need to be in the internal tables to be processed, the functions OBJ_txt2obj() and OBJ_obj2txt() can process
the numerical form of an OID.

EXAMPLES

Create an object for commonName:

ASN1_OBJECT *o;
o = OBJ_nid2obj(NID_commonName);

Check if an object is commonName

if (OBJ_obj2nid(obj) == NID_commonName)
 /* Do something */

Create a new NID and initialize an object from it:

int new_nid;
ASN1_OBJECT *obj;
new_nid = OBJ_create("1.2.3.4", "NewOID", "New Object Identifier");

obj = OBJ_nid2obj(new_nid);

Create a new object directly:

obj = OBJ_txt2obj("1.2.3.4", 1);

BUGS

OBJ_obj2txt() is awkward and messy to use: it doesn't follow the convention of other OpenSSL functions where the buffer can
be set to NULL to determine the amount of data that should be written. Instead buf must point to a valid buffer and buf_len
should be set to a positive value. A buffer length of 80 should be more than enough to handle any OID encountered in practice.

RETURN VALUES

OBJ_nid2obj() returns an ASN1_OBJECT structure or NULL is an error occurred.

OBJ_nid2ln() and OBJ_nid2sn() returns a valid string or NULL on error.

OBJ_obj2nid(), OBJ_ln2nid(), OBJ_sn2nid() and OBJ_txt2nid() return a NID or NID_undef on error.

SEE ALSO

ERR_get_error(3)

HISTORY

TBA

1468

OpenSSL Manual

Name
OpenSSL_add_all_algorithms, OpenSSL_add_all_ciphers and OpenSSL_add_all_digests — add algorithms to internal table

Synopsis
#include <openssl/evp.h>

void OpenSSL_add_all_algorithms(void);
void OpenSSL_add_all_ciphers(void);
void OpenSSL_add_all_digests(void);

void EVP_cleanup(void);

DESCRIPTION

OpenSSL keeps an internal table of digest algorithms and ciphers. It uses this table to lookup ciphers via functions such as
EVP_get_cipher_byname().

OpenSSL_add_all_digests() adds all digest algorithms to the table.

OpenSSL_add_all_algorithms() adds all algorithms to the table (digests and ciphers).

OpenSSL_add_all_ciphers() adds all encryption algorithms to the table including password based encryption algorithms.

EVP_cleanup() removes all ciphers and digests from the table.

RETURN VALUES

None of the functions return a value.

NOTES

A typical application will call OpenSSL_add_all_algorithms() initially and EVP_cleanup() before exiting.

An application does not need to add algorithms to use them explicitly, for example by EVP_sha1(). It just needs to add them
if it (or any of the functions it calls) needs to lookup algorithms.

The cipher and digest lookup functions are used in many parts of the library. If the table is not initialized several functions will
misbehave and complain they cannot find algorithms. This includes the PEM, PKCS#12, SSL and S/MIME libraries. This is
a common query in the OpenSSL mailing lists.

Calling OpenSSL_add_all_algorithms() links in all algorithms: as a result a statically linked executable can be quite large. If
this is important it is possible to just add the required ciphers and digests.

BUGS

Although the functions do not return error codes it is possible for them to fail. This will only happen as a result of a memory
allocation failure so this is not too much of a problem in practice.

SEE ALSO

evp(3), EVP_DigestInit(3), EVP_EncryptInit(3)

1469

OpenSSL Manual

Name
OPENSSL_Applink — glue between OpenSSL BIO and Win32 compiler run-time

Synopsis
__declspec(dllexport) void **OPENSSL_Applink();

DESCRIPTION

OPENSSL_Applink is application-side interface which provides a glue between OpenSSL BIO layer and Win32 compiler
run-time environment. Even though it appears at application side, it's essentially OpenSSL private interface. For this reason
application developers are not expected to implement it, but to compile provided module with compiler of their choice and link
it into the target application. The referred module is available as <openssl>/ms/applink.c.

1470

OpenSSL Manual

Name
OPENSSL_config and OPENSSL_no_config — simple OpenSSL configuration functions

Synopsis
#include <openssl/conf.h>

void OPENSSL_config(const char *config_name);
void OPENSSL_no_config(void);

DESCRIPTION

OPENSSL_config() configures OpenSSL using the standard openssl.cnf configuration file name using config_name. If con-
fig_name is NULL then the file specified in the environment variable OPENSSL_CONF will be used, and if that is not set
then a system default location is used. Errors are silently ignored. Multiple calls have no effect.

OPENSSL_no_config() disables configuration. If called before OPENSSL_config() no configuration takes place.

NOTES

The OPENSSL_config() function is designed to be a very simple "call it and forget it" function. It is however much better than
nothing. Applications which need finer control over their configuration functionality should use the configuration functions
such as CONF_modules_load() directly. This function is deprecated and its use should be avoided. Applications should instead
call CONF_modules_load() during initialization (that is before starting any threads).

There are several reasons why calling the OpenSSL configuration routines is advisable. For example new ENGINE function-
ality was added to OpenSSL 0.9.7. In OpenSSL 0.9.7 control functions can be supported by ENGINEs, this can be used (among
other things) to load dynamic ENGINEs from shared libraries (DSOs). However very few applications currently support the
control interface and so very few can load and use dynamic ENGINEs. Equally in future more sophisticated ENGINEs will
require certain control operations to customize them. If an application calls OPENSSL_config() it doesn't need to know or care
about ENGINE control operations because they can be performed by editing a configuration file.

Applications should free up configuration at application closedown by calling CONF_modules_free().

RESTRICTIONS

The OPENSSL_config() function is designed to be a very simple "call it and forget it" function. As a result its behaviour is
somewhat limited. It ignores all errors silently and it can only load from the standard configuration file location for example.

It is however much better than nothing. Applications which need finer control over their configuration functionality should
use the configuration functions such as CONF_load_modules() directly.

RETURN VALUES

Neither OPENSSL_config() nor OPENSSL_no_config() return a value.

SEE ALSO

conf(5), CONF_load_modules_file(3), CONF_modules_free(3)

HISTORY

OPENSSL_config() and OPENSSL_no_config() first appeared in OpenSSL 0.9.7

1471

OpenSSL Manual

Name
OPENSSL_ia32cap — finding the IA-32 processor capabilities

Synopsis
unsigned long *OPENSSL_ia32cap_loc(void);
#define OPENSSL_ia32cap (*(OPENSSL_ia32cap_loc()))

DESCRIPTION

Value returned by OPENSSL_ia32cap_loc() is address of a variable containing IA-32 processor capabilities bit vector as it
appears in EDX register after executing CPUID instruction with EAX=1 input value (see Intel Application Note #241618).
Naturally it's meaningful on IA-32[E] platforms only. The variable is normally set up automatically upon toolkit initialization,
but can be manipulated afterwards to modify crypto library behaviour. For the moment of this writing six bits are significant,
namely:

1. bit #28 denoting Hyperthreading, which is used to distiguish cores with shared cache; 2. bit #26 denoting SSE2 support; 3.
bit #25 denoting SSE support; 4. bit #23 denoting MMX support; 5. bit #20, reserved by Intel, is used to choose between RC4
code pathes; 6. bit #4 denoting presence of Time-Stamp Counter.

For example, clearing bit #26 at run-time disables high-performance SSE2 code present in the crypto library. You might
have to do this if target OpenSSL application is executed on SSE2 capable CPU, but under control of OS which does not
support SSE2 extentions. Even though you can manipulate the value programmatically, you most likely will find it more
appropriate to set up an environment variable with the same name prior starting target application, e.g. on Intel P4 processor
'env OPENSSL_ia32cap=0x12900010 apps/openssl', to achieve same effect without modifying the application source code.
Alternatively you can reconfigure the toolkit with no-sse2 option and recompile.

1472

OpenSSL Manual

Name
OPENSSL_load_builtin_modules — add standard configuration modules

Synopsis
#include <openssl/conf.h>

void OPENSSL_load_builtin_modules(void);
void ASN1_add_oid_module(void);
ENGINE_add_conf_module();

DESCRIPTION

The function OPENSSL_load_builtin_modules() adds all the standard OpenSSL configuration modules to the internal list.
They can then be used by the OpenSSL configuration code.

ASN1_add_oid_module() adds just the ASN1 OBJECT module.

ENGINE_add_conf_module() adds just the ENGINE configuration module.

NOTES

If the simple configuration function OPENSSL_config() is called then OPENSSL_load_builtin_modules() is called automat-
ically.

Applications which use the configuration functions directly will need to call OPENSSL_load_builtin_modules() themselves
before any other configuration code.

Applications should call OPENSSL_load_builtin_modules() to load all configuration modules instead of adding modules se-
lectively: otherwise functionality may be missing from the application if an when new modules are added.

RETURN VALUE

None of the functions return a value.

SEE ALSO

conf(3), OPENSSL_config(3)

HISTORY

These functions first appeared in OpenSSL 0.9.7.

1473

OpenSSL Manual

Name
OPENSSL_VERSION_NUMBER, SSLeay and SSLeay_version — get OpenSSL version number

Synopsis
#include <openssl/opensslv.h>
#define OPENSSL_VERSION_NUMBER 0xnnnnnnnnnL

#include <openssl/crypto.h>
long SSLeay(void);
const char *SSLeay_version(int t);

DESCRIPTION

OPENSSL_VERSION_NUMBER is a numeric release version identifier:

MMNNFFPPS: major minor fix patch status

The status nibble has one of the values 0 for development, 1 to e for betas 1 to 14, and f for release.

for example

0x000906000 == 0.9.6 dev
0x000906023 == 0.9.6b beta 3
0x00090605f == 0.9.6e release

Versions prior to 0.9.3 have identifiers < 0x0930. Versions between 0.9.3 and 0.9.5 had a version identifier with this interpre-
tation:

MMNNFFRBB major minor fix final beta/patch

for example

0x000904100 == 0.9.4 release
0x000905000 == 0.9.5 dev

Version 0.9.5a had an interim interpretation that is like the current one, except the patch level got the highest bit set, to keep
continuity. The number was therefore 0x0090581f.

For backward compatibility, SSLEAY_VERSION_NUMBER is also defined.

SSLeay() returns this number. The return value can be compared to the macro to make sure that the correct version of the
library has been loaded, especially when using DLLs on Windows systems.

SSLeay_version() returns different strings depending on t:

SSLEAY_VERSION

The text variant of the version number and the release date. For example, "OpenSSL 0.9.5a 1 Apr 2000".

SSLEAY_CFLAGS

The compiler flags set for the compilation process in the form "compiler: …" if available or "compiler: information not
available" otherwise.

SSLEAY_BUILT_ON

The date of the build process in the form "built on: …" if available or "built on: date not available" otherwise.

SSLEAY_PLATFORM

The "Configure" target of the library build in the form "platform: …" if available or "platform: information not available"
otherwise.

1474

OpenSSL Manual

SSLEAY_DIR

The "OPENSSLDIR" setting of the library build in the form "OPENSSLDIR: "…"" if available or "OPENSSLDIR: N/
A" otherwise.

For an unknown t, the text "not available" is returned.

RETURN VALUE

The version number.

SEE ALSO

crypto(3)

HISTORY

SSLeay() and SSLEAY_VERSION_NUMBER are available in all versions of SSLeay and OpenSSL.
OPENSSL_VERSION_NUMBER is available in all versions of OpenSSL. SSLEAY_DIR was added in OpenSSL 0.9.7.

1475

OpenSSL Manual

Name
PEM, PEM_read_bio_PrivateKey, PEM_read_PrivateKey, PEM_write_bio_PrivateKey, PEM_write_PrivateKey,
PEM_write_bio_PKCS8PrivateKey, PEM_write_PKCS8PrivateKey, PEM_write_bio_PKCS8PrivateKey_nid,
PEM_write_PKCS8PrivateKey_nid, PEM_read_bio_PUBKEY, PEM_read_PUBKEY, PEM_write_bio_PUBKEY,
PEM_write_PUBKEY, PEM_read_bio_RSAPrivateKey, PEM_read_RSAPrivateKey, PEM_write_bio_RSAPrivateKey,
PEM_write_RSAPrivateKey, PEM_read_bio_RSAPublicKey, PEM_read_RSAPublicKey, PEM_write_bio_RSAPublicKey,
PEM_write_RSAPublicKey, PEM_read_bio_RSA_PUBKEY, PEM_read_RSA_PUBKEY,
PEM_write_bio_RSA_PUBKEY, PEM_write_RSA_PUBKEY, PEM_read_bio_DSAPrivateKey,
PEM_read_DSAPrivateKey, PEM_write_bio_DSAPrivateKey, PEM_write_DSAPrivateKey,
PEM_read_bio_DSA_PUBKEY, PEM_read_DSA_PUBKEY, PEM_write_bio_DSA_PUBKEY,
PEM_write_DSA_PUBKEY, PEM_read_bio_DSAparams, PEM_read_DSAparams, PEM_write_bio_DSAparams,
PEM_write_DSAparams, PEM_read_bio_DHparams, PEM_read_DHparams, PEM_write_bio_DHparams,
PEM_write_DHparams, PEM_read_bio_X509, PEM_read_X509, PEM_write_bio_X509, PEM_write_X509,
PEM_read_bio_X509_AUX, PEM_read_X509_AUX, PEM_write_bio_X509_AUX, PEM_write_X509_AUX,
PEM_read_bio_X509_REQ, PEM_read_X509_REQ, PEM_write_bio_X509_REQ, PEM_write_X509_REQ,
PEM_write_bio_X509_REQ_NEW, PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE,
PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE and
PEM_write_NETSCAPE_CERT_SEQUENCE — PEM routines

Synopsis
#include <openssl/pem.h>

EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
 pem_password_cb *cb, void *u);

EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
 char *kstr, int klen,
 pem_password_cb *cb, void *u);

EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
 pem_password_cb *cb, void *u);

EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);

RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
 pem_password_cb *cb, void *u);

RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,

1476

OpenSSL Manual

 pem_password_cb *cb, void *u);

int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb *cb, void *u);

RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
 pem_password_cb *cb, void *u);

RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);

int PEM_write_RSAPublicKey(FILE *fp, RSA *x);

RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
 pem_password_cb *cb, void *u);

RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);

int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);

DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
 pem_password_cb *cb, void *u);

DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb *cb, void *u);

int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
 unsigned char *kstr, int klen,
 pem_password_cb *cb, void *u);

DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
 pem_password_cb *cb, void *u);

DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);

int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);

DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);

DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);

int PEM_write_bio_DSAparams(BIO *bp, DSA *x);

int PEM_write_DSAparams(FILE *fp, DSA *x);

DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);

DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);

int PEM_write_bio_DHparams(BIO *bp, DH *x);

int PEM_write_DHparams(FILE *fp, DH *x);

X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

int PEM_write_bio_X509(BIO *bp, X509 *x);

int PEM_write_X509(FILE *fp, X509 *x);

1477

OpenSSL Manual

X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);

X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);

int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);

int PEM_write_X509_AUX(FILE *fp, X509 *x);

X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
 pem_password_cb *cb, void *u);

X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);

int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);

int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);

int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);

X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
 pem_password_cb *cb, void *u);
X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
 pem_password_cb *cb, void *u);
int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);

PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);

PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);

int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);

int PEM_write_PKCS7(FILE *fp, PKCS7 *x);

NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
 NETSCAPE_CERT_SEQUENCE **x,
 pem_password_cb *cb, void *u);

NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
 NETSCAPE_CERT_SEQUENCE **x,
 pem_password_cb *cb, void *u);

int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);

int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);

DESCRIPTION

The PEM functions read or write structures in PEM format. In this sense PEM format is simply base64 encoded data surrounded
by header lines.

For more details about the meaning of arguments see the PEM FUNCTION ARGUMENTS section.

Each operation has four functions associated with it. For clarity the term "foobar functions" will be used to collectively refer
to the PEM_read_bio_foobar(), PEM_read_foobar(), PEM_write_bio_foobar() and PEM_write_foobar() functions.

The PrivateKey functions read or write a private key in PEM format using an EVP_PKEY structure. The write routines
use "traditional" private key format and can handle both RSA and DSA private keys. The read functions can additionally
transparently handle PKCS#8 format encrypted and unencrypted keys too.

PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey() write a private key in an EVP_PKEY structure in
PKCS#8 EncryptedPrivateKeyInfo format using PKCS#5 v2.0 password based encryption algorithms. The cipher argument
specifies the encryption algorithm to use: unlike all other PEM routines the encryption is applied at the PKCS#8 level and not
in the PEM headers. If cipher is NULL then no encryption is used and a PKCS#8 PrivateKeyInfo structure is used instead.

PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid() also write out a private key as a PKCS#8
EncryptedPrivateKeyInfo however it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead. The algorithm to use is
specified in the nid parameter and should be the NID of the corresponding OBJECT IDENTIFIER (see NOTES section).

1478

OpenSSL Manual

The PUBKEY functions process a public key using an EVP_PKEY structure. The public key is encoded as a SubjectPublicK-
eyInfo structure.

The RSAPrivateKey functions process an RSA private key using an RSA structure. It handles the same formats as the
PrivateKey functions but an error occurs if the private key is not RSA.

The RSAPublicKey functions process an RSA public key using an RSA structure. The public key is encoded using a PKCS#1
RSAPublicKey structure.

The RSA_PUBKEY functions also process an RSA public key using an RSA structure. However the public key is encoded
using a SubjectPublicKeyInfo structure and an error occurs if the public key is not RSA.

The DSAPrivateKey functions process a DSA private key using a DSA structure. It handles the same formats as the
PrivateKey functions but an error occurs if the private key is not DSA.

The DSA_PUBKEY functions process a DSA public key using a DSA structure. The public key is encoded using a
SubjectPublicKeyInfo structure and an error occurs if the public key is not DSA.

The DSAparams functions process DSA parameters using a DSA structure. The parameters are encoded using a Dss-Parms
structure as defined in RFC2459.

The DHparams functions process DH parameters using a DH structure. The parameters are encoded using a PKCS#3
DHparameter structure.

The X509 functions process an X509 certificate using an X509 structure. They will also process a trusted X509 certificate but
any trust settings are discarded.

The X509_AUX functions process a trusted X509 certificate using an X509 structure.

The X509_REQ and X509_REQ_NEW functions process a PKCS#10 certificate request using an X509_REQ structure. The
X509_REQ write functions use CERTIFICATE REQUEST in the header whereas the X509_REQ_NEW functions use
NEW CERTIFICATE REQUEST (as required by some CAs). The X509_REQ read functions will handle either form so
there are no X509_REQ_NEW read functions.

The X509_CRL functions process an X509 CRL using an X509_CRL structure.

The PKCS7 functions process a PKCS#7 ContentInfo using a PKCS7 structure.

The NETSCAPE_CERT_SEQUENCE functions process a Netscape Certificate Sequence using a
NETSCAPE_CERT_SEQUENCE structure.

PEM FUNCTION ARGUMENTS

The PEM functions have many common arguments.

The bp BIO parameter (if present) specifies the BIO to read from or write to.

The fp FILE parameter (if present) specifies the FILE pointer to read from or write to.

The PEM read functions all take an argument TYPE **x and return a TYPE * pointer. Where TYPE is whatever structure the
function uses. If x is NULL then the parameter is ignored. If x is not NULL but *x is NULL then the structure returned will be
written to *x. If neither x nor *x is NULL then an attempt is made to reuse the structure at *x (but see BUGS and EXAMPLES
sections). Irrespective of the value of x a pointer to the structure is always returned (or NULL if an error occurred).

The PEM functions which write private keys take an enc parameter which specifies the encryption algorithm to use, encryption
is done at the PEM level. If this parameter is set to NULL then the private key is written in unencrypted form.

The cb argument is the callback to use when querying for the pass phrase used for encrypted PEM structures (normally only
private keys).

For the PEM write routines if the kstr parameter is not NULL then klen bytes at kstr are used as the passphrase and cb is
ignored.

1479

OpenSSL Manual

If the cb parameters is set to NULL and the u parameter is not NULL then the u parameter is interpreted as a null terminated
string to use as the passphrase. If both cb and u are NULL then the default callback routine is used which will typically prompt
for the passphrase on the current terminal with echoing turned off.

The default passphrase callback is sometimes inappropriate (for example in a GUI application) so an alternative can be supplied.
The callback routine has the following form:

int cb(char *buf, int size, int rwflag, void *u);

buf is the buffer to write the passphrase to. size is the maximum length of the passphrase (i.e. the size of buf). rwflag is a flag
which is set to 0 when reading and 1 when writing. A typical routine will ask the user to verify the passphrase (for example
by prompting for it twice) if rwflag is 1. The u parameter has the same value as the u parameter passed to the PEM routine. It
allows arbitrary data to be passed to the callback by the application (for example a window handle in a GUI application). The
callback must return the number of characters in the passphrase or 0 if an error occurred.

EXAMPLES

Although the PEM routines take several arguments in almost all applications most of them are set to 0 or NULL.

Read a certificate in PEM format from a BIO:

X509 *x;
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
if (x == NULL)
 {
 /* Error */
 }

Alternative method:

X509 *x = NULL;
if (!PEM_read_bio_X509(bp, &x, 0, NULL))
 {
 /* Error */
 }

Write a certificate to a BIO:

if (!PEM_write_bio_X509(bp, x))
 {
 /* Error */
 }

Write an unencrypted private key to a FILE pointer:

if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
 {
 /* Error */
 }

Write a private key (using traditional format) to a BIO using triple DES encryption, the pass phrase is prompted for:

if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
 {
 /* Error */
 }

Write a private key (using PKCS#8 format) to a BIO using triple DES encryption, using the pass phrase "hello":

if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
 {
 /* Error */
 }

Read a private key from a BIO using the pass phrase "hello":

key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
if (key == NULL)
 {

1480

OpenSSL Manual

 /* Error */
 }

Read a private key from a BIO using a pass phrase callback:

key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
if (key == NULL)
 {
 /* Error */
 }

Skeleton pass phrase callback:

int pass_cb(char *buf, int size, int rwflag, void *u);
 {
 int len;
 char *tmp;
 /* We'd probably do something else if 'rwflag' is 1 */
 printf("Enter pass phrase for \"%s\"\n", u);

/* get pass phrase, length 'len' into 'tmp' */
tmp = "hello";
len = strlen(tmp);

if (len <= 0) return 0;
/* if too long, truncate */
if (len > size) len = size;
memcpy(buf, tmp, len);
return len;
}

NOTES

The old PrivateKey write routines are retained for compatibility. New applications should write private keys using the
PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey() routines because they are more secure (they use an
iteration count of 2048 whereas the traditional routines use a count of 1) unless compatibility with older versions of OpenSSL
is important.

The PrivateKey read routines can be used in all applications because they handle all formats transparently.

A frequent cause of problems is attempting to use the PEM routines like this:

X509 *x;
PEM_read_bio_X509(bp, &x, 0, NULL);

this is a bug because an attempt will be made to reuse the data at x which is an uninitialised pointer.

PEM ENCRYPTION FORMAT

This old PrivateKey routines use a non standard technique for encryption.

The private key (or other data) takes the following form:

-----BEGIN RSA PRIVATE KEY-----
Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89

…base64 encoded data…
-----END RSA PRIVATE KEY-----

The line beginning DEK-Info contains two comma separated pieces of information: the encryption algorithm name as used by
EVP_get_cipherbyname() and an 8 byte salt encoded as a set of hexadecimal digits.

After this is the base64 encoded encrypted data.

The encryption key is determined using EVP_BytesToKey(), using salt and an iteration count of 1. The IV used is the value
of salt and *not* the IV returned by EVP_BytesToKey().

1481

OpenSSL Manual

BUGS

The PEM read routines in some versions of OpenSSL will not correctly reuse an existing structure. Therefore the following:

PEM_read_bio_X509(bp, &x, 0, NULL);

where x already contains a valid certificate, may not work, whereas:

X509_free(x);
x = PEM_read_bio_X509(bp, NULL, 0, NULL);

is guaranteed to work.

RETURN CODES

The read routines return either a pointer to the structure read or NULL if an error occurred.

The write routines return 1 for success or 0 for failure.

SEE ALSO

EVP_get_cipherbyname(3), EVP_BytesToKey(3)

1482

OpenSSL Manual

Name
PEM_write_bio_CMS_stream — output CMS_ContentInfo structure in PEM format.

Synopsis
#include <openssl/cms.h>
#include <openssl/pem.h>

int PEM_write_bio_CMS_stream(BIO *out, CMS_ContentInfo *cms, BIO *data, int flags);

DESCRIPTION

PEM_write_bio_CMS_stream() outputs a CMS_ContentInfo structure in PEM format.

It is otherwise identical to the function SMIME_write_CMS().

NOTES

This function is effectively a version of the PEM_write_bio_CMS() supporting streaming.

RETURN VALUES

PEM_write_bio_CMS_stream() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_verify(3), CMS_encrypt(3), CMS_decrypt(3), SMIME_write_CMS(3),
i2d_CMS_bio_stream(3)

HISTORY

PEM_write_bio_CMS_stream() was added to OpenSSL 1.0.0

1483

OpenSSL Manual

Name
PEM_write_bio_PKCS7_stream — output PKCS7 structure in PEM format.

Synopsis
#include <openssl/pkcs7.h>
#include <openssl/pem.h>

int PEM_write_bio_PKCS7_stream(BIO *out, PKCS7 *p7, BIO *data, int flags);

DESCRIPTION

PEM_write_bio_PKCS7_stream() outputs a PKCS7 structure in PEM format.

It is otherwise identical to the function SMIME_write_PKCS7().

NOTES

This function is effectively a version of the PEM_write_bio_PKCS7() supporting streaming.

RETURN VALUES

PEM_write_bio_PKCS7_stream() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), PKCS7_sign(3), PKCS7_verify(3), PKCS7_encrypt(3), PKCS7_decrypt(3), SMIME_write_PKCS7(3),
i2d_PKCS7_bio_stream(3)

HISTORY

PEM_write_bio_PKCS7_stream() was added to OpenSSL 1.0.0

1484

OpenSSL Manual

Name
PKCS12_create — create a PKCS#12 structure

Synopsis
#include <openssl/pkcs12.h>

PKCS12 *PKCS12_create(char *pass, char *name, EVP_PKEY *pkey, X509 *cert, STACK_OF(X509) *ca,
 int nid_key, int nid_cert, int iter, int mac_iter, int keytype);

DESCRIPTION

PKCS12_create() creates a PKCS#12 structure.

pass is the passphrase to use. name is the friendlyName to use for the supplied certifictate and key. pkey is the private key
to include in the structure and cert its corresponding certificates. ca, if not NULL is an optional set of certificates to also
include in the structure.

nid_key and nid_cert are the encryption algorithms that should be used for the key and certificate respectively. iter is the
encryption algorithm iteration count to use and mac_iter is the MAC iteration count to use. keytype is the type of key.

NOTES

The parameters nid_key, nid_cert, iter, mac_iter and keytype can all be set to zero and sensible defaults will be used.

These defaults are: 40 bit RC2 encryption for certificates, triple DES encryption for private keys, a key iteration count of
PKCS12_DEFAULT_ITER (currently 2048) and a MAC iteration count of 1.

The default MAC iteration count is 1 in order to retain compatibility with old software which did not interpret MAC iteration
counts. If such compatibility is not required then mac_iter should be set to PKCS12_DEFAULT_ITER.

keytype adds a flag to the store private key. This is a non standard extension that is only currently interpreted by MSIE. If
set to zero the flag is omitted, if set to KEY_SIG the key can be used for signing only, if set to KEY_EX it can be used for
signing and encryption. This option was useful for old export grade software which could use signing only keys of arbitrary
size but had restrictions on the permissible sizes of keys which could be used for encryption.

NEW FUNCTIONALITY IN OPENSSL 0.9.8

Some additional functionality was added to PKCS12_create() in OpenSSL 0.9.8. These extensions are detailed below.

If a certificate contains an alias or keyid then this will be used for the corresponding friendlyName or localKeyID in the
PKCS12 structure.

Either pkey, cert or both can be NULL to indicate that no key or certficate is required. In previous versions both had to be
present or a fatal error is returned.

nid_key or nid_cert can be set to -1 indicating that no encryption should be used.

mac_iter can be set to -1 and the MAC will then be omitted entirely.

SEE ALSO

d2i_PKCS12(3)

HISTORY

PKCS12_create was added in OpenSSL 0.9.3

1485

OpenSSL Manual

Name
PKCS12_parse — parse a PKCS#12 structure

Synopsis
#include <openssl/pkcs12.h>

int PKCS12_parse(PKCS12 *p12, const char *pass, EVP_PKEY **pkey, X509 **cert, STACK_OF(X509) **ca);

DESCRIPTION

PKCS12_parse() parses a PKCS12 structure.

p12 is the PKCS12 structure to parse. pass is the passphrase to use. If successful the private key will be written to *pkey, the
corresponding certificate to *cert and any additional certificates to *ca.

NOTES

The parameters pkey and cert cannot be NULL. ca can be <NULL> in which case additional certificates will be discarded.
*ca can also be a valid STACK in which case additional certificates are appended to *ca. If *ca is NULL a new STACK
will be allocated.

The friendlyName and localKeyID attributes (if present) on each certificate will be stored in the alias and keyid attributes
of the X509 structure.

RETURN VALUES

PKCS12_parse() returns 1 for success and zero if an error occurred.

The error can be obtained from ERR_get_error(3)

BUGS

Only a single private key and corresponding certificate is returned by this function. More complex PKCS#12 files with multiple
private keys will only return the first match.

Only friendlyName and localKeyID attributes are currently stored in certificates. Other attributes are discarded.

Attributes currently cannot be stored in the private key EVP_PKEY structure.

SEE ALSO

d2i_PKCS12(3)

HISTORY

PKCS12_parse was added in OpenSSL 0.9.3

1486

OpenSSL Manual

Name
PKCS7_decrypt — decrypt content from a PKCS#7 envelopedData structure

Synopsis
#include <openssl/pkcs7.h>

int PKCS7_decrypt(PKCS7 *p7, EVP_PKEY *pkey, X509 *cert, BIO *data, int flags);

DESCRIPTION

PKCS7_decrypt() extracts and decrypts the content from a PKCS#7 envelopedData structure. pkey is the private key of the
recipient, cert is the recipients certificate, data is a BIO to write the content to and flags is an optional set of flags.

NOTES

OpenSSL_add_all_algorithms() (or equivalent) should be called before using this function or errors about unknown algorithms
will occur.

Although the recipients certificate is not needed to decrypt the data it is needed to locate the appropriate (of possible several)
recipients in the PKCS#7 structure.

The following flags can be passed in the flags parameter.

If the PKCS7_TEXT flag is set MIME headers for type text/plain are deleted from the content. If the content is not of type
text/plain then an error is returned.

RETURN VALUES

PKCS7_decrypt() returns either 1 for success or 0 for failure. The error can be obtained from ERR_get_error(3)

BUGS

PKCS7_decrypt() must be passed the correct recipient key and certificate. It would be better if it could look up the correct
key and certificate from a database.

The lack of single pass processing and need to hold all data in memory as mentioned in PKCS7_sign() also applies to
PKCS7_verify().

SEE ALSO

ERR_get_error(3), PKCS7_encrypt(3)

HISTORY

PKCS7_decrypt() was added to OpenSSL 0.9.5

1487

OpenSSL Manual

Name
PKCS7_encrypt — create a PKCS#7 envelopedData structure

Synopsis
#include <openssl/pkcs7.h>

PKCS7 *PKCS7_encrypt(STACK_OF(X509) *certs, BIO *in, const EVP_CIPHER *cipher, int flags);

DESCRIPTION

PKCS7_encrypt() creates and returns a PKCS#7 envelopedData structure. certs is a list of recipient certificates. in is the content
to be encrypted. cipher is the symmetric cipher to use. flags is an optional set of flags.

NOTES

Only RSA keys are supported in PKCS#7 and envelopedData so the recipient certificates supplied to this function must all
contain RSA public keys, though they do not have to be signed using the RSA algorithm.

EVP_des_ede3_cbc() (triple DES) is the algorithm of choice for S/MIME use because most clients will support it.

Some old "export grade" clients may only support weak encryption using 40 or 64 bit RC2. These can be used by passing
EVP_rc2_40_cbc() and EVP_rc2_64_cbc() respectively.

The algorithm passed in the cipher parameter must support ASN1 encoding of its parameters.

Many browsers implement a "sign and encrypt" option which is simply an S/MIME envelopedData containing an S/MIME
signed message. This can be readily produced by storing the S/MIME signed message in a memory BIO and passing it to
PKCS7_encrypt().

The following flags can be passed in the flags parameter.

If the PKCS7_TEXT flag is set MIME headers for type text/plain are prepended to the data.

Normally the supplied content is translated into MIME canonical format (as required by the S/MIME specifications) if
PKCS7_BINARY is set no translation occurs. This option should be used if the supplied data is in binary format otherwise
the translation will corrupt it. If PKCS7_BINARY is set then PKCS7_TEXT is ignored.

If the PKCS7_STREAM flag is set a partial PKCS7 structure is output suitable for streaming I/O: no data is read from the
BIO in.

NOTES

If the flag PKCS7_STREAM is set the returned PKCS7 structure is not complete and outputting its contents via a function
that does not properly finalize the PKCS7 structure will give unpredictable results.

Several functions including SMIME_write_PKCS7(), i2d_PKCS7_bio_stream(), PEM_write_bio_PKCS7_stream() finalize
the structure. Alternatively finalization can be performed by obtaining the streaming ASN1 BIO directly using
BIO_new_PKCS7().

RETURN VALUES

PKCS7_encrypt() returns either a PKCS7 structure or NULL if an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), PKCS7_decrypt(3)

1488

OpenSSL Manual

HISTORY

PKCS7_decrypt() was added to OpenSSL 0.9.5 The PKCS7_STREAM flag was first supported in OpenSSL 1.0.0.

1489

OpenSSL Manual

Name
PKCS7_sign_add_signer — add a signer PKCS7 signed data structure.

Synopsis
#include <openssl/pkcs7.h>

PKCS7_SIGNER_INFO *PKCS7_sign_add_signer(PKCS7 *p7, X509 *signcert, EVP_PKEY *pkey,
 const EVP_MD *md, int flags);

DESCRIPTION

PKCS7_sign_add_signer() adds a signer with certificate signcert and private key pkey using message digest md to a PKCS7
signed data structure p7.

The PKCS7 structure should be obtained from an initial call to PKCS7_sign() with the flag PKCS7_PARTIAL set or in the
case or re-signing a valid PKCS7 signed data structure.

If the md parameter is NULL then the default digest for the public key algorithm will be used.

Unless the PKCS7_REUSE_DIGEST flag is set the returned PKCS7 structure is not complete and must be finalized either
by streaming (if applicable) or a call to PKCS7_final().

NOTES

The main purpose of this function is to provide finer control over a PKCS#7 signed data structure where the simpler
PKCS7_sign() function defaults are not appropriate. For example if multiple signers or non default digest algorithms are needed.

Any of the following flags (ored together) can be passed in the flags parameter.

If PKCS7_REUSE_DIGEST is set then an attempt is made to copy the content digest value from the PKCS7 struture: to add
a signer to an existing structure. An error occurs if a matching digest value cannot be found to copy. The returned PKCS7
structure will be valid and finalized when this flag is set.

If PKCS7_PARTIAL is set in addition to PKCS7_REUSE_DIGEST then the PKCS7_SIGNER_INO structure will not
be finalized so additional attributes can be added. In this case an explicit call to PKCS7_SIGNER_INFO_sign() is needed to
finalize it.

If PKCS7_NOCERTS is set the signer's certificate will not be included in the PKCS7 structure, the signer's certificate must
still be supplied in the signcert parameter though. This can reduce the size of the signature if the signers certificate can be
obtained by other means: for example a previously signed message.

The signedData structure includes several PKCS#7 autenticatedAttributes including the signing time, the PKCS#7 content type
and the supported list of ciphers in an SMIMECapabilities attribute. If PKCS7_NOATTR is set then no authenticatedAttributes
will be used. If PKCS7_NOSMIMECAP is set then just the SMIMECapabilities are omitted.

If present the SMIMECapabilities attribute indicates support for the following algorithms: triple DES, 128 bit RC2, 64 bit RC2,
DES and 40 bit RC2. If any of these algorithms is disabled then it will not be included.

PKCS7_sign_add_signers() returns an internal pointer to the PKCS7_SIGNER_INFO structure just added, this can be used
to set additional attributes before it is finalized.

RETURN VALUES

PKCS7_sign_add_signers() returns an internal pointer to the PKCS7_SIGNER_INFO structure just added or NULL if an error
occurs.

SEE ALSO

ERR_get_error(3), PKCS7_sign(3), PKCS7_final(3),

1490

OpenSSL Manual

HISTORY

PPKCS7_sign_add_signer() was added to OpenSSL 1.0.0

1491

OpenSSL Manual

Name
PKCS7_sign — create a PKCS#7 signedData structure

Synopsis
#include <openssl/pkcs7.h>

PKCS7 *PKCS7_sign(X509 *signcert, EVP_PKEY *pkey, STACK_OF(X509) *certs, BIO *data, int flags);

DESCRIPTION

PKCS7_sign() creates and returns a PKCS#7 signedData structure. signcert is the certificate to sign with, pkey is the
corresponsding private key. certs is an optional additional set of certificates to include in the PKCS#7 structure (for example
any intermediate CAs in the chain).

The data to be signed is read from BIO data.

flags is an optional set of flags.

NOTES

Any of the following flags (ored together) can be passed in the flags parameter.

Many S/MIME clients expect the signed content to include valid MIME headers. If the PKCS7_TEXT flag is set MIME
headers for type text/plain are prepended to the data.

If PKCS7_NOCERTS is set the signer's certificate will not be included in the PKCS7 structure, the signer's certificate must
still be supplied in the signcert parameter though. This can reduce the size of the signature if the signers certificate can be
obtained by other means: for example a previously signed message.

The data being signed is included in the PKCS7 structure, unless PKCS7_DETACHED is set in which case it is omitted. This
is used for PKCS7 detached signatures which are used in S/MIME plaintext signed messages for example.

Normally the supplied content is translated into MIME canonical format (as required by the S/MIME specifications) if
PKCS7_BINARY is set no translation occurs. This option should be used if the supplied data is in binary format otherwise
the translation will corrupt it.

The signedData structure includes several PKCS#7 autenticatedAttributes including the signing time, the PKCS#7 content type
and the supported list of ciphers in an SMIMECapabilities attribute. If PKCS7_NOATTR is set then no authenticatedAttributes
will be used. If PKCS7_NOSMIMECAP is set then just the SMIMECapabilities are omitted.

If present the SMIMECapabilities attribute indicates support for the following algorithms: triple DES, 128 bit RC2, 64 bit RC2,
DES and 40 bit RC2. If any of these algorithms is disabled then it will not be included.

If the flags PKCS7_STREAM is set then the returned PKCS7 structure is just initialized ready to perform the signing
operation. The signing is however not performed and the data to be signed is not read from the data parameter. Signing is
deferred until after the data has been written. In this way data can be signed in a single pass.

If the PKCS7_PARTIAL flag is set a partial PKCS7 structure is output to which additional signers and capabilities can be
added before finalization.

NOTES

If the flag PKCS7_STREAM is set the returned PKCS7 structure is not complete and outputting its contents via a function
that does not properly finalize the PKCS7 structure will give unpredictable results.

Several functions including SMIME_write_PKCS7(), i2d_PKCS7_bio_stream(), PEM_write_bio_PKCS7_stream() finalize
the structure. Alternatively finalization can be performed by obtaining the streaming ASN1 BIO directly using
BIO_new_PKCS7().

1492

OpenSSL Manual

If a signer is specified it will use the default digest for the signing algorithm. This is SHA1 for both RSA and DSA keys.

In OpenSSL 1.0.0 the certs, signcert and pkey parameters can all be NULL if the PKCS7_PARTIAL flag is set. One or
more signers can be added using the function PKCS7_sign_add_signer(). PKCS7_final() must also be called to finalize the
structure if streaming is not enabled. Alternative signing digests can also be specified using this method.

In OpenSSL 1.0.0 if signcert and pkey are NULL then a certificates only PKCS#7 structure is output.

In versions of OpenSSL before 1.0.0 the signcert and pkey parameters must NOT be NULL.

BUGS

Some advanced attributes such as counter signatures are not supported.

RETURN VALUES

PKCS7_sign() returns either a valid PKCS7 structure or NULL if an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), PKCS7_verify(3)

HISTORY

PKCS7_sign() was added to OpenSSL 0.9.5

The PKCS7_PARTIAL flag was added in OpenSSL 1.0.0

The PKCS7_STREAM flag was added in OpenSSL 1.0.0

1493

OpenSSL Manual

Name
PKCS7_verify — verify a PKCS#7 signedData structure

Synopsis
#include <openssl/pkcs7.h>

int PKCS7_verify(PKCS7 *p7, STACK_OF(X509) *certs, X509_STORE *store, BIO *indata, BIO *out, int flags);

STACK_OF(X509) *PKCS7_get0_signers(PKCS7 *p7, STACK_OF(X509) *certs, int flags);

DESCRIPTION

PKCS7_verify() verifies a PKCS#7 signedData structure. p7 is the PKCS7 structure to verify. certs is a set of certificates in
which to search for the signer's certificate. store is a trusted certficate store (used for chain verification). indata is the signed
data if the content is not present in p7 (that is it is detached). The content is written to out if it is not NULL.

flags is an optional set of flags, which can be used to modify the verify operation.

PKCS7_get0_signers() retrieves the signer's certificates from p7, it does not check their validity or whether any signatures are
valid. The certs and flags parameters have the same meanings as in PKCS7_verify().

VERIFY PROCESS

Normally the verify process proceeds as follows.

Initially some sanity checks are performed on p7. The type of p7 must be signedData. There must be at least one signature on
the data and if the content is detached indata cannot be NULL.

An attempt is made to locate all the signer's certificates, first looking in the certs parameter (if it is not NULL) and then looking
in any certificates contained in the p7 structure itself. If any signer's certificates cannot be located the operation fails.

Each signer's certificate is chain verified using the smimesign purpose and the supplied trusted certificate store. Any internal
certificates in the message are used as untrusted CAs. If any chain verify fails an error code is returned.

Finally the signed content is read (and written to out is it is not NULL) and the signature's checked.

If all signature's verify correctly then the function is successful.

Any of the following flags (ored together) can be passed in the flags parameter to change the default verify behaviour. Only
the flag PKCS7_NOINTERN is meaningful to PKCS7_get0_signers().

If PKCS7_NOINTERN is set the certificates in the message itself are not searched when locating the signer's certificate. This
means that all the signers certificates must be in the certs parameter.

If the PKCS7_TEXT flag is set MIME headers for type text/plain are deleted from the content. If the content is not of type
text/plain then an error is returned.

If PKCS7_NOVERIFY is set the signer's certificates are not chain verified.

If PKCS7_NOCHAIN is set then the certificates contained in the message are not used as untrusted CAs. This means that the
whole verify chain (apart from the signer's certificate) must be contained in the trusted store.

If PKCS7_NOSIGS is set then the signatures on the data are not checked.

NOTES

One application of PKCS7_NOINTERN is to only accept messages signed by a small number of certificates. The acceptable
certificates would be passed in the certs parameter. In this case if the signer is not one of the certificates supplied in certs then
the verify will fail because the signer cannot be found.

1494

OpenSSL Manual

Care should be taken when modifying the default verify behaviour, for example setting PKCS7_NOVERIFY|
PKCS7_NOSIGS will totally disable all verification and any signed message will be considered valid. This combination is
however useful if one merely wishes to write the content to out and its validity is not considered important.

Chain verification should arguably be performed using the signing time rather than the current time. However since the signing
time is supplied by the signer it cannot be trusted without additional evidence (such as a trusted timestamp).

RETURN VALUES

PKCS7_verify() returns 1 for a successful verification and zero or a negative value if an error occurs.

PKCS7_get0_signers() returns all signers or NULL if an error occurred.

The error can be obtained from ERR_get_error(3)

BUGS

The trusted certificate store is not searched for the signers certificate, this is primarily due to the inadequacies of the current
X509_STORE functionality.

The lack of single pass processing and need to hold all data in memory as mentioned in PKCS7_sign() also applies to
PKCS7_verify().

SEE ALSO

ERR_get_error(3), PKCS7_sign(3)

HISTORY

PKCS7_verify() was added to OpenSSL 0.9.5

1495

OpenSSL Manual

Name
rand — pseudo-random number generator

Synopsis
#include <openssl/rand.h>

int RAND_set_rand_engine(ENGINE *engine);

int RAND_bytes(unsigned char *buf, int num);
int RAND_pseudo_bytes(unsigned char *buf, int num);

void RAND_seed(const void *buf, int num);
void RAND_add(const void *buf, int num, int entropy);
int RAND_status(void);

int RAND_load_file(const char *file, long max_bytes);
int RAND_write_file(const char *file);
const char *RAND_file_name(char *file, size_t num);

int RAND_egd(const char *path);

void RAND_set_rand_method(const RAND_METHOD *meth);
const RAND_METHOD *RAND_get_rand_method(void);
RAND_METHOD *RAND_SSLeay(void);

void RAND_cleanup(void);

/* For Win32 only */
void RAND_screen(void);
int RAND_event(UINT, WPARAM, LPARAM);

DESCRIPTION

Since the introduction of the ENGINE API, the recommended way of controlling default implementations is by using
the ENGINE API functions. The default RAND_METHOD, as set by RAND_set_rand_method() and returned by
RAND_get_rand_method(), is only used if no ENGINE has been set as the default "rand" implementation. Hence, these two
functions are no longer the recommened way to control defaults.

If an alternative RAND_METHOD implementation is being used (either set directly or as provided by an ENGINE module),
then it is entirely responsible for the generation and management of a cryptographically secure PRNG stream. The mechanisms
described below relate solely to the software PRNG implementation built in to OpenSSL and used by default.

These functions implement a cryptographically secure pseudo-random number generator (PRNG). It is used by other library
functions for example to generate random keys, and applications can use it when they need randomness.

A cryptographic PRNG must be seeded with unpredictable data such as mouse movements or keys pressed at random by the
user. This is described in RAND_add(3). Its state can be saved in a seed file (see RAND_load_file(3)) to avoid having to go
through the seeding process whenever the application is started.

RAND_bytes(3) describes how to obtain random data from the PRNG.

INTERNALS

The RAND_SSLeay() method implements a PRNG based on a cryptographic hash function.

The following description of its design is based on the SSLeay documentation:

First up I will state the things I believe I need for a good RNG.

1. A good hashing algorithm to mix things up and to convert the RNG 'state' to random numbers.

2. An initial source of random 'state'.

3. The state should be very large. If the RNG is being used to generate 4096 bit RSA keys, 2 2048 bit random strings are
required (at a minimum). If your RNG state only has 128 bits, you are obviously limiting the search space to 128 bits, not

1496

OpenSSL Manual

2048. I'm probably getting a little carried away on this last point but it does indicate that it may not be a bad idea to keep
quite a lot of RNG state. It should be easier to break a cipher than guess the RNG seed data.

4. Any RNG seed data should influence all subsequent random numbers generated. This implies that any random seed data
entered will have an influence on all subsequent random numbers generated.

5. When using data to seed the RNG state, the data used should not be extractable from the RNG state. I believe this should
be a requirement because one possible source of 'secret' semi random data would be a private key or a password. This data
must not be disclosed by either subsequent random numbers or a 'core' dump left by a program crash.

6. Given the same initial 'state', 2 systems should deviate in their RNG state (and hence the random numbers generated) over
time if at all possible.

7. Given the random number output stream, it should not be possible to determine the RNG state or the next random number.

The algorithm is as follows.

There is global state made up of a 1023 byte buffer (the 'state'), a working hash value ('md'), and a counter ('count').

Whenever seed data is added, it is inserted into the 'state' as follows.

The input is chopped up into units of 20 bytes (or less for the last block). Each of these blocks is run through the hash function
as follows: The data passed to the hash function is the current 'md', the same number of bytes from the 'state' (the location
determined by in incremented looping index) as the current 'block', the new key data 'block', and 'count' (which is incremented
after each use). The result of this is kept in 'md' and also xored into the 'state' at the same locations that were used as input
into the hash function. I believe this system addresses points 1 (hash function; currently SHA-1), 3 (the 'state'), 4 (via the 'md'),
5 (by the use of a hash function and xor).

When bytes are extracted from the RNG, the following process is used. For each group of 10 bytes (or less), we do the following:

Input into the hash function the local 'md' (which is initialized from the global 'md' before any bytes are generated), the bytes
that are to be overwritten by the random bytes, and bytes from the 'state' (incrementing looping index). From this digest output
(which is kept in 'md'), the top (up to) 10 bytes are returned to the caller and the bottom 10 bytes are xored into the 'state'.

Finally, after we have finished 'num' random bytes for the caller, 'count' (which is incremented) and the local and global 'md'
are fed into the hash function and the results are kept in the global 'md'.

I believe the above addressed points 1 (use of SHA-1), 6 (by hashing into the 'state' the 'old' data from the caller that is about
to be overwritten) and 7 (by not using the 10 bytes given to the caller to update the 'state', but they are used to update 'md').

So of the points raised, only 2 is not addressed (but see RAND_add(3)).

SEE ALSO

BN_rand(3), RAND_add(3), RAND_load_file(3), RAND_egd(3), RAND_bytes(3), RAND_set_rand_method(3),
RAND_cleanup(3)

1497

OpenSSL Manual

Name
RAND_add, RAND_seed, RAND_status, RAND_event and RAND_screen — add entropy to the PRNG

Synopsis
#include <openssl/rand.h>

void RAND_seed(const void *buf, int num);

void RAND_add(const void *buf, int num, double entropy);

int RAND_status(void);

int RAND_event(UINT iMsg, WPARAM wParam, LPARAM lParam);
void RAND_screen(void);

DESCRIPTION

RAND_add() mixes the num bytes at buf into the PRNG state. Thus, if the data at buf are unpredictable to an adversary,
this increases the uncertainty about the state and makes the PRNG output less predictable. Suitable input comes from user
interaction (random key presses, mouse movements) and certain hardware events. The entropy argument is (the lower bound
of) an estimate of how much randomness is contained in buf, measured in bytes. Details about sources of randomness and how
to estimate their entropy can be found in the literature, e.g. RFC 1750.

RAND_add() may be called with sensitive data such as user entered passwords. The seed values cannot be recovered from
the PRNG output.

OpenSSL makes sure that the PRNG state is unique for each thread. On systems that provide /dev/urandom, the randomness
device is used to seed the PRNG transparently. However, on all other systems, the application is responsible for seeding the
PRNG by calling RAND_add(), RAND_egd(3) or RAND_load_file(3).

RAND_seed() is equivalent to RAND_add() when num == entropy.

RAND_event() collects the entropy from Windows events such as mouse movements and other user interaction. It should
be called with the iMsg, wParam and lParam arguments of all messages sent to the window procedure. It will estimate the
entropy contained in the event message (if any), and add it to the PRNG. The program can then process the messages as usual.

The RAND_screen() function is available for the convenience of Windows programmers. It adds the current contents of the
screen to the PRNG. For applications that can catch Windows events, seeding the PRNG by calling RAND_event() is a sig-
nificantly better source of randomness. It should be noted that both methods cannot be used on servers that run without user
interaction.

RETURN VALUES

RAND_status() and RAND_event() return 1 if the PRNG has been seeded with enough data, 0 otherwise.

The other functions do not return values.

SEE ALSO

rand(3), RAND_egd(3), RAND_load_file(3), RAND_cleanup(3)

HISTORY

RAND_seed() and RAND_screen() are available in all versions of SSLeay and OpenSSL. RAND_add() and RAND_status()
have been added in OpenSSL 0.9.5, RAND_event() in OpenSSL 0.9.5a.

1498

OpenSSL Manual

Name
RAND_bytes and RAND_pseudo_bytes — generate random data

Synopsis
#include <openssl/rand.h>

int RAND_bytes(unsigned char *buf, int num);

int RAND_pseudo_bytes(unsigned char *buf, int num);

DESCRIPTION

RAND_bytes() puts num cryptographically strong pseudo-random bytes into buf. An error occurs if the PRNG has not been
seeded with enough randomness to ensure an unpredictable byte sequence.

RAND_pseudo_bytes() puts num pseudo-random bytes into buf. Pseudo-random byte sequences generated by
RAND_pseudo_bytes() will be unique if they are of sufficient length, but are not necessarily unpredictable. They can be used
for non-cryptographic purposes and for certain purposes in cryptographic protocols, but usually not for key generation etc.

The contents of buf is mixed into the entropy pool before retrieving the new pseudo-random bytes unless disabled at compile
time (see FAQ).

RETURN VALUES

RAND_bytes() returns 1 on success, 0 otherwise. The error code can be obtained by ERR_get_error(3). RAND_pseudo_bytes()
returns 1 if the bytes generated are cryptographically strong, 0 otherwise. Both functions return -1 if they are not supported
by the current RAND method.

SEE ALSO

rand(3), ERR_get_error(3), RAND_add(3)

HISTORY

RAND_bytes() is available in all versions of SSLeay and OpenSSL. It has a return value since OpenSSL 0.9.5.
RAND_pseudo_bytes() was added in OpenSSL 0.9.5.

1499

OpenSSL Manual

Name
RAND_cleanup — erase the PRNG state

Synopsis
#include <openssl/rand.h>

void RAND_cleanup(void);

DESCRIPTION

RAND_cleanup() erases the memory used by the PRNG.

RETURN VALUE

RAND_cleanup() returns no value.

SEE ALSO

rand(3)

HISTORY

RAND_cleanup() is available in all versions of SSLeay and OpenSSL.

1500

OpenSSL Manual

Name
RAND_egd — query entropy gathering daemon

Synopsis
#include <openssl/rand.h>

int RAND_egd(const char *path);
int RAND_egd_bytes(const char *path, int bytes);

int RAND_query_egd_bytes(const char *path, unsigned char *buf, int bytes);

DESCRIPTION

RAND_egd() queries the entropy gathering daemon EGD on socket path. It queries 255 bytes and uses RAND_add(3) to seed
the OpenSSL built-in PRNG. RAND_egd(path) is a wrapper for RAND_egd_bytes(path, 255);

RAND_egd_bytes() queries the entropy gathering daemon EGD on socket path. It queries bytes bytes and uses RAND_add(3)
to seed the OpenSSL built-in PRNG. This function is more flexible than RAND_egd(). When only one secret key must be
generated, it is not necessary to request the full amount 255 bytes from the EGD socket. This can be advantageous, since the
amount of entropy that can be retrieved from EGD over time is limited.

RAND_query_egd_bytes() performs the actual query of the EGD daemon on socket path. If buf is given, bytes bytes are
queried and written into buf. If buf is NULL, bytes bytes are queried and used to seed the OpenSSL built-in PRNG using
RAND_add(3).

NOTES

On systems without /dev/*random devices providing entropy from the kernel, the EGD entropy gathering daemon can be used
to collect entropy. It provides a socket interface through which entropy can be gathered in chunks up to 255 bytes. Several
chunks can be queried during one connection.

EGD is available from http://www.lothar.com/tech/crypto/ (perl Makefile.PL; make; make install to install).
It is run as egd path, where path is an absolute path designating a socket. When RAND_egd() is called with that path as an
argument, it tries to read random bytes that EGD has collected. RAND_egd() retrieves entropy from the daemon using the
daemon's "non-blocking read" command which shall be answered immediately by the daemon without waiting for additional
entropy to be collected. The write and read socket operations in the communication are blocking.

Alternatively, the EGD-interface compatible daemon PRNGD can be used. It is available from http://prngd.sourceforge.net/ .
PRNGD does employ an internal PRNG itself and can therefore never run out of entropy.

OpenSSL automatically queries EGD when entropy is requested via RAND_bytes() or the status is checked via RAND_status()
for the first time, if the socket is located at /var/run/egd-pool, /dev/egd-pool or /etc/egd-pool.

RETURN VALUE

RAND_egd() and RAND_egd_bytes() return the number of bytes read from the daemon on success, and -1 if the connection
failed or the daemon did not return enough data to fully seed the PRNG.

RAND_query_egd_bytes() returns the number of bytes read from the daemon on success, and -1 if the connection failed. The
PRNG state is not considered.

SEE ALSO

rand(3), RAND_add(3), RAND_cleanup(3)

HISTORY

RAND_egd() is available since OpenSSL 0.9.5.

1501

OpenSSL Manual

RAND_egd_bytes() is available since OpenSSL 0.9.6.

RAND_query_egd_bytes() is available since OpenSSL 0.9.7.

The automatic query of /var/run/egd-pool et al was added in OpenSSL 0.9.7.

1502

OpenSSL Manual

Name
RAND_load_file, RAND_write_file and RAND_file_name — PRNG seed file

Synopsis
#include <openssl/rand.h>

const char *RAND_file_name(char *buf, size_t num);

int RAND_load_file(const char *filename, long max_bytes);

int RAND_write_file(const char *filename);

DESCRIPTION

RAND_file_name() generates a default path for the random seed file. buf points to a buffer of size num in which to store the
filename. The seed file is $RANDFILE if that environment variable is set, $HOME/.rnd otherwise. If $HOME is not set either,
or num is too small for the path name, an error occurs.

RAND_load_file() reads a number of bytes from file filename and adds them to the PRNG. If max_bytes is non-negative, up
to to max_bytes are read; starting with OpenSSL 0.9.5, if max_bytes is -1, the complete file is read.

RAND_write_file() writes a number of random bytes (currently 1024) to file filename which can be used to initialize the
PRNG by calling RAND_load_file() in a later session.

RETURN VALUES

RAND_load_file() returns the number of bytes read.

RAND_write_file() returns the number of bytes written, and -1 if the bytes written were generated without appropriate seed.

RAND_file_name() returns a pointer to buf on success, and NULL on error.

SEE ALSO

rand(3), RAND_add(3), RAND_cleanup(3)

HISTORY

RAND_load_file(), RAND_write_file() and RAND_file_name() are available in all versions of SSLeay and OpenSSL.

1503

OpenSSL Manual

Name
RAND_set_rand_method, RAND_get_rand_method and RAND_SSLeay — select RAND method

Synopsis
#include <openssl/rand.h>

void RAND_set_rand_method(const RAND_METHOD *meth);

const RAND_METHOD *RAND_get_rand_method(void);

RAND_METHOD *RAND_SSLeay(void);

DESCRIPTION

A RAND_METHOD specifies the functions that OpenSSL uses for random number generation. By modifying the method,
alternative implementations such as hardware RNGs may be used. IMPORTANT: See the NOTES section for important in-
formation about how these RAND API functions are affected by the use of ENGINE API calls.

Initially, the default RAND_METHOD is the OpenSSL internal implementation, as returned by RAND_SSLeay().

RAND_set_default_method() makes meth the method for PRNG use. NB: This is true only whilst no ENGINE has been set
as a default for RAND, so this function is no longer recommended.

RAND_get_default_method() returns a pointer to the current RAND_METHOD. However, the meaningfulness of this result
is dependent on whether the ENGINE API is being used, so this function is no longer recommended.

THE RAND_METHOD STRUCTURE
typedef struct rand_meth_st
{
 void (*seed)(const void *buf, int num);
 int (*bytes)(unsigned char *buf, int num);
 void (*cleanup)(void);
 void (*add)(const void *buf, int num, int entropy);
 int (*pseudorand)(unsigned char *buf, int num);
 int (*status)(void);
} RAND_METHOD;

The components point to the implementation of RAND_seed(), RAND_bytes(), RAND_cleanup(), RAND_add(),
RAND_pseudo_rand() and RAND_status(). Each component may be NULL if the function is not implemented.

RETURN VALUES

RAND_set_rand_method() returns no value. RAND_get_rand_method() and RAND_SSLeay() return pointers to the respective
methods.

NOTES

As of version 0.9.7, RAND_METHOD implementations are grouped together with other algorithmic APIs (eg.
RSA_METHOD, EVP_CIPHER, etc) in ENGINE modules. If a default ENGINE is specified for RAND functionality using
an ENGINE API function, that will override any RAND defaults set using the RAND API (ie. RAND_set_rand_method()).
For this reason, the ENGINE API is the recommended way to control default implementations for use in RAND and other
cryptographic algorithms.

SEE ALSO

rand(3), engine(3)

HISTORY

RAND_set_rand_method(), RAND_get_rand_method() and RAND_SSLeay() are available in all versions of OpenSSL.

1504

OpenSSL Manual

In the engine version of version 0.9.6, RAND_set_rand_method() was altered to take an ENGINE pointer as its argument. As
of version 0.9.7, that has been reverted as the ENGINE API transparently overrides RAND defaults if used, otherwise RAND
API functions work as before. RAND_set_rand_engine() was also introduced in version 0.9.7.

1505

OpenSSL Manual

Name
RC4_set_key and RC4 — RC4 encryption

Synopsis
#include <openssl/rc4.h>

void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);

void RC4(RC4_KEY *key, unsigned long len, const unsigned char *indata,
 unsigned char *outdata);

DESCRIPTION

This library implements the Alleged RC4 cipher, which is described for example in Applied Cryptography. It is believed to be
compatible with RC4[TM], a proprietary cipher of RSA Security Inc.

RC4 is a stream cipher with variable key length. Typically, 128 bit (16 byte) keys are used for strong encryption, but shorter
insecure key sizes have been widely used due to export restrictions.

RC4 consists of a key setup phase and the actual encryption or decryption phase.

RC4_set_key() sets up the RC4_KEY key using the len bytes long key at data.

RC4() encrypts or decrypts the len bytes of data at indata using key and places the result at outdata. Repeated RC4() calls
with the same key yield a continuous key stream.

Since RC4 is a stream cipher (the input is XORed with a pseudo-random key stream to produce the output), decryption uses
the same function calls as encryption.

Applications should use the higher level functions EVP_EncryptInit(3) etc. instead of calling the RC4 functions directly.

RETURN VALUES

RC4_set_key() and RC4() do not return values.

NOTE

Certain conditions have to be observed to securely use stream ciphers. It is not permissible to perform multiple encryptions
using the same key stream.

SEE ALSO

blowfish(3), des(3), rc2(3)

HISTORY

RC4_set_key() and RC4() are available in all versions of SSLeay and OpenSSL.

1506

OpenSSL Manual

Name
RIPEMD160, RIPEMD160_Init, RIPEMD160_Update and RIPEMD160_Final — RIPEMD-160 hash function

Synopsis
#include <openssl/ripemd.h>

unsigned char *RIPEMD160(const unsigned char *d, unsigned long n,
 unsigned char *md);

int RIPEMD160_Init(RIPEMD160_CTX *c);
int RIPEMD160_Update(RIPEMD_CTX *c, const void *data,
 unsigned long len);
int RIPEMD160_Final(unsigned char *md, RIPEMD160_CTX *c);

DESCRIPTION

RIPEMD-160 is a cryptographic hash function with a 160 bit output.

RIPEMD160() computes the RIPEMD-160 message digest of the n bytes at d and places it in md (which must have space for
RIPEMD160_DIGEST_LENGTH == 20 bytes of output). If md is NULL, the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

RIPEMD160_Init() initializes a RIPEMD160_CTX structure.

RIPEMD160_Update() can be called repeatedly with chunks of the message to be hashed (len bytes at data).

RIPEMD160_Final() places the message digest in md, which must have space for RIPEMD160_DIGEST_LENGTH == 20
bytes of output, and erases the RIPEMD160_CTX.

Applications should use the higher level functions EVP_DigestInit(3) etc. instead of calling the hash functions directly.

RETURN VALUES

RIPEMD160() returns a pointer to the hash value.

RIPEMD160_Init(), RIPEMD160_Update() and RIPEMD160_Final() return 1 for success, 0 otherwise.

CONFORMING TO

ISO/IEC 10118-3 (draft) (??)

SEE ALSO

sha(3), hmac(3), EVP_DigestInit(3)

HISTORY

RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update() and RIPEMD160_Final() are available since SSLeay 0.9.0.

1507

OpenSSL Manual

Name
rsa — RSA public key cryptosystem

Synopsis
#include <openssl/rsa.h>
#include <openssl/engine.h>

RSA * RSA_new(void);
void RSA_free(RSA *rsa);

int RSA_public_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);
int RSA_private_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);
int RSA_private_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa,int padding);
int RSA_public_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa,int padding);

int RSA_sign(int type, unsigned char *m, unsigned int m_len,
 unsigned char *sigret, unsigned int *siglen, RSA *rsa);
int RSA_verify(int type, unsigned char *m, unsigned int m_len,
 unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

int RSA_size(const RSA *rsa);

RSA *RSA_generate_key(int num, unsigned long e,
 void (*callback)(int,int,void *), void *cb_arg);

int RSA_check_key(RSA *rsa);

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
void RSA_blinding_off(RSA *rsa);

void RSA_set_default_method(const RSA_METHOD *meth);
const RSA_METHOD *RSA_get_default_method(void);
int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);
const RSA_METHOD *RSA_get_method(const RSA *rsa);
RSA_METHOD *RSA_PKCS1_SSLeay(void);
RSA_METHOD *RSA_null_method(void);
int RSA_flags(const RSA *rsa);
RSA *RSA_new_method(ENGINE *engine);

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

int RSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
 int (*dup_func)(), void (*free_func)());
int RSA_set_ex_data(RSA *r,int idx,char *arg);
char *RSA_get_ex_data(RSA *r, int idx);

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
 unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
 RSA *rsa);
int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,
 unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
 RSA *rsa);

DESCRIPTION

These functions implement RSA public key encryption and signatures as defined in PKCS #1 v2.0 [RFC 2437].

The RSA structure consists of several BIGNUM components. It can contain public as well as private RSA keys:

struct
 {
 BIGNUM *n; // public modulus
 BIGNUM *e; // public exponent
 BIGNUM *d; // private exponent
 BIGNUM *p; // secret prime factor

1508

OpenSSL Manual

 BIGNUM *q; // secret prime factor
 BIGNUM *dmp1; // d mod (p-1)
 BIGNUM *dmq1; // d mod (q-1)
 BIGNUM *iqmp; // q^-1 mod p
 // ...
 };
RSA

In public keys, the private exponent and the related secret values are NULL.

p, q, dmp1, dmq1 and iqmp may be NULL in private keys, but the RSA operations are much faster when these values are
available.

Note that RSA keys may use non-standard RSA_METHOD implementations, either directly or by the use of ENGINE mod-
ules. In some cases (eg. an ENGINE providing support for hardware-embedded keys), these BIGNUM values will not be used
by the implementation or may be used for alternative data storage. For this reason, applications should generally avoid using
RSA structure elements directly and instead use API functions to query or modify keys.

CONFORMING TO

SSL, PKCS #1 v2.0

PATENTS

RSA was covered by a US patent which expired in September 2000.

SEE ALSO

rsa(1), bn(3), dsa(3), dh(3), rand(3), engine(3), RSA_new(3), RSA_public_encrypt(3),
RSA_sign(3), RSA_size(3), RSA_generate_key(3), RSA_check_key(3), RSA_blinding_on(3), RSA_set_method(3),
RSA_print(3), RSA_get_ex_new_index(3), RSA_private_encrypt(3), RSA_sign_ASN1_OCTET_STRING(3),
RSA_padding_add_PKCS1_type_1(3)

1509

OpenSSL Manual

Name
RSA_blinding_on and RSA_blinding_off — protect the RSA operation from timing attacks

Synopsis
#include <openssl/rsa.h>

int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);

void RSA_blinding_off(RSA *rsa);

DESCRIPTION

RSA is vulnerable to timing attacks. In a setup where attackers can measure the time of RSA decryption or signature operations,
blinding must be used to protect the RSA operation from that attack.

RSA_blinding_on() turns blinding on for key rsa and generates a random blinding factor. ctx is NULL or a pre-allocated and
initialized BN_CTX. The random number generator must be seeded prior to calling RSA_blinding_on().

RSA_blinding_off() turns blinding off and frees the memory used for the blinding factor.

RETURN VALUES

RSA_blinding_on() returns 1 on success, and 0 if an error occurred.

RSA_blinding_off() returns no value.

SEE ALSO

rsa(3), rand(3)

HISTORY

RSA_blinding_on() and RSA_blinding_off() appeared in SSLeay 0.9.0.

1510

OpenSSL Manual

Name
RSA_check_key — validate private RSA keys

Synopsis
#include <openssl/rsa.h>

int RSA_check_key(RSA *rsa);

DESCRIPTION

This function validates RSA keys. It checks that p and q are in fact prime, and that n = p*q.

It also checks that d*e = 1 mod (p-1*q-1), and that dmp1, dmq1 and iqmp are set correctly or are NULL.

As such, this function can not be used with any arbitrary RSA key object, even if it is otherwise fit for regular RSA operation.
See NOTES for more information.

RETURN VALUE

RSA_check_key() returns 1 if rsa is a valid RSA key, and 0 otherwise. -1 is returned if an error occurs while checking the key.

If the key is invalid or an error occurred, the reason code can be obtained using ERR_get_error(3).

NOTES

This function does not work on RSA public keys that have only the modulus and public exponent elements populated. It
performs integrity checks on all the RSA key material, so the RSA key structure must contain all the private key data too.

Unlike most other RSA functions, this function does not work transparently with any underlying ENGINE implementation
because it uses the key data in the RSA structure directly. An ENGINE implementation can override the way key data is stored
and handled, and can even provide support for HSM keys - in which case the RSA structure may contain no key data at all!
If the ENGINE in question is only being used for acceleration or analysis purposes, then in all likelihood the RSA key data is
complete and untouched, but this can't be assumed in the general case.

BUGS

A method of verifying the RSA key using opaque RSA API functions might need to be considered. Right now
RSA_check_key() simply uses the RSA structure elements directly, bypassing the RSA_METHOD table altogether (and com-
pletely violating encapsulation and object-orientation in the process). The best fix will probably be to introduce a "check_key()"
handler to the RSA_METHOD function table so that alternative implementations can also provide their own verifiers.

SEE ALSO

rsa(3), ERR_get_error(3)

HISTORY

RSA_check_key() appeared in OpenSSL 0.9.4.

1511

OpenSSL Manual

Name
RSA_generate_key — generate RSA key pair

Synopsis
#include <openssl/rsa.h>

RSA *RSA_generate_key(int num, unsigned long e,
 void (*callback)(int,int,void *), void *cb_arg);

DESCRIPTION

RSA_generate_key() generates a key pair and returns it in a newly allocated RSA structure. The pseudo-random number
generator must be seeded prior to calling RSA_generate_key().

The modulus size will be num bits, and the public exponent will be e. Key sizes with num < 1024 should be considered
insecure. The exponent is an odd number, typically 3, 17 or 65537.

A callback function may be used to provide feedback about the progress of the key generation. If callback is not NULL, it
will be called as follows:

• While a random prime number is generated, it is called as described in BN_generate_prime(3).

• When the n-th randomly generated prime is rejected as not suitable for the key, callback(2, n, cb_arg) is called.

• When a random p has been found with p-1 relatively prime to e, it is called as callback(3, 0, cb_arg).

The process is then repeated for prime q with callback(3, 1, cb_arg).

RETURN VALUE

If key generation fails, RSA_generate_key() returns NULL; the error codes can be obtained by ERR_get_error(3).

BUGS

callback(2, x, cb_arg) is used with two different meanings.

RSA_generate_key() goes into an infinite loop for illegal input values.

SEE ALSO

ERR_get_error(3), rand(3), rsa(3), RSA_free(3)

HISTORY

The cb_arg argument was added in SSLeay 0.9.0.

1512

OpenSSL Manual

Name
RSA_get_ex_new_index, RSA_set_ex_data and RSA_get_ex_data — add application specific data to RSA structures

Synopsis
#include <openssl/rsa.h>

int RSA_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int RSA_set_ex_data(RSA *r, int idx, void *arg);

void *RSA_get_ex_data(RSA *r, int idx);

typedef int CRYPTO_EX_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef void CRYPTO_EX_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef int CRYPTO_EX_dup(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
 int idx, long argl, void *argp);

DESCRIPTION

Several OpenSSL structures can have application specific data attached to them. This has several potential uses, it can be used
to cache data associated with a structure (for example the hash of some part of the structure) or some additional data (for
example a handle to the data in an external library).

Since the application data can be anything at all it is passed and retrieved as a void * type.

The RSA_get_ex_new_index() function is initially called to "register" some new application specific data. It takes three op-
tional function pointers which are called when the parent structure (in this case an RSA structure) is initially created, when it
is copied and when it is freed up. If any or all of these function pointer arguments are not used they should be set to NULL.
The precise manner in which these function pointers are called is described in more detail below. RSA_get_ex_new_index()
also takes additional long and pointer parameters which will be passed to the supplied functions but which otherwise have no
special meaning. It returns an index which should be stored (typically in a static variable) and passed used in the idx parameter
in the remaining functions. Each successful call to RSA_get_ex_new_index() will return an index greater than any previously
returned, this is important because the optional functions are called in order of increasing index value.

RSA_set_ex_data() is used to set application specific data, the data is supplied in the arg parameter and its precise meaning
is up to the application.

RSA_get_ex_data() is used to retrieve application specific data. The data is returned to the application, this will be the same
value as supplied to a previous RSA_set_ex_data() call.

new_func() is called when a structure is initially allocated (for example with RSA_new(). The parent structure members will
not have any meaningful values at this point. This function will typically be used to allocate any application specific structure.

free_func() is called when a structure is being freed up. The dynamic parent structure members should not be accessed because
they will be freed up when this function is called.

new_func() and free_func() take the same parameters. parent is a pointer to the parent RSA structure. ptr is a the application
specific data (this wont be of much use in new_func(). ad is a pointer to the CRYPTO_EX_DATA structure from the parent
RSA structure: the functions CRYPTO_get_ex_data() and CRYPTO_set_ex_data() can be called to manipulate it. The idx
parameter is the index: this will be the same value returned by RSA_get_ex_new_index() when the functions were initially
registered. Finally the argl and argp parameters are the values originally passed to the same corresponding parameters when
RSA_get_ex_new_index() was called.

dup_func() is called when a structure is being copied. Pointers to the destination and source CRYPTO_EX_DATA structures
are passed in the to and from parameters respectively. The from_d parameter is passed a pointer to the source application data
when the function is called, when the function returns the value is copied to the destination: the application can thus modify

1513

OpenSSL Manual

the data pointed to by from_d and have different values in the source and destination. The idx, argl and argp parameters are
the same as those in new_func() and free_func().

RETURN VALUES

RSA_get_ex_new_index() returns a new index or -1 on failure (note 0 is a valid index value).

RSA_set_ex_data() returns 1 on success or 0 on failure.

RSA_get_ex_data() returns the application data or 0 on failure. 0 may also be valid application data but currently it can only
fail if given an invalid idx parameter.

new_func() and dup_func() should return 0 for failure and 1 for success.

On failure an error code can be obtained from ERR_get_error(3).

BUGS

dup_func() is currently never called.

The return value of new_func() is ignored.

The new_func() function isn't very useful because no meaningful values are present in the parent RSA structure when it is
called.

SEE ALSO

rsa(3), CRYPTO_set_ex_data(3)

HISTORY

RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() are available since SSLeay 0.9.0.

1514

OpenSSL Manual

Name
RSA_new and RSA_free — allocate and free RSA objects

Synopsis
#include <openssl/rsa.h>

RSA * RSA_new(void);

void RSA_free(RSA *rsa);

DESCRIPTION

RSA_new() allocates and initializes an RSA structure. It is equivalent to calling RSA_new_method(NULL).

RSA_free() frees the RSA structure and its components. The key is erased before the memory is returned to the system.

RETURN VALUES

If the allocation fails, RSA_new() returns NULL and sets an error code that can be obtained by ERR_get_error(3). Otherwise
it returns a pointer to the newly allocated structure.

RSA_free() returns no value.

SEE ALSO

ERR_get_error(3), rsa(3), RSA_generate_key(3), RSA_new_method(3)

HISTORY

RSA_new() and RSA_free() are available in all versions of SSLeay and OpenSSL.

1515

OpenSSL Manual

Name
RSA_padding_add_PKCS1_type_1, RSA_padding_check_PKCS1_type_1, RSA_padding_add_PKCS1_type_2,
RSA_padding_check_PKCS1_type_2, RSA_padding_add_PKCS1_OAEP, RSA_padding_check_PKCS1_OAEP,
RSA_padding_add_SSLv23, RSA_padding_check_SSLv23, RSA_padding_add_none and RSA_padding_check_none —
asymmetric encryption padding

Synopsis
#include <openssl/rsa.h>

int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
 unsigned char *f, int fl);

int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
 unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
 unsigned char *f, int fl);

int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
 unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen,
 unsigned char *f, int fl, unsigned char *p, int pl);

int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen,
 unsigned char *f, int fl, int rsa_len, unsigned char *p, int pl);

int RSA_padding_add_SSLv23(unsigned char *to, int tlen,
 unsigned char *f, int fl);

int RSA_padding_check_SSLv23(unsigned char *to, int tlen,
 unsigned char *f, int fl, int rsa_len);

int RSA_padding_add_none(unsigned char *to, int tlen,
 unsigned char *f, int fl);

int RSA_padding_check_none(unsigned char *to, int tlen,
 unsigned char *f, int fl, int rsa_len);

DESCRIPTION

The RSA_padding_xxx_xxx() functions are called from the RSA encrypt, decrypt, sign and verify functions. Normally they
should not be called from application programs.

However, they can also be called directly to implement padding for other asymmetric ciphers.
RSA_padding_add_PKCS1_OAEP() and RSA_padding_check_PKCS1_OAEP() may be used in an application combined with
RSA_NO_PADDING in order to implement OAEP with an encoding parameter.

RSA_padding_add_xxx() encodes fl bytes from f so as to fit into tlen bytes and stores the result at to. An error occurs if fl
does not meet the size requirements of the encoding method.

The following encoding methods are implemented:

PKCS1_type_1 PKCS #1 v2.0 EMSA-PKCS1-v1_5 (PKCS #1 v1.5 block type 1); used for signatures

PKCS1_type_2 PKCS #1 v2.0 EME-PKCS1-v1_5 (PKCS #1 v1.5 block type 2)

PKCS1_OAEP PKCS #1 v2.0 EME-OAEP

SSLv23 PKCS #1 EME-PKCS1-v1_5 with SSL-specific modification

none simply copy the data

The random number generator must be seeded prior to calling RSA_padding_add_xxx().

1516

OpenSSL Manual

RSA_padding_check_xxx() verifies that the fl bytes at f contain a valid encoding for a rsa_len byte RSA key in the respective
encoding method and stores the recovered data of at most tlen bytes (for RSA_NO_PADDING: of size tlen) at to.

For RSA_padding_xxx_OAEP(), p points to the encoding parameter of length pl. p may be NULL if pl is 0.

RETURN VALUES

The RSA_padding_add_xxx() functions return 1 on success, 0 on error. The RSA_padding_check_xxx() functions return the
length of the recovered data, -1 on error. Error codes can be obtained by calling ERR_get_error(3).

SEE ALSO

RSA_public_encrypt(3), RSA_private_decrypt(3), RSA_sign(3), RSA_verify(3)

HISTORY

RSA_padding_add_PKCS1_type_1(), RSA_padding_check_PKCS1_type_1(), RSA_padding_add_PKCS1_type_2(),
RSA_padding_check_PKCS1_type_2(), RSA_padding_add_SSLv23(), RSA_padding_check_SSLv23(),
RSA_padding_add_none() and RSA_padding_check_none() appeared in SSLeay 0.9.0.

RSA_padding_add_PKCS1_OAEP() and RSA_padding_check_PKCS1_OAEP() were added in OpenSSL 0.9.2b.

1517

OpenSSL Manual

Name
RSA_print, RSA_print_fp, DSAparams_print, DSAparams_print_fp, DSA_print, DSA_print_fp, DHparams_print and
DHparams_print_fp — print cryptographic parameters

Synopsis
#include <openssl/rsa.h>

int RSA_print(BIO *bp, RSA *x, int offset);
int RSA_print_fp(FILE *fp, RSA *x, int offset);

#include <openssl/dsa.h>

int DSAparams_print(BIO *bp, DSA *x);
int DSAparams_print_fp(FILE *fp, DSA *x);
int DSA_print(BIO *bp, DSA *x, int offset);
int DSA_print_fp(FILE *fp, DSA *x, int offset);

#include <openssl/dh.h>

int DHparams_print(BIO *bp, DH *x);
int DHparams_print_fp(FILE *fp, DH *x);

DESCRIPTION

A human-readable hexadecimal output of the components of the RSA key, DSA parameters or key or DH parameters is printed
to bp or fp.

The output lines are indented by offset spaces.

RETURN VALUES

These functions return 1 on success, 0 on error.

SEE ALSO

dh(3), dsa(3), rsa(3), BN_bn2bin(3)

HISTORY

RSA_print(), RSA_print_fp(), DSA_print(), DSA_print_fp(), DH_print(), DH_print_fp() are available in all versions of
SSLeay and OpenSSL. DSAparams_print() and DSAparams_print_fp() were added in SSLeay 0.8.

1518

OpenSSL Manual

Name
RSA_private_encrypt and RSA_public_decrypt — low level signature operations

Synopsis
#include <openssl/rsa.h>

int RSA_private_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

int RSA_public_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

DESCRIPTION

These functions handle RSA signatures at a low level.

RSA_private_encrypt() signs the flen bytes at from (usually a message digest with an algorithm identifier) using the private
key rsa and stores the signature in to. to must point to RSA_size(rsa) bytes of memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING

PKCS #1 v1.5 padding. This function does not handle the algorithmIdentifier specified in PKCS #1. When generating
or verifying PKCS #1 signatures, RSA_sign(3) and RSA_verify(3) should be used.

RSA_NO_PADDING

Raw RSA signature. This mode should only be used to implement cryptographically sound padding modes in the applica-
tion code. Signing user data directly with RSA is insecure.

RSA_public_decrypt() recovers the message digest from the flen bytes long signature at from using the signer's public key
rsa. to must point to a memory section large enough to hold the message digest (which is smaller than RSA_size(rsa) - 11).
padding is the padding mode that was used to sign the data.

RETURN VALUES

RSA_private_encrypt() returns the size of the signature (i.e., RSA_size(rsa)). RSA_public_decrypt() returns the size of the
recovered message digest.

On error, -1 is returned; the error codes can be obtained by ERR_get_error(3).

SEE ALSO

ERR_get_error(3), rsa(3), RSA_sign(3), RSA_verify(3)

HISTORY

The padding argument was added in SSLeay 0.8. RSA_NO_PADDING is available since SSLeay 0.9.0.

1519

OpenSSL Manual

Name
RSA_public_encrypt and RSA_private_decrypt — RSA public key cryptography

Synopsis
#include <openssl/rsa.h>

int RSA_public_encrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

int RSA_private_decrypt(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

DESCRIPTION

RSA_public_encrypt() encrypts the flen bytes at from (usually a session key) using the public key rsa and stores the ciphertext
in to. to must point to RSA_size(rsa) bytes of memory.

padding denotes one of the following modes:

RSA_PKCS1_PADDING

PKCS #1 v1.5 padding. This currently is the most widely used mode.

RSA_PKCS1_OAEP_PADDING

EME-OAEP as defined in PKCS #1 v2.0 with SHA-1, MGF1 and an empty encoding parameter. This mode is recom-
mended for all new applications.

RSA_SSLV23_PADDING

PKCS #1 v1.5 padding with an SSL-specific modification that denotes that the server is SSL3 capable.

RSA_NO_PADDING

Raw RSA encryption. This mode should only be used to implement cryptographically sound padding modes in the appli-
cation code. Encrypting user data directly with RSA is insecure.

flen must be less than RSA_size(rsa) - 11 for the PKCS #1 v1.5 based padding modes, less than RSA_size(rsa) - 41 for
RSA_PKCS1_OAEP_PADDING and exactly RSA_size(rsa) for RSA_NO_PADDING. The random number generator must
be seeded prior to calling RSA_public_encrypt().

RSA_private_decrypt() decrypts the flen bytes at from using the private key rsa and stores the plaintext in to. to must point
to a memory section large enough to hold the decrypted data (which is smaller than RSA_size(rsa)). padding is the padding
mode that was used to encrypt the data.

RETURN VALUES

RSA_public_encrypt() returns the size of the encrypted data (i.e., RSA_size(rsa)). RSA_private_decrypt() returns the size of
the recovered plaintext.

On error, -1 is returned; the error codes can be obtained by ERR_get_error(3).

CONFORMING TO

SSL, PKCS #1 v2.0

SEE ALSO

ERR_get_error(3), rand(3), rsa(3), RSA_size(3)

1520

OpenSSL Manual

HISTORY

The padding argument was added in SSLeay 0.8. RSA_NO_PADDING is available since SSLeay 0.9.0, OAEP was added
in OpenSSL 0.9.2b.

1521

OpenSSL Manual

Name
RSA_set_default_method, RSA_get_default_method, RSA_set_method, RSA_get_method, RSA_PKCS1_SSLeay,
RSA_null_method, RSA_flags and RSA_new_method — select RSA method

Synopsis
#include <openssl/rsa.h>

void RSA_set_default_method(const RSA_METHOD *meth);

RSA_METHOD *RSA_get_default_method(void);

int RSA_set_method(RSA *rsa, const RSA_METHOD *meth);

RSA_METHOD *RSA_get_method(const RSA *rsa);

RSA_METHOD *RSA_PKCS1_SSLeay(void);

RSA_METHOD *RSA_null_method(void);

int RSA_flags(const RSA *rsa);

RSA *RSA_new_method(RSA_METHOD *method);

DESCRIPTION

An RSA_METHOD specifies the functions that OpenSSL uses for RSA operations. By modifying the method, alternative
implementations such as hardware accelerators may be used. IMPORTANT: See the NOTES section for important information
about how these RSA API functions are affected by the use of ENGINE API calls.

Initially, the default RSA_METHOD is the OpenSSL internal implementation, as returned by RSA_PKCS1_SSLeay().

RSA_set_default_method() makes meth the default method for all RSA structures created later. NB: This is true only whilst
no ENGINE has been set as a default for RSA, so this function is no longer recommended.

RSA_get_default_method() returns a pointer to the current default RSA_METHOD. However, the meaningfulness of this result
is dependent on whether the ENGINE API is being used, so this function is no longer recommended.

RSA_set_method() selects meth to perform all operations using the key rsa. This will replace the RSA_METHOD used by
the RSA key and if the previous method was supplied by an ENGINE, the handle to that ENGINE will be released during the
change. It is possible to have RSA keys that only work with certain RSA_METHOD implementations (eg. from an ENGINE
module that supports embedded hardware-protected keys), and in such cases attempting to change the RSA_METHOD for the
key can have unexpected results.

RSA_get_method() returns a pointer to the RSA_METHOD being used by rsa. This method may or may not be supplied by
an ENGINE implementation, but if it is, the return value can only be guaranteed to be valid as long as the RSA key itself is
valid and does not have its implementation changed by RSA_set_method().

RSA_flags() returns the flags that are set for rsa's current RSA_METHOD. See the BUGS section.

RSA_new_method() allocates and initializes an RSA structure so that engine will be used for the RSA operations. If engine
is NULL, the default ENGINE for RSA operations is used, and if no default ENGINE is set, the RSA_METHOD controlled
by RSA_set_default_method() is used.

RSA_flags() returns the flags that are set for rsa's current method.

RSA_new_method() allocates and initializes an RSA structure so that method will be used for the RSA operations. If method
is NULL, the default method is used.

THE RSA_METHOD STRUCTURE
typedef struct rsa_meth_st
{
 /* name of the implementation */
 const char *name;

1522

OpenSSL Manual

/* encrypt */
 int (*rsa_pub_enc)(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

/* verify arbitrary data */
 int (*rsa_pub_dec)(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

/* sign arbitrary data */
 int (*rsa_priv_enc)(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

/* decrypt */
 int (*rsa_priv_dec)(int flen, unsigned char *from,
 unsigned char *to, RSA *rsa, int padding);

/* compute r0 = r0 ^ I mod rsa->n (May be NULL for some
 implementations) */
 int (*rsa_mod_exp)(BIGNUM *r0, BIGNUM *I, RSA *rsa);

/* compute r = a ^ p mod m (May be NULL for some implementations) */
 int (*bn_mod_exp)(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);

/* called at RSA_new */
 int (*init)(RSA *rsa);

/* called at RSA_free */
 int (*finish)(RSA *rsa);

/* RSA_FLAG_EXT_PKEY - rsa_mod_exp is called for private key
 * operations, even if p,q,dmp1,dmq1,iqmp
 * are NULL
 * RSA_FLAG_SIGN_VER - enable rsa_sign and rsa_verify
 * RSA_METHOD_FLAG_NO_CHECK - don't check pub/private match
 */
 int flags;

char *app_data; /* ?? */

/* sign. For backward compatibility, this is used only
 * if (flags & RSA_FLAG_SIGN_VER)
 */
 int (*rsa_sign)(int type,
 const unsigned char *m, unsigned int m_length,
 unsigned char *sigret, unsigned int *siglen, const RSA *rsa);
/* verify. For backward compatibility, this is used only
 * if (flags & RSA_FLAG_SIGN_VER)
 */
 int (*rsa_verify)(int dtype,
 const unsigned char *m, unsigned int m_length,
 const unsigned char *sigbuf, unsigned int siglen,
 const RSA *rsa);
/* keygen. If NULL builtin RSA key generation will be used */
 int (*rsa_keygen)(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);

} RSA_METHOD;

RETURN VALUES

RSA_PKCS1_SSLeay(), RSA_PKCS1_null_method(), RSA_get_default_method() and RSA_get_method() return pointers to
the respective RSA_METHODs.

RSA_set_default_method() returns no value.

RSA_set_method() returns a pointer to the old RSA_METHOD implementation that was replaced. However, this return value
should probably be ignored because if it was supplied by an ENGINE, the pointer could be invalidated at any time if the
ENGINE is unloaded (in fact it could be unloaded as a result of the RSA_set_method() function releasing its handle to the
ENGINE). For this reason, the return type may be replaced with a void declaration in a future release.

1523

OpenSSL Manual

RSA_new_method() returns NULL and sets an error code that can be obtained by ERR_get_error(3) if the allocation fails.
Otherwise it returns a pointer to the newly allocated structure.

NOTES

As of version 0.9.7, RSA_METHOD implementations are grouped together with other algorithmic APIs (eg. DSA_METHOD,
EVP_CIPHER, etc) into ENGINE modules. If a default ENGINE is specified for RSA functionality using an ENGINE API
function, that will override any RSA defaults set using the RSA API (ie. RSA_set_default_method()). For this reason, the
ENGINE API is the recommended way to control default implementations for use in RSA and other cryptographic algorithms.

BUGS

The behaviour of RSA_flags() is a mis-feature that is left as-is for now to avoid creating compatibility problems. RSA func-
tionality, such as the encryption functions, are controlled by the flags value in the RSA key itself, not by the flags value in the
RSA_METHOD attached to the RSA key (which is what this function returns). If the flags element of an RSA key is changed,
the changes will be honoured by RSA functionality but will not be reflected in the return value of the RSA_flags() function -
in effect RSA_flags() behaves more like an RSA_default_flags() function (which does not currently exist).

SEE ALSO

rsa(3), RSA_new(3)

HISTORY

RSA_new_method() and RSA_set_default_method() appeared in SSLeay 0.8. RSA_get_default_method(), RSA_set_method()
and RSA_get_method() as well as the rsa_sign and rsa_verify components of RSA_METHOD were added in OpenSSL 0.9.4.

RSA_set_default_openssl_method() and RSA_get_default_openssl_method() replaced RSA_set_default_method() and
RSA_get_default_method() respectively, and RSA_set_method() and RSA_new_method() were altered to use ENGINEs
rather than RSA_METHODs during development of the engine version of OpenSSL 0.9.6. For 0.9.7, the handling of defaults
in the ENGINE API was restructured so that this change was reversed, and behaviour of the other functions resembled more
closely the previous behaviour. The behaviour of defaults in the ENGINE API now transparently overrides the behaviour of
defaults in the RSA API without requiring changing these function prototypes.

1524

OpenSSL Manual

Name
RSA_sign_ASN1_OCTET_STRING and RSA_verify_ASN1_OCTET_STRING — RSA signatures

Synopsis
#include <openssl/rsa.h>

int RSA_sign_ASN1_OCTET_STRING(int dummy, unsigned char *m,
 unsigned int m_len, unsigned char *sigret, unsigned int *siglen,
 RSA *rsa);

int RSA_verify_ASN1_OCTET_STRING(int dummy, unsigned char *m,
 unsigned int m_len, unsigned char *sigbuf, unsigned int siglen,
 RSA *rsa);

DESCRIPTION

RSA_sign_ASN1_OCTET_STRING() signs the octet string m of size m_len using the private key rsa represented in DER
using PKCS #1 padding. It stores the signature in sigret and the signature size in siglen. sigret must point to RSA_size(rsa)
bytes of memory.

dummy is ignored.

The random number generator must be seeded prior to calling RSA_sign_ASN1_OCTET_STRING().

RSA_verify_ASN1_OCTET_STRING() verifies that the signature sigbuf of size siglen is the DER representation of a given
octet string m of size m_len. dummy is ignored. rsa is the signer's public key.

RETURN VALUES

RSA_sign_ASN1_OCTET_STRING() returns 1 on success, 0 otherwise. RSA_verify_ASN1_OCTET_STRING() returns 1
on successful verification, 0 otherwise.

The error codes can be obtained by ERR_get_error(3).

BUGS

These functions serve no recognizable purpose.

SEE ALSO

ERR_get_error(3), objects(3), rand(3), rsa(3), RSA_sign(3), RSA_verify(3)

HISTORY

RSA_sign_ASN1_OCTET_STRING() and RSA_verify_ASN1_OCTET_STRING() were added in SSLeay 0.8.

1525

OpenSSL Manual

Name
RSA_sign and RSA_verify — RSA signatures

Synopsis
#include <openssl/rsa.h>

int RSA_sign(int type, const unsigned char *m, unsigned int m_len,
 unsigned char *sigret, unsigned int *siglen, RSA *rsa);

int RSA_verify(int type, const unsigned char *m, unsigned int m_len,
 unsigned char *sigbuf, unsigned int siglen, RSA *rsa);

DESCRIPTION

RSA_sign() signs the message digest m of size m_len using the private key rsa as specified in PKCS #1 v2.0. It stores the
signature in sigret and the signature size in siglen. sigret must point to RSA_size(rsa) bytes of memory. Note that PKCS #1
adds meta-data, placing limits on the size of the key that can be used. See RSA_private_encrypt(3) for lower-level operations.

type denotes the message digest algorithm that was used to generate m. It usually is one of NID_sha1, NID_ripemd160 and
NID_md5; see objects(3) for details. If type is NID_md5_sha1, an SSL signature (MD5 and SHA1 message digests with
PKCS #1 padding and no algorithm identifier) is created.

RSA_verify() verifies that the signature sigbuf of size siglen matches a given message digest m of size m_len. type denotes
the message digest algorithm that was used to generate the signature. rsa is the signer's public key.

RETURN VALUES

RSA_sign() returns 1 on success, 0 otherwise. RSA_verify() returns 1 on successful verification, 0 otherwise.

The error codes can be obtained by ERR_get_error(3).

BUGS

Certain signatures with an improper algorithm identifier are accepted for compatibility with SSLeay 0.4.5 :-)

CONFORMING TO

SSL, PKCS #1 v2.0

SEE ALSO

ERR_get_error(3), objects(3), rsa(3), RSA_private_encrypt(3), RSA_public_decrypt(3)

HISTORY

RSA_sign() and RSA_verify() are available in all versions of SSLeay and OpenSSL.

1526

OpenSSL Manual

Name
RSA_size — get RSA modulus size

Synopsis
#include <openssl/rsa.h>

int RSA_size(const RSA *rsa);

DESCRIPTION

This function returns the RSA modulus size in bytes. It can be used to determine how much memory must be allocated for
an RSA encrypted value.

rsa->n must not be NULL.

RETURN VALUE

The size in bytes.

SEE ALSO

rsa(3)

HISTORY

RSA_size() is available in all versions of SSLeay and OpenSSL.

1527

OpenSSL Manual

Name
SHA1, SHA1_Init, SHA1_Update and SHA1_Final — Secure Hash Algorithm

Synopsis
#include <openssl/sha.h>

unsigned char *SHA1(const unsigned char *d, unsigned long n,
 unsigned char *md);

int SHA1_Init(SHA_CTX *c);
int SHA1_Update(SHA_CTX *c, const void *data,
 unsigned long len);
int SHA1_Final(unsigned char *md, SHA_CTX *c);

DESCRIPTION

SHA-1 (Secure Hash Algorithm) is a cryptographic hash function with a 160 bit output.

SHA1() computes the SHA-1 message digest of the n bytes at d and places it in md (which must have space for
SHA_DIGEST_LENGTH == 20 bytes of output). If md is NULL, the digest is placed in a static array.

The following functions may be used if the message is not completely stored in memory:

SHA1_Init() initializes a SHA_CTX structure.

SHA1_Update() can be called repeatedly with chunks of the message to be hashed (len bytes at data).

SHA1_Final() places the message digest in md, which must have space for SHA_DIGEST_LENGTH == 20 bytes of output,
and erases the SHA_CTX.

Applications should use the higher level functions EVP_DigestInit(3) etc. instead of calling the hash functions directly.

The predecessor of SHA-1, SHA, is also implemented, but it should be used only when backward compatibility is required.

RETURN VALUES

SHA1() returns a pointer to the hash value.

SHA1_Init(), SHA1_Update() and SHA1_Final() return 1 for success, 0 otherwise.

CONFORMING TO

SHA: US Federal Information Processing Standard FIPS PUB 180 (Secure Hash Standard), SHA-1: US Federal Information
Processing Standard FIPS PUB 180-1 (Secure Hash Standard), ANSI X9.30

SEE ALSO

ripemd(3), hmac(3), EVP_DigestInit(3)

HISTORY

SHA1(), SHA1_Init(), SHA1_Update() and SHA1_Final() are available in all versions of SSLeay and OpenSSL.

1528

OpenSSL Manual

Name
SMIME_read_CMS — parse S/MIME message.

Synopsis
#include <openssl/cms.h>

CMS_ContentInfo *SMIME_read_CMS(BIO *in, BIO **bcont);

DESCRIPTION

SMIME_read_CMS() parses a message in S/MIME format.

in is a BIO to read the message from.

If cleartext signing is used then the content is saved in a memory bio which is written to *bcont, otherwise *bcont is set to
NULL.

The parsed CMS_ContentInfo structure is returned or NULL if an error occurred.

NOTES

If *bcont is not NULL then the message is clear text signed. *bcont can then be passed to CMS_verify() with the CMS_DE-
TACHED flag set.

Otherwise the type of the returned structure can be determined using CMS_get0_type().

To support future functionality if bcont is not NULL *bcont should be initialized to NULL. For example:

BIO *cont = NULL;
CMS_ContentInfo *cms;

cms = SMIME_read_CMS(in, &cont);

BUGS

The MIME parser used by SMIME_read_CMS() is somewhat primitive. While it will handle most S/MIME messages more
complex compound formats may not work.

The parser assumes that the CMS_ContentInfo structure is always base64 encoded and will not handle the case where it is in
binary format or uses quoted printable format.

The use of a memory BIO to hold the signed content limits the size of message which can be processed due to memory restraints:
a streaming single pass option should be available.

RETURN VALUES

SMIME_read_CMS() returns a valid CMS_ContentInfo structure or NULL if an error occurred. The error can be obtained
from ERR_get_error(3).

SEE ALSO

ERR_get_error(3), CMS_type(3), SMIME_read_CMS(3), CMS_sign(3), CMS_verify(3), CMS_encrypt(3), CMS_decrypt(3)

HISTORY

SMIME_read_CMS() was added to OpenSSL 0.9.8

1529

OpenSSL Manual

Name
SMIME_read_PKCS7 — parse S/MIME message.

Synopsis
#include <openssl/pkcs7.h>

PKCS7 *SMIME_read_PKCS7(BIO *in, BIO **bcont);

DESCRIPTION

SMIME_read_PKCS7() parses a message in S/MIME format.

in is a BIO to read the message from.

If cleartext signing is used then the content is saved in a memory bio which is written to *bcont, otherwise *bcont is set to
NULL.

The parsed PKCS#7 structure is returned or NULL if an error occurred.

NOTES

If *bcont is not NULL then the message is clear text signed. *bcont can then be passed to PKCS7_verify() with the
PKCS7_DETACHED flag set.

Otherwise the type of the returned structure can be determined using PKCS7_type().

To support future functionality if bcont is not NULL *bcont should be initialized to NULL. For example:

BIO *cont = NULL;
PKCS7 *p7;

p7 = SMIME_read_PKCS7(in, &cont);

BUGS

The MIME parser used by SMIME_read_PKCS7() is somewhat primitive. While it will handle most S/MIME messages more
complex compound formats may not work.

The parser assumes that the PKCS7 structure is always base64 encoded and will not handle the case where it is in binary format
or uses quoted printable format.

The use of a memory BIO to hold the signed content limits the size of message which can be processed due to memory restraints:
a streaming single pass option should be available.

RETURN VALUES

SMIME_read_PKCS7() returns a valid PKCS7 structure or NULL is an error occurred. The error can be obtained from
ERR_get_error(3).

SEE ALSO

ERR_get_error(3), PKCS7_type(3), SMIME_read_PKCS7(3), PKCS7_sign(3), PKCS7_verify(3), PKCS7_encrypt(3),
PKCS7_decrypt(3)

HISTORY

SMIME_read_PKCS7() was added to OpenSSL 0.9.5

1530

OpenSSL Manual

Name
SMIME_write_CMS — convert CMS structure to S/MIME format.

Synopsis
#include <openssl/cms.h>

int SMIME_write_CMS(BIO *out, CMS_ContentInfo *cms, BIO *data, int flags);

DESCRIPTION

SMIME_write_CMS() adds the appropriate MIME headers to a CMS structure to produce an S/MIME message.

out is the BIO to write the data to. cms is the appropriate CMS_ContentInfo structure. If streaming is enabled then the content
must be supplied in the data argument. flags is an optional set of flags.

NOTES

The following flags can be passed in the flags parameter.

If CMS_DETACHED is set then cleartext signing will be used, this option only makes sense for SignedData where
CMS_DETACHED is also set when CMS_sign() is called.

If the CMS_TEXT flag is set MIME headers for type text/plain are added to the content, this only makes sense if
CMS_DETACHED is also set.

If the CMS_STREAM flag is set streaming is performed. This flag should only be set if CMS_STREAM was also set in the
previous call to a CMS_ContentInfo creation function.

If cleartext signing is being used and CMS_STREAM not set then the data must be read twice: once to compute the signature
in CMS_sign() and once to output the S/MIME message.

If streaming is performed the content is output in BER format using indefinite length constructed encoding except in the case
of signed data with detached content where the content is absent and DER format is used.

BUGS

SMIME_write_CMS() always base64 encodes CMS structures, there should be an option to disable this.

RETURN VALUES

SMIME_write_CMS() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), CMS_sign(3), CMS_verify(3), CMS_encrypt(3), CMS_decrypt(3)

HISTORY

SMIME_write_CMS() was added to OpenSSL 0.9.8

1531

OpenSSL Manual

Name
SMIME_write_PKCS7 — convert PKCS#7 structure to S/MIME format.

Synopsis
#include <openssl/pkcs7.h>

int SMIME_write_PKCS7(BIO *out, PKCS7 *p7, BIO *data, int flags);

DESCRIPTION

SMIME_write_PKCS7() adds the appropriate MIME headers to a PKCS#7 structure to produce an S/MIME message.

out is the BIO to write the data to. p7 is the appropriate PKCS7 structure. If streaming is enabled then the content must be
supplied in the data argument. flags is an optional set of flags.

NOTES

The following flags can be passed in the flags parameter.

If PKCS7_DETACHED is set then cleartext signing will be used, this option only makes sense for signedData where
PKCS7_DETACHED is also set when PKCS7_sign() is also called.

If the PKCS7_TEXT flag is set MIME headers for type text/plain are added to the content, this only makes sense if
PKCS7_DETACHED is also set.

If the PKCS7_STREAM flag is set streaming is performed. This flag should only be set if PKCS7_STREAM was also set
in the previous call to PKCS7_sign() or PKCS7_encrypt().

If cleartext signing is being used and PKCS7_STREAM not set then the data must be read twice: once to compute the signature
in PKCS7_sign() and once to output the S/MIME message.

If streaming is performed the content is output in BER format using indefinite length constructuted encoding except in the case
of signed data with detached content where the content is absent and DER format is used.

BUGS

SMIME_write_PKCS7() always base64 encodes PKCS#7 structures, there should be an option to disable this.

RETURN VALUES

SMIME_write_PKCS7() returns 1 for success or 0 for failure.

SEE ALSO

ERR_get_error(3), PKCS7_sign(3), PKCS7_verify(3), PKCS7_encrypt(3), PKCS7_decrypt(3)

HISTORY

SMIME_write_PKCS7() was added to OpenSSL 0.9.5

1532

OpenSSL Manual

Name
CRYPTO_THREADID_set_callback, CRYPTO_THREADID_get_callback, CRYPTO_THREADID_current,
CRYPTO_THREADID_cmp, CRYPTO_THREADID_cpy, CRYPTO_THREADID_hash, CRYPTO_set_locking_callback,
CRYPTO_num_locks, CRYPTO_set_dynlock_create_callback, CRYPTO_set_dynlock_lock_callback,
CRYPTO_set_dynlock_destroy_callback, CRYPTO_get_new_dynlockid, CRYPTO_destroy_dynlockid and CRYPTO_lock
— OpenSSL thread support

Synopsis
#include <openssl/crypto.h>

/* Don't use this structure directly. */
typedef struct crypto_threadid_st
 {
 void *ptr;
 unsigned long val;
 } CRYPTO_THREADID;
/* Only use CRYPTO_THREADID_set_[numeric|pointer]() within callbacks */
void CRYPTO_THREADID_set_numeric(CRYPTO_THREADID *id, unsigned long val);
void CRYPTO_THREADID_set_pointer(CRYPTO_THREADID *id, void *ptr);
int CRYPTO_THREADID_set_callback(void (*threadid_func)(CRYPTO_THREADID *));
void (*CRYPTO_THREADID_get_callback(void))(CRYPTO_THREADID *);
void CRYPTO_THREADID_current(CRYPTO_THREADID *id);
int CRYPTO_THREADID_cmp(const CRYPTO_THREADID *a,
 const CRYPTO_THREADID *b);
void CRYPTO_THREADID_cpy(CRYPTO_THREADID *dest,
 const CRYPTO_THREADID *src);
unsigned long CRYPTO_THREADID_hash(const CRYPTO_THREADID *id);

int CRYPTO_num_locks(void);

/* struct CRYPTO_dynlock_value needs to be defined by the user */
struct CRYPTO_dynlock_value;

void CRYPTO_set_dynlock_create_callback(struct CRYPTO_dynlock_value *
 (*dyn_create_function)(char *file, int line));
void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)
 (int mode, struct CRYPTO_dynlock_value *l,
 const char *file, int line));
void CRYPTO_set_dynlock_destroy_callback(void (*dyn_destroy_function)
 (struct CRYPTO_dynlock_value *l, const char *file, int line));

int CRYPTO_get_new_dynlockid(void);

void CRYPTO_destroy_dynlockid(int i);

void CRYPTO_lock(int mode, int n, const char *file, int line);

#define CRYPTO_w_lock(type) \
 CRYPTO_lock(CRYPTO_LOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
#define CRYPTO_w_unlock(type) \
 CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_WRITE,type,__FILE__,__LINE__)
#define CRYPTO_r_lock(type) \
 CRYPTO_lock(CRYPTO_LOCK|CRYPTO_READ,type,__FILE__,__LINE__)
#define CRYPTO_r_unlock(type) \
 CRYPTO_lock(CRYPTO_UNLOCK|CRYPTO_READ,type,__FILE__,__LINE__)
#define CRYPTO_add(addr,amount,type) \
 CRYPTO_add_lock(addr,amount,type,__FILE__,__LINE__)

DESCRIPTION

OpenSSL can safely be used in multi-threaded applications provided that at least two callback functions are set, locking_func-
tion and threadid_func.

locking_function(int mode, int n, const char *file, int line) is needed to perform locking on shared data structures. (Note that
OpenSSL uses a number of global data structures that will be implicitly shared whenever multiple threads use OpenSSL.)
Multi-threaded applications will crash at random if it is not set.

1533

OpenSSL Manual

locking_function() must be able to handle up to CRYPTO_num_locks() different mutex locks. It sets the n-th lock if mode
& CRYPTO_LOCK, and releases it otherwise.

file and line are the file number of the function setting the lock. They can be useful for debugging.

threadid_func(CRYPTO_THREADID *id) is needed to record the currently-executing thread's identifier into id. The imple-
mentation of this callback should not fill in id directly, but should use CRYPTO_THREADID_set_numeric() if thread IDs are
numeric, or CRYPTO_THREADID_set_pointer() if they are pointer-based. If the application does not register such a callback
using CRYPTO_THREADID_set_callback(), then a default implementation is used - on Windows and BeOS this uses the
system's default thread identifying APIs, and on all other platforms it uses the address of errno. The latter is satisfactory for
thread-safety if and only if the platform has a thread-local error number facility.

Once threadid_func() is registered, or if the built-in default implementation is to be used;

• CRYPTO_THREADID_current() records the currently-executing thread ID into the given id object.

• CRYPTO_THREADID_cmp() compares two thread IDs (returning zero for equality, ie. the same semantics as memcmp()).

• CRYPTO_THREADID_cpy() duplicates a thread ID value,

• CRYPTO_THREADID_hash() returns a numeric value usable as a hash-table key. This is usually the exact numeric or
pointer-based thread ID used internally, however this also handles the unusual case where pointers are larger than 'long'
variables and the platform's thread IDs are pointer-based - in this case, mixing is done to attempt to produce a unique numeric
value even though it is not as wide as the platform's true thread IDs.

Additionally, OpenSSL supports dynamic locks, and sometimes, some parts of OpenSSL need it for better performance. To
enable this, the following is required:

• Three additional callback function, dyn_create_function, dyn_lock_function and dyn_destroy_function.

• A structure defined with the data that each lock needs to handle.

struct CRYPTO_dynlock_value has to be defined to contain whatever structure is needed to handle locks.

dyn_create_function(const char *file, int line) is needed to create a lock. Multi-threaded applications might crash at random
if it is not set.

dyn_lock_function(int mode, CRYPTO_dynlock *l, const char *file, int line) is needed to perform locking off dynamic lock
numbered n. Multi-threaded applications might crash at random if it is not set.

dyn_destroy_function(CRYPTO_dynlock *l, const char *file, int line) is needed to destroy the lock l. Multi-threaded applica-
tions might crash at random if it is not set.

CRYPTO_get_new_dynlockid() is used to create locks. It will call dyn_create_function for the actual creation.

CRYPTO_destroy_dynlockid() is used to destroy locks. It will call dyn_destroy_function for the actual destruction.

CRYPTO_lock() is used to lock and unlock the locks. mode is a bitfield describing what should be done with the lock. n is the
number of the lock as returned from CRYPTO_get_new_dynlockid(). mode can be combined from the following values. These
values are pairwise exclusive, with undefined behaviour if misused (for example, CRYPTO_READ and CRYPTO_WRITE
should not be used together):

CRYPTO_LOCK 0x01
CRYPTO_UNLOCK 0x02
CRYPTO_READ 0x04
CRYPTO_WRITE 0x08

RETURN VALUES

CRYPTO_num_locks() returns the required number of locks.

CRYPTO_get_new_dynlockid() returns the index to the newly created lock.

1534

OpenSSL Manual

The other functions return no values.

NOTES

You can find out if OpenSSL was configured with thread support:

#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#if defined(OPENSSL_THREADS)
 // thread support enabled
#else
 // no thread support
#endif

Also, dynamic locks are currently not used internally by OpenSSL, but may do so in the future.

EXAMPLES

crypto/threads/mttest.c shows examples of the callback functions on Solaris, Irix and Win32.

HISTORY

CRYPTO_set_locking_callback() is available in all versions of SSLeay and OpenSSL. CRYPTO_num_locks()
was added in OpenSSL 0.9.4. All functions dealing with dynamic locks were added in OpenSSL 0.9.5b-dev.
CRYPTO_THREADID and associated functions were introduced in OpenSSL 1.0.0 to replace (actually, deprecate) the
previous CRYPTO_set_id_callback(), CRYPTO_get_id_callback(), and CRYPTO_thread_id() functions which assumed
thread IDs to always be represented by 'unsigned long'.

SEE ALSO

crypto(3)

1535

OpenSSL Manual

Name
des_read_password, des_read_2passwords, des_read_pw_string and des_read_pw — Compatibility user interface functions

Synopsis
#include <openssl/des_old.h>

int des_read_password(DES_cblock *key,const char *prompt,int verify);
int des_read_2passwords(DES_cblock *key1,DES_cblock *key2,
 const char *prompt,int verify);

int des_read_pw_string(char *buf,int length,const char *prompt,int verify);
int des_read_pw(char *buf,char *buff,int size,const char *prompt,int verify);

DESCRIPTION

The DES library contained a few routines to prompt for passwords. These aren't necessarely dependent on DES, and have
therefore become part of the UI compatibility library.

des_read_pw() writes the string specified by prompt to standard output turns echo off and reads an input string from the terminal.
The string is returned in buf, which must have spac for at least size bytes. If verify is set, the user is asked for the password
twice and unless the two copies match, an error is returned. The second password is stored in buff, which must therefore also
be at least size bytes. A return code of -1 indicates a system error, 1 failure due to use interaction, and 0 is success. All other
functions described here use des_read_pw() to do the work.

des_read_pw_string() is a variant of des_read_pw() that provides a buffer for you if verify is set.

des_read_password() calls des_read_pw() and converts the password to a DES key by calling DES_string_to_key();
des_read_2password() operates in the same way as des_read_password() except that it generates two keys by using the
DES_string_to_2key() function.

NOTES

des_read_pw_string() is available in the MIT Kerberos library as well, and is also available under the name
EVP_read_pw_string().

SEE ALSO

ui(3), ui_create(3)

AUTHOR

Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

1536

OpenSSL Manual

Name
UI_new, UI_new_method, UI_free, UI_add_input_string, UI_dup_input_string, UI_add_verify_string, UI_dup_verify_string,
UI_add_input_boolean, UI_dup_input_boolean, UI_add_info_string, UI_dup_info_string, UI_add_error_string,
UI_dup_error_string, UI_construct_prompt, UI_add_user_data, UI_get0_user_data, UI_get0_result, UI_process, UI_ctrl,
UI_set_default_method, UI_get_default_method, UI_get_method, UI_set_method, UI_OpenSSL and ERR_load_UI_strings
— New User Interface

Synopsis
#include <openssl/ui.h>

typedef struct ui_st UI;
typedef struct ui_method_st UI_METHOD;

UI *UI_new(void);
UI *UI_new_method(const UI_METHOD *method);
void UI_free(UI *ui);

int UI_add_input_string(UI *ui, const char *prompt, int flags,
 char *result_buf, int minsize, int maxsize);
int UI_dup_input_string(UI *ui, const char *prompt, int flags,
 char *result_buf, int minsize, int maxsize);
int UI_add_verify_string(UI *ui, const char *prompt, int flags,
 char *result_buf, int minsize, int maxsize, const char *test_buf);
int UI_dup_verify_string(UI *ui, const char *prompt, int flags,
 char *result_buf, int minsize, int maxsize, const char *test_buf);
int UI_add_input_boolean(UI *ui, const char *prompt, const char *action_desc,
 const char *ok_chars, const char *cancel_chars,
 int flags, char *result_buf);
int UI_dup_input_boolean(UI *ui, const char *prompt, const char *action_desc,
 const char *ok_chars, const char *cancel_chars,
 int flags, char *result_buf);
int UI_add_info_string(UI *ui, const char *text);
int UI_dup_info_string(UI *ui, const char *text);
int UI_add_error_string(UI *ui, const char *text);
int UI_dup_error_string(UI *ui, const char *text);

/* These are the possible flags. They can be or'ed together. */
#define UI_INPUT_FLAG_ECHO 0x01
#define UI_INPUT_FLAG_DEFAULT_PWD 0x02

char *UI_construct_prompt(UI *ui_method,
 const char *object_desc, const char *object_name);

void *UI_add_user_data(UI *ui, void *user_data);
void *UI_get0_user_data(UI *ui);

const char *UI_get0_result(UI *ui, int i);

int UI_process(UI *ui);

int UI_ctrl(UI *ui, int cmd, long i, void *p, void (*f)());
#define UI_CTRL_PRINT_ERRORS 1
#define UI_CTRL_IS_REDOABLE 2

void UI_set_default_method(const UI_METHOD *meth);
const UI_METHOD *UI_get_default_method(void);
const UI_METHOD *UI_get_method(UI *ui);
const UI_METHOD *UI_set_method(UI *ui, const UI_METHOD *meth);

UI_METHOD *UI_OpenSSL(void);

DESCRIPTION

UI stands for User Interface, and is general purpose set of routines to prompt the user for text-based information. Through
user-written methods (see ui_create(3)), prompting can be done in any way imaginable, be it plain text prompting, through
dialog boxes or from a cell phone.

All the functions work through a context of the type UI. This context contains all the information needed to prompt correctly
as well as a reference to a UI_METHOD, which is an ordered vector of functions that carry out the actual prompting.

1537

OpenSSL Manual

The first thing to do is to create a UI with UI_new() or UI_new_method(), then add information to it with the UI_add or UI_dup
functions. Also, user-defined random data can be passed down to the underlying method through calls to UI_add_user_data.
The default UI method doesn't care about these data, but other methods might. Finally, use UI_process() to actually perform
the prompting and UI_get0_result() to find the result to the prompt.

A UI can contain more than one prompt, which are performed in the given sequence. Each prompt gets an index number which
is returned by the UI_add and UI_dup functions, and has to be used to get the corresponding result with UI_get0_result().

The functions are as follows:

UI_new() creates a new UI using the default UI method. When done with this UI, it should be freed using UI_free().

UI_new_method() creates a new UI using the given UI method. When done with this UI, it should be freed using UI_free().

UI_OpenSSL() returns the built-in UI method (note: not the default one, since the default can be changed. See further on). This
method is the most machine/OS dependent part of OpenSSL and normally generates the most problems when porting.

UI_free() removes a UI from memory, along with all other pieces of memory that's connected to it, like duplicated input strings,
results and others.

UI_add_input_string() and UI_add_verify_string() add a prompt to the UI, as well as flags and a result buffer and the
desired minimum and maximum sizes of the result. The given information is used to prompt for information, for example
a password, and to verify a password (i.e. having the user enter it twice and check that the same string was entered twice).
UI_add_verify_string() takes and extra argument that should be a pointer to the result buffer of the input string that it's supposed
to verify, or verification will fail.

UI_add_input_boolean() adds a prompt to the UI that's supposed to be answered in a boolean way, with a single character for
yes and a different character for no. A set of characters that can be used to cancel the prompt is given as well. The prompt
itself is divided in two, one part being the descriptive text (given through the prompt argument) and one describing the possible
answers (given through the action_desc argument).

UI_add_info_string() and UI_add_error_string() add strings that are shown at the same time as the prompt for extra information
or to show an error string. The difference between the two is only conceptual. With the builtin method, there's no technical
difference between them. Other methods may make a difference between them, however.

The flags currently supported are UI_INPUT_FLAG_ECHO, which is relevant for UI_add_input_string() and will
have the users response be echoed (when prompting for a password, this flag should obviously not be used, and
UI_INPUT_FLAG_DEFAULT_PWD, which means that a default password of some sort will be used (completely depending
on the application and the UI method).

UI_dup_input_string(), UI_dup_verify_string(), UI_dup_input_boolean(), UI_dup_info_string() and UI_dup_error_string()
are basically the same as their UI_add counterparts, except that they make their own copies of all strings.

UI_construct_prompt() is a helper function that can be used to create a prompt from two pieces of information: an description
and a name. The default constructor (if there is none provided by the method used) creates a string "Enter description for
name:". With the description "pass phrase" and the file name "foo.key", that becomes "Enter pass phrase for foo.key:". Other
methods may create whatever string and may include encodings that will be processed by the other method functions.

UI_add_user_data() adds a piece of memory for the method to use at any time. The builtin UI method doesn't care about this
info. Note that several calls to this function doesn't add data, it replaces the previous blob with the one given as argument.

UI_get0_user_data() retrieves the data that has last been given to the UI with UI_add_user_data().

UI_get0_result() returns a pointer to the result buffer associated with the information indexed by i.

UI_process() goes through the information given so far, does all the printing and prompting and returns.

UI_ctrl() adds extra control for the application author. For now, it understands two commands: UI_CTRL_PRINT_ERRORS,
which makes UI_process() print the OpenSSL error stack as part of processing the UI, and UI_CTRL_IS_REDOABLE, which
returns a flag saying if the used UI can be used again or not.

UI_set_default_method() changes the default UI method to the one given.

1538

OpenSSL Manual

UI_get_default_method() returns a pointer to the current default UI method.

UI_get_method() returns the UI method associated with a given UI.

UI_set_method() changes the UI method associated with a given UI.

SEE ALSO

ui_create(3), ui_compat(3)

HISTORY

The UI section was first introduced in OpenSSL 0.9.7.

AUTHOR

Richard Levitte (richard@levitte.org) for the OpenSSL project (http://www.openssl.org).

1539

OpenSSL Manual

Name
x509 — X.509 certificate handling

Synopsis
#include <openssl/x509.h>

DESCRIPTION

A X.509 certificate is a structured grouping of information about an individual, a device, or anything one can imagine. A X.509
CRL (certificate revocation list) is a tool to help determine if a certificate is still valid. The exact definition of those can be
found in the X.509 document from ITU-T, or in RFC3280 from PKIX. In OpenSSL, the type X509 is used to express such a
certificate, and the type X509_CRL is used to express a CRL.

A related structure is a certificate request, defined in PKCS#10 from RSA Security, Inc, also reflected in RFC2896. In OpenSSL,
the type X509_REQ is used to express such a certificate request.

To handle some complex parts of a certificate, there are the types X509_NAME (to express a certificate name),
X509_ATTRIBUTE (to express a certificate attributes), X509_EXTENSION (to express a certificate extension) and a few
more.

Finally, there's the supertype X509_INFO, which can contain a CRL, a certificate and a corresponding private key.

X509_…, d2i_X509_… and i2d_X509_… handle X.509 certificates, with some exceptions, shown below.

X509_CRL_…, d2i_X509_CRL_… and i2d_X509_CRL_… handle X.509 CRLs.

X509_REQ_…, d2i_X509_REQ_… and i2d_X509_REQ_… handle PKCS#10 certificate requests.

X509_NAME_… handle certificate names.

X509_ATTRIBUTE_… handle certificate attributes.

X509_EXTENSION_… handle certificate extensions.

SEE ALSO

X509_NAME_ENTRY_get_object(3), X509_NAME_add_entry_by_txt(3), X509_NAME_add_entry_by_NID(3),
X509_NAME_print_ex(3), X509_NAME_new(3), d2i_X509(3), d2i_X509_ALGOR(3), d2i_X509_CRL(3),
d2i_X509_NAME(3), d2i_X509_REQ(3), d2i_X509_SIG(3), crypto(3), x509v3(3)

1540

OpenSSL Manual

Name
X509_NAME_add_entry_by_txt, X509_NAME_add_entry_by_OBJ, X509_NAME_add_entry_by_NID,
X509_NAME_add_entry and X509_NAME_delete_entry — X509_NAME modification functions

Synopsis
#include <openssl/x509.h>

int X509_NAME_add_entry_by_txt(X509_NAME *name, const char *field, int type, const unsigned char *bytes,
 int len, int loc, int set);

int X509_NAME_add_entry_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, int type, unsigned char *bytes,
 int len, int loc, int set);

int X509_NAME_add_entry_by_NID(X509_NAME *name, int nid, int type, unsigned char *bytes, int len,
 int loc, int set);

int X509_NAME_add_entry(X509_NAME *name,X509_NAME_ENTRY *ne, int loc, int set);

X509_NAME_ENTRY *X509_NAME_delete_entry(X509_NAME *name, int loc);

DESCRIPTION

X509_NAME_add_entry_by_txt(), X509_NAME_add_entry_by_OBJ() and X509_NAME_add_entry_by_NID() add a field
whose name is defined by a string field, an object obj or a NID nid respectively. The field value to be added is in bytes of
length len. If len is -1 then the field length is calculated internally using strlen(bytes).

The type of field is determined by type which can either be a definition of the type of bytes (such as MBSTRING_ASC) or
a standard ASN1 type (such as V_ASN1_IA5STRING). The new entry is added to a position determined by loc and set.

X509_NAME_add_entry() adds a copy of X509_NAME_ENTRY structure ne to name. The new entry is added to a position
determined by loc and set. Since a copy of ne is added ne must be freed up after the call.

X509_NAME_delete_entry() deletes an entry from name at position loc. The deleted entry is returned and must be freed up.

NOTES

The use of string types such as MBSTRING_ASC or MBSTRING_UTF8 is strongly recommened for the type parameter.
This allows the internal code to correctly determine the type of the field and to apply length checks according to the relevant
standards. This is done using ASN1_STRING_set_by_NID().

If instead an ASN1 type is used no checks are performed and the supplied data in bytes is used directly.

In X509_NAME_add_entry_by_txt() the field string represents the field name using OBJ_txt2obj(field, 0).

The loc and set parameters determine where a new entry should be added. For almost all applications loc can be set to -1 and
set to 0. This adds a new entry to the end of name as a single valued RelativeDistinguishedName (RDN).

loc actually determines the index where the new entry is inserted: if it is -1 it is appended.

set determines how the new type is added. If it is zero a new RDN is created.

If set is -1 or 1 it is added to the previous or next RDN structure respectively. This will then be a multivalued RDN: since
multivalues RDNs are very seldom used set is almost always set to zero.

EXAMPLES

Create an X509_NAME structure:

"C=UK, O=Disorganized Organization, CN=Joe Bloggs"

X509_NAME *nm;
nm = X509_NAME_new();

1541

OpenSSL Manual

if (nm == NULL)
 /* Some error */
if (!X509_NAME_add_entry_by_txt(nm, "C", MBSTRING_ASC,
 "UK", -1, -1, 0))
 /* Error */
if (!X509_NAME_add_entry_by_txt(nm, "O", MBSTRING_ASC,
 "Disorganized Organization", -1, -1, 0))
 /* Error */
if (!X509_NAME_add_entry_by_txt(nm, "CN", MBSTRING_ASC,
 "Joe Bloggs", -1, -1, 0))
 /* Error */

RETURN VALUES

X509_NAME_add_entry_by_txt(), X509_NAME_add_entry_by_OBJ(), X509_NAME_add_entry_by_NID() and
X509_NAME_add_entry() return 1 for success of 0 if an error occurred.

X509_NAME_delete_entry() returns either the deleted X509_NAME_ENTRY structure of NULL if an error occurred.

BUGS

type can still be set to V_ASN1_APP_CHOOSE to use a different algorithm to determine field types. Since this form does not
understand multicharacter types, performs no length checks and can result in invalid field types its use is strongly discouraged.

SEE ALSO

ERR_get_error(3), d2i_X509_NAME(3)

HISTORY

1542

OpenSSL Manual

Name
X509_NAME_ENTRY_get_object, X509_NAME_ENTRY_get_data, X509_NAME_ENTRY_set_object,
X509_NAME_ENTRY_set_data, X509_NAME_ENTRY_create_by_txt, X509_NAME_ENTRY_create_by_NID and
X509_NAME_ENTRY_create_by_OBJ — X509_NAME_ENTRY utility functions

Synopsis
#include <openssl/x509.h>

ASN1_OBJECT * X509_NAME_ENTRY_get_object(X509_NAME_ENTRY *ne);
ASN1_STRING * X509_NAME_ENTRY_get_data(X509_NAME_ENTRY *ne);

int X509_NAME_ENTRY_set_object(X509_NAME_ENTRY *ne, ASN1_OBJECT *obj);
int X509_NAME_ENTRY_set_data(X509_NAME_ENTRY *ne, int type, const unsigned char *bytes, int len);

X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_txt(X509_NAME_ENTRY **ne, const char *field, int type,
 const unsigned char *bytes, int len);
X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_NID(X509_NAME_ENTRY **ne, int nid, int type,
 unsigned char *bytes, int len);
X509_NAME_ENTRY *X509_NAME_ENTRY_create_by_OBJ(X509_NAME_ENTRY **ne, ASN1_OBJECT *obj,
 int type, const unsigned char *bytes, int len);

DESCRIPTION

X509_NAME_ENTRY_get_object() retrieves the field name of ne in and ASN1_OBJECT structure.

X509_NAME_ENTRY_get_data() retrieves the field value of ne in and ASN1_STRING structure.

X509_NAME_ENTRY_set_object() sets the field name of ne to obj.

X509_NAME_ENTRY_set_data() sets the field value of ne to string type type and value determined by bytes and len.

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_NID() and X509_NAME_ENTRY_cre-
ate_by_OBJ() create and return an X509_NAME_ENTRY structure.

NOTES

X509_NAME_ENTRY_get_object() and X509_NAME_ENTRY_get_data() can be used to examine an
X509_NAME_ENTRY function as returned by X509_NAME_get_entry() for example.

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_NID(), and
X509_NAME_ENTRY_create_by_OBJ() create and return an

X509_NAME_ENTRY_create_by_txt(), X509_NAME_ENTRY_create_by_OBJ(),
X509_NAME_ENTRY_create_by_NID() and X509_NAME_ENTRY_set_data() are seldom used in practice because
X509_NAME_ENTRY structures are almost always part of X509_NAME structures and the corresponding X509_NAME
functions are typically used to create and add new entries in a single operation.

The arguments of these functions support similar options to the similarly named ones of the corresponding X509_NAME
functions such as X509_NAME_add_entry_by_txt(). So for example type can be set to MBSTRING_ASC but in the case of
X509_set_data() the field name must be set first so the relevant field information can be looked up internally.

RETURN VALUES

SEE ALSO

ERR_get_error(3), d2i_X509_NAME(3), OBJ_nid2obj(3)

HISTORY

TBA

1543

OpenSSL Manual

Name
X509_NAME_get_index_by_NID, X509_NAME_get_index_by_OBJ, X509_NAME_get_entry, X509_NAME_entry_count,
X509_NAME_get_text_by_NID and X509_NAME_get_text_by_OBJ — X509_NAME lookup and enumeration functions

Synopsis
#include <openssl/x509.h>

int X509_NAME_get_index_by_NID(X509_NAME *name,int nid,int lastpos);
int X509_NAME_get_index_by_OBJ(X509_NAME *name,ASN1_OBJECT *obj, int lastpos);

int X509_NAME_entry_count(X509_NAME *name);
X509_NAME_ENTRY *X509_NAME_get_entry(X509_NAME *name, int loc);

int X509_NAME_get_text_by_NID(X509_NAME *name, int nid, char *buf,int len);
int X509_NAME_get_text_by_OBJ(X509_NAME *name, ASN1_OBJECT *obj, char *buf,int len);

DESCRIPTION

These functions allow an X509_NAME structure to be examined. The X509_NAME structure is the same as the Name type
defined in RFC2459 (and elsewhere) and used for example in certificate subject and issuer names.

X509_NAME_get_index_by_NID() and X509_NAME_get_index_by_OBJ() retrieve the next index matching nid or obj after
lastpos. lastpos should initially be set to -1. If there are no more entries -1 is returned. If nid is invalid (doesn't correspond
to a valid OID) then -2 is returned.

X509_NAME_entry_count() returns the total number of entries in name.

X509_NAME_get_entry() retrieves the X509_NAME_ENTRY from name corresponding to index loc. Acceptable values for
loc run from 0 to (X509_NAME_entry_count(name) - 1). The value returned is an internal pointer which must not be freed.

X509_NAME_get_text_by_NID(), X509_NAME_get_text_by_OBJ() retrieve the "text" from the first entry in name which
matches nid or obj, if no such entry exists -1 is returned. At most len bytes will be written and the text written to buf will be
null terminated. The length of the output string written is returned excluding the terminating null. If buf is <NULL> then the
amount of space needed in buf (excluding the final null) is returned.

NOTES

X509_NAME_get_text_by_NID() and X509_NAME_get_text_by_OBJ() are legacy functions which have various limitations
which make them of minimal use in practice. They can only find the first matching entry and will copy the contents of the field
verbatim: this can be highly confusing if the target is a muticharacter string type like a BMPString or a UTF8String.

For a more general solution X509_NAME_get_index_by_NID() or X509_NAME_get_index_by_OBJ() should be used
followed by X509_NAME_get_entry() on any matching indices and then the various X509_NAME_ENTRY utility functions
on the result.

The list of all relevant NID_* and OBJ_* codes can be found in the source code header files <openssl/obj_mac.h> and/or
<openssl/objects.h>.

Applications which could pass invalid NIDs to X509_NAME_get_index_by_NID() should check for the return value of -2.
Alternatively the NID validity can be determined first by checking OBJ_nid2obj(nid) is not NULL.

EXAMPLES

Process all entries:

int i;
X509_NAME_ENTRY *e;

for (i = 0; i < X509_NAME_entry_count(nm); i++)
 {
 e = X509_NAME_get_entry(nm, i);

1544

OpenSSL Manual

 /* Do something with e */
 }

Process all commonName entries:

int loc;
X509_NAME_ENTRY *e;

loc = -1;
for (;;)
 {
 lastpos = X509_NAME_get_index_by_NID(nm, NID_commonName, lastpos);
 if (lastpos == -1)
 break;
 e = X509_NAME_get_entry(nm, lastpos);
 /* Do something with e */
 }

RETURN VALUES

X509_NAME_get_index_by_NID() and X509_NAME_get_index_by_OBJ() return the index of the next matching entry or -1
if not found. X509_NAME_get_index_by_NID() can also return -2 if the supplied NID is invalid.

X509_NAME_entry_count() returns the total number of entries.

X509_NAME_get_entry() returns an X509_NAME pointer to the requested entry or NULL if the index is invalid.

SEE ALSO

ERR_get_error(3), d2i_X509_NAME(3)

HISTORY

TBA

1545

OpenSSL Manual

Name
X509_NAME_print_ex, X509_NAME_print_ex_fp, X509_NAME_print and X509_NAME_oneline — X509_NAME
printing routines.

Synopsis
#include <openssl/x509.h>

int X509_NAME_print_ex(BIO *out, X509_NAME *nm, int indent, unsigned long flags);
int X509_NAME_print_ex_fp(FILE *fp, X509_NAME *nm, int indent, unsigned long flags);
char * X509_NAME_oneline(X509_NAME *a,char *buf,int size);
int X509_NAME_print(BIO *bp, X509_NAME *name, int obase);

DESCRIPTION

X509_NAME_print_ex() prints a human readable version of nm to BIO out. Each line (for multiline formats) is indented by
indent spaces. The output format can be extensively customised by use of the flags parameter.

X509_NAME_print_ex_fp() is identical to X509_NAME_print_ex() except the output is written to FILE pointer fp.

X509_NAME_oneline() prints an ASCII version of a to buf. At most size bytes will be written. If buf is NULL then a buffer
is dynamically allocated and returned, otherwise buf is returned.

X509_NAME_print() prints out name to bp indenting each line by obase characters. Multiple lines are used if the output
(including indent) exceeds 80 characters.

NOTES

The functions X509_NAME_oneline() and X509_NAME_print() are legacy functions which produce a non standard output
form, they don't handle multi character fields and have various quirks and inconsistencies. Their use is strongly discouraged
in new applications.

Although there are a large number of possible flags for most purposes XN_FLAG_ONELINE, XN_FLAG_MULTILINE
or XN_FLAG_RFC2253 will suffice. As noted on the ASN1_STRING_print_ex(3) manual page for UTF8 terminals the
ASN1_STRFLGS_ESC_MSB should be unset: so for example XN_FLAG_ONELINE & ~ASN1_STRFLGS_ESC_MSB
would be used.

The complete set of the flags supported by X509_NAME_print_ex() is listed below.

Several options can be ored together.

The options XN_FLAG_SEP_COMMA_PLUS, XN_FLAG_SEP_CPLUS_SPC, XN_FLAG_SEP_SPLUS_SPC and
XN_FLAG_SEP_MULTILINE determine the field separators to use. Two distinct separators are used between distinct
RelativeDistinguishedName components and separate values in the same RDN for a multi-valued RDN. Multi-valued RDNs
are currently very rare so the second separator will hardly ever be used.

XN_FLAG_SEP_COMMA_PLUS uses comma and plus as separators. XN_FLAG_SEP_CPLUS_SPC uses comma and
plus with spaces: this is more readable that plain comma and plus. XN_FLAG_SEP_SPLUS_SPC uses spaced semicolon and
plus. XN_FLAG_SEP_MULTILINE uses spaced newline and plus respectively.

If XN_FLAG_DN_REV is set the whole DN is printed in reversed order.

The fields XN_FLAG_FN_SN, XN_FLAG_FN_LN, XN_FLAG_FN_OID, XN_FLAG_FN_NONE determine how a field
name is displayed. It will use the short name (e.g. CN) the long name (e.g. commonName) always use OID numerical form
(normally OIDs are only used if the field name is not recognised) and no field name respectively.

If XN_FLAG_SPC_EQ is set then spaces will be placed around the '=' character separating field names and values.

If XN_FLAG_DUMP_UNKNOWN_FIELDS is set then the encoding of unknown fields is printed instead of the values.

If XN_FLAG_FN_ALIGN is set then field names are padded to 20 characters: this is only of use for multiline format.

1546

OpenSSL Manual

Additionally all the options supported by ASN1_STRING_print_ex() can be used to control how each field value is displayed.

In addition a number options can be set for commonly used formats.

XN_FLAG_RFC2253 sets options which produce an output compatible with RFC2253 it is equivalent to:
ASN1_STRFLGS_RFC2253 | XN_FLAG_SEP_COMMA_PLUS | XN_FLAG_DN_REV | XN_FLAG_FN_SN |
XN_FLAG_DUMP_UNKNOWN_FIELDS

XN_FLAG_ONELINE is a more readable one line format which is the same as: ASN1_STRFLGS_RFC2253 |
ASN1_STRFLGS_ESC_QUOTE | XN_FLAG_SEP_CPLUS_SPC | XN_FLAG_SPC_EQ | XN_FLAG_FN_SN

XN_FLAG_MULTILINE is a multiline format which is the same as: ASN1_STRFLGS_ESC_CTRL |
ASN1_STRFLGS_ESC_MSB | XN_FLAG_SEP_MULTILINE | XN_FLAG_SPC_EQ | XN_FLAG_FN_LN |
XN_FLAG_FN_ALIGN

XN_FLAG_COMPAT uses a format identical to X509_NAME_print(): in fact it calls X509_NAME_print() internally.

SEE ALSO

ASN1_STRING_print_ex(3)

HISTORY

TBA

1547

OpenSSL Manual

Name
X509_new and X509_free — X509 certificate ASN1 allocation functions

Synopsis
#include <openssl/x509.h>

X509 *X509_new(void);
void X509_free(X509 *a);

DESCRIPTION

The X509 ASN1 allocation routines, allocate and free an X509 structure, which represents an X509 certificate.

X509_new() allocates and initializes a X509 structure.

X509_free() frees up the X509 structure a.

RETURN VALUES

If the allocation fails, X509_new() returns NULL and sets an error code that can be obtained by ERR_get_error(3). Otherwise
it returns a pointer to the newly allocated structure.

X509_free() returns no value.

SEE ALSO

ERR_get_error(3), d2i_X509(3)

HISTORY

X509_new() and X509_free() are available in all versions of SSLeay and OpenSSL.

1548

OpenSSL Manual

Name
X509_STORE_CTX_get_error, X509_STORE_CTX_set_error, X509_STORE_CTX_get_error_depth,
X509_STORE_CTX_get_current_cert, X509_STORE_CTX_get1_chain and X509_verify_cert_error_string — get or set
certificate verification status information

Synopsis
#include <openssl/x509.h>
#include <openssl/x509_vfy.h>

int X509_STORE_CTX_get_error(X509_STORE_CTX *ctx);
void X509_STORE_CTX_set_error(X509_STORE_CTX *ctx,int s);
int X509_STORE_CTX_get_error_depth(X509_STORE_CTX *ctx);
X509 * X509_STORE_CTX_get_current_cert(X509_STORE_CTX *ctx);

STACK_OF(X509) *X509_STORE_CTX_get1_chain(X509_STORE_CTX *ctx);

const char *X509_verify_cert_error_string(long n);

DESCRIPTION

These functions are typically called after X509_verify_cert() has indicated an error or in a verification callback to determine
the nature of an error.

X509_STORE_CTX_get_error() returns the error code of ctx, see the ERROR CODES section for a full description of all
error codes.

X509_STORE_CTX_set_error() sets the error code of ctx to s. For example it might be used in a verification callback to set
an error based on additional checks.

X509_STORE_CTX_get_error_depth() returns the depth of the error. This is a non-negative integer representing where in the
certificate chain the error occurred. If it is zero it occured in the end entity certificate, one if it is the certificate which signed
the end entity certificate and so on.

X509_STORE_CTX_get_current_cert() returns the certificate in ctx which caused the error or NULL if no certificate is rel-
evant.

X509_STORE_CTX_get1_chain() returns a complete validate chain if a previous call to X509_verify_cert() is successful. If
the call to X509_verify_cert() is not successful the returned chain may be incomplete or invalid. The returned chain persists
after the ctx structure is freed, when it is no longer needed it should be free up using:

sk_X509_pop_free(chain, X509_free);

X509_verify_cert_error_string() returns a human readable error string for verification error n.

RETURN VALUES

X509_STORE_CTX_get_error() returns X509_V_OK or an error code.

X509_STORE_CTX_get_error_depth() returns a non-negative error depth.

X509_STORE_CTX_get_current_cert() returns the cerificate which caused the error or NULL if no certificate is relevant to
the error.

X509_verify_cert_error_string() returns a human readable error string for verification error n.

ERROR CODES

A list of error codes and messages is shown below. Some of the error codes are defined but currently never returned: these
are described as "unused".

1549

OpenSSL Manual

X509_V_OK: ok

the operation was successful.

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: unable to get issuer certificate

the issuer certificate could not be found: this occurs if the issuer certificate of an untrusted certificate cannot be found.

X509_V_ERR_UNABLE_TO_GET_CRL: unable to get certificate CRL

the CRL of a certificate could not be found.

X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: unable to decrypt certificate's signature

the certificate signature could not be decrypted. This means that the actual signature value could not be determined rather
than it not matching the expected value, this is only meaningful for RSA keys.

X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: unable to decrypt CRL's signature

the CRL signature could not be decrypted: this means that the actual signature value could not be determined rather than
it not matching the expected value. Unused.

X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: unable to decode issuer public key

the public key in the certificate SubjectPublicKeyInfo could not be read.

X509_V_ERR_CERT_SIGNATURE_FAILURE: certificate signature failure

the signature of the certificate is invalid.

X509_V_ERR_CRL_SIGNATURE_FAILURE: CRL signature failure

the signature of the certificate is invalid.

X509_V_ERR_CERT_NOT_YET_VALID: certificate is not yet valid

the certificate is not yet valid: the notBefore date is after the current time.

X509_V_ERR_CERT_HAS_EXPIRED: certificate has expired

the certificate has expired: that is the notAfter date is before the current time.

X509_V_ERR_CRL_NOT_YET_VALID: CRL is not yet valid

the CRL is not yet valid.

X509_V_ERR_CRL_HAS_EXPIRED: CRL has expired

the CRL has expired.

X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: format error in certificate's notBefore field

the certificate notBefore field contains an invalid time.

X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: format error in certificate's notAfter field

the certificate notAfter field contains an invalid time.

X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: format error in CRL's lastUpdate field

the CRL lastUpdate field contains an invalid time.

1550

OpenSSL Manual

X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: format error in CRL's nextUpdate field

the CRL nextUpdate field contains an invalid time.

X509_V_ERR_OUT_OF_MEM: out of memory

an error occurred trying to allocate memory. This should never happen.

X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: self signed certificate

the passed certificate is self signed and the same certificate cannot be found in the list of trusted certificates.

X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: self signed certificate in certificate chain

the certificate chain could be built up using the untrusted certificates but the root could not be found locally.

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: unable to get local issuer certificate

the issuer certificate of a locally looked up certificate could not be found. This normally means the list of trusted certificates
is not complete.

X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: unable to verify the first certificate

no signatures could be verified because the chain contains only one certificate and it is not self signed.

X509_V_ERR_CERT_CHAIN_TOO_LONG: certificate chain too long

the certificate chain length is greater than the supplied maximum depth. Unused.

X509_V_ERR_CERT_REVOKED: certificate revoked

the certificate has been revoked.

X509_V_ERR_INVALID_CA: invalid CA certificate

a CA certificate is invalid. Either it is not a CA or its extensions are not consistent with the supplied purpose.

X509_V_ERR_PATH_LENGTH_EXCEEDED: path length constraint exceeded

the basicConstraints pathlength parameter has been exceeded.

X509_V_ERR_INVALID_PURPOSE: unsupported certificate purpose

the supplied certificate cannot be used for the specified purpose.

X509_V_ERR_CERT_UNTRUSTED: certificate not trusted

the root CA is not marked as trusted for the specified purpose.

X509_V_ERR_CERT_REJECTED: certificate rejected

the root CA is marked to reject the specified purpose.

X509_V_ERR_SUBJECT_ISSUER_MISMATCH: subject issuer mismatch

the current candidate issuer certificate was rejected because its subject name did not match the issuer name of the current
certificate. This is only set if issuer check debugging is enabled it is used for status notification and is not in itself an error.

X509_V_ERR_AKID_SKID_MISMATCH: authority and subject key identifier mismatch

the current candidate issuer certificate was rejected because its subject key identifier was present and did not match the
authority key identifier current certificate. This is only set if issuer check debugging is enabled it is used for status noti-
fication and is not in itself an error.

1551

OpenSSL Manual

X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH: authority and issuer serial number mismatch

the current candidate issuer certificate was rejected because its issuer name and serial number was present and did not
match the authority key identifier of the current certificate. This is only set if issuer check debugging is enabled it is used
for status notification and is not in itself an error.

X509_V_ERR_KEYUSAGE_NO_CERTSIGN:key usage does not include certificate signing

the current candidate issuer certificate was rejected because its keyUsage extension does not permit certificate signing.
This is only set if issuer check debugging is enabled it is used for status notification and is not in itself an error.

X509_V_ERR_INVALID_EXTENSION: invalid or inconsistent certificate extension

A certificate extension had an invalid value (for example an incorrect encoding) or some value inconsistent with other
extensions.

X509_V_ERR_INVALID_POLICY_EXTENSION: invalid or inconsistent certificate policy extension

A certificate policies extension had an invalid value (for example an incorrect encoding) or some value inconsistent with
other extensions. This error only occurs if policy processing is enabled.

X509_V_ERR_NO_EXPLICIT_POLICY: no explicit policy

The verification flags were set to require and explicit policy but none was present.

X509_V_ERR_DIFFERENT_CRL_SCOPE: Different CRL scope

The only CRLs that could be found did not match the scope of the certificate.

X509_V_ERR_UNSUPPORTED_EXTENSION_FEATURE: Unsupported extension feature

Some feature of a certificate extension is not supported. Unused.

X509_V_ERR_PERMITTED_VIOLATION: permitted subtree violation

A name constraint violation occured in the permitted subtrees.

X509_V_ERR_EXCLUDED_VIOLATION: excluded subtree violation

A name constraint violation occured in the excluded subtrees.

X509_V_ERR_SUBTREE_MINMAX: name constraints minimum and maximum not supported

A certificate name constraints extension included a minimum or maximum field: this is not supported.

X509_V_ERR_UNSUPPORTED_CONSTRAINT_TYPE: unsupported name constraint type

An unsupported name constraint type was encountered. OpenSSL currently only supports directory name, DNS name,
email and URI types.

X509_V_ERR_UNSUPPORTED_CONSTRAINT_SYNTAX: unsupported or invalid name constraint syntax

The format of the name constraint is not recognised: for example an email address format of a form not mentioned in
RFC3280. This could be caused by a garbage extension or some new feature not currently supported.

X509_V_ERR_CRL_PATH_VALIDATION_ERROR: CRL path validation error

An error occured when attempting to verify the CRL path. This error can only happen if extended CRL checking is enabled.

X509_V_ERR_APPLICATION_VERIFICATION: application verification failure

an application specific error. This will never be returned unless explicitly set by an application.

1552

OpenSSL Manual

NOTES

The above functions should be used instead of directly referencing the fields in the X509_VERIFY_CTX structure.

In versions of OpenSSL before 1.0 the current certificate returned by X509_STORE_CTX_get_current_cert() was never
NULL. Applications should check the return value before printing out any debugging information relating to the current
certificate.

If an unrecognised error code is passed to X509_verify_cert_error_string() the numerical value of the unknown code is returned
in a static buffer. This is not thread safe but will never happen unless an invalid code is passed.

SEE ALSO

X509_verify_cert(3)

HISTORY

TBA

1553

OpenSSL Manual

Name
X509_STORE_CTX_get_ex_new_index, X509_STORE_CTX_set_ex_data and X509_STORE_CTX_get_ex_data — add
application specific data to X509_STORE_CTX structures

Synopsis
#include <openssl/x509_vfy.h>

int X509_STORE_CTX_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int X509_STORE_CTX_set_ex_data(X509_STORE_CTX *d, int idx, void *arg);

void *X509_STORE_CTX_get_ex_data(X509_STORE_CTX *d, int idx);

DESCRIPTION

These functions handle application specific data in X509_STORE_CTX structures. Their usage is identical to that of
RSA_get_ex_new_index(), RSA_set_ex_data() and RSA_get_ex_data() as described in RSA_get_ex_new_index(3).

NOTES

This mechanism is used internally by the ssl library to store the SSL structure associated with a verification operation in an
X509_STORE_CTX structure.

SEE ALSO

RSA_get_ex_new_index(3)

HISTORY

X509_STORE_CTX_get_ex_new_index(), X509_STORE_CTX_set_ex_data() and X509_STORE_CTX_get_ex_data() are
available since OpenSSL 0.9.5.

1554

OpenSSL Manual

Name
X509_STORE_CTX_new, X509_STORE_CTX_cleanup, X509_STORE_CTX_free, X509_STORE_CTX_init,
X509_STORE_CTX_trusted_stack, X509_STORE_CTX_set_cert, X509_STORE_CTX_set_chain,
X509_STORE_CTX_set0_crls, X509_STORE_CTX_get0_param, X509_STORE_CTX_set0_param and
X509_STORE_CTX_set_default — X509_STORE_CTX initialisation

Synopsis
#include <openssl/x509_vfy.h>

X509_STORE_CTX *X509_STORE_CTX_new(void);
void X509_STORE_CTX_cleanup(X509_STORE_CTX *ctx);
void X509_STORE_CTX_free(X509_STORE_CTX *ctx);

int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store,
 X509 *x509, STACK_OF(X509) *chain);

void X509_STORE_CTX_trusted_stack(X509_STORE_CTX *ctx, STACK_OF(X509) *sk);

void X509_STORE_CTX_set_cert(X509_STORE_CTX *ctx,X509 *x);
void X509_STORE_CTX_set_chain(X509_STORE_CTX *ctx,STACK_OF(X509) *sk);
void X509_STORE_CTX_set0_crls(X509_STORE_CTX *ctx, STACK_OF(X509_CRL) *sk);

X509_VERIFY_PARAM *X509_STORE_CTX_get0_param(X509_STORE_CTX *ctx);
void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param);
int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name);

DESCRIPTION

These functions initialise an X509_STORE_CTX structure for subsequent use by X509_verify_cert().

X509_STORE_CTX_new() returns a newly initialised X509_STORE_CTX structure.

X509_STORE_CTX_cleanup() internally cleans up an X509_STORE_CTX structure. The context can then be reused with
an new call to X509_STORE_CTX_init().

X509_STORE_CTX_free() completely frees up ctx. After this call ctx is no longer valid.

X509_STORE_CTX_init() sets up ctx for a subsequent verification operation. It must be called before each call to X509_ver-
ify_cert(), i.e. a ctx is only good for one call to X509_verify_cert(); if you want to verify a second certificate with the same
ctx then you must call X509_XTORE_CTX_cleanup() and then X509_STORE_CTX_init() again before the second call to
X509_verify_cert(). The trusted certificate store is set to store, the end entity certificate to be verified is set to x509 and a set
of additional certificates (which will be untrusted but may be used to build the chain) in chain. Any or all of the store, x509
and chain parameters can be NULL.

X509_STORE_CTX_trusted_stack() sets the set of trusted certificates of ctx to sk. This is an alternative way of specifying
trusted certificates instead of using an X509_STORE.

X509_STORE_CTX_set_cert() sets the certificate to be vertified in ctx to x.

X509_STORE_CTX_set_chain() sets the additional certificate chain used by ctx to sk.

X509_STORE_CTX_set0_crls() sets a set of CRLs to use to aid certificate verification to sk. These CRLs will only be used
if CRL verification is enabled in the associated X509_VERIFY_PARAM structure. This might be used where additional
"useful" CRLs are supplied as part of a protocol, for example in a PKCS#7 structure.

X509_VERIFY_PARAM *X509_STORE_CTX_get0_param() retrieves an intenal pointer to the verification parameters
associated with ctx.

X509_STORE_CTX_set0_param() sets the intenal verification parameter pointer to param. After this call param should not
be used.

X509_STORE_CTX_set_default() looks up and sets the default verification method to name. This uses the function
X509_VERIFY_PARAM_lookup() to find an appropriate set of parameters from name.

1555

OpenSSL Manual

NOTES

The certificates and CRLs in a store are used internally and should not be freed up until after the associated
X509_STORE_CTX is freed. Legacy applications might implicitly use an X509_STORE_CTX like this:

X509_STORE_CTX ctx;
X509_STORE_CTX_init(&ctx, store, cert, chain);

this is not recommended in new applications they should instead do:

X509_STORE_CTX *ctx;
ctx = X509_STORE_CTX_new();
if (ctx == NULL)
 /* Bad error */
X509_STORE_CTX_init(ctx, store, cert, chain);

BUGS

The certificates and CRLs in a context are used internally and should not be freed up until after the associated
X509_STORE_CTX is freed. Copies should be made or reference counts increased instead.

RETURN VALUES

X509_STORE_CTX_new() returns an newly allocates context or NULL is an error occurred.

X509_STORE_CTX_init() returns 1 for success or 0 if an error occurred.

X509_STORE_CTX_get0_param() returns a pointer to an X509_VERIFY_PARAM structure or NULL if an error occurred.

X509_STORE_CTX_cleanup(), X509_STORE_CTX_free(), X509_STORE_CTX_trusted_stack(),
X509_STORE_CTX_set_cert(), X509_STORE_CTX_set_chain(), X509_STORE_CTX_set0_crls() and
X509_STORE_CTX_set0_param() do not return values.

X509_STORE_CTX_set_default() returns 1 for success or 0 if an error occurred.

SEE ALSO

X509_verify_cert(3) X509_VERIFY_PARAM_set_flags(3)

HISTORY

X509_STORE_CTX_set0_crls() was first added to OpenSSL 1.0.0

1556

OpenSSL Manual

Name
X509_STORE_CTX_set_verify_cb — set verification callback

Synopsis
#include <openssl/x509_vfy.h>

void X509_STORE_CTX_set_verify_cb(X509_STORE_CTX *ctx,
 int (*verify_cb)(int ok, X509_STORE_CTX *ctx));

DESCRIPTION

X509_STORE_CTX_set_verify_cb() sets the verification callback of ctx to verify_cb overwriting any existing callback.

The verification callback can be used to customise the operation of certificate verification, either by overriding error conditions
or logging errors for debugging purposes.

However a verification callback is not essential and the default operation is often sufficient.

The ok parameter to the callback indicates the value the callback should return to retain the default behaviour. If it is zero then
and error condition is indicated. If it is 1 then no error occurred. If the flag X509_V_FLAG_NOTIFY_POLICY is set then
ok is set to 2 to indicate the policy checking is complete.

The ctx parameter to the callback is the X509_STORE_CTX structure that is performing the verification operation.
A callback can examine this structure and receive additional information about the error, for example by calling
X509_STORE_CTX_get_current_cert(). Additional application data can be passed to the callback via the ex_data mechanism.

WARNING

In general a verification callback should NOT unconditionally return 1 in all circumstances because this will allow verification
to succeed no matter what the error. This effectively removes all security from the application because any certificate (including
untrusted generated ones) will be accepted.

NOTES

The verification callback can be set and inherited from the parent structure performing the operation. In some cases (such as
S/MIME verification) the X509_STORE_CTX structure is created and destroyed internally and the only way to set a custom
verification callback is by inheriting it from the associated X509_STORE.

RETURN VALUES

X509_STORE_CTX_set_verify_cb() does not return a value.

EXAMPLES

Default callback operation:

int verify_callback(int ok, X509_STORE_CTX *ctx)
{
 return ok;
}

Simple example, suppose a certificate in the chain is expired and we wish to continue after this error:

int verify_callback(int ok, X509_STORE_CTX *ctx)
{
 /* Tolerate certificate expiration */
 if (X509_STORE_CTX_get_error(ctx) == X509_V_ERR_CERT_HAS_EXPIRED)
 return 1;

1557

OpenSSL Manual

 /* Otherwise don't override */
 return ok;
}

More complex example, we don't wish to continue after any certificate has expired just one specific case:

int verify_callback(int ok, X509_STORE_CTX *ctx)
{
 int err = X509_STORE_CTX_get_error(ctx);
 X509 *err_cert = X509_STORE_CTX_get_current_cert(ctx);
 if (err == X509_V_ERR_CERT_HAS_EXPIRED)
 {
 if (check_is_acceptable_expired_cert(err_cert)
 return 1;
 }
 return ok;
}

Full featured logging callback. In this case the bio_err is assumed to be a global logging BIO, an alternative would to store
a BIO in ctx using ex_data.

int verify_callback(int ok, X509_STORE_CTX *ctx)
{
 X509 *err_cert;
 int err,depth;

 err_cert = X509_STORE_CTX_get_current_cert(ctx);
 err = X509_STORE_CTX_get_error(ctx);
 depth = X509_STORE_CTX_get_error_depth(ctx);

 BIO_printf(bio_err,"depth=%d ",depth);
 if (err_cert)
 {
 X509_NAME_print_ex(bio_err, X509_get_subject_name(err_cert),
 0, XN_FLAG_ONELINE);
 BIO_puts(bio_err, "\n");
 }
 else
 BIO_puts(bio_err, "<no cert>\n");
 if (!ok)
 BIO_printf(bio_err,"verify error:num=%d:%s\n",err,
 X509_verify_cert_error_string(err));
 switch (err)
 {
 case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
 BIO_puts(bio_err,"issuer= ");
 X509_NAME_print_ex(bio_err, X509_get_issuer_name(err_cert),
 0, XN_FLAG_ONELINE);
 BIO_puts(bio_err, "\n");
 break;
 case X509_V_ERR_CERT_NOT_YET_VALID:
 case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
 BIO_printf(bio_err,"notBefore=");
 ASN1_TIME_print(bio_err,X509_get_notBefore(err_cert));
 BIO_printf(bio_err,"\n");
 break;
 case X509_V_ERR_CERT_HAS_EXPIRED:
 case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
 BIO_printf(bio_err,"notAfter=");
 ASN1_TIME_print(bio_err,X509_get_notAfter(err_cert));
 BIO_printf(bio_err,"\n");
 break;
 case X509_V_ERR_NO_EXPLICIT_POLICY:
 policies_print(bio_err, ctx);
 break;
 }
 if (err == X509_V_OK && ok == 2)
 /* print out policies */

 BIO_printf(bio_err,"verify return:%d\n",ok);
 return(ok);
}

1558

OpenSSL Manual

SEE ALSO

X509_STORE_CTX_get_error(3) X509_STORE_set_verify_cb_func(3) X509_STORE_CTX_get_ex_new_index(3)

HISTORY

X509_STORE_CTX_set_verify_cb() is available in all versions of SSLeay and OpenSSL.

1559

OpenSSL Manual

Name
X509_STORE_set_verify_cb_func and X509_STORE_set_verify_cb — set verification callback

Synopsis
#include <openssl/x509_vfy.h>

void X509_STORE_set_verify_cb(X509_STORE *st,
 int (*verify_cb)(int ok, X509_STORE_CTX *ctx));

void X509_STORE_set_verify_cb_func(X509_STORE *st,
 int (*verify_cb)(int ok, X509_STORE_CTX *ctx));

DESCRIPTION

X509_STORE_set_verify_cb() sets the verification callback of ctx to verify_cb overwriting any existing callback.

X509_STORE_set_verify_cb_func() also sets the verification callback but it is implemented as a macro.

NOTES

The verification callback from an X509_STORE is inherited by the corresponding X509_STORE_CTX structure when it
is initialized. This can be used to set the verification callback when the X509_STORE_CTX is otherwise inaccessible (for
example during S/MIME verification).

BUGS

The macro version of this function was the only one available before OpenSSL 1.0.0.

RETURN VALUES

X509_STORE_set_verify_cb() and X509_STORE_set_verify_cb_func() do not return a value.

SEE ALSO

X509_STORE_CTX_set_verify_cb(3) CMS_verify(3)

HISTORY

X509_STORE_set_verify_cb_func() is available in all versions of SSLeay and OpenSSL.

X509_STORE_set_verify_cb() was added to OpenSSL 1.0.0.

1560

OpenSSL Manual

Name
X509_verify_cert — discover and verify X509 certificte chain

Synopsis
#include <openssl/x509.h>

int X509_verify_cert(X509_STORE_CTX *ctx);

DESCRIPTION

The X509_verify_cert() function attempts to discover and validate a certificate chain based on parameters in ctx. A complete
description of the process is contained in the verify(1) manual page.

RETURN VALUES

If a complete chain can be built and validated this function returns 1, otherwise it return zero, in exceptional circumstances
it can also return a negative code.

If the function fails additional error information can be obtained by examining ctx using, for example
X509_STORE_CTX_get_error().

NOTES

Applications rarely call this function directly but it is used by OpenSSL internally for certificate validation, in both the S/
MIME and SSL/TLS code.

A negative return value from X509_verify_cert() can occur if it is invoked incorrectly, such as with no certificate set in ctx, or
when it is called twice in succession without reinitialising ctx for the second call. A negative return value can also happen due
to internal resource problems or if a retry operation is requested during internal lookups (which never happens with standard
lookup methods). Applications must check for <= 0 return value on error.

BUGS

This function uses the header x509.h as opposed to most chain verification functiosn which use x509_vfy.h.

SEE ALSO

X509_STORE_CTX_get_error(3)

HISTORY

X509_verify_cert() is available in all versions of SSLeay and OpenSSL.

1561

OpenSSL Manual

Name
X509_VERIFY_PARAM_set_flags, X509_VERIFY_PARAM_clear_flags, X509_VERIFY_PARAM_get_flags,
X509_VERIFY_PARAM_set_purpose, X509_VERIFY_PARAM_set_trust, X509_VERIFY_PARAM_set_depth,
X509_VERIFY_PARAM_get_depth, X509_VERIFY_PARAM_set_time, X509_VERIFY_PARAM_add0_policy and
X509_VERIFY_PARAM_set1_policies — X509 verification parameters

Synopsis
#include <openssl/x509_vfy.h>

int X509_VERIFY_PARAM_set_flags(X509_VERIFY_PARAM *param, unsigned long flags);
int X509_VERIFY_PARAM_clear_flags(X509_VERIFY_PARAM *param,
 unsigned long flags);
unsigned long X509_VERIFY_PARAM_get_flags(X509_VERIFY_PARAM *param);

int X509_VERIFY_PARAM_set_purpose(X509_VERIFY_PARAM *param, int purpose);
int X509_VERIFY_PARAM_set_trust(X509_VERIFY_PARAM *param, int trust);

void X509_VERIFY_PARAM_set_time(X509_VERIFY_PARAM *param, time_t t);

int X509_VERIFY_PARAM_add0_policy(X509_VERIFY_PARAM *param,
 ASN1_OBJECT *policy);
int X509_VERIFY_PARAM_set1_policies(X509_VERIFY_PARAM *param,
 STACK_OF(ASN1_OBJECT) *policies);

void X509_VERIFY_PARAM_set_depth(X509_VERIFY_PARAM *param, int depth);
int X509_VERIFY_PARAM_get_depth(const X509_VERIFY_PARAM *param);

DESCRIPTION

These functions manipulate the X509_VERIFY_PARAM structure associated with a certificate verification operation.

The X509_VERIFY_PARAM_set_flags() function sets the flags in param by oring it with flags. See the VERIFICATION
FLAGS section for a complete description of values the flags parameter can take.

X509_VERIFY_PARAM_get_flags() returns the flags in param.

X509_VERIFY_PARAM_clear_flags() clears the flags flags in param.

X509_VERIFY_PARAM_set_purpose() sets the verification purpose in param to purpose. This determines the acceptable
purpose of the certificate chain, for example SSL client or SSL server.

X509_VERIFY_PARAM_set_trust() sets the trust setting in param to trust.

X509_VERIFY_PARAM_set_time() sets the verification time in param to t. Normally the current time is used.

X509_VERIFY_PARAM_add0_policy() enables policy checking (it is disabled by default) and adds policy to the acceptable
policy set.

X509_VERIFY_PARAM_set1_policies() enables policy checking (it is disabled by default) and sets the acceptable policy set
to policies. Any existing policy set is cleared. The policies parameter can be NULL to clear an existing policy set.

X509_VERIFY_PARAM_set_depth() sets the maximum verification depth to depth. That is the maximum number of untrust-
ed CA certificates that can appear in a chain.

RETURN VALUES

X509_VERIFY_PARAM_set_flags(), X509_VERIFY_PARAM_clear_flags(), X509_VERIFY_PARAM_set_purpose(),
X509_VERIFY_PARAM_set_trust(), X509_VERIFY_PARAM_add0_policy() and
X509_VERIFY_PARAM_set1_policies() return 1 for success and 0 for failure.

X509_VERIFY_PARAM_get_flags() returns the current verification flags.

X509_VERIFY_PARAM_set_time() and X509_VERIFY_PARAM_set_depth() do not return values.

1562

OpenSSL Manual

X509_VERIFY_PARAM_get_depth() returns the current verification depth.

VERIFICATION FLAGS

The verification flags consists of zero or more of the following flags ored together.

X509_V_FLAG_CRL_CHECK enables CRL checking for the certificate chain leaf certificate. An error occurs if a suitable
CRL cannot be found.

X509_V_FLAG_CRL_CHECK_ALL enables CRL checking for the entire certificate chain.

X509_V_FLAG_IGNORE_CRITICAL disabled critical extension checking. By default any unhandled critical extensions in
certificates or (if checked) CRLs results in a fatal error. If this flag is set unhandled critical extensions are ignored. WARNING
setting this option for anything other than debugging purposes can be a security risk. Finer control over which extensions are
supported can be performed in the verification callback.

THe X509_V_FLAG_X509_STRICT flag disables workarounds for some broken certificates and makes the verification
strictly apply X509 rules.

X509_V_FLAG_ALLOW_PROXY_CERTS enables proxy certificate verification.

X509_V_FLAG_POLICY_CHECK enables certificate policy checking, by default no policy checking is peformed.
Additional information is sent to the verification callback relating to policy checking.

X509_V_FLAG_EXPLICIT_POLICY, X509_V_FLAG_INHIBIT_ANY and X509_V_FLAG_INHIBIT_MAP set the
require explicit policy, inhibit any policy and inhibit policy mapping flags respectively as defined in RFC3280. Policy
checking is automatically enabled if any of these flags are set.

If X509_V_FLAG_NOTIFY_POLICY is set and the policy checking is successful a special status code is set to the
verification callback. This permits it to examine the valid policy tree and perform additional checks or simply log it for
debugging purposes.

By default some additional features such as indirect CRLs and CRLs signed by different keys are disabled. If
X509_V_FLAG_EXTENDED_CRL_SUPPORT is set they are enabled.

If X509_V_FLAG_USE_DELTAS ise set delta CRLs (if present) are used to determine certificate status. If not set deltas
are ignored.

X509_V_FLAG_CHECK_SS_SIGNATURE enables checking of the root CA self signed cerificate signature. By default
this check is disabled because it doesn't add any additional security but in some cases applications might want to check the
signature anyway. A side effect of not checking the root CA signature is that disabled or unsupported message digests on the
root CA are not treated as fatal errors.

The X509_V_FLAG_CB_ISSUER_CHECK flag enables debugging of certificate issuer checks. It is not needed unless you
are logging certificate verification. If this flag is set then additional status codes will be sent to the verification callback and it
must be prepared to handle such cases without assuming they are hard errors.

The X509_V_FLAG_NO_ALT_CHAINS flag suppresses checking for alternative chains. By default, when building a
certificate chain, if the first certificate chain found is not trusted, then OpenSSL will continue to check to see if an alternative
chain can be found that is trusted. With this flag set the behaviour will match that of OpenSSL versions prior to 1.0.1n and
1.0.2b.

NOTES

The above functions should be used to manipulate verification parameters instead of legacy functions which work in specific
structures such as X509_STORE_CTX_set_flags().

BUGS

Delta CRL checking is currently primitive. Only a single delta can be used and (partly due to limitations of X509_STORE)
constructed CRLs are not maintained.

1563

OpenSSL Manual

If CRLs checking is enable CRLs are expected to be available in the corresponding X509_STORE structure. No attempt is
made to download CRLs from the CRL distribution points extension.

EXAMPLE

Enable CRL checking when performing certificate verification during SSL connections associated with an SSL_CTX structure
ctx:

X509_VERIFY_PARAM *param;
param = X509_VERIFY_PARAM_new();
X509_VERIFY_PARAM_set_flags(param, X509_V_FLAG_CRL_CHECK);
SSL_CTX_set1_param(ctx, param);
X509_VERIFY_PARAM_free(param);

SEE ALSO

X509_verify_cert(3)

HISTORY

The X509_V_FLAG_NO_ALT_CHAINS flag was added in OpenSSL 1.0.1n and 1.0.2b

1564

OpenSSL Manual

SSL Functions

1565

OpenSSL Manual

Name
SSL — OpenSSL SSL/TLS library

Synopsis

DESCRIPTION

The OpenSSL ssl library implements the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) protocols.
It provides a rich API which is documented here.

At first the library must be initialized; see SSL_library_init(3).

Then an SSL_CTX object is created as a framework to establish TLS/SSL enabled connections (see SSL_CTX_new(3)).
Various options regarding certificates, algorithms etc. can be set in this object.

When a network connection has been created, it can be assigned to an SSL object. After the SSL object has been created using
SSL_new(3), SSL_set_fd(3) or SSL_set_bio(3) can be used to associate the network connection with the object.

Then the TLS/SSL handshake is performed using SSL_accept(3) or SSL_connect(3) respectively. SSL_read(3) and
SSL_write(3) are used to read and write data on the TLS/SSL connection. SSL_shutdown(3) can be used to shut down the
TLS/SSL connection.

DATA STRUCTURES

Currently the OpenSSL ssl library functions deals with the following data structures:

SSL_METHOD (SSL Method)

That's a dispatch structure describing the internal ssl library methods/functions which implement the various protocol
versions (SSLv1, SSLv2 and TLSv1). It's needed to create an SSL_CTX.

SSL_CIPHER (SSL Cipher)

This structure holds the algorithm information for a particular cipher which are a core part of the SSL/TLS protocol. The
available ciphers are configured on a SSL_CTX basis and the actually used ones are then part of the SSL_SESSION.

SSL_CTX (SSL Context)

That's the global context structure which is created by a server or client once per program life-time and which holds mainly
default values for the SSL structures which are later created for the connections.

SSL_SESSION (SSL Session)

This is a structure containing the current TLS/SSL session details for a connection: SSL_CIPHERs, client and server
certificates, keys, etc.

SSL (SSL Connection)

That's the main SSL/TLS structure which is created by a server or client per established connection. This actually is the
core structure in the SSL API. Under run-time the application usually deals with this structure which has links to mostly
all other structures.

HEADER FILES

Currently the OpenSSL ssl library provides the following C header files containing the prototypes for the data structures and
and functions:

ssl.h

That's the common header file for the SSL/TLS API. Include it into your program to make the API of the ssl library
available. It internally includes both more private SSL headers and headers from the crypto library. Whenever you need
hard-core details on the internals of the SSL API, look inside this header file.

1566

OpenSSL Manual

ssl2.h

That's the sub header file dealing with the SSLv2 protocol only. Usually you don't have to include it explicitly because
it's already included by ssl.h.

ssl3.h

That's the sub header file dealing with the SSLv3 protocol only. Usually you don't have to include it explicitly because
it's already included by ssl.h.

ssl23.h

That's the sub header file dealing with the combined use of the SSLv2 and SSLv3 protocols. Usually you don't have to
include it explicitly because it's already included by ssl.h.

tls1.h

That's the sub header file dealing with the TLSv1 protocol only. Usually you don't have to include it explicitly because
it's already included by ssl.h.

API FUNCTIONS

Currently the OpenSSL ssl library exports 214 API functions. They are documented in the following:

DEALING WITH PROTOCOL METHODS

Here we document the various API functions which deal with the SSL/TLS protocol methods defined in SSL_METHOD
structures.

const SSL_METHOD *SSLv23_method(void);

Constructor for the version-flexible SSL_METHOD structure for clients, servers or both. See SSL_CTX_new(3) for
details.

const SSL_METHOD *SSLv23_client_method(void);

Constructor for the version-flexible SSL_METHOD structure for clients.

const SSL_METHOD *SSLv23_client_method(void);

Constructor for the version-flexible SSL_METHOD structure for servers.

const SSL_METHOD *TLSv1_2_method(void);

Constructor for the TLSv1.2 SSL_METHOD structure for clients, servers or both.

const SSL_METHOD *TLSv1_2_client_method(void);

Constructor for the TLSv1.2 SSL_METHOD structure for clients.

const SSL_METHOD *TLSv1_2_server_method(void);

Constructor for the TLSv1.2 SSL_METHOD structure for servers.

const SSL_METHOD *TLSv1_1_method(void);

Constructor for the TLSv1.1 SSL_METHOD structure for clients, servers or both.

const SSL_METHOD *TLSv1_1_client_method(void);

Constructor for the TLSv1.1 SSL_METHOD structure for clients.

const SSL_METHOD *TLSv1_1_server_method(void);

Constructor for the TLSv1.1 SSL_METHOD structure for servers.

1567

OpenSSL Manual

const SSL_METHOD *TLSv1_method(void);

Constructor for the TLSv1 SSL_METHOD structure for clients, servers or both.

const SSL_METHOD *TLSv1_client_method(void);

Constructor for the TLSv1 SSL_METHOD structure for clients.

const SSL_METHOD *TLSv1_server_method(void);

Constructor for the TLSv1 SSL_METHOD structure for servers.

const SSL_METHOD *SSLv3_method(void);

Constructor for the SSLv3 SSL_METHOD structure for clients, servers or both.

const SSL_METHOD *SSLv3_client_method(void);

Constructor for the SSLv3 SSL_METHOD structure for clients.

const SSL_METHOD *SSLv3_server_method(void);

Constructor for the SSLv3 SSL_METHOD structure for servers.

const SSL_METHOD *SSLv2_method(void);

Constructor for the SSLv2 SSL_METHOD structure for clients, servers or both.

const SSL_METHOD *SSLv2_client_method(void);

Constructor for the SSLv2 SSL_METHOD structure for clients.

const SSL_METHOD *SSLv2_server_method(void);

Constructor for the SSLv2 SSL_METHOD structure for servers.

DEALING WITH CIPHERS

Here we document the various API functions which deal with the SSL/TLS ciphers defined in SSL_CIPHER structures.

char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int len);

Write a string to buf (with a maximum size of len) containing a human readable description of cipher. Returns buf.

int SSL_CIPHER_get_bits(SSL_CIPHER *cipher, int *alg_bits);

Determine the number of bits in cipher. Because of export crippled ciphers there are two bits: The bits the algorithm
supports in general (stored to alg_bits) and the bits which are actually used (the return value).

const char *SSL_CIPHER_get_name(SSL_CIPHER *cipher);

Return the internal name of cipher as a string. These are the various strings defined by the SSL2_TXT_xxx, SSL3_TXT_xxx
and TLS1_TXT_xxx definitions in the header files.

char *SSL_CIPHER_get_version(SSL_CIPHER *cipher);

Returns a string like "TLSv1/SSLv3" or "SSLv2" which indicates the SSL/TLS protocol version to which cipher belongs
(i.e. where it was defined in the specification the first time).

DEALING WITH PROTOCOL CONTEXTS

Here we document the various API functions which deal with the SSL/TLS protocol context defined in the SSL_CTX structure.

1568

OpenSSL Manual

int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *x);
long SSL_CTX_add_extra_chain_cert(SSL_CTX *ctx, X509 *x509);
int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_CTX_check_private_key(const SSL_CTX *ctx);
long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, char *parg);
void SSL_CTX_flush_sessions(SSL_CTX *s, long t);
void SSL_CTX_free(SSL_CTX *a);
char *SSL_CTX_get_app_data(SSL_CTX *ctx);
X509_STORE *SSL_CTX_get_cert_store(SSL_CTX *ctx);
STACK *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx);
int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL *ssl, X509 **x509, EVP_PKEY **pkey);
void SSL_CTX_get_default_read_ahead(SSL_CTX *ctx);
char *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx);
int SSL_CTX_get_ex_new_index(long argl, char *argp, int (*new_func);(void), int (*dup_func)(void), void (*free_func)
(void))

void (*SSL_CTX_get_info_callback(SSL_CTX *ctx))(SSL *ssl, int cb, int ret);
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx);
void SSL_CTX_get_read_ahead(SSL_CTX *ctx);
int SSL_CTX_get_session_cache_mode(SSL_CTX *ctx);
long SSL_CTX_get_timeout(const SSL_CTX *ctx);
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(int ok, X509_STORE_CTX *ctx);
int SSL_CTX_get_verify_mode(SSL_CTX *ctx);
int SSL_CTX_load_verify_locations(SSL_CTX *ctx, char *CAfile, char *CApath);
long SSL_CTX_need_tmp_RSA(SSL_CTX *ctx);
SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth);
int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_CTX_sess_accept(SSL_CTX *ctx);
int SSL_CTX_sess_accept_good(SSL_CTX *ctx);
int SSL_CTX_sess_accept_renegotiate(SSL_CTX *ctx);
int SSL_CTX_sess_cache_full(SSL_CTX *ctx);
int SSL_CTX_sess_cb_hits(SSL_CTX *ctx);
int SSL_CTX_sess_connect(SSL_CTX *ctx);
int SSL_CTX_sess_connect_good(SSL_CTX *ctx);
int SSL_CTX_sess_connect_renegotiate(SSL_CTX *ctx);
int SSL_CTX_sess_get_cache_size(SSL_CTX *ctx);
SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(SSL *ssl, unsigned char *data, int len, int *copy);

int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx)(SSL *ssl, SSL_SESSION *sess);
void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx)(SSL_CTX *ctx, SSL_SESSION *sess);
int SSL_CTX_sess_hits(SSL_CTX *ctx);
int SSL_CTX_sess_misses(SSL_CTX *ctx);
int SSL_CTX_sess_number(SSL_CTX *ctx);
void SSL_CTX_sess_set_cache_size(SSL_CTX *ctx,t);
void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx, SSL_SESSION *(*cb)(SSL *ssl, unsigned char *data, int len, int *copy));
void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, SSL_SESSION *sess));
void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx, void (*cb)(SSL_CTX *ctx, SSL_SESSION *sess));
int SSL_CTX_sess_timeouts(SSL_CTX *ctx);
LHASH *SSL_CTX_sessions(SSL_CTX *ctx);

1569

OpenSSL Manual

void SSL_CTX_set_app_data(SSL_CTX *ctx, void *arg);
void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *cs);
void SSL_CTX_set_cert_verify_cb(SSL_CTX *ctx, int (*cb)(), char *arg)
int SSL_CTX_set_cipher_list(SSL_CTX *ctx, char *str);
void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK *list);
void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey));
void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, int (*cb);(void))
void SSL_CTX_set_default_read_ahead(SSL_CTX *ctx, int m);
int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx);
int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, char *arg);
void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*cb)(SSL *ssl, int cb, int ret));
void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf,
size_t len, SSL *ssl, void *arg));

void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg);
void SSL_CTX_set_options(SSL_CTX *ctx, unsigned long op);
void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode);
void SSL_CTX_set_read_ahead(SSL_CTX *ctx, int m);
void SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode);
int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth);
void SSL_CTX_set_timeout(SSL_CTX *ctx, long t);
long SSL_CTX_set_tmp_dh(SSL_CTX* ctx, DH *dh);
long SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, DH *(*cb)(void));
long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
SSL_CTX_set_tmp_rsa_callback

long SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx, RSA *(*cb)(SSL *ssl, int export, int keylength));

Sets the callback which will be called when a temporary private key is required. The export flag will be set if the
reason for needing a temp key is that an export ciphersuite is in use, in which case, keylength will contain the required
keylength in bits. Generate a key of appropriate size (using ???) and return it.

SSL_set_tmp_rsa_callback

long SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int export, int keylength));

The same as SSL_CTX_set_tmp_rsa_callback, except it operates on an SSL session instead of a context.

void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb);(void))
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, unsigned char *d, long len);
int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, char *file, int type);
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, unsigned char *d, long len);
int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, char *file, int type);
int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x);
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, unsigned char *d);
int SSL_CTX_use_certificate_file(SSL_CTX *ctx, char *file, int type);
void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, unsigned int (*callback)(SSL *ssl, const char *hint, char *identity,
unsigned int max_identity_len, unsigned char *psk, unsigned int max_psk_len));

int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *hint);
void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, unsigned int (*callback)(SSL *ssl, const char *identity, unsigned
char *psk, int max_psk_len));

DEALING WITH SESSIONS

Here we document the various API functions which deal with the SSL/TLS sessions defined in the SSL_SESSION structures.

1570

OpenSSL Manual

int SSL_SESSION_cmp(const SSL_SESSION *a, const SSL_SESSION *b);
void SSL_SESSION_free(SSL_SESSION *ss);
char *SSL_SESSION_get_app_data(SSL_SESSION *s);
char *SSL_SESSION_get_ex_data(const SSL_SESSION *s, int idx);
int SSL_SESSION_get_ex_new_index(long argl, char *argp, int (*new_func);(void), int (*dup_func)(void), void
(*free_func)(void))

long SSL_SESSION_get_time(const SSL_SESSION *s);
long SSL_SESSION_get_timeout(const SSL_SESSION *s);
unsigned long SSL_SESSION_hash(const SSL_SESSION *a);
SSL_SESSION *SSL_SESSION_new(void);
int SSL_SESSION_print(BIO *bp, const SSL_SESSION *x);
int SSL_SESSION_print_fp(FILE *fp, const SSL_SESSION *x);
void SSL_SESSION_set_app_data(SSL_SESSION *s, char *a);
int SSL_SESSION_set_ex_data(SSL_SESSION *s, int idx, char *arg);
long SSL_SESSION_set_time(SSL_SESSION *s, long t);
long SSL_SESSION_set_timeout(SSL_SESSION *s, long t);

DEALING WITH CONNECTIONS

Here we document the various API functions which deal with the SSL/TLS connection defined in the SSL structure.

int SSL_accept(SSL *ssl);
int SSL_add_dir_cert_subjects_to_stack(STACK *stack, const char *dir);
int SSL_add_file_cert_subjects_to_stack(STACK *stack, const char *file);
int SSL_add_client_CA(SSL *ssl, X509 *x);
char *SSL_alert_desc_string(int value);
char *SSL_alert_desc_string_long(int value);
char *SSL_alert_type_string(int value);
char *SSL_alert_type_string_long(int value);
int SSL_check_private_key(const SSL *ssl);
void SSL_clear(SSL *ssl);
long SSL_clear_num_renegotiations(SSL *ssl);
int SSL_connect(SSL *ssl);
void SSL_copy_session_id(SSL *t, const SSL *f);
long SSL_ctrl(SSL *ssl, int cmd, long larg, char *parg);
int SSL_do_handshake(SSL *ssl);
SSL *SSL_dup(SSL *ssl);
STACK *SSL_dup_CA_list(STACK *sk);
void SSL_free(SSL *ssl);
SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl);
char *SSL_get_app_data(SSL *ssl);

1571

OpenSSL Manual

X509 *SSL_get_certificate(const SSL *ssl);
const char *SSL_get_cipher(const SSL *ssl);
int SSL_get_cipher_bits(const SSL *ssl, int *alg_bits);
char *SSL_get_cipher_list(const SSL *ssl, int n);
char *SSL_get_cipher_name(const SSL *ssl);
char *SSL_get_cipher_version(const SSL *ssl);
STACK *SSL_get_ciphers(const SSL *ssl);
STACK *SSL_get_client_CA_list(const SSL *ssl);
SSL_CIPHER *SSL_get_current_cipher(SSL *ssl);
long SSL_get_default_timeout(const SSL *ssl);
int SSL_get_error(const SSL *ssl, int i);
char *SSL_get_ex_data(const SSL *ssl, int idx);
int SSL_get_ex_data_X509_STORE_CTX_idx(void);
int SSL_get_ex_new_index(long argl, char *argp, int (*new_func);(void), int (*dup_func)(void), void (*free_func)(void))

int SSL_get_fd(const SSL *ssl);
void (*SSL_get_info_callback(const SSL *ssl);)()
STACK *SSL_get_peer_cert_chain(const SSL *ssl);
X509 *SSL_get_peer_certificate(const SSL *ssl);
EVP_PKEY *SSL_get_privatekey(SSL *ssl);
int SSL_get_quiet_shutdown(const SSL *ssl);
BIO *SSL_get_rbio(const SSL *ssl);
int SSL_get_read_ahead(const SSL *ssl);
SSL_SESSION *SSL_get_session(const SSL *ssl);
char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len);
int SSL_get_shutdown(const SSL *ssl);
const SSL_METHOD *SSL_get_ssl_method(SSL *ssl);
int SSL_get_state(const SSL *ssl);
long SSL_get_time(const SSL *ssl);
long SSL_get_timeout(const SSL *ssl);
int (*SSL_get_verify_callback(const SSL *ssl))(int,X509_STORE_CTX *)
int SSL_get_verify_mode(const SSL *ssl);
long SSL_get_verify_result(const SSL *ssl);
char *SSL_get_version(const SSL *ssl);
BIO *SSL_get_wbio(const SSL *ssl);
int SSL_in_accept_init(SSL *ssl);
int SSL_in_before(SSL *ssl);
int SSL_in_connect_init(SSL *ssl);
int SSL_in_init(SSL *ssl);
int SSL_is_init_finished(SSL *ssl);
STACK *SSL_load_client_CA_file(char *file);
void SSL_load_error_strings(void);
SSL *SSL_new(SSL_CTX *ctx);
long SSL_num_renegotiations(SSL *ssl);
int SSL_peek(SSL *ssl, void *buf, int num);
int SSL_pending(const SSL *ssl);
int SSL_read(SSL *ssl, void *buf, int num);
int SSL_renegotiate(SSL *ssl);

1572

OpenSSL Manual

char *SSL_rstate_string(SSL *ssl);
char *SSL_rstate_string_long(SSL *ssl);
long SSL_session_reused(SSL *ssl);
void SSL_set_accept_state(SSL *ssl);
void SSL_set_app_data(SSL *ssl, char *arg);
void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio);
int SSL_set_cipher_list(SSL *ssl, char *str);
void SSL_set_client_CA_list(SSL *ssl, STACK *list);
void SSL_set_connect_state(SSL *ssl);
int SSL_set_ex_data(SSL *ssl, int idx, char *arg);
int SSL_set_fd(SSL *ssl, int fd);
void SSL_set_info_callback(SSL *ssl, void (*cb);(void))
void SSL_set_msg_callback(SSL *ctx, void (*cb)(int write_p, int version, int content_type, const void *buf, size_t len, SSL
*ssl, void *arg));

void SSL_set_msg_callback_arg(SSL *ctx, void *arg);
void SSL_set_options(SSL *ssl, unsigned long op);
void SSL_set_quiet_shutdown(SSL *ssl, int mode);
void SSL_set_read_ahead(SSL *ssl, int yes);
int SSL_set_rfd(SSL *ssl, int fd);
int SSL_set_session(SSL *ssl, SSL_SESSION *session);
void SSL_set_shutdown(SSL *ssl, int mode);
int SSL_set_ssl_method(SSL *ssl, const SSL_METHOD *meth);
void SSL_set_time(SSL *ssl, long t);
void SSL_set_timeout(SSL *ssl, long t);
void SSL_set_verify(SSL *ssl, int mode, int (*callback);(void))
void SSL_set_verify_result(SSL *ssl, long arg);
int SSL_set_wfd(SSL *ssl, int fd);
int SSL_shutdown(SSL *ssl);
int SSL_state(const SSL *ssl);
char *SSL_state_string(const SSL *ssl);
char *SSL_state_string_long(const SSL *ssl);
long SSL_total_renegotiations(SSL *ssl);
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, unsigned char *d, long len);
int SSL_use_PrivateKey_file(SSL *ssl, char *file, int type);
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, unsigned char *d, long len);
int SSL_use_RSAPrivateKey_file(SSL *ssl, char *file, int type);
int SSL_use_certificate(SSL *ssl, X509 *x);
int SSL_use_certificate_ASN1(SSL *ssl, int len, unsigned char *d);
int SSL_use_certificate_file(SSL *ssl, char *file, int type);
int SSL_version(const SSL *ssl);
int SSL_want(const SSL *ssl);
int SSL_want_nothing(const SSL *ssl);
int SSL_want_read(const SSL *ssl);
int SSL_want_write(const SSL *ssl);
int SSL_want_x509_lookup(const SSL *ssl);
int SSL_write(SSL *ssl, const void *buf, int num);
void SSL_set_psk_client_callback(SSL *ssl, unsigned int (*callback)(SSL *ssl, const char *hint, char *identity, unsigned int
max_identity_len, unsigned char *psk, unsigned int max_psk_len));

int SSL_use_psk_identity_hint(SSL *ssl, const char *hint);
void SSL_set_psk_server_callback(SSL *ssl, unsigned int (*callback)(SSL *ssl, const char *identity, unsigned char *psk,
int max_psk_len));

1573

OpenSSL Manual

const char *SSL_get_psk_identity_hint(SSL *ssl);
const char *SSL_get_psk_identity(SSL *ssl);

SEE ALSO

openssl(1), crypto(3), SSL_accept(3), SSL_clear(3), SSL_connect(3), SSL_CIPHER_get_name(3),
SSL_COMP_add_compression_method(3), SSL_CTX_add_extra_chain_cert(3), SSL_CTX_add_session(3),
SSL_CTX_ctrl(3), SSL_CTX_flush_sessions(3), SSL_CTX_get_ex_new_index(3), SSL_CTX_get_verify_mode(3),
SSL_CTX_load_verify_locations(3)SSL_CTX_new(3), SSL_CTX_sess_number(3), SSL_CTX_sess_set_cache_size(3),
SSL_CTX_sess_set_get_cb(3), SSL_CTX_sessions(3), SSL_CTX_set_cert_store(3), SSL_CTX_set_cert_verify_callback(3),
SSL_CTX_set_cipher_list(3), SSL_CTX_set_client_CA_list(3), SSL_CTX_set_client_cert_cb(3),
SSL_CTX_set_default_passwd_cb(3), SSL_CTX_set_generate_session_id(3), SSL_CTX_set_info_callback(3),
SSL_CTX_set_max_cert_list(3), SSL_CTX_set_mode(3), SSL_CTX_set_msg_callback(3), SSL_CTX_set_options(3),
SSL_CTX_set_quiet_shutdown(3), SSL_CTX_set_read_ahead(3), SSL_CTX_set_session_cache_mode(3),
SSL_CTX_set_session_id_context(3), SSL_CTX_set_ssl_version(3), SSL_CTX_set_timeout(3),
SSL_CTX_set_tmp_rsa_callback(3), SSL_CTX_set_tmp_dh_callback(3), SSL_CTX_set_verify(3),
SSL_CTX_use_certificate(3), SSL_alert_type_string(3), SSL_do_handshake(3), SSL_get_SSL_CTX(3),
SSL_get_ciphers(3), SSL_get_client_CA_list(3), SSL_get_default_timeout(3), SSL_get_error(3),
SSL_get_ex_data_X509_STORE_CTX_idx(3), SSL_get_ex_new_index(3), SSL_get_fd(3), SSL_get_peer_cert_chain(3),
SSL_get_rbio(3), SSL_get_session(3), SSL_get_verify_result(3), SSL_get_version(3), SSL_library_init(3),
SSL_load_client_CA_file(3), SSL_new(3), SSL_pending(3), SSL_read(3), SSL_rstate_string(3), SSL_session_reused(3),
SSL_set_bio(3), SSL_set_connect_state(3), SSL_set_fd(3), SSL_set_session(3), SSL_set_shutdown(3), SSL_shutdown(3),
SSL_state_string(3), SSL_want(3), SSL_write(3), SSL_SESSION_free(3), SSL_SESSION_get_ex_new_index(3),
SSL_SESSION_get_time(3), d2i_SSL_SESSION(3), SSL_CTX_set_psk_client_callback(3),
SSL_CTX_use_psk_identity_hint(3), SSL_get_psk_identity(3)

HISTORY

The ssl(3) document appeared in OpenSSL 0.9.2

1574

OpenSSL Manual

Name
d2i_SSL_SESSION and i2d_SSL_SESSION — convert SSL_SESSION object from/to ASN1 representation

Synopsis
#include <openssl/ssl.h>

SSL_SESSION *d2i_SSL_SESSION(SSL_SESSION **a, const unsigned char **pp, long length);
int i2d_SSL_SESSION(SSL_SESSION *in, unsigned char **pp);

DESCRIPTION

d2i_SSL_SESSION() transforms the external ASN1 representation of an SSL/TLS session, stored as binary data at location
pp with length length, into an SSL_SESSION object.

i2d_SSL_SESSION() transforms the SSL_SESSION object in into the ASN1 representation and stores it into the memory
location pointed to by pp. The length of the resulting ASN1 representation is returned. If pp is the NULL pointer, only the
length is calculated and returned.

NOTES

The SSL_SESSION object is built from several malloc()ed parts, it can therefore not be moved, copied or stored directly. In
order to store session data on disk or into a database, it must be transformed into a binary ASN1 representation.

When using d2i_SSL_SESSION(), the SSL_SESSION object is automatically allocated. The reference count is 1, so that the
session must be explicitly removed using SSL_SESSION_free(3), unless the SSL_SESSION object is completely taken over,
when being called inside the get_session_cb() (see SSL_CTX_sess_set_get_cb(3)).

SSL_SESSION objects keep internal link information about the session cache list, when being inserted into one SSL_CTX
object's session cache. One SSL_SESSION object, regardless of its reference count, must therefore only be used with one
SSL_CTX object (and the SSL objects created from this SSL_CTX object).

When using i2d_SSL_SESSION(), the memory location pointed to by pp must be large enough to hold the binary representation
of the session. There is no known limit on the size of the created ASN1 representation, so the necessary amount of space should
be obtained by first calling i2d_SSL_SESSION() with pp=NULL, and obtain the size needed, then allocate the memory and
call i2d_SSL_SESSION() again. Note that this will advance the value contained in *pp so it is necessary to save a copy of
the original allocation. For example: int i,j; char *p, *temp; i = i2d_SSL_SESSION(sess, NULL); p = temp = malloc(i); j =
i2d_SSL_SESSION(sess, &temp); assert(i == j); assert(p+i == temp);

RETURN VALUES

d2i_SSL_SESSION() returns a pointer to the newly allocated SSL_SESSION object. In case of failure the NULL-pointer is
returned and the error message can be retrieved from the error stack.

i2d_SSL_SESSION() returns the size of the ASN1 representation in bytes. When the session is not valid, 0 is returned and
no operation is performed.

SEE ALSO

ssl(3), SSL_SESSION_free(3), SSL_CTX_sess_set_get_cb(3)

1575

OpenSSL Manual

Name
SSL_accept — wait for a TLS/SSL client to initiate a TLS/SSL handshake

Synopsis
#include <openssl/ssl.h>

int SSL_accept(SSL *ssl);

DESCRIPTION

SSL_accept() waits for a TLS/SSL client to initiate the TLS/SSL handshake. The communication channel must already have
been set and assigned to the ssl by setting an underlying BIO.

NOTES

The behaviour of SSL_accept() depends on the underlying BIO.

If the underlying BIO is blocking, SSL_accept() will only return once the handshake has been finished or an error occurred,
except for SGC (Server Gated Cryptography). For SGC, SSL_accept() may return with -1, but SSL_get_error() will yield
SSL_ERROR_WANT_READ/WRITE and SSL_accept() should be called again.

If the underlying BIO is non-blocking, SSL_accept() will also return when the underlying BIO could not satisfy the needs of
SSL_accept() to continue the handshake, indicating the problem by the return value -1. In this case a call to SSL_get_error()
with the return value of SSL_accept() will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The
calling process then must repeat the call after taking appropriate action to satisfy the needs of SSL_accept(). The action depends
on the underlying BIO. When using a non-blocking socket, nothing is to be done, but select() can be used to check for the
required condition. When using a buffering BIO, like a BIO pair, data must be written into or retrieved out of the BIO before
being able to continue.

RETURN VALUES

The following return values can occur:

0 The TLS/SSL handshake was not successful but was shut down controlled and by the specifications of the TLS/SSL
protocol. Call SSL_get_error() with the return value ret to find out the reason.

1 The TLS/SSL handshake was successfully completed, a TLS/SSL connection has been established.

<0 The TLS/SSL handshake was not successful because a fatal error occurred either at the protocol level or a connection
failure occurred. The shutdown was not clean. It can also occur of action is need to continue the operation for non-
blocking BIOs. Call SSL_get_error() with the return value ret to find out the reason.

SEE ALSO

SSL_get_error(3), SSL_connect(3), SSL_shutdown(3), ssl(3), bio(3), SSL_set_connect_state(3), SSL_do_handshake(3),
SSL_CTX_new(3)

1576

OpenSSL Manual

Name
SSL_alert_type_string, SSL_alert_type_string_long, SSL_alert_desc_string and SSL_alert_desc_string_long — get textual
description of alert information

Synopsis
#include <openssl/ssl.h>

const char *SSL_alert_type_string(int value);
const char *SSL_alert_type_string_long(int value);

const char *SSL_alert_desc_string(int value);
const char *SSL_alert_desc_string_long(int value);

DESCRIPTION

SSL_alert_type_string() returns a one letter string indicating the type of the alert specified by value.

SSL_alert_type_string_long() returns a string indicating the type of the alert specified by value.

SSL_alert_desc_string() returns a two letter string as a short form describing the reason of the alert specified by value.

SSL_alert_desc_string_long() returns a string describing the reason of the alert specified by value.

NOTES

When one side of an SSL/TLS communication wants to inform the peer about a special situation, it sends an alert. The alert
is sent as a special message and does not influence the normal data stream (unless its contents results in the communication
being canceled).

A warning alert is sent, when a non-fatal error condition occurs. The "close notify" alert is sent as a warning alert. Other
examples for non-fatal errors are certificate errors ("certificate expired", "unsupported certificate"), for which a warning alert
may be sent. (The sending party may however decide to send a fatal error.) The receiving side may cancel the connection on
reception of a warning alert on it discretion.

Several alert messages must be sent as fatal alert messages as specified by the TLS RFC. A fatal alert always leads to a
connection abort.

RETURN VALUES

The following strings can occur for SSL_alert_type_string() or SSL_alert_type_string_long():

"W"/"warning"

"F"/"fatal"

"U"/"unknown" This indicates that no support is available for this alert type. Probably value does not contain a correct
alert message.

The following strings can occur for SSL_alert_desc_string() or SSL_alert_desc_string_long():

"CN"/"close notify" The connection shall be closed. This is a warning alert.

"UM"/"unexpected message" An inappropriate message was received. This alert is always fatal and should never be
observed in communication between proper implementations.

"BM"/"bad record mac" This alert is returned if a record is received with an incorrect MAC. This message is
always fatal.

"DF"/"decompression failure" The decompression function received improper input (e.g. data that would expand to
excessive length). This message is always fatal.

1577

OpenSSL Manual

"HF"/"handshake failure" Reception of a handshake_failure alert message indicates that the sender was unable to
negotiate an acceptable set of security parameters given the options available. This is
a fatal error.

"NC"/"no certificate" A client, that was asked to send a certificate, does not send a certificate (SSLv3 only).

"BC"/"bad certificate" A certificate was corrupt, contained signatures that did not verify correctly, etc

"UC"/"unsupported certificate" A certificate was of an unsupported type.

"CR"/"certificate revoked" A certificate was revoked by its signer.

"CE"/"certificate expired" A certificate has expired or is not currently valid.

"CU"/"certificate unknown" Some other (unspecified) issue arose in processing the certificate, rendering it unaccept-
able.

"IP"/"illegal parameter" A field in the handshake was out of range or inconsistent with other fields. This is always
fatal.

"DC"/"decryption failed" A TLSCiphertext decrypted in an invalid way: either it wasn't an even multiple of the
block length or its padding values, when checked, weren't correct. This message is al-
ways fatal.

"RO"/"record overflow" A TLSCiphertext record was received which had a length more than 2^14+2048 bytes,
or a record decrypted to a TLSCompressed record with more than 2^14+1024 bytes.
This message is always fatal.

"CA"/"unknown CA" A valid certificate chain or partial chain was received, but the certificate was not accept-
ed because the CA certificate could not be located or couldn't be matched with a known,
trusted CA. This message is always fatal.

"AD"/"access denied" A valid certificate was received, but when access control was applied, the sender decided
not to proceed with negotiation. This message is always fatal.

"DE"/"decode error" A message could not be decoded because some field was out of the specified range or
the length of the message was incorrect. This message is always fatal.

"CY"/"decrypt error" A handshake cryptographic operation failed, including being unable to correctly verify
a signature, decrypt a key exchange, or validate a finished message.

"ER"/"export restriction" A negotiation not in compliance with export restrictions was detected; for example, at-
tempting to transfer a 1024 bit ephemeral RSA key for the RSA_EXPORT handshake
method. This message is always fatal.

"PV"/"protocol version" The protocol version the client has attempted to negotiate is recognized, but not sup-
ported. (For example, old protocol versions might be avoided for security reasons). This
message is always fatal.

"IS"/"insufficient security" Returned instead of handshake_failure when a negotiation has failed specifically be-
cause the server requires ciphers more secure than those supported by the client. This
message is always fatal.

"IE"/"internal error" An internal error unrelated to the peer or the correctness of the protocol makes it impos-
sible to continue (such as a memory allocation failure). This message is always fatal.

"US"/"user canceled" This handshake is being canceled for some reason unrelated to a protocol failure. If the
user cancels an operation after the handshake is complete, just closing the connection by
sending a close_notify is more appropriate. This alert should be followed by a close_no-
tify. This message is generally a warning.

1578

OpenSSL Manual

"NR"/"no renegotiation" Sent by the client in response to a hello request or by the server in response to a client
hello after initial handshaking. Either of these would normally lead to renegotiation;
when that is not appropriate, the recipient should respond with this alert; at that point, the
original requester can decide whether to proceed with the connection. One case where
this would be appropriate would be where a server has spawned a process to satisfy a
request; the process might receive security parameters (key length, authentication, etc.)
at startup and it might be difficult to communicate changes to these parameters after that
point. This message is always a warning.

"UP"/"unknown PSK identity" Sent by the server to indicate that it does not recognize a PSK identity or an SRP identity.

"UK"/"unknown" This indicates that no description is available for this alert type. Probably value does
not contain a correct alert message.

SEE ALSO

ssl(3), SSL_CTX_set_info_callback(3)

1579

OpenSSL Manual

Name
SSL_CIPHER_get_name, SSL_CIPHER_get_bits, SSL_CIPHER_get_version and SSL_CIPHER_description — get
SSL_CIPHER properties

Synopsis
#include <openssl/ssl.h>

const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher);
int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *alg_bits);
char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher);
char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int size);

DESCRIPTION

SSL_CIPHER_get_name() returns a pointer to the name of cipher. If the argument is the NULL pointer, a pointer to the
constant value "NONE" is returned.

SSL_CIPHER_get_bits() returns the number of secret bits used for cipher. If alg_bits is not NULL, it contains the number of
bits processed by the chosen algorithm. If cipher is NULL, 0 is returned.

SSL_CIPHER_get_version() returns string which indicates the SSL/TLS protocol version that first defined the cipher.
This is currently SSLv2 or TLSv1/SSLv3. In some cases it should possibly return "TLSv1.2" but does not; use
SSL_CIPHER_description() instead. If cipher is NULL, "(NONE)" is returned.

SSL_CIPHER_description() returns a textual description of the cipher used into the buffer buf of length len provided. len must
be at least 128 bytes, otherwise a pointer to the string "Buffer too small" is returned. If buf is NULL, a buffer of 128 bytes is
allocated using OPENSSL_malloc(). If the allocation fails, a pointer to the string "OPENSSL_malloc Error" is returned.

NOTES

The number of bits processed can be different from the secret bits. An export cipher like e.g. EXP-RC4-MD5 has only 40
secret bits. The algorithm does use the full 128 bits (which would be returned for alg_bits), of which however 88bits are fixed.
The search space is hence only 40 bits.

The string returned by SSL_CIPHER_description() in case of success consists of cleartext information separated by one or
more blanks in the following sequence:

<ciphername>

Textual representation of the cipher name.

<protocol version>

Protocol version: SSLv2, SSLv3, TLSv1.2. The TLSv1.0 ciphers are flagged with SSLv3. No new ciphers were added
by TLSv1.1.

Kx=<key exchange>

Key exchange method: RSA (for export ciphers as RSA(512) or RSA(1024)), DH (for export ciphers as DH(512) or
DH(1024)), DH/RSA, DH/DSS, Fortezza.

Au=<authentication>

Authentication method: RSA, DSS, DH, None. None is the representation of anonymous ciphers.

Enc=<symmetric encryption method>

Encryption method with number of secret bits: DES(40), DES(56), 3DES(168), RC4(40), RC4(56), RC4(64), RC4(128),
RC2(40), RC2(56), RC2(128), IDEA(128), Fortezza, None.

1580

OpenSSL Manual

Mac=<message authentication code>

Message digest: MD5, SHA1.

<export flag>

If the cipher is flagged exportable with respect to old US crypto regulations, the word "export" is printed.

EXAMPLES

Some examples for the output of SSL_CIPHER_description():

EDH-RSA-DES-CBC3-SHA SSLv3 Kx=DH Au=RSA Enc=3DES(168) Mac=SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 Kx=DH Au=DSS Enc=3DES(168) Mac=SHA1
RC4-MD5 SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=MD5
EXP-RC4-MD5 SSLv3 Kx=RSA(512) Au=RSA Enc=RC4(40) Mac=MD5 export

A comp[lete list can be retrieved by invoking the following command:

openssl ciphers -v ALL

BUGS

If SSL_CIPHER_description() is called with cipher being NULL, the library crashes.

If SSL_CIPHER_description() cannot handle a built-in cipher, the according description of the cipher property is unknown.
This case should not occur.

RETURN VALUES

See DESCRIPTION

SEE ALSO

ssl(3), SSL_get_current_cipher(3), SSL_get_ciphers(3), ciphers(1)

1581

OpenSSL Manual

Name
SSL_clear — reset SSL object to allow another connection

Synopsis
#include <openssl/ssl.h>

int SSL_clear(SSL *ssl);

DESCRIPTION

Reset ssl to allow another connection. All settings (method, ciphers, BIOs) are kept.

NOTES

SSL_clear is used to prepare an SSL object for a new connection. While all settings are kept, a side effect is the handling of the
current SSL session. If a session is still open, it is considered bad and will be removed from the session cache, as required by
RFC2246. A session is considered open, if SSL_shutdown(3) was not called for the connection or at least SSL_set_shutdown(3)
was used to set the SSL_SENT_SHUTDOWN state.

If a session was closed cleanly, the session object will be kept and all settings corresponding. This explicitly means, that e.g. the
special method used during the session will be kept for the next handshake. So if the session was a TLSv1 session, a SSL client
object will use a TLSv1 client method for the next handshake and a SSL server object will use a TLSv1 server method, even
if SSLv23_*_methods were chosen on startup. This will might lead to connection failures (see SSL_new(3)) for a description
of the method's properties.

WARNINGS

SSL_clear() resets the SSL object to allow for another connection. The reset operation however keeps several settings of the last
sessions (some of these settings were made automatically during the last handshake). It only makes sense for a new connection
with the exact same peer that shares these settings, and may fail if that peer changes its settings between connections. Use
the sequence SSL_get_session(3); SSL_new(3); SSL_set_session(3); SSL_free(3) instead to avoid such failures (or simply
SSL_free(3); SSL_new(3) if session reuse is not desired).

RETURN VALUES

The following return values can occur:

0 The SSL_clear() operation could not be performed. Check the error stack to find out the reason.

1 The SSL_clear() operation was successful.

SSL_new(3), SSL_free(3), SSL_shutdown(3), SSL_set_shutdown(3), SSL_CTX_set_options(3), ssl(3),
SSL_CTX_set_client_cert_cb(3)

1582

OpenSSL Manual

Name
SSL_COMP_add_compression_method — handle SSL/TLS integrated compression methods

Synopsis
#include <openssl/ssl.h>

int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm);

DESCRIPTION

SSL_COMP_add_compression_method() adds the compression method cm with the identifier id to the list of available com-
pression methods. This list is globally maintained for all SSL operations within this application. It cannot be set for specific
SSL_CTX or SSL objects.

NOTES

The TLS standard (or SSLv3) allows the integration of compression methods into the communication. The TLS RFC does
however not specify compression methods or their corresponding identifiers, so there is currently no compatible way to inte-
grate compression with unknown peers. It is therefore currently not recommended to integrate compression into applications.
Applications for non-public use may agree on certain compression methods. Using different compression methods with the
same identifier will lead to connection failure.

An OpenSSL client speaking a protocol that allows compression (SSLv3, TLSv1) will unconditionally send the list of all
compression methods enabled with SSL_COMP_add_compression_method() to the server during the handshake. Unlike the
mechanisms to set a cipher list, there is no method available to restrict the list of compression method on a per connection basis.

An OpenSSL server will match the identifiers listed by a client against its own compression methods and will unconditionally
activate compression when a matching identifier is found. There is no way to restrict the list of compression methods supported
on a per connection basis.

The OpenSSL library has the compression methods COMP_rle() and (when especially enabled during compilation)
COMP_zlib() available.

WARNINGS

Once the identities of the compression methods for the TLS protocol have been standardized, the compression API will most
likely be changed. Using it in the current state is not recommended.

RETURN VALUES

SSL_COMP_add_compression_method() may return the following values:

0 The operation succeeded.

1 The operation failed. Check the error queue to find out the reason.

SEE ALSO

ssl(3)

1583

OpenSSL Manual

Name
SSL_connect — initiate the TLS/SSL handshake with an TLS/SSL server

Synopsis
#include <openssl/ssl.h>

int SSL_connect(SSL *ssl);

DESCRIPTION

SSL_connect() initiates the TLS/SSL handshake with a server. The communication channel must already have been set and
assigned to the ssl by setting an underlying BIO.

NOTES

The behaviour of SSL_connect() depends on the underlying BIO.

If the underlying BIO is blocking, SSL_connect() will only return once the handshake has been finished or an error occurred.

If the underlying BIO is non-blocking, SSL_connect() will also return when the underlying BIO could not satisfy the needs of
SSL_connect() to continue the handshake, indicating the problem by the return value -1. In this case a call to SSL_get_error()
with the return value of SSL_connect() will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The
calling process then must repeat the call after taking appropriate action to satisfy the needs of SSL_connect(). The action
depends on the underlying BIO. When using a non-blocking socket, nothing is to be done, but select() can be used to check
for the required condition. When using a buffering BIO, like a BIO pair, data must be written into or retrieved out of the BIO
before being able to continue.

RETURN VALUES

The following return values can occur:

0 The TLS/SSL handshake was not successful but was shut down controlled and by the specifications of the TLS/SSL
protocol. Call SSL_get_error() with the return value ret to find out the reason.

1 The TLS/SSL handshake was successfully completed, a TLS/SSL connection has been established.

<0 The TLS/SSL handshake was not successful, because a fatal error occurred either at the protocol level or a connection
failure occurred. The shutdown was not clean. It can also occur of action is need to continue the operation for non-
blocking BIOs. Call SSL_get_error() with the return value ret to find out the reason.

SEE ALSO

SSL_get_error(3), SSL_accept(3), SSL_shutdown(3), ssl(3), bio(3), SSL_set_connect_state(3), SSL_do_handshake(3),
SSL_CTX_new(3)

1584

OpenSSL Manual

Name
SSL_CTX_add_extra_chain_cert and SSL_CTX_clear_extra_chain_certs — add or clear extra chain certificates

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_add_extra_chain_cert(SSL_CTX *ctx, X509 *x509);
long SSL_CTX_clear_extra_chain_certs(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_add_extra_chain_cert() adds the certificate x509 to the extra chain certificates associated with ctx. Several
certificates can be added one after another.

SSL_CTX_clear_extra_chain_certs() clears all extra chain certificates associated with ctx.

These functions are implemented as macros.

NOTES

When sending a certificate chain, extra chain certificates are sent in order following the end entity certificate.

If no chain is specified, the library will try to complete the chain from the available CA certificates in the trusted CA storage,
see SSL_CTX_load_verify_locations(3).

The x509 certificate provided to SSL_CTX_add_extra_chain_cert() will be freed by the library when the SSL_CTX is de-
stroyed. An application should not free the x509 object.

RESTRICTIONS

Only one set of extra chain certificates can be specified per SSL_CTX structure. Different chains for different certificates (for
example if both RSA and DSA certificates are specified by the same server) or different SSL structures with the same parent
SSL_CTX cannot be specified using this function.

RETURN VALUES

SSL_CTX_add_extra_chain_cert() and SSL_CTX_clear_extra_chain_certs() return 1 on success and 0 for failure. Check out
the error stack to find out the reason for failure.

SEE ALSO

ssl(3), SSL_CTX_use_certificate(3), SSL_CTX_set_client_cert_cb(3), SSL_CTX_load_verify_locations(3)

1585

OpenSSL Manual

Name
SSL_CTX_add_session, SSL_add_session, SSL_CTX_remove_session and SSL_remove_session — manipulate session
cache

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_add_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_add_session(SSL_CTX *ctx, SSL_SESSION *c);

int SSL_CTX_remove_session(SSL_CTX *ctx, SSL_SESSION *c);
int SSL_remove_session(SSL_CTX *ctx, SSL_SESSION *c);

DESCRIPTION

SSL_CTX_add_session() adds the session c to the context ctx. The reference count for session c is incremented by 1. If a
session with the same session id already exists, the old session is removed by calling SSL_SESSION_free(3).

SSL_CTX_remove_session() removes the session c from the context ctx. SSL_SESSION_free(3) is called once for c.

SSL_add_session() and SSL_remove_session() are synonyms for their SSL_CTX_*() counterparts.

NOTES

When adding a new session to the internal session cache, it is examined whether a session with the same session id already
exists. In this case it is assumed that both sessions are identical. If the same session is stored in a different SSL_SESSION
object, The old session is removed and replaced by the new session. If the session is actually identical (the SSL_SESSION
object is identical), SSL_CTX_add_session() is a no-op, and the return value is 0.

If a server SSL_CTX is configured with the SSL_SESS_CACHE_NO_INTERNAL_STORE flag then the internal
cache will not be populated automatically by new sessions negotiated by the SSL/TLS implementation, even though
the internal cache will be searched automatically for session-resume requests (the latter can be suppressed by
SSL_SESS_CACHE_NO_INTERNAL_LOOKUP). So the application can use SSL_CTX_add_session() directly to have full
control over the sessions that can be resumed if desired.

RETURN VALUES

The following values are returned by all functions:

0 The operation failed. In case of the add operation, it was tried to add
the same (identical) session twice. In case of the remove operation, the
session was not found in the cache.

1 The operation succeeded.

SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_free(3)

1586

OpenSSL Manual

Name
SSL_CTX_ctrl, SSL_CTX_callback_ctrl, SSL_ctrl and SSL_callback_ctrl — internal handling functions for SSL_CTX and
SSL objects

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg);
long SSL_CTX_callback_ctrl(SSL_CTX *, int cmd, void (*fp)());

long SSL_ctrl(SSL *ssl, int cmd, long larg, void *parg);
long SSL_callback_ctrl(SSL *, int cmd, void (*fp)());

DESCRIPTION

The SSL_*_ctrl() family of functions is used to manipulate settings of the SSL_CTX and SSL objects. Depending on the
command cmd the arguments larg, parg, or fp are evaluated. These functions should never be called directly. All functionalities
needed are made available via other functions or macros.

RETURN VALUES

The return values of the SSL*_ctrl() functions depend on the command supplied via the cmd parameter.

SEE ALSO

ssl(3)

1587

OpenSSL Manual

Name
SSL_CTX_flush_sessions and SSL_flush_sessions — remove expired sessions

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_flush_sessions(SSL_CTX *ctx, long tm);
void SSL_flush_sessions(SSL_CTX *ctx, long tm);

DESCRIPTION

SSL_CTX_flush_sessions() causes a run through the session cache of ctx to remove sessions expired at time tm.

SSL_flush_sessions() is a synonym for SSL_CTX_flush_sessions().

NOTES

If enabled, the internal session cache will collect all sessions established up to the specified maximum number (see
SSL_CTX_sess_set_cache_size()). As sessions will not be reused ones they are expired, they should be removed from
the cache to save resources. This can either be done automatically whenever 255 new sessions were established (see
SSL_CTX_set_session_cache_mode(3)) or manually by calling SSL_CTX_flush_sessions().

The parameter tm specifies the time which should be used for the expiration test, in most cases the actual time given by time(0)
will be used.

SSL_CTX_flush_sessions() will only check sessions stored in the internal cache. When a session is found and removed, the
remove_session_cb is however called to synchronize with the external cache (see SSL_CTX_sess_set_get_cb(3)).

RETURN VALUES

SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_set_timeout(3), SSL_CTX_sess_set_get_cb(3)

1588

OpenSSL Manual

Name
SSL_CTX_free — free an allocated SSL_CTX object

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_free(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_free() decrements the reference count of ctx, and removes the SSL_CTX object pointed to by ctx and frees up the
allocated memory if the the reference count has reached 0.

It also calls the free()ing procedures for indirectly affected items, if applicable: the session cache, the list of ciphers, the list
of Client CAs, the certificates and keys.

WARNINGS

If a session-remove callback is set (SSL_CTX_sess_set_remove_cb()), this callback will be called for each session being freed
from ctx's session cache. This implies, that all corresponding sessions from an external session cache are removed as well. If
this is not desired, the user should explicitly unset the callback by calling SSL_CTX_sess_set_remove_cb(ctx, NULL) prior
to calling SSL_CTX_free().

RETURN VALUES

SSL_CTX_free() does not provide diagnostic information.

SEE ALSO

SSL_CTX_new(3), ssl(3), SSL_CTX_sess_set_get_cb(3)

1589

OpenSSL Manual

Name
SSL_CTX_get_ex_new_index, SSL_CTX_set_ex_data and SSL_CTX_get_ex_data — internal application specific data
functions

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *arg);

void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
 int idx, long argl, void *argp);

DESCRIPTION

Several OpenSSL structures can have application specific data attached to them. These functions are used internally by
OpenSSL to manipulate application specific data attached to a specific structure.

SSL_CTX_get_ex_new_index() is used to register a new index for application specific data.

SSL_CTX_set_ex_data() is used to store application data at arg for idx into the ctx object.

SSL_CTX_get_ex_data() is used to retrieve the information for idx from ctx.

A detailed description for the *_get_ex_new_index() functionality can be found in RSA_get_ex_new_index(3). The
*_get_ex_data() and *_set_ex_data() functionality is described in CRYPTO_set_ex_data(3).

SEE ALSO

ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3)

1590

OpenSSL Manual

Name
SSL_CTX_get_verify_mode, SSL_get_verify_mode, SSL_CTX_get_verify_depth, SSL_get_verify_depth,
SSL_get_verify_callback and SSL_CTX_get_verify_callback — get currently set verification parameters

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_get_verify_mode(const SSL_CTX *ctx);
int SSL_get_verify_mode(const SSL *ssl);
int SSL_CTX_get_verify_depth(const SSL_CTX *ctx);
int SSL_get_verify_depth(const SSL *ssl);
int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx))(int, X509_STORE_CTX *);
int (*SSL_get_verify_callback(const SSL *ssl))(int, X509_STORE_CTX *);

DESCRIPTION

SSL_CTX_get_verify_mode() returns the verification mode currently set in ctx.

SSL_get_verify_mode() returns the verification mode currently set in ssl.

SSL_CTX_get_verify_depth() returns the verification depth limit currently set in ctx. If no limit has been explicitly set, -1 is
returned and the default value will be used.

SSL_get_verify_depth() returns the verification depth limit currently set in ssl. If no limit has been explicitly set, -1 is returned
and the default value will be used.

SSL_CTX_get_verify_callback() returns a function pointer to the verification callback currently set in ctx. If no callback was
explicitly set, the NULL pointer is returned and the default callback will be used.

SSL_get_verify_callback() returns a function pointer to the verification callback currently set in ssl. If no callback was explicitly
set, the NULL pointer is returned and the default callback will be used.

RETURN VALUES

See DESCRIPTION

SEE ALSO

ssl(3), SSL_CTX_set_verify(3)

1591

OpenSSL Manual

Name
SSL_CTX_load_verify_locations — set default locations for trusted CA certificates

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile,
 const char *CApath);

DESCRIPTION

SSL_CTX_load_verify_locations() specifies the locations for ctx, at which CA certificates for verification purposes are located.
The certificates available via CAfile and CApath are trusted.

NOTES

If CAfile is not NULL, it points to a file of CA certificates in PEM format. The file can contain several CA certificates identified
by

-----BEGIN CERTIFICATE-----
… (CA certificate in base64 encoding) …
-----END CERTIFICATE-----

sequences. Before, between, and after the certificates text is allowed which can be used e.g. for descriptions of the certificates.

The CAfile is processed on execution of the SSL_CTX_load_verify_locations() function.

If CApath is not NULL, it points to a directory containing CA certificates in PEM format. The files each contain one CA
certificate. The files are looked up by the CA subject name hash value, which must hence be available. If more than one CA
certificate with the same name hash value exist, the extension must be different (e.g. 9d66eef0.0, 9d66eef0.1 etc). The search
is performed in the ordering of the extension number, regardless of other properties of the certificates. Use the c_rehash utility
to create the necessary links.

The certificates in CApath are only looked up when required, e.g. when building the certificate chain or when actually per-
forming the verification of a peer certificate.

When looking up CA certificates, the OpenSSL library will first search the certificates in CAfile, then those in CApath.
Certificate matching is done based on the subject name, the key identifier (if present), and the serial number as taken from
the certificate to be verified. If these data do not match, the next certificate will be tried. If a first certificate matching the
parameters is found, the verification process will be performed; no other certificates for the same parameters will be searched
in case of failure.

In server mode, when requesting a client certificate, the server must send the list of CAs of which it will accept
client certificates. This list is not influenced by the contents of CAfile or CApath and must explicitly be set using the
SSL_CTX_set_client_CA_list(3) family of functions.

When building its own certificate chain, an OpenSSL client/server will try to fill in missing certificates from CAfile/CApath,
if the certificate chain was not explicitly specified (see SSL_CTX_add_extra_chain_cert(3), SSL_CTX_use_certificate(3).

WARNINGS

If several CA certificates matching the name, key identifier, and serial number condition are available, only the first one will
be examined. This may lead to unexpected results if the same CA certificate is available with different expiration dates. If a
"certificate expired" verification error occurs, no other certificate will be searched. Make sure to not have expired certificates
mixed with valid ones.

EXAMPLES

Generate a CA certificate file with descriptive text from the CA certificates ca1.pem ca2.pem ca3.pem:

1592

OpenSSL Manual

#!/bin/sh
rm CAfile.pem
for i in ca1.pem ca2.pem ca3.pem ; do
 openssl x509 -in $i -text >> CAfile.pem
done

Prepare the directory /some/where/certs containing several CA certificates for use as CApath:

cd /some/where/certs
c_rehash .

RETURN VALUES

The following return values can occur:

0 The operation failed because CAfile and CApath are NULL or the processing at one of the locations specified failed.
Check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO

ssl(3), SSL_CTX_set_client_CA_list(3), SSL_get_client_CA_list(3), SSL_CTX_use_certificate(3),
SSL_CTX_add_extra_chain_cert(3), SSL_CTX_set_cert_store(3)

1593

OpenSSL Manual

Name
SSL_CTX_new, SSLv23_method, SSLv23_server_method, SSLv23_client_method, TLSv1_2_method,
TLSv1_2_server_method, TLSv1_2_client_method, TLSv1_1_method, TLSv1_1_server_method, TLSv1_1_client_method,
TLSv1_method, TLSv1_server_method, TLSv1_client_method, SSLv3_method, SSLv3_server_method,
SSLv3_client_method, SSLv2_method, SSLv2_server_method, SSLv2_client_method, DTLSv1_method,
DTLSv1_server_method and DTLSv1_client_method — create a new SSL_CTX object as framework for TLS/SSL enabled
functions

Synopsis
#include <openssl/ssl.h>

SSL_CTX *SSL_CTX_new(const SSL_METHOD *method);
const SSL_METHOD *SSLv23_method(void);
const SSL_METHOD *SSLv23_server_method(void);
const SSL_METHOD *SSLv23_client_method(void);
const SSL_METHOD *TLSv1_2_method(void);
const SSL_METHOD *TLSv1_2_server_method(void);
const SSL_METHOD *TLSv1_2_client_method(void);
const SSL_METHOD *TLSv1_1_method(void);
const SSL_METHOD *TLSv1_1_server_method(void);
const SSL_METHOD *TLSv1_1_client_method(void);
const SSL_METHOD *TLSv1_method(void);
const SSL_METHOD *TLSv1_server_method(void);
const SSL_METHOD *TLSv1_client_method(void);
#ifndef OPENSSL_NO_SSL3_METHOD
const SSL_METHOD *SSLv3_method(void);
const SSL_METHOD *SSLv3_server_method(void);
const SSL_METHOD *SSLv3_client_method(void);
#endif
#ifndef OPENSSL_NO_SSL2
const SSL_METHOD *SSLv2_method(void);
const SSL_METHOD *SSLv2_server_method(void);
const SSL_METHOD *SSLv2_client_method(void);
#endif

const SSL_METHOD *DTLSv1_method(void);
const SSL_METHOD *DTLSv1_server_method(void);
const SSL_METHOD *DTLSv1_client_method(void);

DESCRIPTION

SSL_CTX_new() creates a new SSL_CTX object as framework to establish TLS/SSL enabled connections.

NOTES

The SSL_CTX object uses method as connection method. The methods exist in a generic type (for client and server use), a
server only type, and a client only type. method can be of the following types:

SSLv23_method(), SSLv23_server_method(), SSLv23_client_method()

These are the general-purpose version-flexible SSL/TLS methods. The actual protocol version used will be negotiated to
the highest version mutually supported by the client and the server. The supported protocols are SSLv2, SSLv3, TLSv1,
TLSv1.1 and TLSv1.2. Most applications should use these method, and avoid the version specific methods described
below.

The list of protocols available can be further limited using the SSL_OP_NO_SSLv2, SSL_OP_NO_SSLv3,
SSL_OP_NO_TLSv1, SSL_OP_NO_TLSv1_1 and SSL_OP_NO_TLSv1_2 options of the SSL_CTX_set_options(3)
or SSL_set_options(3) functions. Clients should avoid creating "holes" in the set of protocols they support, when disabling
a protocol, make sure that you also disable either all previous or all subsequent protocol versions. In clients, when a
protocol version is disabled without disabling all previous protocol versions, the effect is to also disable all subsequent
protocol versions.

The SSLv2 and SSLv3 protocols are deprecated and should generally not be used. Applications should typically use
SSL_CTX_set_options(3) in combination with the SSL_OP_NO_SSLv3 flag to disable negotiation of SSLv3 via the

1594

OpenSSL Manual

above version-flexible SSL/TLS methods. The SSL_OP_NO_SSLv2 option is set by default, and would need to be cleared
via SSL_CTX_clear_options(3) in order to enable negotiation of SSLv2.

TLSv1_2_method(), TLSv1_2_server_method(), TLSv1_2_client_method()

A TLS/SSL connection established with these methods will only understand the TLSv1.2 protocol. A client will send
out TLSv1.2 client hello messages and will also indicate that it only understand TLSv1.2. A server will only understand
TLSv1.2 client hello messages.

TLSv1_1_method(), TLSv1_1_server_method(), TLSv1_1_client_method()

A TLS/SSL connection established with these methods will only understand the TLSv1.1 protocol. A client will send
out TLSv1.1 client hello messages and will also indicate that it only understand TLSv1.1. A server will only understand
TLSv1.1 client hello messages.

TLSv1_method(), TLSv1_server_method(), TLSv1_client_method()

A TLS/SSL connection established with these methods will only understand the TLSv1 protocol. A client will send out
TLSv1 client hello messages and will indicate that it only understands TLSv1. A server will only understand TLSv1 client
hello messages.

SSLv3_method(), SSLv3_server_method(), SSLv3_client_method()

A TLS/SSL connection established with these methods will only understand the SSLv3 protocol. A client will send out
SSLv3 client hello messages and will indicate that it only understands SSLv3. A server will only understand SSLv3 client
hello messages. The SSLv3 protocol is deprecated and should not be used.

SSLv2_method(), SSLv2_server_method(), SSLv2_client_method()

A TLS/SSL connection established with these methods will only understand the SSLv2 protocol. A client will send out
SSLv2 client hello messages and will also indicate that it only understand SSLv2. A server will only understand SSLv2
client hello messages. The SSLv2 protocol offers little to no security and should not be used. As of OpenSSL 1.0.1s,
EXPORT ciphers and 56-bit DES are no longer available with SSLv2.

DTLSv1_method(), DTLSv1_server_method(), DTLSv1_client_method()

These are the version-specific methods for DTLSv1.

SSL_CTX_new() initializes the list of ciphers, the session cache setting, the callbacks, the keys and certificates and the options
to its default values.

RETURN VALUES

The following return values can occur:

NULL The creation of a new SSL_CTX object failed. Check the error stack to find out the
reason.

Pointer to an SSL_CTX object The return value points to an allocated SSL_CTX object.

SEE ALSO

SSL_CTX_set_options(3), SSL_CTX_clear_options(3), SSL_set_options(3), SSL_CTX_free(3), SSL_accept(3), ssl(3),
SSL_set_connect_state(3)

1595

OpenSSL Manual

Name
SSL_CTX_sessions — access internal session cache

Synopsis
#include <openssl/ssl.h>

struct lhash_st *SSL_CTX_sessions(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_sessions() returns a pointer to the lhash databases containing the internal session cache for ctx.

NOTES

The sessions in the internal session cache are kept in an lhash(3) type database. It is possible to directly access this database
e.g. for searching. In parallel, the sessions form a linked list which is maintained separately from the lhash(3) operations, so
that the database must not be modified directly but by using the SSL_CTX_add_session(3) family of functions.

SEE ALSO

ssl(3), lhash(3), SSL_CTX_add_session(3), SSL_CTX_set_session_cache_mode(3)

1596

OpenSSL Manual

Name
SSL_CTX_sess_number, SSL_CTX_sess_connect, SSL_CTX_sess_connect_good, SSL_CTX_sess_connect_renegotiate,
SSL_CTX_sess_accept, SSL_CTX_sess_accept_good, SSL_CTX_sess_accept_renegotiate, SSL_CTX_sess_hits,
SSL_CTX_sess_cb_hits, SSL_CTX_sess_misses, SSL_CTX_sess_timeouts and SSL_CTX_sess_cache_full — obtain session
cache statistics

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_sess_number(SSL_CTX *ctx);
long SSL_CTX_sess_connect(SSL_CTX *ctx);
long SSL_CTX_sess_connect_good(SSL_CTX *ctx);
long SSL_CTX_sess_connect_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_accept(SSL_CTX *ctx);
long SSL_CTX_sess_accept_good(SSL_CTX *ctx);
long SSL_CTX_sess_accept_renegotiate(SSL_CTX *ctx);
long SSL_CTX_sess_hits(SSL_CTX *ctx);
long SSL_CTX_sess_cb_hits(SSL_CTX *ctx);
long SSL_CTX_sess_misses(SSL_CTX *ctx);
long SSL_CTX_sess_timeouts(SSL_CTX *ctx);
long SSL_CTX_sess_cache_full(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_sess_number() returns the current number of sessions in the internal session cache.

SSL_CTX_sess_connect() returns the number of started SSL/TLS handshakes in client mode.

SSL_CTX_sess_connect_good() returns the number of successfully established SSL/TLS sessions in client mode.

SSL_CTX_sess_connect_renegotiate() returns the number of start renegotiations in client mode.

SSL_CTX_sess_accept() returns the number of started SSL/TLS handshakes in server mode.

SSL_CTX_sess_accept_good() returns the number of successfully established SSL/TLS sessions in server mode.

SSL_CTX_sess_accept_renegotiate() returns the number of start renegotiations in server mode.

SSL_CTX_sess_hits() returns the number of successfully reused sessions. In client mode a session set with SSL_set_session(3)
successfully reused is counted as a hit. In server mode a session successfully retrieved from internal or external cache is counted
as a hit.

SSL_CTX_sess_cb_hits() returns the number of successfully retrieved sessions from the external session cache in server mode.

SSL_CTX_sess_misses() returns the number of sessions proposed by clients that were not found in the internal session cache
in server mode.

SSL_CTX_sess_timeouts() returns the number of sessions proposed by clients and either found in the internal or external
session cache in server mode, but that were invalid due to timeout. These sessions are not included in the SSL_CTX_sess_hits()
count.

SSL_CTX_sess_cache_full() returns the number of sessions that were removed because the maximum session cache size was
exceeded.

RETURN VALUES

The functions return the values indicated in the DESCRIPTION section.

SEE ALSO

ssl(3), SSL_set_session(3), SSL_CTX_set_session_cache_mode(3)SSL_CTX_sess_set_cache_size(3)

1597

OpenSSL Manual

Name
SSL_CTX_sess_set_cache_size and SSL_CTX_sess_get_cache_size — manipulate session cache size

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, long t);
long SSL_CTX_sess_get_cache_size(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_sess_set_cache_size() sets the size of the internal session cache of context ctx to t.

SSL_CTX_sess_get_cache_size() returns the currently valid session cache size.

NOTES

The internal session cache size is SSL_SESSION_CACHE_MAX_SIZE_DEFAULT, currently 1024*20, so that up to 20000
sessions can be held. This size can be modified using the SSL_CTX_sess_set_cache_size() call. A special case is the size 0,
which is used for unlimited size.

When the maximum number of sessions is reached, no more new sessions are added to the cache. New space may be added
by calling SSL_CTX_flush_sessions(3) to remove expired sessions.

If the size of the session cache is reduced and more sessions are already in the session cache, old session will be removed at
the next time a session shall be added. This removal is not synchronized with the expiration of sessions.

RETURN VALUES

SSL_CTX_sess_set_cache_size() returns the previously valid size.

SSL_CTX_sess_get_cache_size() returns the currently valid size.

SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_sess_number(3), SSL_CTX_flush_sessions(3)

1598

OpenSSL Manual

Name
SSL_CTX_sess_set_new_cb, SSL_CTX_sess_set_remove_cb, SSL_CTX_sess_set_get_cb, SSL_CTX_sess_get_new_cb,
SSL_CTX_sess_get_remove_cb and SSL_CTX_sess_get_get_cb — provide callback functions for server side external session
caching

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_sess_set_new_cb(SSL_CTX *ctx,
 int (*new_session_cb)(SSL *, SSL_SESSION *));
void SSL_CTX_sess_set_remove_cb(SSL_CTX *ctx,
 void (*remove_session_cb)(SSL_CTX *ctx, SSL_SESSION *));
void SSL_CTX_sess_set_get_cb(SSL_CTX *ctx,
 SSL_SESSION (*get_session_cb)(SSL *, unsigned char *, int, int *));

int (*SSL_CTX_sess_get_new_cb(SSL_CTX *ctx))(struct ssl_st *ssl, SSL_SESSION *sess);
void (*SSL_CTX_sess_get_remove_cb(SSL_CTX *ctx))(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*SSL_CTX_sess_get_get_cb(SSL_CTX *ctx))(struct ssl_st *ssl, unsigned char *data,
 int len, int *copy);

int (*new_session_cb)(struct ssl_st *ssl, SSL_SESSION *sess);
void (*remove_session_cb)(struct ssl_ctx_st *ctx, SSL_SESSION *sess);
SSL_SESSION *(*get_session_cb)(struct ssl_st *ssl, unsigned char *data,
 int len, int *copy);

DESCRIPTION

SSL_CTX_sess_set_new_cb() sets the callback function, which is automatically called whenever a new session was negotiated.

SSL_CTX_sess_set_remove_cb() sets the callback function, which is automatically called whenever a session is removed by
the SSL engine, because it is considered faulty or the session has become obsolete because of exceeding the timeout value.

SSL_CTX_sess_set_get_cb() sets the callback function which is called, whenever a SSL/TLS client proposed to resume a
session but the session could not be found in the internal session cache (see SSL_CTX_set_session_cache_mode(3)). (SSL/
TLS server only.)

SSL_CTX_sess_get_new_cb(), SSL_CTX_sess_get_remove_cb(), and SSL_CTX_sess_get_get_cb() allow to retrieve the
function pointers of the provided callback functions. If a callback function has not been set, the NULL pointer is returned.

NOTES

In order to allow external session caching, synchronization with the internal session cache is realized via callback functions.
Inside these callback functions, session can be saved to disk or put into a database using the d2i_SSL_SESSION(3) interface.

The new_session_cb() is called, whenever a new session has been negotiated and session caching is enabled (see
SSL_CTX_set_session_cache_mode(3)). The new_session_cb() is passed the ssl connection and the ssl session sess. If the
callback returns 0, the session will be immediately removed again.

The remove_session_cb() is called, whenever the SSL engine removes a session from the internal cache. This happens when
the session is removed because it is expired or when a connection was not shutdown cleanly. It also happens for all sessions
in the internal session cache when SSL_CTX_free(3) is called. The remove_session_cb() is passed the ctx and the ssl session
sess. It does not provide any feedback.

The get_session_cb() is only called on SSL/TLS servers with the session id proposed by the client. The get_session_cb() is
always called, also when session caching was disabled. The get_session_cb() is passed the ssl connection, the session id of
length length at the memory location data. With the parameter copy the callback can require the SSL engine to increment the
reference count of the SSL_SESSION object, Normally the reference count is not incremented and therefore the session must
not be explicitly freed with SSL_SESSION_free(3).

SEE ALSO

ssl(3), d2i_SSL_SESSION(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_flush_sessions(3),
SSL_SESSION_free(3), SSL_CTX_free(3)

1599

OpenSSL Manual

Name
SSL_CTX_set_cert_store and SSL_CTX_get_cert_store — manipulate X509 certificate verification storage

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store);
X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_set_cert_store() sets/replaces the certificate verification storage of ctx to/with store. If another X509_STORE
object is currently set in ctx, it will be X509_STORE_free()ed.

SSL_CTX_get_cert_store() returns a pointer to the current certificate verification storage.

NOTES

In order to verify the certificates presented by the peer, trusted CA certificates must be accessed. These CA certificates are
made available via lookup methods, handled inside the X509_STORE. From the X509_STORE the X509_STORE_CTX used
when verifying certificates is created.

Typically the trusted certificate store is handled indirectly via using SSL_CTX_load_verify_locations(3). Using the
SSL_CTX_set_cert_store() and SSL_CTX_get_cert_store() functions it is possible to manipulate the X509_STORE object
beyond the SSL_CTX_load_verify_locations(3) call.

Currently no detailed documentation on how to use the X509_STORE object is available. Not all members of the X509_STORE
are used when the verification takes place. So will e.g. the verify_callback() be overridden with the verify_callback() set via
the SSL_CTX_set_verify(3) family of functions. This document must therefore be updated when documentation about the
X509_STORE object and its handling becomes available.

RETURN VALUES

SSL_CTX_set_cert_store() does not return diagnostic output.

SSL_CTX_get_cert_store() returns the current setting.

SEE ALSO

ssl(3), SSL_CTX_load_verify_locations(3), SSL_CTX_set_verify(3)

1600

OpenSSL Manual

Name
SSL_CTX_set_cert_verify_callback — set peer certificate verification procedure

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*callback)(X509_STORE_CTX *,void *), void *arg);

DESCRIPTION

SSL_CTX_set_cert_verify_callback() sets the verification callback function for ctx. SSL objects that are created from ctx
inherit the setting valid at the time when SSL_new(3) is called.

NOTES

Whenever a certificate is verified during a SSL/TLS handshake, a verification function is called. If the application does not
explicitly specify a verification callback function, the built-in verification function is used. If a verification callback callback
is specified via SSL_CTX_set_cert_verify_callback(), the supplied callback function is called instead. By setting callback to
NULL, the default behaviour is restored.

When the verification must be performed, callback will be called with the arguments callback(X509_STORE_CTX
*x509_store_ctx, void *arg). The argument arg is specified by the application when setting callback.

callback should return 1 to indicate verification success and 0 to indicate verification failure. If SSL_VERIFY_PEER is set
and callback returns 0, the handshake will fail. As the verification procedure may allow to continue the connection in case of
failure (by always returning 1) the verification result must be set in any case using the error member of x509_store_ctx so that
the calling application will be informed about the detailed result of the verification procedure!

Within x509_store_ctx, callback has access to the verify_callback function set using SSL_CTX_set_verify(3).

WARNINGS

Do not mix the verification callback described in this function with the verify_callback function called during the verification
process. The latter is set using the SSL_CTX_set_verify(3) family of functions.

Providing a complete verification procedure including certificate purpose settings etc is a complex task. The built-in procedure
is quite powerful and in most cases it should be sufficient to modify its behaviour using the verify_callback function.

BUGS

RETURN VALUES

SSL_CTX_set_cert_verify_callback() does not provide diagnostic information.

SEE ALSO

ssl(3), SSL_CTX_set_verify(3), SSL_get_verify_result(3), SSL_CTX_load_verify_locations(3)

HISTORY

Previous to OpenSSL 0.9.7, the arg argument to SSL_CTX_set_cert_verify_callback was ignored, and callback was called
simply as int (*callback)(X509_STORE_CTX *) To compile software written for previous versions of OpenSSL, a dummy
argument will have to be added to callback.

1601

OpenSSL Manual

Name
SSL_CTX_set_cipher_list and SSL_set_cipher_list — choose list of available SSL_CIPHERs

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str);
int SSL_set_cipher_list(SSL *ssl, const char *str);

DESCRIPTION

SSL_CTX_set_cipher_list() sets the list of available ciphers for ctx using the control string str. The format of the string is
described in ciphers(1). The list of ciphers is inherited by all ssl objects created from ctx.

SSL_set_cipher_list() sets the list of ciphers only for ssl.

NOTES

The control string str should be universally usable and not depend on details of the library configuration (ciphers compiled in).
Thus no syntax checking takes place. Items that are not recognized, because the corresponding ciphers are not compiled in or
because they are mistyped, are simply ignored. Failure is only flagged if no ciphers could be collected at all.

It should be noted, that inclusion of a cipher to be used into the list is a necessary condition. On the client side, the inclusion into
the list is also sufficient. On the server side, additional restrictions apply. All ciphers have additional requirements. ADH ciphers
don't need a certificate, but DH-parameters must have been set. All other ciphers need a corresponding certificate and key.

A RSA cipher can only be chosen, when a RSA certificate is available. RSA export ciphers with a keylength of 512
bits for the RSA key require a temporary 512 bit RSA key, as typically the supplied key has a length of 1024 bit (see
SSL_CTX_set_tmp_rsa_callback(3)). RSA ciphers using EDH need a certificate and key and additional DH-parameters (see
SSL_CTX_set_tmp_dh_callback(3)).

A DSA cipher can only be chosen, when a DSA certificate is available. DSA ciphers always use DH key exchange and therefore
need DH-parameters (see SSL_CTX_set_tmp_dh_callback(3)).

When these conditions are not met for any cipher in the list (e.g. a client only supports export RSA ciphers with
a asymmetric key length of 512 bits and the server is not configured to use temporary RSA keys), the "no shared
cipher" (SSL_R_NO_SHARED_CIPHER) error is generated and the handshake will fail.

If the cipher list does not contain any SSLv2 cipher suites (this is the default) then SSLv2 is effectively disabled and neither
clients nor servers will attempt to use SSLv2.

RETURN VALUES

SSL_CTX_set_cipher_list() and SSL_set_cipher_list() return 1 if any cipher could be selected and 0 on complete failure.

SEE ALSO

ssl(3), SSL_get_ciphers(3), SSL_CTX_use_certificate(3), SSL_CTX_set_tmp_rsa_callback(3),
SSL_CTX_set_tmp_dh_callback(3), ciphers(1)

1602

OpenSSL Manual

Name
SSL_CTX_set_client_CA_list, SSL_set_client_CA_list, SSL_CTX_add_client_CA and SSL_add_client_CA — set list of
CAs sent to the client when requesting a client certificate

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_client_CA_list(SSL_CTX *ctx, STACK_OF(X509_NAME) *list);
void SSL_set_client_CA_list(SSL *s, STACK_OF(X509_NAME) *list);
int SSL_CTX_add_client_CA(SSL_CTX *ctx, X509 *cacert);
int SSL_add_client_CA(SSL *ssl, X509 *cacert);

DESCRIPTION

SSL_CTX_set_client_CA_list() sets the list of CAs sent to the client when requesting a client certificate for ctx.

SSL_set_client_CA_list() sets the list of CAs sent to the client when requesting a client certificate for the chosen ssl, overriding
the setting valid for ssl's SSL_CTX object.

SSL_CTX_add_client_CA() adds the CA name extracted from cacert to the list of CAs sent to the client when requesting a
client certificate for ctx.

SSL_add_client_CA() adds the CA name extracted from cacert to the list of CAs sent to the client when requesting a client
certificate for the chosen ssl, overriding the setting valid for ssl's SSL_CTX object.

NOTES

When a TLS/SSL server requests a client certificate (see SSL_CTX_set_verify(3)), it sends a list of CAs, for which it will
accept certificates, to the client.

This list must explicitly be set using SSL_CTX_set_client_CA_list() for ctx and SSL_set_client_CA_list() for the specific ssl.
The list specified overrides the previous setting. The CAs listed do not become trusted (list only contains the names, not the
complete certificates); use SSL_CTX_load_verify_locations(3) to additionally load them for verification.

If the list of acceptable CAs is compiled in a file, the SSL_load_client_CA_file(3) function can be used to help importing
the necessary data.

SSL_CTX_add_client_CA() and SSL_add_client_CA() can be used to add additional items the list of client CAs. If no list
was specified before using SSL_CTX_set_client_CA_list() or SSL_set_client_CA_list(), a new client CA list for ctx or ssl
(as appropriate) is opened.

These functions are only useful for TLS/SSL servers.

RETURN VALUES

SSL_CTX_set_client_CA_list() and SSL_set_client_CA_list() do not return diagnostic information.

SSL_CTX_add_client_CA() and SSL_add_client_CA() have the following return values:

0 A failure while manipulating the STACK_OF(X509_NAME) object occurred or the X509_NAME could not be extracted
from cacert. Check the error stack to find out the reason.

1 The operation succeeded.

EXAMPLES

Scan all certificates in CAfile and list them as acceptable CAs:

SSL_CTX_set_client_CA_list(ctx,SSL_load_client_CA_file(CAfile));

1603

OpenSSL Manual

SEE ALSO

ssl(3), SSL_get_client_CA_list(3), SSL_load_client_CA_file(3), SSL_CTX_load_verify_locations(3)

1604

OpenSSL Manual

Name
SSL_CTX_set_client_cert_cb and SSL_CTX_get_client_cert_cb — handle client certificate callback function

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_client_cert_cb(SSL_CTX *ctx, int (*client_cert_cb)(SSL *ssl, X509 **x509,
 EVP_PKEY **pkey));
int (*SSL_CTX_get_client_cert_cb(SSL_CTX *ctx))(SSL *ssl, X509 **x509, EVP_PKEY **pkey);
int (*client_cert_cb)(SSL *ssl, X509 **x509, EVP_PKEY **pkey);

DESCRIPTION

SSL_CTX_set_client_cert_cb() sets the client_cert_cb() callback, that is called when a client certificate is requested by a
server and no certificate was yet set for the SSL object.

When client_cert_cb() is NULL, no callback function is used.

SSL_CTX_get_client_cert_cb() returns a pointer to the currently set callback function.

client_cert_cb() is the application defined callback. If it wants to set a certificate, a certificate/private key combination
must be set using the x509 and pkey arguments and "1" must be returned. The certificate will be installed into ssl, see the
NOTES and BUGS sections. If no certificate should be set, "0" has to be returned and no certificate will be sent. A negative
return value will suspend the handshake and the handshake function will return immediately. SSL_get_error(3) will return
SSL_ERROR_WANT_X509_LOOKUP to indicate, that the handshake was suspended. The next call to the handshake function
will again lead to the call of client_cert_cb(). It is the job of the client_cert_cb() to store information about the state of the
last call, if required to continue.

NOTES

During a handshake (or renegotiation) a server may request a certificate from the client. A client certificate must only be sent,
when the server did send the request.

When a certificate was set using the SSL_CTX_use_certificate(3) family of functions, it will be sent to the server. The TLS
standard requires that only a certificate is sent, if it matches the list of acceptable CAs sent by the server. This constraint
is violated by the default behavior of the OpenSSL library. Using the callback function it is possible to implement a proper
selection routine or to allow a user interaction to choose the certificate to be sent.

If a callback function is defined and no certificate was yet defined for the SSL object, the callback function will be called. If
the callback function returns a certificate, the OpenSSL library will try to load the private key and certificate data into the SSL
object using the SSL_use_certificate() and SSL_use_private_key() functions. Thus it will permanently install the certificate
and key for this SSL object. It will not be reset by calling SSL_clear(3). If the callback returns no certificate, the OpenSSL
library will not send a certificate.

BUGS

The client_cert_cb() cannot return a complete certificate chain, it can only return one client certificate. If the chain only has
a length of 2, the root CA certificate may be omitted according to the TLS standard and thus a standard conforming answer
can be sent to the server. For a longer chain, the client must send the complete chain (with the option to leave out the root CA
certificate). This can only be accomplished by either adding the intermediate CA certificates into the trusted certificate store
for the SSL_CTX object (resulting in having to add CA certificates that otherwise maybe would not be trusted), or by adding
the chain certificates using the SSL_CTX_add_extra_chain_cert(3) function, which is only available for the SSL_CTX object
as a whole and that therefore probably can only apply for one client certificate, making the concept of the callback function
(to allow the choice from several certificates) questionable.

Once the SSL object has been used in conjunction with the callback function, the certificate will be set for the SSL object
and will not be cleared even when SSL_clear(3) is being called. It is therefore mandatory to destroy the SSL object using
SSL_free(3) and create a new one to return to the previous state.

1605

OpenSSL Manual

SEE ALSO

ssl(3), SSL_CTX_use_certificate(3), SSL_CTX_add_extra_chain_cert(3), SSL_get_client_CA_list(3), SSL_clear(3),
SSL_free(3)

1606

OpenSSL Manual

Name
SSL_CTX_set_default_passwd_cb and SSL_CTX_set_default_passwd_cb_userdata — set passwd callback for encrypted
PEM file handling

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb);
void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u);

int pem_passwd_cb(char *buf, int size, int rwflag, void *userdata);

DESCRIPTION

SSL_CTX_set_default_passwd_cb() sets the default password callback called when loading/storing a PEM certificate with
encryption.

SSL_CTX_set_default_passwd_cb_userdata() sets a pointer to userdata which will be provided to the password callback on
invocation.

The pem_passwd_cb(), which must be provided by the application, hands back the password to be used during decryption.
On invocation a pointer to userdata is provided. The pem_passwd_cb must write the password into the provided buffer buf
which is of size size. The actual length of the password must be returned to the calling function. rwflag indicates whether the
callback is used for reading/decryption (rwflag=0) or writing/encryption (rwflag=1).

NOTES

When loading or storing private keys, a password might be supplied to protect the private key. The way this password can
be supplied may depend on the application. If only one private key is handled, it can be practical to have pem_passwd_cb()
handle the password dialog interactively. If several keys have to be handled, it can be practical to ask for the password once,
then keep it in memory and use it several times. In the last case, the password could be stored into the userdata storage and
the pem_passwd_cb() only returns the password already stored.

When asking for the password interactively, pem_passwd_cb() can use rwflag to check, whether an item shall be encrypted
(rwflag=1). In this case the password dialog may ask for the same password twice for comparison in order to catch typos, that
would make decryption impossible.

Other items in PEM formatting (certificates) can also be encrypted, it is however not usual, as certificate information is con-
sidered public.

RETURN VALUES

SSL_CTX_set_default_passwd_cb() and SSL_CTX_set_default_passwd_cb_userdata() do not provide diagnostic
information.

EXAMPLES

The following example returns the password provided as userdata to the calling function. The password is considered to be a
'\0' terminated string. If the password does not fit into the buffer, the password is truncated.

int pem_passwd_cb(char *buf, int size, int rwflag, void *password)
{
 strncpy(buf, (char *)(password), size);
 buf[size - 1] = '\0';
 return(strlen(buf));
}

SEE ALSO

ssl(3), SSL_CTX_use_certificate(3)

1607

OpenSSL Manual

Name
SSL_CTX_set_generate_session_id, SSL_set_generate_session_id and SSL_has_matching_session_id — manipulate
generation of SSL session IDs (server only)

Synopsis
#include <openssl/ssl.h>

typedef int (*GEN_SESSION_CB)(const SSL *ssl, unsigned char *id,
 unsigned int *id_len);

int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb);
int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB, cb);
int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id,
 unsigned int id_len);

DESCRIPTION

SSL_CTX_set_generate_session_id() sets the callback function for generating new session ids for SSL/TLS sessions for ctx
to be cb.

SSL_set_generate_session_id() sets the callback function for generating new session ids for SSL/TLS sessions for ssl to be cb.

SSL_has_matching_session_id() checks, whether a session with id id (of length id_len) is already contained in the internal
session cache of the parent context of ssl.

NOTES

When a new session is established between client and server, the server generates a session id. The session id is an arbitrary
sequence of bytes. The length of the session id is 16 bytes for SSLv2 sessions and between 1 and 32 bytes for SSLv3/TLSv1.
The session id is not security critical but must be unique for the server. Additionally, the session id is transmitted in the clear
when reusing the session so it must not contain sensitive information.

Without a callback being set, an OpenSSL server will generate a unique session id from pseudo random numbers of the max-
imum possible length. Using the callback function, the session id can be changed to contain additional information like e.g. a
host id in order to improve load balancing or external caching techniques.

The callback function receives a pointer to the memory location to put id into and a pointer to the maximum allowed length
id_len. The buffer at location id is only guaranteed to have the size id_len. The callback is only allowed to generate a shorter
id and reduce id_len; the callback must never increase id_len or write to the location id exceeding the given limit.

If a SSLv2 session id is generated and id_len is reduced, it will be restored after the callback has finished and the session id will
be padded with 0x00. It is not recommended to change the id_len for SSLv2 sessions. The callback can use the SSL_get_ver-
sion(3) function to check, whether the session is of type SSLv2.

The location id is filled with 0x00 before the callback is called, so the callback may only fill part of the possible length and
leave id_len untouched while maintaining reproducibility.

Since the sessions must be distinguished, session ids must be unique. Without the callback a random number is used, so that the
probability of generating the same session id is extremely small (2^128 possible ids for an SSLv2 session, 2^256 for SSLv3/
TLSv1). In order to assure the uniqueness of the generated session id, the callback must call SSL_has_matching_session_id()
and generate another id if a conflict occurs. If an id conflict is not resolved, the handshake will fail. If the application codes
e.g. a unique host id, a unique process number, and a unique sequence number into the session id, uniqueness could easily be
achieved without randomness added (it should however be taken care that no confidential information is leaked this way). If
the application can not guarantee uniqueness, it is recommended to use the maximum id_len and fill in the bytes not used to
code special information with random data to avoid collisions.

SSL_has_matching_session_id() will only query the internal session cache, not the external one. Since the session id is gener-
ated before the handshake is completed, it is not immediately added to the cache. If another thread is using the same internal
session cache, a race condition can occur in that another thread generates the same session id. Collisions can also occur when

1608

OpenSSL Manual

using an external session cache, since the external cache is not tested with SSL_has_matching_session_id() and the same race
condition applies.

When calling SSL_has_matching_session_id() for an SSLv2 session with reduced id_len, the match operation will be per-
formed using the fixed length required and with a 0x00 padded id.

The callback must return 0 if it cannot generate a session id for whatever reason and return 1 on success.

EXAMPLES

The callback function listed will generate a session id with the server id given, and will fill the rest with pseudo random bytes:

const char session_id_prefix = "www-18";

#define MAX_SESSION_ID_ATTEMPTS 10
static int generate_session_id(const SSL *ssl, unsigned char *id,
 unsigned int *id_len)
 {
 unsigned int count = 0;
 const char *version;

version = SSL_get_version(ssl);
if (!strcmp(version, "SSLv2"))
 /* we must not change id_len */;

do {
 RAND_pseudo_bytes(id, *id_len);
 /* Prefix the session_id with the required prefix. NB: If our
 * prefix is too long, clip it - but there will be worse effects
 * anyway, eg. the server could only possibly create 1 session
 * ID (ie. the prefix!) so all future session negotiations will
 * fail due to conflicts. */
 memcpy(id, session_id_prefix,
 (strlen(session_id_prefix) < *id_len) ?
 strlen(session_id_prefix) : *id_len);
 }
while(SSL_has_matching_session_id(ssl, id, *id_len) &&
 (++count < MAX_SESSION_ID_ATTEMPTS));
if(count >= MAX_SESSION_ID_ATTEMPTS)
 return 0;
return 1;
}

RETURN VALUES

SSL_CTX_set_generate_session_id() and SSL_set_generate_session_id() always return 1.

SSL_has_matching_session_id() returns 1 if another session with the same id is already in the cache.

SEE ALSO

ssl(3), SSL_get_version(3)

HISTORY

SSL_CTX_set_generate_session_id(), SSL_set_generate_session_id() and SSL_has_matching_session_id() have been intro-
duced in OpenSSL 0.9.7.

1609

OpenSSL Manual

Name
SSL_CTX_set_info_callback, SSL_CTX_get_info_callback, SSL_set_info_callback and SSL_get_info_callback — handle
information callback for SSL connections

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_info_callback(SSL_CTX *ctx, void (*callback)());
void (*SSL_CTX_get_info_callback(const SSL_CTX *ctx))();

void SSL_set_info_callback(SSL *ssl, void (*callback)());
void (*SSL_get_info_callback(const SSL *ssl))();

DESCRIPTION

SSL_CTX_set_info_callback() sets the callback function, that can be used to obtain state information for SSL objects created
from ctx during connection setup and use. The setting for ctx is overridden from the setting for a specific SSL object, if
specified. When callback is NULL, not callback function is used.

SSL_set_info_callback() sets the callback function, that can be used to obtain state information for ssl during connection setup
and use. When callback is NULL, the callback setting currently valid for ctx is used.

SSL_CTX_get_info_callback() returns a pointer to the currently set information callback function for ctx.

SSL_get_info_callback() returns a pointer to the currently set information callback function for ssl.

NOTES

When setting up a connection and during use, it is possible to obtain state information from the SSL/TLS engine. When set,
an information callback function is called whenever the state changes, an alert appears, or an error occurs.

The callback function is called as callback(SSL *ssl, int where, int ret). The where argument specifies information about
where (in which context) the callback function was called. If ret is 0, an error condition occurred. If an alert is handled,
SSL_CB_ALERT is set and ret specifies the alert information.

where is a bitmask made up of the following bits:

SSL_CB_LOOP

Callback has been called to indicate state change inside a loop.

SSL_CB_EXIT

Callback has been called to indicate error exit of a handshake function. (May be soft error with retry option for non-
blocking setups.)

SSL_CB_READ

Callback has been called during read operation.

SSL_CB_WRITE

Callback has been called during write operation.

SSL_CB_ALERT

Callback has been called due to an alert being sent or received.

SSL_CB_READ_ALERT (SSL_CB_ALERT|SSL_CB_READ)

1610

OpenSSL Manual

SSL_CB_WRITE_ALERT (SSL_CB_ALERT|SSL_CB_WRITE)

SSL_CB_ACCEPT_LOOP (SSL_ST_ACCEPT|SSL_CB_LOOP)

SSL_CB_ACCEPT_EXIT (SSL_ST_ACCEPT|SSL_CB_EXIT)

SSL_CB_CONNECT_LOOP (SSL_ST_CONNECT|SSL_CB_LOOP)

SSL_CB_CONNECT_EXIT (SSL_ST_CONNECT|SSL_CB_EXIT)

SSL_CB_HANDSHAKE_START

Callback has been called because a new handshake is started.

SSL_CB_HANDSHAKE_DONE 0x20

Callback has been called because a handshake is finished.

The current state information can be obtained using the SSL_state_string(3) family of functions.

The ret information can be evaluated using the SSL_alert_type_string(3) family of functions.

RETURN VALUES

SSL_set_info_callback() does not provide diagnostic information.

SSL_get_info_callback() returns the current setting.

EXAMPLES

The following example callback function prints state strings, information about alerts being handled and error messages to
the bio_err BIO.

void apps_ssl_info_callback(SSL *s, int where, int ret)
 {
 const char *str;
 int w;

w=where& ~SSL_ST_MASK;

if (w & SSL_ST_CONNECT) str="SSL_connect";
else if (w & SSL_ST_ACCEPT) str="SSL_accept";
else str="undefined";

if (where & SSL_CB_LOOP)
 {
 BIO_printf(bio_err,"%s:%s\n",str,SSL_state_string_long(s));
 }
else if (where & SSL_CB_ALERT)
 {
 str=(where & SSL_CB_READ)?"read":"write";
 BIO_printf(bio_err,"SSL3 alert %s:%s:%s\n",
 str,
 SSL_alert_type_string_long(ret),
 SSL_alert_desc_string_long(ret));
 }
else if (where & SSL_CB_EXIT)
 {
 if (ret == 0)
 BIO_printf(bio_err,"%s:failed in %s\n",
 str,SSL_state_string_long(s));
 else if (ret < 0)

1611

OpenSSL Manual

 {
 BIO_printf(bio_err,"%s:error in %s\n",
 str,SSL_state_string_long(s));
 }
 }
}

SEE ALSO

ssl(3), SSL_state_string(3), SSL_alert_type_string(3)

1612

OpenSSL Manual

Name
SSL_CTX_set_max_cert_list, SSL_CTX_get_max_cert_list, SSL_set_max_cert_list and SSL_get_max_cert_list —
manipulate allowed for the peer's certificate chain

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_set_max_cert_list(SSL_CTX *ctx, long size);
long SSL_CTX_get_max_cert_list(SSL_CTX *ctx);

long SSL_set_max_cert_list(SSL *ssl, long size);
long SSL_get_max_cert_list(SSL *ctx);

DESCRIPTION

SSL_CTX_set_max_cert_list() sets the maximum size allowed for the peer's certificate chain for all SSL objects created from
ctx to be <size> bytes. The SSL objects inherit the setting valid for ctx at the time SSL_new(3) is being called.

SSL_CTX_get_max_cert_list() returns the currently set maximum size for ctx.

SSL_set_max_cert_list() sets the maximum size allowed for the peer's certificate chain for ssl to be <size> bytes. This setting
stays valid until a new value is set.

SSL_get_max_cert_list() returns the currently set maximum size for ssl.

NOTES

During the handshake process, the peer may send a certificate chain. The TLS/SSL standard does not give any maximum size
of the certificate chain. The OpenSSL library handles incoming data by a dynamically allocated buffer. In order to prevent this
buffer from growing without bounds due to data received from a faulty or malicious peer, a maximum size for the certificate
chain is set.

The default value for the maximum certificate chain size is 100kB (30kB on the 16bit DOS platform). This should be sufficient
for usual certificate chains (OpenSSL's default maximum chain length is 10, see SSL_CTX_set_verify(3), and certificates
without special extensions have a typical size of 1-2kB).

For special applications it can be necessary to extend the maximum certificate chain size allowed to be sent by the peer, see
e.g. the work on "Internet X.509 Public Key Infrastructure Proxy Certificate Profile" and "TLS Delegation Protocol" at http://
www.ietf.org/ and http://www.globus.org/ .

Under normal conditions it should never be necessary to set a value smaller than the default, as the buffer is handled dynamically
and only uses the memory actually required by the data sent by the peer.

If the maximum certificate chain size allowed is exceeded, the handshake will fail with a
SSL_R_EXCESSIVE_MESSAGE_SIZE error.

RETURN VALUES

SSL_CTX_set_max_cert_list() and SSL_set_max_cert_list() return the previously set value.

SSL_CTX_get_max_cert_list() and SSL_get_max_cert_list() return the currently set value.

SEE ALSO

ssl(3), SSL_new(3), SSL_CTX_set_verify(3)

HISTORY

SSL*_set/get_max_cert_list() have been introduced in OpenSSL 0.9.7.

1613

OpenSSL Manual

Name
SSL_CTX_set_mode, SSL_set_mode, SSL_CTX_get_mode and SSL_get_mode — manipulate SSL engine mode

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_set_mode(SSL_CTX *ctx, long mode);
long SSL_set_mode(SSL *ssl, long mode);

long SSL_CTX_get_mode(SSL_CTX *ctx);
long SSL_get_mode(SSL *ssl);

DESCRIPTION

SSL_CTX_set_mode() adds the mode set via bitmask in mode to ctx. Options already set before are not cleared.

SSL_set_mode() adds the mode set via bitmask in mode to ssl. Options already set before are not cleared.

SSL_CTX_get_mode() returns the mode set for ctx.

SSL_get_mode() returns the mode set for ssl.

NOTES

The following mode changes are available:

SSL_MODE_ENABLE_PARTIAL_WRITE

Allow SSL_write(…, n) to return r with 0 < r < n (i.e. report success when just a single record has been written). When
not set (the default), SSL_write() will only report success once the complete chunk was written. Once SSL_write() returns
with r, r bytes have been successfully written and the next call to SSL_write() must only send the n-r bytes left, imitating
the behaviour of write().

SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER

Make it possible to retry SSL_write() with changed buffer location (the buffer contents must stay the same). This is not
the default to avoid the misconception that non-blocking SSL_write() behaves like non-blocking write().

SSL_MODE_AUTO_RETRY

Never bother the application with retries if the transport is blocking. If a renegotiation take place during normal operation,
a SSL_read(3) or SSL_write(3) would return with -1 and indicate the need to retry with SSL_ERROR_WANT_READ.
In a non-blocking environment applications must be prepared to handle incomplete read/write operations. In a blocking
environment, applications are not always prepared to deal with read/write operations returning without success report.
The flag SSL_MODE_AUTO_RETRY will cause read/write operations to only return after the handshake and successful
completion.

SSL_MODE_RELEASE_BUFFERS

When we no longer need a read buffer or a write buffer for a given SSL, then release the memory we were using to hold
it. Released memory is either appended to a list of unused RAM chunks on the SSL_CTX, or simply freed if the list of
unused chunks would become longer than SSL_CTX->freelist_max_len, which defaults to 32. Using this flag can save
around 34k per idle SSL connection. This flag has no effect on SSL v2 connections, or on DTLS connections.

SSL_MODE_SEND_FALLBACK_SCSV

Send TLS_FALLBACK_SCSV in the ClientHello. To be set only by applications that reconnect with a downgraded
protocol version; see draft-ietf-tls-downgrade-scsv-00 for details.

DO NOT ENABLE THIS if your application attempts a normal handshake. Only use this in explicit fallback retries,
following the guidance in draft-ietf-tls-downgrade-scsv-00.

1614

OpenSSL Manual

RETURN VALUES

SSL_CTX_set_mode() and SSL_set_mode() return the new mode bitmask after adding mode.

SSL_CTX_get_mode() and SSL_get_mode() return the current bitmask.

SEE ALSO

ssl(3), SSL_read(3), SSL_write(3)

HISTORY

SSL_MODE_AUTO_RETRY as been added in OpenSSL 0.9.6.

1615

OpenSSL Manual

Name
SSL_CTX_set_msg_callback, SSL_CTX_set_msg_callback_arg, SSL_set_msg_callback and SSL_get_msg_callback_arg —
install callback for observing protocol messages

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb)(int write_p, int version, int content_type,
 const void *buf, size_t len, SSL *ssl, void *arg));
void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg);

void SSL_set_msg_callback(SSL *ssl, void (*cb)(int write_p, int version, int content_type,
 const void *buf, size_t len, SSL *ssl, void *arg));
void SSL_set_msg_callback_arg(SSL *ssl, void *arg);

DESCRIPTION

SSL_CTX_set_msg_callback() or SSL_set_msg_callback() can be used to define a message callback function cb for observing
all SSL/TLS protocol messages (such as handshake messages) that are received or sent. SSL_CTX_set_msg_callback_arg()
and SSL_set_msg_callback_arg() can be used to set argument arg to the callback function, which is available for arbitrary
application use.

SSL_CTX_set_msg_callback() and SSL_CTX_set_msg_callback_arg() specify default settings that will be copied to new
SSL objects by SSL_new(3). SSL_set_msg_callback() and SSL_set_msg_callback_arg() modify the actual settings of an SSL
object. Using a 0 pointer for cb disables the message callback.

When cb is called by the SSL/TLS library for a protocol message, the function arguments have the following meaning:

write_p This flag is 0 when a protocol message has been received and 1 when a protocol message
has been sent.

version The protocol version according to which the protocol message is interpreted by
the library. Currently, this is one of SSL2_VERSION, SSL3_VERSION and
TLS1_VERSION (for SSL 2.0, SSL 3.0 and TLS 1.0, respectively).

content_type In the case of SSL 2.0, this is always 0. In the case of SSL 3.0 or TLS 1.0, this is one of the
ContentType values defined in the protocol specification (change_cipher_spec(20),
alert(21), handshake(22); but never application_data(23) because the callback will
only be called for protocol messages).

buf, len buf points to a buffer containing the protocol message, which consists of len bytes. The
buffer is no longer valid after the callback function has returned.

ssl The SSL object that received or sent the message.

arg The user-defined argument optionally defined by SSL_CTX_set_msg_callback_arg()
or SSL_set_msg_callback_arg().

NOTES

Protocol messages are passed to the callback function after decryption and fragment collection where applicable. (Thus record
boundaries are not visible.)

If processing a received protocol message results in an error, the callback function may not be called. For example, the callback
function will never see messages that are considered too large to be processed.

Due to automatic protocol version negotiation, version is not necessarily the protocol version used by the sender of the message:
If a TLS 1.0 ClientHello message is received by an SSL 3.0-only server, version will be SSL3_VERSION.

1616

OpenSSL Manual

SEE ALSO

ssl(3), SSL_new(3)

HISTORY

SSL_CTX_set_msg_callback(), SSL_CTX_set_msg_callback_arg(), SSL_set_msg_callback() and
SSL_get_msg_callback_arg() were added in OpenSSL 0.9.7.

1617

OpenSSL Manual

Name
SSL_CTX_set_options, SSL_set_options, SSL_CTX_clear_options, SSL_clear_options, SSL_CTX_get_options,
SSL_get_options and SSL_get_secure_renegotiation_support — manipulate SSL options

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_set_options(SSL_CTX *ctx, long options);
long SSL_set_options(SSL *ssl, long options);

long SSL_CTX_clear_options(SSL_CTX *ctx, long options);
long SSL_clear_options(SSL *ssl, long options);

long SSL_CTX_get_options(SSL_CTX *ctx);
long SSL_get_options(SSL *ssl);

long SSL_get_secure_renegotiation_support(SSL *ssl);

DESCRIPTION

Note: all these functions are implemented using macros.

SSL_CTX_set_options() adds the options set via bitmask in options to ctx. Options already set before are not cleared!

SSL_set_options() adds the options set via bitmask in options to ssl. Options already set before are not cleared!

SSL_CTX_clear_options() clears the options set via bitmask in options to ctx.

SSL_clear_options() clears the options set via bitmask in options to ssl.

SSL_CTX_get_options() returns the options set for ctx.

SSL_get_options() returns the options set for ssl.

SSL_get_secure_renegotiation_support() indicates whether the peer supports secure renegotiation.

NOTES

The behaviour of the SSL library can be changed by setting several options. The options are coded as bitmasks and can be
combined by a logical or operation (|).

SSL_CTX_set_options() and SSL_set_options() affect the (external) protocol behaviour of the SSL library. The (internal)
behaviour of the API can be changed by using the similar SSL_CTX_set_mode(3) and SSL_set_mode() functions.

During a handshake, the option settings of the SSL object are used. When a new SSL object is created from a context using
SSL_new(), the current option setting is copied. Changes to ctx do not affect already created SSL objects. SSL_clear() does
not affect the settings.

The following bug workaround options are available:

SSL_OP_MICROSOFT_SESS_ID_BUG

www.microsoft.com - when talking SSLv2, if session-id reuse is performed, the session-id passed back in the server-fin-
ished message is different from the one decided upon.

SSL_OP_NETSCAPE_CHALLENGE_BUG

Netscape-Commerce/1.12, when talking SSLv2, accepts a 32 byte challenge but then appears to only use 16 bytes when
generating the encryption keys. Using 16 bytes is ok but it should be ok to use 32. According to the SSLv3 spec, one should
use 32 bytes for the challenge when operating in SSLv2/v3 compatibility mode, but as mentioned above, this breaks this
server so 16 bytes is the way to go.

1618

OpenSSL Manual

SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG

As of OpenSSL 0.9.8q and 1.0.0c, this option has no effect.

SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG

…

SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER

…

SSL_OP_SAFARI_ECDHE_ECDSA_BUG

Don't prefer ECDHE-ECDSA ciphers when the client appears to be Safari on OS X. OS X 10.8..10.8.3 has broken support
for ECDHE-ECDSA ciphers.

SSL_OP_SSLEAY_080_CLIENT_DH_BUG

…

SSL_OP_TLS_D5_BUG

…

SSL_OP_TLS_BLOCK_PADDING_BUG

…

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS

Disables a countermeasure against a SSL 3.0/TLS 1.0 protocol vulnerability affecting CBC ciphers, which cannot be
handled by some broken SSL implementations. This option has no effect for connections using other ciphers.

SSL_OP_TLSEXT_PADDING

Adds a padding extension to ensure the ClientHello size is never between 256 and 511 bytes in length. This is needed as
a workaround for some implementations.

SSL_OP_ALL

All of the above bug workarounds.

It is usually safe to use SSL_OP_ALL to enable the bug workaround options if compatibility with somewhat broken
implementations is desired.

The following modifying options are available:

SSL_OP_TLS_ROLLBACK_BUG

Disable version rollback attack detection.

During the client key exchange, the client must send the same information about acceptable SSL/TLS protocol levels as
during the first hello. Some clients violate this rule by adapting to the server's answer. (Example: the client sends a SSLv2
hello and accepts up to SSLv3.1=TLSv1, the server only understands up to SSLv3. In this case the client must still use the
same SSLv3.1=TLSv1 announcement. Some clients step down to SSLv3 with respect to the server's answer and violate
the version rollback protection.)

SSL_OP_SINGLE_DH_USE

Always create a new key when using temporary/ephemeral DH parameters (see SSL_CTX_set_tmp_dh_callback(3)). This
option must be used to prevent small subgroup attacks, when the DH parameters were not generated using "strong" primes

1619

OpenSSL Manual

(e.g. when using DSA-parameters, see dhparam(1)). If "strong" primes were used, it is not strictly necessary to generate
a new DH key during each handshake but it is also recommended. SSL_OP_SINGLE_DH_USE should therefore be
enabled whenever temporary/ephemeral DH parameters are used.

SSL_OP_EPHEMERAL_RSA

This option is no longer implemented and is treated as no op.

SSL_OP_CIPHER_SERVER_PREFERENCE

When choosing a cipher, use the server's preferences instead of the client preferences. When not set, the SSL server will
always follow the clients preferences. When set, the SSLv3/TLSv1 server will choose following its own preferences.
Because of the different protocol, for SSLv2 the server will send its list of preferences to the client and the client chooses.

SSL_OP_PKCS1_CHECK_1

…

SSL_OP_PKCS1_CHECK_2

…

SSL_OP_NETSCAPE_CA_DN_BUG

If we accept a netscape connection, demand a client cert, have a non-self-signed CA which does not have its CA in netscape,
and the browser has a cert, it will crash/hang. Works for 3.x and 4.xbeta

SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG

…

SSL_OP_NO_SSLv2

Do not use the SSLv2 protocol. As of OpenSSL 1.0.1s the SSL_OP_NO_SSLv2 option is set by default.

SSL_OP_NO_SSLv3

Do not use the SSLv3 protocol. It is recommended that applications should set this option.

SSL_OP_NO_TLSv1

Do not use the TLSv1 protocol.

SSL_OP_NO_TLSv1_1

Do not use the TLSv1.1 protocol.

SSL_OP_NO_TLSv1_2

Do not use the TLSv1.2 protocol.

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION

When performing renegotiation as a server, always start a new session (i.e., session resumption requests are only accepted
in the initial handshake). This option is not needed for clients.

SSL_OP_NO_TICKET

Normally clients and servers will, where possible, transparently make use of RFC4507bis tickets for stateless session
resumption.

If this option is set this functionality is disabled and tickets will not be used by clients or servers.

1620

OpenSSL Manual

SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION

Allow legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See the SECURE
RENEGOTIATION section for more details.

SSL_OP_LEGACY_SERVER_CONNECT

Allow legacy insecure renegotiation between OpenSSL and unpatched servers only: this option is currently set by default.
See the SECURE RENEGOTIATION section for more details.

SECURE RENEGOTIATION

OpenSSL 0.9.8m and later always attempts to use secure renegotiation as described in RFC5746. This counters the prefix
attack described in CVE-2009-3555 and elsewhere.

The deprecated and highly broken SSLv2 protocol does not support renegotiation at all: its use is strongly discouraged.

This attack has far reaching consequences which application writers should be aware of. In the description below an imple-
mentation supporting secure renegotiation is referred to as patched. A server not supporting secure renegotiation is referred
to as unpatched.

The following sections describe the operations permitted by OpenSSL's secure renegotiation implementation.

Patched client and server

Connections and renegotiation are always permitted by OpenSSL implementations.

Unpatched client and patched OpenSSL server

The initial connection succeeds but client renegotiation is denied by the server with a no_renegotiation warning alert if TLS
v1.0 is used or a fatal handshake_failure alert in SSL v3.0.

If the patched OpenSSL server attempts to renegotiate a fatal handshake_failure alert is sent. This is because the server code
may be unaware of the unpatched nature of the client.

If the option SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION is set then renegotiation always succeeds.

NB: a bug in OpenSSL clients earlier than 0.9.8m (all of which are unpatched) will result in the connection hanging if it receives
a no_renegotiation alert. OpenSSL versions 0.9.8m and later will regard a no_renegotiation alert as fatal and respond with a
fatal handshake_failure alert. This is because the OpenSSL API currently has no provision to indicate to an application that
a renegotiation attempt was refused.

Patched OpenSSL client and unpatched server.

SSL_OP_LEGACY_SERVER_CONNECT
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION

If either the two above options are set then initial connections and renegotiation between patched OpenSSL clients and
unpatched servers succeeds. If neither option is set then initial connections to unpatched servers will fail.

The option SSL_OP_LEGACY_SERVER_CONNECT is currently set by default even though it has security implications:
otherwise it would be impossible to connect to unpatched servers (i.e. all of them initially) and this is clearly not acceptable.
Renegotiation is permitted because this does not add any additional security issues: during an attack clients do not see any
renegotiations anyway.

As more servers become patched the option SSL_OP_LEGACY_SERVER_CONNECT will not be set by default in a future
version of OpenSSL.

OpenSSL client applications wishing to ensure they can connect to unpatched servers should always set
SSL_OP_LEGACY_SERVER_CONNECT

1621

OpenSSL Manual

OpenSSL client applications that want to ensure they can not connect to unpatched servers (and thus avoid any security issues)
should always clear SSL_OP_LEGACY_SERVER_CONNECT using SSL_CTX_clear_options() or SSL_clear_options().

The difference between the two options is that SSL_OP_LEGACY_SERVER_CONNECT enables initial
connections and secure renegotiation between OpenSSL clients and unpatched servers only, while
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION allows initial connections and renegotiation between
OpenSSL and unpatched clients or servers.

RETURN VALUES

SSL_CTX_set_options() and SSL_set_options() return the new options bitmask after adding options.

SSL_CTX_clear_options() and SSL_clear_options() return the new options bitmask after clearing options.

SSL_CTX_get_options() and SSL_get_options() return the current bitmask.

SSL_get_secure_renegotiation_support() returns 1 is the peer supports secure renegotiation and 0 if it does not.

SEE ALSO

ssl(3), SSL_new(3), SSL_clear(3), SSL_CTX_set_tmp_dh_callback(3), SSL_CTX_set_tmp_rsa_callback(3), dhparam(1)

HISTORY

SSL_OP_CIPHER_SERVER_PREFERENCE
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION

These two options have been added in OpenSSL 0.9.7.

SSL_OP_TLS_ROLLBACK_BUG has been added in OpenSSL 0.9.6 and was automatically enabled with SSL_OP_ALL.
As of 0.9.7, it is no longer included in SSL_OP_ALL and must be explicitly set.

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS has been added in OpenSSL 0.9.6e. Versions up to OpenSSL 0.9.6c
do not include the countermeasure that can be disabled with this option (in OpenSSL 0.9.6d, it was always enabled).

SSL_CTX_clear_options() and SSL_clear_options() were first added in OpenSSL 0.9.8m.

SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION, SSL_OP_LEGACY_SERVER_CONNECT and the
function SSL_get_secure_renegotiation_support() were first added in OpenSSL 0.9.8m.

1622

OpenSSL Manual

Name
SSL_CTX_set_psk_client_callback and SSL_set_psk_client_callback — set PSK client callback

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx,
 unsigned int (*callback)(SSL *ssl, const char *hint,
 char *identity, unsigned int max_identity_len,
 unsigned char *psk, unsigned int max_psk_len));
void SSL_set_psk_client_callback(SSL *ssl,
 unsigned int (*callback)(SSL *ssl, const char *hint,
 char *identity, unsigned int max_identity_len,
 unsigned char *psk, unsigned int max_psk_len));

DESCRIPTION

A client application must provide a callback function which is called when the client is sending the ClientKeyExchange message
to the server.

The purpose of the callback function is to select the PSK identity and the pre-shared key to use during the connection setup
phase.

The callback is set using functions SSL_CTX_set_psk_client_callback() or SSL_set_psk_client_callback(). The callback
function is given the connection in parameter ssl, a NULL-terminated PSK identity hint sent by the server in parameter hint,
a buffer identity of length max_identity_len bytes where the the resulting NULL-terminated identity is to be stored, and a
buffer psk of length max_psk_len bytes where the resulting pre-shared key is to be stored.

NOTES

Note that parameter hint given to the callback may be NULL.

RETURN VALUES

Return values from the client callback are interpreted as follows:

On success (callback found a PSK identity and a pre-shared key to use) the length (> 0) of psk in bytes is returned.

Otherwise or on errors callback should return 0. In this case the connection setup fails.

1623

OpenSSL Manual

Name
SSL_CTX_set_quiet_shutdown, SSL_CTX_get_quiet_shutdown, SSL_set_quiet_shutdown and SSL_get_quiet_shutdown —
manipulate shutdown behaviour

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode);
int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx);

void SSL_set_quiet_shutdown(SSL *ssl, int mode);
int SSL_get_quiet_shutdown(const SSL *ssl);

DESCRIPTION

SSL_CTX_set_quiet_shutdown() sets the "quiet shutdown" flag for ctx to be mode. SSL objects created from ctx inherit the
mode valid at the time SSL_new(3) is called. mode may be 0 or 1.

SSL_CTX_get_quiet_shutdown() returns the "quiet shutdown" setting of ctx.

SSL_set_quiet_shutdown() sets the "quiet shutdown" flag for ssl to be mode. The setting stays valid until ssl is removed with
SSL_free(3) or SSL_set_quiet_shutdown() is called again. It is not changed when SSL_clear(3) is called. mode may be 0 or 1.

SSL_get_quiet_shutdown() returns the "quiet shutdown" setting of ssl.

NOTES

Normally when a SSL connection is finished, the parties must send out "close notify" alert messages using SSL_shutdown(3)
for a clean shutdown.

When setting the "quiet shutdown" flag to 1, SSL_shutdown(3) will set the internal flags to SSL_SENT_SHUTDOWN
| SSL_RECEIVED_SHUTDOWN. (SSL_shutdown(3) then behaves like SSL_set_shutdown(3) called with
SSL_SENT_SHUTDOWN | SSL_RECEIVED_SHUTDOWN.) The session is thus considered to be shutdown, but no "close
notify" alert is sent to the peer. This behaviour violates the TLS standard.

The default is normal shutdown behaviour as described by the TLS standard.

RETURN VALUES

SSL_CTX_set_quiet_shutdown() and SSL_set_quiet_shutdown() do not return diagnostic information.

SSL_CTX_get_quiet_shutdown() and SSL_get_quiet_shutdown return the current setting.

SEE ALSO

ssl(3), SSL_shutdown(3), SSL_set_shutdown(3), SSL_new(3), SSL_clear(3), SSL_free(3)

1624

OpenSSL Manual

Name
SSL_CTX_set_read_ahead, SSL_CTX_set_default_read_ahead, SSL_CTX_get_read_ahead,
SSL_CTX_get_default_read_ahead, SSL_set_read_ahead and SSL_get_read_ahead — manage whether to read as many input
bytes as possible

Synopsis
#include <openssl/ssl.h>

int SSL_get_read_ahead(const SSL *s);
void SSL_set_read_ahead(SSL *s, int yes);

#define SSL_CTX_get_default_read_ahead(ctx)
#define SSL_CTX_set_default_read_ahead(ctx,m)
#define SSL_CTX_get_read_ahead(ctx)
#define SSL_CTX_set_read_ahead(ctx,m)

DESCRIPTION

SSL_CTX_set_read_ahead() and SSL_set_read_ahead() set whether we should read as many input bytes as possible (for non-
blocking reads) or not. For example if x bytes are currently required by OpenSSL, but y bytes are available from the underlying
BIO (where y > x), then OpenSSL will read all y bytes into its buffer (providing that the buffer is large enough) if reading
ahead is on, or x bytes otherwise. The parameter yes or m should be 0 to ensure reading ahead is off, or non zero otherwise.

SSL_CTX_set_default_read_ahead is a synonym for SSL_CTX_set_read_ahead, and SSL_CTX_get_default_read_ahead is a
synonym for SSL_CTX_get_read_ahead.

SSL_CTX_get_read_ahead() and SSL_get_read_ahead() indicate whether reading ahead has been set or not.

NOTES

These functions have no impact when used with DTLS. The return values for SSL_CTX_get_read_head() and
SSL_get_read_ahead() are undefined for DTLS.

RETURN VALUES

SSL_get_read_ahead and SSL_CTX_get_read_ahead return 0 if reading ahead is off, and non zero otherwise.

SEE ALSO

ssl(3)

1625

OpenSSL Manual

Name
SSL_CTX_set_session_cache_mode and SSL_CTX_get_session_cache_mode — enable/disable session caching

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_set_session_cache_mode(SSL_CTX ctx, long mode);
long SSL_CTX_get_session_cache_mode(SSL_CTX ctx);

DESCRIPTION

SSL_CTX_set_session_cache_mode() enables/disables session caching by setting the operational mode for ctx to <mode>.

SSL_CTX_get_session_cache_mode() returns the currently used cache mode.

NOTES

The OpenSSL library can store/retrieve SSL/TLS sessions for later reuse. The sessions can be held in memory for each ctx, if
more than one SSL_CTX object is being maintained, the sessions are unique for each SSL_CTX object.

In order to reuse a session, a client must send the session's id to the server. It can only send exactly one id. The server then
either agrees to reuse the session or it starts a full handshake (to create a new session).

A server will lookup up the session in its internal session storage. If the session is not found in internal storage or lookups for
the internal storage have been deactivated (SSL_SESS_CACHE_NO_INTERNAL_LOOKUP), the server will try the external
storage if available.

Since a client may try to reuse a session intended for use in a different context, the session id context must be set by the server
(see SSL_CTX_set_session_id_context(3)).

The following session cache modes and modifiers are available:

SSL_SESS_CACHE_OFF

No session caching for client or server takes place.

SSL_SESS_CACHE_CLIENT

Client sessions are added to the session cache. As there is no reliable way for the OpenSSL library to know whether a
session should be reused or which session to choose (due to the abstract BIO layer the SSL engine does not have details
about the connection), the application must select the session to be reused by using the SSL_set_session(3) function. This
option is not activated by default.

SSL_SESS_CACHE_SERVER

Server sessions are added to the session cache. When a client proposes a session to be reused, the server looks for the
corresponding session in (first) the internal session cache (unless SSL_SESS_CACHE_NO_INTERNAL_LOOKUP is
set), then (second) in the external cache if available. If the session is found, the server will try to reuse the session. This
is the default.

SSL_SESS_CACHE_BOTH

Enable both SSL_SESS_CACHE_CLIENT and SSL_SESS_CACHE_SERVER at the same time.

SSL_SESS_CACHE_NO_AUTO_CLEAR

Normally the session cache is checked for expired sessions every 255 connections using the SSL_CTX_flush_sessions(3)
function. Since this may lead to a delay which cannot be controlled, the automatic flushing may be disabled and
SSL_CTX_flush_sessions(3) can be called explicitly by the application.

1626

OpenSSL Manual

SSL_SESS_CACHE_NO_INTERNAL_LOOKUP

By setting this flag, session-resume operations in an SSL/TLS server will not automatically look up sessions in the internal
cache, even if sessions are automatically stored there. If external session caching callbacks are in use, this flag guarantees
that all lookups are directed to the external cache. As automatic lookup only applies for SSL/TLS servers, the flag has
no effect on clients.

SSL_SESS_CACHE_NO_INTERNAL_STORE

Depending on the presence of SSL_SESS_CACHE_CLIENT and/or SSL_SESS_CACHE_SERVER, sessions negotiated
in an SSL/TLS handshake may be cached for possible reuse. Normally a new session is added to the internal cache as
well as any external session caching (callback) that is configured for the SSL_CTX. This flag will prevent sessions being
stored in the internal cache (though the application can add them manually using SSL_CTX_add_session(3)). Note: in
any SSL/TLS servers where external caching is configured, any successful session lookups in the external cache (ie. for
session-resume requests) would normally be copied into the local cache before processing continues - this flag prevents
these additions to the internal cache as well.

SSL_SESS_CACHE_NO_INTERNAL

Enable both SSL_SESS_CACHE_NO_INTERNAL_LOOKUP and SSL_SESS_CACHE_NO_INTERNAL_STORE at
the same time.

The default mode is SSL_SESS_CACHE_SERVER.

RETURN VALUES

SSL_CTX_set_session_cache_mode() returns the previously set cache mode.

SSL_CTX_get_session_cache_mode() returns the currently set cache mode.

SEE ALSO

ssl(3), SSL_set_session(3), SSL_session_reused(3), SSL_CTX_add_session(3), SSL_CTX_sess_number(3),
SSL_CTX_sess_set_cache_size(3), SSL_CTX_sess_set_get_cb(3), SSL_CTX_set_session_id_context(3),
SSL_CTX_set_timeout(3), SSL_CTX_flush_sessions(3)

HISTORY

SSL_SESS_CACHE_NO_INTERNAL_STORE and SSL_SESS_CACHE_NO_INTERNAL were introduced in OpenSSL
0.9.6h.

1627

OpenSSL Manual

Name
SSL_CTX_set_session_id_context and SSL_set_session_id_context — set context within which session can be reused (server
side only)

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx,
 unsigned int sid_ctx_len);
int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx,
 unsigned int sid_ctx_len);

DESCRIPTION

SSL_CTX_set_session_id_context() sets the context sid_ctx of length sid_ctx_len within which a session can be reused for
the ctx object.

SSL_set_session_id_context() sets the context sid_ctx of length sid_ctx_len within which a session can be reused for the ssl
object.

NOTES

Sessions are generated within a certain context. When exporting/importing sessions with
i2d_SSL_SESSION/d2i_SSL_SESSION it would be possible, to re-import a session generated from another context (e.g.
another application), which might lead to malfunctions. Therefore each application must set its own session id context sid_ctx
which is used to distinguish the contexts and is stored in exported sessions. The sid_ctx can be any kind of binary data with a
given length, it is therefore possible to use e.g. the name of the application and/or the hostname and/or service name …

The session id context becomes part of the session. The session id context is set by the SSL/TLS server. The
SSL_CTX_set_session_id_context() and SSL_set_session_id_context() functions are therefore only useful on the server side.

OpenSSL clients will check the session id context returned by the server when reusing a session.

The maximum length of the sid_ctx is limited to SSL_MAX_SSL_SESSION_ID_LENGTH.

WARNINGS

If the session id context is not set on an SSL/TLS server and client certificates are used, stored sessions will not be reused but
a fatal error will be flagged and the handshake will fail.

If a server returns a different session id context to an OpenSSL client when reusing a session, an error will be flagged and
the handshake will fail. OpenSSL servers will always return the correct session id context, as an OpenSSL server checks the
session id context itself before reusing a session as described above.

RETURN VALUES

SSL_CTX_set_session_id_context() and SSL_set_session_id_context() return the following values:

0 The length sid_ctx_len of the session id context sid_ctx exceeded the maximum allowed length of
SSL_MAX_SSL_SESSION_ID_LENGTH. The error is logged to the error stack.

1 The operation succeeded.

SEE ALSO

ssl(3)

1628

OpenSSL Manual

Name
SSL_CTX_set_ssl_version, SSL_set_ssl_method and SSL_get_ssl_method — choose a new TLS/SSL method

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *method);
int SSL_set_ssl_method(SSL *s, const SSL_METHOD *method);
const SSL_METHOD *SSL_get_ssl_method(SSL *ssl);

DESCRIPTION

SSL_CTX_set_ssl_version() sets a new default TLS/SSL method for SSL objects newly created from this ctx. SSL objects
already created with SSL_new(3) are not affected, except when SSL_clear(3) is being called.

SSL_set_ssl_method() sets a new TLS/SSL method for a particular ssl object. It may be reset, when SSL_clear() is called.

SSL_get_ssl_method() returns a function pointer to the TLS/SSL method set in ssl.

NOTES

The available method choices are described in SSL_CTX_new(3).

When SSL_clear(3) is called and no session is connected to an SSL object, the method of the SSL object is reset to the method
currently set in the corresponding SSL_CTX object.

RETURN VALUES

The following return values can occur for SSL_CTX_set_ssl_version() and SSL_set_ssl_method():

0 The new choice failed, check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO

SSL_CTX_new(3), SSL_new(3), SSL_clear(3), ssl(3), SSL_set_connect_state(3)

1629

OpenSSL Manual

Name
SSL_CTX_set_timeout and SSL_CTX_get_timeout — manipulate timeout values for session caching

Synopsis
#include <openssl/ssl.h>

long SSL_CTX_set_timeout(SSL_CTX *ctx, long t);
long SSL_CTX_get_timeout(SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_set_timeout() sets the timeout for newly created sessions for ctx to t. The timeout value t must be given in seconds.

SSL_CTX_get_timeout() returns the currently set timeout value for ctx.

NOTES

Whenever a new session is created, it is assigned a maximum lifetime. This lifetime is specified by storing the creation time
of the session and the timeout value valid at this time. If the actual time is later than creation time plus timeout, the session
is not reused.

Due to this realization, all sessions behave according to the timeout value valid at the time of the session negotiation. Changes
of the timeout value do not affect already established sessions.

The expiration time of a single session can be modified using the SSL_SESSION_get_time(3) family of functions.

Expired sessions are removed from the internal session cache, whenever SSL_CTX_flush_sessions(3) is called, either directly
by the application or automatically (see SSL_CTX_set_session_cache_mode(3))

The default value for session timeout is decided on a per protocol basis, see SSL_get_default_timeout(3). All currently
supported protocols have the same default timeout value of 300 seconds.

RETURN VALUES

SSL_CTX_set_timeout() returns the previously set timeout value.

SSL_CTX_get_timeout() returns the currently set timeout value.

SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_get_time(3), SSL_CTX_flush_sessions(3),
SSL_get_default_timeout(3)

1630

OpenSSL Manual

Name
SSL_CTX_set_tlsext_status_cb, SSL_CTX_set_tlsext_status_arg, SSL_set_tlsext_status_type,
SSL_get_tlsext_status_ocsp_resp and SSL_set_tlsext_status_ocsp_resp — OCSP Certificate Status Request functions

Synopsis
#include <openssl/tls1.h>

long SSL_CTX_set_tlsext_status_cb(SSL_CTX *ctx,
 int (*callback)(SSL *, void *));
long SSL_CTX_set_tlsext_status_arg(SSL_CTX *ctx, void *arg);

long SSL_set_tlsext_status_type(SSL *s, int type);

long SSL_get_tlsext_status_ocsp_resp(ssl, unsigned char **resp);
long SSL_set_tlsext_status_ocsp_resp(ssl, unsigned char *resp, int len);

DESCRIPTION

A client application may request that a server send back an OCSP status response (also known as OCSP stapling). To do so the
client should call the SSL_set_tlsext_status_type() function prior to the start of the handshake. Currently the only supported
type is TLSEXT_STATUSTYPE_ocsp. This value should be passed in the type argument. The client should additionally
provide a callback function to decide what to do with the returned OCSP response by calling SSL_CTX_set_tlsext_status_cb().
The callback function should determine whether the returned OCSP response is acceptable or not. The callback will be passed
as an argument the value previously set via a call to SSL_CTX_set_tlsext_status_arg(). Note that the callback will not be called
in the event of a handshake where session resumption occurs (because there are no Certificates exchanged in such a handshake).

The response returned by the server can be obtained via a call to SSL_get_tlsext_status_ocsp_resp(). The value *resp will be
updated to point to the OCSP response data and the return value will be the length of that data. Typically a callback would
obtain an OCSP_RESPONSE object from this data via a call to the d2i_OCSP_RESPONSE() function. If the server has not
provided any response data then *resp will be NULL and the return value from SSL_get_tlsext_status_ocsp_resp() will be -1.

A server application must also call the SSL_CTX_set_tlsext_status_cb() function if it wants to be able to provide clients with
OCSP Certificate Status responses. Typically the server callback would obtain the server certificate that is being sent back
to the client via a call to SSL_get_certificate(); obtain the OCSP response to be sent back; and then set that response data by
calling SSL_set_tlsext_status_ocsp_resp(). A pointer to the response data should be provided in the resp argument, and the
length of that data should be in the len argument.

RETURN VALUES

The callback when used on the client side should return a negative value on error; 0 if the response is not acceptable (in which
case the handshake will fail) or a positive value if it is acceptable.

The callback when used on the server side should return with either SSL_TLSEXT_ERR_OK (meaning that the OCSP response
that has been set should be returned), SSL_TLSEXT_ERR_NOACK (meaning that an OCSP response should not be returned)
or SSL_TLSEXT_ERR_ALERT_FATAL (meaning that a fatal error has occurred).

SSL_CTX_set_tlsext_status_cb(), SSL_CTX_set_tlsext_status_arg(), SSL_set_tlsext_status_type() and
SSL_set_tlsext_status_ocsp_resp() return 0 on error or 1 on success.

SSL_get_tlsext_status_ocsp_resp() returns the length of the OCSP response data or -1 if there is no OCSP response data.

1631

OpenSSL Manual

Name
SSL_CTX_set_tmp_dh_callback, SSL_CTX_set_tmp_dh, SSL_set_tmp_dh_callback and SSL_set_tmp_dh — handle DH
keys for ephemeral key exchange

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
 DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
long SSL_CTX_set_tmp_dh(SSL_CTX *ctx, DH *dh);

void SSL_set_tmp_dh_callback(SSL *ctx,
 DH *(*tmp_dh_callback)(SSL *ssl, int is_export, int keylength));
long SSL_set_tmp_dh(SSL *ssl, DH *dh)

DESCRIPTION

SSL_CTX_set_tmp_dh_callback() sets the callback function for ctx to be used when a DH parameters are required to
tmp_dh_callback. The callback is inherited by all ssl objects created from ctx.

SSL_CTX_set_tmp_dh() sets DH parameters to be used to be dh. The key is inherited by all ssl objects created from ctx.

SSL_set_tmp_dh_callback() sets the callback only for ssl.

SSL_set_tmp_dh() sets the parameters only for ssl.

These functions apply to SSL/TLS servers only.

NOTES

When using a cipher with RSA authentication, an ephemeral DH key exchange can take place. Ciphers with DSA keys always
use ephemeral DH keys as well. In these cases, the session data are negotiated using the ephemeral/temporary DH key and the
key supplied and certified by the certificate chain is only used for signing. Anonymous ciphers (without a permanent server
key) also use ephemeral DH keys.

Using ephemeral DH key exchange yields forward secrecy, as the connection can only be decrypted, when the DH key is known.
By generating a temporary DH key inside the server application that is lost when the application is left, it becomes impossible
for an attacker to decrypt past sessions, even if he gets hold of the normal (certified) key, as this key was only used for signing.

In order to perform a DH key exchange the server must use a DH group (DH parameters) and generate a DH key. The server
will always generate a new DH key during the negotiation.

As generating DH parameters is extremely time consuming, an application should not generate the parameters on the fly but
supply the parameters. DH parameters can be reused, as the actual key is newly generated during the negotiation. The risk
in reusing DH parameters is that an attacker may specialize on a very often used DH group. Applications should therefore
generate their own DH parameters during the installation process using the openssl dhparam(1) application. This application
guarantees that "strong" primes are used.

Files dh2048.pem, and dh4096.pem in the 'apps' directory of the current version of the OpenSSL distribution contain the 'SKIP'
DH parameters, which use safe primes and were generated verifiably pseudo-randomly. These files can be converted into C
code using the -C option of the dhparam(1) application. Generation of custom DH parameters during installation should still
be preferred to stop an attacker from specializing on a commonly used group. Files dh1024.pem and dh512.pem contain old
parameters that must not be used by applications.

An application may either directly specify the DH parameters or can supply the DH parameters via a callback function.

Previous versions of the callback used is_export and keylength parameters to control parameter generation for export and non-
export cipher suites. Modern servers that do not support export ciphersuites are advised to either use SSL_CTX_set_tmp_dh()
or alternatively, use the callback but ignore keylength and is_export and simply supply at least 2048-bit parameters in the
callback.

1632

OpenSSL Manual

EXAMPLES

Setup DH parameters with a key length of 2048 bits. (Error handling partly left out.)

Command-line parameter generation:
$ openssl dhparam -out dh_param_2048.pem 2048

Code for setting up parameters during server initialization:

…
SSL_CTX ctx = SSL_CTX_new();
…

/* Set up ephemeral DH parameters. */
DH *dh_2048 = NULL;
FILE *paramfile;
paramfile = fopen("dh_param_2048.pem", "r");
if (paramfile) {
 dh_2048 = PEM_read_DHparams(paramfile, NULL, NULL, NULL);
 fclose(paramfile);
} else {
 /* Error. */
}
if (dh_2048 == NULL) {
 /* Error. */
}
if (SSL_CTX_set_tmp_dh(ctx, dh_2048) != 1) {
 /* Error. */
}
…

RETURN VALUES

SSL_CTX_set_tmp_dh_callback() and SSL_set_tmp_dh_callback() do not return diagnostic output.

SSL_CTX_set_tmp_dh() and SSL_set_tmp_dh() do return 1 on success and 0 on failure. Check the error queue to find out
the reason of failure.

SEE ALSO

ssl(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_tmp_rsa_callback(3), SSL_CTX_set_options(3), ciphers(1), dhparam(1)

1633

OpenSSL Manual

Name
SSL_CTX_set_tmp_rsa_callback, SSL_CTX_set_tmp_rsa, SSL_CTX_need_tmp_rsa, SSL_set_tmp_rsa_callback,
SSL_set_tmp_rsa and SSL_need_tmp_rsa — handle RSA keys for ephemeral key exchange

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx,
 RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
long SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, RSA *rsa);
long SSL_CTX_need_tmp_rsa(SSL_CTX *ctx);

void SSL_set_tmp_rsa_callback(SSL_CTX *ctx,
 RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength));
long SSL_set_tmp_rsa(SSL *ssl, RSA *rsa)
long SSL_need_tmp_rsa(SSL *ssl)

RSA *(*tmp_rsa_callback)(SSL *ssl, int is_export, int keylength);

DESCRIPTION

SSL_CTX_set_tmp_rsa_callback() sets the callback function for ctx to be used when a temporary/ephemeral RSA key is
required to tmp_rsa_callback. The callback is inherited by all SSL objects newly created from ctx with <SSL_new(3)|
SSL_new(3)>. Already created SSL objects are not affected.

SSL_CTX_set_tmp_rsa() sets the temporary/ephemeral RSA key to be used to be rsa. The key is inherited by all SSL objects
newly created from ctx with <SSL_new(3)|SSL_new(3)>. Already created SSL objects are not affected.

SSL_CTX_need_tmp_rsa() returns 1, if a temporary/ephemeral RSA key is needed for RSA-based strength-limited 'exportable'
ciphersuites because a RSA key with a keysize larger than 512 bits is installed.

SSL_set_tmp_rsa_callback() sets the callback only for ssl.

SSL_set_tmp_rsa() sets the key only for ssl.

SSL_need_tmp_rsa() returns 1, if a temporary/ephemeral RSA key is needed, for RSA-based strength-limited 'exportable'
ciphersuites because a RSA key with a keysize larger than 512 bits is installed.

These functions apply to SSL/TLS servers only.

NOTES

When using a cipher with RSA authentication, an ephemeral RSA key exchange can take place. In this case the session data
are negotiated using the ephemeral/temporary RSA key and the RSA key supplied and certified by the certificate chain is only
used for signing.

Under previous export restrictions, ciphers with RSA keys shorter (512 bits) than the usual key length of 1024 bits were created.
To use these ciphers with RSA keys of usual length, an ephemeral key exchange must be performed, as the normal (certified)
key cannot be directly used.

Using ephemeral RSA key exchange yields forward secrecy, as the connection can only be decrypted, when the RSA key is
known. By generating a temporary RSA key inside the server application that is lost when the application is left, it becomes
impossible for an attacker to decrypt past sessions, even if he gets hold of the normal (certified) RSA key, as this key was used
for signing only. The downside is that creating a RSA key is computationally expensive.

Additionally, the use of ephemeral RSA key exchange is only allowed in the TLS standard, when the RSA key can be
used for signing only, that is for export ciphers. Using ephemeral RSA key exchange for other purposes violates the
standard and can break interoperability with clients. It is therefore strongly recommended to not use ephemeral RSA
key exchange and use EDH (Ephemeral Diffie-Hellman) key exchange instead in order to achieve forward secrecy (see
SSL_CTX_set_tmp_dh_callback(3)).

An application may either directly specify the key or can supply the key via a callback function. The callback approach has the
advantage, that the callback may generate the key only in case it is actually needed. As the generation of a RSA key is however

1634

OpenSSL Manual

costly, it will lead to a significant delay in the handshake procedure. Another advantage of the callback function is that it can
supply keys of different size while the explicit setting of the key is only useful for key size of 512 bits to satisfy the export
restricted ciphers and does give away key length if a longer key would be allowed.

The tmp_rsa_callback is called with the keylength needed and the is_export information. The is_export flag is set, when
the ephemeral RSA key exchange is performed with an export cipher.

EXAMPLES

Generate temporary RSA keys to prepare ephemeral RSA key exchange. As the generation of a RSA key costs a lot of computer
time, they saved for later reuse. For demonstration purposes, two keys for 512 bits and 1024 bits respectively are generated.

…
/* Set up ephemeral RSA stuff */
RSA *rsa_512 = NULL;
RSA *rsa_1024 = NULL;

rsa_512 = RSA_generate_key(512,RSA_F4,NULL,NULL);
if (rsa_512 == NULL)
 evaluate_error_queue();

rsa_1024 = RSA_generate_key(1024,RSA_F4,NULL,NULL);
if (rsa_1024 == NULL)
 evaluate_error_queue();

…

RSA *tmp_rsa_callback(SSL *s, int is_export, int keylength)
{
 RSA *rsa_tmp=NULL;

 switch (keylength) {
 case 512:
 if (rsa_512)
 rsa_tmp = rsa_512;
 else { /* generate on the fly, should not happen in this example */
 rsa_tmp = RSA_generate_key(keylength,RSA_F4,NULL,NULL);
 rsa_512 = rsa_tmp; /* Remember for later reuse */
 }
 break;
 case 1024:
 if (rsa_1024)
 rsa_tmp=rsa_1024;
 else
 should_not_happen_in_this_example();
 break;
 default:
 /* Generating a key on the fly is very costly, so use what is there */
 if (rsa_1024)
 rsa_tmp=rsa_1024;
 else
 rsa_tmp=rsa_512; /* Use at least a shorter key */
 }
 return(rsa_tmp);
}

RETURN VALUES

SSL_CTX_set_tmp_rsa_callback() and SSL_set_tmp_rsa_callback() do not return diagnostic output.

SSL_CTX_set_tmp_rsa() and SSL_set_tmp_rsa() do return 1 on success and 0 on failure. Check the error queue to find out
the reason of failure.

SSL_CTX_need_tmp_rsa() and SSL_need_tmp_rsa() return 1 if a temporary RSA key is needed and 0 otherwise.

SEE ALSO

ssl(3), SSL_CTX_set_cipher_list(3), SSL_CTX_set_options(3), SSL_CTX_set_tmp_dh_callback(3), SSL_new(3), ciphers(1)

1635

OpenSSL Manual

Name
SSL_CTX_set_verify, SSL_set_verify, SSL_CTX_set_verify_depth and SSL_set_verify_depth — set peer certificate
verification parameters

Synopsis
#include <openssl/ssl.h>

void SSL_CTX_set_verify(SSL_CTX *ctx, int mode,
 int (*verify_callback)(int, X509_STORE_CTX *));
void SSL_set_verify(SSL *s, int mode,
 int (*verify_callback)(int, X509_STORE_CTX *));
void SSL_CTX_set_verify_depth(SSL_CTX *ctx,int depth);
void SSL_set_verify_depth(SSL *s, int depth);

int verify_callback(int preverify_ok, X509_STORE_CTX *x509_ctx);

DESCRIPTION

SSL_CTX_set_verify() sets the verification flags for ctx to be mode and specifies the verify_callback function to be used. If
no callback function shall be specified, the NULL pointer can be used for verify_callback.

SSL_set_verify() sets the verification flags for ssl to be mode and specifies the verify_callback function to be used. If no
callback function shall be specified, the NULL pointer can be used for verify_callback. In this case last verify_callback set
specifically for this ssl remains. If no special callback was set before, the default callback for the underlying ctx is used, that
was valid at the time ssl was created with SSL_new(3).

SSL_CTX_set_verify_depth() sets the maximum depth for the certificate chain verification that shall be allowed for ctx. (See
the BUGS section.)

SSL_set_verify_depth() sets the maximum depth for the certificate chain verification that shall be allowed for ssl. (See the
BUGS section.)

NOTES

The verification of certificates can be controlled by a set of logically or'ed mode flags:

SSL_VERIFY_NONE

Server mode: the server will not send a client certificate request to the client, so the client will not send a certificate.

Client mode: if not using an anonymous cipher (by default disabled), the server will send a certificate which will
be checked. The result of the certificate verification process can be checked after the TLS/SSL handshake using the
SSL_get_verify_result(3) function. The handshake will be continued regardless of the verification result.

SSL_VERIFY_PEER

Server mode: the server sends a client certificate request to the client. The certificate returned (if any) is checked. If the
verification process fails, the TLS/SSL handshake is immediately terminated with an alert message containing the reason
for the verification failure. The behaviour can be controlled by the additional SSL_VERIFY_FAIL_IF_NO_PEER_CERT
and SSL_VERIFY_CLIENT_ONCE flags.

Client mode: the server certificate is verified. If the verification process fails, the TLS/SSL handshake is immediately
terminated with an alert message containing the reason for the verification failure. If no server certificate is sent, because
an anonymous cipher is used, SSL_VERIFY_PEER is ignored.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT

Server mode: if the client did not return a certificate, the TLS/SSL handshake is immediately terminated with a "handshake
failure" alert. This flag must be used together with SSL_VERIFY_PEER.

Client mode: ignored

1636

OpenSSL Manual

SSL_VERIFY_CLIENT_ONCE

Server mode: only request a client certificate on the initial TLS/SSL handshake. Do not ask for a client certificate again
in case of a renegotiation. This flag must be used together with SSL_VERIFY_PEER.

Client mode: ignored

Exactly one of the mode flags SSL_VERIFY_NONE and SSL_VERIFY_PEER must be set at any time.

The actual verification procedure is performed either using the built-in verification procedure or using another application pro-
vided verification function set with SSL_CTX_set_cert_verify_callback(3). The following descriptions apply in the case of the
built-in procedure. An application provided procedure also has access to the verify depth information and the verify_callback()
function, but the way this information is used may be different.

SSL_CTX_set_verify_depth() and SSL_set_verify_depth() set the limit up to which depth certificates in a chain are used
during the verification procedure. If the certificate chain is longer than allowed, the certificates above the limit are ig-
nored. Error messages are generated as if these certificates would not be present, most likely a X509_V_ERR_UN-
ABLE_TO_GET_ISSUER_CERT_LOCALLY will be issued. The depth count is "level 0:peer certificate", "level 1: CA cer-
tificate", "level 2: higher level CA certificate", and so on. Setting the maximum depth to 2 allows the levels 0, 1, and 2. The
default depth limit is 100, allowing for the peer certificate and additional 100 CA certificates.

The verify_callback function is used to control the behaviour when the SSL_VERIFY_PEER flag is set. It must be supplied
by the application and receives two arguments: preverify_ok indicates, whether the verification of the certificate in question
was passed (preverify_ok=1) or not (preverify_ok=0). x509_ctx is a pointer to the complete context used for the certificate
chain verification.

The certificate chain is checked starting with the deepest nesting level (the root CA certificate) and worked upward to the
peer's certificate. At each level signatures and issuer attributes are checked. Whenever a verification error is found, the error
number is stored in x509_ctx and verify_callback is called with preverify_ok=0. By applying X509_CTX_store_* functions
verify_callback can locate the certificate in question and perform additional steps (see EXAMPLES). If no error is found for
a certificate, verify_callback is called with preverify_ok=1 before advancing to the next level.

The return value of verify_callback controls the strategy of the further verification process. If verify_callback returns 0, the
verification process is immediately stopped with "verification failed" state. If SSL_VERIFY_PEER is set, a verification failure
alert is sent to the peer and the TLS/SSL handshake is terminated. If verify_callback returns 1, the verification process is
continued. If verify_callback always returns 1, the TLS/SSL handshake will not be terminated with respect to verification
failures and the connection will be established. The calling process can however retrieve the error code of the last verification
error using SSL_get_verify_result(3) or by maintaining its own error storage managed by verify_callback.

If no verify_callback is specified, the default callback will be used. Its return value is identical to preverify_ok, so that any
verification failure will lead to a termination of the TLS/SSL handshake with an alert message, if SSL_VERIFY_PEER is set.

BUGS

In client mode, it is not checked whether the SSL_VERIFY_PEER flag is set, but whether SSL_VERIFY_NONE is not set.
This can lead to unexpected behaviour, if the SSL_VERIFY_PEER and SSL_VERIFY_NONE are not used as required (exactly
one must be set at any time).

The certificate verification depth set with SSL[_CTX]_verify_depth() stops the verification at a certain depth. The error
message produced will be that of an incomplete certificate chain and not X509_V_ERR_CERT_CHAIN_TOO_LONG as may
be expected.

RETURN VALUES

The SSL*_set_verify*() functions do not provide diagnostic information.

EXAMPLES

The following code sequence realizes an example verify_callback function that will always continue the TLS/SSL handshake
regardless of verification failure, if wished. The callback realizes a verification depth limit with more informational output.

1637

OpenSSL Manual

All verification errors are printed; information about the certificate chain is printed on request. The example is realized for a
server that does allow but not require client certificates.

The example makes use of the ex_data technique to store application data into/retrieve application data from the SSL structure
(see SSL_get_ex_new_index(3), SSL_get_ex_data_X509_STORE_CTX_idx(3)).

…
typedef struct {
 int verbose_mode;
 int verify_depth;
 int always_continue;
} mydata_t;
int mydata_index;
…
static int verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
{
 char buf[256];
 X509 *err_cert;
 int err, depth;
 SSL *ssl;
 mydata_t *mydata;

err_cert = X509_STORE_CTX_get_current_cert(ctx);
err = X509_STORE_CTX_get_error(ctx);
depth = X509_STORE_CTX_get_error_depth(ctx);

/*
 * Retrieve the pointer to the SSL of the connection currently treated
 * and the application specific data stored into the SSL object.
 */
ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
mydata = SSL_get_ex_data(ssl, mydata_index);

X509_NAME_oneline(X509_get_subject_name(err_cert), buf, 256);

/*
 * Catch a too long certificate chain. The depth limit set using
 * SSL_CTX_set_verify_depth() is by purpose set to "limit+1" so
 * that whenever the "depth>verify_depth" condition is met, we
 * have violated the limit and want to log this error condition.
 * We must do it here, because the CHAIN_TOO_LONG error would not
 * be found explicitly; only errors introduced by cutting off the
 * additional certificates would be logged.
 */
if (depth > mydata->verify_depth) {
 preverify_ok = 0;
 err = X509_V_ERR_CERT_CHAIN_TOO_LONG;
 X509_STORE_CTX_set_error(ctx, err);
}
if (!preverify_ok) {
 printf("verify error:num=%d:%s:depth=%d:%s\n", err,
 X509_verify_cert_error_string(err), depth, buf);
}
else if (mydata->verbose_mode)
{
 printf("depth=%d:%s\n", depth, buf);
}

/*
 * At this point, err contains the last verification error. We can use
 * it for something special
 */
if (!preverify_ok && (err == X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT))
{
 X509_NAME_oneline(X509_get_issuer_name(ctx->current_cert), buf, 256);
 printf("issuer= %s\n", buf);
}

 if (mydata->always_continue)
 return 1;
 else
 return preverify_ok;

1638

OpenSSL Manual

}
…

mydata_t mydata;

…
mydata_index = SSL_get_ex_new_index(0, "mydata index", NULL, NULL, NULL);

…
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER|SSL_VERIFY_CLIENT_ONCE,
 verify_callback);

/*
 * Let the verify_callback catch the verify_depth error so that we get
 * an appropriate error in the logfile.
 */
SSL_CTX_set_verify_depth(verify_depth + 1);

/*
 * Set up the SSL specific data into "mydata" and store it into th SSL
 * structure.
 */
mydata.verify_depth = verify_depth; …
SSL_set_ex_data(ssl, mydata_index, &mydata);

…
SSL_accept(ssl); /* check of success left out for clarity */
if (peer = SSL_get_peer_certificate(ssl))
{
 if (SSL_get_verify_result(ssl) == X509_V_OK)
 {
 /* The client sent a certificate which verified OK */
 }
}

SEE ALSO

ssl(3), SSL_new(3), SSL_CTX_get_verify_mode(3), SSL_get_verify_result(3), SSL_CTX_load_verify_locations(3),
SSL_get_peer_certificate(3), SSL_CTX_set_cert_verify_callback(3), SSL_get_ex_data_X509_STORE_CTX_idx(3),
SSL_get_ex_new_index(3)

1639

OpenSSL Manual

Name
SSL_CTX_use_certificate, SSL_CTX_use_certificate_ASN1, SSL_CTX_use_certificate_file, SSL_use_certificate,
SSL_use_certificate_ASN1, SSL_use_certificate_file, SSL_CTX_use_certificate_chain_file, SSL_CTX_use_PrivateKey,
SSL_CTX_use_PrivateKey_ASN1, SSL_CTX_use_PrivateKey_file, SSL_CTX_use_RSAPrivateKey,
SSL_CTX_use_RSAPrivateKey_ASN1, SSL_CTX_use_RSAPrivateKey_file, SSL_use_PrivateKey_file,
SSL_use_PrivateKey_ASN1, SSL_use_PrivateKey, SSL_use_RSAPrivateKey, SSL_use_RSAPrivateKey_ASN1,
SSL_use_RSAPrivateKey_file, SSL_CTX_check_private_key and SSL_check_private_key — load certificate and key data

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x);
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, int len, unsigned char *d);
int SSL_CTX_use_certificate_file(SSL_CTX *ctx, const char *file, int type);
int SSL_use_certificate(SSL *ssl, X509 *x);
int SSL_use_certificate_ASN1(SSL *ssl, unsigned char *d, int len);
int SSL_use_certificate_file(SSL *ssl, const char *file, int type);

int SSL_CTX_use_certificate_chain_file(SSL_CTX *ctx, const char *file);

int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey);
int SSL_CTX_use_PrivateKey_ASN1(int pk, SSL_CTX *ctx, unsigned char *d,
 long len);
int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx, const char *file, int type);
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa);
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, unsigned char *d, long len);
int SSL_CTX_use_RSAPrivateKey_file(SSL_CTX *ctx, const char *file, int type);
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey);
int SSL_use_PrivateKey_ASN1(int pk,SSL *ssl, unsigned char *d, long len);
int SSL_use_PrivateKey_file(SSL *ssl, const char *file, int type);
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa);
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, unsigned char *d, long len);
int SSL_use_RSAPrivateKey_file(SSL *ssl, const char *file, int type);

int SSL_CTX_check_private_key(const SSL_CTX *ctx);
int SSL_check_private_key(const SSL *ssl);

DESCRIPTION

These functions load the certificates and private keys into the SSL_CTX or SSL object, respectively.

The SSL_CTX_* class of functions loads the certificates and keys into the SSL_CTX object ctx. The information is passed
to SSL objects ssl created from ctx with SSL_new(3) by copying, so that changes applied to ctx do not propagate to already
existing SSL objects.

The SSL_* class of functions only loads certificates and keys into a specific SSL object. The specific information is kept, when
SSL_clear(3) is called for this SSL object.

SSL_CTX_use_certificate() loads the certificate x into ctx, SSL_use_certificate() loads x into ssl. The rest of the certificates
needed to form the complete certificate chain can be specified using the SSL_CTX_add_extra_chain_cert(3) function.

SSL_CTX_use_certificate_ASN1() loads the ASN1 encoded certificate from the memory location d (with length len) into ctx,
SSL_use_certificate_ASN1() loads the ASN1 encoded certificate into ssl.

SSL_CTX_use_certificate_file() loads the first certificate stored in file into ctx. The formatting type of the certificate must
be specified from the known types SSL_FILETYPE_PEM, SSL_FILETYPE_ASN1. SSL_use_certificate_file() loads the
certificate from file into ssl. See the NOTES section on why SSL_CTX_use_certificate_chain_file() should be preferred.

SSL_CTX_use_certificate_chain_file() loads a certificate chain from file into ctx. The certificates must be in PEM format and
must be sorted starting with the subject's certificate (actual client or server certificate), followed by intermediate CA certificates
if applicable, and ending at the highest level (root) CA. There is no corresponding function working on a single SSL object.

SSL_CTX_use_PrivateKey() adds pkey as private key to ctx. SSL_CTX_use_RSAPrivateKey() adds the private key rsa of
type RSA to ctx. SSL_use_PrivateKey() adds pkey as private key to ssl; SSL_use_RSAPrivateKey() adds rsa as private

1640

OpenSSL Manual

key of type RSA to ssl. If a certificate has already been set and the private does not belong to the certificate an error
is returned. To change a certificate, private key pair the new certificate needs to be set with SSL_use_certificate() or
SSL_CTX_use_certificate() before setting the private key with SSL_CTX_use_PrivateKey() or SSL_use_PrivateKey().

SSL_CTX_use_PrivateKey_ASN1() adds the private key of type pk stored at memory location d (length len) to ctx.
SSL_CTX_use_RSAPrivateKey_ASN1() adds the private key of type RSA stored at memory location d (length len) to ctx.
SSL_use_PrivateKey_ASN1() and SSL_use_RSAPrivateKey_ASN1() add the private key to ssl.

SSL_CTX_use_PrivateKey_file() adds the first private key found in file to ctx. The formatting type of the certificate must
be specified from the known types SSL_FILETYPE_PEM, SSL_FILETYPE_ASN1. SSL_CTX_use_RSAPrivateKey_file()
adds the first private RSA key found in file to ctx. SSL_use_PrivateKey_file() adds the first private key found in file to ssl;
SSL_use_RSAPrivateKey_file() adds the first private RSA key found to ssl.

SSL_CTX_check_private_key() checks the consistency of a private key with the corresponding certificate loaded into ctx. If
more than one key/certificate pair (RSA/DSA) is installed, the last item installed will be checked. If e.g. the last item was a
RSA certificate or key, the RSA key/certificate pair will be checked. SSL_check_private_key() performs the same check for
ssl. If no key/certificate was explicitly added for this ssl, the last item added into ctx will be checked.

NOTES

The internal certificate store of OpenSSL can hold two private key/certificate pairs at a time: one key/certificate of type RSA
and one key/certificate of type DSA. The certificate used depends on the cipher select, see also SSL_CTX_set_cipher_list(3).

When reading certificates and private keys from file, files of type SSL_FILETYPE_ASN1 (also known as DER, binary
encoding) can only contain one certificate or private key, consequently SSL_CTX_use_certificate_chain_file() is only
applicable to PEM formatting. Files of type SSL_FILETYPE_PEM can contain more than one item.

SSL_CTX_use_certificate_chain_file() adds the first certificate found in the file to the certificate store. The other certificates are
added to the store of chain certificates using SSL_CTX_add_extra_chain_cert(3). There exists only one extra chain store, so that
the same chain is appended to both types of certificates, RSA and DSA! If it is not intended to use both type of certificate at the
same time, it is recommended to use the SSL_CTX_use_certificate_chain_file() instead of the SSL_CTX_use_certificate_file()
function in order to allow the use of complete certificate chains even when no trusted CA storage is used or when the CA
issuing the certificate shall not be added to the trusted CA storage.

If additional certificates are needed to complete the chain during the TLS negotiation, CA certificates are additionally looked
up in the locations of trusted CA certificates, see SSL_CTX_load_verify_locations(3).

The private keys loaded from file can be encrypted. In order to successfully load encrypted keys, a function returning the
passphrase must have been supplied, see SSL_CTX_set_default_passwd_cb(3). (Certificate files might be encrypted as well
from the technical point of view, it however does not make sense as the data in the certificate is considered public anyway.)

RETURN VALUES

On success, the functions return 1. Otherwise check out the error stack to find out the reason.

SEE ALSO

ssl(3), SSL_new(3), SSL_clear(3), SSL_CTX_load_verify_locations(3), SSL_CTX_set_default_passwd_cb(3),
SSL_CTX_set_cipher_list(3), SSL_CTX_set_client_cert_cb(3), SSL_CTX_add_extra_chain_cert(3)

HISTORY

Support for DER encoded private keys (SSL_FILETYPE_ASN1) in SSL_CTX_use_PrivateKey_file() and
SSL_use_PrivateKey_file() was added in 0.9.8 .

1641

OpenSSL Manual

Name
SSL_CTX_use_psk_identity_hint, SSL_use_psk_identity_hint, SSL_CTX_set_psk_server_callback and
SSL_set_psk_server_callback — set PSK identity hint to use

Synopsis
#include <openssl/ssl.h>

int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *hint);
int SSL_use_psk_identity_hint(SSL *ssl, const char *hint);

void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx,
 unsigned int (*callback)(SSL *ssl, const char *identity,
 unsigned char *psk, int max_psk_len));
void SSL_set_psk_server_callback(SSL *ssl,
 unsigned int (*callback)(SSL *ssl, const char *identity,
 unsigned char *psk, int max_psk_len));

DESCRIPTION

SSL_CTX_use_psk_identity_hint() sets the given NULL-terminated PSK identity hint hint to SSL context object ctx.
SSL_use_psk_identity_hint() sets the given NULL-terminated PSK identity hint hint to SSL connection object ssl. If hint is
NULL the current hint from ctx or ssl is deleted.

In the case where PSK identity hint is NULL, the server does not send the ServerKeyExchange message to the client.

A server application must provide a callback function which is called when the server receives the ClientKeyExchange message
from the client. The purpose of the callback function is to validate the received PSK identity and to fetch the pre-shared
key used during the connection setup phase. The callback is set using functions SSL_CTX_set_psk_server_callback() or
SSL_set_psk_server_callback(). The callback function is given the connection in parameter ssl, NULL-terminated PSK identity
sent by the client in parameter identity, and a buffer psk of length max_psk_len bytes where the pre-shared key is to be stored.

RETURN VALUES

SSL_CTX_use_psk_identity_hint() and SSL_use_psk_identity_hint() return 1 on success, 0 otherwise.

Return values from the server callback are interpreted as follows:

> 0 PSK identity was found and the server callback has provided the PSK successfully in parameter psk. Return value is
the length of psk in bytes. It is an error to return a value greater than max_psk_len.

If the PSK identity was not found but the callback instructs the protocol to continue anyway, the callback must provide
some random data to psk and return the length of the random data, so the connection will fail with decryption_error
before it will be finished completely.

0 PSK identity was not found. An "unknown_psk_identity" alert message will be sent and the connection setup fails.

1642

OpenSSL Manual

Name
SSL_do_handshake — perform a TLS/SSL handshake

Synopsis
#include <openssl/ssl.h>

int SSL_do_handshake(SSL *ssl);

DESCRIPTION

SSL_do_handshake() will wait for a SSL/TLS handshake to take place. If the connection is in client mode, the handshake
will be started. The handshake routines may have to be explicitly set in advance using either SSL_set_connect_state(3) or
SSL_set_accept_state(3).

NOTES

The behaviour of SSL_do_handshake() depends on the underlying BIO.

If the underlying BIO is blocking, SSL_do_handshake() will only return once the handshake has been finished or an
error occurred, except for SGC (Server Gated Cryptography). For SGC, SSL_do_handshake() may return with -1, but
SSL_get_error() will yield SSL_ERROR_WANT_READ/WRITE and SSL_do_handshake() should be called again.

If the underlying BIO is non-blocking, SSL_do_handshake() will also return when the underlying BIO could not satisfy
the needs of SSL_do_handshake() to continue the handshake. In this case a call to SSL_get_error() with the return value of
SSL_do_handshake() will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then
must repeat the call after taking appropriate action to satisfy the needs of SSL_do_handshake(). The action depends on the
underlying BIO. When using a non-blocking socket, nothing is to be done, but select() can be used to check for the required
condition. When using a buffering BIO, like a BIO pair, data must be written into or retrieved out of the BIO before being
able to continue.

RETURN VALUES

The following return values can occur:

0 The TLS/SSL handshake was not successful but was shut down controlled and by the specifications of the TLS/SSL
protocol. Call SSL_get_error() with the return value ret to find out the reason.

1 The TLS/SSL handshake was successfully completed, a TLS/SSL connection has been established.

<0 The TLS/SSL handshake was not successful because a fatal error occurred either at the protocol level or a connection
failure occurred. The shutdown was not clean. It can also occur of action is need to continue the operation for non-
blocking BIOs. Call SSL_get_error() with the return value ret to find out the reason.

SEE ALSO

SSL_get_error(3), SSL_connect(3), SSL_accept(3), ssl(3), bio(3), SSL_set_connect_state(3)

1643

OpenSSL Manual

Name
SSL_free — free an allocated SSL structure

Synopsis
#include <openssl/ssl.h>

void SSL_free(SSL *ssl);

DESCRIPTION

SSL_free() decrements the reference count of ssl, and removes the SSL structure pointed to by ssl and frees up the allocated
memory if the reference count has reached 0.

NOTES

SSL_free() also calls the free()ing procedures for indirectly affected items, if applicable: the buffering BIO, the read and write
BIOs, cipher lists specially created for this ssl, the SSL_SESSION. Do not explicitly free these indirectly freed up items before
or after calling SSL_free(), as trying to free things twice may lead to program failure.

The ssl session has reference counts from two users: the SSL object, for which the reference count is removed by SSL_free()
and the internal session cache. If the session is considered bad, because SSL_shutdown(3) was not called for the connection
and SSL_set_shutdown(3) was not used to set the SSL_SENT_SHUTDOWN state, the session will also be removed from the
session cache as required by RFC2246.

RETURN VALUES

SSL_free() does not provide diagnostic information.

SSL_new(3), SSL_clear(3), SSL_shutdown(3), SSL_set_shutdown(3), ssl(3)

1644

OpenSSL Manual

Name
SSL_get_ciphers and SSL_get_cipher_list — get list of available SSL_CIPHERs

Synopsis
#include <openssl/ssl.h>

STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl);
const char *SSL_get_cipher_list(const SSL *ssl, int priority);

DESCRIPTION

SSL_get_ciphers() returns the stack of available SSL_CIPHERs for ssl, sorted by preference. If ssl is NULL or no ciphers are
available, NULL is returned.

SSL_get_cipher_list() returns a pointer to the name of the SSL_CIPHER listed for ssl with priority. If ssl is NULL, no ciphers
are available, or there are less ciphers than priority available, NULL is returned.

NOTES

The details of the ciphers obtained by SSL_get_ciphers() can be obtained using the SSL_CIPHER_get_name(3) family of
functions.

Call SSL_get_cipher_list() with priority starting from 0 to obtain the sorted list of available ciphers, until NULL is returned.

RETURN VALUES

See DESCRIPTION

SEE ALSO

ssl(3), SSL_CTX_set_cipher_list(3), SSL_CIPHER_get_name(3)

1645

OpenSSL Manual

Name
SSL_get_client_CA_list and SSL_CTX_get_client_CA_list — get list of client CAs

Synopsis
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_get_client_CA_list(const SSL *s);
STACK_OF(X509_NAME) *SSL_CTX_get_client_CA_list(const SSL_CTX *ctx);

DESCRIPTION

SSL_CTX_get_client_CA_list() returns the list of client CAs explicitly set for ctx using SSL_CTX_set_client_CA_list(3).

SSL_get_client_CA_list() returns the list of client CAs explicitly set for ssl using SSL_set_client_CA_list() or ssl's SSL_CTX
object with SSL_CTX_set_client_CA_list(3), when in server mode. In client mode, SSL_get_client_CA_list returns the list
of client CAs sent from the server, if any.

RETURN VALUES

SSL_CTX_set_client_CA_list() and SSL_set_client_CA_list() do not return diagnostic information.

SSL_CTX_add_client_CA() and SSL_add_client_CA() have the following return values:

STACK_OF(X509_NAMES) List of CA names explicitly set (for ctx or in server mode) or send by the server (client mode).

NULL No client CA list was explicitly set (for ctx or in server mode) or the server did not send a
list of CAs (client mode).

SEE ALSO

ssl(3), SSL_CTX_set_client_CA_list(3), SSL_CTX_set_client_cert_cb(3)

1646

OpenSSL Manual

Name
SSL_get_current_cipher, SSL_get_cipher, SSL_get_cipher_name, SSL_get_cipher_bits and SSL_get_cipher_version — get
SSL_CIPHER of a connection

Synopsis
#include <openssl/ssl.h>

SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl);
#define SSL_get_cipher(s) \
 SSL_CIPHER_get_name(SSL_get_current_cipher(s))
#define SSL_get_cipher_name(s) \
 SSL_CIPHER_get_name(SSL_get_current_cipher(s))
#define SSL_get_cipher_bits(s,np) \
 SSL_CIPHER_get_bits(SSL_get_current_cipher(s),np)
#define SSL_get_cipher_version(s) \
 SSL_CIPHER_get_version(SSL_get_current_cipher(s))

DESCRIPTION

SSL_get_current_cipher() returns a pointer to an SSL_CIPHER object containing the description of the actually used cipher
of a connection established with the ssl object.

SSL_get_cipher() and SSL_get_cipher_name() are identical macros to obtain the name of the currently used cipher.
SSL_get_cipher_bits() is a macro to obtain the number of secret/algorithm bits used and SSL_get_cipher_version() returns the
protocol name. See SSL_CIPHER_get_name(3) for more details.

RETURN VALUES

SSL_get_current_cipher() returns the cipher actually used or NULL, when no session has been established.

SEE ALSO

ssl(3), SSL_CIPHER_get_name(3)

1647

OpenSSL Manual

Name
SSL_get_default_timeout — get default session timeout value

Synopsis
#include <openssl/ssl.h>

long SSL_get_default_timeout(const SSL *ssl);

DESCRIPTION

SSL_get_default_timeout() returns the default timeout value assigned to SSL_SESSION objects negotiated for the protocol
valid for ssl.

NOTES

Whenever a new session is negotiated, it is assigned a timeout value, after which it will not be accepted for session reuse. If
the timeout value was not explicitly set using SSL_CTX_set_timeout(3), the hardcoded default timeout for the protocol will
be used.

SSL_get_default_timeout() return this hardcoded value, which is 300 seconds for all currently supported protocols (SSLv2,
SSLv3, and TLSv1).

RETURN VALUES

See description.

SEE ALSO

ssl(3), SSL_CTX_set_session_cache_mode(3), SSL_SESSION_get_time(3), SSL_CTX_flush_sessions(3),
SSL_get_default_timeout(3)

1648

OpenSSL Manual

Name
SSL_get_error — obtain result code for TLS/SSL I/O operation

Synopsis
#include <openssl/ssl.h>

int SSL_get_error(const SSL *ssl, int ret);

DESCRIPTION

SSL_get_error() returns a result code (suitable for the C "switch" statement) for a preceding call to SSL_connect(),
SSL_accept(), SSL_do_handshake(), SSL_read(), SSL_peek(), or SSL_write() on ssl. The value returned by that TLS/SSL I/
O function must be passed to SSL_get_error() in parameter ret.

In addition to ssl and ret, SSL_get_error() inspects the current thread's OpenSSL error queue. Thus, SSL_get_error() must be
used in the same thread that performed the TLS/SSL I/O operation, and no other OpenSSL function calls should appear in
between. The current thread's error queue must be empty before the TLS/SSL I/O operation is attempted, or SSL_get_error()
will not work reliably.

RETURN VALUES

The following return values can currently occur:

SSL_ERROR_NONE

The TLS/SSL I/O operation completed. This result code is returned if and only if ret > 0.

SSL_ERROR_ZERO_RETURN

The TLS/SSL connection has been closed. If the protocol version is SSL 3.0 or TLS 1.0, this result code is returned
only if a closure alert has occurred in the protocol, i.e. if the connection has been closed cleanly. Note that in this case
SSL_ERROR_ZERO_RETURN does not necessarily indicate that the underlying transport has been closed.

SSL_ERROR_WANT_READ, SSL_ERROR_WANT_WRITE

The operation did not complete; the same TLS/SSL I/O function should be called again later. If, by then, the
underlying BIO has data available for reading (if the result code is SSL_ERROR_WANT_READ) or allows writing
data (SSL_ERROR_WANT_WRITE), then some TLS/SSL protocol progress will take place, i.e. at least part of an
TLS/SSL record will be read or written. Note that the retry may again lead to a SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE condition. There is no fixed upper limit for the number of iterations that may be
necessary until progress becomes visible at application protocol level.

For socket BIOs (e.g. when SSL_set_fd() was used), select() or poll() on the underlying socket can be used to find out
when the TLS/SSL I/O function should be retried.

Caveat: Any TLS/SSL I/O function can lead to either of SSL_ERROR_WANT_READ and
SSL_ERROR_WANT_WRITE. In particular, SSL_read() or SSL_peek() may want to write data and SSL_write() may
want to read data. This is mainly because TLS/SSL handshakes may occur at any time during the protocol (initiated by
either the client or the server); SSL_read(), SSL_peek(), and SSL_write() will handle any pending handshakes.

SSL_ERROR_WANT_CONNECT, SSL_ERROR_WANT_ACCEPT

The operation did not complete; the same TLS/SSL I/O function should be called again later. The underlying BIO was not
connected yet to the peer and the call would block in connect()/accept(). The SSL function should be called again when the
connection is established. These messages can only appear with a BIO_s_connect() or BIO_s_accept() BIO, respectively.
In order to find out, when the connection has been successfully established, on many platforms select() or poll() for writing
on the socket file descriptor can be used.

1649

OpenSSL Manual

SSL_ERROR_WANT_X509_LOOKUP

The operation did not complete because an application callback set by SSL_CTX_set_client_cert_cb() has asked to be
called again. The TLS/SSL I/O function should be called again later. Details depend on the application.

SSL_ERROR_SYSCALL

Some I/O error occurred. The OpenSSL error queue may contain more information on the error. If the error queue is empty
(i.e. ERR_get_error() returns 0), ret can be used to find out more about the error: If ret == 0, an EOF was observed that
violates the protocol. If ret == -1, the underlying BIO reported an I/O error (for socket I/O on Unix systems, consult
errno for details).

SSL_ERROR_SSL

A failure in the SSL library occurred, usually a protocol error. The OpenSSL error queue contains more information on
the error.

SEE ALSO

ssl(3), err(3)

HISTORY

SSL_get_error() was added in SSLeay 0.8.

1650

OpenSSL Manual

Name
SSL_get_ex_data_X509_STORE_CTX_idx — get ex_data index to access SSL structure from X509_STORE_CTX

Synopsis
#include <openssl/ssl.h>

int SSL_get_ex_data_X509_STORE_CTX_idx(void);

DESCRIPTION

SSL_get_ex_data_X509_STORE_CTX_idx() returns the index number under which the pointer to the SSL object is stored
into the X509_STORE_CTX object.

NOTES

Whenever a X509_STORE_CTX object is created for the verification of the peers certificate during a handshake, a pointer
to the SSL object is stored into the X509_STORE_CTX object to identify the connection affected. To retrieve this pointer
the X509_STORE_CTX_get_ex_data() function can be used with the correct index. This index is globally the same for all
X509_STORE_CTX objects and can be retrieved using SSL_get_ex_data_X509_STORE_CTX_idx(). The index value is set
when SSL_get_ex_data_X509_STORE_CTX_idx() is first called either by the application program directly or indirectly during
other SSL setup functions or during the handshake.

The value depends on other index values defined for X509_STORE_CTX objects before the SSL index is created.

RETURN VALUES

>=0 The index value to access the pointer.

<0 An error occurred, check the error stack for a detailed error message.

EXAMPLES

The index returned from SSL_get_ex_data_X509_STORE_CTX_idx() allows to access the SSL object for the connection
to be accessed during the verify_callback() when checking the peers certificate. Please check the example in
SSL_CTX_set_verify(3),

SEE ALSO

ssl(3), SSL_CTX_set_verify(3), CRYPTO_set_ex_data(3)

1651

OpenSSL Manual

Name
SSL_get_ex_new_index, SSL_set_ex_data and SSL_get_ex_data — internal application specific data functions

Synopsis
#include <openssl/ssl.h>

int SSL_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int SSL_set_ex_data(SSL *ssl, int idx, void *arg);

void *SSL_get_ex_data(const SSL *ssl, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
 int idx, long argl, void *argp);

DESCRIPTION

Several OpenSSL structures can have application specific data attached to them. These functions are used internally by
OpenSSL to manipulate application specific data attached to a specific structure.

SSL_get_ex_new_index() is used to register a new index for application specific data.

SSL_set_ex_data() is used to store application data at arg for idx into the ssl object.

SSL_get_ex_data() is used to retrieve the information for idx from ssl.

A detailed description for the *_get_ex_new_index() functionality can be found in RSA_get_ex_new_index(3). The
*_get_ex_data() and *_set_ex_data() functionality is described in CRYPTO_set_ex_data(3).

EXAMPLES

An example on how to use the functionality is included in the example verify_callback() in SSL_CTX_set_verify(3).

SEE ALSO

ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3), SSL_CTX_set_verify(3)

1652

OpenSSL Manual

Name
SSL_get_fd — get file descriptor linked to an SSL object

Synopsis
#include <openssl/ssl.h>

int SSL_get_fd(const SSL *ssl);
int SSL_get_rfd(const SSL *ssl);
int SSL_get_wfd(const SSL *ssl);

DESCRIPTION

SSL_get_fd() returns the file descriptor which is linked to ssl. SSL_get_rfd() and SSL_get_wfd() return the file descriptors for
the read or the write channel, which can be different. If the read and the write channel are different, SSL_get_fd() will return
the file descriptor of the read channel.

RETURN VALUES

The following return values can occur:

-1 The operation failed, because the underlying BIO is not of the correct type (suitable for file descriptors).

>=0 The file descriptor linked to ssl.

SEE ALSO

SSL_set_fd(3), ssl(3) , bio(3)

1653

OpenSSL Manual

Name
SSL_get_peer_cert_chain — get the X509 certificate chain of the peer

Synopsis
#include <openssl/ssl.h>

STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *ssl);

DESCRIPTION

SSL_get_peer_cert_chain() returns a pointer to STACK_OF(X509) certificates forming the certificate chain of the peer. If
called on the client side, the stack also contains the peer's certificate; if called on the server side, the peer's certificate must be
obtained separately using SSL_get_peer_certificate(3). If the peer did not present a certificate, NULL is returned.

NOTES

The peer certificate chain is not necessarily available after reusing a session, in which case a NULL pointer is returned.

The reference count of the STACK_OF(X509) object is not incremented. If the corresponding session is freed, the pointer
must not be used any longer.

RETURN VALUES

The following return values can occur:

NULL

No certificate was presented by the peer or no connection was established or the certificate chain is no longer available
when a session is reused.

Pointer to a STACK_OF(X509)

The return value points to the certificate chain presented by the peer.

SEE ALSO

ssl(3), SSL_get_peer_certificate(3)

1654

OpenSSL Manual

Name
SSL_get_peer_certificate — get the X509 certificate of the peer

Synopsis
#include <openssl/ssl.h>

X509 *SSL_get_peer_certificate(const SSL *ssl);

DESCRIPTION

SSL_get_peer_certificate() returns a pointer to the X509 certificate the peer presented. If the peer did not present a certificate,
NULL is returned.

NOTES

Due to the protocol definition, a TLS/SSL server will always send a certificate, if present. A client will only send a certificate
when explicitly requested to do so by the server (see SSL_CTX_set_verify(3)). If an anonymous cipher is used, no certificates
are sent.

That a certificate is returned does not indicate information about the verification state, use SSL_get_verify_result(3) to check
the verification state.

The reference count of the X509 object is incremented by one, so that it will not be destroyed when the session containing the
peer certificate is freed. The X509 object must be explicitly freed using X509_free().

RETURN VALUES

The following return values can occur:

NULL

No certificate was presented by the peer or no connection was established.

Pointer to an X509 certificate

The return value points to the certificate presented by the peer.

SEE ALSO

ssl(3), SSL_get_verify_result(3), SSL_CTX_set_verify(3)

1655

OpenSSL Manual

Name
SSL_get_psk_identity and SSL_get_psk_identity_hint — get PSK client identity and hint

Synopsis
#include <openssl/ssl.h>

const char *SSL_get_psk_identity_hint(const SSL *ssl);
const char *SSL_get_psk_identity(const SSL *ssl);

DESCRIPTION

SSL_get_psk_identity_hint() is used to retrieve the PSK identity hint used during the connection setup related to SSL object
ssl. Similarly, SSL_get_psk_identity() is used to retrieve the PSK identity used during the connection setup.

RETURN VALUES

If non-NULL, SSL_get_psk_identity_hint() returns the PSK identity hint and SSL_get_psk_identity() returns the PSK identity.
Both are NULL-terminated. SSL_get_psk_identity_hint() may return NULL if no PSK identity hint was used during the
connection setup.

Note that the return value is valid only during the lifetime of the SSL object ssl.

1656

OpenSSL Manual

Name
SSL_get_rbio — get BIO linked to an SSL object

Synopsis
#include <openssl/ssl.h>

BIO *SSL_get_rbio(SSL *ssl);
BIO *SSL_get_wbio(SSL *ssl);

DESCRIPTION

SSL_get_rbio() and SSL_get_wbio() return pointers to the BIOs for the read or the write channel, which can be different. The
reference count of the BIO is not incremented.

RETURN VALUES

The following return values can occur:

NULL

No BIO was connected to the SSL object

Any other pointer

The BIO linked to ssl.

SEE ALSO

SSL_set_bio(3), ssl(3) , bio(3)

1657

OpenSSL Manual

Name
SSL_get_session — retrieve TLS/SSL session data

Synopsis
#include <openssl/ssl.h>

SSL_SESSION *SSL_get_session(const SSL *ssl);
SSL_SESSION *SSL_get0_session(const SSL *ssl);
SSL_SESSION *SSL_get1_session(SSL *ssl);

DESCRIPTION

SSL_get_session() returns a pointer to the SSL_SESSION actually used in ssl. The reference count of the SSL_SESSION is
not incremented, so that the pointer can become invalid by other operations.

SSL_get0_session() is the same as SSL_get_session().

SSL_get1_session() is the same as SSL_get_session(), but the reference count of the SSL_SESSION is incremented by one.

NOTES

The ssl session contains all information required to re-establish the connection without a new handshake.

SSL_get0_session() returns a pointer to the actual session. As the reference counter is not incremented, the pointer is only valid
while the connection is in use. If SSL_clear(3) or SSL_free(3) is called, the session may be removed completely (if considered
bad), and the pointer obtained will become invalid. Even if the session is valid, it can be removed at any time due to timeout
during SSL_CTX_flush_sessions(3).

If the data is to be kept, SSL_get1_session() will increment the reference count, so that the session will not be implicitly
removed by other operations but stays in memory. In order to remove the session SSL_SESSION_free(3) must be explicitly
called once to decrement the reference count again.

SSL_SESSION objects keep internal link information about the session cache list, when being inserted into one SSL_CTX
object's session cache. One SSL_SESSION object, regardless of its reference count, must therefore only be used with one
SSL_CTX object (and the SSL objects created from this SSL_CTX object).

RETURN VALUES

The following return values can occur:

NULL

There is no session available in ssl.

Pointer to an SSL

The return value points to the data of an SSL session.

SEE ALSO

ssl(3), SSL_free(3), SSL_clear(3), SSL_SESSION_free(3)

1658

OpenSSL Manual

Name
SSL_get_SSL_CTX — get the SSL_CTX from which an SSL is created

Synopsis
#include <openssl/ssl.h>

SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl);

DESCRIPTION

SSL_get_SSL_CTX() returns a pointer to the SSL_CTX object, from which ssl was created with SSL_new(3).

RETURN VALUES

The pointer to the SSL_CTX object is returned.

SEE ALSO

ssl(3), SSL_new(3)

1659

OpenSSL Manual

Name
SSL_get_verify_result — get result of peer certificate verification

Synopsis
#include <openssl/ssl.h>

long SSL_get_verify_result(const SSL *ssl);

DESCRIPTION

SSL_get_verify_result() returns the result of the verification of the X509 certificate presented by the peer, if any.

NOTES

SSL_get_verify_result() can only return one error code while the verification of a certificate can fail because of many reasons
at the same time. Only the last verification error that occurred during the processing is available from SSL_get_verify_result().

The verification result is part of the established session and is restored when a session is reused.

BUGS

If no peer certificate was presented, the returned result code is X509_V_OK. This is because no verification error occurred, it
does however not indicate success. SSL_get_verify_result() is only useful in connection with SSL_get_peer_certificate(3).

RETURN VALUES

The following return values can currently occur:

X509_V_OK

The verification succeeded or no peer certificate was presented.

Any other value

Documented in verify(1).

SEE ALSO

ssl(3), SSL_set_verify_result(3), SSL_get_peer_certificate(3), verify(1)

1660

OpenSSL Manual

Name
SSL_get_version — get the protocol version of a connection.

Synopsis
#include <openssl/ssl.h>

const char *SSL_get_version(const SSL *ssl);

DESCRIPTION

SSL_get_version() returns the name of the protocol used for the connection ssl.

RETURN VALUES

The following strings can be returned:

SSLv2

The connection uses the SSLv2 protocol.

SSLv3

The connection uses the SSLv3 protocol.

TLSv1

The connection uses the TLSv1.0 protocol.

TLSv1.1

The connection uses the TLSv1.1 protocol.

TLSv1.2

The connection uses the TLSv1.2 protocol.

unknown

This indicates that no version has been set (no connection established).

SEE ALSO

ssl(3)

1661

OpenSSL Manual

Name
SSL_library_init, OpenSSL_add_ssl_algorithms and SSLeay_add_ssl_algorithms — initialize SSL library by registering
algorithms

Synopsis
#include <openssl/ssl.h>

int SSL_library_init(void);
#define OpenSSL_add_ssl_algorithms() SSL_library_init()
#define SSLeay_add_ssl_algorithms() SSL_library_init()

DESCRIPTION

SSL_library_init() registers the available SSL/TLS ciphers and digests.

OpenSSL_add_ssl_algorithms() and SSLeay_add_ssl_algorithms() are synonyms for SSL_library_init().

NOTES

SSL_library_init() must be called before any other action takes place. SSL_library_init() is not reentrant.

WARNING

SSL_library_init() adds ciphers and digests used directly and indirectly by SSL/TLS.

EXAMPLES

A typical TLS/SSL application will start with the library initialization, and provide readable error messages.

SSL_load_error_strings(); /* readable error messages */
SSL_library_init(); /* initialize library */

RETURN VALUES

SSL_library_init() always returns "1", so it is safe to discard the return value.

NOTES

OpenSSL 0.9.8o and 1.0.0a and later added SHA2 algorithms to SSL_library_init(). Applications which need to use SHA2 in
earlier versions of OpenSSL should call OpenSSL_add_all_algorithms() as well.

SEE ALSO

ssl(3), SSL_load_error_strings(3), RAND_add(3)

1662

OpenSSL Manual

Name
SSL_load_client_CA_file — load certificate names from file

Synopsis
#include <openssl/ssl.h>

STACK_OF(X509_NAME) *SSL_load_client_CA_file(const char *file);

DESCRIPTION

SSL_load_client_CA_file() reads certificates from file and returns a STACK_OF(X509_NAME) with the subject names found.

NOTES

SSL_load_client_CA_file() reads a file of PEM formatted certificates and extracts the X509_NAMES of the certificates found.
While the name suggests the specific usage as support function for SSL_CTX_set_client_CA_list(3), it is not limited to CA
certificates.

EXAMPLES

Load names of CAs from file and use it as a client CA list:

SSL_CTX *ctx;
STACK_OF(X509_NAME) *cert_names;

…
cert_names = SSL_load_client_CA_file("/path/to/CAfile.pem");
if (cert_names != NULL)
 SSL_CTX_set_client_CA_list(ctx, cert_names);
else
 error_handling();
…

RETURN VALUES

The following return values can occur:

NULL

The operation failed, check out the error stack for the reason.

Pointer to STACK_OF(X509_NAME)

Pointer to the subject names of the successfully read certificates.

SEE ALSO

ssl(3), SSL_CTX_set_client_CA_list(3)

1663

OpenSSL Manual

Name
SSL_new — create a new SSL structure for a connection

Synopsis
#include <openssl/ssl.h>

SSL *SSL_new(SSL_CTX *ctx);

DESCRIPTION

SSL_new() creates a new SSL structure which is needed to hold the data for a TLS/SSL connection. The new structure inher-
its the settings of the underlying context ctx: connection method (SSLv2/v3/TLSv1), options, verification settings, timeout
settings.

RETURN VALUES

The following return values can occur:

NULL

The creation of a new SSL structure failed. Check the error stack to find out the reason.

Pointer to an SSL structure

The return value points to an allocated SSL structure.

SEE ALSO

SSL_free(3), SSL_clear(3), SSL_CTX_set_options(3), SSL_get_SSL_CTX(3), ssl(3)

1664

OpenSSL Manual

Name
SSL_pending — obtain number of readable bytes buffered in an SSL object

Synopsis
#include <openssl/ssl.h>

int SSL_pending(const SSL *ssl);

DESCRIPTION

SSL_pending() returns the number of bytes which are available inside ssl for immediate read.

NOTES

Data are received in blocks from the peer. Therefore data can be buffered inside ssl and are ready for immediate retrieval with
SSL_read(3).

RETURN VALUES

The number of bytes pending is returned.

BUGS

SSL_pending() takes into account only bytes from the TLS/SSL record that is currently being processed (if any). If the SSL
object's read_ahead flag is set (see SSL_CTX_set_read_ahead(3)), additional protocol bytes may have been read containing
more TLS/SSL records; these are ignored by SSL_pending().

Up to OpenSSL 0.9.6, SSL_pending() does not check if the record type of pending data is application data.

SEE ALSO

SSL_read(3), SSL_CTX_set_read_ahead(3), ssl(3)

1665

OpenSSL Manual

Name
SSL_read — read bytes from a TLS/SSL connection.

Synopsis
#include <openssl/ssl.h>

int SSL_read(SSL *ssl, void *buf, int num);

DESCRIPTION

SSL_read() tries to read num bytes from the specified ssl into the buffer buf.

NOTES

If necessary, SSL_read() will negotiate a TLS/SSL session, if not already explicitly performed by SSL_connect(3) or SSL_ac-
cept(3). If the peer requests a re-negotiation, it will be performed transparently during the SSL_read() operation. The behaviour
of SSL_read() depends on the underlying BIO.

For the transparent negotiation to succeed, the ssl must have been initialized to client or server mode. This is being done by
calling SSL_set_connect_state(3) or SSL_set_accept_state() before the first call to an SSL_read() or SSL_write(3) function.

SSL_read() works based on the SSL/TLS records. The data are received in records (with a maximum record size of 16kB for
SSLv3/TLSv1). Only when a record has been completely received, it can be processed (decryption and check of integrity).
Therefore data that was not retrieved at the last call of SSL_read() can still be buffered inside the SSL layer and will be retrieved
on the next call to SSL_read(). If num is higher than the number of bytes buffered, SSL_read() will return with the bytes
buffered. If no more bytes are in the buffer, SSL_read() will trigger the processing of the next record. Only when the record
has been received and processed completely, SSL_read() will return reporting success. At most the contents of the record will
be returned. As the size of an SSL/TLS record may exceed the maximum packet size of the underlying transport (e.g. TCP), it
may be necessary to read several packets from the transport layer before the record is complete and SSL_read() can succeed.

If the underlying BIO is blocking, SSL_read() will only return, once the read operation has been finished or an error occurred,
except when a renegotiation take place, in which case a SSL_ERROR_WANT_READ may occur. This behaviour can be
controlled with the SSL_MODE_AUTO_RETRY flag of the SSL_CTX_set_mode(3) call.

If the underlying BIO is non-blocking, SSL_read() will also return when the underlying BIO could not satisfy the needs of
SSL_read() to continue the operation. In this case a call to SSL_get_error(3) with the return value of SSL_read() will yield
SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. As at any time a re-negotiation is possible, a call to
SSL_read() can also cause write operations! The calling process then must repeat the call after taking appropriate action to
satisfy the needs of SSL_read(). The action depends on the underlying BIO. When using a non-blocking socket, nothing is to
be done, but select() can be used to check for the required condition. When using a buffering BIO, like a BIO pair, data must
be written into or retrieved out of the BIO before being able to continue.

SSL_pending(3) can be used to find out whether there are buffered bytes available for immediate retrieval. In this case
SSL_read() can be called without blocking or actually receiving new data from the underlying socket.

WARNING

When an SSL_read() operation has to be repeated because of SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, it must be repeated with the same arguments.

RETURN VALUES

The following return values can occur:

>0 The read operation was successful; the return value is the number of bytes actually read from the TLS/SSL connection.

0 The read operation was not successful. The reason may either be a clean shutdown due to a "close notify" alert sent by
the peer (in which case the SSL_RECEIVED_SHUTDOWN flag in the ssl shutdown state is set (see SSL_shutdown(3),

1666

OpenSSL Manual

SSL_set_shutdown(3)). It is also possible, that the peer simply shut down the underlying transport and the shutdown is
incomplete. Call SSL_get_error() with the return value ret to find out, whether an error occurred or the connection was
shut down cleanly (SSL_ERROR_ZERO_RETURN).

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected, whether the underlying con-
nection was closed. It cannot be checked, whether the closure was initiated by the peer or by something else.

<0 The read operation was not successful, because either an error occurred or action must be taken by the calling process.
Call SSL_get_error() with the return value ret to find out the reason.

SEE ALSO

SSL_get_error(3), SSL_write(3), SSL_CTX_set_mode(3), SSL_CTX_new(3), SSL_connect(3),
SSL_accept(3)SSL_set_connect_state(3), SSL_pending(3), SSL_shutdown(3), SSL_set_shutdown(3), ssl(3), bio(3)

1667

OpenSSL Manual

Name
SSL_rstate_string and SSL_rstate_string_long — get textual description of state of an SSL object during read operation

Synopsis
#include <openssl/ssl.h>

const char *SSL_rstate_string(SSL *ssl);
const char *SSL_rstate_string_long(SSL *ssl);

DESCRIPTION

SSL_rstate_string() returns a 2 letter string indicating the current read state of the SSL object ssl.

SSL_rstate_string_long() returns a string indicating the current read state of the SSL object ssl.

NOTES

When performing a read operation, the SSL/TLS engine must parse the record, consisting of header and body. When working
in a blocking environment, SSL_rstate_string[_long]() should always return "RD"/"read done".

This function should only seldom be needed in applications.

RETURN VALUES

SSL_rstate_string() and SSL_rstate_string_long() can return the following values:

"RH"/"read header" The header of the record is being evaluated.

"RB"/"read body" The body of the record is being evaluated.

"RD"/"read done" The record has been completely processed.

"unknown"/"unknown" The read state is unknown. This should never happen.

SEE ALSO

ssl(3)

1668

OpenSSL Manual

Name
SSL_SESSION_free — free an allocated SSL_SESSION structure

Synopsis
#include <openssl/ssl.h>

void SSL_SESSION_free(SSL_SESSION *session);

DESCRIPTION

SSL_SESSION_free() decrements the reference count of session and removes the SSL_SESSION structure pointed to by
session and frees up the allocated memory, if the reference count has reached 0.

NOTES

SSL_SESSION objects are allocated, when a TLS/SSL handshake operation is successfully completed. Depending on the
settings, see SSL_CTX_set_session_cache_mode(3), the SSL_SESSION objects are internally referenced by the SSL_CTX
and linked into its session cache. SSL objects may be using the SSL_SESSION object; as a session may be reused, several
SSL objects may be using one SSL_SESSION object at the same time. It is therefore crucial to keep the reference count
(usage information) correct and not delete a SSL_SESSION object that is still used, as this may lead to program failures due
to dangling pointers. These failures may also appear delayed, e.g. when an SSL_SESSION object was completely freed as
the reference count incorrectly became 0, but it is still referenced in the internal session cache and the cache list is processed
during a SSL_CTX_flush_sessions(3) operation.

SSL_SESSION_free() must only be called for SSL_SESSION objects, for which the reference count was explicitly incremented
(e.g. by calling SSL_get1_session(), see SSL_get_session(3)) or when the SSL_SESSION object was generated outside a TLS
handshake operation, e.g. by using d2i_SSL_SESSION(3). It must not be called on other SSL_SESSION objects, as this would
cause incorrect reference counts and therefore program failures.

RETURN VALUES

SSL_SESSION_free() does not provide diagnostic information.

SEE ALSO

ssl(3), SSL_get_session(3), SSL_CTX_set_session_cache_mode(3), SSL_CTX_flush_sessions(3), d2i_SSL_SESSION(3)

1669

OpenSSL Manual

Name
SSL_SESSION_get_ex_new_index, SSL_SESSION_set_ex_data and SSL_SESSION_get_ex_data — internal application
specific data functions

Synopsis
#include <openssl/ssl.h>

int SSL_SESSION_get_ex_new_index(long argl, void *argp,
 CRYPTO_EX_new *new_func,
 CRYPTO_EX_dup *dup_func,
 CRYPTO_EX_free *free_func);

int SSL_SESSION_set_ex_data(SSL_SESSION *session, int idx, void *arg);

void *SSL_SESSION_get_ex_data(const SSL_SESSION *session, int idx);

typedef int new_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef void free_func(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
 int idx, long argl, void *argp);
typedef int dup_func(CRYPTO_EX_DATA *to, CRYPTO_EX_DATA *from, void *from_d,
 int idx, long argl, void *argp);

DESCRIPTION

Several OpenSSL structures can have application specific data attached to them. These functions are used internally by
OpenSSL to manipulate application specific data attached to a specific structure.

SSL_SESSION_get_ex_new_index() is used to register a new index for application specific data.

SSL_SESSION_set_ex_data() is used to store application data at arg for idx into the session object.

SSL_SESSION_get_ex_data() is used to retrieve the information for idx from session.

A detailed description for the *_get_ex_new_index() functionality can be found in RSA_get_ex_new_index(3). The
*_get_ex_data() and *_set_ex_data() functionality is described in CRYPTO_set_ex_data(3).

WARNINGS

The application data is only maintained for sessions held in memory. The application data is not included when dumping the
session with i2d_SSL_SESSION() (and all functions indirectly calling the dump functions like PEM_write_SSL_SESSION()
and PEM_write_bio_SSL_SESSION()) and can therefore not be restored.

SEE ALSO

ssl(3), RSA_get_ex_new_index(3), CRYPTO_set_ex_data(3)

1670

OpenSSL Manual

Name
SSL_SESSION_get_time, SSL_SESSION_set_time, SSL_SESSION_get_timeout and SSL_SESSION_set_timeout —
retrieve and manipulate session time and timeout settings

Synopsis
#include <openssl/ssl.h>

long SSL_SESSION_get_time(const SSL_SESSION *s);
long SSL_SESSION_set_time(SSL_SESSION *s, long tm);
long SSL_SESSION_get_timeout(const SSL_SESSION *s);
long SSL_SESSION_set_timeout(SSL_SESSION *s, long tm);

long SSL_get_time(const SSL_SESSION *s);
long SSL_set_time(SSL_SESSION *s, long tm);
long SSL_get_timeout(const SSL_SESSION *s);
long SSL_set_timeout(SSL_SESSION *s, long tm);

DESCRIPTION

SSL_SESSION_get_time() returns the time at which the session s was established. The time is given in seconds since the
Epoch and therefore compatible to the time delivered by the time() call.

SSL_SESSION_set_time() replaces the creation time of the session s with the chosen value tm.

SSL_SESSION_get_timeout() returns the timeout value set for session s in seconds.

SSL_SESSION_set_timeout() sets the timeout value for session s in seconds to tm.

The SSL_get_time(), SSL_set_time(), SSL_get_timeout(), and SSL_set_timeout() functions are synonyms for the
SSL_SESSION_*() counterparts.

NOTES

Sessions are expired by examining the creation time and the timeout value. Both are set at creation time of the session to the
actual time and the default timeout value at creation, respectively, as set by SSL_CTX_set_timeout(3). Using these functions
it is possible to extend or shorten the lifetime of the session.

RETURN VALUES

SSL_SESSION_get_time() and SSL_SESSION_get_timeout() return the currently valid values.

SSL_SESSION_set_time() and SSL_SESSION_set_timeout() return 1 on success.

If any of the function is passed the NULL pointer for the session s, 0 is returned.

SEE ALSO

ssl(3), SSL_CTX_set_timeout(3), SSL_get_default_timeout(3)

1671

OpenSSL Manual

Name
SSL_session_reused — query whether a reused session was negotiated during handshake

Synopsis
#include <openssl/ssl.h>

int SSL_session_reused(SSL *ssl);

DESCRIPTION

Query, whether a reused session was negotiated during the handshake.

NOTES

During the negotiation, a client can propose to reuse a session. The server then looks up the session in its cache. If both client
and server agree on the session, it will be reused and a flag is being set that can be queried by the application.

RETURN VALUES

The following return values can occur:

0 A new session was negotiated.

1 A session was reused.

SEE ALSO

ssl(3), SSL_set_session(3), SSL_CTX_set_session_cache_mode(3)

1672

OpenSSL Manual

Name
SSL_set_bio — connect the SSL object with a BIO

Synopsis
#include <openssl/ssl.h>

void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio);

DESCRIPTION

SSL_set_bio() connects the BIOs rbio and wbio for the read and write operations of the TLS/SSL (encrypted) side of ssl.

The SSL engine inherits the behaviour of rbio and wbio, respectively. If a BIO is non-blocking, the ssl will also have non-
blocking behaviour.

If there was already a BIO connected to ssl, BIO_free() will be called (for both the reading and writing side, if different).

RETURN VALUES

SSL_set_bio() cannot fail.

SEE ALSO

SSL_get_rbio(3), SSL_connect(3), SSL_accept(3), SSL_shutdown(3), ssl(3), bio(3)

1673

OpenSSL Manual

Name
SSL_set_connect_state and SSL_get_accept_state — prepare SSL object to work in client or server mode

Synopsis
#include <openssl/ssl.h>

void SSL_set_connect_state(SSL *ssl);

void SSL_set_accept_state(SSL *ssl);

DESCRIPTION

SSL_set_connect_state() sets ssl to work in client mode.

SSL_set_accept_state() sets ssl to work in server mode.

NOTES

When the SSL_CTX object was created with SSL_CTX_new(3), it was either assigned a dedicated client method, a dedicated
server method, or a generic method, that can be used for both client and server connections. (The method might have been
changed with SSL_CTX_set_ssl_version(3) or SSL_set_ssl_method().)

When beginning a new handshake, the SSL engine must know whether it must call the connect (client) or accept (server)
routines. Even though it may be clear from the method chosen, whether client or server mode was requested, the handshake
routines must be explicitly set.

When using the SSL_connect(3) or SSL_accept(3) routines, the correct handshake routines are automatically set. When
performing a transparent negotiation using SSL_write(3) or SSL_read(3), the handshake routines must be explicitly set in
advance using either SSL_set_connect_state() or SSL_set_accept_state().

RETURN VALUES

SSL_set_connect_state() and SSL_set_accept_state() do not return diagnostic information.

SEE ALSO

ssl(3), SSL_new(3), SSL_CTX_new(3), SSL_connect(3), SSL_accept(3), SSL_write(3), SSL_read(3), SSL_do_handshake(3),
SSL_CTX_set_ssl_version(3)

1674

OpenSSL Manual

Name
SSL_set_fd — connect the SSL object with a file descriptor

Synopsis
#include <openssl/ssl.h>

int SSL_set_fd(SSL *ssl, int fd);
int SSL_set_rfd(SSL *ssl, int fd);
int SSL_set_wfd(SSL *ssl, int fd);

DESCRIPTION

SSL_set_fd() sets the file descriptor fd as the input/output facility for the TLS/SSL (encrypted) side of ssl. fd will typically
be the socket file descriptor of a network connection.

When performing the operation, a socket BIO is automatically created to interface between the ssl and fd. The BIO and hence
the SSL engine inherit the behaviour of fd. If fd is non-blocking, the ssl will also have non-blocking behaviour.

If there was already a BIO connected to ssl, BIO_free() will be called (for both the reading and writing side, if different).

SSL_set_rfd() and SSL_set_wfd() perform the respective action, but only for the read channel or the write channel, which can
be set independently.

RETURN VALUES

The following return values can occur:

0 The operation failed. Check the error stack to find out why.

1 The operation succeeded.

SEE ALSO

SSL_get_fd(3), SSL_set_bio(3), SSL_connect(3), SSL_accept(3), SSL_shutdown(3), ssl(3) , bio(3)

1675

OpenSSL Manual

Name
SSL_set_session — set a TLS/SSL session to be used during TLS/SSL connect

Synopsis
#include <openssl/ssl.h>

int SSL_set_session(SSL *ssl, SSL_SESSION *session);

DESCRIPTION

SSL_set_session() sets session to be used when the TLS/SSL connection is to be established. SSL_set_session() is only useful
for TLS/SSL clients. When the session is set, the reference count of session is incremented by 1. If the session is not reused,
the reference count is decremented again during SSL_connect(). Whether the session was reused can be queried with the
SSL_session_reused(3) call.

If there is already a session set inside ssl (because it was set with SSL_set_session() before or because the same ssl was already
used for a connection), SSL_SESSION_free() will be called for that session.

NOTES

SSL_SESSION objects keep internal link information about the session cache list, when being inserted into one SSL_CTX
object's session cache. One SSL_SESSION object, regardless of its reference count, must therefore only be used with one
SSL_CTX object (and the SSL objects created from this SSL_CTX object).

RETURN VALUES

The following return values can occur:

0 The operation failed; check the error stack to find out the reason.

1 The operation succeeded.

SEE ALSO

ssl(3), SSL_SESSION_free(3), SSL_get_session(3), SSL_session_reused(3), SSL_CTX_set_session_cache_mode(3)

1676

OpenSSL Manual

Name
SSL_set_shutdown and SSL_get_shutdown — manipulate shutdown state of an SSL connection

Synopsis
#include <openssl/ssl.h>

void SSL_set_shutdown(SSL *ssl, int mode);

int SSL_get_shutdown(const SSL *ssl);

DESCRIPTION

SSL_set_shutdown() sets the shutdown state of ssl to mode.

SSL_get_shutdown() returns the shutdown mode of ssl.

NOTES

The shutdown state of an ssl connection is a bitmask of:

0

No shutdown setting, yet.

SSL_SENT_SHUTDOWN

A "close notify" shutdown alert was sent to the peer, the connection is being considered closed and the session is closed
and correct.

SSL_RECEIVED_SHUTDOWN

A shutdown alert was received form the peer, either a normal "close notify" or a fatal error.

SSL_SENT_SHUTDOWN and SSL_RECEIVED_SHUTDOWN can be set at the same time.

The shutdown state of the connection is used to determine the state of the ssl session. If the session is still open, when
SSL_clear(3) or SSL_free(3) is called, it is considered bad and removed according to RFC2246. The actual condition for a
correctly closed session is SSL_SENT_SHUTDOWN (according to the TLS RFC, it is acceptable to only send the "close
notify" alert but to not wait for the peer's answer, when the underlying connection is closed). SSL_set_shutdown() can be used
to set this state without sending a close alert to the peer (see SSL_shutdown(3)).

If a "close notify" was received, SSL_RECEIVED_SHUTDOWN will be set, for setting SSL_SENT_SHUTDOWN the
application must however still call SSL_shutdown(3) or SSL_set_shutdown() itself.

RETURN VALUES

SSL_set_shutdown() does not return diagnostic information.

SSL_get_shutdown() returns the current setting.

SEE ALSO

ssl(3), SSL_shutdown(3), SSL_CTX_set_quiet_shutdown(3), SSL_clear(3), SSL_free(3)

1677

OpenSSL Manual

Name
SSL_set_verify_result — override result of peer certificate verification

Synopsis
#include <openssl/ssl.h>

void SSL_set_verify_result(SSL *ssl, long verify_result);

DESCRIPTION

SSL_set_verify_result() sets verify_result of the object ssl to be the result of the verification of the X509 certificate presented
by the peer, if any.

NOTES

SSL_set_verify_result() overrides the verification result. It only changes the verification result of the ssl object. It does not
become part of the established session, so if the session is to be reused later, the original value will reappear.

The valid codes for verify_result are documented in verify(1).

RETURN VALUES

SSL_set_verify_result() does not provide a return value.

SEE ALSO

ssl(3), SSL_get_verify_result(3), SSL_get_peer_certificate(3), verify(1)

1678

OpenSSL Manual

Name
SSL_shutdown — shut down a TLS/SSL connection

Synopsis
#include <openssl/ssl.h>

int SSL_shutdown(SSL *ssl);

DESCRIPTION

SSL_shutdown() shuts down an active TLS/SSL connection. It sends the "close notify" shutdown alert to the peer.

NOTES

SSL_shutdown() tries to send the "close notify" shutdown alert to the peer. Whether the operation succeeds or not, the
SSL_SENT_SHUTDOWN flag is set and a currently open session is considered closed and good and will be kept in the session
cache for further reuse.

The shutdown procedure consists of 2 steps: the sending of the "close notify" shutdown alert and the reception of the peer's
"close notify" shutdown alert. According to the TLS standard, it is acceptable for an application to only send its shutdown alert
and then close the underlying connection without waiting for the peer's response (this way resources can be saved, as the process
can already terminate or serve another connection). When the underlying connection shall be used for more communications,
the complete shutdown procedure (bidirectional "close notify" alerts) must be performed, so that the peers stay synchronized.

SSL_shutdown() supports both uni- and bidirectional shutdown by its 2 step behaviour.

• When the application is the first party to send the "close notify" alert, SSL_shutdown() will only send the alert and then
set the SSL_SENT_SHUTDOWN flag (so that the session is considered good and will be kept in cache). SSL_shutdown()
will then return with 0. If a unidirectional shutdown is enough (the underlying connection shall be closed anyway), this first
call to SSL_shutdown() is sufficient. In order to complete the bidirectional shutdown handshake, SSL_shutdown() must be
called again. The second call will make SSL_shutdown() wait for the peer's "close notify" shutdown alert. On success, the
second call to SSL_shutdown() will return with 1.

• If the peer already sent the "close notify" alert and it was already processed implicitly inside another function
(SSL_read(3)), the SSL_RECEIVED_SHUTDOWN flag is set. SSL_shutdown() will send the "close notify" alert, set the
SSL_SENT_SHUTDOWN flag and will immediately return with 1. Whether SSL_RECEIVED_SHUTDOWN is already
set can be checked using the SSL_get_shutdown() (see also SSL_set_shutdown(3) call.

It is therefore recommended, to check the return value of SSL_shutdown() and call SSL_shutdown() again, if the bidirectional
shutdown is not yet complete (return value of the first call is 0). As the shutdown is not specially handled in the SSLv2 protocol,
SSL_shutdown() will succeed on the first call.

The behaviour of SSL_shutdown() additionally depends on the underlying BIO.

If the underlying BIO is blocking, SSL_shutdown() will only return once the handshake step has been finished or an error
occurred.

If the underlying BIO is non-blocking, SSL_shutdown() will also return when the underlying BIO could not satisfy the needs
of SSL_shutdown() to continue the handshake. In this case a call to SSL_get_error() with the return value of SSL_shutdown()
will yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. The calling process then must repeat the call
after taking appropriate action to satisfy the needs of SSL_shutdown(). The action depends on the underlying BIO. When
using a non-blocking socket, nothing is to be done, but select() can be used to check for the required condition. When using a
buffering BIO, like a BIO pair, data must be written into or retrieved out of the BIO before being able to continue.

SSL_shutdown() can be modified to only set the connection to "shutdown" state but not actually send the "close notify" alert
messages, see SSL_CTX_set_quiet_shutdown(3). When "quiet shutdown" is enabled, SSL_shutdown() will always succeed
and return 1.

1679

OpenSSL Manual

RETURN VALUES

The following return values can occur:

0 The shutdown is not yet finished. Call SSL_shutdown() for a second time, if a bidirectional shutdown shall be performed.
The output of SSL_get_error(3) may be misleading, as an erroneous SSL_ERROR_SYSCALL may be flagged even
though no error occurred.

1 The shutdown was successfully completed. The "close notify" alert was sent and the peer's "close notify" alert was
received.

-1 The shutdown was not successful because a fatal error occurred either at the protocol level or a connection failure occurred.
It can also occur if action is need to continue the operation for non-blocking BIOs. Call SSL_get_error(3) with the return
value ret to find out the reason.

SEE ALSO

SSL_get_error(3), SSL_connect(3), SSL_accept(3), SSL_set_shutdown(3), SSL_CTX_set_quiet_shutdown(3), SSL_clear(3),
SSL_free(3), ssl(3), bio(3)

1680

OpenSSL Manual

Name
SSL_state_string and SSL_state_string_long — get textual description of state of an SSL object

Synopsis
#include <openssl/ssl.h>

const char *SSL_state_string(const SSL *ssl);
const char *SSL_state_string_long(const SSL *ssl);

DESCRIPTION

SSL_state_string() returns a 6 letter string indicating the current state of the SSL object ssl.

SSL_state_string_long() returns a string indicating the current state of the SSL object ssl.

NOTES

During its use, an SSL objects passes several states. The state is internally maintained. Querying the state information is not very
informative before or when a connection has been established. It however can be of significant interest during the handshake.

When using non-blocking sockets, the function call performing the handshake may return with SSL_ERROR_WANT_READ
or SSL_ERROR_WANT_WRITE condition, so that SSL_state_string[_long]() may be called.

For both blocking or non-blocking sockets, the details state information can be used within the info_callback function set with
the SSL_set_info_callback() call.

RETURN VALUES

Detailed description of possible states to be included later.

SEE ALSO

ssl(3), SSL_CTX_set_info_callback(3)

1681

OpenSSL Manual

Name
SSL_want, SSL_want_nothing, SSL_want_read, SSL_want_write and SSL_want_x509_lookup — obtain state information
TLS/SSL I/O operation

Synopsis
#include <openssl/ssl.h>

int SSL_want(const SSL *ssl);
int SSL_want_nothing(const SSL *ssl);
int SSL_want_read(const SSL *ssl);
int SSL_want_write(const SSL *ssl);
int SSL_want_x509_lookup(const SSL *ssl);

DESCRIPTION

SSL_want() returns state information for the SSL object ssl.

The other SSL_want_*() calls are shortcuts for the possible states returned by SSL_want().

NOTES

SSL_want() examines the internal state information of the SSL object. Its return values are similar to that of SSL_get_error(3).
Unlike SSL_get_error(3), which also evaluates the error queue, the results are obtained by examining an internal state flag only.
The information must therefore only be used for normal operation under non-blocking I/O. Error conditions are not handled
and must be treated using SSL_get_error(3).

The result returned by SSL_want() should always be consistent with the result of SSL_get_error(3).

RETURN VALUES

The following return values can currently occur for SSL_want():

SSL_NOTHING

There is no data to be written or to be read.

SSL_WRITING

There are data in the SSL buffer that must be written to the underlying BIO layer in order to complete the actual SSL_*()
operation. A call to SSL_get_error(3) should return SSL_ERROR_WANT_WRITE.

SSL_READING

More data must be read from the underlying BIO layer in order to complete the actual SSL_*() operation. A call to
SSL_get_error(3) should return SSL_ERROR_WANT_READ.

SSL_X509_LOOKUP

The operation did not complete because an application callback set by SSL_CTX_set_client_cert_cb() has asked to be
called again. A call to SSL_get_error(3) should return SSL_ERROR_WANT_X509_LOOKUP.

SSL_want_nothing(), SSL_want_read(), SSL_want_write(), SSL_want_x509_lookup() return 1, when the corresponding
condition is true or 0 otherwise.

SEE ALSO

ssl(3), err(3), SSL_get_error(3)

1682

OpenSSL Manual

Name
SSL_write — write bytes to a TLS/SSL connection.

Synopsis
#include <openssl/ssl.h>

int SSL_write(SSL *ssl, const void *buf, int num);

DESCRIPTION

SSL_write() writes num bytes from the buffer buf into the specified ssl connection.

NOTES

If necessary, SSL_write() will negotiate a TLS/SSL session, if not already explicitly performed by SSL_connect(3) or
SSL_accept(3). If the peer requests a re-negotiation, it will be performed transparently during the SSL_write() operation. The
behaviour of SSL_write() depends on the underlying BIO.

For the transparent negotiation to succeed, the ssl must have been initialized to client or server mode. This is being done by
calling SSL_set_connect_state(3) or SSL_set_accept_state() before the first call to an SSL_read(3) or SSL_write() function.

If the underlying BIO is blocking, SSL_write() will only return, once the write operation has been finished or an error occurred,
except when a renegotiation take place, in which case a SSL_ERROR_WANT_READ may occur. This behaviour can be
controlled with the SSL_MODE_AUTO_RETRY flag of the SSL_CTX_set_mode(3) call.

If the underlying BIO is non-blocking, SSL_write() will also return, when the underlying BIO could not satisfy the needs
of SSL_write() to continue the operation. In this case a call to SSL_get_error(3) with the return value of SSL_write() will
yield SSL_ERROR_WANT_READ or SSL_ERROR_WANT_WRITE. As at any time a re-negotiation is possible, a call
to SSL_write() can also cause read operations! The calling process then must repeat the call after taking appropriate action to
satisfy the needs of SSL_write(). The action depends on the underlying BIO. When using a non-blocking socket, nothing is to
be done, but select() can be used to check for the required condition. When using a buffering BIO, like a BIO pair, data must
be written into or retrieved out of the BIO before being able to continue.

SSL_write() will only return with success, when the complete contents of buf of length num has been written. This default
behaviour can be changed with the SSL_MODE_ENABLE_PARTIAL_WRITE option of SSL_CTX_set_mode(3). When this
flag is set, SSL_write() will also return with success, when a partial write has been successfully completed. In this case the
SSL_write() operation is considered completed. The bytes are sent and a new SSL_write() operation with a new buffer (with
the already sent bytes removed) must be started. A partial write is performed with the size of a message block, which is 16kB
for SSLv3/TLSv1.

WARNING

When an SSL_write() operation has to be repeated because of SSL_ERROR_WANT_READ or
SSL_ERROR_WANT_WRITE, it must be repeated with the same arguments.

When calling SSL_write() with num=0 bytes to be sent the behaviour is undefined.

RETURN VALUES

The following return values can occur:

>0 The write operation was successful, the return value is the number of bytes actually written to the TLS/SSL connection.

0 The write operation was not successful. Probably the underlying connection was closed. Call SSL_get_error()
with the return value ret to find out, whether an error occurred or the connection was shut down cleanly
(SSL_ERROR_ZERO_RETURN).

SSLv2 (deprecated) does not support a shutdown alert protocol, so it can only be detected, whether the underlying
connection was closed. It cannot be checked, why the closure happened.

1683

OpenSSL Manual

<0 The write operation was not successful, because either an error occurred or action must be taken by the calling process.
Call SSL_get_error() with the return value ret to find out the reason.

SEE ALSO

SSL_get_error(3), SSL_read(3), SSL_CTX_set_mode(3), SSL_CTX_new(3), SSL_connect(3),
SSL_accept(3)SSL_set_connect_state(3), ssl(3), bio(3)

1684

Part XLVIII. Mbed TLS

Table of Contents
180. Mbed TLS overview ... 1687

Introduction .. 1687
181. Configuration .. 1691

Configuration Overview ... 1691
Quick Start .. 1691

182. eCos port .. 1692
Overview ... 1692
Entropy ... 1692

183. Test Programs ... 1694
Test Programs .. 1694

1686

Chapter 180. Mbed TLS overview
Introduction
The CYGPKG_MBEDTLS package provides a standard Mbed TLS world to eCos applications.

This package is covered by the Apache 2.0 license as distributed in the original Mbed TLS package:

Example 180.1. Apache 2.0 License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the

1687

Mbed TLS overview

 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

1688

Mbed TLS overview

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

1689

Mbed TLS overview

For definitive Mbed TLS documentation please refer to the main Mbed TLS Dev Corner website. We do not duplicate that
documentation here.

Mbed TLS is now part of Trusted Firmware. The Trusted Firmware Mbed TLS wiki providing a useful overview.

1690

https://tls.mbed.org/dev-corner
https://www.trustedfirmware.org/projects/mbed-tls/
https://developer.trustedfirmware.org/w/mbed-tls/

Chapter 181. Configuration
This chapter shows how to incorporate the Mbed TLS support into an eCos configuration, and how to configure it once included.

Configuration Overview
The Mbed TLS support is contained in a single eCos package CYGPKG_MBEDTLS. However, some functionality is dependant
on other eCos features. e.g. the eCos networking stack support.

Quick Start
Incorporating the Mbed TLS support into your application is straightforward. The essential starting point is to incorporate the
Mbed TLS eCos package (CYGPKG_MBEDTLS) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Depending on the Mbed TLS package configuration other packages may be required (e.g. network stack support). The package
requires that the CYGPKG_INFRA and CYGPKG_MEMALLOC packages are included in the eCos application configuration.

1691

Chapter 182. eCos port
Overview
The goal for the CYGPKG_MBEDTLS package is to avoid where possible having to have any core Mbed TLS source file changes
made specifically for eCos. This is to ensure that re-imports of newer versions of the Mbed TLS world involve minimal effort.
The files are as provided in the official Mbed TLS release package as imported, with the following exceptions:

1. Files have been moved, unmodified, to create a standard eCos package tree structure to integrate with the eCosPro build
environment

2. The files src/platform.c, include/platform.h and include/config.h have changes to allow compilation
as an eCos package

3. The file src/ecos_net_sockets.c provides the internal Mbed TLS network API (as originally provided by src/
net_sockets.c) to support the eCos network stacks (e.g. CYGPKG_NET_LWIP or CYGPKG_NET_FREEBSD_S-
TACK).

4. The file tests/selftest.c has been modified with some eCos specific code to allow use in the eCos automated test
farm. The core of the selftest functionality is unchanged however

The current Mbed TLS version provided by the eCos package is 2.28.7 (with 2.28 being a Long Term Support (LTS)
release supported until at least 2024Q4). Please read the package ChangeLog file for the original Mbed TLS release notes
which are interleaved with the commments covering eCosCentric changes.

Entropy
Cryptographic security is dependent on the use of strong keys. Strong keys are dependent on the quality of entropy used in
their generation.

The eCosPro port of Mbed TLS provides both a default portable weak entropy mechanism, and the ability to implement a
target platform specific mechanism to gather high-quality entropy.

We strongly recommend that you use as high a quality source of entropy as possible when using Mbed TLS on your target
platform. The use of the generic weak entropy mechanism (provided by MBEDTLS_TIMING_C) is NOT recommended for
anything other than simplifying initial bring-up and testing.

For eCos we define MBEDTLS_ENTROPY_HARDWARE_ALT for the configuration (in include/mbedtls/config.h)
since the default Mbed TLS platform entropy implementation is Un*x/Windows only. The use of MBEDTLS_EN-
TROPY_HARDWARE_ALT provides for a link-time entropy source to be provided by the platform support. Other entropy
sources are dynamically added at runtime via the mbedtls_entropy_add_source() functionality.

Note

In the following weak refers to the linker preference when linking an application and not to a weak entropy source.

The Mbed TLS package src/platform.c source file provides a weak function definition for the mbedtls_hard-
ware_poll() implementation that will return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED since we expect the plat-
form support or application code to provide a cryptographically strong implementation. Ideally such an implementation will
use TRNG (True Random Number Generator) hardware support by the HAL, variant, architecture, etc. as appropriate.

The function prototype:

#include <mbedtls/entropy_poll.h>

int mbedtls_hardware_poll(data, output, len, olen);

1692

eCos port

conforms to the entropy provision API for routines declared via the mbedtls_entropy_add_source() API (in fact the
Mbed TLS run-time will add mbedtls_hardware_poll() automatically via that mechanism).

The callback specific (context data pointer) parameter data will normally be NULL for the Mbed TLS registered implemen-
tation. The output parameter references a buffer of at least len bytes to receive random data. The olen pointer is filled
by the function to report the number of valid bytes actually written, and may be 0 (zero) if the function is not able to sat-
isfy the request for true random data. The function should return 0 to indicate no errors occurred, or MBEDTLS_ERR_EN-
TROPY_SOURCE_FAILED on error.

As an example of a platform specific implementation, the STM32 port of eCos provides an Mbed TLS entropy source based
on the STM32's RNG hardware.

1693

Chapter 183. Test Programs
Test Programs
Some Mbed TLS specific tests are built and can be used to verify correct operation of the Mbed TLS library.

1. selftest

This test executes the internal Mbed TLS sanity tests to verify correct operation of the various features.

2. cpp_dummy_build

This is a simple sanity test that the Mbed TLS headers can be included in C++ compilations.

3. lb_ssl

When an eCos network configuration is available (lwIP or FreeBSD) then this test will perform a client/server local loopback
SSL connection using certificates. This is a complete test of a secure HTTPS connection using BSD style sockets. To make
it easier to work with either the client or the server side the source for the test is split into multiple files, with the client
and server side implementations being in their own source files. The relevant client and server side sources are, lightly
modified for eCos, versions of the original Mbed TLS source files found respectively in mbedtls-mbedtls-2.28.5/
programs/ssl/ssl_client1.c and mbedtls-mbedtls-2.28.5/programs/ssl/ssl_server.c.

The following is example output from a run of the test:

Example 183.1. lb_ssl test run

INFO:<code from 0x60000008 -> 0x6006d524, CRC 601c>
INFO:<SSL certificate based connection test using mbedTLS v2.24.0>
INFO:<Target time OK for X.509 verification>
INFO:<Initialising network interfaces>
lwIP i/f[e0] (default): (hwaddr 12:34:DA:A5:69:F9) IP 192.168.1.226
lwIP i/f driver state NOT initialised
lwIP i/f[lo]: (No hwaddr) IP 127.0.0.1
INFO:<Waiting for server to start>

 . Loading the server cert. and key... ok
 . Bind on https://localhost:4433/ ... ok
 . Seeding the random number generator... ok
 . Setting up the SSL data.... ok
 . Waiting for a remote connection ...
 . Seeding the random number generator... ok
 . Loading the CA root certificate ... ok (0 skipped)
 . Connecting to tcp/localhost/4433... ok
 . Performing the SSL/TLS handshake... ok
 . Setting up the SSL/TLS structure... ok
 . Performing the SSL/TLS handshake... ok
 < Read from client: ok
 . Verifying peer X.509 certificate... ok
 > Write to server: 18 bytes read

GET / HTTP/1.0

 > Write to client: 156 bytes written

HTTP/1.0 200 OK
Content-Type: text/html

<h2>mbed TLS Test Server</h2>
<p>Successful connection using: TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256</p>

 . Closing the connection... ok
 . Waiting for a remote connection ... 18 bytes written

GET / HTTP/1.0

1694

Test Programs

 < Read from server: 156 bytes read

HTTP/1.0 200 OK
Content-Type: text/html

<h2>mbed TLS Test Server</h2>
<p>Successful connection using: TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256</p>
PASS:<SSL certificate based client/server test>
PASS:<Done>
EXIT:<done>

1695

Part XLIX. eCosPro-SecureShell
Important

eCosPro-SecureShell is distributed as an optional set of eCos add-on packages that may not be included in your
release of eCosPro. If these packages are not listed in either the graphical or command line eCos Configuration
tool, please contact eCosCentric for availability and pricing.

Name
CYGPKG_NET_DROPBEAR — provide ssh support

Description

Note

The eCosPro-SecureShell package is the formal product name of the eCos Dropbear Port and the two can be used
interchangeably to refer to this package.

CYGPKG_NET_DROPBEAR is a port to eCos of some of the ssh functionality of the dropbear code. It supports the following:

1. Server support. This allows remote clients to log in to an eCos system and run commands. Of course eCos does not have
a full-blown shell and the ability to run arbitrary commands loaded from disk. Instead the ssh connection is passed on to
functions within the application code which can read the data coming from the remote ssh client and take appropriate action.
The package ships with two examples: a simple shell-like application and an interactive game.

2. Client support. This allows the eCos application to establish a secure connection to a remote server, for example a PC
running Linux and openssh, run a command on that server, and interact with that command.

3. Client-side scp support. This builds on the generic client support. It allows eCos applications to read and write files on a
remote server over a secure connection.

The port only provides a core subset of the standard dropbear functionality. For example more advanced features like agent
forwarding and X11 forwarding are not supported because those would add significantly to the overhead and complexity of
the code, and would rarely be used in practice.

Ssh secure communication comes at a price. Depending on the architecture it will typically add 100-200K to the application's
code size. The data requirements are considerable, including a need for 32K data buffers and multiple threads. The code will
require a lot of cpu cycles. A typical embedded processor running eCos is much slower than the typical cpu of a desktop PC, and
the dropbear code will take correspondingly longer to perform a given operation. Establishing an ssh connection is especially
expensive and may take some seconds or even tens of seconds of cpu time. Once the connection has been established the cpu
overheads are lower, but still significant. Finally the dropbear code makes extensive demands on the lower-level TCP/IP and
I/O layers and various configuration options in those layers may need adjusting, as described below.

Configuration
The eCos dropbear port is intended to work in conjunction with the full BSD TCP/IP package and has numerous dependencies.
Most of these can be satisfied simply by creating the eCos configuration using the net template. The dropbear package has
additional dependencies on the LibTomMath multi-precision arithmetic package CYGPKG_MATH_LIBTOMMATH and the
LibTomCrypt cryptography library CYGPKG_CRYPT_LIBTOMCRYPT, so those packages will have to be added explicitly to
the configuration alongside CYGPKG_NET_DROPBEAR.

Usually the dropbear code depends on the presence of a file system for holding public and private keys and other data. In the
eCos port this dependency has been eliminated and no file system is required. Instead all the required data is embedded directly
in the eCos application and passed to the dropbear code as function arguments.

Ssh connections impose considerable demands on the lower-level TCP/IP and I/O layers, and various configuration options
in those layers may need adjusting from their small default values. For example each outgoing ssh connection involves five
sockets, plus one statically allocated socket shared between all connections. By default the file I/O package only supports 16
open file descriptors, three of which are used for stdin/stdout/stderr and some of the remainder may be used by other packages
like DNS. That should leave enough free file descriptors for one or two ssh connections, but only if the application does
not use them for other networking or file I/O activities. Increasing the configuration options CYGNUM_FILEIO_NFD and
CYGNUM_FILEIO_NFILE would avoid problems in this area.

When it comes to the TCP/IP stack, the first option to consider is CYGPKG_NET_MAXSOCKETS. Closing down a
network connection does not immediately free all resources associated with that connection because it is necessary
to synchronize with the other end and make sure that that will not send any more packets. Hence if the application

1697

http://matt.ucc.asn.au/dropbear/dropbear.html

eCos Dropbear Port

attempts multiple ssh connections in quick succession then the TCP/IP stack may run out socket resources. Increasing
CYGPKG_NET_MAXSOCKETS avoids this problem. If the connections involve large amount of data then it may also be
necessary to increase CYGPKG_NET_MEMPOOL_SIZE.

Port
Porting dropbear to eCos involved non-trivial modifications to the source code. The package's src subdirectory corresponds to
the contents of a standard dropbear tarball. New files ecosmain.c, ecos.h and config.h have been added, and various
existing files have had to be modified. A CDL script, documentation and an example application have been added to the
appropriate package subdirectories, and a new header dropbear.h has been written to export the API provided by the eCos
port. Two example server-side applications can be found in the package's misc subdirectory, and testcases can be found in
the tests subdirectory.

1698

Name
Dropbear — Ssh daemon support

Synopsis
#include <dropbear.h> extern int cyg_dropbear_connections;

void cyg_dropbear_init(data);

void cyg_dropbear_done(handle, exit_code);

int cyg_dropbear_get_stderr(handle);

const char* cyg_dropbear_get_username(handle);

const struct sockaddr_storage* cyg_dropbear_get_addr(handle);

Description
This document assumes the reader has a basic understanding of both ssh operation and of TCP/IP network programming.
Information on both of these can be readily obtained from other sources. The eCos port of dropbear does behave rather
differently from dropbear or other ssh implementations in a conventional setup such as a network of Linux workstations. eCos
does not support multiple processes or shell executables. The dropbear code runs in separate threads within the eCos application,
started by a call to cyg_dropbear_init, rather than as a separate daemon process. Authentication does not involve reading
in files such as ~/.ssh/authorized_keys2 or /etc/passwd. Instead the application developer has to write a number
of callback functions to supply the necessary information and can decide how best to implement those functions - which may
involve file I/O if that happens to be convenient. When an ssh connection is established the dropbear code will not start up a
new shell process inside a pseudo terminal. Instead the dropbear code will create a local TCP/IP socket and pass one end of this
to the application. Data coming from the network will be decrypted and sent down the local socket, to be read by application
code. Data written by the application to the local socket will be encrypted and sent over the network to the ssh client.

The eCos dropbear package comes with two working examples in the misc/hangman and misc/shell directories which
should be examined in conjunction with this documentation.

API
The internals of the dropbear code are not directly accessible to application code. Instead dropbear runs in a number of internal
threads, interacting with the application via local TCP/IP sockets and a number of callback functions.

Initialization

The main entry point to dropbear functionality is the function cyg_dropbear_init. This should be called by the application
when the dropbear code can start running, any time after the network connection has been activated. It takes a single argument,
a pointer to a cyg_dropbear_data data structure. That structure should be filled in by the application with information needed
by the dropbear code, including pointers to various callback functions.

typedef struct cyg_dropbear_data {
 const char* db_rsa_private_host_key;
 int db_rsa_private_host_keylen;
 const char* db_dss_private_host_key;
 int db_dss_private_host_keylen;
 cyg_bool (*db_accept_connection)(struct sockaddr_storage*);
 void (*db_connected)(int, cyg_dropbear_handle);
 void (*db_get_public_keys)(char*, char*,
 struct sockaddr_storage*, char **);
 void (*db_free_public_keys)(char**);
 cyg_bool (*db_authenticate_password)(char*,
 struct sockaddr_storage *, char*);
 void (*db_logger)(const char*, va_list);
} cyg_dropbear_data;

1699

Dropbear Ssh Daemon

The cyg_dropbear_data structure will be accessed regularly by the dropbear code so must not be overwritten or freed
by the application. Typically it will be statically allocated.

The initialization function will start the main dropbear thread, running at configurable priority
CYGNUM_NET_DROPBEAR_THREAD_PRI. This thread will initialize the dropbear package. It will then bind to the
desired TCP/IP port on address INADDR_ANY. The default port is 22 as per ssh but this can be changed via
CYGNUM_NET_DROPBEAR_NETWORK_PORT. The thread will accept new connections from remote clients and start a
separate worker thread for each connection, again running at priority CYGNUM_NET_DROPBEAR_THREAD_PRI. Usually
the main dropbear thread will also assist with setting up the local connection. cyg_dropbear_init will return once the
main thread has been started.

Host Keys

As an ssh daemon the dropbear code requires a private host key. This can be either a DSS key or an RSA key, but preferably
both should be supplied. Private keys can be generated using the dropbearkey host utility. The host key is used primarily by
clients to uniquely identify a given machine, in conjunction with the ~/.ssh/known_hosts file.

The application should supply one or two host keys via the db_rsa_private_host_key,
db_rsa_private_host_keylen, db_dss_private_host_key and db_dss_private_host_keylen fields
of the cyg_dropbear_data structure passed to cyg_dropbear_init.

Conventional ssh usage dictates that all units should have unique private host keys. That implies that the host keys are held
in a file system or in non-volatile flash memory and customized on a per-unit basis. Generating new host keys on startup is
undesirable because it would result in different keys after every reboot, defeating the purpose of the known_hosts file. In
practice it may be acceptable to use a single set of host keys for all units, but it is up to the application developer to consider
the security implications.

New Connections Callback

When the main dropbear thread accepts a new ssh connection from the network it will start a new worker thread to handle that
connection. Before any data is exchanged over the TCP/IP socket the worker thread will call back into the application so that
the latter can decide whether or not a new connection should be accepted at this time.

cyg_bool
application_accept_connection_callback(struct sockaddr_storage* addr)
{
 …
}

A pointer to this callback function should be stored in the db_accept_connection field of the cyg_dropbear_data
structure passed to cyg_dropbear_init. The callback's argument is the address of the connecting client. Typically this
will be an IPv4 sockaddr_in address but the ss_family field of the sockaddr_storage structure should be checked. The
client's address can be used to restrict incoming connections to certain networks or even to individual hosts. This offers some
increased security along similar lines to a firewall, albeit only for ssh traffic, but it may cause problems in future if it ever
becomes necessary to access the unit from a different network or host.

Another common use for the new connections callback is to limit the number of concurrent connections, and thus limit the
resources consumed. To facilitate this the dropbear code exports an integer cyg_dropbear_connections which holds
the current number of client connections.

The callback should return zero if the new connection should be declined, non-zero if the dropbear code should proceed with
key exchange and authentication.

The use of a new connection callback is optional. If the application does not want to perform any checks at this time then it
can use a NULL pointer for the db_accept_connection field.

Key Authentication Callback

After the new connections callback the dropbear worker thread will engage in a key exchange with the client. This allows the
client to verify information in the known_hosts file with the daemon's private host key or keys. The exchange also involves

1700

Dropbear Ssh Daemon

negotiating a mutually acceptable encryption protocol and deciding what user authentication mechanisms are supported. The
eCos dropbear daemon supports public/private key authentication and password authentication.

For public/private key authentication the client will generate a message using the private key, and the daemon can validate this
message using the public key. In a conventional ssh setup the public keys come from a file ~/.ssh/authorized_keys
or ~/.ssh/authorized_keys2, but the eCos dropbear port does not assume the presence of a file system. Instead it is
the application's responsibility to provide the public keys, and a callback mechanism is used.

void
application_get_public_keys(char* algo,
 char* username,
 struct sockaddr_storage* addr,
 char** keys)
{
 …
}

void
application_free_public_keys(char** keys)
{
 …
}

Pointers to these callback functions should be stored in the db_get_public_keys and db_free_public_keys fields
of the cyg_dropbear_data structure passed to cyg_dropbear_init. The first argument to the get_public_keys callback
identifies the type of key, usually ssh-dss or ssh-rsa. The second and third arguments supply the user name and the
client's network address. Together these three arguments can be used to restrict which public keys are supplied to the dropbear
code for validation. Strictly this is optional since the public keys for e.g. a different user are not going to match anyway, but
the validation requires significant cpu cycles.

The fourth argument points at a static array of up to CYGNUM_NET_DROPBEAR_MAXIMUM_PUBLIC_KEYS entries. This
array will be initialized to NULL pointers. The get_public_keys callback should fill in zero or more array entries with pointers to
public key strings. These strings may be statically or dynamically allocated. In case of the latter, the free_public_keys callback
will be invoked to release the memory when the validation has finished.

Within the dropbear code a mutex is used to ensure that only one worker thread at a time will attempt public key authentication.
Hence the callback functions can assume that there will be only one call to get_public_keys at a time and that free_public_keys
will be called before the next get_public_keys. This allows the callbacks to use static data with no need for additional locking.

Support for public/private key authentication is optional. If the application is only interested in password authentication then it
can use a NULL pointer for the db_get_public_keys field. If all public keys are statically allocated then a NULL pointer
can be used for db_free_public_keys field.

Password Authentication Callback

If public/private key authentication fails then the dropbear code can support password authentication instead. The ssh client will
encrypt the password before sending it over the wires. The dropbear code will decrypt it and will pass the plain text password
to an application callback for verification.

cyg_bool
application_authenticate_password(char* username,
 struct sockaddr_storage* addr,
 char* password)
{
 …
}

A pointer to this callback function should be stored in the db_authenticate_password field of the cyg_dropbear_data
structure passed to cyg_dropbear_init. It is up to the application developer to decide how to validate the password. A
very simple approach would just involve comparing it with a constant string. However that approach is not very secure: if
there is any way to read the unit's memory directly, for example via jtag debug hardware, then it will be possible to extract
the password directly from memory. A more advanced approach would involve encryption, for example using much the same
techniques as for a Unix /etc/passwd file.

1701

Dropbear Ssh Daemon

Support for password authentication is optional and can be disabled simply by not supplying the callback function.

Connected Callback

In a conventional ssh environment, once authentication has succeeded the daemon will open a pseudo tty, fork a new process,
and start a shell running in that process. eCos does not have pseudo ttys, processes, or shells, so a different approach is needed.
The dropbear worker thread for this ssh session will establish a local socket connection and will pass this socket on to the
application. Encrypted data coming from the network will be decrypted by the dropbear worker thread and then sent down the
local socket to the application. When the application writes plain text data down the local socket the dropbear worker thread
will read it, encrypt it, and sent it to the ssh client over the network. As far as the application is concerned it can just read
and write data via the local socket, and it need not concern itself with ssh protocols or encryption. Other standard network
programming techniques such as select can be used as desired.

To inform the application that authentication has succeeded and that the local socket connection has been established, the
dropbear code will invoke another callback function:

void
application_connected(int socket, cyg_dropbear_handle handle)
{
 …
}

A pointer to this function should be placed in the db_connected field of the cyg_dropbear_data structure passed to
cyg_dropbear_init. The first argument is a file descriptor for the local socket, for use by the application code. The
second argument is a handle that can be used to get additional information about the connection, and that must be used to
shut down the connection.

The connected callback runs from inside the main dropbear thread. It should not run the relevant application code directly,
since that would prevent the dropbear code from accepting any new ssh connections. Instead the callback should arrange for
some other part of the application to handle traffic for this connection. This can be done in various ways, for example by waking
up an existing thread, creating a new one, or adding the socket file descriptor to an fd_set structure which gets monitored via
select elsewhere in the application.

The socket passed to the connected callback is still an ordinary blocking socket, but can be turned into a non-blocking
socket if desired using the standard FIONBIO ioctl. In the absence of pseudo tty support the socket provides raw terminal
functionality. Typically input will appear a character at a time rather than a line at a time, and any line editing functionality has
to be supplied by the application. It is also up to the application to implement carriage return/linefeed processing, to handle
special input characters like ctrl-C or ctrl-D, and so on.

Strictly the use of the connected callback is optional. Application developers can choose to accept the local socket connection
in their own code rather than leave it to the main dropbear thread, as that may make it easier to port existing code. It is still
necessary to obtain the cyg_dropbear_handle so that the connection can be closed down correctly. The hangman example
program illustrates how to do this.

stderr channel

By default the dropbear code only sets up stdin and stdout channels. If a stderr channel is needed as well then
the configuration option CYGIMP_NET_DROPBEAR_SUPPORT_STDERR should be enabled. An additional function
cyg_dropbear_get_stderr then becomes available. This function should be called only from the connected callback.
It returns a file descriptor for a new local socket which can be used for stderr output, or -1 if the system has run out of sockets
or file descriptors.

Use of cyg_dropbear_get_stderr is optional, so applications can decide on a per-connection basis whether or not a
stderr channel is needed.

Connection Information

Once a connection has been established and the connected callback has been invoked, application code can retrieve some
additional information about this connection. cyg_dropbear_get_username will provide the user name supplied during
authentication, and cyg_dropbear_get_addr will return the network address of the ssh client.

1702

Dropbear Ssh Daemon

Closing Connection

An ssh connection can be shut down in one of two ways. If the client is terminated then the eCos application will detect an
end of file condition on the local socket and can close its end of the connection. Alternatively the eCos application can decide
to close its end unilaterally. Either way closing the connection involves two steps. The close system call should be used on
the file descriptor for the local socket, and on the one for the stderr socket if cyg_dropbear_get_stderr has been used.
Next cyg_dropbear_done should be invoked using the cyg_dropbear_handle provided by the connected callback. Calling
cyg_dropbear_done is analogous to the shell process exiting in a conventional ssh environment. The second argument
corresponds to the exit code of that process, so a value of 0 indicates no error. The cyg_dropbear_handle ceases to be valid
during the call to cyg_dropbear_done so the application must ensure the handle will not be used concurrently by another
thread or after the done call.

Note

If cyg_dropbear_done is not called when closing down an ssh connection then the dropbear worker thread
associated with that connection will never terminate, and any resources allocated will not be released. If this
happens repeatedly then the system will run out of memory and fail.

Logging Callback

The dropbear code includes support for logging various events. In a conventional ssh environment these log messages will
end up in the system log files, but when running under eCos that approach is usually inappropriate. Instead by default the log
messages will just be discarded, but if desired the application can capture the messages by installing a logging callback in the
db_logger field of the cyg_dropbear_data structure:

void
application_logger(char* format, va_list args)
{
 …
}

Configuration
The dropbear package provides a number of additional configuration options.

CYGIMP_NET_DROPBEAR_SUPPORT_STDERR

When a new secure connection is established, by default the dropbear code only provides stdin and stdout channels. If this
option is enabled then application code can also request a stderr channel for certain connections. This consumes one extra
file descriptor allocated during initialization, plus another two file descriptors for every connection that uses stderr.

CYGNUM_NET_DROPBEAR_MAX_PAYLOAD_LEN

While establishing a secure connection the client and daemon negotiate an upper limit for the packet size. This has to be
large enough to cope with the initial key exchange and related information. For eCos the default size is set to 1K, which
should be sufficient but is still rather smaller than the dropbear default on other platforms. If the application involves
transferring large amounts of data over ssh then throughput may be improved by increasing this packet size, at the cost
of increased memory usage.

CYGNUM_NET_DROPBEAR_MAXIMUM_PUBLIC_KEYS

During the authentication phase the dropbear code may invoke a get_public_keys callback function provided by the ap-
plication. One of the arguments to that function is a fixed-size array of pointers to public key strings. This configuration
option determines the size of that array, and has a default value of 8. If for some reason the application supports large
numbers of public keys then it may be necessary to increase this setting.

CYGNUM_NET_DROPBEAR_NETWORK_PORT

By default the dropbear main thread listens on port 22, the standard TCP/IP port for ssh. An alternative network port
can be specified if desired. This provides a rather limited amount of protection against network attacks which attempt to

1703

Dropbear Ssh Daemon

connect directly to the ssh port, but will be of no use against a determined attack. Using a non-standard port will also
be an inconvenience on the client side: the user has to either specify the port number on the command line or modify a
configuration file such as ~/.ssh/config.

CYGNUM_NET_DROPBEAR_LOCAL_PORT

This configuration option controls the TCP/IP port used to establish the local socket for each ssh connection.

CYGNUM_NET_DROPBEAR_STDERR_PORT

This configuration option controls the TCP/IP port used to establish the stderr socket during a call to
cyg_dropbear_get_stderr.

CYGNUM_NET_DROPBEAR_THREAD_PRI

The dropbear package involves one thread started by cyg_dropbear_init plus additional worker threads, one per ssh
connection. These threads all run at the same priority, controlled by this configuration option. The ssh protocol involves
computationally intensive operations such as encrypting and decrypting packets, so these threads may have a significiant
impact on the number of cpu cycles available to the rest of the system. It may be necessary to manipulate the thread priority
to achieve an acceptable balance between overall system performance and the achievable ssh bandwidth.

CYGNUM_NET_DROPBEAR_THREAD_STACKSIZE

This configuration option controls the size of the stacks allocated for the main dropbear thread and for each worker thread.
Fairly large stacks are needed to implement the ssh protocol, and in addition the various application callback functions
will also run on these stacks. The default value should suffice for all architectures, but this can be checked by using a
debug build with stack checking enabled. If the stack sizes are reduced to save memory then it is strongly recommended
that the system be tested with stack checking enabled.

CYGNUM_NET_DROPBEAR_CONNECTION_DELAY

The main dropbear thread can delay for a configurable number of system clock ticks between accepting each ssh connection
from the network. This provides a limited amount of protection against denial of service attacks, especially when used in
conjunction with an accept_connection callback function which limits the number of open connections. Obviously if the
eCos system is the target of a denial of service attack then it will still be very hard for legitimate users to get ssh access to
the unit, but there is an increased chance that the unit will continue operating rather than run out of resources and fail.

CYGNUM_NET_DROPBEAR_RETRY_DELAY

Within the main dropbear code, if the system runs out of resources and for example a malloc call fails then this is treated
as a serious failure and the ssh connection should get shut down, which will release resources back to the system. Where
appropriate some of the eCos-specific code will instead sleep for a while and then retry, in the hope that other parts of
the system have released sufficient resources during the delay. This configuration option specifies the number of system
clock ticks that should be spent sleeping before retrying.

A further three configuration options in other packages may have a significant impact on the behaviour of the dropbear code. The
dropbear code involves a fixed overhead of two sockets, one for the network port and one for the local port, plus an additional
three sockets for each ssh connection, one for the network side and two locally. If stderr support is enabled then there is an
additional fixed overhead of another socket plus another two sockets for each connection. Depending on how many concurrent
ssh connections the application is expected to support it may be necessary to increase the limits on the number of file descriptors
and sockets, controlled by CYGNUM_FILEIO_NFILE, CYGNUM_FILEIO_NFD and CYGPKG_NET_MAXSOCKETS. If C
library stdio functions are used then FOPEN_MAX may also need to be increased. If the system runs out of sockets or file
descriptors when a client attempts to establish a new connection, this will normally be detected and the connection will be shut
down immediately. However there are edge and race conditions which may cause the client to hang until a timeout occurs.

1704

Name
Dropbear — Ssh client support

Synopsis

#include <dropbear.h>

int cyg_dropbear_ssh_connect(handle, addr, auth, command);

void cyg_dropbear_ssh_close(handle, wait);

Description
The client-side API allows an eCos application to establish a secure connection to a remote ssh server and run commands on the
remote machine. This requires that the application authenticate itself as a valid user on that system. Once the remote command
is running the eCos application can interact with its stdin/stdout/stderr stream over sockets.

The client-side code has only been tested against openssh running on a Linux server and and as such descriptions of host-
side server configuration settings and files in the remainder of this section refer to Linux. Interoperability with other ssh
implementations cannot be guaranteed.

Application developers should be aware that establishing an ssh connection is a complicated business. Even if the eCos
application is working correctly there are many things completely outside its control that could go wrong and prevent a
secure connection from being established. Some of these are: firewalls intercepting and discarding packets to the ssh server;
tcp wrappers intercepting and rejecting requests before they even reach the ssh server, courtesy of settings in the /etc/
hosts.allow and /etc/hosts.deny files on the host ssh server; ssh server settings in /etc/ssh/sshd_config
which are incompatible with the application's requirements; problems with the user account specified by the application;
or problems with the ssh keys in the ~/.ssh/authorized_keys2 file of the user's account on the host server. It is
recommended that when experiencing connectivity problems from an eCos application the developer first checks the server's
setup, for example by using ssh or dbclient commands on a suitable Linux box on the same network as the eCos system and
specifying the same account and keys.

Application developers should also be aware that allowing remote systems running eCos to access an ssh server has security
implications. For example if an attacker has physical access to a remote system, that attacker could use technology like jtag to
examine the contents of the flash memory and search for plain text passwords or private keys. It is the developers' responsibility
to understand the security issues associated with ssh technology and decide whether the risks are acceptable.

API
There are only two functions in the client-side API, one to establish a secure connection and run a command on the remote
machine, the other to shut down the connection cleanly. The key data structure is a cyg_dropbear_cli_handle which holds all
application-level state relevant to the connection.

typedef struct cyg_dropbear_cli_handle {
 int db_stdin_stdout;
 int db_stderr;
 int db_exitcode;
 char db_error[CYG_DROPBEAR_MAX_ERROR];
 …
} cyg_dropbear_cli_handle;

Each ssh connection requires its own instance of this data structure, and the instance must exist for the duration of the
connection. All of the fields are managed by the dropbear code and the application should only read them, not modify them in
any way. The db_stdin_stdout and db_stderr fields are file descriptors corresponding to sockets. Any data written to
db_stdin_stdout will appear on the remote application's stdin stream. Any data written by the remote application to its
stdout will appear as input on db_stdin_stdout. Any data written to its stderr will appear as input on db_stderr. The
db_exitcode field is only valid once the remote application has exited and hold its exit code, usually 0 for a successful run
and non-zero to indicate some kind of error. Most error conditions associated with the ssh connection itself will result in an

1705

Dropbear Ssh Client

error message being placed in db_error. However error conditions within the remote command will typically be reported
via the stderr stream.

A typical client-side application will look like this:

void
run_remote_program(…)
{
 cyg_dropbear_cli_handle handle;

 <Fill in a struct sockaddr with the server's network address>

 <Fill in an authentication structure>

 if (!cyg_dropbear_ssh_connect(&handle, …)) {
 <Something has gone wrong during the connect process>
 <If there is a user, report the handle's db_error message>
 return;
 }

 if (<reading from remote application>) {
 while (! <EOF detected on db_stdin_stdout>) {
 <Use read() on db_stdin_stdout>
 <Optionally, for robustness, look for errors on db_stderr>
 }
 } else { // writing to remote application
 while (<there is data to be written>) {
 <use write() on db_stdin_stdout>
 <Optionally, for robustness, look for errors on db_stderr>
 }
 }

 cyg_dropbear_ssh_close(&handle, 1);
 <Optionally check the exit code>
}

More complicated behaviour is possible, and the clitest1.c testcase in the package's tests subdirectory provides nu-
merous examples.

Connecting

The cyg_dropbear_ssh_connect function takes four arguments:

handle A pointer to a cyg_dropbear_cli_handle structure. This structure will be filled in and
managed by the dropbear code, and should only be read by the eCos application. The
structure must remain valid for the duration of the ssh connection, until after the call to
cyg_dropbear_ssh_close.

addr The full address of the ssh server on the remote machine. Typically this will actually
be a sockaddr_in or sockaddr_in6 structure (assuming CYGPKG_NET_INET6 is
enabled). The ssh server must be accessible via this address irrespective of any firewall
filtering, tcpwrapper settings (/etc/hosts.allow and /etc/hosts.deny),
and ssh server settings (/etc/ssh/sshd_config on the host, especially the
AddressFamily, ListenAddress and Port settings). Usually the port number
will be htons(22) but an alternative ssh server listening on a different port may also
be used. The dropbear code does not examine the contents of the address, it simply
passes the address on to the TCP/IP stack's connect function.

auth This structure holds all the authentication information, and is discussed in detail below.

command The command to be executed on the remote server. Typically this will be run using
the account's default shell with a -c <command> option. If NULL is passed then the
remote ssh server will start an interactive shell.

If the connection attempt succeeds and the remote ssh server starts the remote shell then cyg_dropbear_ssh_connect
will return 1 and the db_stdin_stdout and db_stderr fields in the handle structure will be filled in with suitable sockets.

1706

Dropbear Ssh Client

Note that this does not mean that the remote shell has successfully started the requested command. If that part of the operation
fails then the shell will output an error message on stderr and exit.

If the connection attempt fails because of a lack of resources, because the remote ssh server is not accessible, or because of
an authentication failure, then cyg_dropbear_ssh_connect will return 0 and the handle's db_error field will contain
an error message.

Internally, establishing an ssh connection involves starting a separate worker thread and it is the worker thread which
runs the main dropbear code. It accepts messages over the network socket from the remote ssh server, decrypts them, and
forwards them over local sockets to the application's db_stdin_stdout and db_stderr. It also accepts data written to
db_stdin_stdout via a local socket, encrypts it, and passes it on to the remote application via the network socket and
the ssh server.

Authentication

The cyg_dropbear_authenticate structure passed to cyg_dropbear_ssh_connect holds the information needed to
authenticate the connection with the remote ssh server. Most of the fields are optional, as long as at least one valid authentication
mechanism is provided. The structure contains the following fields:

typedef struct cyg_dropbear_authenticate {
 const char* db_username;
 const char* db_host_rsa_key_pub;
 const char* db_host_dsa_key_pub;
 const char* db_id_rsa;
 int db_id_rsa_keylen;
 const char* db_id_dsa;
 int db_id_dsa_keylen;
 const char* db_password;
} cyg_dropbear_authenticate;

The structure can be constructed at run-time or statically allocated. The dropbear code only reads the various fields during the
call to cyg_dropbear_ssh_connect.

The db_username field must be filled in. It should be a simple string corresponding to a valid account name on the ssh
server machine, for example:

 struct cyg_dropbear_authenticate auth;
 …
 auth.db_username = "dropbeartest";

The account name must also be one allowed by the ssh server, as per the /etc/ssh/sshd_config file's AllowUsers
setting on the host.

The rsa and dsa host keys can be used to validate the identity of the remote ssh server, preventing certain man-in-the-middle
attacks. These fields serve much the same purpose as the ~/.ssh/known_hosts file when using the ssh command on a
Linux system. During the authentication stage of establishing a connection the remote ssh server will send a signature encrypted
using the server's private key, and the public keys can be used to validate this signature. The fields should be initialized using the
contents of the /etc/ssh/ssh_host_dsa_key.pub and /etc/ssh/ssh_host_rsa_key.pub files on the host
server, for example:

 …
 auth.db_host_rsa_key_pub = "ssh-rsa AAAAB3Nz…rb8=";
 auth.db_host_dsa_key_pub = "ssh-dss AAAABDNz…v7s=";

Note that the host's /etc/ssh/sshd_config file can specify alternative keys using HostKey settings. It is not necessary
to supply the public host keys to the dropbear code. If neither host key is supplied then the code will simply not attempt to
validate the identity of the remote ssh server and the known_hosts protection is not applied.

Specifying the public host keys in the authentication structure has one major disadvantage. If it ever becomes necessary to
change the host keys on the ssh server then the eCos boxes will not be able to connect to the remote ssh server until the boxes
are updated with a new host key. This behaviour is different from running ssh interactively on the Linux command line where
the user will be given the choice of accepting the new key and updating the known_hosts file.

1707

Dropbear Ssh Client

The db_id_rsa, db_id_rsa_keylen, db_id_dsa and db_id_dsakeylen fields are used to hold the private keys
for public key authentication. If neither key is supplied then the dropbear code will only attempt password authentication. It
should be noted that establishing a secure connection using an RSA private key requires many more cpu cycles than using a
DSA private key. If both keys are supplied then the dropbear code will try the DSA key first, then the RSA key. The overheads
can be reduced by using a smaller keysize, but obviously that has security implications.

The dropbear code requires its private keys in a different format from the Linux ssh command, and embedding these keys
requires a somewhat convoluted process. One approach involves generating the keys using the host's ssh-keygen utility with
-t rsa or -t dsa. No passphrase must be used, and great care should be taken not to overwrite the user's default private
key file. The ssh private key can then be converted into a dropbear key using the dropbearconvert utility, either built from
the sources or installed via e.g. the standard dropbear package.

Notes

1. dropbearconvert requires the private ssh key to be in legacy PEM private key format, while the default
format of private keys for OpenSSH's ssh-keygen command is its own internal format. The option -m PEM
to ssh-keygen may be used to specify the private key format of PEM when creating a new private key, or
to convert an existing key from internal to PEM format using the -p option (traditionally used to remove or
change a key's passphrase). For example:

ssh-keygen -m PEM -t rsa -C "dropbear@example.com" # Create new rsa key
ssh-keygen -m PEM -p -f ~/.ssh/id_rsa # Convert existing key to PEM format

2. OpenSSH 7.0 and greater disables the ssh-dss (DSA) public key algorithm by default as it is considered too
weak. It's use is not recommended. For additional details see:

• https://www.openssh.com/legacy.html

• https://security.stackexchange.com/questions/112802/why-openssh-deprecated-dsa-keys

The dropbear-format db_id_dsa file can then be converted into a C array using the privatekey2c utility supplied in the
package's misc/hangman and misc/shell directories.

For example, to generate a set of private keys for both dsa and rsa, convert them into dropbear format, and generate a C array
for inclusion into an eCos client:

ssh-keygen -m PEM -t rsa -C "dropbear@ecoscentric.com" # Create rsa key
ssh-keygen -m PEM -t dsa -C "dropbear@ecoscentric.com" # Create dsa key
dropbearconvert openssh dropbear ~/.ssh/id_rsa db_id_rsa # Convert to dropbear format
dropbearconvert openssh dropbear ~/.ssh/id_dsa db_id_dsa # Convert to dropbear format
privatekey2c id_rsa db_id_rsa > id_rsa.c # Create C code for eCos
privatekey2c id_dsa db_id_dsa > id_dsa.c # Create C code for eCos

The resulting id_dsa.c file will contain code like the following:

#define ID_DSA_LEN 457
static const char id_dsa[ID_DSA_LEN] = {
 0x00, 0x00, 0x00, 0x07, \
 … \
 0xd3 \
};

The resulting file can be #include'd by the application code and used to fill in the auth structure's db_id_dsa and
db_id_dsa_keylen fields.

As an alternative to using the ssh-keygen and dropbearconvert utilities, dropbear's dropbearkey can be used to generate the
private key files directly in the dropbear format. It will still be necessary to use privatekey2c to turn the keys into a C array.

The remote ssh server will use the account's ~/.ssh/authorized_keys file to validate the private keys supplied by the
eCos application. This file must be created or updated with the corresponding public keys. For example:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
chmod go-rw ~/.ssh/authorized_keys

1708

https://www.openssh.com/legacy.html
https://security.stackexchange.com/questions/112802/why-openssh-deprecated-dsa-keys

Dropbear Ssh Client

Note

Prior to version 3 of OpenSSH, public key authentication used the file authorized_keys for SSH Protocols
1.3 and 1.5, while authorized_keys2 was used for SSH protocol 2.0. ersion 3 and above of OpenSSH
deprecated the use of authorized_keys2, allowing all public keys to be put into authorized_keys.

It is also necessary to have PubkeyAuthentication enabled in /etc/ssh/sshd_config on the ssh server host, and
if DSA is to be permitted, PubkeyAcceptedKeyTypes must include ssh-dss.

The final field in the authentication structure is db_password. Again this should be a C string holding the plaintext
password, or NULL if password authentication should not be attempted. The ssh server will only allow plaintext passwords if
PasswordAuthentication is enabled in the server's configuration file.

I/O with the remote process

Once a secure connection has been established using cyg_dropbear_ssh_connect the eCos application code can interact
with the remote command using the db_stdin_stdout and db_stderr fields in the connection's handle structure. These
fields hold file descriptors corresponding to local sockets, and the other ends of these local sockets are managed by an internal
worker thread started by the connect operation and running the bulk of the dropbear code. Typically I/O involves the read,
write and select calls. Any data written to db_stdin_stdout will be read by the worker thread, encrypted, forwarded
to the remote ssh server over the network connection, decrypted, and can be read by the remote command using its stdin stream.
Any data written by the remote command to stdout or stderr will follow the reverse path and can be read by the eCos application
code using the db_stin_stdout and db_stderr file descriptors.

If the remote command exits while the eCos application is still reading data, this will result in an end-of-file condition
on the db_stdin_stdout file descriptor. In other words a read call will return 0. At that point the application
should close the connection using cyg_dropbear_ssh_close, and not by using the close call on the file descriptor.
Similarly if the eCos application wants to close the connection while the remote command is still running then it should use
cyg_dropbear_ssh_close.

Given the complexity of the data flow, details of any error conditions such as broken network connections will not get as far
as the application code. Specifically, the value of the errno variable will not correspond to the underlying error condition.
Instead error conditions are likely to manifest as end-of-file conditions indistinguishable from the command exiting.

Closing a connection

When the eCos application wants to close down the ssh connection it should call cyg_dropbear_ssh_close. This takes
two arguments, the handle filled in by cyg_dropbear_ssh_connect and a flag to indicate whether or not the application
wants to wait for the remote command to exit. If the application does not wait then the db_exitcode field may not be valid,
and the internal worker thread will continue to run in the background and consume resources until the remote command has
finished.

Configuration
There are no configuration options specific to the client-side API, other than ones related to testing as described below. However
there are a number of options common to the server-side and client-side API.

CYGNUM_NET_DROPBEAR_MAX_PAYLOAD_LEN

While establishing a secure connection the client and daemon negotiate an upper limit for the outgoing packet size. This
has to be large enough to cope with the initial key exchange and related information. For eCos the default size is set to
1K, which should be sufficient but is still rather smaller than the dropbear default on other platforms. If the application
involves transferring large amounts of data over ssh then throughput may be improved by increasing this packet size, at
the cost of increased memory usage.

CYGNUM_NET_DROPBEAR_THREAD_PRI

The client-side dropbear code involves an internal worker thread for each secure connection. These worker threads run at
the same priority controlled by this configuration option. The ssh protocol involves computationally intensive operations

1709

Dropbear Ssh Client

such as encrypting and decrypting packets, so these threads may have a significiant impact on the number of cpu cycles
available to the rest of the system. It may be necessary to manipulate the thread priority to achieve an acceptable balance
between overall system performance and the achievable ssh bandwidth.

CYGNUM_NET_DROPBEAR_THREAD_STACKSIZE

This configuration option controls the size of the stacks allocated for internal worker threads. Fairly large stacks are needed
to implement the ssh protocol, and in addition the various application callback functions will also run on these stacks.
The default value should suffice for all architectures, but this can be checked by using a debug build with stack checking
enabled. If the stack sizes are reduced to save memory then it is strongly recommended that the system be tested with
stack checking enabled.

Testing
The client-side code comes with an extensive testcase tests/clitest1.c. However this testcase is not built by default.
It requires information about the testing environment such as the address of a suitable ssh server, as well as authentication
information such as private keys and plain-text passwords. Embedding that kind of information directly into readily-available
source code would have obvious security implications. Instead it is necessary to set a variety of configuration options before
the testcase can be built.

Not all relevant configurations options need to be set. For example if the booldata option
CYGTST_NET_DROPBEAR_TESTS_CLI_PASSWORD is not enabled then the testcase will not attempt any tests related to
plain-text passwords. Details of the authentication mechanisms and relevant server settings can be found in the authentication
section above.

Some of the configuration values are long, for example complete private ssh keys. Entering these using the graphical
configuration tool may be problematical. Instead the ecos.ecc savefile can be edited directly. Alternatively the dropbear
package comes with a file misc/clitest1.ecm, containing the configuration options related to testing. This file can be
edited and then imported into the eCos configuration. Where appropriate the testcase will turn the configuration values into C
strings automatically, so there is no need to add extra quotes to the values. The relevant options are:

CYGPKG_NET_DROPBEAR_TESTS_CLI

Unless this option is enabled the client-side testcase will not be built.

CYGTST_NET_DROPBEAR_TESTS_CLI_SERVER_ADDR

This should be the address of the remote ssh server in a format acceptable to the standard inet_pton function, for
example 192.168.0.42.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_SERVER_ADDR {
 user_value 192.168.0.42
};

CYGTST_NET_DROPBEAR_TESTS_CLI_SERVER_PORT

This should be the tcp port number for the remote ssh server. It should be 22 when interacting with the system's standard
ssh server.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_SERVER_PORT {
user_value 22
};

CYGTST_NET_DROPBEAR_TESTS_CLI_AF

This should be the address family, AF_INET for IPv4 testing or AF_INET6 for IPv6 testing.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_AF {
user_value AF_INET
};

CYGTST_NET_DROPBEAR_TESTS_CLI_USERNAME

This should be the name of the testing account on the ssh server machine.

1710

Dropbear Ssh Client

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_USERNAME {
 user_value dropbeartest
};

CYGTST_NET_DROPBEAR_TESTS_CLI_HOST_RSA_KEY_PUB

The public RSA host key for the remote ssh daemon. On a modern debian Linux systems, this can be found in /etc/
ssh/ssh_host_rsa_key.pub. Note that the trailing comment, normally the hostname, should be ommitted.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_HOST_RSA_KEY_PUB {
 user_value 1 "ssh-rsa AAAA…rb8="
};

CYGTST_NET_DROPBEAR_TESTS_CLI_HOST_DSA_KEY_PUB

The public DSA host key for the remote ssh daemon. On a modern debian Linux systems, this can be found in /etc/
ssh/ssh_host_dsa_key.pub. Note that the trailing comment, normally the hostname, should be ommitted.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_HOST_DSA_KEY_PUB {
 user_value 1 "ssh-dss AAAA…v7s="
};

CYGTST_NET_DROPBEAR_TESTS_CLI_ID_RSA

This value should be the contents of a private RSA key. This can be obtained using the privatekey2c utility as described
above in the authentication section. The contents of the C array in the resulting source file can then be copied and pasted
into the .ecm or .ecc file.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_ID_RSA {
 user_value 1 " \
 0x00, 0x00, 0x00, 0x07, 0x73, 0x73, 0x68, 0x2d, \
 … \
 0x76, 0xfe, 0x15"
};

CYGTST_NET_DROPBEAR_TESTS_CLI_ID_DSA

This value should be the contents of a private DSA key. This can be obtained using the privatekey2c utility as described
above in the authentication section. The contents of the C array in the resulting source file can then be copied and pasted
into the .ecm or .ecc file.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_ID_DSA {
 user_value 1 " \
 0x00, 0x00, 0x00, 0x07, 0x73, 0x73, 0x68, 0x2d, \
 … \
 0x1d"
};

CYGTST_NET_DROPBEAR_TESTS_CLI_PASSWORD

This value should be the plain-text password used for authenticating the user.

cdl_option CYGTST_NET_DROPBEAR_TESTS_CLI_PASSWORD {
 user_value 1 opensesame
};

SSH Server Host Configuration

Modern Linux hosts are normally tightly configured with respect to ssh access so as to minimise risk of being compromised.
When using an OpenSSH server on Linux as the test host, you may wish to ensure access to the host is not compromised
and is restricted. For example, you may only wish to permit access by the dropbear clitest1 and scptest1 tests to the user
specified in CYGTST_NET_DROPBEAR_TESTS_CLI_USERNAME from internal network addresses used by the test hard-
ware. For example, if the test hardware were located on the internal IPv4 segment 192.168.8.0/24 and internal IPv6 segment
fd54:5cd1:6fc7:1619::/64, the configuration file /etc/ssh/sshd_config could contain the following configuration ex-
tract that permits password and DSA autentication for the user dropbeartest from either network:

Permit dropbear test user to connect from internal test networks and use password authentication

1711

Dropbear Ssh Client

Match User dropbeartest Address 192.168.8.0/24,fd54:5cd1:6fc7:1619::/64
 PasswordAuthentication yes
 PubkeyAcceptedKeyTypes=+ssh-dss

When testing the user account from another Linux server using ssh, the user file ~/.ssh/config also should contain the
following line to permit DSA private key authentication as that client host may likely have such authentication prohibited:

PubkeyAcceptedKeyTypes +ssh-dss

1712

Name
Dropbear — scp client support

Synopsis
#include <dropbear.h>

int cyg_dropbear_scp_open(handle, addr, auth, path, flags, len, mode);

ssize_t cyg_dropbear_scp_write(handle, buf, len);

ssize_t cyg_dropbear_scp_read(handle, buf, len);

void cyg_dropbear_scp_close(handle);

Description
The scp client support allows eCos applications to read and write files on a remote server over a secure channel. It is
implemented as a thin layer over the generic client-side support and the same caveats regarding security implications etc. are
applicable. The package comes with a testcase tests/scptest1.c which can serve as example code.

API
The scp API consists of just four functions. cyg_dropbear_scp_open is used to establish a secure connection to a remote
ssh server, run the scp command on that server to handle the remote file I/O. and perform some initial protocol operations.
The data can then be transferred using repeated calls to cyg_dropbear_scp_read and cyg_dropbear_scp_write.
Finally cyg_dropbear_scp_close can be used to shut down the connection. All calls make use of a handle structure
to hold per-connection state:

typedef struct cyg_dropbear_scp_handle {
 cyg_dropbear_cli_handle db_cli_handle;
 …
} cyg_dropbear_scp_handle;

The main field of interest is db_cli_handle.db_error which will contain a suitable error message if a connect operation
fails. Typical code to write to a remote file would look like this:

<global sockaddr_storage structure containing a suitable address>

<global cyg_dropbear_authenticate structure appropriately filled in>

void
write_remote_file(char* buf, int len)
{
 cyg_dropbear_scp_handle handle;
 int xfrd;

 if (!cyg_dropbear_scp_open(&handle, <addr>, <auth>,
 "/tmp/out", O_WRONLY, &len,
 S_IRUSR | S_IWUSR)) {
 <report handle.db_cli_handle.db_error to the user>
 return
 }

 for (xfrd = 0; xfrd < len;) {
 <use cyg_dropbear_scp_write to send a chunk to the remote server>
 }

 cyg_dropbear_scp_close(&handle);
}

The code for reading a remote file is very similar:

void
read_remote_file(char* buf, int maxlen)

1713

Dropbear Scp Client

{
 cyg_dropbear_scp_handle handle;
 int len;

 if (!cyg_dropbear_scp_open(&handle, <addr>, <auth>,
 "/tmp/in", O_RDONLY, &len, 0)) {
 <report handle.db_cli_handle.db_error to the user>
 return
 }
 if (len > maxlen) {
 <decide what to do>
 }

 for (xfrd = 0; xfrd < len;) {
 <use cyg_dropbear_scp_read to read a chunk from the remote server>
 }

 cyg_dropbear_scp_close(&handle);
}

Connecting

The function cyg_dropbear_scp_open is used to establish a secure connection to a remote server and to open a file on
that remote system. It takes seven arguments:

handle A pointer to a cyg_dropbear_scp_handle structure. This will be filled in and managed
by the dropbear code, and should only be read by the eCos application. The structure
must remain valid for the duration of the scp operation, until after the call to
cyg_dropbear_scp_close.

addr The full address of the ssh server on the remote machine. Typically this will actually
be a sockaddr_in or sockaddr_in6 structure (assuming CYGPKG_NET_INET6 is
enabled). The ssh server must be accessible via this address irrespective of any firewall
filtering, tcpwrapper settings (/etc/hosts.allow and /etc/hosts.deny,
if enabled), and ssh server settings (/etc/ssh/sshd_config, especially the
AddressFamily, ListenAddress and Port settings). Usually the port number
will be htons(22) but it is possible to connect to an alternative ssh server listening
on a different port, if desired. The dropbear code does not examine the contents of the
address, it simply passes the address on to the TCP/IP stack's connect function.

auth This structure holds all the authentication information and is discussed in detail in the
documentation for the Ssh client support.

path The full path of a file on the remote system.

flags This should be O_RDONLY to read a file on the remote system, or O_WRONLY to write
a file.

len The scp protocol requires that the total amount of data to be transferred is known at
the start of the transfer. len should be a pointer to an ssize_t variable. For a write
operation the application should initialize that variable with the total transfer size before
calling cyg_dropbear_scp_open. For a read operation the dropbear code will set
that variable to the file size, thus letting the application know how much data it should
read.

mode This field is only relevant when writing a file, and is used to set the access mask
for the file on the remote system as per e.g. the Linux chmod system call. It will
be some combination of the S_IRUSR, S_IWUSR, S_IXUSR, S_IRGRP, S_IWGRP,
S_IXGRP, S_IROTH, S_IWOTH, and S_IXOTH constants defined in the <sys/
stat.h> header file. Note that the application should use the eCos values for
these constants and the dropbear code will automatically translate them to the Linux
equivalents. Also note that the settings are subject to the account's umask value on the
remote server.

1714

Dropbear Scp Client

The cyg_dropbear_scp_open function will attempt to make a secure connection to the remote server, start the scp on
that server, and perform the initial protocol operations. If it returns successfully then the application can proceed with the
data transfers using cyg_dropbear_scp_write or cyg_dropbear_scp_read. If it fails for any reason then an error
message will be written to the db_cli_handle.db_error field of the handle. Due to the complexity of the operation and
the implementation's need for a background worker thread that runs the bulk of the dropbear code, the value in errno may
not give an accurate indication of the error(s) that occurred.

Transferring Data

Once an scp connection has been established the application can transfer data using cyg_dropbear_scp_write if the
remote file was opened with O_WRONLY, or cyg_dropbear_scp_read if O_RDONLY was used. In addition to transferring
the data these functions catch certain error conditions and manage the scp protocol, so their use is preferable to any attempt
to read or write the data directly over sockets.

cyg_dropbear_scp_read will return the amount of data actually read during this call, which may be less than the
amount requested because of buffering effects. Typically this function will be called in a loop until all required data has been
transferred. A return value of 0 indicates an end-of-file condition, usually because the transfer is complete but possibly because
the connection has been broken. A return value of -1 indicates some unexpected and indeterminate error condition.

cyg_dropbear_scp_write will return the amount of data actually written during this call. Usually this will be the amount
requested, but may be less because of buffering effects. Typically this function will be called in a loop until all required data
has been transferred. For large transfers it may be desirable to split the transfer into a number of smaller chunks, effectively
spreading the cpu cycle and buffering costs over a longer period of time. A return value of 0 or -1 indicates an unexpected
and indeterminate error condition.

Closing a Connection

At the end of a transfer cyg_dropbear_scp_close should be used to shut down the connection. The handle structure
will no longer be needed after this call returns.

Normally the application should transfer exactly the amount of data requested. For a write this is the size specified
during the open call. For a read this is the size filled in by the dropbear code during the open call. It is possible to call
cyg_dropbear_scp_close before the transfer has completed. For a read this is harmless. For a write, some or all of the
data transferred so far may be discarded by the remote scp command, and the exact behaviour is unpredictable.

Configuration
There are no configuration options specific to the client-side scp support. However this support is built on top of the generic
ssh client-side API so all configuration options relevant to that also affect scp operations.

Testing
The dropbear package comes with a testcase tests/scptest1.c. However this testcase is not built by default. It will only
be built if the configuration enables the building of the generic client-side testcase tests/clitest1.c, and will use the
same configuration options to identify the remote server and to provide the authentication information.

1715

Part L. FTP Client for eCos TCP/IP Stack
The ftpclient package provides an FTP (File Transfer Protocol) client for use with the TCP/IP stack in eCos. It supports both
IPv4 and IPv6 and will use the DNS client, when its is part of the eCos configuration. The API allows for active (server->client)
or passive (client->server) transfer connections to be used.

The data operations support binary mode transfers only. The supplied filename paths only support Unix-style ’/‚ directory
separators.

The API provides support for either direct buffer transfers, or for call-back routines to be used to copy data as required. Care
must be taken, especially when receiving files, since the direct buffer support calls are limited to handling files that will fit
within the single buffer passed through the API. The API call-back based implementation can avoid this limitation by allowing
the client to control the data reception and buffering as appropriate.

By default the data transfer operations will initially attempt a connection using the newer “extended” (IPv6 capable) FTP
commands (EPRT or EPSV as appropriate). If those commands are not supported by the FTP server then the client will fallback
to using the original FTP connection commands (PORT or PASV respectively).

Table of Contents
184. FTP Client API and Configuration .. 1718

FTP Client API .. 1718
Support API ... 1718
ftp_delete ... 1718
ftpclient_printf .. 1718
Basic FTP Client API .. 1718
ftp_get ... 1718
ftp_put .. 1719
ftp_get_var ... 1719
ftp_put_var ... 1719
Extended FTP Client API ... 1719
ftp_get_extended ... 1720
ftp_put_extended ... 1720
ftp_get_extended_var ... 1720
ftp_put_extended_var ... 1720

FTP Client Configuration ... 1720

1717

Chapter 184. FTP Client API and
Configuration
FTP Client API
The FTP Client API is provided by the include file install/include/ftpclient.h and it can be used thus:

#include <network.h>
#include <ftpclient.h>

Note

The reason for the following variety of API operations performing the get and put operations is for backwards
compatibility with earlier releases of the FTP Client package. Existing API parameter requirements have not been
changed, with new features adding new API calls as required.

Support API
Support functions are available irrespective of the type of data transfer operations used.

ftp_delete
int ftp_delete(char * hostname,
 char * username,
 char * passwd,
 char * filename,
 ftp_printf_t ftp_printf);

Delete a file from the FTP server. The filename should be the full pathname of the file to be deleted.

ftpclient_printf
void ftpclient_printf(unsigned error, const char *fmt, …);

The get and put API operations take a pointer to a function to use for printing out diagnostic and error messages. This is a
sample implementation which can be used if you don't want to implement the function yourself. error will be true when the
message to print is an error message. Otherwise the message is diagnostic, eg. the commands sent and received from the server.

Basic FTP Client API
The basic API only supports active connections, and is provided for backwards compatability with earlier releases. It is su-
perceded by the extended API described below, which provides greater control and extra features not available with the original
basic API. The basic API consists of the following exported functions:

ftp_get
int ftp_get(char * hostname,
 char * username,
 char * passwd,
 char * filename,
 char * buf,
 unsigned buf_size,
 ftp_printf_t ftp_printf);

Use the FTP protocol to retrieve a file from a server. Only binary mode is supported. The filename can include a directory
name. Only use unix style ’/‚ file separators, not ’\‚. The file is placed into buf. buf has maximum size buf_size. If the file

1718

FTP Client API and Configuration

is bigger than this, the transfer fails and FTP_TOOBIG is returned. Other error codes listed in the header can also be returned.
If the transfer is successful the number of bytes received is returned.

ftp_put
int ftp_put(char * hostname,
 char * username,
 char * passwd,
 char * filename,
 char * buf,
 unsigned buf_size,
 ftp_printf_t ftp_printf);

Use the FTP protocol to send a file to a server. Only binary mode is supported. The filename can include a directory name.
Only use unix style ’/‚ file separators, not ’\‚. The contents of buf are placed into the file on the server. If an error occurs one
of the codes listed will be returned. If the transfer is successful zero is returned.

ftp_get_var
int ftp_get(char * hostname,
 char * username,
 char * passwd,
 char * filename,
 ftp_write_t ftp_write,
 void * ftp_write_priv,
 ftp_printf_t ftp_printf);

Use the FTP protocol to retrieve a file from a server. Only binary mode is supported. The filename can include a directory
name. Only use unix style ’/‚ file separators, not ’\‚. The ftp_write function is called as data arrives, using the supplied
ftp_write_priv private context. If the transfer is successful the total number of bytes received is returned.

ftp_put_var
int ftp_put(char * hostname,
 char * username,
 char * passwd,
 char * filename,
 ftp_read_t ftp_read,
 void * ftp_read_priv,
 ftp_printf_t ftp_printf);

Use the FTP protocol to send a file to a server. Only binary mode is supported. The filename can include a directory name.
Only use unix style ’/‚ file separators, not ’\‚. The ftp_read function is called to fetch data to be written, using the supplied
ftp_read_priv private context. The call returns the total amount of data written, or a negative error indication.

Extended FTP Client API
The extended FTP Client API provides for more control of the FTP connection, including passive mode selection and timeout
configuration. The extended API uses the ftp_extended_info structure to pass information into the handler functions.
The use of a structure allows the data to be re-used, or individual fields modified, between calls using the API. The extended
API also provides a boolean passive that if true causes the relevant API call to use a passive FTP connection, with false
indicating an active FTP connection (as per the original API).

The extended API also allows for RX and TX timeouts (specified as a number of seconds) to be used for
connection and data transfers. If either of the timeout fields is set to 0 then the respective CDL configuration option
CYGNUM_NET_FTPCLIENT_TIMEOUT_RX and CYGNUM_NET_FTPCLIENT_TIMEOUT_TX will be used by the API
operation instead.

The structure contains the following fields, which mostly mirror the individual parameter functions as used by the older (ac-
tive-only) API:

struct ftp_extended_info {
 cyg_bool passive;
 char *hostname;

1719

FTP Client API and Configuration

 char *username;
 char *passwd;
 char *filename;
 ftp_printf_t ftp_printf;
 unsigned int rx_timeout;
 unsigned int tx_timeout;
};

The extended API consists of the following functions:

ftp_get_extended
int ftp_get_extended(struct ftp_extended_info * info,
 char * buf,
 unsigned buf_size);

Use the FTP protocol to retrieve a file from a server. Only binary mode is supported. The filename can include a directory
name. Only use unix style ’/‚ file separators, not ’\‚. The info parameter provides the server connection and credentials
information, as well as indicating the type of connection to establish, the diagnostic and error output routine and the RX and
TX timeouts. The file is placed into buf. buf has maximum size buf_size. If the file is bigger than this, the transfer fails
and FTP_TOOBIG is returned. Other error codes listed in the header can also be returned. If the transfer is successful the
number of bytes received is returned.

ftp_put_extended
int ftp_put_extended(struct ftp_extended_info * info,
 char * buf,
 unsigned buf_size);

Use the FTP protocol to send a file to a server. Only binary mode is supported. The filename can include a directory name.
Only use unix style ’/‚ file separators, not ’\‚. The info parameter provides the server connection and credentials information,
as well as indicating the type of connection to establish, the diagnostic and error output routine and the RX and TX timeouts.
The contents of buf are placed into the file on the server. If an error occurs one of the codes listed will be returned. If the
transfer is successful zero is returned.

ftp_get_extended_var
int ftp_get_extended_var(struct ftp_extended_info * info,
 ftp_write_t ftp_write,
 void * ftp_wrote_priv);

Use the FTP protocol to retrieve a file from a server. Only binary mode is supported. The filename can include a directory name.
Only use unix style ’/‚ file separators, not ’\‚. The info parameter provides the server connection and credentials information,
as well as indicating the type of connection to establish, the diagnostic and error output routine and the RX and TX timeouts.
The ftp_write function is called as data arrives, using the supplied ftp_write_priv private context. If the transfer is
successful the total number of bytes received is returned.

ftp_put_extended_var
int ftp_put_extended_var(struct ftp_extended_info * info,
 ftp_read_t ftp_read,
 void * ftp_read_priv);

Use the FTP protocol to send a file to a server. Only binary mode is supported. The filename can include a directory name.
Only use unix style ’/‚ file separators, not ’\‚. The info parameter provides the server connection and credentials information,
as well as indicating the type of connection to establish, the diagnostic and error output routine and the RX and TX timeouts.
The ftp_read function is called to fetch data to be written, using the supplied ftp_read_priv private context. The call
returns the total amount of data written, or a negative error indication.

FTP Client Configuration
The FTP Client provides some CDL configuration items that can be used to tune the performance and behaviour of the client.

1720

FTP Client API and Configuration

CYGNUM_NET_FTPCLIENT_BUFSIZE

The FTP data transfer functions buffer the data as it passes between systems and this option controls the size of the
dynamically allocated buffer. The buffers are allocated using the standard malloc() interface.

CYGNUM_NET_FTPCLIENT_TIMEOUT_RX

This option controls the default timeout in seconds used when waiting for connection or data reception. It is used to set
the SO_RCVTIMEO for the overall control and data socket connections, as well as the individual read() operations. The
CDL value can be over-ridden by a run-time supplied value when using the extended API.

CYGNUM_NET_FTPCLIENT_TIMEOUT_TX

This option controls the default timeout in seconds used when waiting for data transmissions to complete. It is used to set
the SO_SNDTIMEO for the overall control and data socket connections, as well as the individual write() operations.
The CDL value can be over-ridden by a run-time supplied value when using the extended API.

1721

Part LI. FTP Server Support

Name
eCosPro Support FTP Service — Overview

Description
The ftpserver package provides an FTP (File Transfer Protocol) server for use with the TCP/IP stack in eCos. It is currently
restricted to IPv4 networks only and can only use the BSD IP stack.

The server implements a restricted subset of the FTP protocol, sufficient to transfer binary files to and from an eCos system.
Only passive mode transfers are supported. Directory creation ('mkdir'), changing ('cd') or listing ('ls') are not supported. User
and password authentication is supported if the user supplies a means of checking these, otherwise access is permitted to all
clients. As authentication is not securely encrypted, it is recommended that the FTP server is only used on an internal trusted
network.

The server has been tested against the default Linux ftp command for both storing and retrieving files. It has also been tested
with wget and Firefox for retrieving files. The server should work with any command-line based FTP client. Graphical clients
are less likely to work since these will want to fetch file listings, which the server does not currently support.

1723

Name
FTP Server API — describe FTP server API, callback and configuration

FTP Server API
The FTP server provides a single entry point:

 #include <ftpserver.h>

 __externC int cyg_ftpserver_start(cyg_ftpserver *server);

This function starts an FTP server running using parameters defined in the server argument. It should be called from a
thread with a stack with at least CYGNUM_NET_FTPSERVER_STACK_SIZE bytes available. Under normal circumstances
this function will not return, so the application should create a thread dedicated to the server. There are examples of this in
the test programs.

The server argument contains a number of fields that the user may set to control the behaviour of the FTP server.

const char *address

This is a string giving the IP address on which the server will listen. If not set this will default to listening on all network
interface, which is usually what is wanted. This option is only useful if a target has more than one network interface and
the FTP server should only listen on one of them.

int port

This defines the port number on which the server will listen. Leaving this value unset, zero, will cause the server to choose
the default FTP port of 21.

const char *greeting

This is the string that the server will use in its initial response to a client connection. Leaving this NULL will cause the
server to use a default message: "Welcome to eCosPro FTP service.".

const char *root

This string defines a filesystem pathname to the root directory of the FTP server. Files will only be transferred to and from
this directory or any subdirectories. A NULL pointer here will cause the server to use "/" as the root.

int data_port

This defines the first port at which the server will create passive data connections. It will try successive ports from this
value until a free port is found, limited to the following 20 ports. Leaving this value NULL will cause the server to start
from port 5000.

The normal idiom for use of the FTP server is to define the cyg_ftpserver structure statically and to then call
cyg_ftpserver_start() with a pointer to that. The following is a somewhat contrived example:

#include <ftpserver.h>

//==

static cyg_ftpserver ftp_server =
{
 .port = 2121, // Listen on port 2121
 .root = "/fatfs/ftp", // FTP to/from here
 .greeting = "Welcome to Fubar FTP service.", // Welcome string
 .data_port = 40000 // Move data ports to 40000+
};

//==

static void ftpd(CYG_ADDRWORD p)
{

1724

FTP Server API

 init_all_network_interfaces();

 cyg_ftpserver_start(&ftp_server);
}

//==

#define STACK_SIZE CYGNUM_NET_FTPSERVER_STACK_SIZE
static char stack[STACK_SIZE] CYGBLD_ATTRIB_ALIGN_MAX;
static cyg_thread thread_data;
static cyg_handle_t thread_handle;

void start_ftpd_thread(void)
{
 cyg_thread_create(10, // Priority
 ftpd, // entry
 0, // entry parameter
 "FTP test", // Name
 &stack[0], // Stack
 STACK_SIZE, // Size
 &thread_handle, // Handle
 &thread_data // Thread data structure
);
 cyg_thread_resume(thread_handle); /* Start it */
}

The defaults for the configuration parameters are such that leaving them all zero or NULL will cause the server to configure
itself on the standard port serving files to/from the root of the filesystem.

Callback Interface
The default server operates to and from a directory in a filesystem, in the same way that most FTP servers operate. However,
not all embedded systems have filesystem support. To allow such systems to provide an FTP service, all file access operations
go through a set of callback functions in the cyg_ftpserver structure. The user can define these to redirect file I/O operations
to other devices such as memory buffers or flash memory regions.

The callback interface defines a type, ftpserver_cookie that is passed to the callback functions. It is a word or pointer sized
value and is typically used by the callback functions to contain a data structure pointer, or an index into a table that uniquely
identifies an open file.

The callbacks for a notional example interface are defined as follows:

int example_open(const char *path, cyg_bool write, ftpserver_cookie *cookie);

Called to open a file for data transfer. The path is a fully rooted path formed from the root field of the server
configuration plus the client supplied path. The write argument is true if the file is to be opened for writing and false if
for reading. If successful the function may store a private value to *cookie.

If the file is opened successfully this function should return FTPSERVER_OK. If the file cannot be opened for
reading it should return FTPSERVER_NO_FILE. If the file cannot be written to or created it should return
FTPSERVER_NOT_ALLOWED.

int example_write(ftpserver_cookie cookie, const cyg_uint8 *buf, cyg_uint32 size);

Called to write data to the file. The cookie argument is the value stored by the open callback. Arguments buf and size
define the data to be written.

If the data is successfully written this function should return FTPSERVER_OK. If any error occurs it should return
FTPSERVER_WRITE_FAIL.

int example_read(ftpserver_cookie cookie, cyg_uint8 *buf, cyg_uint32 *size);

Called to read data from the file. The cookie argument is the value stored by the open callback. Arguments buf and
*size define a buffer into which the data should be stored, *size should be updated with the amount of data written
to the buffer. If no more data is available, *size should be set to zero.

1725

FTP Server API

If the function is successful it should return FTPSERVER_OK. If any error occurs it should return
FTPSERVER_READ_FAIL.

int example_close(ftpserver_cookie cookie);

Called to close the file for further data transfer. The cookie argument is the value stored by the open callback. After this
call the cookie value will not be used in further calls.

This function should return FTPSERVER_OK under all circumstance, there are no error conditions of interest to the FTP
server.

int example_auth(const char *user, const char *passwd);

This function is called to authenticate a user ID and password supplied by the client. The FTP server will only request a
password, by returning a 331 response, if a user supplied authentication function is installed.

If the user and password are accepted, this function should return FTPSERVER_LOGIN_OK; it should return
FTPSERVER_BADUSER if they do not.

int example_delete(const char *path);

Called to delete a file. The path is a fully rooted path formed from the root field of the server configuration plus the
client supplied path.

If the file is deleted successfully this function should return FTPSERVER_OPDONE. If the file cannot be deleted or is not
found, FTPSERVER_NO_FILE should be returned.

Extending the previous example, the cyg_ftpserver might look like this:

static cyg_ftpserver ftp_server =
{
 .port = 2121, // Listen on port 2121
 .root = "/fatfs/ftp", // FTP to/from here
 .greeting = "Welcome to Fubar FTP service.", // Welcome string
 .data_port = 40000, // Move data ports to 40000+

 .open = example_open,
 .read = example_read,
 .write = example_write,
 .close = example_close,
 .auth = example_auth,
 .delete = example_delete,

};

Configuration Options
The FTP server package contains a number of configuration options:

CYGNUM_NET_FTPSERVER_BUFFER_SIZE

This option defines the size of the buffer used for data transfers. Buffer size is a tradeoff between memory use and transfer
speed. The default should be a reasonable compromise between these two.

CYGNUM_NET_FTPSERVER_USER_SIZE

This option defines the size of the buffer used for storing the user name supplied by the client.

CYGNUM_NET_FTPSERVER_PASSWD_SIZE

This option defines the size of the buffer used for storing the password supplied by the client. The default reflects the habit
of using a user's email address as a password for anonymous FTP.

1726

FTP Server API

CYGNUM_NET_FTPSERVER_CONTROL_TIMEOUT

This option defines the timeout applied to control streams. If after this number of seconds the client has not interacted
with the server, the connection is closed down. Since the server only allows a single client at a time, any client that fails
to close a control stream down will block it for others.

CYGNUM_NET_FTPSERVER_DATA_TIMEOUT

This option defines the timeout applied to data streams. If after this number of seconds the client has not transferred data
to or from the server, the connection is closed down. Clients are expected to use a data connection immediately after it is
created so this timeout can be considerably smaller than the control timeout.

1727

Name
FTP Server Test Programs — describe the test programs and their host-side support

Test Programs
There are three test programs in the tests subdirectory of this package that exercise the FTP server and do duty as examples
of its use. These are supported by an eCos configuration and expect scripts in the misc subdirectory which call the standard
linux ftp client to exercise the FTP server.

To build an eCos library suitably configured to support the test programs, import the ftpserver.ecm minimal
configuration located in the misc subdirectory of this package (at packages/net/ftpserver/VERSION within your
eCos package repository) into your target configuration. This minimal configuration loads the CYGPKG_NET, CYGPKG_IO,
CYGPKG_NET_FTPSERVER and CYGPKG_FS_RAM packages, enables the building of the test programs as well as increases
the sizes of CYGPKG_NET_MAXSOCKETS, CYGNUM_FILEIO_NFILE and CYGNUM_FILEIO_NFD from their default
values to values large enough to allow the test scripts to operate in a reasonable amount of time.

When each test program is executed it will output on either the gdb console, or a debug channel, the filename of a corresponding
expect script to be executed on your development PC, along with any additional parameters to provide the script. This expect
script is used to exercise each FTP server test application. The script name and parameter will be contained within angle braces
prefixed by CMD:. Each script can be executed on a suitable Linux host which has expect and the standard Linux text-mode
ftp client installed and on the PATH. For example, the output below suggests that the script ftpserver1.exp is executed
with the argument 192.168.1.54.

 INFO:<Create file1>
 CMD:<ftpserver1.exp 192.168.1.54>
 INFO:<Start FTP server>

These scripts are located within the misc subdirectory of the FTP server package and on its completion will terminate the
ftp test program on the target.

Note

All tests can be stopped manually by logging onto the target platform running the test with a standard ftp client
using the user ID "shutdown" and password "now".

ftpserver1

The ftpserver1.c test creates a default FTP server using the RAM filesystem. A default file, file1, is created that can
be retrieved, and further files can be uploaded, retrieved or overwritten.

ftpserver2

The ftpserver2.c test uses the callback interface to serve files in memory. It creates a read-only file, text, and a 32KB
read/write buffer, buffer.

ftpserver3

The ftpserver3.c test is identical to ftpserver1.c except that it expects a specific user and password, "test" and
"barnwell", to be supplied before it permits access.

1728

Part LII. Embedded HTTP Server

Table of Contents
185. Embedded HTTP Server .. 1731

Introduction .. 1731
Server Organization ... 1731
Server Configuration ... 1732
Support Functions and Macros .. 1732

HTTP Support .. 1733
General HTML Support ... 1733
Table Support ... 1733
Forms Support .. 1734
Predefined Handlers .. 1734

System Monitor .. 1735

1730

Chapter 185. Embedded HTTP Server
Introduction
The eCos HTTPD package provides a simple HTTP server for use with applications in eCos. This server is specifically aimed
at the remote control and monitoring requirements of embedded applications. For this reason the emphasis is on dynamically
generated content, simple forms handling and a basic CGI interface. It is not intended to be a general purpose server for
delivering arbitrary web content. For these purposes a port of the GoAhead web server is available from www.goahead.com.

This server is also capable of serving content using IPv6 when the eCos configuration contains IPv6.

Server Organization
The server consists of one or more threads running in parallel to any application threads and which serve web pages to clients.
Apart from defining content, the application does not need to do anything to start the HTTP server.

The HTTP server is, by default, started by a static constructor. This simply creates an initial thread and sets it running. Since
this is called before the scheduler is started, nothing will happen until the application calls cyg_scheduler_start().
The server thread can also be started explicitly by the application, see the CYGNUM_HTTPD_SERVER_AUTO_START option
for details.

When the thread gets to run it first optionally delays for some period of time. This is to allow the application to perform any
initialization free of any interference from the HTTP server. When the thread does finally run it creates a socket, binds it to
the HTTP server port, and puts it into listen mode. It will then create any additional HTTPD server threads that have been
configured before becoming a server thread itself.

Each HTTPD server thread simply waits for a connection to be made to the server port. When the connection is made it reads
the HTTP request and extracts the filename being accessed. If the request also contains form data, this is also preserved. The
filename is then looked up in a table.

Each table entry contains a filename pattern string, a pointer to a handler function, and a user defined argument for the function.
Table entries are defined using the same link-time table building mechanism used to generate device tables. This is all handled
by the CYG_HTTPD_TABLE_ENTRY() macro which has the following format:

#include <cyg/httpd/httpd.h>

CYG_HTTPD_TABLE_ENTRY(__name, __pattern, __handler, __arg)

The __name argument is a variable name for the table entry since C does not allow us to define anonymous data structures.
This name should be chosen so that it is unique and does not pollute the name space. The __pattern argument is the match
pattern. The __handler argument is a pointer to the handler function and __arg the user defined value.

The link-time table building means that several different pieces of code can define server table entries, and so long as the
patterns do not clash they can be totally oblivious of each other. However, note also that this mechanism does not guarantee
the order in which entries appear, this depends on the order of object files in the link, which could vary from one build to the
next. So any tricky pattern matching that relies on this may not always work.

A request filename matches an entry in the table if either it exactly matches the pattern string, or if the pattern ends in an
asterisk, and it matches everything up to that point. So for example the pattern "/monitor/threads.html" will only match that
exact filename, but the pattern "/monitor/thread-*" will match "/monitor/thread-0040.html", "/monitor/thread-0100.html" and
any other filename starting with "/monitor/thread-".

When a pattern is matched, the hander function is called. It has the following prototype:

cyg_bool cyg_httpd_handler(FILE *client,
 char *filename,
 char *formdata,
 void *arg);

1731

http://www.goahead.com

Embedded HTTP Server

The client argument is the TCP connection to the client: anything output through this stream will be returned to the browser.
The filename argument is the filename from the HTTP request and the formdata argument is any form response data, or
NULL if none was sent. The arg argument is the user defined value from the table entry.

The handler is entirely responsible for generating the response to the client, both HTTP header and content. If the handler
decides that it does not want to generate a response it can return false, in which case the table scan is resumed for another
match. If no match is found, or no handler returns true, then a default response page is generated indicating that the requested
page cannot be found.

Finally, the server thread closes the connection to the client and loops back to accept a new connection.

Server Configuration
The HTTP server has a number of configuration options:

CYGNUM_HTTPD_SERVER_PORT

This option defines the TCP port that the server will listen on. It defaults to the standard HTTP port number 80. It may be
changed to a different number if, for example, another HTTP server is using the main HTTP port.

CYGDAT_HTTPD_SERVER_ID

This is the string that is reported to the client in the "Server:" field of the HTTP header.

CYGNUM_HTTPD_THREAD_COUNT

The HTTP server can be configured to use more than one thread to service HTTP requests. If you expect to serve complex
pages with many images or other components that are fetched separately, or if any pages may take a long time to send,
then it may be useful to increase the number of server threads. For most uses, however, the connection queuing in the TCP/
IP stack and the speed with which each page is generated, means that a single thread is usually adequate.

CYGNUM_HTTPD_THREAD_PRIORITY

The HTTP server threads can be run at any priority. The exact priority depends on the importance of the server relative to
the rest of the system. The default is to put them in the middle of the priority range to provide reasonable response without
impacting genuine high priority threads.

CYGNUM_HTTPD_THREAD_STACK_SIZE

This is the amount of stack to be allocated for each of the HTTPD threads. The actual stack size allocated will be this value
plus the values of CYGNUM_HAL_STACK_SIZE_MINIMUM and CYGNUM_HTTPD_SERVER_BUFFER_SIZE.

CYGNUM_HTTPD_SERVER_BUFFER_SIZE

This defines the size of the buffer used to receive the first line of each HTTP request. If you expect to use particularly long
URLs or have very complex forms, this should be increased.

CYGNUM_HTTPD_SERVER_AUTO_START

This option causes the HTTP Daemon to be started automatically during system initialization. If this option is not set then
the application must start the daemon explicitly by calling cyg_httpd_startup(). This option is set by default.

CYGNUM_HTTPD_SERVER_DELAY

This defines the number of system clock ticks that the HTTP server will wait before initializing itself and spawning any
extra server threads. This is to give the application a chance to initialize properly without any interference from the HTTPD.

Support Functions and Macros
The emphasis of this server is on dynamically generated content, rather than fetching it from a filesystem. To do this the
handler functions make calls to fprintf() and fputs(). Such handler functions would end up a mass of print calls, with

1732

Embedded HTTP Server

the actual structure of the HTML page hidden in the format strings and arguments, making maintenance and debugging very
difficult. Such an approach would also result in the definition of many, often only slightly different, format strings, leading
to unnecessary bloat.

In an effort to expose the structure of the HTML in the structure of the C code, and to maximize the sharing of string constants,
the cyg/httpd/httpd.h header file defines a set of helper functions and macros. Most of these are wrappers for predefined
print calls on the client stream passed to the hander function. For examples of their use, see the System Monitor example.

Note

All arguments to macros are pointers to strings, unless otherwise stated. In general, wherever a function or macro
has an attr or __attr parameter, then the contents of this string will be inserted into the tag being defined as
HTML attributes. If it is a NULL or empty string it will be ignored.

HTTP Support
void cyg_http_start(FILE *client, char *content_type, int content_length);
void cyg_http_finish(FILE *client);
#define html_begin(__client)
#define html_end(__client)

The function cyg_http_start() generates a simple HTTP response header containing the value of
CYGDAT_HTTPD_SERVER_ID in the "Server" field, and the values of content_type and content_length in the
"Content-type" and "Content-length" field respectively. The function cyg_http_finish() just adds an extra newline to
the end of the output and then flushes it to force the data out to the client.

The macro html_begin() generates an HTTP header with a "text/html" content type followed by an opening "<html>" tag.
html_end() generates a closing "</html>" tag and calls cyg_http_finish().

General HTML Support
void cyg_html_tag_begin(FILE *client, char *tag, char *attr);
void cyg_html_tag_end(FILE *client, char *tag);
#define html_tag_begin(__client, __tag, __attr)
#define html_tag_end(__client, __tag)
#define html_head(__client, __title, __meta)
#define html_body_begin(__client, __attr)
#define html_body_end(__client)
#define html_heading(__client, __level, __heading)
#define html_para_begin(__client, __attr)
#define html_url(__client, __text, __link)
#define html_image(__client, __source, __alt, __attr)

The function cyg_html_tag_begin() generates an opening tag with the given name. The function
cyg_html_tag_end() generates a closing tag with the given name. The macros html_tag_begin() and
html_tag_end are just wrappers for these functions.

The macro html_head() generates an HTML header section with __title as the title. The __meta argument defines
any meta tags that will be inserted into the header. html_body_begin() and html_body_end generate HTML body
begin and end tags.

html_heading() generates a complete HTML header where __level is a numerical level, between 1 and 6, and
__heading is the heading text. html_para_begin() generates a paragraph break.

html_url() inserts a URL where __text is the displayed text and __link is the URL of the linked page.
html_image() inserts an image tag where __source is the URL of the image to be included and __alt is the alternative
text for when the image is not displayed.

Table Support
#define html_table_begin(__client, __attr)
#define html_table_end(__client)

1733

Embedded HTTP Server

#define html_table_header(__client, __content, __attr)
#define html_table_row_begin(__client, __attr)
#define html_table_row_end(__client)
#define html_table_data_begin(__client, __attr)
#define html_table_data_end(__client)

html_table_begin() starts a table and html_table_end() end it. html_table_header() generates a simple
table column header containg the string __content.

html_table_row_begin() and html_table_row_end() begin and end a table row, and similarly
html_table_data_begin() and html_table_data_end() begin and end a table entry.

Forms Support
#define html_form_begin(__client, __url, __attr)
#define html_form_end(__client)
#define html_form_input(__client, __type, __name, __value, __attr)
#define html_form_input_radio(__client, __name, __value, __checked)
#define html_form_input_checkbox(__client, __name, __value, __checked)
#define html_form_input_hidden(__client, __name, __value)
#define html_form_select_begin(__client, __name, __attr)
#define html_form_option(__client, __value, __label, __selected)
#define html_form_select_end(__client)
void cyg_formdata_parse(char *data, char *list[], int size);
char *cyg_formlist_find(char *list[], char *name);

html_form_begin() begins a form, the __url argument is the value for the action attribute. html_form_end()
ends the form.

html_form_input() defines a general form input element with the given type, name and value.
html_form_input_radio creates a radio button with the given name and value; the __checked argument
is a boolean expression that is used to determine whether the checked attribute is added to the tag. Similarly
html_form_input_checkbox() defines a checkbox element. html_form_input_hidden() defines a hidden form
element with the given name and value.

html_form_select_begin() begins a multiple choice menu with the given name. html_form_select_end() end
it. html_form_option() defines a menu entry with the given value and label; the __selected argument is a boolean
expression controlling whether the selected attribute is added to the tag.

cyg_formdata_parse() converts a form response string into an NULL-terminated array of "name=value" entries. The
data argument is the string as passed to the handler function; note that this string is not copied and will be updated in place to
form the list entries. list is a pointer to an array of character pointers, and is size elements long. cyg_formlist_find()
searches a list generated by cyg_formdata_parse() and returns a pointer to the value part of the string whose name part
matches name; if there is no match it will return NULL.

Predefined Handlers
cyg_bool cyg_httpd_send_html(FILE *client, char *filename, char *request, void *arg);

typedef struct
{
 char *content_type;
 cyg_uint32 content_length;
 cyg_uint8 *data;
} cyg_httpd_data;
#define CYG_HTTPD_DATA(__name, __type, __length, __data)

cyg_bool cyg_httpd_send_data(FILE *client, char *filename, char *request, void *arg);

The HTTP server defines a couple of predefined handers to make it easier to deliver simple, static content.

cyg_httpd_send_html() takes a NULL-terminated string as the argument and sends it to the client with an HTTP header
indicating that it is HTML. The following is an example of its use:

char cyg_html_message[] = "<head><title>Welcome</title></head>\n"

1734

Embedded HTTP Server

 "<body><h2>Welcome to my Web Page</h2></body>\n"

CYG_HTTPD_TABLE_ENTRY(cyg_html_message_entry,
 "/message.html",
 cyg_httpd_send_html,
 cyg_html_message);

cyg_httpd_send_data() Sends arbitrary data to the client. The argument is a pointer to a cyg_httpd_data structure that
defines the content type and length of the data, and a pointer to the data itself. The CYG_HTTPD_DATA() macro automates
the definition of the structure. Here is a typical example of its use:

static cyg_uint8 ecos_logo_gif[] = {
 …
};

CYG_HTTPD_DATA(cyg_monitor_ecos_logo_data,
 "image/gif",
 sizeof(ecos_logo_gif),
 ecos_logo_gif);

CYG_HTTPD_TABLE_ENTRY(cyg_monitor_ecos_logo,
 "/monitor/ecos.gif",
 cyg_httpd_send_data,
 &cyg_monitor_ecos_logo_data);

System Monitor
Included in the HTTPD package is a simple System Monitor that is intended to act as a test and an example of how to produce
servers. It is also hoped that it might be of some use in and of itself.

The System Monitor is intended to work in the background of any application. Adding the network stack and
the HTTPD package to any configuration will enable the monitor by default. It may be disabled by disabling the
CYGPKG_HTTPD_MONITOR option.

The monitor is intended to be simple and self-explanatory in use. It consists of four main pages. The thread monitor page
presents a table of all current threads showing such things as id, state, priority, name and stack dimensions. Clicking on the
thread ID will link to a thread edit page where the thread's state and priority may be manipulated. The interrupt monitor
just shows a table of the current interrupts and indicates which are active. The memory monitor shows a 256 byte page of
memory, with controls to change the base address and display element size. Note: Accessing invalid memory locations can
cause memory exceptions and the program to crash. The network monitor page shows information extracted from the active
network interfaces and protocols. Finally, if kernel instrumentation is enabled, the instrumentation page provides some controls
over the instrumentation mechanism, and displays the instrumentation buffer.

1735

Part LIII. SNMP

Table of Contents
186. SNMP for eCos ... 1738

Version .. 1738
SNMP packages in the eCos source repository ... 1738
MIBs supported .. 1738
Changes to eCos sources .. 1739
Starting the SNMP Agent ... 1739
Configuring eCos .. 1740

Version usage (v1, v2 or v3) .. 1740
Traps .. 1740
snmpd.conf file .. 1741

Test cases .. 1741
SNMP clients and package use .. 1742
Unimplemented features ... 1742
MIB Compiler .. 1743
snmpd.conf .. 1744

1737

Chapter 186. SNMP for eCos
Version
This is a port of UCD-SNMP-4.1.2

Originally this document said: See http://ucd-snmp.ucdavis.edu/ for details. And send them a postcard.

The project has since been renamed “net-snmp” and re-homed at http://net-snmp.sourceforge.net/ where various new releases
(of the original, not eCos ports) are available.

The original source base from which we worked to create the eCos port is available from various archive sites such as ftp://
ftp.freesnmp.com/mirrors/net-snmp/ generally with this filename and details:

 ucd-snmp-4.1.2.tar.gz. Nov 2 2000 1164k

SNMP packages in the eCos source repository
The SNMP/eCos package consists of two eCos packages; the SNMP library and the SNMP agent.

The sources are arranged this way partly for consistency with the original release from UCD, and so as to accommodate
possible future use of the SNMP library without having an agent present. That could be used to build an eCos-based SNMP
client application.

The library contains support code for talking SNMP over the net - the SNMP protocol itself - and a MIB file parser (ASN-1)
which is not used in the agent case.

The agent contains the application specific handler files to get information about the system into the SNMP world, together
with the SNMP agent thread (snmpd in UNIX terms).

MIBs supported
The standard set in MIB-II, together with the Ether-Like MIB, are supported by default. The MIB files used to compile the
handlers in the agent and to “drive” the testing (snmpwalk et al under LINUX) are those acquired from that same UCD
distribution.

These are the supported MIBs; all are below mib2 == 1.3.6.1.2.1:

system { mib2 1 }
interfaces { mib2 2 }
 [address-translation “at” { mib2 3 } is deprecated]
ip { mib2 4 }
icmp { mib2 5 }
tcp { mib2 6 }
udp { mib2 7 }
 [exterior gateway protocol “egp” { mib2 8 } not supported]
 [cmot { mib2 9 } is “historic”, just a placeholder]
dot3 { mib2 10 7 } == { transmission 7 } “EtherLike MIB”
snmp { mib2 11 }

On inclusion of SNMPv3 support packages, the following MIBs are added to the default set of MIBs enumerated above :

snmpEngine { snmpFrameworkMIBObjects 1 } SNMP-FRAMEWORK-MIB, as described in
 RFC-2571 for support of SNMPv3
 framework.

usmStats { usmMIBObjects 1 } SNMP-USER-BASED-SM-MIB, as
usmUser { usmMIBObjects 2 } specified in RFC-2574 for support
 of user based security model in
 SNMPv3 management domains.

1738

http://net-snmp.sourceforge.net/
ftp://ftp.freesnmp.com/mirrors/net-snmp/
ftp://ftp.freesnmp.com/mirrors/net-snmp/
ftp://ftp.freesnmp.com/mirrors/net-snmp/ucd-snmp-4.1.2.tar.gz

SNMP for eCos

Note

Not every MIB variable is necessarily supported - some don't really apply to eCos, some are simply not yet
implemented, and some would be overly complex to implement to be worth it in an embedded system. Similarly
writing to some variables may be permitted by the MIB definition, but may not produce any effect. For example
trying to set an interface administratively up or down with IF-MIB::ifAdminStatus at present has no effect.

Changes to eCos sources
Small changes were made in three areas to accomodate SNMP originally:

1. Various hardware-specific ethernet drivers.

2. The generic ethernet device driver.

3. The OpenBSD TCP/IP networking package (Deprecated and removed from current eCosPro releases).

These changes were made in order to export information about the driver and the network that the SNMP agent must report. The
changes were trivial in the case of the network stack, since it was already SNMP-friendly. The generic ethernet device driver
was re-organized to have an extensive header file and to add a couple of APIs to extract statistics that the hardware-specific
device drivers keep within themselves.

There may be a performance hit for recording that data; disabling a config option named something like
CYGDBG_DEVS_ETH_xxxx_xxxx_KEEP_STATISTICS depending on the specific device driver will prevent that.

Not all platform ethernet device drivers export complete SNMP statistical information; if the exported information is missing,
SNMP will report zero values for such data (in the dot3 MIB).

The interface chipset has an ID which is an OID; not all the latest greatest devices are listed in the available database, so new
chipsets may need to be added to the client MIB, if not defined in those from UCD.

Starting the SNMP Agent
A routine to instantiate and start the SNMP agent thread in the default configuration is provided in PACKAGES/net/snmp/
agent/current/src/snmptask.c

It starts the snmpd thread at priority CYGPKG_NET_THREAD_PRIORITY+1 by default, ie. one step less important than
the TCP/IP stack service thread. It also statically creates and uses a very large stack of around 100 KiloBytes. To use that
convenience function, this code fragment may be copied (in plain C).

#ifdef CYGPKG_SNMPAGENT
{
 extern void cyg_net_snmp_init(void);
 cyg_net_snmp_init();

}
#endif

In case you need to perform initialization, for example setting up SNMPv3 security features, when the snmp agent starts and
every time it restarts, you can register a callback function by simply writing the global variable:

externC void (*snmpd_reinit_function)(void);

with a suitable function pointer.

The entry point to the SNMP agent is:

externC void snmpd(void (*initfunc)(void));

so you can of course easily start it in a thread of your choice at another priority instead if required, after performing whatever
other initialization your SNMP MIBs need. A larger than default stacksize is required. The initfunc parameter is the callback
function mentioned above — a NULL parameter there is safe and obviously means no callback is registered.

1739

SNMP for eCos

Note that if you call snmpd(); yourself and do not call cyg_net_snmp_init(); then that routine, global variable, and
the default large stack will not be used. This is the recommended way control such features from your application; create and
start the thread yourself at the appropriate moment.

Other APIs from the snmpd module are available, specifically:

void SnmpdShutDown(int a);

which causes the snmpd to restart itself — including the callback to your init function — as soon as possible.

The parameter a is ignored. It is there because in snmpd's “natural environment” this routine is a UNIX signal handler.

The helper functions in the network stack for managing DHCP leases will call SnmpdShutDown() when necessary, for
example if network interfaces go down and/or come up again.

Configuring eCos
To use the SNMP agent, the SNMP library and agent packages must be included in your configuration. To incorporate the
stack into your configuration select the SNMP library and SNMP agent packages in the eCos Configuration Tool, or at the
command line type:

$ ecosconfig add snmplib snmpagent

After adding the networking, common ethernet device drivers, snmp library and snmp agent packages, there is no configuration
required. However there are a number of configuration options that can be set such as some details for the System MIB, and
disabling SNMPv3 support (see below).

Starting the SNMP agent is not integrated into network tests other than snmpping below, nor is it started automatically in
normal eCos startup - it is up to the application to start the agent when it is ready, at least after the network interfaces are
both ’up‚.

Version usage (v1, v2 or v3)
The default build supports all three versions of the SNMP protocol, but without any dispatcher functionality (rfc 2571, section
3.1.1.2). This has the following implications :

1. There is no community authentication for v1 and v2c.

2. Security provided by v3 can be bypassed by using v1/v2c protocol.

To provide the dispatcher with rfc 2571 type functionality, it is required to set up security models and access profiles. This can
be provided in the normal Unix style by writing the required configurations in snmpd.conf file. Application code may setup
profiles in snmpd.conf and optionally set the environment variable SNMPCONFPATH to point to the file if it is not in the
usual location. The whole concept works in the usual way as with the standard UCD-SNMP distribution.

Traps
The support of the trapsink command in the snmpd.conf file is not tested and there may be problems for it working
as expected. Moreover, in systems that do not have filesystem support, there is no way to configure a trap-session in the
conventional way.

For reasons mentioned above, applications need to initialize their own trap sessions and pass it the details of trap-sink. The
following is a small sample for initializing a v1 trap session :

typedef struct trap {
 unsigned char ip [4];
 unsigned int port;
 unsigned char community [256];
}

1740

SNMP for eCos

trap trapsink;
unsinged char sink [16];

…
…

if (trapsink.ip != 0) {
 sprintf (sink, "%d.%d.%d.%d",
 trapsink[0], trapsink[1], trapsink[2], trapsink[3]);
 if (create_trap_session (sink,
 trapsink.port,
 (char *)trapsink.community,
 SNMP_VERSION_1,
 SNMP_MSG_TRAP) == 0) {
 log_error ("Creation of trap session failed \n");
 }
}

snmpd.conf file
Using snmpd.conf requires the inclusion of one of the file-system packages (eg. CYGPKG_RAMFS) and CYGPKG_FILEIO.
With these two packages included, the SNMP sub-system will read the snmpd.conf file from the location specified in
SNMPCONFPATH, or the standard builtin locations, and use these profiles. Only the profiles specified in the ACCESS-
CONTROL section of snmpd.conf file have been tested and shown to work. Other profiles which have been implemented in
UCD-SNMP-4.1.2's snmpd.conf may not work because the sole purpose of adding support for the snmpd.conf file has
been to set up ACCESS-CONTROL models.

At startup, the SNMP module tries to look for file snmp.conf. If this file is not available, the module successively looks
for files snmpd.conf, snmp.local.conf and snmpd.local.conf at the locations pointed to by SNMPCONFPATH
environment variable. In case SNMPCONFPATH is not defined, the search sequence is carried out in default directories. The
default directories are :/usr/share/snmp, /usr/local/share/snmp and $(HOME)/.snmp. The configurations
read from these files are used to control both, SNMP applications and the SNMP agent; in the usual UNIX fashion.

The inclusion of snmpd.conf support is enabled by default when suitable filesystems and FILEIO packages are active.

Test cases
Currently only one test program is provided which uses SNMP.

"snmpping" in the SNMP agent package runs the ping test from the TCPIP package, with the snmpd running also. This allows
you to interrogate it using host tools of your choice. It supports MIBs as documented above, so eg. snmpwalk <hostname>
public dot3 under Linux/UNIX should have the desired effect.

For serious testing, you should increase the length of time the test runs by setting
CYGNUM_SNMPAGENT_TESTS_ITERATIONS to something big (e.g., 999999). Build the test (make -C net/snmp/agent/
current tests) and run it on the target.

Then start several jobs, some for pinging the board (to make the stats change) and some for interrogating the snmpd. Set $IP
to whatever IP address the board has:

in a root shell, for flood ping
while(1)
date
ping -f -c 3001 $IP
sleep 5
ping -c 32 -s 2345 $IP
end

have more than one of these going at once
setenv MIBS all
while (1)
snmpwalk -OS $IP public
date

1741

SNMP for eCos

end

Leave to run for a couple of days or so to test stability.

The test program can also test snmpd.conf support. It tries to build a minimal snmpd.conf file on a RAM filesystem and passes
it to the snmp sub-system. With this profile on target, the following snmp[cmd] (cmd=walk, get, set) should work :

snmp[cmd] -v1 $IP crux $OID
snmp[cmd] -v2 $IP crux $OID
snmp[cmd] -v3 $IP -u root -L noAuthNoPriv $OID
snmp[cmd] -v3 $IP -u root -L authNoPriv -A MD5 -a md5passwd $OID

The following commands would however fail since they violate the access model :

snmp[cmd] $IP public $OID
snmp[cmd] -v1 $IP public $OID
snmp[cmd] -v2c $IP public $OID
snmp[cmd] -v3 $IP -u no_user -L noAuthNoPriv $OID
snmp[cmd] -v3 $IP -u root -L authNoPriv -A MD5 -a badpasswd $OID

SNMP clients and package use
SNMP clients may use these packages, but this usage is currently untested: the reason why this port to eCos exists is to acquire
the SNMP agent. The fact that that the SNMP API (for clients) exists is a side-effect. See the standard man page SNMP_API(3)
for details. There are further caveats below about client-side use of the SNMP library.

All of the SNMP header files are installed beneath …/include/ucd-snmp in the install tree. The SNMP code itself assumes that
directory is on its include path, so we recommend that client code does the same. Further, like the TCP/IP stack, compiling
SNMP code requires definition of _KERNEL and __ECOS, and additionally IN_UCD_SNMP_SOURCE.

Therefore, add all of these to your compile lines if you wish to include SNMP header files:

-D_KERNEL
-D__ECOS
-DIN_UCD_SNMP_SOURCE=1
-I$(PREFIX)/include/ucd-snmp

Unimplemented features
Currently, the filesystem and persistent storage areas are left undone, to be implemented by the application.

The SNMP library package is intended to support client and agent code alike. It therefore contains lots of assumptions about the
presence of persistent storage ie. a filesystem. Currently, by default, eCos has no such thing, so those areas have been simply
commented out and made to return empty lists or say “no data here.”

Specifically the following files have omitted/unimplemented code :

PACKAGES/net/snmp/lib/current/src/parse.c

contains code to enumerate MIB files discovered in the system MIB directories (“/usr/share/snmp/mibs”), and read
them all in, building data structures that are used by client programs to interrogate an agent. This is not required in an agent,
so the routine which enumerates the directories returns an empty list.

PACKAGES/net/snmp/lib/current/src/read_config.c contains two systems:

The first tries to read the configuration file as described in the snmpd.conf file section and the second system contains code to
record persistent data as files in a directory (typically /var/ucd-snmp) thus preserving the state permanently.

The first part is partially implemented to support multiple profiles and enables dispatcher functionality as discussed in the
section called “Version usage (v1, v2 or v3)”. The second part is not supported at all in the default implementation. As required,
a cleaner interface to permit application code to manage persistent data will be developed in consultation with customers.

1742

SNMP for eCos

MIB Compiler
In the directory /snmp/agent/current/utils/mib2c, there are the following files:

README-eCos notes about running with a nonstandard
 perl path.
README.mib2c the README from UCD; full instructions on
 using mib2c
mib2c the perl program
mib2c.conf a configuration file altered to include the
 eCos/UCD
mib2c.conf-ORIG copyright and better #include paths; and
 the ORIGinal.
mib2c.storage.conf other config files, not modified.
mib2c.vartypes.conf

mib2c is provided BUT it requires the SNMP perl package SNMP-3.1.0, and that in turn requires perl nsPerl5.005_03 (part
of Red Hat Linux from 6.0, April 1999).

These are available from the CPAN (“the Comprehensive Perl Archive Network”) as usual; http://www.cpan.org/ and links
from there. Specifically:

• PERL itself: http://people.netscape.com/kristian/nsPerl/

• http://people.netscape.com/richm/nsPerl/nsPerl5.005_03-11-i686-linux.tar.gz

• SNMP.pl http://www.cpan.org/modules/01modules.index.html

• http://cpan.valueclick.com/modules/by-category/05_Networking_Devices_IPC/SNMP/

• http://www.cpan.org/authors/id/G/GS/GSM/SNMP.tar.gz

(note that the .tar.gz files are not browsable)

For documentation on the files produced, see the documentation available at http://ucd-snmp.ucdavis.edu/ in general, and file
AGENT.txt in particular.

It is likely that the output of mib2c will be further customized depending on eCos customer needs; it‚s easy to do this by editing
the mib2c.conf file to add or remove whatever you need with the resulting C sources.

The UCD autoconf-style configuration does not apply to eCos. So if you add a completely new MIB to the agent, and support
it using mib2c so that the my_new_mib.c file contains a init_my_new_mib() routine to register the MIB handler, you will also
need to edit a couple of control files; these claim to be auto-generated, but in the eCos release, they‚re not, don‚t worry.

PACKAGES/net/snmp/agent/current/include/mib_module_includes.h

contains a number of lines like

#include “mibgroup/mibII/interfaces.h”

so add your new MIB thus:

#include “mibgroup/mibII/my_new_mib.h”

PACKAGES/net/snmp/agent/current/include/mib_module_inits.h

contains a number of lines like

init_interfaces();
init_dot3();

and so on; add your new MIB as follows:

init_my_new_mib();

and this should work correctly.

1743

http://www.cpan.org/
http://people.netscape.com/kristian/nsPerl/
http://people.netscape.com/richm/nsPerl/nsPerl5.005_03-11-i686-linux.tar.gz
http://www.cpan.org/modules/01modules.index.html
http://cpan.valueclick.com/modules/by-category/05_Networking_Devices_IPC/SNMP/
http://www.cpan.org/authors/id/G/GS/GSM/SNMP.tar.gz
http://ucd-snmp.ucdavis.edu/

SNMP for eCos

snmpd.conf
SNMPD.CONF(5) SNMPD.CONF(5)

NAME
 share/snmp/snmpd.conf - configuration file for the ucd-
 snmp SNMP agent.

DESCRIPTION
 snmpd.conf is the configuration file which defines how the
 ucd-smnp SNMP agent operates. These files may contain any
 of the directives found in the DIRECTIVES section below.
 This file is not required for the agent to operate and
 report mib entries.

PLEASE READ FIRST
 First, make sure you have read the snmp_config(5) manual
 page that describes how the ucd-snmp configuration files
 operate, where they are located and how they all work
 together.

EXTENSIBLE-MIB
 The ucd-snmp SNMP agent reports much of its information
 through queries to the 1.3.6.1.4.1.2021 section of the mib
 tree. Every mib in this section has the following table
 entries in it.

 .1 -- index
 This is the table's index numbers for each of the
 DIRECTIVES listed below.

 .2 -- name
 The name of the given table entry. This should be
 unique, but is not required to be.

 .100 -- errorFlag
 This is a flag returning either the integer value 1
 or 0 if an error is detected for this table entry.

 .101 -- errorMsg
 This is a DISPLAY-STRING describing any error trig-
 gering the errorFlag above.

 .102 -- errorFix
 If this entry is SNMPset to the integer value of 1
 AND the errorFlag defined above is indeed a 1, a
 program or script will get executed with the table
 entry name from above as the argument. The program
 to be executed is configured in the config.h file
 at compile time.

 Directives
 proc NAME

 proc NAME MAX

 proc NAME MAX MIN

 Checks to see if the NAME'd processes are running
 on the agent's machine. An error flag (1) and a
 description message are then passed to the
 1.3.6.1.4.1.2021.2.100 and 1.3.6.1.4.1.2021.2.101
 mib tables (respectively) if the NAME'd program is
 not found in the process table as reported by
 "/bin/ps -e".

 If MAX and MIN are not specified, MAX is assumed to
 be infinity and MIN is assumed to be 1.

1744

SNMP for eCos

 If MAX is specified but MIN is not specified, MIN
 is assumed to be 0.

 procfix NAME PROG ARGS
 This registers a command that knows how to fix
 errors with the given process NAME. When
 1.3.6.1.4.1.2021.2.102 for a given NAMEd program is
 set to the integer value of 1, this command will be
 called. It defaults to a compiled value set using
 the PROCFIXCMD definition in the config.h file.

 exec NAME PROG ARGS

 exec MIBNUM NAME PROG ARGS

 If MIBNUM is not specified, the agent executes the
 named PROG with arguments of ARGS and returns the
 exit status and the first line of the STDOUT output
 of the PROG program to queries of the
 1.3.6.1.4.1.2021.8.100 and 1.3.6.1.4.1.2021.8.101
 mib tables (respectively). All STDOUT output
 beyond the first line is silently truncated.

 If MIBNUM is specified, it acts as above but
 returns the exit status to MIBNUM.100.0 and the
 entire STDOUT output to the table MIBNUM.101 in a
 mib table. In this case, the MIBNUM.101 mib con-
 tains the entire STDOUT output, one mib table entry
 per line of output (ie, the first line is output as
 MIBNUM.101.1, the second at MIBNUM.101.2, etc…).

 Note: The MIBNUM must be specified in dotted-inte-
 ger notation and can not be specified as
 ".iso.org.dod.internet…" (should instead
 be

 Note: The agent caches the exit status and STDOUT
 of the executed program for 30 seconds after
 the initial query. This is to increase
 speed and maintain consistency of informa-
 tion for consecutive table queries. The
 cache can be flushed by a snmp-set request
 of integer(1) to 1.3.6.1.4.1.2021.100.VER-
 CLEARCACHE.

 execfix NAME PROG ARGS
 This registers a command that knows how to fix
 errors with the given exec or sh NAME. When
 1.3.6.1.4.1.2021.8.102 for a given NAMEd entry is
 set to the integer value of 1, this command will be
 called. It defaults to a compiled value set using
 the EXECFIXCMD definition in the config.h file.

 disk PATH

 disk PATH [MINSPACE | MINPERCENT%]

 Checks the named disks mounted at PATH for avail-
 able disk space. If the disk space is less than
 MINSPACE (kB) if specified or less than MINPERCENT
 (%) if a % sign is specified, or DEFDISKMINI-
 MUMSPACE (kB) if not specified, the associated
 entry in the 1.3.6.1.4.1.2021.9.100 mib table will
 be set to (1) and a descriptive error message will
 be returned to queries of 1.3.6.1.4.1.2021.9.101.

 load MAX1

 load MAX1 MAX5

 load MAX1 MAX5 MAX15

1745

SNMP for eCos

 Checks the load average of the machine and returns
 an error flag (1), and an text-string error message
 to queries of 1.3.6.1.4.1.2021.10.100 and
 1.3.6.1.4.1.2021.10.101 (respectively) when the
 1-minute, 5-minute, or 15-minute averages exceed
 the associated maximum values. If any of the MAX1,
 MAX5, or MAX15 values are unspecified, they default
 to a value of DEFMAXLOADAVE.

 file FILE [MAXSIZE]
 Monitors file sizes and makes sure they don't grow
 beyond a certain size. MAXSIZE defaults to infi-
 nite if not specified, and only monitors the size
 without reporting errors about it.

 Errors
 Any errors in obtaining the above information are reported
 via the 1.3.6.1.4.1.2021.101.100 flag and the
 1.3.6.1.4.1.2021.101.101 text-string description.

SMUX SUB-AGENTS
 To enable and SMUX based sub-agent, such as gated, use the
 smuxpeer configuration entry

 smuxpeer OID PASS
 For gated a sensible entry might be

 .1.3.6.1.4.1.4.1.3 secret

ACCESS CONTROL
 snmpd supports the View-Based Access Control Model (vacm)
 as defined in RFC 2275. To this end, it recognizes the
 following keywords in the configuration file: com2sec,
 group, access, and view as well as some easier-to-use
 wrapper directives: rocommunity, rwcommunity, rouser,
 rwuser.

 rocommunity COMMUNITY [SOURCE] [OID]

 rwcommunity COMMUNITY [SOURCE] [OID]
 These create read-only and read-write communities
 that can be used to access the agent. They are a
 quick method of using the following com2sec, group,
 access, and view directive lines. They are not as
 efficient either, as groups aren't created so the
 tables are possibly larger. In other words: don't
 use these if you have complex situations to set up.

 The format of the SOURCE is token is described in
 the com2sec directive section below. The OID token
 restricts access for that community to everything
 below that given OID.

 rouser USER [noauth|auth|priv] [OID]

 rwuser USER [noauth|auth|priv] [OID]
 Creates a SNMPv3 USM user in the VACM access
 configuration tables. Again, its more efficient
 (and powerful) to use the combined com2sec, group,
 access, and view directives instead.

 The minimum level of authentication and privacy the
 user must use is specified by the first token
 (which defaults to "auth"). The OID parameter
 restricts access for that user to everything below
 the given OID.

 com2sec NAME SOURCE COMMUNITY
 This directive specifies the mapping from a
 source/community pair to a security name. SOURCE
 can be a hostname, a subnet, or the word "default".
 A subnet can be specified as IP/MASK or IP/BITS.

1746

SNMP for eCos

 The first source/community combination that matches
 the incoming packet is selected.

 group NAME MODEL SECURITY
 This directive defines the mapping from security-
 model/securityname to group. MODEL is one of v1,
 v2c, or usm.

 access NAME CONTEXT MODEL LEVEL PREFX READ WRITE NOTIFY
 The access directive maps from group/security
 model/security level to a view. MODEL is one of
 any, v1, v2c, or usm. LEVEL is one of noauth,
 auth, or priv. PREFX specifies how CONTEXT should
 be matched against the context of the incoming pdu,
 either exact or prefix. READ, WRITE and NOTIFY
 specifies the view to be used for the corresponding
 access. For v1 or v2c access, LEVEL will be
 noauth, and CONTEXT will be empty.

 view NAME TYPE SUBTREE [MASK]
 The defines the named view. TYPE is either included
 or excluded. MASK is a list of hex octets, sepa-
 rated by '.' or ':'. The MASK defaults to "ff" if
 not specified.

 The reason for the mask is, that it allows you to
 control access to one row in a table, in a rela-
 tively simple way. As an example, as an ISP you
 might consider giving each customer access to his
 or her own interface:

 view cust1 included interfaces.ifTable.ifEntry.ifIndex.1 ff.a0
 view cust2 included interfaces.ifTable.ifEntry.ifIndex.2 ff.a0

 (interfaces.ifTable.ifEntry.ifIndex.1 == .1.3.6.1.2.1.2.2.1.1.1,
 ff.a0 == 11111111.10100000. which nicely covers up and including
 the row index, but lets the user vary the field of the row)

 VACM Examples:
 # sec.name source community
 com2sec local localhost private
 com2sec mynet 10.10.10.0/24 public
 com2sec public default public

 # sec.model sec.name
 group mygroup v1 mynet
 group mygroup v2c mynet
 group mygroup usm mynet
 group local v1 local
 group local v2c local
 group local usm local
 group public v1 public
 group public v2c public
 group public usm public

 # incl/excl subtree mask
 view all included .1 80
 view system included system fe
 view mib2 included .iso.org.dod.internet.mgmt.mib-2 fc

 # context sec.model sec.level prefix read write notify
 access mygroup "" any noauth exact mib2 none none
 access public "" any noauth exact system none none
 access local "" any noauth exact all all all

 Default VACM model
 The default configuration of the agent, as shipped, is functionally
 equivalent to the following entries:
 com2sec public default public
 group public v1 public
 group public v2c public
 group public usm public

1747

SNMP for eCos

 view all included .1
 access public "" any noauth exact all none none

SNMPv3 CONFIGURATION
 engineID STRING
 The snmpd agent needs to be configured with an
 engineID to be able to respond to SNMPv3 messages.
 With this configuration file line, the engineID
 will be configured from STRING. The default value
 of the engineID is configured with the first IP
 address found for the hostname of the machine.

 createUser username (MD5|SHA) authpassphrase [DES] [priv-
 passphrase]
 This directive should be placed into the "/var/ucd-
 snmp"/snmpd.conf file instead of the other normal
 locations. The reason is that the information is
 read from the file and then the line is removed
 (eliminating the storage of the master password for
 that user) and replaced with the key that is
 derived from it. This key is a localized key, so
 that if it is stolen it can not be used to access
 other agents. If the password is stolen, however,
 it can be.

 MD5 and SHA are the authentication types to use,
 but you must have built the package with openssl
 installed in order to use SHA. The only privacy
 protocol currently supported is DES. If the pri-
 vacy passphrase is not specified, it is assumed to
 be the same as the authentication passphrase. Note
 that the users created will be useless unless they
 are also added to the VACM access control tables
 described above.

 Warning: the minimum pass phrase length is 8 char-
 acters.

 SNMPv3 users can be created at runtime using the
 snmpusm command.

SETTING SYSTEM INFORMATION
 syslocation STRING

 syscontact STRING

 Sets the system location and the system contact for
 the agent. This information is reported by the
 'system' table in the mibII tree.

 authtrapenable NUMBER
 Setting authtrapenable to 1 enables generation of
 authentication failure traps. The default value is
 2 (disable).

 trapcommunity STRING
 This defines the default community string to be
 used when sending traps. Note that this command
 must be used prior to any of the following three
 commands that are intended use this community
 string.

 trapsink HOST [COMMUNITY [PORT]]

 trap2sink HOST [COMMUNITY [PORT]]

 informsink HOST [COMMUNITY [PORT]]
 These commands define the hosts to receive traps
 (and/or inform notifications). The daemon sends a
 Cold Start trap when it starts up. If enabled, it
 also sends traps on authentication failures. Mul-

1748

SNMP for eCos

 tiple trapsink, trap2sink and informsink lines may
 be specified to specify multiple destinations. Use
 trap2sink to send SNMPv2 traps and informsink to
 send inform notifications. If COMMUNITY is not
 specified, the string from a preceding trapcommu-
 nity directive will be used. If PORT is not speci-
 fied, the well known SNMP trap port (162) will be
 used.

PASS-THROUGH CONTROL
 pass MIBOID EXEC
 Passes entire control of MIBOID to the EXEC pro-
 gram. The EXEC program is called in one of the
 following three ways:

 EXEC -g MIBOID

 EXEC -n MIBOID

 These call lines match to SNMP get and get-
 next requests. It is expected that the EXEC
 program will take the arguments passed to it
 and return the appropriate response through
 it's stdout.

 The first line of stdout should be the mib
 OID of the returning value. The second line
 should be the TYPE of value returned, where
 TYPE is one of the text strings: string,
 integer, unsigned, objectid, timeticks,
 ipaddress, counter, or gauge. The third
 line of stdout should be the VALUE corre-
 sponding with the returned TYPE.

 For instance, if a script was to return the
 value integer value "42" when a request for
 .1.3.6.1.4.100 was requested, the script
 should return the following 3 lines:
 .1.3.6.1.4.100
 integer
 42

 To indicate that the script is unable to
 comply with the request due to an end-of-mib
 condition or an invalid request, simple exit
 and return no output to stdout at all. A
 snmp error will be generated corresponding
 to the SNMP NO-SUCH-NAME response.

 EXEC -s MIBOID TYPE VALUE

 For SNMP set requests, the above call method
 is used. The TYPE passed to the EXEC pro-
 gram is one of the text strings: integer,
 counter, gauge, timeticks, ipaddress, objid,
 or string, indicating the type of value
 passed in the next argument.

 Return nothing to stdout, and the set will
 assumed to have been successful. Otherwise,
 return one of the following error strings to
 signal an error: not-writable, or wrong-type
 and the appropriate error response will be
 generated instead.

 Note: By default, the only community
 allowed to write (ie snmpset) to
 your script will be the "private"
 community,or community #2 if defined
 differently by the "community" token
 discussed above. Which communities
 are allowed write access are con-

1749

SNMP for eCos

 trolled by the RWRITE definition in
 the snmplib/snmp_impl.h source file.

EXAMPLE
 See the EXAMPLE.CONF file in the top level source direc-
 tory for a more detailed example of how the above informa-
 tion is used in real examples.

RE-READING snmpd.conf and snmpd.local.conf
 The ucd-snmp agent can be forced to re-read its configura-
 tion files. It can be told to do so by one of two ways:

 1. An snmpset of integer(1) to
 1.3.6.1.4.1.2021.100.VERUPDATECONFIG.

 2. A "kill -HUP" signal sent to the snmpd agent pro-
 cess.

FILES
 share/snmp/snmpd.conf

SEE ALSO
 snmp_config(5), snmpd(1), EXAMPLE.conf, read_config(3).

 27 Jan 2000 SNMPD.CONF(5)

1750

Part LIV. mDNS Responder and DNS-SD
Important

This eCosPro-mDNS Middleware package is STRICTLY LICENSED FOR NON-COMMERCIAL PURPOSES
ONLY. It may not be used for Commercial purposes in full or in part in any format, including source code, binary
code and object code format.

A Commercial eCosPro License version 3 (or above) which explicity includes this Middleware Package is re-
quired for Commercial use.

Table of Contents
187. mDNS overview .. 1753

Introduction .. 1753
188. API .. 1754

API ... 1754
Example Responder ... 1773
Example DNS-SD Queries .. 1774

189. Support API .. 1775
Support API ... 1775

190. Configuration .. 1784
Configuration Overview ... 1784

Quick Start .. 1784
Configuring the mDNS Responder ... 1784
Configuring the mDNS DNS-SD support .. 1786

Tuning .. 1786
Footprint .. 1786

191. Debug and Test ... 1788
Debugging ... 1788

Asserts .. 1788
Diagnostic Output ... 1788

Testing .. 1788
mdns_example .. 1788
dnssd_example .. 1789
mdns_testp ... 1789
mdns_farm ... 1789
Bonjour Conformance Test ... 1789
DNS-SD Example ... 1792

1752

Chapter 187. mDNS overview
Introduction
eCosPro-mDNS is eCosCentric's commercial name for the CYGPKG_NET_MDNS package. The CYGPKG_NET_MDNS package
implements a small, lightweight, link-local scope mDNS Responder designed to provide Service Discovery (DNS-SD) support
for services announced to the network. It optionally provides a DNS-SD API to allow network services to be discovered by
the client application. The current mDNS implementation makes use of the lwIP TCP/IP stack.

mDNS Responder Features:

• Probing and Announcement of the local hostname and of registered services.

These are repeated as necessary on cable change, mDNS naming conflict, and so on.

• Configuration of local DNS records, and responding to external mDNS queries for the local hostname and registered services.

Note

Only the class IN “the Internet” is supported.

• Support for both IPv4 and IPv6 addressing.

Note

Only link-local scope.

The goal of the mDNS Responder support is to have as small a dynamic memory footprint as possible, whilst still being flexible
enough for a variety of real-world scenarios. The mDNS Responder currently has a simple single-packet probe/announce
scheme. This limits the number of services that can be registered depending on the lwIP heap available and the limitations
that lwIP imposes on individual UDP packet transmissions. It is important that the mDNS configuration matches the client
application expectations as regards number of services, and the resources available (and configured) for the target platform.

DNS-SD Features:

• Simple, low resource footprint, callback mechanism for Resource Record processing.

• Ability to generate network queries for specific Resource Record types, to trigger responses.

Similar to the goal for the mDNS Responder, the DNS-SD API allows for clients to be coded with as small a dynamic memory
footprint as possible, whilst not limiting the possibilities for resource-rich applications.

The mDNS implementation is based on the Multicast DNS RFC6762 and DNS-Based Service Discovery RFC6763 standards.

These in turn reference many other RFCs, for example RFC2782 for DNS SRV records, and RFC1035 covering DNS TXT
entries.

The MCASTDNS section 16 “Multicast DNS Character Set” explicitly states that all names in mDNS MUST be encoded as
precomposed UTF-8 [RFC3629] “Net-Unicode” [RFC5198] text. When an application provides strings to the mDNS Respon-
der it should ensure that they conform to the standard naming requirements.

A good introduction to the features and benefits of Bonjour/Zeroconf can be found in the O'Reilly book
“Zero Configuration Networking - The Definitive Guide” written by Stuart Chesire and Daniel H. Steinberg.

1753

http://www.faqs.org/rfcs/rfc6762.html
http://www.faqs.org/rfcs/rfc6763.html
http://www.faqs.org/rfcs/rfc2782.html
http://www.faqs.org/rfcs/rfc1035.html
http://www.faqs.org/rfcs/rfc3629.html
http://www.faqs.org/rfcs/rfc5198.html

Chapter 188. API
The main mDNS API provides a serialisation layer between the low-level (lwIP) networking based operations and client
application threads.

API

1754

API

Name
cyg_mdns_init — Initialise mDNS Responder

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_init();

Description

This initialises the common mDNS support. It will normally be called from the application shortly after lwIP initialisation,
and performs the basic “start-of-day” initialisation.

Note

All of the required lwIP network interfaces should have been added (normally via a call to the
init_all_network_interfaces()) prior to initialising the mDNS Responder. If network interfaces
are subsequently removed then the mDNS daemon should be disabled and re-enabled with the functions
cyg_mdns_disable() and cyg_mdns_enable() to ensure the correct interface configurations are used.
If network interfaces are subsequently added, it is sufficient to call solely cyg_mdns_enable() so that it
configures the new interface for mDNS requests.

Once initialised, it is possible to register services with cyg_mdns_service_register(), and then allow the mDNS
responder to respond to incoming requests with cyg_mdns_enable().

Return value

Boolean true if the mDNS sub-system has initialised OK, or false on failure.

1755

API

Name
cyg_mdns_terminate — Terminate mDNS Responder

Synopsis
#include <mdns.h>

void cyg_mdns_terminate();

Description

Provides clean soft-shutdown of the mDNS Responder. In reality most deeply embedded systems will never actually need to
call this routine, since they will be CPU-reset-restart systems.

This call will unregister all attached service vectors before disabling enabled interfaces. So any leaving (TTL=0) announce-
ments will be transmitted and IGMP/MLD filtering will be removed prior to disabling the mDNS packet reception.

1756

API

Name
cyg_mdns_enable — Enable mDNS

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_enable();

Description

Start the mDNS Responder listening on all of the network interfaces. This function enables the listener “daemon” to respond to
mDNS queries. Usually, this call does nothing if the mDNS Responder is already enabled, except in the case where new network
interfaces have been added, in which case this function is called in order to receive mDNS requests on the new interfaces.

Return value

Boolean true if mDNS successfully initialised. On error false is returned.

1757

API

Name
cyg_mdns_disable — Disable mDNS

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_disable();

Description

This function stops the mDNS Responder from listening on the network interfaces. This function does nothing if the mDNS
Responder is not enabled.

Return value

Boolean true if mDNS successfully disabled. On error false is returned.

1758

API

Name
cyg_mdns_service_register — Register set of services

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_service_register(count, vector);

Description

This function registers the set of service(s) in the supplied vector array. count gives the number of vector entries. If any of
the referenced services were already registered for a different service then an error is returned and none of the services in the
supplied vector are registered. If there are no free (CDL CYGNUM_MDNS_NUM_SERVICE_VECTORS controlled) vector
slots available then an error is returned.

A unique 3-tuple will be used to identify services registered. The tuple consists of the UTF-8 service and proto strings,
plus the 16-bit service port number. A simple descriptor structure is defined to hold these values, along with the “Weight”
and “Priority” values (which are not considered part of the unique identification). It is the responsibility of the caller to ensure
the lifetime of the string objects referenced, and that they are immutable when registered with the mDNS Responder; similarly
that the passed service descriptors in vector are immutable.

If all of the vector tuples match an already registered vector then the held pointer is updated. This allows the application
to supply new “Priority” and “Weight” values.

Or to put it another way, you can update the “Priority” and “Weight” values for a service only if you pass in a vector that
replaces all the same services as the vector that was used to previously register that service.

Note

Furthermore, since the API requires that the registered vector is immutable this updating of “Weight” and
“Priority” can only happen when the supplied vector pointer is different. This ensures that the application
client code is not tempted to update the registered services data (which should be immutable) under-the-feet of
the mDNS world.

We do not need to return a handle when registering services since the service tuple is used to uniquely identify each service.

Normally, for simple systems, the application will just have a single cyg_mdns_service_register() call with the
fixed, hardwired, vector of service descriptors to be announced for the application.

The cyg_mdns_service structure is used to define a service tuple. It is the responsibility of the client application to ensure
valid data is passed to the mDNS sub-system.

typedef struct cyg_mdns_service {
 const struct cyg_mdns_service_identity *id;
 const cyg_uint8 *default_label;
 const cyg_mdns_txt_record *txt_vector;
 cyg_uint16 priority;
 cyg_uint16 weight;
 cyg_uint8 txt_count;
} cyg_mdns_service;

The service descriptor id field is a pointer to a cyg_mdns_service_identity structure descriptor.

typedef struct cyg_mdns_service_identity {
 const cyg_uint8 *service;
 const cyg_uint8 *proto;
 cyg_uint16 port;
} cyg_mdns_service_identity;

The service and proto fields are pointers to a vector containing the 1-byte label length followed by 1..MDNS_MAX_LABEL
UTF-8 characters. The client must ensure that the labels are prefixed with the '_' character. Defining these vectors using constant
literal strings in C is unlikely to be appropriate as strings will include an additional NUL terminator character.

1759

API

Note

For simplicity, and to avoid having to maintain an internal database, it is the responsibility of the client application
to ensure the correct service and protocol label assignments.

The mDNS system exports the cyg_mdns_label_tcp and cyg_mdns_label_udp labels since they are
common and are likely to be needed by most applications. They also avoid the cost associated with the developer
having to provide duplicate string definitions in the application when defining their service vectors. In fact, for
DNS-SD conforming worlds, only the “_tcp” and “_udp” protocol specifiers should be used.

If the txt_vector pointer is NULL then whenever a TXT field is required then a single 1-byte NUL character TXT response
will be provided. If it is non-NULL then the txt_count field specifies the number of cyg_mdns_txt_record TXT
table entries provided.

typedef struct cyg_mdns_txt_record {
 const cyg_uint8 *table;
 cyg_uint8 len;
} cyg_mdns_txt_record;

The table field of each TXT descriptor references a sequence of 1-byte length followed by 1…MDNS_MAX_LABEL UTF-8
character strings. The len field specifies the overall individual table length. The mDNS standard does NOT require the table
to be terminated by a zero-length (NUL) indicator, since the TXT resource record contains the length. The following is an
incomplete service example, but does show the provision of two TXT records (though, in reality, this simple example would be
merged into a single TXT entry). Due to the use of the type cyg_uint8 for the len field individual TXT tables are limited
to a maximum of 255-bytes in length. Care must also be taken if registering services with multiple, large, TXT tables that the
resulting data will fit within the memory available to the mDNS packet transmission code.

static const cyg_uint8 txttab_example_1[] = {
 0x09,'t','x','t','v','e','r','s','=','1',
 0x0B,'O','p','t','i','o','n','s','=','o','n','e'
};

static const cyg_uint8 txttab_example_2[] = {
 0x09,'F','e','a','t','u','r','e','O','n'
};

static const cyg_mdns_txt_record txt_records[] = {
 {
 .table = txttab_example_1,
 .len = sizeof(txttab_example_1)
 },
 {
 .table = txttab_example_2,
 .len = sizeof(txttab_example_2)
 }
};

static const cyg_mdns_service services[] = {
 {
 .txt_vector = txt_records,
 .txt_count = (sizeof(txt_records) / sizeof(txt_records[0])),
 // ... other fields as required
 }
};

Return value

Boolean true on success, and false on error.

1760

API

Name
cyg_mdns_service_unregister — Remove registered services

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_service_unregister(count, vector);

Description

This function removes the services listed in vector from the set of registered services. vector must be a service vector
previously passed to cyg_mdns_service_register(). An error is returned if the vector does not match a complete
held vector. In other words, when a list of services is registered by a vector, they may only be de-registered together with
that same vector.

In reality (due to the API restriction on immutable “vector”s being registered), the vector and count parameters are
validated by checking that the vector matches a previously registered vector, and count matches the count of vectors
previously passed when that vector was registered.

If the vector is indeed valid, then mDNS announcements are sent immediately to advertise to attached networks that the service
has been removed (Resource Records with TTL of 0).

Return value

Boolean true on success, and false on error.

1761

API

Name
cyg_mdns_sethostname — Set base hostname

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_sethostname(hostname);

Description

Request that the given NUL terminated UTF-8 string be used as the device hostname. This is only a request and depending on
the external network devices the name may not be available. The hostname callback function interface provides, if required,
application control over the alternative naming strategy when a hostname is not available, or becomes (due to external network
changes) unavailable.

Return value

Boolean true on success, and false on error.

1762

API

Name
cyg_mdns_hostname_callback_register — Register hostname generation callback

Synopsis
#include <mdns.h>

void cyg_mdns_hostname_callback_register(fn, private);

Description

This function is used to attach a hostname callback handler function. By default the mDNS sub-system provides a callback
handler which attempts to acquire a unique hostname via monotonically increasing a suffix appended to the base hostname
value, and automatically trying to claim the amended hostname. e.g. “ecospro” -> “ecospro-1”, “ecospro-2”, … “ecospro-999”,
… etc. The application can over-ride this default behaviour by registering an alternative handler function using this API.

The DNS-SD standard Appendix D “Choice of Factory-Default Names” recommends that names are user-friendly, instead of,
for example, having something like the 24-bit (non-OUI) MAC address appended. This however means that when a device is
first connected to a network containing multiple similarly CDL configured devices then it can take some time to negotiate a
unique name. It is the responsibility of the application, using whatever persistant storage schemes it has access to, to ideally
store any claimed unique name for subsequent restarts of the device.

If the passed fn is NULL then the code reverts to the default mDNS callback handler.

typedef void (*cyg_mdns_hostname_callback_fn)(void *private, cyg_bool success,
 const cyg_uint8 *hostname, cyg_uint8 len);

The callback function is executed from the main lwIP networking thread and should be implemented like an eCos DSR and must
NEVER block, and should run for as little time as possible (for example by waking other threads to perform lengthier tasks).

The hostname callback function is called with success set to true when the name given has been successfully claimed.
At this point an application that has provided its own callback handler can, if desired, record the new name in its persistent
storage. The ability for the application to track the last allocated name over reboots, and to use a stored name with a call to the
cyg_mdns_sethostname() on startup will minimise subsequent delays claiming a name.

Note

The lifetime of the UTF-8 hostname pointer is for the active call to the callback function only, and if required
for later application use the contents should be copied into a suitable thread-safe buffer accordingly.

If success is false then the callback indicates that the given hostname is not valid and an alternative name should be
requested (via another call to cyg_mdns_sethostname() from a different thread as appropriate). NOTE: The callback
handler may be called at any point whilst registered if the hostname is no longer valid (e.g. due to a device appearing on the
network and claiming the hostname that was being used). If the callback is no longer required it should be released by attaching
a new callback, or by passing NULL for the default handler to be re-instated. The callback function is executed similarly to
an eCos DSR and is limited in the operations it can perform and must never block. If higher level processing is required by an
application due to a hostname conflict then suitable eCos primitives should be used to notify such code.

Note

The callback is implemented as described above (instead of, for example, returning an alternative name to
its caller) so that the DSR-like nature of the function is made clear, and that any slow operations should
(and can) be performed by higher application layers as needed. It is envisaged that application specific
hostname conflict handlers will signal a controlling thread, which when re-scheduled will subsequently call
cyg_mdns_sethostname() with the next name to be tried.

1763

API

Name
cyg_mdns_gethostname — Get current hostname value

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_gethostname(dstbuf, len);

Description

This function provides access to the currently configured mDNS UTF-8 hostname (shared across all mDNS configured
lwIP network interfaces) and is intended for debug or UI usage. The active hostname is copied into the supplied buffer,
where the passed *len specifies the valid buffer length of dstbuf. Normally the referenced dstbuf should have at least
MDNS_MAX_LABEL available space, and *len set accordingly. The return boolean state indicates success or failure, with
*len updated with the number of bytes written/required. On failure the contents of dstbuf are undefined. If dstbuf is
NULL then the call can be used with a valid len pointer to ascertain the amount of storage required to hold the name.

Note

It is possible due to a dynamically changing external network that any returned hostname may already be invalid
by the time the call returns the filled buffer to the application. For normal real-world operations the hostname
callback function should be tracked by the application to cope with the actual active/current state with suitable
cross-thread synchronisation implemented as required.

Return value

If a non-null len is supplied then the referenced location is updated with the hostname length at the time of the function call.
Boolean true is returned if dstbuf is NULL or is a pointer to a *len buffer large enough to hold the hostname at the time
of the call, which is filled with the hostname. On error boolean false is returned.

1764

API

Name
cyg_mdns_setservicelabel — Set service label

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_setservicelabel(id, label);

Description

Request that the given NUL terminated UTF-8 string be used as the label for the service specified by id. This is
only a request and depending on the external network devices the name may not be available. The servicelabel callback
function interface provides, if required, application control over the alternative naming strategy used when the complete
<label>.<service>.<proto>.local name is not available.

Note

This function is not available if the system is configured with CYGFUN_MDNS_COMMON_NAME enabled.

Return value

Boolean true on success, and false on error.

1765

API

Name
cyg_mdns_getservicelabel — Get current service label value

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_getservicelabel(id, dstbuf, len);

Description

This function provides access to the currently configured mDNS UTF-8 label for the specified id service descriptor. This
function is intended for debug or non-time critical UI usage. The active label is copied into the supplied buffer, where the passed
*len specifies the valid buffer length of dstbuf. Normally the referenced dstbuf should have at least MDNS_MAX_LABEL
available space, and *len set accordingly. The return boolean state indicates success or failure, with *len updated with the
number of bytes written/required. On failure the contents of dstbuf are undefined. If dstbuf is NULL then the call can be
used with a valid len pointer to ascertain the amount of storage required to hold the name.

Note

It is possible due to a dynamically changing external network that any returned label may already be invalid by
the time the call returns the filled buffer to the application. For normal real-world operations the servicelabel
callback function should be tracked by the application to cope with the actual active/current state with suitable
cross-thread synchronisation implemented as required.

Note

This function is not available if the system is configured with CYGFUN_MDNS_COMMON_NAME enabled.

Return value

If a non-null len is supplied then the referenced location is updated with the label length at the time of the function call.
Boolean true is returned if dstbuf is NULL or is a pointer to a *len buffer large enough to hold the service label at the
time of the call, which is filled with the service label. On error boolean false is returned.

1766

API

Name
cyg_mdns_servicelabel_callback_register — Register service label generation callback

Synopsis
#include <mdns.h>

void cyg_mdns_servicelabel_callback_register(fn, private);

Description

This function is used to attach a servicelabel callback handler function. By default the mDNS sub-system provides a callback
handler which attempts to acquire a unique label via monotonically increasing a suffix appended to the current label value, and
then automatically attempting to claim the amended <label>.<service>.<proto>.local name.

Note

This function is not available if the system is configured with CYGFUN_MDNS_COMMON_NAME enabled.

The application can over-ride this default behaviour by registering an alternative handler function using this API. If the passed
fn is NULL then the code reverts to the default mDNS callback handler.

The same limitations for the callback handler apply as for the hostname callback interface as documented by
cyg_mdns_hostname_callback_register.

1767

API

Name
cyg_mdns_hinfo_register — Register HINFO record data

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_hinfo_register(data, len);

Description

This optional function (controlled by the CDL option CYGFUN_MDNS_HINFO_OVERRIDE) allows the application to supply
an immutable data vector to be used as the HINFO record data when announcing that a hostname has been claimed. The passed
len parameter specifies the length of the valid data from the supplied data pointer. Passing the NULL pointer allows the
application to restore the default mDNS HINFO response.

The passed data vector should consist of two (2) length-prefixed strings conforming to the mDNS HINFO rules:

• Each length-prefixed string must start with a letter.

• Only upper-case letters, digits, hyphen and forward slash characters are permitted.

The following is a very simple fixed data example:

static const cyg_uint8 record_hinfo[] = {
 /* CPU */
 0x09,'C','O','R','T','E','X','-','M','3',
 /* OS */
 0x07,'E','C','O','S','P','R','O',
};

if (!cyg_mdns_hinfo_register(record_hinfo,sizeof(record_hinfo))) {
 /* generate error */
}

In some systems the CPU information may need to be derived dynamically at run-time (if multiple platforms are being
supported by the application source) and so a RAM structure would be used that is then filled with the CPU and OS fields.
The tests/mdns_example.c source, located in this package in the eCos source repository, provides an example dynamic
implementation.

Return value

The boolean true is returned when the referenced data has been registered successfully. If an invalid HINFO data structure
is supplied then boolean false is returned and the current mDNS HINFO state is not updated.

1768

API

Name
cyg_mdns_discovery_callback_register — Register DNS-SD response callback

Synopsis
#include <mdns.h>

cyg_mdns_discovery_context *cyg_mdns_discovery_callback_register(name, fn, private);

Description

This function is used to attach a callback handler function to be called when (by default) ANSWER, and optionally
ADDITIONAL, responses matching the supplied name are received. The cyg_mdns_discovery_callback_flags()
function can be used to update the control flags from the default ANSWERS-only configuration once the callback has been
registered.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

The name is an encoded string-table specifying the name that will be matched against mDNS responses when deciding if the
registered callback function fn should be called. For example to match “_http._tcp.local”:

const cyg_uint8 label_http[] = { 0x05,'_','h','t','t','p' };
const cyg_uint8 * const services_http[] = { label_http, cyg_mdns_label_tcp, cyg_mdns_label_local, NULL };

The private value is used to pass data (if needed) to the callback function, and is never interpreted by the callback API.

The <mdns.h> header defines the function prototype for the callback fn function:

typedef void (*cyg_mdns_discovery_callback_fn)(void *private, cyg_uint32 state, const cyg_mdns_resource *phrr,
 struct pbuf *p, cyg_uint16 offname, cyg_uint16 offdata);

The private is the same value as supplied when registering the callback function, and is used by the client to hold any state
needed to implement any interaction between the DSR-alike callback function and the application foreground client code.

The state parameter is a bitmask of flags and are used by the callback to determine what processing is required. The currently
defined flags are:

MDNS_DISCOVERY_CB_NOMORE

Set to indicate no more data available for the active mDNS response being processed. When this flag is set NO actual
Resource Record is actually being supplied. This call allows application that require, for example, a U/I update to be
notified that a complete response has been processed and no more records are available for the callback. It may be used by
a callback that has been caching information whilst constructing a “complete” image of a service to pass the data gathered
to another client component.

MDNS_DISCOVERY_CB_ADDITIONAL

Set when the callback is being passed an Additional record, and not a direct Answer record.

MDNS_DISCOVERY_CB_FLUSH

Informational flag indicating whether this is a “unique” response and any cache should be flushed. See RFC 6762 section
10.2 for more information.

The phrr pointer references a structure containing, primarily, the type of Resource Record that the callback is being passed,
and the TTL (Time-To-Live) of the record, where a TTL value of zero indicates a service is no longer available.

typedef struct cyg_mdns_resource {
 cyg_uint16 type;

1769

https://tools.ietf.org/html/rfc6762#section-10.2
https://tools.ietf.org/html/rfc6762#section-10.2

API

 cyg_uint16 class;
 cyg_uint32 ttl;
 cyg_uint16 rdlength;
} cyg_mdns_resource;

The p pointer references the lwIP packet buffer containing the Resource Record entry to be processed by the callback, with the
offname and offdata indices referencing, respectively, the offsets to the resource name and Resource Record type (phrr-
>type) specific data if relevant. The callback should NEVER modify the referenced lwIP packet buffer, and should use the
available Support API routines to extract the (possibly) compressed data from the lwIP packet buffer for local processing/
caching as required. This is because the packet buffer may be shared by multiple Resource Record responses, and other callbacks
may also be executed as a result of a single mDNS response as well as the mDNS Responder requirements.

By default only ANSWER records are passed through, but if needed the cyg_mdns_discovery_callback_flags()
function can be used to manipulate the control flags used to decide which response records are passed to the callback.

When the callback is no longer required it can be detached by using the
cyg_mdns_discovery_callback_unregister() function. It is the responsibility of the controlling application to
ensure that any resources owned by the callback routine are in a safe state prior to unregistering the callback.

Note

The callback function registered should NEVER block and should be treated like a DSR function. The function
is called within the context of the mDNS lwIP handler as the result of low-level mDNS packet processing.

Return value

A non-NULL pointer to an abstract handle used for subsequent interaction with the successfully registered callback, or NULL
on failure. For example, the call may fail if all the available callback slots are currently in use.

Note

The number of concurrently registered callbacks is controlled by the
CYGNUM_MDNS_DNSSD_NUM_CALLBACKS configuration option.

1770

API

Name
cyg_mdns_discovery_callback_unregister — Unregister DNS-SD response callback

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_discovery_callback_unregister(handle);

Description

This function is used to detach a previously registered callback handler function using its abstract handle.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

This will ensure that the callback function is no longer called by the mDNS response processing, and makes the callback slot
available for re-use.

Return value

Boolean true if the operation has completed OK, or false on failure.

1771

API

Name
cyg_mdns_discovery_callback_flags — Read/Modify DNS-SD response callback control flags

Synopsis
#include <mdns.h>

cyg_bool cyg_mdns_discovery_callback_flags(handle, and, eor, flags);

Description

This function is used to read or modify the control flags used by the mDNS code to decide which received response records
are passed to the registered callback function referenced by the abstract handle.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

For simplicity, and code size, this function uses the standard AND/EOR scheme to allow the function to be used for non-
destructive interrogation, as well as for flag modification. First the supplied “and” value is used as a mask to select the bits to
be preserved, prior to the supplied “eor” parameter being used to modify specific flag bits. For example, to read the current
state without affecting the flags:

cyg_mdns_discovery_callback_flags(handle,0xFF,0x00,¤t); // READ

Whereas the following will ignore the existing flag state and only set the MDNS_DISCOVERY_ADDITIONAL flag value:

cyg_mdns_discovery_callback_flags(handle,0x00,MDNS_DISCOVERY_ADDITIONAL,&explicit); // SET

The following example explicitly clears the single MDNS_DISCOVERY_ALL flag:

cyg_mdns_discovery_callback_flags(handle,~MDNS_DISCOVERY_ALL,0,&modified); // CLEAR FLAG

The use of the AND/EOR scheme allows for a single operation to be used to read some flags, explicitly set/clear some flags
and toggle other flags all in a single operation if required.

The full set of flags available are:

#define MDNS_DISCOVERY_ANSWER (1 << 0) // Callback will be passed Answer records (default)
#define MDNS_DISCOVERY_ADDITIONAL (1 << 1) // Callback will be passed Additional records
#define MDNS_DISCOVERY_ALL (1 << 2) // Callback will be passed ALL Additional records if
 // ANSWER callback executed

Return value

Boolean true if the operation has completed OK, or false on failure. On success the location referenced by the passed
flags parameter is updated with the current (as optionally modified) flag state.

1772

API

Name
cyg_mdns_discovery_query — Issue a DNS-SD query

Synopsis

#include <mdns.h>

cyg_bool cyg_mdns_discovery_query(name, cnetif, type);

Description

This function is used to transmit a query to the selected lwIP network interface. The name should reference a NULL terminated
set of pointers to the individual field entries for the query name. The type should be a RFC1035 defined resource record
value. If the supplied cnetif is NULL then the code will transmit the query to all active interfaces. An IPv4 query will always
be generated, and if lwIP IPv6 is configured than the code will also generate an IPv6 query.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

The following example source fragment demonstrates the “vector of pointers” structure used to hold the name to be used for
the query. This example will issue a query across all interfaces asking for HTTP server information:

static const cyg_uint8 label_http[] = { 0x05,'_','h','t','t','p' };

static const cyg_uint8 * const services_http[] = {
 label_http,cyg_mdns_label_tcp,cyg_mdns_label_local,NULL
};

if (cyg_mdns_discovery_query(services_http,NULL,MDNS_RRTYPE_PTR)) {
 // success
} else {
 // failed
}

The <mdns.h> header file contains manifests (prefixed MDNS_RRTYPE_) for the main RFC1035 defined Resource Record
types. Though, for DNS-SD use, normally only the MDNS_RRTYPE_PTR, MDNS_RRTYPE_SRV, MDNS_RRTYPE_A and
MDNS_RRTYPE_AAAA types would be used during network service discovery.

Note

As discussed previously the process of generating queries is distinct from the system for registering callbacks to
process responses. It is perfectly possible to generate requests when no callbacks are in place to handle responses
(though this would not be of much use), and similarly it is expected that a callback may be registered for the
lifetime of the application, with it asynchronously processing relevant responses that may have been triggered
by the use of this query function.

Return value

Boolean true if the operation has completed OK, or false on failure. A failure may result if the operation cannot be posted
to the lwIP layer for processing (this will trigger an assert when an ASSERT enabled configuration is being used), or (more
likely) if there are no active (“link up”) network interfaces on which to send the query.

Example Responder
The tests/mdns_example.c source file included in the package provides a complete, simple, real-world example of the
mDNS Responder usage. It registers two services, a dummy (port 9) service _workstation._tcp.local and a HTTP
daemon using service _http._tcp.local on port 80.

1773

http://www.faqs.org/rfcs/rfc1035.html
http://www.faqs.org/rfcs/rfc1035.html

API

Normally the first task after the lwIP networking has been initialised is to call the C function:

cyg_bool cyg_mdns_init();

This initialises the core of the mDNS support. After the mDNS Responder has been initialised, services can be registered, and
the network interfaces enabled as required.

The following is a very simple example of declaring a <hostname>._http._tcp.local service for the
<hostname>.local address, where <hostname> is the default as configured by the CYGDAT_NET_MDNS_HOSTNAME
CDL option.

static const cyg_uint8 label_http[] = { 0x05,'_','h','t','t','p' };

static const cyg_mdns_service_identity httpd80 = {
 .service = label_http,
 .proto = cyg_mdns_label_tcp,
 .port = 80
};

static const struct cyg_mdns_service httpd80_service = {
 .id = &httpd80,
 .txt_vector = NULL,
 .txt_count = 0,
};

…

if (cyg_mdns_init()) {
 if (cyg_mdns_service_register(1,(struct mdns_service *)&httpd80_service)) {
 if (cyg_mdns_enable()) {
 // other application processing as needed ...
 } else {
 (void)cyg_mdns_service_unregister(1,(struct mdns_service *)&httpd80_service);
 // report error
 }
 } else {
 cyg_mdns_terminate();
 // report error
 }
} else {
 // report error
}

Example DNS-SD Queries
The tests/dnssd_example.c source file included in the package provides a complete, simple, real-world example of
the DNS-SD API usage. See the section called “DNS-SD Example” for more detail.

1774

Chapter 189. Support API
Some support functions are provided by the mDNS code for use by client applications. These functions do not by themselves
affect the mDNS state and are thread-safe. Some functions are only present when CYGIMP_NET_MDNS_DNSSD support is
configured.

Support API

1775

Support API

Name
cyg_mdns_strlen — Calculate uncompressed length of (possibly compressed) string

Synopsis
#include <mdns.h>

cyg_uint16 cyg_mdns_strlen(p, index, raw);

Description

This function is used to calculate the space needed to hold an uncompressed copy of a Resource Record encoded string. The
p pointer references the lwIP packet buffer containing the original string structure, with the index specifying the starting
offset within the lwIP packet for the string.

The boolean raw flag is used to control the style of uncompressed string for which a length is being calculated.

Return value

The return value depends on the supplied boolean raw flag parameter. When raw=true the return value is the size needed
for an uncompressed “raw” copy of the string still using the mDNS encoding style (length byte followed by UTF-8 character
data). When raw=false is specified then the function returns the size needed to hold a final string representation using '.'
to separate fields, and also including the terminating NUL character. If invalid parameters, or data, are given then the error
limit value 0xFFFF is returned.

1776

Support API

Name
cyg_mdns_name_uncompress — Uncompress encoded string

Synopsis
#include <mdns.h>

cyg_uint16 cyg_mdns_name_uncompress(dst, dstlimit, p, index, raw);

Description

This function is used to build a copy of the Resource Record encoded string in the supplied destination buffer. The p pointer
references a lwIP packet buffer containing the encoded string to be processed at the given index offset within the packet. If
the supplied dst pointer is NULL then the function does not copy the data, but can be used to step over an encoded string. When
dst is not-NULL then the dstlimit value defines the amount of space available in the destination buffer. When copying
the function will not copy more than dstlimit characters.

When the boolean raw parameter is true, the function will copy the uncompressed individual fields to the destination buffer,
still using the encoded string style (length byte followed by UTF-8 character data). Whereas raw=false will build a '.'
separated name in the destination buffer.

Return value

The return value is the lwIP packet buffer index for the first data byte after the encoded string.

1777

Support API

Name
cyg_mdns_strlen_vector — Calculate uncompressed length of string vector

Synopsis
#include <mdns.h>

cyg_uint16 cyg_mdns_strlen_vector(iname, raw);

Description

This function is used to calculate the space needed to hold an uncompressed copy of an encoded string described by the iname
vector. The last entry of the iname vector must be NULL.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

When raw=true the function counts the space needed to hold a copy of all the vector entries in an uncompressed form (for
supporting “compressed->uncompressed” copying in the original “string-table” format, i.e. length byte followed by UTF-8
character data). The returned value is the space for the referenced encoded strings, and is not the size of the vector describing
the name.

When raw=false we are counting the space needed to hold the “final” string representation with '.' inserted to separate fields.

Return value

Number of bytes needed to hold the uncompressed string in the selected boolean parameter raw style.

1778

Support API

Name
cyg_mdns_strlen_uncompressed — Length of uncompressed encoded string

Synopsis
#include <mdns.h>

cyg_uint16 cyg_mdns_strlen_uncompressed(us);

Description

This function is used to calculate the length of an uncompressed, encoded string terminated by a zero-length (NUL) field.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

static const cyg_uint8 encoded_string[] = {
 0x08,'t','e','s','t','n','a','m','e',
 0x05,'_','h','t','t','p',
 0x00
};

…

cyg_uint16 elen = cyg_mdns_strlen_uncompressed(encoded_string);
// elen == ((1 + 8) + (1 + 5) + 1) == 16

Return value

The number of bytes occupied by the encoded string.

1779

Support API

Name
cyg_mdns_name — Convert encoded name into dot-notation

Synopsis
#include <mdns.h>

cyg_uint16 cyg_mdns_name(dst, dstlimit, strtab);

Description

This function is used to convert an encoded name into a “simple” dot-notation NUL-terminated string.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

If the passed dst pointer is NULL then the routine can be used to calculate the space needed to hold the converted name.

Pseudo-code example:

cyg_uint16 needed = cyg_mdns_name(NULL,0,hostname);
char buffer[needed];
cyg_uint16 used = cyg_mdns_name(buffer,needed,hostname);
if (used == needed) {
 diag_printf(" http://%s:%u/\n",buffer,port);
}

The routine will not write more than the passed dstlimit number of characters, and as such if the passed buffer is too small
then the string will not be NUL terminated.

Return value

The number of characters needed to hold the converted string (when dst=NULL), or the number of characters used in the
supplied dst destination buffer.

1780

Support API

Name
cyg_mdns_build_txt_vector — Build vector of pointers to individual TXT Record fields

Synopsis
#include <mdns.h>

cyg_uint8 cyg_mdns_build_txt_vector(txt, txtlen, txtkeys, vlen);

Description

This helper function is used to construct a vector of the individual TXT Resource Record fields for easier client processing.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

The txt parameter should reference a contiguous buffer containing a TXT Record string-table - length byte followed by
character data, possibly followed by another length byte and more character data and so on. NOTE: An empty TXT string-
table is marked with a NUL character, so txtlen should always be 1 or more, but a string-table containing entries does NOT
have a terminating NUL, which is why the txtlen parameter is required.

If the passed txtkeys value is NULL then the function counts the number of entries needed to hold the individual
key[=value] entries within the TXT Record, so can be used to ascertain the size of vector needed for a specific TXT Record.
When txtkeys is non-NULL it points to the beginning of an array of cyg_uint8 pointers. The vlen parameter specifies the
number of vector slots available in this array to receive pointers into the txt buffer for the individual entries (which for TXT
Records will be in the form key or key=value). When populating the supplied txtkeys vector a terminating NULL pointer
is added if the supplied vlen indicates the supplied vector is larger than the number of TXT fields found.

For example:

static const cyg_uint8 example_txt[] = {
 0x04,'a','b','c','d',
 0x0C,'s','o','m','e','k','e','y','=','d','a','t','a'
};
cyg_uint16 txtlen = (cyg_uint16)sizeof(example_txt);

cyg_uint8 entries = cyg_mdns_build_txt_vector(example_txt,txtlen,NULL,0);
cyg_uint8 *txtkeys[entries + 1]; // extra “+1” for terminating NULL

(void)cyg_mdns_build_txt_vector(example_txt,txtlen,txtkeys,(entries + 1));
diag_printf(" TXT-%u contains %u entr%s\n",ti,entries,((entries == 1) ? "y" : "ies"));

unsigned int idx;
for (idx = 0; (idx < entries); idx++) {
 cyg_uint8 klen = txtkeys[idx][0];
 if (klen) {
 cyg_uint8 key[klen + 1];
 memcpy(key,&txtkeys[idx][1],klen);
 key[klen] = '\0';
 diag_printf(" [%u]=\"%s\"\n",idx,key);
 } else {
 diag_printf(" [%u]={EMPTY}\n",idx);
 }
}

Return value

Returns a count of the number of key[=value] entries in the referenced TXT Record.

1781

Support API

Name
cyg_mdns_build_strtab_vector — Build vector of pointers to individual encoded string fields

Synopsis
#include <mdns.h>

cyg_uint8 cyg_mdns_build_strtab_vector(strtab, labels, vlen);

Description

This helper function is used to construct a vector of the individual label fields present in the supplied, uncompressed, contiguous
strtab string-table.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

If the passed labels value is NULL then the function counts the number of entries needed to hold pointers to the individual
label field entries within the NUL-terminated string-table, so can be used to ascertain the size of vector needed for a specific
encoded string. When labels is non-NULL the vlen parameter specifies the number of vector slots available to receive
pointers into the strtab buffer for the individual label field entries. When populating the supplied labels vector a
terminating NULL pointer is added.

This function is similar in operation to the cyg_mdns_build_txt_vector() function, so a similar approach it its
example can be used to build and subsequently process a vector of pointers.

Return value

Returns a count of the number of fields within the referenced uncompressed encoded string.

1782

Support API

Name
cyg_mdns_strcasecmp_strtab — Compare two encoded string-tables ignoring case

Synopsis
#include <mdns.h>

int cyg_mdns_strcasecmp_strtab(t1, t2);

Description

This function allows a field-by-field comparison of two encoded string-table buffers to be performed.

Note

This function is not available if the system is not configured with CYGIMP_NET_MDNS_DNSSD enabled.

The referenced string-table parameters should be pointers to uncompressed, contiguous, NUL-terminated encoded strings of
the form:

static const cyg_uint8 encoded_string_example[] = {
 0x08,'t','e','s','t','n','a','m','e',
 0x05,'_','h','t','t','p',
 0x00
};

Return value

Returns an integer value equal to zero if t1 is found to exactly match t2 (ignoring case), otherwise a non-zero value is returned
on a failure to match.

1783

Chapter 190. Configuration
This chapter shows how to include the mDNS support into an eCos configuration, and how to configure it once installed.

Configuration Overview
The mDNS Responder is contained in a single eCos package CYGPKG_NET_MDNS. However, it depends on the services of
a collection of other packages for complete functionality. Currently the mDNS Responder implementation is tightly bound
with the lwIP TCP/IP networking stack provided by the CYGPKG_NET_LWIP package. The lwIP package provides the packet
buffer support (allocation and access routines) as well as the underlying multicast UDP transport support.

Quick Start
Incorporating the mDNS Responder into your application is straightforward. The essential starting point is to incorporate the
mDNS eCos package (CYGPKG_NET_MDNS) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Alternatively, as a convenience, minimal configuration files (.ecm files) have been provided to permit an easy starting point for
creating a configuration incorporating the mDNS Responder. Two configuration files, mdns_bct and mdns_minimal, are
provided for those intending to use the Bonjour Conformance Test (BCT), and these can be found in the directory ECOSPRO/
packages/net/mdns/VERSION/misc where ECOSPRO is the base directory of the eCosPro installation, and VERSION
is the eCosPro (or package) version. The mdns_minimal.ecm file is provided as an example of a low footprint configuration
for resource limited target platforms. These files may be used either by providing the configuration file name with the command
line ecosconfig import; or with the File->Import… menu item within the eCos Configuration Tool. Both these files are basic,
incorporating only those packages which are essential for mDNS operation.

Note

When building the tests for a limited RAM platform it may be necessary to build only the mDNS tests. The tests
for some standard packages may require too much RAM to successfully link. For example to build the mDNS
tests for a low resource platform:

$ mkdir minimal_bct
$ cd minimal_bct
$ ecosconfig new PLATFORM
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/net/mdns/VERSION/misc/mdns_minimal.ecm
[… ecosconfig output elided …]
$ ecosconfig resolve
$ ecosconfig tree
$ make
[… make output elided …]
$ cd net/mdns/current
$ make tests
[… make output elided …]

Configuring the mDNS Responder
Once added to the eCos configuration, the mDNS Responder package has a number of configuration options.

CYGDAT_NET_MDNS_HOSTNAME

The default mDNS hostname used when announcing services is provided as part of the standard eCos CDL, but it is
expected that real-world applications will manage (via whatever means is appropriate for the target application/platform)
their own default hostname configuration, and will then use the mDNS API as required to configure the required
hostname prior to enabling a network interface.

1784

Configuration

The mDNS hostname is, when assigned, shared across all the active mDNS network interfaces. This is to ensure that
a named service is common across all the configured interfaces.

Note

The actual hostname in use may change asynchronously as part of the handling of mDNS name conflicts
and rejections. It is possible for another device to attach to the network and cause a new hostname to be
chosen. The hostname callback support allows for application control of the namespace used. By default the
mDNS Responder provides a simple conflict resolution approach of appending a suffix with a monotonically
increasing number.

The DNS-SD standard Appendix D “Choice of Factory-Default Names” suggests that the starting name is a simple, user-
friendly, human-decipherable, name; and is not automatically derived from some unique identification (e.g. the OUI MAC
address).

CYGNUM_MDNS_NUM_SERVICE_VECTORS

The number of “sets of service vectors” that can be supported. Each service vector specifies one or more services. To
minimise the memory footprint required to support mDNS, the service descriptors are provided by the controlling appli-
cation as a set of immutable contiguous descriptors. This option controls the number of such sets (minimum 1) that can
be held by the mDNS instance.

The CDL configuration should match the target application requirements, and this setting relates to the number of distinct
cyg_mdns_service_register calls that can be made. For most embedded applications a value of 1 should suffice since the
services to be advertised are known and fixed. However, if an application needs to register and de-register differing sets
of services dynamically then this configuration value needs to reflect the number of distinct service sets required.

CYGNUM_MDNS_MAX_SERVICE_COUNT

This option specifies the number (count) of service descriptors allowed in an individual service vector. To minimise the
memory footprint required to support mDNS this option allows the number of services per vector to be tuned to reflect
the requirements of the application.

CYGFUN_MDNS_COMMON_NAME

If enabled this option will use the claimed hostname for all registered services. This requires a much smaller RAM footprint
than allowing for per-service labels, and may be required for deeply-embedded, low memory, targets if more than a few
services are registered. In some environments it may be sufficient to have a single name used for the host and all the
announced services.

Note

If this feature is enabled then the mDNS Responder will NOT pass the Bonjour Conformance Test (BCT)
since it explicitly requests a service label containing spaces, which will pass but then the BCT it then subse-
quently raises a FAILURE when it sees the hostname label contain spaces.

CYGFUN_MDNS_HINFO_OVERRIDE

By default the mDNS Responder provides an HINFO record using the CPU name “CPU” and the operating system name
“ECOSPRO” when announcing the claimed hostname. If this option is enabled then support is provided to allow the
application to provide its own simple HINFO record data structure.

CYGNUM_MDNS_ANNOUNCE_COUNT

The mDNS standard allows for between 2 and 8 announcement packets (with increasing inter-packet delays) to be trans-
mitted when a hostname or service is claimed. Since mDNS is based on UDP multicasts it is possible in a congested
system, or for limited bandwidth targets, for packets to be missed. This option allows an increased number of packets to
be transmitted to minimise the chances of remote systems missing an announcement.

CYGNUM_MDNS_TTL_SERVICE

This option specifies the default “time to live” (TTL) value in seconds that is published for registered services.

1785

Configuration

CYGNUM_MDNS_TTL_ANNOUNCEMENT

This option specifies the default “time to live” (TTL) value in seconds for announcements.

CYGFUN_MDNS_STATS

If enabled then this option adds code to track information that may be useful when ascertaining the resources required for
a configuration or when debugging the mDNS Responder.

The information is held in the exported structure object cyg_mdns_statistics. This allows the contents to be
manually inspected via a debug tool, or for the application to access the data using the structure definition as provided
by the header file mdns.h.

See the the section called “Statistics” section for more information on use of this configuration option.

CYGDBG_MDNS_DEBUG

If this option is enabled then it provides access to individually controlled CDL debug options for various sub-systems or
package features. This allows the detail and amount of debug information to be controlled.

Configuring the mDNS DNS-SD support
Optional support for the DNS-SD API can be enabled in a configuration by enabling the CYGIMP_NET_MDNS_DNSSD option.
By default, for backwards compatibility, this option is disabled. This ensures the extra memory footprint required to support
the DNS-SD API does not impact existing configurations unless explicitly enabled.

CYGIMP_NET_MDNS_DNSSD

If this feature is enabled then the DNS-SD API is provided to allow client applications to perform service discovery.

CYGNUM_MDNS_DNSSD_NUM_CALLBACKS

This option controls the number of active, concurrent, application callbacks supported by the DNS-SD API. A lower
value will help minimise the memory footprint required by the mDNS implementation. The value should be tuned to the
application requirements. It is possible for an application to be written requiring only a single active callback handler,
though multiple handlers may allow different application sub-systems to be maintaining their own “view” of the specific
network services or hosts that the particular sub-system is interested in.

Tuning
Footprint
The current implementation relies on the lwIP heap for allocating the response packets. This requires that lwIP has been
configured with a large enough CYGNUM_LWIP_MEM_SIZE heap size. If ASSERTS are enabled for the build then failure to
allocate the required response packet space will trigger an assert failure, otherwise the packet transmission operation will be
dropped in that hope that subsequent operations will succeed once some lwIP heap has become available.

Service Labels

The CYGFUN_MDNS_COMMON_NAME controls whether a single, common, name is used to announce the host and all registered
services. This option reduces the RAM footprint required, at the expense of not supporting per-service labels.

For very simple target applications, where maybe only a single service is being announced, it may be deemed that it is not an
issue if the hostname and service-label are the same. However, a conflict with either causing a renaming will therefore affect
both the hostname and service-label.

Statistics

The CYGFUN_MDNS_STATS option can be enabled to allow for information counts and sizes to be gathered during execution.
These statistics can help with the tuning of the mDNS world during development, since monitoring the minimum and maximum
usage counts of resources along with the error counts can indicate resource starvation issues.

1786

Configuration

For the network packet memory tracking, a common cyg_mdns_statistics_memory structure is defined and used for
each of the packet size records being tracked:

struct cyg_mdns_statistics_memory {
 cyg_uint32 count; // number of tracked items
 cyg_uint16 min; // minimum size seen
 cyg_uint16 max; // maximum size seen
};

For example the basic statistics structure is defined as:

struct cyg_mdns_statistics {
 struct cyg_mdns_statistics_memory errors; // failed packet allocation information
 struct cyg_mdns_statistics_memory hostname; // hostname probe/announce packets
 struct cyg_mdns_statistics_memory service; // service probe/announce packets
 struct cyg_mdns_statistics_memory responses; // query response packets
 struct cyg_mdns_statistics_memory tx; // packets transmitted
};

The errors information records the number of failures to allocate a packet buffer, along with the smallest allocation attempt
that failed reported in the min field and the largest allocation attempt that failed in the max field.

The hostname, service and responses elements record the number of buffer allocations made for each of the respective
mDNS packet type generators along with the minimum and maximum sizes seen.

The tx field tracks the actual generated packet size as transmitted for all of the packet generators. The maximum recorded
by this statistic will normally be smaller than the largest of the packet generator maximums since it tracks the size of packet
actually transmitted after any name compression has been applied.

Real-World Example

As an example, with careful tuning, it is possible to implement a simple mDNS Responder and webserver with a very small
RAM footprint.

For a Cortex-M3 (STM32F207x) based platform, the default mDNS Responder configuration occupies ~14K of code and
requires less than 512-bytes of RAM for the mDNS Responder specific state. If CYGFUN_MDNS_COMMON_NAME is enabled
then the code occupies less than 14K and requires less than 300-bytes of RAM to hold the mDNS specific context.

The code (normally ROM) and RAM footprint for a complete application will be higher depending on the eCos features
configured and application code requirements (e.g. number and size of thread stacks, network buffers, etc.).

1787

Chapter 191. Debug and Test
Debugging
Asserts
If the target platform resources allow, the first step in debugging should be to enable ASSERTs. The inclusion of assert checking
will increase the code footprint and lower the performance, but does allow the code to catch internal errors from unexpected
data values. e.g. when the application/client is not able to guarantee the validity of data passed into the mDNS Responder.

The mDNS Responder asserts are controlled via the standard eCos Infrastructure CYGPKG_INFRA package
CYGDBG_USE_ASSERTS option. If enabled, then run-time assertion checks are performed by the mDNS Responder.

If assertions are enabled, and a debugger is being used it is normally worthwhile setting a breakpoint on the
cyg_assert_fail symbol so that the debugger will stop prior to entering the default busy-loop processing.

Diagnostic Output
In conjunction with the CYGDBG_MDNS_DEBUG CDL configuration setting, the header-file src/mdns_debug.h
implements the mDNS specific debug control.

When CYGDBG_MDNS_DEBUG is enabled a set of individually selectable sub-systems are available to control the diagnostic
output generated.

However, when developing or debugging the mDNS Responder implementation, it may be simpler (with fewer build side-
effects) to control the debugging output via uncommenting the necessary manifests at the head of the src/mdns_debug.h
source file than re-configuring the complete eCos configuration via the CDL. That way only the mDNS package will be re-built.

Note

Some diagnostic output, if enabled, may adversely affect the operation of the mDNS Responder as seen by 3rd-
party code. For example, “slow” serial diagnostic output of the packet parsing and response generation could
mean that a significant amount of time passes, such that the mDNS Responder no longer adheres to the timings
as specified by the mDNS/DNS-SD standards.

Testing
If the configuration option CYGPKG_NET_MDNS_TESTS is enabled then a set of simple tests are built.

Note

If the target platform has limited memory and is unable to execute the tests then the eCos synthetic Linux target
can be used to execute tests and verify the behaviour of the mDNS implementation when debugging, assertions
or large test executables are required.

mdns_example
The mdns_example provides a very basic HTTP daemon, with enough functionality to pass the Bonjour Conformance Test
(see the section called “Bonjour Conformance Test”).

On startup the application initialises a HTTP daemon listening on port 80, and registers and enables the mDNS announcing
that service. A HTTP GET request for the default root page will return an HTML page listing the sub-pages provided. The
application is manually terminated by requesting the exit page. The config page has specific support for the features
needed for the BCT.

The mdns_example is, however, a simple example of announcing a DNS-SD service, as well as a simple lwIP HTTP daemon
demonstration.

1788

Debug and Test

dnssd_example
The dnssd_example application demonstrates the use of the DNS-SD API to discover network services (see the section called
“DNS-SD Example” for more detail). The application will enumerate local services being announced to the network, before
performing specific queries for “_http” and “_ipp” services to ascertain server and TXT information.

mdns_testp
The mdns_testp uses dummy network interfaces to monitor the responses generated by the mDNS Responder in a known
clean environment. The physical network connection is not used after the startup initialisation. The test application controls the
packets injected into the networking stack and provides its own artificial driver layer for packet transmission. This allows
for specific mDNS Responder features to be tested without the noise and interference of a real network setup, and without
specifying a stand-alone, closed, network like the 3rd-party Bonjour conformance testing.

mdns_farm
The mdns_farm test is primarily for use in the eCosCentric® automated testfarm. It can however be manually executed by
starting the application, and then manually executing the simple bash test script misc/mdnstest1.sh on a suitable host,
passing the network address of the target executing the mdns_farm executable. For example:

$./misc/mdnstest1.sh 192.168.7.165

Note

The host used to execute the script should have a suitable avahi configuration.

Bonjour Conformance Test
If the configuration option CYGPKG_NET_MDNS_TESTS_STANDALONE is enabled then the mdns_example is built. This
implements a simple mDNS application providing, by default, a limited functionality HTTP daemon on port 80. This test
program, when used with a suitable eCos system configuration, can be used for execution against the Bonjour Conformance
Test (BCT).

Note

For the full BCT test, which includes link-local address verification, the eCos configuration should
have the lwIP IPv4 AutoIP (CYGFUN_LWIP_AUTOIP) support enabled and the network interface
being used for the Ethernet connection configured to obtain its network address using AutoIP
(CYGOPT_LWIP_ETH_DEV_ADDR_AUTOIP#).

For the BCT to function, a very specific closed network setup is required. For the mDNS Responder package testing the
following equipment was used:

• Unit-Under-Test (UUT)

The target platform being tested, executing a suitable eCosPro configuration.

• MacBookPro (OS: 10.8.2)

Executing the BonjourConformanceTest v1.2.8 in a Terminal shell window, and the Safari v6.0.1 web-browser.

• Airport Extreme (HW: A1408 FW: 7.6.1)

10base-T (wired) Ethernet connections to the UUT and the MacBookPro.

The HTTP daemon provided by the mdns_example application provides support for the necessary BCT interaction using
specific CGI parameters to the /config page.

The BCT initially tests the IPv4 link-local address support before starting the mDNS Responder interaction.

1789

Debug and Test

The following example URLs are based on the BCT v1.2.8 interaction with a default mDNS configuration. If the application
being tested uses a different starting hostname, or later BCT executables change the processing, then the target address will
need to be modified to suit the state reached at the specific point in the BCT sequence.

For the MANUAL NAME CHANGE component the unit-under-test (UUT) needs to be supplied with a specific service label.
The config?service= option allows a new service-label to be specified for the registered HTTP daemon.

ecospro-21.local./config?service=New - Bonjour Service Name

Note

The mdns_example provides the HTTP daemon as the first registered service, and the simple config?
service= option interacts with that specific service in the knowledge that the BCT uses the first announced
service as its test SRV.

For the Mixed-Network Interoperability Test ROUTABLE TO LINK-LOCAL COMMUNICATION com-
ponent the UUT needs to be configured with a routable IP address. The config?ip= option allows an IPv4 address to
be specified. This will re-configure the default network interface to the specified IPv4 address with an explicit netmask of
255.255.255.0. For example:

ecospro-42.local./config?ip=17.1.1.1

For the final CHATTINESS component of the BCT the UUT needs to be re-configured with a link-local address. The config?
ll= option allows an IPv4 link-local address to be supplied, explicitly setting the netmask 255.255.0.0. For example:

ecospro-42.local./config?ll=169.254.1.0

Note

For the final CHATTINESS component of the BCT, after changing the UUT IPv4 address to a link-local address
described above it is important to exit the Safari web-browser being executed on the test host to avoid its Bonjour
support interfering with the BCT execution.

When the BCT execution finishes it prompts the operator regarding the generation of an execution report. When applying for
Bonjour Conformance the report should be created, and in conjunction with the generated debug.log file, sent to Apple for
validation as documented in their procedures.

The results for an actual BCT run using the mdns_example, executing on a STM32F207xx (Cortex-M3)
based platform, are available in the Example 191.1, “ doc/bct_stm32f207_result.txt ” and doc/
bct_stm32f207_debug.log files. These files are original, as produced by the BCT application. For reference, the doc/
bct_stm32f207_terminal.txt file contains the execution output captured from the MacOS Terminal.

The following is a listing of the doc/bct_result.txt file as provided in the package.

Note

The BCT actually finished its testing at 18:05 on Tue Nov 20th, but the Completed timestamp reflects when
the report was written and does not reflect the time taken for the actual BCT run.

Example 191.1. doc/bct_stm32f207_result.txt

Bonjour Conformance Test Version 1.2.8
Started Tue Nov 20 12:57:22 2012
Completed Wed Nov 21 09:00:08 2012

Link-Local Address Allocation

 PASSED: INITIAL PROBING
 PASSED: PROBING: RATE LIMITING
 PASSED: PROBING: CONFLICTING SIMULTANEOUS PROBES
 PASSED: PROBING: PROBE DENIALS
 PASSED: PROBING COMPLETION
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT

1790

Debug and Test

 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT

 PASSED: SUBSEQUENT CONFLICTS
 PASSED: HOT-PLUG: USE OF PREVIOUS ADDRESS AS FIRST PROBE CANDIDATE
 PASSED: CABLE CHANGE HANDLING
 PASSED: PREMATURE MDNS PROBING
PASSED with 9 warning(s).

Multicast DNS

 PASSED: INITIAL PROBING
 PASSED: PROBING: SIMULTANEOUS PROBE CONFLICT
 PASSED: PROBING: RATE LIMITING
 PASSED: PROBING: PROBE DENIALS
 PASSED: WINNING SIMULTANEOUS PROBES - ANNOUNCEMENTS
 PASSED: WINNING SIMULTANEOUS PROBES: WINNING SIMULTANEOUS PROBES
 PASSED: SRV PROBING/ANNOUNCEMENTS
 PASSED: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: SUBSEQUENT CONFLICT - A
 PASSED: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: SUBSEQUENT CONFLICT - SRV
 PASSED: SIMPLE REPLY VERIFICATION
 PASSED: SHARED REPLY TIMING - UNIFORM RANDOM REPLY TIME DISTRIBUTION
 PASSED: SHARED REPLY TIMING
 PASSED: MULTIPLE QUESTIONS - SHARED REPLY TIMING - UNIFORM RANDOM REPLY TIME DISTRIBUTION
 PASSED: MULTIPLE QUESTIONS - SHARED REPLY TIMING
 PASSED: REPLY AGGREGATION
 PASSED: MANUAL NAME CHANGE - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: INITIAL PROBING
 PASSED: HOT-PLUGGING: PROBING: SIMULTANEOUS PROBE CONFLICT
 PASSED: HOT-PLUGGING: PROBING: RATE LIMITING
 PASSED: HOT-PLUGGING: PROBING: PROBE DENIALS
 PASSED: HOT-PLUGGING: WINNING SIMULTANEOUS PROBES - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: WINNING SIMULTANEOUS PROBES: WINNING SIMULTANEOUS PROBES
 PASSED: HOT-PLUGGING: SRV PROBING/ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - A
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - SRV
 PASSED: HOT-PLUGGING
 PASSED: NO DUPLICATE RECORDS IN PACKETS
 PASSED: REQUIRED ADDITIONAL RECORDS IN ANSWERS
 PASSED: LEGAL CHARACTERS IN ADDRESS RECORD NAMES
 PASSED: CACHE FLUSH BIT SET IN NON-SHARED RESPONSES
 PASSED: CACHE FLUSH BIT NOT SET IN PROPOSED ANSWER OF PROBES
PASSED with 0 warning(s).

Mixed-Network Interoperability

 PASSED: LINK-LOCAL TO ROUTABLE COMMUNICATION
 PASSED: ROUTABLE TO LINK-LOCAL COMMUNICATION
 PASSED: CACHE FLUSH BIT NOT SET IN UNICAST RESPONSE
 PASSED: UNICAST INTEROPERABILITY
 PASSED: CHATTINESS
 PASSED: mDNS IP TTL CHECK
 PASSED: DUPLICATE RECORDS CHECK
 PASSED: ADDITIONAL RECORDS IN ANSWER CHECK
PASSED with 0 warning(s).

**
 CONGRATULATIONS: You successfully passed the Bonjour Conformance test
**

1791

Debug and Test

DNS-SD Example
If required the dnssd_example application can be used as a starting point for a real-world application. The test starts a thread
which performs some DNS-SD operations, as likely to be needed by an application that needs to search for mDNS announced
network services. The test is contained within the function:

void thread_dnssd(arg);

Since the callback function (as described in cyg_mdns_discovery_callback_register()) must NEVER block, this example uses
the eCos mailbox and fixed-size-memory-allocator functionality as the mechanism to communicate between the callback
(which was registered with the mDNS world with the aforementioned function) and the application code. It uses the non-
blocking functionality of these core eCos features to ensure the callback will not block.

The core of the foreground functionality is performed in the function:

void example_browse(tag, services, cflags, waitsecs, cb_hostport);

which performs a PTR service browse operation, and then waits for callback events to the function registered against the
specific services name. As documented, a query can result in multiple registered callbacks being called since the queries are
common, and not specific to a registered services name. The waitsecs just specifies how long (in seconds) the example
code will wait for responses before returning. The code currently waits a relatively long time after issuing the single query,
whereas a real-world application would more likely have its own control loop to re-issue periodic queries if needed; and to
maintain whatever data structures for discovered services it needs to track. However, whilst the callback is active, any matching
mDNS response will be passed through the callback, irrespective of whether that response is the result of a query generated
by this “host”, or another network device. Another example in the function:

service_table_entry *example_query(query, type, ctx);

implements functionality where the query is re-issued every second, but the function completes as soon as a valid result is
received (which would normally be a very short time after the initial query is transmitted to the network).

The example callback is provided by the cb_service() function, and is coded to support both the basic service browsing, but
also the individual specific queries. Simpler applications could implement a simpler function just responding to the information
they need. Fundamentally the callback implements two phases: Processing records, and marking the end of a “set” of responses:

void cb_service(void *priv, cyg_uint32 state, const cyg_mdns_resource *phrr,
 struct pbuf *p, u16_t offname, u16_t offdata)
{
 if (state & MDNS_DISCOVERY_CB_NOMORE) { // No record for this callback
 /* If required notify foreground.

 This could trigger a U/I update with recently acquired data, or
 just be the point at which captured data is passed through. */
 } else { // Process record
 switch (phrr->type) {
 …
 }
 }

 return;
}

A fundamental task of the callback is to extract the encoded information from the referenced lwIP packet buffer. The following
example fragment shows how the referenced response name can be copied into a local buffer. This example uses raw=true
so that the result is an uncompressed version in the mDNS encoded string format (length byte followed by the field data, with
the set of fields terminated by a 0x00 byte indicating a zero-length field):

cyg_uint16 nlen = cyg_mdns_strlen(p,offname,true);
cyg_uint8 name[nlen];
u16_t endindex;

endindex = cyg_mdns_name_uncompress((char *)name,sizeof(name),p,offname,true);
CYG_ASSERT((endindex <= offdata),"Name length mismatch");

1792

Debug and Test

Note

The callback should NEVER modify the passed lwIP packet buffer. A mDNS response may contain multiple
records that are relevant to more than one callback as well as to the internal mDNS Responder operation. Also
mDNS responses may be compressed, where data is shared between records. This is why a DNS-SD query client
that needs to preserve information needs to make its own uncompressed copies without changing the referenced
mDNS response data.

Back at the application foreground level, the first substantial operation performed within thread_dnssd() is to use
the specific DNS-SD “wildcard” query to ascertain what service types are being announced to the network. This uses the
cyg_mdns_name_services_dnssd_udp_local variable (built-in to the mDNS package) to reference the standard
“_services._dns-sd._udp.local” name. The function outputs each service type discovered, for example:

INFO:<Browsing for “Local services” (wait 4-seconds)>
Service: _http._tcp.local
Service: _pdl-datastream._tcp.local
Service: _ipp._tcp.local
Service: _printer._tcp.local
Service: _udisks-ssh._tcp.local
Service: _ssh._tcp.local
Service: _sftp-ssh._tcp.local
Service: _workstation._tcp.local
Service: _http-alt._tcp.local
Service: _scanner._tcp.local
PASS:<Service Browse>

The example then performs three passes each against the “_http” and “_ipp” local service names, with each pass allowing more
records to be passed to the registered callback for processing.

The first pass uses the default control flags, which will pass only the explicit matching ANSWER records for any active PTR
answers. The application will output a line for each specific service type that provides a response:

INFO:<Browsing for “_http” (wait 4-seconds)>
Service: Officejet Pro 8500 A910 [D0220F]._http._tcp.local
Service: Xerox Phaser 6280DN (ac:a8:0d)._http._tcp.local
PASS:<Service Browse>

The second pass explicitly adds the MDNS_DISCOVERY_ADDITIONAL flag to have the callback supplied with matching
ADDITIONAL records, and not just the matching ANSWER record. For example, this now results in the server name, port
and TXT records being recorded if they are supplied:

INFO:<Browsing for “_http” ADDITIONAL (wait 4-seconds)>
INFO:<Callback flags now 03>
Service: Officejet Pro 8500 A910 [D0220F]._http._tcp.local
 http://hp8500.local:80/
 TXT-0 contains 0 entries
Service: Xerox Phaser 6280DN (ac:a8:0d)._http._tcp.local
 http://XRX0000AAACA80D.local:80/
 TXT-0 contains 9 entries
 [0]=“qtotal=5”
 [1]=“ty=Xerox Phaser 6280DN”
 [2]=“product=(Phaser 6280DN)”
 [3]=“pdl=application/postscript”
 [4]=“adminurl=http://.local./”
 [5]=“usb_MFG=Xerox”
 [6]=“usb_MDL=Xerox Phaser 6280DN”
 [7]=“Binary=T”
 [8]=“TBCP=T”
PASS:<Service Browse>

The third pass adds the MDNS_DISCOVERY_ALL flag requesting that the callback is supplied all ADDITIONAL records in
the response if an ANSWER was previously passed for the response being processed. This can be used to allow the callback to
gather network address information (from A or AAAA records as appropriate) so that the callback can supply complete service
information in a single result. As can be seen from the following example output, the IPv4 and IPv6 addresses are now provided
in the result passed through the mailbox from the callback processing to the foreground client code:

INFO:<Browsing for “_http” ALL ADDITIONAL (wait 4-seconds)>

1793

Debug and Test

INFO:<Callback flags now 07>
Service: Officejet Pro 8500 A910 [D0220F]._http._tcp.local
 http://hp8500.local:80/
 IPv4 192.168.7.6
 IPv6 2001:4D48:AD00:5A17:6AB5:99FF:FED0:220F
 IPv6 FE80::6AB5:99FF:FED0:220F
 TXT-0 contains 0 entries
Service: Xerox Phaser 6280DN (ac:a8:0d)._http._tcp.local
 http://XRX0000AAACA80D.local:80/
 IPv4 192.168.7.25
 TXT-0 contains 9 entries
 [0]=“qtotal=5”
 [1]=“ty=Xerox Phaser 6280DN”
 [2]=“product=(Phaser 6280DN)”
 [3]=“pdl=application/postscript”
 [4]=“adminurl=http://.local./”
 [5]=“usb_MFG=Xerox”
 [6]=“usb_MDL=Xerox Phaser 6280DN”
 [7]=“Binary=T”
 [8]=“TBCP=T”
PASS:<Service Browse>

As mentioned, the example will then perform the same queries for the “_ipp” service name outputting suitable results for the
discovered service (if any are actually present on the connected network).

Finally the example performs some explicit queries as would be performed by a simple application that needs to enumerate
a (previously discovered, or hardwired) service. The code uses the first valid “_http” service response, and directs specific
queries to this service name (unlike the “wildcard” PTR queries used to discover services). It uses the example_query()
to request the SRV, and then the A/AAAA address records as appropriate. The output would be similar to the following.

INFO:<Request specific records>
Instance: Officejet Pro 8500 A910 [D0220F]
Service: Officejet Pro 8500 A910 [D0220F]._http._tcp.local
 Host: hp8500.local (Port 80)
 IPv6 2001:4D48:AD00:5A17:6AB5:99FF:FED0:220F
 IPv6 FE80::6AB5:99FF:FED0:220F
 IPv4 192.168.7.6

1794

Part LV. NTP Client Support

Name
eCosPro Support for NTP — Overview

Description
The ntpclient package provides an NTP (Network Time Protocol) client for use with the TCP/IP stack in eCos. The client
supports Version 3 of the NTP specification as defined in RFC 1305 and supports only unicast messages. It is currently restricted
to IPv4 networks only and can only use the BSD IP stack.

The client is based on OpenNTPD 4.6 and implements a subset of the NTP protocol Version 3, sufficient to synchronize the
eCos system clock with one or more NTP servers.

The client has been tested against the default Linux ntpd server on local hosts and public servers from the UK NTP pool.

1796

Name
NTP Client API — NTP client API and configuration

NTP Client API
The NTP client provides two main entry points:

 #include <ntpclient.h>

 __externC void cyg_ntpclient_start(cyg_ntpclient_config *config);

 __externC void cyg_ntpclient_stop(void);

 __externC void cyg_ntpclient_status(cyg_ntpclient_status *status);

 __externC void cyg_ntpclient_log(int log_mask);

The cyg_ntpclient_start() function starts the NTP client running using parameters defined in the config argument.
The cyg_ntpclient_stop() stops the NTP client, after which it can be restarted with a new configuration.

The config argument contains the following fields that the user may set to control the behaviour of the NTP client. The
config structure and its contents must remain accessible until cyg_ntpclient_stop() is called, as the NTP client stores a
reference to it rather than copying it. Therefore it is likely it will want to be allocated persistently, typically as a static or global.

const char *server[]

A list of server IP addresses to access. These are specified as strings in standard dot notation. Unused slots should be set
to NULL. The size of this array is controlled by CYGNUM_NET_NTPCLIENT_SERVER_MAX.

int settime

If non-zero this will force the NTP client to set the system time immediately from the NTP servers. Otherwise it will wait
for the time to stabilize before doing this. This is useful on targets that do not have a built-in battery-backed real time
clock. Note that by taking the first server time supplied, the initial time set may be less accurate than one would normally
expect, it will be adjusted to track the server times more closely as the client accumulates samples.

If this option is set, then the call to cyg_ntpclient_start() will not return until the initial time has been set.

The cyg_ntpclient_status_get() function returns some information on the state of the client and the NTP peers it
is communicating with. On return the status argument is filled in with the following information.

double *last_adjustment

This records the last adjustment made to the clock expressed as a whole number plus fraction of seconds.

peer[]

A structure for each peer. The size of this array is controlled by CYGNUM_NET_NTPCLIENT_SERVER_MAX. Each entry
contains the following fields:

const char *addr The IP address of the peer expressed as a string. This is actually just a pointer to the
string passed to cyg_ntpclient_start() in the configuration. If the value is
NULL then this peer table entry is invalid.

int trustlevel The level of trust the client has in this peer. This is a value between 0 and 10. For
a good peer, this will be near the upper end of this range.

int lasterror If non-zero this records the last communication error raised by this peer.

double delay The most recent smallest communication delay to the peer.

double offset The offset between the local and the remote clock for the same transaction as the
delay field.

1797

NTP Client API

The cyg_ntpclient_log() function sets some logging option in the NTP client. These are output on the standard
output using printf(). The log_mask is a bitwise OR of the following values: CYG_NTPCLIENT_LOG_DEBUG,
CYG_NTPCLIENT_LOG_INFO and CYG_NTPCLIENT_LOG_CRIT which generate debug, information and critical error
messages respectively. The value CYG_NTPCLIENT_LOG_ALL enables all flags. All flags can be cleared by calling this
function with a zero parameter.

The normal idiom for use of the NTP client is to define the cyg_ntpclient structure statically and to then call
cyg_ntpclient_start() with a pointer to that. The following is a somewhat contrived example:

#include <ntpclient.h>

//==

static cyg_ntpclient_config ntp_config =
{
 .server = { "10.0.1.1", "149.255.102.233", NULL },
 .settime = 1,
};

//==

void start_ntp(void)
{
 cyg_ntpclient_start(&ntp_config);
}

Configuration Options
The NTP client is enabled by including the CYGPKG_NET_NTPCLIENT together with the CYGPKG_CLOCK_COMMON pack-
age. It also needs the FreeBSD network stack, POSIX and the C library; therefore, it is best to start from the net template.
The NTP client package contains a number of configuration options:

CYGNUM_NET_NTPCLIENT_PORT

This option defines the port number to which the client will direct NTP packets. This should normally be the standard NTP
port number of 123, but for testing it may be useful to change it to a non-standard value.

CYGNUM_NET_NTPCLIENT_STACK_SIZE

This option defines the size of the stack used by the NTP client thread. This value defines how much more stack than the
value given by CYGNUM_HAL_STACK_SIZE_TYPICAL is used. The default of 4KiB should be sufficient for most
purposes.

CYGNUM_NET_NTPCLIENT_THREAD_PRIORITY

This option defines the priority at which the NTP thread will run. If it is important that the client maintains synchronization
with the servers, then this value should be small, giving the client thread a high priority. The default value is 2, making
the thread one of the higher priority threads in the system.

CYGNUM_NET_NTPCLIENT_SERVER_MAX

This option defines the maximum number of NTP servers the client can access. This controls the number that can be passed
in the configuration and the size and number of various data structures allocated statically in the code.

1798

Name
NTP Client Test Programs — Describe the test programs and their host-side support

Test Programs
There are four test programs in the tests subdirectory of this package that exercise the NTP client and do duty as examples
of its use. These are supported by a test NTP server in the hosts directory. There is a README.TXT file in that directory
describing how to build and run the test server.

ntp_basic

The ntp_basic.c test performs no actual tests. Instead it just starts the NTP client and then prints the current time, in the
form of seconds since the UNIX epoch, every 10s for some number of iterations before shutting down. The main purpose of
this test is to check the basic functionality of the client. With access to a suitable host clock, this can also serve as a manual
verification that the client is correctly tracking the server.

ntp_accuracy

The ntp_accuracy.c test attempts to check the accuracy of the local clock against the test server. After starting the NTP
client and allowing it to synchronize it queries the time on the test server via its control interface and compares the result with
local time. It takes a number of samples and if more than 80% of these are within 10ms then the test is considered a pass. It
repeats this test a number of times at 10s intervals to look for any clock drift.

ntp_date

The ntp_date.c test attempts to check that the client can handle crossing various pathological dates. These include handling
leap seconds, the UNIX 32 bit time_t sign overflow in 2038, the UNIX 32 bit unsigned overflow in 2106 and the NTP timestamp
era ends in 2036 and 2172. It does this by using the test server's control interface to change its idea of the current data and then
watching the local clock as the NTP client resynchronizes to the new date.

ntp_adjtime

The ntp_adjtime.c test attempts to check that the underlying clock adjustment subsystem correctly handles various time
adjustments. It does this by changing the test server's idea of time by some amount and watching the NTP client resyncronize
to the new time. It has the option for each test of either delaying until the adjustment is made, or polling the current time,
checking that time continues to increse monotonically.

1799

Part LVI. Simple Network
Time Protocol Client

The SNTP package provides implementation of a client for RFC 2030, the Simple Network Time Protocol (SNTP). The client
listens for broadcasts or IPv6 multicasts from an NTP server and uses the information received to set the system's time of
day clock. This will be either the POSIX CLOCK_REALTIME clock or the wallclock device, or both, depending on the
configuration. It can also be configured to send SNTP time requests to specific NTP servers using SNTP's unicast mode.

Note that this package predates the existence of the Common Clock Services and has not yet been adapted to use that package's
services. Also this implementation is wholly separate to that of the NTP Client.

Table of Contents
192. The SNTP Client ... 1802

Starting the SNTP client .. 1802
What it does .. 1802
Configuring the unicast list of NTP servers ... 1802
Warning: timestamp wrap around .. 1803
The SNTP test program ... 1803

1801

Chapter 192. The SNTP Client
Starting the SNTP client
The sntp client is implemented as a thread which listens for NTP broadcasts and IPv6 multicasts, and optionally sends SNTP
unicast requests to specific NTP servers. This thread may be automatically started by the system if it receives a list of (S)NTP
servers from the DHCP server and unicast mode is enabled. Otherwise it must be started by the user application. The header
file cyg/sntp/sntp.h declares the function to be called. The thread is then started by calling the function:

void cyg_sntp_start(void);

It is safe to call this function multiple times. Once started, the thread will run forever.

What it does
The SNTP client listens for NTP IPv4 broadcasts from any NTP servers, or IPv6 multicasts using the address fe0x:0X::101,
where X can be 2 (Link Local), 5 (Site-Local) or 0xe (Global). Such packets contain a timestamp indicating the current time.
The packet also contains information about where the server is in the hierarchy of time servers. A server at the root of the time
server tree normally has an atomic clock. Such a server is said to be at stratum 0. A time server which is synchronised to a
stratum 0 server is said to be at stratum 1 etc. The client will accept any NTP packets from servers using version 3 or 4 of
the protocol. When receiving packets from multiple servers, it will use the packets from the server with the lowest stratum.
However, if there are no packets from this server for 10 minutes and another server is sending packets, the client will change
servers.

If SNTP unicast mode is enabled via the CYGPKG_NET_SNTP_UNICAST option, the SNTP client can additionally be
configured with a list of specific NTP servers to query. The general algorithm is as follows: if the system clock has not yet been
set via an NTP time update, then the client will send out NTP requests every 30 seconds to all configured NTP servers. Once
an NTP time update has been received, the client will send out additional NTP requests every 30 minutes in order to update
the system clock. These requests are resent every 30 seconds until a response is received.

The system clock in eCos is accurate to 1 second. The SNTP client will change the system clock when the time difference with
the received timestamp is greater than 2 seconds. The change is made as a step.

Configuring the unicast list of NTP servers
If SNTP unicast mode is enabled via the CYGPKG_NET_SNTP_UNICAST option, the SNTP client can be configured with
a list of NTP servers to contact for time updates.

By default, this list is configured with NTP server information received from DHCP. The number of NTP servers that are
extracted from DHCP can be configured with the CYGOPT_NET_SNTP_UNICAST_MAXDHCP option. This option can
also be used to disable DHCP usage entirely.

The list of NTP servers can be manually configured with the following API function. Note that manual configuration will
override any servers that were automatically configured by DHCP. But later reconfigurations by DHCP will override manual
configurations. Hence it is not recommended to manually configure servers when CYGOPT_NET_SNTP_UNICAST is
enabled.

#include <cyg/sntp/sntp.h>

void cyg_sntp_set_servers(struct sockaddr *server_list, cyg_uint32 num_servers);

This function takes an array of sockaddr structures specifying the IP address and UDP port of each NTP server to query.
Currently, both IPv4 and IPv6 sockaddr structures are supported. The num_servers argument specifies how many sockaddr's
are contained in the array. The server_list array must be maintained by the caller. Once the array is registered with this function,
it must not be modified by the caller until it is replaced or unregistered by another call to this function.

Calling this function with a server_list of NULL and a num_servers value of 0 unregisters any previously configured server_list
array.

1802

The SNTP Client

Finally, note that if this function is called with a non-empty server list, it will implicitly start the SNTP client if it has not
already been started (i.e. it will call cyg_sntp_start()).

Warning: timestamp wrap around
The timestamp in the NTP packet is a 32bit integer which represents the number of seconds after 00:00 01/01/1970. This 32bit
number will wrap around at 06:28:16 Feb 7 2036. At this point in time, the eCos time will jump back to around 00:00:00 Jan
1 1970 when the next NTP packet is received.

YOU HAVE BEEN WARNED!

The SNTP test program
The SNTP package contains a simple test program. Testing an SNTP client is not easy, so the test program should be considered
as more a proof of concept. It shows that an NTP packet has been received, and is accurate to within a few days.

The test program starts the network interfaces using the standard call. It then starts the SNTP thread. A loop is then entered
printing the current system time every second for two minutes. When the client receives an NTP packet the time will jump
from 1970 to hopefully the present day. Once the two minutes have expired, two simple tests are made. If the time is still less
than 5 minutes since 00:00:00 01/01/1970 the test fails. This indicates no NTP messages have been received. Check that the
server is actually sending packet, using the correct port (123), correct IPv6 multicast address, and at a sufficiently frequent rate
that the target has a chance to receive a message within the 2 minute interval. If all this is correct, assume the target is broken.

The second test is that the current system time is compared with the build time as reported by the CPP macro __DATE__. If
the build date is in the future relative to the system time, the test fails. If the build date is more than 90 days in the past relative
to the system time the test also fails. If such failures are seen, use wallclock time to verify the time printed during the test.
If this seems correct check the build date for the test. This is printed at startup. If all else fails check that the computer used
to build the test has the correct time.

If SNTP unicast mode is enabled, the above tests are run twice. The first time, the SNTP client is configured with NTP server
addresses from DHCP. The second time, unicast mode is disabled and only multicasts are listened for. Note that the unicast
test is partially bogus in the sense that any multicast packet received will also make the unicast test pass. To reduce the chance
of this happening the test will wait for a shorter time for replies. This is not ideal, but it is the best that can be done with an
automated test.

1803

Part LVII. WLAN

Table of Contents
193. WLAN overview ... 1806

Introduction .. 1806
194. Configuration .. 1807

Configuration Overview ... 1807
Configuration Options .. 1807

195. WLAN API .. 1809
API ... 1812

196. Testing ... 1814
wlan_scan .. 1814
wlan_switch ... 1814

1805

Chapter 193. WLAN overview
Important

This eCosPro-WiFi Middleware package is STRICTLY LICENSED FOR NON-COMMERCIAL PURPOSES
ONLY. It may not be used for Commercial purposes in full or in part in any format, including source code, binary
code and object code format.

A Commercial eCosPro License version 3 (or above) which explicity includes this Middleware Package is re-
quired for Commercial use.

Introduction
The CYGPKG_NET_WLAN package defines the common eCos Wireless LAN API. This allows eCos applications to operate
with a variety of different WiFi driver implementations.

The WLAN package relies on the presence of the CYGPKG_NET_LWIP and the CYGPKG_IO_ETH_DRIVERS packages.

1806

Chapter 194. Configuration
This chapter shows how to include the WLAN support into an eCos configuration, and to configure it once installed.

Configuration Overview
The common eCos WLAN layer is contained in the package CYGPKG_NET_WLAN. However, it depends on the services of a
collection of other packages for complete functionality. Currently the WLAN implementation is tightly bound with the lwIP
TCP/IP networking stack provided by the CYGPKG_NET_LWIP package.

Incorporating the WLAN support into your application is straightforward. The essential starting point is to incorporate the
WLAN eCos package (CYGPKG_NET_WLAN) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Configuration Options
Once added to the eCos configuration, the WLAN package has a number of configuration options.

The CDL configuration provides default settings for the use by wireless network interfaces. The application documented in
the section called “wlan_switch” provides an example implementation of using the run-time interface configuration, where
appropriate, to associate with different access-points.

CYGDAT_NET_WLAN_COUNTRY

This option is used to define the regulatory domain for the radio.

CYGPKG_NET_WLAN_STAx

If infrastructure (station) interfaces are provided by the underlying wireless device driver package then a number of these
STAx options become available.

CYGPKG_NET_WLAN_STAx_SSID

This option specifies the SSID (network name) that the interface should associate with.

CYGPKG_NET_WLAN_STAx_SEC

This option is used to select the security encoding required to associate with the named SSID access-point.

CYGPKG_NET_WLAN_STAx_PASS

For pre-shared key security encodings this option supplies the passphrase associated with the SSID access-point.

CYGPKG_NET_WLAN_APx

If master (access-point) or adhoc (p2p) capable interfaces are provided by the underlying wireless device driver package
then a number of these APx options become available.

CYGPKG_NET_WLAN_APx_SSID

For access-point or P2P interfaces this option supplies the network name used for the connection.

CYGPKG_NET_WLAN_APx_SEC

This option specifies the security encoding exposed by the interface.

1807

Configuration

CYGPKG_NET_WLAN_APx_PASS

For pre-shared key security encoding this option defines the passphrase to be used.

CYGPKG_NET_WLAN_APx_TYPE

This option allows selection between the “Infrastructure”(master, access-point) and “Adhoc” (P2P) interface modes.

CYGPKG_NET_WLAN_APx_CHANNEL

The radio channel to be used for the interface.

1808

Chapter 195. WLAN API
The WLAN API is primarily via the device driver get/set config (ioctl()-alike) interface, implemented via the driver sup-
plied interface function:

int cyg_lwip_eth_ioctl (netif, key, data, data_length);

See Chapter 16, User API for an overview of the general I/O config interface.

SET operations are used to change the active wireless configuration.

WLAN_DRV_SET_COMMIT

This option is used to activate any pending wireless configuration setting changes. This can result in disassociating from
the active network configuration, and establishing a new session with the cached (pending) configuration. This information
can include the MODE, ESSID, PASSPHRASE and SECTYPE settings.

WLAN_DRV_SET_MODE

This option is used to configure the pending interface wireless mode. It is not used for the active configuration until a
WLAN_DRV_SET_COMMIT operation is performed.

Note

Not all available WLAN mode definitions will necessarily be supported by the underlying wireless
hardware driver. For example the CYGPKG_NET_WIFI_BROADCOM_WWD package only supports the
modes WLAN_MODE_INFRA, WLAN_MODE_MASTER and WLAN_MODE_ADHOC.

The supplied (wlan_drv_mode_t) parameter value can be one of:

WLAN_MODE_INFRA

Infrastructure (multi-cell, roaming) network station. The interface will connect to an access-point, which will act as
a bridge to other network segments.

WLAN_MODE_MASTER

Access-point (synchronisation master).

WLAN_MODE_ADHOC

Adhoc (P2P) single-cell group network. Such a network has no structure, and no access-point is involved.

WLAN_MODE_REPEAT

Wireless repeater. Packet forwarder.

WLAN_MODE_SECOND

Secondary master/repeater.

WLAN_MODE_MONITOR

Passive monitor. This is used to listen on a network interface to capture packets, without transmitting to the network.

WLAN_MODE_MESH

IEEE 802.11s mesh network.

WLAN_MODE_AUTO

This is a special option that is used to allow the driver to select which mode should be used. Normally this would not
be appropriate, but some implementations may be limited to specific hardware implementions.

1809

WLAN API

WLAN_DRV_SET_ESSID

This option is used to configure the pending network name (SSID). It is not used for the active configuration until a
WLAN_DRV_SET_COMMIT operation is performed.

The passed (wlan_drv_essid_t) structure provides the SSID vector (upto WLAN_ESSID_MAX_SIZE bytes in
length).

WLAN_DRV_SET_SECTYPE

This option is used to configure the pending network security encoding. It is not used for the active configuration until a
WLAN_DRV_SET_COMMIT operation is performed.

The (wlan_drv_sectype_t) parameter is a bitfield encoding of the desired security features. The
WLAN_SECTYPE_TYPE_MASK can be used to mask out the main security type encoding:

WLAN_SECURITY_TYPE_WPA2

Wi-Fi Protected Access 2.

WLAN_SECURITY_TYPE_WPA

Wi-Fi Protected Access.

WLAN_SECURITY_TYPE_WEP

Wired Equivalent Privacy.

Note

Deprecated. Due to security weaknesses it is not recommended to use WEP.

WLAN_SECURITY_TYPE_NONE

Open network, with no security required.

Along with the basic security type encoding the passed parameter can contain a set of authentication and cipher flags.

The authentication type flags:

WLAN_SECURITY_AUTH_PSK

Pre-Shared-Key (passphrase). The PSK mode is sometimes referred to as “Personal”.

WLAN_SECURITY_AUTH_1X

IEEE 802.1x (enterprise).

The support cipher flags:

WLAN_CIPHER_TYPE_WEP

Wired Equivalent Privacy.

WLAN_CIPHER_TYPE_TKIP

Temporal Key Integrity Protocol.

WLAN_CIPHER_TYPE_CCMP

Counter Mode with CBC-MAC (CCM) mode Protocol. Sometimes referred to as AES (Advanced Encryption Stan-
dard) mode.

1810

WLAN API

WLAN_DRV_SET_PASSPHRASE

This option is used to configure the pending network security pre-shared key value. It is not used for the active configuration
until a WLAN_DRV_SET_COMMIT operation is performed.

The passed (wlan_drv_passphrase_t) structure provides the key vector (upto
WLAN_SECURITY_PASSPHRASE_LEN bytes in length).

Note

For security reasons there is no equivalent GET operation to read the active passphrase value.

WLAN_DRV_SET_ENCODE

This option is used to configure the pending network security WEP key set. It is not used for the active configuration until
a WLAN_DRV_SET_COMMIT operation is performed.

The passed (wlan_drv_wepkeys_t) structure contains the keys to be used for WEP authentication. The passed
keys[] vector contains the binary keys when the supplied length field is either WLAN_SECURITY_WEP104_LEN or
WLAN_SECURITY_WEP40_LEN. If hexadecimal ASCII representations are being supplied in the keys[] vector then
the length is twice the binary key length.

WLAN_DRV_SET_CHANNEL

The passed (wlan_drv_channel_t) value is used to configure the radio channel to be used for the interface. This is
used for WLAN_MODE_ADHOC and WLAN_MODE_MASTER configurations.

Note

For WLAN_MODE_INFRA configurations the WiFi device will scan for the required Access Point on all the
allowed channels, and so the channel set via this operation may not actually be used.

WLAN_DRV_SET_FREQ

This option is an alternative method for setting the WiFi channel as a frequency (specified in MHz).

WLAN_DRV_SET_SCAN_START

This key is used to initiate a wireless network scan. The underlying wireless device driver defines for how long a scan
is actually active.

The passed (wlan_drv_scan_t) structure is used to define the callback context for the application supplied handler
executed for each network found during the scanning process. A handler function pointer, with the prototype as defined
in wlan.h:

typedef void (*wlan_drv_scan_callback_fn)(void *private,wlan_drv_scan_info_t *info);

is required, along with a private context pointer.

For each network found the handler is called with a suitable (wlan_drv_scan_info_t) info pointer. If the scan is
terminated then a NULL info parameter is passed to the handler, and the wireless device driver scan support will no
longer reference the registered callback.

The eCos scan support is designed to allow the WLAN driver to have a minimal memory footprint, and so the application
is responsible for storing/caching any network information seen.

Note

To support this common eCos WLAN layer (allowing eCos applications to use WLAN functionality without
having to have special handling for different chipset/driver combinations) when scanning there is a slight
overhead in converting the driver specific scan results into the common eCos structure.

1811

WLAN API

The application documented in the section called “wlan_scan” provides an example implementation using the eCos wire-
less network scan interface.

WLAN_DRV_SET_SCAN_ABORT

This key can be used to abort (terminate) an active scan.

WLAN_DRV_SET_TXPOWER

The passed (wlan_drv_dbm_t) dBm value is used to configure the interface transmit power.

WLAN_DRV_SET_RTS

The passsed (wlan_drv_rts_t) threshold value specifies the number of bytes in a network packet as the point where
the RTS/CTS mechanism is initiated.

GET operations are used to acquire the current, active, wireless configuration.

WLAN_DRV_GET_INIT

A non-error return for this operation indicates a WLAN capable driver.

Note

The CYGPKG_NET_WLAN package requires that all eCos WLAN capable drivers provide support for a
successful result from the WLAN_DRV_GET_INIT config key since it is used as an indicator that a specific
Ethernet driver instance is a wireless interface. If WLAN_DRV_GET_INIT returns an error then the interface
does NOT support the eCos wireless features.

WLAN_DRV_GET_CHANNEL

Returns the active (wlan_drv_channel_t) channel number.

WLAN_DRV_GET_MODE

Returns the interface (wlan_drv_mode_t) mode.

WLAN_DRV_GET_ESSID

This key returns the current SSID configuration in the referenced (wlan_drv_essid_t) structure.

WLAN_DRV_GET_SECTYPE

This key obtains the active (wlan_drv_sectype_t) security encoding setting.

WLAN_DRV_GET_RATE

Obtains the current (cyg_drv_rate_t) bps communication rate value.

WLAN_DRV_GET_TXPOWER

Obtains the current (wlan_drv_dbm_t) dBm transmission power setting.

WLAN_DRV_VENDOR

The interpretation of this key is NOT defined. It is provided as an extension hook for any driver (hardware) specific control
operations that may be needed.

API

1812

WLAN API

Name
wlan_diag_dump_ascii — Output human-readable string

Synopsis
#include <wlan.h>

cyg_uint32 wlan_diag_dump_ascii (tag, addr, amount);

Description

Since ESSID and passphrase values may contain non-printable characters this helper function is just a wrapper to
diag_printf() to display an arbitrary buffer in a human-readable form. It is purely provided for test and diagnostic use.

The tag parameter is optional and can be NULL. If non-NULL then the simple NUL-terminated string is output before
decoding the supplied amount bytes of data from the addr memory reference.

Return value

The number of characters output.

1813

Chapter 196. Testing
The default configuration provides a set of basic tests that can be built.

wlan_scan
The wlan_scan application provides an example of using the WLAN_DRV_SET_SCAN_START and
WLAN_DRV_SET_SCAN_ABORT keys. It starts multiple scans (if required) over a configured time period reporting on wireless
networks seen.

wlan_switch
The wlan_switch application provides an example of run-time access-point configuration and switching between access
points. It shows the use of the cyg_lwip_eth_ioctl() interface to set various wireless configuration options and
WLAN_DRV_SET_COMMIT to update the active setting.

1814

Part LVIII. Cypress WWD WLAN

Table of Contents
197. Cypress WWD overview ... 1817

Introduction .. 1817
WICED-SDK Installation ... 1817

198. Configuration .. 1821
Configuration Overview ... 1821
Chipset Firmware .. 1821
Configuration Options .. 1821

199. Platform/Variant HAL .. 1823

1816

Chapter 197. Cypress WWD overview

Introduction
The CYGPKG_NET_WIFI_BROADCOM_WWD package implements the eCos specific support for the Cypress (previously
Broadcom) WICED Wireless Driver (WWD) sources present in (3rd-party) Cypress WICED-SDK releases. The WWD
package is for use with the generic eCos WLAN (wireless networking) support layer to present the common eCos wireless API.
The WICED-SDK is now owned and developer by Cypress., but was originally developed by Broadcom, hence the historic
use of BROADCOM in names provided by this package.

The WWD package relies on the presence of the CYGPKG_NET_WLAN, CYGPKG_NET_LWIP and the
CYGPKG_IO_ETH_DRIVERS networking packages. It also requires the eCos Kernel C API (CYGFUN_KERNEL_API_C)
to provide the required thread support.

Note

The BSD network stacks CYGPKG_NET_FREEBSD_STACK and CYGPKG_NET_OPENBSD_STACK are not
supported by this Cypress WWD support package.

Warning

Due to licensing restrictions the WICED-SDK package cannot be distributed as part of an eCos release. The
developer is responsible for obtaining a supported WICED-SDK version via the normal Cypress channels. e.g.
the WICED Studio developer website.

Currently only WICED-SDK-3.5.2 and WICED-Studio-6.4.0.61 are officially supported. Adding CDL support
for future WICED-SDK releases is an easy process assuming no fundamental restructuring of the SDK is under-
taken by Cypress.

See the section called “WICED-SDK Installation” for a description of how to install the WICED-SDK.

NOTE: The WICED-SDK source tree must be installed into the correct eCosPro tree location prior to any target
configuration via ecosconfig or configtool.

WICED-SDK Installation
After acquiring a supported Cypress WICED-Studio release package the SDK needs to be extracted into the correct location
within your eCosPro release source tree. The WiFi SDK is written to your filesystem as part of the executable WICED Studio
installer run. On completion of the installation process you should be presented with a window similar to Figure 197.1, “Ex-
ample WICED-Studio installation complete” where the filesystem path location of the SDK should be noted. A copy of the
installed SDK tree needs to be copied into the eCosPro tree.

1817

https://www.cypress.com/products/wiced-software

Cypress WWD overview

Figure 197.1. Example WICED-Studio installation complete

The source path for the eCosPro tree depends on your specific installation, as does the specific eCosPro release vsn number.
Similarly, the installer executable created WiFi SDK sub-directory is copied and renamed to conform to the package version
naming scheme to allow identification of specific SDKs when multiple WICED SDK trees are installed into an eCosPro tree.

For Linux hosted development this can be achieved as follows:

$ cd /home/jsmith/Documents/WICED-Studio-6.4
$ tar cf - 43xxx_Wi-Fi | \
(cd path_to_ecospro_release/packages/net/wireless/wifi_bcmwwd/current/src/; tar xf -)

$ cd path_to_ecospro_release/packages/net/wireless/wifi_bcmwwd/current/src
$ mv 43xxx_Wi-Fi WICED-SDK-6.4.0.61

For Windows hosted development the 43xxx_Wi-Fi directory can be copied from its installed SDK location into the eCosPro
source tree and renamed accordingly:

1818

Cypress WWD overview

Figure 197.2. Example WICED-Studio WiFi directory copy and rename

Note

The WICED Studio installed WiFi SDK directory 43xxx_Wi-Fi is renamed above to reflect the version number
of the WICED Studio installer executable used.

With the SDK tree copied and renamed as above it is now available for eCos configuration.

Previously the WICED-SDK archives were distributed by Broadcom as .7z packages (e.g. version 3.5.2).

The WICED-SDK sources need to be installed into the src sub-directory of the CYGPKG_NET_WIFI_BROADCOM_WWD
package within the eCosPro release tree.

Using the WICED-SDK-3.5.2.7z package as an example, the following is a command-line example of extracting into the
eCosPro tree. The source path for the eCosPro tree depends on your specific installation, as does the specific eCosPro release
vsn number:

$ cd /path_to_ecospro_release/packages/net/wireless/wifi_bcmwwd/current/src
$ 7z x ~/Downloads/WICED-SDK-3.5.2.7z

7-Zip [64] 9.20 Copyright (c) 1999-2010 Igor Pavlov 2010-11-18

1819

Cypress WWD overview

p7zip Version 9.20 (locale=en_GB.UTF-8,Utf16=on,HugeFiles=on,8 CPUs)

Processing archive: /home/user/Downloads/WICED-SDK-3.5.2.7z

Extracting WICED-SDK-3.5.2/tools/common/OSX/aes_cbc_128
Extracting WICED-SDK-3.5.2/tools/common/Linux32/aes_cbc_128
[… 7z output elided …]
Extracting WICED-SDK-3.5.2/apps
Extracting WICED-SDK-3.5.2

Everything is Ok

Folders: 1055
Files: 6954
Size: 878793443
Compressed: 121342379

Assuming an example eCosPro release with version number vX.Y.ZZ, and using release 3.5.2 of the WICED-SDK, you
should end up with a file hierarchy similar to the following figure:

Figure 197.3. Example WICED-SDK installation

1820

Chapter 198. Configuration
This chapter shows how to include the WWD support into an eCos configuration, and to configure it once installed.

Configuration Overview
The WWD driver is contained in the package CYGPKG_NET_WIFI_BROADCOM_WWD. However, it depends on the services
of a collection of other packages for complete functionality. Currently the WWD implementation is tightly bound with the
lwIP TCP/IP networking stack provided by the CYGPKG_NET_LWIP package.

Incorporating the WWD support into your application is straightforward. The essential starting point is to incorporate the WWD
eCos package (CYGPKG_NET_WIFI_BROADCOM_WWD) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Note

Prior to the first configuration attempt the 3rd-party WICED-SDK sources need to be installed into the eCosPro
source tree as per the section called “WICED-SDK Installation”.

The package also relies on specific WWD functionality being provided by the platform (or variant) HAL for supported targets.
See Chapter 199, Platform/Variant HAL for an overview of the HAL support required.

Chipset Firmware
The Cypress/Broadcom WICED WiFi chipsets require a binary firmware image to be downloaded to the WiFi chip for correct
operation. For some platforms the required binary firmware image is available as part of the installed WICED SDK. However,
the WICED SDK does not have support all platforms and the configuration world allows for the firmware binary images to
be located outside the user installed WICED SDK tree.

For example the Raspberry Pi platforms use binary images included as part of the CYGPKG_NET_WIFI_BROADCOM_WWD
package. For reference these images are located in individual sub-directories in the eCosPro packages/net/wireless/
wifi_bcmwwd/version/src/platforms directory.

pi43430 This directory holds the 3rd party binary firmware image for the Raspberry Pi 3B and and Raspberry Pi 0W
platforms.

pi43455 This directory holds the 3rd party binary firmware image for the Raspberry Pi 3B+ platform.

A README.txt is present in each sub-directory describing from where the 3rd-party binary blobs were acquired.

When porting the WWD driver to a new platform it may be necessary to acquire a suitable binary-blob to match the Cypress
chipset being used and the hardware I/O configuration of the platform.

Configuration Options
Once added to the eCos configuration, the WWD package has a number of configuration options. As well as the core CDL
options for the common WWD support, a WICED-SDK version specific set of CDL options are also available.

CYGFUN_NET_WIFI_BROADCOM_WWD_RESOURCES_INDIRECT

Most Cypress/Broadcom WICED WiFi chipsets require a binary firmware image to be downloaded to the WiFi chip.

Where the platform provides the necessary support, this option can be enabled to configure the application to access non-
memory-mapped resource images. If disabled then the resource binaries are built into the application binary. For example,

1821

Configuration

with platforms where limited amounts of (on-chip) direct memory are available the size of the required firmware binary
blob could severely limit the usable application code size.

Please read the relevant platform specific documentation for details of any requirements, or processes, involved in initial-
ising the non-memory-mapped firmware storage.

CYGPKG_NET_WIFI_BROADCOM_WWD_MODULE

This option allows the selection of the base WICED module to be targetted. Normally the configured eCos target (platform
HAL) configuration will force a suitable value, and the developer should not need to manually configure this setting.

Similarly, depending on the configured module, the CYGPKG_NET_WIFI_BROADCOM_WWD_CHIPSET option defines
the Cypress/Broadcom WiFi chipset to be configured.

CYGIMP_NET_WIFI_BROADCOM_WWD_ACCESS

This option selects the transport bus used between the WICED module host CPU and the WiFi controller Normally the
configured eCos target (platform HAL) configuration will force a suitable value, and the developer should not need to
manually configure this setting.

CYGPKG_NET_WIFI_BROADCOM_WWD_WICED_SDK

This is the main option for selecting the supported WICED-SDK version to be used. As mentioned in the section called
“WICED-SDK Installation” the relevant WICED-SDK source should be present in the package src sub-directory.

As appropriate, WICED-SDK version specific CDL options are then made available to the system. These are not normally
user-editable since they are primarily hooks for the config and build systems.

CYGDBG_WIFI_BROADCOM_WWD_DEBUG

This option, and its associated sub-options, are primarily for development of the driver internals. It is not normally expected
that the application developer making use of the WWD package will ever need to enable the debug features.

If enabled this option provides access to a set of individually controllable diagnostic options. These can be used to provide
low-level diag_printf() diagnostic output. It should be noted that some diagnostics if enabled will adversely affect
the performance of the system such that incorrect behaviour can result.

As well as the WWD package specific options, the lwIP configuration will affect how the WWD driver is configured. For
example the calculated CYGNUM_NET_WIFI_BROADCOM_WWD_MTU value for the MTU of the WWD layer is limited to what
will fit within a single lwIP buffer, and so the setting is based on the relevant lwIP package configuration. The developer may
need to tune the lwIP memory footprint to reflect both the expected usage of the system and the available memory at run-time.

1822

Chapter 199. Platform/Variant HAL
To correctly operate the WWD driver needs to have some platform specific support that identifies the WICED-SDK features
needed to support a specific Cypress/Broadcom chipset configuration. This chapter is primarily aimed at developers that need
to provide WWD support on platforms without existing WWD support.

Some manifests control the features that are provided by the platform, and may be required depending on the specific WICED
module being supported.

Table 199.1. WICED options

Manifest Description

WICED_CPU_CLOCK_HZ Provides the eCos run-time clock frequency to the WICED
system.

WICED_WIFI_USE_GPIO_FOR_BOOTSTRAP_0 Specifies that a GPIO pin is provided for the BOOTSTRAP_0
startup configuration of the WiFi chip.

WICED_WIFI_USE_GPIO_FOR_BOOTSTRAP_1 Specifies that a GPIO pin is provided for the BOOTSTRAP_1
startup configuration of the WiFi chip.

WICED_WIFI_OOB_IRQ_GPIO_PIN Out-Of-Band (asynchronous) interrupt pin provided.

WICED_USE_WIFI_POWER_PIN WiFi chip power control pin provided.

WICED_USE_WIFI_POWER_PIN_ACTIVE_HIGH Selects active-HIGH polarity for the power control pin, other-
wise is active-LOW.

WICED_USE_WIFI_RESET_PIN WiFi chip reset control pin provided.

WICED_USE_WIFI_32K_CLOCK_MCO 32kHz clock provided.

As well as the WICED feature configuration, the platform needs to define the set of hardware features as present on the targetted
platform. Only the necessary subset of these will be defined, as dictated by how the WiFi chipset signals are wired on the
target platform.

Table 199.2. Hardware manifests

Manifest Description

CYGHWR_HAL_STM32_WWD_MCO1 Pin descriptor for clock source.

CYGHWR_HAL_PLF_CLOCK_MCO_32K Platform specific function used to configure the 32kHz clock
source.

CYGHWR_HAL_PLF_WWD_PIN_POWER GPIO pin descriptor for power control.

CYGHWR_HAL_PLF_WWD_PIN_RESET GPIO pin descriptor for reset control.

CYGHWR_HAL_PLF_WWD_PIN_32K_CLK Pin descriptor for 32kHz clock source.

CYGHWR_HAL_PLF_WWD_PIN_32K_GPIO GPIO pin descriptor for 32kHz clock source.

CYGHWR_HAL_PLF_WWD_PIN_BOOTSTRAP_0 GPIO pin descriptor for bootstrap 0.

CYGHWR_HAL_PLF_WWD_PIN_BOOTSTRAP_1 GPIO pin descriptor for bootstrap 1.

CYGHWR_HAL_PLF_WWD_PIN_SPI_IRQ GPIO pin descriptor for SPI transport bus interrupt.

CYGHWR_HAL_PLF_WWD_PIN_SPI_CS GPIO pin descriptor for SPI transport bus chip-select.

CYGHWR_HAL_PLF_WWD_PIN_SDIO_OOB_IRQ GPIO pin descriptor for SDIO transport bus interrupt.

CYGHWR_HAL_PLF_WWD_SDIO_ALIGN4 Manifest to control word-aligned transport bus transfers. This
manifest may be needed for some platforms if the underlying
platform transport bus implementation requires word-aligned
memory buffers (e.g. due to DMA limitations).

CYGHWR_HAL_PLF_WWD_SDIO_SPEED Manifest defining the platform SDIO clock rate.

1823

Platform/Variant HAL

If the platform can support “out of application” storage of the WiFi firmware then the CDL option
CYGFUN_NET_WIFI_BROADCOM_WWD_RESOURCES_INDIRECT will be configured, and the platform is then expected
to provide manifests that map to the low-level firmware storage support. Normally such a large binary firmware image will be
held in off-chip memory; but for certain architectures it may just be held in a specific region of some on-chip flash memory.

Table 199.3. Indirect firmware access

Manifest Description

HAL_PLF_WIFI_BROADCOM_WWD_INDIRECT_FW_READ The platform specific function used to read an
amount of raw firmware data from a logical byte
offset.

HAL_PLF_WIFI_BROADCOM_WWD_LL_INIT If required the function to be called to perform
low-level memory system initialisation prior to
the WWD layer performing indirect firmware
reads.

1824

Part LIX. Common Clock Services

Table of Contents
200. Overview .. 1827

Introduction .. 1827
Functionality .. 1827
Concepts and structure ... 1827

201. Dependencies .. 1829
HAL ... 1829
Kernel ... 1829
Wallclock (RTC) .. 1829
C library and POSIX layers .. 1830

202. Configuration .. 1831
203. API reference .. 1833

cyg_clock_get_systime() ... 1834
cyg_clock_get_systime_res ... 1835
cyg_clock_set_systime() ... 1836
cyg_clock_sync_wallclock() .. 1837
cyg_clock_adjust_systime() ... 1838
Time change notification .. 1840
cyg_clock_sysclock_handle() .. 1843
Time conversions .. 1844

1826

Chapter 200. Overview
Introduction
The Common Clock package (CYGPKG_CLOCK_COMMON) provides a centralized management interface for system time, also
known as calendar time, which corresponds to the real time of day. System time is distinct from other clock-related concepts
such as the kernel "real time clock" which drives the kernel scheduler, or hardware timers.

The purpose of this package is primarily to keep system time management and related functionality focused in a central location
to ensure a consistent and coherent approach to time management across all eCos packages, and to avoid duplication. It is used
by the C library and by the POSIX compatibility layer for underlying time support, and also provides interfaces to manipulate
time which may be used by services such as NTP, as well as to the user. It encapsulates the underlying eCos wallclock driver
layer.

At the present time, it only operates when using the eCos kernel package, as it uses a dedicated thread to perform time man-
agement functions.

It has been verified safe for use past year 2038 - the so-called Year 2038 problem refers to the overflow of signed 32-bit
representations of time in seconds since 1970-01-01 00:00:00 UTC.

Functionality
The package provides an API which presents functions to the user or higher layers to:

• Get the system time;

• Set the system time;

• Adjust the system time by a small amount, manage such adjustments, and potentially manage other aspects of clock disci-
pline;

• Receive notifications of changes to system time;

• Instruct the package to update a wallclock (RTC) device configured into eCos with the current system time;

• Provide a kernel C API clock handle linked to the clock which is driving system time (which may or may not be the same
as the real time clock driving the kernel scheduler). This can in turn be used to set alarms associated with ticks of that clock;

• Convert between system time clock ticks and calendar time, both in the form of relative time offsets, or absolute timestamps.

Concepts and structure
The main focus of the architecture of this package is the clock management thread. This thread acts as a central processing
point in the system to: asynchronously initialize the clocks at system startup time; update the wallclock time either if directed
by the user, or if required to by configuration settings (at regular periods, or whenever time is updated); and notify registered
modules when the system time has been set or updated.

This thread should be a high priority thread as it is inherently time-sensitive, and the behaviour may not be as expected if
pre-empted. For example, after the time has been changed, registered modules will be notified, but a higher priority thread
could pre-empt and run before the notification has taken place, with the potential for different parts of the system to have
different understandings of what the current time is. Although be aware there is a chance this can happen anyway as a potential
consequence of the notification process, as obviously only one module can be notified at a time, meaning there can be a lag
between the time change and notification.

The API functions of this package represent time using the POSIX standard defined structure struct timespec. This offers the
most flexible and high resolution representation. The type is defined in the header file <time.h> and the standard mandates
its definition as follows:

1827

http://en.wikipedia.org/wiki/Year_2038_problem

Overview

struct timespec {
 time_t tv_sec; /* Seconds */
 long tv_nsec; /* Nanoseconds */
}

All uses of absolute time values are expressed using time as a struct timespec with an "epoch" (reference start date) of
1970-01-01 00:00:00 UTC. All time is based in the UTC time frame - no support for timezones is provided, which is instead
left to higher layers.

Overall, the system time is maintained by reading a high resolution HAL clock, and maintaining a fixed relationship between
that clock value and the set time. Global variables are used within the common clock package to allow for this, and are protected
from simultaneous access, thus making the package thread safe. However no functions in this package can be considered safe
to call from either an ISR or a DSR. At the beginning of system operation, interlocks are used to ensure that it is not possible
to retrieve the system time until the common clock package has been initialized.

Time can be adjusted by a small amount - the maximum allowable range being a parameter set in the package configuration.
When this happens, the clock is not set to the new time immediately ("stepped") but instead it gradually converges towards
the new time base. It will still increase monotonically. Making changes to time in this way can be much less disruptive to
applications, however it is not appropriate for large changes, as it would take either take too long to converge, or spend a
significant duration with the time being significantly inaccurate. Time can be adjusted both forwards and backwards.

Conversion functions are available to convert between real time and tick counts for the kernel clock object associated with the
clock which is driving system time. These use the clock converter functions provided in the eCos kernel.

1828

Chapter 201. Dependencies
HAL
This package relies on the HAL clock API. It is strongly recommended that the HAL clocks are implemented using the
full newer version of the HAL clock API, and not the older backward compatibility API (HAL_CLOCK_INITIALIZE(),
HAL_CLOCK_READ(), HAL_CLOCK_RESET()). The package will still operate with the older form of API implementation,
but it is likely to be less accurate, and possibly slightly slower.

The HAL clock API provides a high-resolution interface to an appropriate hardware clock, allowing fine-grained access with
subtick access. Naturally, the resolution and accuracy that this package is able to provide is subject to what the hardware and
HAL clock implementation provides. It is desirable, if possible, for the HAL clock to be configured with auto-reloading on
interrupt. This reduces clock drift.

Kernel
At the present time, the common clock package relies on kernel facilities. It is hoped in future that this dependency will be
removed.

However at the present time, a clock management thread is used to provide an asynchronous route for managing clock opera-
tions. This can be important if the package is required to update the wallclock, since with some wallclock drivers, it can take
over one second to update the wallclock time in hardware, and it would be inappropriate for applications to stall and wait for
such operations to complete.

It also allows modules to be notified that time has changed, either by a step change or by gradual fine adjustment. It can either
use a user-supplied callback function, or broadcast a nominated kernel condition variable as the mechanism for notification.
When it does so, it passes both the newly set time, and the cumulative time offset since the last received notification.

If a callback function has been provided, it should return as soon as possible, as no further notifications or other processing by
the clock management thread can proceed until control is returned to it.

At present, the only underlying HAL clock supported must be the same clock as that used by the kernel, however the API
and implementation have been designed to accommodate alternative clocks, and very little is required to complete such an
implementation, once an appropriate platform which requires it has been selected, so that it can be verified. Users of this package
should certainly not assume that the clock being used to control system time will continue to be the same as the kernel's clock.

The package also makes use of the kernel clock conversion facilities in order to translate clock ticks to or from real time in a
scalable way when calling this package's tick conversion functions. The HAL clock API also provides a mechanism to convert
ticks to and from real time, but this is not designed to scale beyond nanosecond times, nor tick values greater than 32-bits
in width.

It is strongly recommended that users use the time conversion functions provided by this package, not only to avoid duplication,
but also because in the case of conversion of absolute time values, the values returned can be affected by any fine adjustment
in progress at that time.

Wallclock (RTC)
This package can optionally be configured to use a wallclock (RTC) device driver if configured in the system (the
CYGPKG_CLOCK_COMMON_USE_WALLCLOCK CDL configuration option). If enabled, time will be retrieved from the
wallclock device when the system starts, which is then used to initialize system time.

If no wallclock device is present in the configuration, then time will be initialized to a default date of 2012-01-01 00:00:00 UTC,
although obviously it can then be subsequently set to the correct time by the user, or by services such as a network time client.

The user is free to trigger an update of the wallclock from the system time with the API function
cyg_clock_sync_wallclock(). This will cause the clock management thread to wake up and set the wallclock time.

1829

Dependencies

An argument to the function indicates whether to do so synchronously (i.e. to wait for completion) or asynchronously (complete
in the background).

Alternatively, CDL configuration options are provided to force the wallclock to be updated whenever time is set. However
this can be expensive if time is updated frequently, which can sometimes happen, for example, with Network Time Protocol
(NTP) clients.

A second alternative is also provided to periodically wake the clock management thread up regularly after a configured number
of kernel ticks.

C library and POSIX layers
The C library time functions, and POSIX layer clock and timer functions will always use this package if present in the config-
uration. Obviously there can only be one notional system time, so when this package is present, no other means of providing
a system time is used.

It also avoids significant duplication. In particular, similarly implemented clock conversion functions had existed in multiple
locations prior to this package being used.

1830

Chapter 202. Configuration
The following properties may be configured in this package using the configuration tool:

Management thread priority (CYGNUM_CLOCK_COMMON_THREAD_PRIO)

This specifies the thread priority of the clock management thread. It is strongly recommended that this be a high priority
(smaller number) as this thread is intrinsically sensitive to time delays.

Management thread stack size (CYGNUM_CLOCK_COMMON_THREAD_STACK_SIZE)

This sets the stack size for the clock management thread. It must be large enough to accommodate calls into a wallclock
driver (potentially in turn using bus drivers such as I²C), as well as any potential registered user callback functions. Note
the value of this option is text, not a number.

Fine clock adjustment (CYGFUN_CLOCK_COMMON_ADJTIME)

This component is used to allow fine adjustment of clock times, using the cyg_clock_adjust_systime() API
function. This allows system time to be gradually adjusted to a new time, rather than there being a step change by just
setting the time. Some extra overhead is incurred when getting and setting time if this is enabled, so it is disabled by default.

Maximum adjustment range (CYGNUM_CLOCK_COMMON_ADJTIME_MAX_RANGE)

If fine clock adjustment is enabled, this option specifies the limit to how far the clock is allowed to be fine adjusted,
measured in milliseconds. Requests to adjust beyond this range are rejected. Setting the range too large results in the clock
remaining quite inaccurate over a longer time, and setting the time directly would be more relevant. The default is +/-
128ms which corresponds to the norm for NTPv3 (RFC1305) compliance.

Adjustment period as shift (CYGNUM_CLOCK_COMMON_ADJTIME_PERIOD_SHIFT)

This option is used to set the period of time over which the time should be adjusted. After this time has elapsed, the clock
adjustment will be complete. The value of this option is used as a shift value to give a power of two in nanoseconds. A value
of 1 corresponds to 2ns, a value of 2 corresponds to 4ns, a value of 3 corresponds to 8ns, and so on. As a convenience, a
calculated CDL variable CYGNUM_CLOCK_COMMON_ADJTIME_PERIOD_SECS is provided alongside to see the effect
of different settings of this variable. Having to use a power of two may seem restrictive, but it avoids some particularly
expensive calculations which would be detrimental to efficiency and accuracy.

Adjustment period as secs (CYGNUM_CLOCK_COMMON_ADJTIME_PERIOD_SECS)

This configuration point is not actually used by the package, and exists purely as a convenience to the user. It uses the
setting of CYGNUM_CLOCK_COMMON_ADJTIME_PERIOD_SHIFT to report an approximation of the corresponding
period of time in seconds over which the time should be adjusted, to allow inspection of the effects of different shift values.
The value displayed here is rounded down to the nearest second, although the actual value would not be.

Use wallclock (CYGPKG_CLOCK_COMMON_USE_WALLCLOCK)

Leave this option enabled if a wallclock (RTC) device driver is to be used to maintain time persistently. Time will be
initialized using the wallclock driver. If this option is disabled, then a default date of 2012-01-01 00:00:00 is used when
starting up, but the time can be set by the application (for example based on user input, or via an external process such as
a network time client), and can then be maintained, even though the time will be lost on power off.

Wallclock updates (CYGPKG_CLOCK_COMMON_WALLCLOCK_UPDATES)

When this component is enabled, the wallclock can be updated by this package based on the system time held in this
package. The user can request an update using the cyg_clock_sync_wallclock() API function, along with other
automatic methods which can be enabled in the following options.

Always update when set (CYGSEM_CLOCK_COMMON_ALWAYS_UPDATE_WALLCLOCK)

This option defaults to disabled, but if it is enabled, whenever the system time is set it always results in the wallclock also
being updated immediately afterwards. This could result in unnecessary load if the time is updated often, or delays if parts
of the system need to wait for the update to complete.

1831

Configuration

Regular update interval (CYGNUM_CLOCK_COMMON_WALLCLOCK_UPDATE_PERIOD)

When this option is enabled, the wallclock will be updated periodically. The value of this option gives the period between
updates, measured in kernel ticks. The default value of 720000 would correspond to 2 hours if the kernel is using a 100Hz
clock.

Tick conversions (CYGFUN_CLOCK_COMMON_TICK_CONVERTERS)

Various subsystems, and users, may need to convert between system clock ticks and real time. This option enables
the provision of functionality to do so. These functions also take account of any fine time adjustments made (if
CYGFUN_CLOCK_COMMON_ADJTIME is enabled). However this functionality is not enabled by default as there is
overhead in having and initialising the converters even if unused. Note that the system clock driving system time may
not be the same clock as the kernel clock.

1832

Chapter 203. API reference

1833

API reference

Name
cyg_clock_get_systime() — Retrieve the current system time

Synopsis
#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_get_systime(ts);

Description
Retrieves the current system time as a struct timespec and stores it in ts. This time is represented as a UTC offset from the
Epoch, defined as 1970-01-01 00:00:00 UTC for consistency with POSIX.

Return value
This function returns a standard error code, as defined in <errno.h>, or ENOERR on success.

1834

API reference

Name
cyg_clock_get_systime_res — Obtain the resolution of the system clock

Synopsis
#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_get_systime_res(ts);

Description
This function can be called to obtain the resolution of the system clock. The resolution is expressed as the time difference
(quantum) corresponding to the smallest increment the clock may make, in nanoseconds, and returned in the struct timespec
pointed to by ts.

Due to rounding errors in calculations, and the possibly of a fine adjustment being in progress (if
CYGFUN_CLOCK_COMMON_ADJTIME is enabled), it is not guaranteed that the difference between two sequential reads of
system time will never be smaller than the resolution returned here.

Return value
This function returns a standard error code, as defined in <errno.h>, or ENOERR on success.

1835

API reference

Name
cyg_clock_set_systime() — Sets the system clock to the supplied time

Synopsis
#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_set_systime(ts);

Description
Sets the system time to the time represented in the struct timespec at ts. The time is treated as a UTC offset from the Epoch,
defined as 1970-01-01 00:00:00 UTC for consistency with POSIX.

Upon setting, the clock management thread will wake up and notify any modules which registered for notifications of time
changes. If CYGSEM_CLOCK_COMMON_ALWAYS_UPDATE_WALLCLOCK is enabled, it will also update the wallclock device.

Note

If another thread attempts to set the time before the previous time setting has been processed
by the clock management thread (including notifications and updating wallclock), it will be forced
to block and wait for the previous set operation to complete. This may also occur if the clock
management thread is busy updating the wallclock in response to a periodic request as configured by
CYGNUM_CLOCK_COMMON_WALLCLOCK_UPDATE_PERIOD.

Return value
This function returns a standard error code, as defined in <errno.h>, or ENOERR on success.

1836

API reference

Name
cyg_clock_sync_wallclock() — Force the wallclock to be updated from system time

Synopsis
#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_sync_wallclock(wait_for_completion);

Description
Calling this function instructs the clock management thread to update the time stored in the wallclock (RTC) device from the
current system time.

Depending on the underlying wallclock hardware and driver implementation, this may block for an extended period, possibly
over one second. If wait_for_completion is true, the function will not return until the wallclock has been updated. If
wait_for_completion is false, it should not block, unless the eCos kernel is not in use. If there was a failure while
updating the wallclock, this may only be reported if wait_for_completion is set.

Return value
This function returns a standard error code, as defined in <errno.h>, or ENOERR on success.

1837

API reference

Name
cyg_clock_adjust_systime() — Adjust the system time

Synopsis
#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_adjust_systime(adj);

Description
We supply a function to allow fine adjustment of the time. Unlike cyg_clock_set_systime(), these adjustments will
not cause an abrupt step change but allow gradual adjustment, while still preserving the principle of the clock monotonically
increasing.

The cyg_clock_time_adj_t type is defined by including <cyg/clock/api.h>, and its contents are as follows:

typedef struct cyg_clock_time_adj_s {
 struct {
 unsigned int set_offset : 1;
 unsigned int get_adjremaining : 1;
 } flags;
 struct timespec offset; // Time offset
 struct timespec adjremaining; // Remaining adjustment (can be negative)
} cyg_clock_time_adj_t;

Note

Do not rely on the ordering of members of this structure remaining the same in future. Similarly, additional
structure members are likely to be added in future.

To adjust to a fixed offset from the current time, the adjustment is set with the offset member of the struct. The set_offset
flag is also set, to indicate the vality of the offset member. Time will be gradually adjusted until this offset is reached. The
time over which the offset is reached is derived from the value of CYGNUM_CLOCK_COMMON_ADJTIME_PERIOD_SHIFT.
The offset may be positive or negative (represented by a positive or negative tv_sec field for the struct timespec).

Setting the offset will immediately cause any modules registered for time change notifications to be notified of the new adjust-
ment, with an indication that an adjustment, rather than a step change occurred.

Setting the get_adjremaining flag will cause this function to fill in the adjremaining field with the total adjustment
remaining to be enacted on the system clock. In other words, an adjustment was requested, but not fully complete because the
adjustment period has not been reached, and the field is set with the adjustment remaining.

If no adjustment remains, the contents of adjremaining will be set to 0.

If both get_adjremaining and set_offset flags are set, then the adjremaining field is filled in with the adjustment
remaining after the adjustment specified by the offset field has been applied, which will always simply be identical to the
requested offset.

To allow for forward compatibility, a cyg_clock_time_adj_t must be initialized with the macro
CYG_CLOCK_INIT_ADJ_T(adjt_p) where adjt_p is of type cyg_clock_time_adj_t *.

Example
{
 Cyg_ErrNo err;
 cyg_clock_time_adj_t adj;
 struct timespec timediff;

 get_time_difference(&timediff);

1838

API reference

 CYG_CLOCK_INIT_ADJ_T(&adj);
 adj.flags.set_offset = 1;
 adj.offset = timediff;

 err = cyg_clock_adjust_systime(&timediff);
 if (ENOERR != err)
 {
 etc. …

Return value
This function returns a standard error code, as defined in <errno.h>, or ENOERR on success. Notably, ERANGE will be
returned if the offset exceeds the limit configured with CYGNUM_CLOCK_COMMON_ADJTIME_MAX_RANGE.

1839

API reference

Name
Time change notification — Registering and deregistering for notification of changes to system time

Synopsis

#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_timechange_register(info);

Cyg_ErrNo cyg_clock_timechange_deregister(info);

Description
These functions are used to allow users of this package to register and deregister for notifications of changes to system time.
This may help allow the user to know when to update any timers or alarms.

Parameters which affect the method of delivering notifications are passed in within the info function argument. Other fields in
that same structure are then used to pass information about time updates back to the user when a time change event occurs, which
happens as a consequence of calls to either cyg_clock_set_systime() or to cyg_clock_adjust_systime().

There are two primary mechanisms for notification: the user may supply a callback function; or the user can supply a condition
variable, which they may then wait on to be signalled.

The cyg_clock_timechange_info structure is defined by including <cyg/clock/api.h> and has the following contents
relevant to the user:

/* Forward definition to avoid circular dependency */
struct cyg_clock_timechange_info_s;

typedef struct cyg_clock_timechange_info_s cyg_clock_timechange_info;

typedef void (cyg_clock_timechange_cb_fn_t)(cyg_clock_timechange_info *changeinfo);

struct cyg_clock_timechange_info_s {
 CYG_ADDRWORD userdata;
 cyg_drv_mutex_t *mutex;
 cyg_drv_cond_t *cv;
 cyg_clock_timechange_cb_fn_t *cb;

 /* VALUES ABOVE ARE SET BY USER BEFORE REGISTRATION
 * VALUES BELOW ARE SET BY THE CLOCK PACKAGE ON TIME CHANGE EVENTS
 */

 cyg_bool adjtime;
 struct timespec newtime;
 struct timespec offset;
};

Other members of this structure exist, but are private to the common clock package's implementation and do not form part of
the API. They must not be modified by the user.

The cyg_clock_timechange_info structure passed in must be persistent while the registration is in effect, as it will be used
by the common clock package to maintain the registration. The address of the same structure object must be passed in on
deregistration.

cyg_clock_timechange_info details
Here is a description of the purpose of each of the cyg_clock_timechange_info structure members:

userdata This is user-supplied data, which the user is free to set to any value if it may help uniquely
identify the registration.

1840

API reference

This value must be set prior to registration.

mutex If non-NULL, a mutex protecting this structure's contents. Once registered with the
clock package, it must be locked before reading/writing the cyg_clock_timechange_info
structure to avoid any chance of simultaneous access. It is not mandatory in case users
can guarantee non-simultaneous access by some other means.

This value must be set prior to registration.

cv If non-NULL, a condition variable which should be signalled when time is updated. It
must be associated with the above mutex. It should not be used if setting a callback
function.

This value must be set prior to registration.

cb If non-NULL, a user-supplied callback function to be called on time changes. It should
not be used if the cv condition variable has been set to be signalled.

This value must be set prior to registration.

adjtime The value of this boolean field is set by the common clock package on
time change events. It will be true if is this is a fine adjustment (from
cyg_clock_adjust_systime()), or false if the time has been set with
cyg_clock_set_systime().

If reading this field, but before unlocking the mutex (if applicable) it must be reset to
true. This is because the clock package will only ever set it from true to false,
never from false to true. This is so that if multiple time change events occur before
the user has processed any of the events, an indication that the time was "set" will
override any indication of fine adjustment.

If the time update was due to a fine adjustment (adjtime is true) then the time change
will not necessarily have yet been reflected in what can be read from the system clock -
the effect on the system clock happens over a period of time as described earlier.

This field does not need to be initialized prior to registration.

newtime The new time at the point the time update happened. Note that the relevance of this de-
pends on the real-time properties of the program - if the system has been busy perform-
ing other operations, including consequences of notifying other users, it may be quite a
long time in the past by the time the user can process the event.

offset The offset (difference) from the previous time. If it is positive, the time moved forwards,
if negative, the time moved backwards.

It is a mandatory part of the API contract that after reading this value, but before un-
locking the mutex (if applicable) it must be reset to 0. This is required so that if multiple
time changes occur before any of the events are processed by the API user, the effect on
offset can be cumulative - the clock package can simply modify the existing offset,
thus guaranteeing that when the user reads the offset, it will be the offset since it was
last read by the user.

Using a callback function
Some special care is required if using the callback function method for notifications.

If a callback function is used, it must be brief, as further users of this package who have registered a callback will not be notified
until the callback returns. For this reason, and to improve determinism, and to avoid delaying clock package operations, the
condition variable approach should be preferred.

1841

API reference

The callback function method is still available however as it is realized that sometimes there may be no alternative.

Users should not call back into any time-keeping functions (in this package or others) from a callback function, in order to
avoid re-entrancy issues. An exception is for the time conversion functions.

Even with a callback function, it is recommended to still use a mutex lock to prevent the timechange info structure being
updated while it is in the process of being read; and if such a mutex is provided with the 'mutex' member, it will be locked
before the callback is called, and unlocked after.

Return value
These functions return a standard error code, as defined in <errno.h>, or ENOERR on success.

1842

API reference

Name
cyg_clock_sysclock_handle() — Return a handle to the system clock

Synopsis
#include <cyg/kernel/kapi.h> #include <cyg/clock/api.h>

cyg_handle_t cyg_clock_sysclock_handle();

Description
This function returns a handle to the clock object associated with the hardware clock driving the system time. This clock handle
is usable with the kernel C API functions such as cyg_clock_to_counter(), and thereby with other kernel functions
which use kernel counters such as kernel alarms.

However to be clear, this clock may or may not be the same clock as used for the kernel real-time clock. Users must avoid
operations which could interfere with system operation, such as setting the clock resolution or deleting the clock.

Note that this function may be implemented as a macro, and therefore taking the address of this function is not supported.

This function is only supplied when the tick conversion functionality is enabled.

Return value
This function returns a cyg_handle_t which can be used as a handle for kernel C API clock functions. No errors are reported.

1843

API reference

Name
Time conversions — Converting between clock ticks and calendar time

Synopsis
#include <cyg/clock/api.h>

Cyg_ErrNo cyg_clock_ticks_to_time(ticks, ts);

Cyg_ErrNo cyg_clock_time_to_ticks(ts, ticks, roundup);

void cyg_clock_ticks_to_reltime(ticks, ts);

Cyg_ErrNo cyg_clock_reltime_to_ticks(ts, ticks, roundup);

Description
These functions allow conversions between the 'ticks' of the clock which is driving system time, and calendar time
values. These are intended to be used in conjunction with the clock identified by the clock handle returned by
cyg_clock_sysclock_handle().

cyg_clock_ticks_to_time() returns what the calendar time (which is defined as relative to the Epoch 1970-01-01
00:00:00) will be when the system time clock reaches the supplied tick count. If a fine adjustment is in progress, it will be
taken into account.

cyg_clock_time_to_ticks() returns what the system time clock's tick value will be when the supplied system time
(which is defined as relative to the epoch 1970-01-01 00:00:00) is reached. If roundup is true, ticks will be rounded
up to the next tick; if roundup is false, it will be rounded to the nearest tick. If a fine adjustment is in progress, it will
be taken into account.

cyg_clock_ticks_to_reltime() returns the relative time interval (as a struct timespec) corresponding to the supplied
number of ticks. Note this does not take into account any effect of fine clock adjustment.

cyg_clock_reltime_to_ticks() returns the number of ticks corresponding to the relative time interval specified in
the struct timespec ts. If roundup is true, ticks will be rounded up to the next tick; if roundup is false, it will be
rounded to the nearest tick. Note this does not take into account any effect of fine clock adjustment.

These functions are only provided if the configuration option CYGFUN_CLOCK_COMMON_TICK_CONVERTERS is enabled.

Return value
These functions return a standard error code, as defined in <errno.h>, or ENOERR on success. Notably
cyg_clock_reltime_to_ticks() may return ERANGE for values which cannot be converted.

1844

Part LX. Object Loader

Name
CYGPKG_OBJLOADER — eCos Support for Dynamic Module Loading

Synopsis
#include <cyg/objloader/objload.h>

void *cyg_ldr_open(open_stream, data);

void cyg_ldr_close(handle);

char *cyg_ldr_error();

void *cyg_ldr_find_symbol(handle, symbol);

Description

Note

The Object Loader package does not support all processor architectures at present.

The Object Loader package provides support for dynamically loading executable modules into an eCos system. Modules may
be loaded into memory from a variety of sources, linked in to the running system and entry points invoked to execute the
code of the module. When the module is no longer required, it may be unloaded and the memory reused for other purposes
or other modules.

This system is modelled most closely on the Linux kernel module mechanism, rather than Windows DLLs or Unix shared
objects. As a result, it has a number of restrictions:

• Only modules written in C are supported. The Object Loader does not currently provide support for invoking static con-
structors and destructors, C++ exceptions, RTTI and other parts of the C++ runtime system.

• Automatic symbol resolution only works for references from a module into the main executable. References between mod-
ules are not supported, and resolution of unresolved symbols in the main executable to module symbols is not supported.

• Loaded modules need to be built using the same, or similar, configuration to the main system.

• Loaded modules should be built with the same or compatible compiler flags as the main system. There is one important
exception. Some architectures including MIPS and Nios II implement a global pointer register. Small global variables are
placed in an area of memory up to 64K. The gp register points at this area of memory, allowing the variables to be accessed
directly using a single instruction instead of the two or more instructions that would otherwise be required. This technique
cannot be used for a dynamically loaded module. Hence the use of gp-relative addressing must be suppressed with a compiler
flag, typically -G0.

Creating Loadable Modules

Modules can be just object files as generated by the compiler. In a Makefile including the $(INSTALL_DIR)/include/
pkgconf/ecos.mak definitions file, the entry to build module.o might be:

module.o: module.c
 $(ECOS_COMMAND_PREFIX)gcc -c -I$(INSTALL_DIR)/include $(ECOS_GLOBAL_CFLAGS) -o $@ $<
 $(ECOS_COMMAND_PREFIX)strip -g $@

The compile line generates a .o file. The -I option allows includes to be fetched from the eCos installation. The command
prefix and global flags are stored in the ecos.mak file by the eCos build process. If the compile flags include -g or some
other debug option then to save memory and maybe load time it is useful to pass the finished module through strip to limit
the file contents to just the loadable ELF sections.

It is possible to create a module out of several object files by using the linker's ability to perform a partial link:

1846

Object Loader

module.o : file1.o file2.o file3.o
 $(ECOS_COMMAND_PREFIX)gcc $(subst --gc-sections,-r,$(ECOS_GLOBAL_LDFLAGS)) -L$(PREFIX)/lib \
 -Tmodule.ld -o $@ $^
 $(ECOS_COMMAND_PREFIX)strip -g $@

The module.ld linker script is defined by the Object Loader package and is copied out to the install lib directory. It should
be used when combining multiple files, or when advanced features such as HAL tables are used in a single object file.

If the module makes use of float, double, long long and some long arithmetic operations, then it should be partially linked
against libgcc before loading. This can be done with the following makefile fragments:

Single source file module…
module.o: module.c
 $(ECOS_COMMAND_PREFIX)gcc -c -I$(INSTALL_DIR)/include $(ECOS_GLOBAL_CFLAGS) -o $@.tmp $<
 $(ECOS_COMMAND_PREFIX)gcc $(subst --gc-sections,-r,$(ECOS_GLOBAL_LDFLAGS)) \
 -L`dirname \`$(ECOS_COMMAND_PREFIX)gcc $(ECOS_GLOBAL_CFLAGS) \
 -print-libgcc-file-name\`` -L$(PREFIX)/lib -Tmodule.ld -o $@ $@.tmp -lgcc
 $(ECOS_COMMAND_PREFIX)strip -g $@

Combine multiple object files…
module.o : file1.o file2.o file3.o
 $(ECOS_COMMAND_PREFIX)gcc $(subst --gc-sections,-r,$(ECOS_GLOBAL_LDFLAGS)) \
 -L`dirname \`$(ECOS_COMMAND_PREFIX)gcc $(ECOS_GLOBAL_CFLAGS) \
 -print-libgcc-file-name\`` -L$(PREFIX)/lib -Tmodule.ld -o $@ $^ -lgcc
 $(ECOS_COMMAND_PREFIX)strip -g $@

Target Specific Considerations

There are a number of special considerations for particuar target architectures:

• Modules compiled for Thumb may be loaded into targets compiled for either ARM32 or Thumb. Thumb builds of eCos that
use the object loader should have the "-mlong-calls" compiler option set. ARM32 builds should have thumb interworking
enabled if thumb modules are to be loaded (the object loader module does this automatically). Thumb modules should be
compiled with "-mthumb -mthumb-interwork -mlong-calls" compiler options. However, some later ARM variants do not
need the "-mthumb-interwork" option since this is implicit in the architecture. For such targets this option need not be given.

• Modules compiled for ARM, Thumb or Thumb 2 may require the "-mlong-calls" compiler option if the module to be loaded
will occupy a different region of the address space to the rest of the program. The most frequent scenario causing this to
arise is if the main program runs from FLASH memory, but with the module loaded into RAM. If in doubt, use the option
as it is always safe, and the only downside is a small code size and runtime execution penalty on function calls.

• Modules compiled for the MIPS16 instruction set may be loaded into a MIPS target, so long as the processor supports the
instruction set. To compile and link such a module, the "-mips16" compiler option must be substituted for "-mips32", along
with "-fwritable-strings".

• Modules compiled for NIOS II processors must be compiled with the "-G0" compiler option. This ensures that loaded
modules do not make assumptions about the accessibility of small initialised data (".sdata") or small zero-initialised data
(".sbss") relative to the address it was loaded at.

Loading Modules

The function cyg_ldr_open() is used to load a module into memory. It takes two arguments. The first argument defines a
module loader, while the second argument is a generic data item whose value depends on the loader. If the load is successful,
then a non-NULL handle will be returned. A NULL pointer will be returned on failure.

If there is an error in the loading process, then the function cyg_ldr_error() will return a string describing the last error
that occurred. Note that this is not thread-safe since there is only a single last error recorded for all load operations.

At present the following loaders are implemented:

CYG_LDR_FILESYSTEM

This loader uses FILEIO operations to read an ELF file from a named file in a filesystem. For example, to read a module
from the file "/lib/modules/module.o":

1847

Object Loader

mod_handle = cyg_ldr_open(CYG_LDR_FILESYSTEM,
 (CYG_ADDRWORD)"/lib/modules/module.o");

This loader is included by default if the CYGPKG_IO_FILEIO package is included, although it can be omitted by disabling
CYGPKG_OBJLOADER_LOADER_FS.

CYG_LDR_MEMORY

This loader uses memory access primitives to read an ELF file from any addressable memory such as ROM, FLASH or
RAM. For example to read a module from the location module_base:

mod_handle = cyg_ldr_open(CYG_LDR_MEMORY,
 (CYG_ADDRWORD)&module_base);

This loader is included by default, although it can be omitted by disabling CYGPKG_OBJLOADER_LOADER_MEM.

Loaders CYG_LDR_FTP, CYG_LDR_TFTP, CYG_LDR_HTTP and CYG_LDR_FLASH are defined, but not currently
implemented.

Unloading Modules

A module may be unloaded by calling cyg_ldr_close(), passing it the handle returned from cyg_ldr_open(). This
will cause the memory occupied by the loader to be released. Any pointers into the code or data of the module will be rendered
invalid and should not be used.

Referencing Module Symbols

When a module is loaded, a symbol table listing all the external symbols that it defines is loaded with it. The function
cyg_ldr_find_symbol() searches this table and returns a pointer to the location defined by a symbol. For example, to
create a thread running from a function in a module:

cyg_thread_entry_t *thread_entry;

thread_entry = cyg_ldr_find_symbol(handle, "thread_entry");

cyg_thread_create(THREAD_PRIORITY,
 thread_entry,
 0,
 "Module Thread",
 (void *)thread_stack,
 THREAD_STACK_SIZE,
 &thread_handle,
 &thread_object);

Both functions and variables may be accessed in this way.

There is no mechanism for resolving dangling references in the main eCos application, or other modules, to symbols in a
newly loaded module. The main eCos application must have all references resolved at link time. However, it is possible to
simulate the effect of dynamic resolution by using function pointers. For example define a global function pointer to an initial
dummy function:

typedef int module_fn_t(int a, int b);

module_fn_t dummy_fn;

module_fn_t *module_fn = dummy_fn;

int dummy_fn(int a, int b)
{
 return -1;
}

When the module is loaded the function pointer can be pointed at the function within the module, and pointed back to the
dummy function when it is unloaded:

void *mod_handle;

1848

Object Loader

void load_module(void)
{
 mod_handle = cyg_ldr_open(CYG_LDR_FILESYSTEM, (CYG_ADDRWORD)"/lib/modules/module.o");

 module_fn = cyg_ldr_find_symbol(mod_handle, "module_fn");
}

void unload_module(void)
{
 cyg_ldr_close(mod_handle);

 module_fn = dummy_fn;
}

One could even implement a form of demand loading by combining dummy_fn and load_module:

int dummy_fn(int a, int b)
{
 mod_handle = cyg_ldr_open(CYG_LDR_FILESYSTEM, (CYG_ADDRWORD)"/lib/modules/module.o");

 module_fn = cyg_ldr_find_symbol(mod_handle, "module_fn");

 return module_fn(a, b);
}

Module Open and Close Functions

When a module is loaded the Object Loader will look for a symbol with the name "module_open" and if found will call it
with the following prototype:

void module_open(void);

Similarly, when cyg_ldr_close() is called, the Object Loader will look for a symbol named "module_close" and call it,
with the same prototype.

External References

When a module is loaded, the Object Loader package performs any relocations it requires and resolves any unresolved symbol
references it contains. The load only succeeds if all of these can be completed. For these symbols to be resolved it is necessary
for the main eCos executable to contain a symbol table defining the symbols to be resolved. Normal eCos executables do not
contain such a symbol table since it would occupy an unreasonably large amount of memory. There is also no mechanism to
persuade the linker to include a loadable symbol table into the executable. Hence it is necessary for the application to explicitly
define a symbol table that maps symbol names to addresses.

The loader provides an empty table; the user can then define additional entries required by any loadable modules. In order to
keep the size of the table to a minimum, the user can selectively include only those functions that are expected to be used by
the loader to resolve all references. There are several macros defined in objload.h for defining table entries:

CYG_LDR_TABLE_FUN(name)

This macro defines a table entry for a function with the given name.

CYG_LDR_TABLE_VAR(name)

This macro defines a table entry for a data variable with the given name.

CYG_LDR_TABLE_ENTRY(entry_name, symbol_name, address)

This is a low level macro that allow all aspects of a symbol table entry to be controlled. The entry_name argument
defines the table entry object name (a C language requirement since anonymous objects are not permitted). The
symbol_name argument is a string giving the symbol that will be matched by the loader. The address argument gives
the memory location to which this symbol will resolve.

The objload.h file contains a number of macros that collect together groups of functions as a convenient way to include
blocks of Kernel, C Library and FILEIO functionality. These include the following:

1849

Object Loader

CYG_LDR_TABLE_KAPI_ALARM()
CYG_LDR_TABLE_KAPI_CLOCK()
CYG_LDR_TABLE_KAPI_COND()
CYG_LDR_TABLE_KAPI_COUNTER()
CYG_LDR_TABLE_KAPI_EXCEPTIONS()
CYG_LDR_TABLE_KAPI_FLAG()
CYG_LDR_TABLE_KAPI_INTERRUPTS()
CYG_LDR_TABLE_KAPI_MBOX()
CYG_LDR_TABLE_KAPI_MEMPOOL_FIX()
CYG_LDR_TABLE_KAPI_MEMPOOL_VAR()
CYG_LDR_TABLE_KAPI_MUTEX()
CYG_LDR_TABLE_KAPI_SCHEDULER()
CYG_LDR_TABLE_KAPI_SEMAPHORE()
CYG_LDR_TABLE_KAPI_THREAD()
CYG_LDR_TABLE_STRING()
CYG_LDR_TABLE_STDIO()
CYG_LDR_TABLE_INFRA_DIAG()
CYG_LDR_TABLE_FILEIO()
CYG_LDR_TABLE_NET()

1850

Name
CYGPKG_OBJLOADER — Extending the Object Loader

Description
The Object Loader package has a number of features that allow it to be extended. To support a new CPU architecture a new
relocator needs to be written. If ELF files are to be read from a source that differs from those currently supported, then a new
loader needs to be written. Finally, the mechanism by which the loader allocates the memory used to store loaded sections
can be redirected by the application.

Adding New Relocators

When the loader loads a new module some locations in it must be adjusted to account for the address at which is it loaded.
References to external symbols must also be installed. The location and nature of these modifications are described by one or
more sections in the ELF file which contain a sequence of relocation records. The exact meaning of the relocations that these
records define is architecture specific and is usually described as part of the ABI for that CPU type.

To define a new relocator for a CPU, it is necessary to add an extra definition to the objloader.cdl file,
and add a header and source file to the package. To support the XYZ CPU the following must be added to the
CYGPKG_OBJLOADER_ARCHITECTURE component:

cdl_option CYGBLD_OBJLOADER_ARCHITECTURE_XYZ {
 display "Support loading on XYZ processors"
 calculated CYGPKG_HAL_XYZ
 implements CYGINT_OBJLOADER_RELOCATOR
 define_proc {
 puts $::cdl_header "#include <cyg/objloader/relocate_xyz.h>"
 }
 compile relocate_xyz.c
}

The relocate_xyz.h file needs to define some macros to customize the loader:

ELF_ARCH_MACHINE_TYPE

This defines the value that the e_machine machine type field of the ELF header. If this does not match, the module
load will fail.

ELF_ARCH_ENDIANNESS

This defines the value that the EI_DATA byte of the e_ident field of the ELF header. It should be either ELFDATA2LSB
or ELFDATA2MSB. If this does not match, the module load will fail. Architectures that are bi-endian need to test either a
compiler or a HAL definition to select the correct endianness for the current build.

CYG_LDR_MAKE_LOCAL_ADDRESS(addr, sym)

This macro is used to combine the section address of a symbol with information from its symbol table entry. The addr
argument is the base address of the section in which the symbol is defined. The sym is the symbol table entry; this is not
a pointer, so fields should be accessed using the "." operator, not the "->" operator. The return value should be of type
void *. This is an optional macro, if it is not defined here then a default definition will be used which simply adds the
st_value field of the symbol table entry to the address.

In addition to these, it may also contain definitions that are useful to the relocator. Typically the relocation record types and
any support macros may be defined here.

The relocate_xyz.c file contains two functions:

void cyg_ldr_flush_cache(void)

This function is called to perform any cache flushing needed. The loader modifies code in memory that will subsequently
be executed. It does this using data accesses, so it is essential that these updates are flushed from the data cache, and that

1851

Extending the Object Loader

stale entries are flushed from the instruction cache. This function must call appropriate HAL cache operations to ensure
that this is done.

cyg_int32 cyg_ldr_relocate(cyg_int32 rel_type, cyg_uint32 flags, cyg_uint32 mem,
cyg_int32 sym_value)

The loader will call this function for each relocation record in each relocation section found in the module.

The rel_type argument defines the relocation record type and will be one of the relocation types defined for the
architecture. Most architecture ABIs define a large number of relocations, not all of which will be relevant to the use that
eCos makes of the object file format. In general only a small subset of relocation types need to be handled which can
usually be determined by inspecting the object files generated by compiling eCos.

The flags argument contains flags that provide additional information about the relocation record. At present only one
flag is defined: CYG_LDR_FLAG_RELA which is set when the relocation is from a RELA record, otherwise it comes
from a REL record.

The mem argument contains the address of the location in memory to be relocated. It is constructed from the base address
of the segment targeted by the relocation section, plus the r_offset field from the relocation record.

The sym_value argument contains the address of any symbol associated with the relocation record. If it was a RELA
record, then the contents of the r_addend field will have been added.

Adding new Loaders

The Object Loader package needs to fetch a module from some source to load it into memory. This is the job of a loader. A
loader consists of an open function plus read, seek and close functions.

The loader open function is supplied as the first parameter to cyg_ldr_open(). It is called with the second argument as a
parameter. On success it returns a pointer to a CYG_LDR_ELF_OBJECT object. On failure it returns NULL.

The open function has a number of duties, best described by an annotated example for the ABC loader:

__externC CYG_LDR_ELF_OBJECT *cyg_ldr_open_abc(CYG_ADDRWORD arg)
{
 // Allocate a CYG_LDR_ELF_OBJECT
 CYG_LDR_ELF_OBJECT * obj = (CYG_LDR_ELF_OBJECT *)cyg_ldr_malloc(sizeof(CYG_LDR_ELF_OBJECT));

 // Allocate a private data descriptor. Depending on the nature of
 // the loader this may not be necessary.
 struct abc_desc *desc = cyg_ldr_malloc(sizeof(struct abc_desc));

 // Check that the memory allocations worked
 if(obj == NULL || desc == NULL)
 {
 if(obj != NULL) free(obj);
 if(desc != NULL) free(desc);
 cyg_ldr_last_error = "ERROR IN MALLOC";
 return NULL;
 }

 // Perform any operations to enable access to the ELF file and
 // fill in the descriptor. If this fails then free both descriptor
 // and ELF object, set cyg_ldr_last_error and return NULL.

 // Clear the CYG_LDR_ELF_OBJECT
 memset(obj, 0, sizeof(CYG_LDR_ELF_OBJECT));

 // Install private data pointer
 obj->ptr = (CYG_ADDRWORD)desc;

 // Install pointers to read, seek and close functions
 obj->read = cyg_ldr_abc_read;
 obj->seek = cyg_ldr_abc_seek;
 obj->close = cyg_ldr_abc_close;

1852

Extending the Object Loader

 // Return completed object
 return obj;
}

The read function will be called via the pointer in the ELF object whenever the Object Loader needs to read data from the
file. It has the following definition:

static size_t cyg_ldr_abc_read(struct CYG_LDR_ELF_OBJECT* obj, size_t size, void* buf)

The obj argument is the ELF object returned from the open function. The size argument gives the number of bytes to be
read and buf points to a location to store them. The function returns the number of bytes read.

The seek function will be called via the pointer in the ELF object whenever the Object Loader needs to reposition the point in
the file at which the next read will occur. It has the following definition:

static cyg_int32 cyg_ldr_abc_seek(struct CYG_LDR_ELF_OBJECT* obj, cyg_uint32 offset)

The obj argument is the ELF object returned from the open function. The offset argument gives the number of bytes from
the start of the file to which the read point should be moved. The function returns the new read offset. Some sources may
not be able to reposition the read pointer backwards, and may only be capable of advancing it. If the reposition fails then this
function should return -1.

The close function will be called via the pointer in the ELF object when the Object Loader has finished with the file. It has
the following definition:

static cyg_int32 cyg_ldr_abc_close(struct CYG_LDR_ELF_OBJECT* obj)

The obj argument is the ELF object returned from the open function. This function should close down access to the file, free
the private data descriptor if necessary and set the obj->ptr field to zero. It should not free the ELF object itself, the Object
Loader will do this itself later. If the close succeeds then this function should return zero, and -1 if it fails.

Redirecting Memory Allocation

All memory allocation in the Object Loader is made via the cyg_ldr_malloc() function and it is freed via the
cyg_ldr_free() function. These have the following prototypes:

__externC void *cyg_ldr_malloc(size_t) CYGBLD_ATTRIB_WEAK;

__externC void cyg_ldr_free(void *) CYGBLD_ATTRIB_WEAK;

These functions by default simply call the standard malloc() and free() heap functions. However, they are defined with
the weak linker attribute. This means that the application can redefine these functions to provide an alternative allocation and
free mechanism if, for example, the standard heap support has been omitted.

1853

Part LXI. CPU load measurements
The cpuload package provides a way to estimate the cpuload. It gives an estimated percentage load for the last 100 milliseconds,
1 second and 10 seconds.

Table of Contents
204. CPU Load Measurements .. 1856

CPU Load API ... 1856
cyg_cpuload_calibrate .. 1856
cyg_cpuload_create ... 1856
cyg_cpuload_delete ... 1856
cyg_cpuload_get ... 1856
Implementation details ... 1857
SMP Support .. 1857

1855

Chapter 204. CPU Load Measurements
CPU Load API
The package allows the CPU load to be estimated. The measurement code must first be calibrated to the target it is running
on. Once this has been performed the measurement process can be started. This is a continuous process, so always providing
the most up to data measurements. The process can be stopped at any time if required. Once the process is active, the results
can be retrieved.

Note that if the target/processor performs any power saving actions, such as reducing the clock speed, or halting until the
next interrupt etc, these will interfere with the CPU load measurement. Under these conditions the measurement results are
undefined. The synthetic target is one such system. See the implementation details at the foot of this page for further information.

SMP systems are supported and are described later.

The API for load measuring functions can be found in the file cyg/cpuload/cpuload.h.

cyg_cpuload_calibrate
This function is used to calibrate the cpu load measurement code. It makes a measurement to determine the CPU properties
while idle.

void cyg_cpuload_calibrate(cyg_uint32 *calibration);

The function returns the calibration value at the location pointed to by calibration.

This function is quite unusual. For it to work correctly a few conditions must be met. The function makes use of the two highest
thread priorities. No other threads must be using these priorities while the function is being used. The kernel scheduler must
be started and not disabled. The function takes 100ms to complete during which time no other threads will be run.

cyg_cpuload_create
This function starts the CPU load measurments.

void cyg_cpuload_create(cyg_cpuload_t *cpuload,
 cyg_uint32 calibrate,
 cyg_handle_t *handle);

The measurement process is started and a handle to it is returned in *handle. This handle is used to access the results and
the stop the measurement process.

cyg_cpuload_delete
This function stops the measurement process.

void cyg_cpuload_delete(cyg_handle_t handle);

handle should be the value returned by the create function.

cyg_cpuload_get
This function returns the latest measurements.

void cyg_cpuload_get(cyg_handle_t handle,
 cyg_uint32 *average_point1s,
 cyg_uint32 *average_1s,
 cyg_uint32 *average_10s);

handle should be the value returned by the create function. The load measurements for the last 100ms, 1s and 10s are returned
in *average_point1s,*average_1s and *average_10s respectively.

1856

CPU Load Measurements

Implementation details
This section gives a few details of how the measurements are made. This should help to understand what the results mean.

When there are no other threads runnable, eCos will execute the idle thread. This thread is always runnable and uses the lowest
thread priority. The idle thread does little. It is an endless loop which increments the variable, idle_thread_loops and
executes the macro HAL_IDLE_THREAD_ACTION. The cpu load measurement code makes use of the variable. It periodically
examines the value of the variable and sees how much it has changed. The idler the system, the more it will have incremented.
From this it is simple to determine the load of the system.

The function cyg_cpuload_calibrate executes the idle thread for 100ms to determine how much
idle_thread_loops is incremented on a system idle for 100ms. cyg_cpuload_create starts an alarm which every
100ms calls an alarm function. This function looks at the difference in idle_thread_loops since the last invocation of
the alarm function and so calculated how idle or busy the system has been. The structure cyg_cpuload is updated during
the alarm functions with the new results. The 100ms result is simply the result from the last measurement period. A simple
filter is used to average the load over a period of time, namely 1s and 10s. Due to rounding errors, the 1s and 10s value will
probably never reach 100% on a fully loaded system, but 99% is often seen.

As stated above, clever power management code will interfere with these measurements. The basic assumption is that the idle
thread will be executed un-hindered and under the same conditions as when the calibration function was executed. If the CPU
clock rate is reduced, the idle thread counter will be incremented less and so the CPU load measurements will give values too
high. If the CPU is halted entirely, 100% cpu load will be measured.

SMP Support
This section described how CPU load is measured on SMP systems. SMP support has been introduced without changing or
extending the existing API. To achieve this, both cyg_cpuload_calibrate() and cyg_cpuload_create() query
the CPU that they are running on and bind the cyg_cpuload_t object to that CPU. The remaining API calls, cyg_cpu-
load_delete() and cyg_cpuload_get(), can be called from any CPU.

To gather load information for each CPU in the system, a separate cyg_cpuload_t object must be allocated, calibrated and
created for each CPU. The following example shows how this might be done during application initialization:

static cyg_uint32 calibration[HAL_SMP_CPU_COUNT];
static cyg_cpuload_t cpuload[HAL_SMP_CPU_COUNT];
static cyg_handle_t handle[HAL_SMP_CPU_COUNT];

static void create_cpuload(void)
{
 HAL_SMP_CPU_TYPE cpu;
 HAL_SMP_CPU_MASK old_affinity;

 // Get current thread affinity.
 cyg_thread_get_affinity(cyg_thread_self(), &old_affinity);

 for(cpu = 0; cpu < HAL_SMP_CPU_COUNT; cpu++)
 {
 // Set this thread's affinity to single CPU.
 cyg_thread_set_affinity(cyg_thread_self(), 1<<cpu);

 // Calibrate and create cpuload object.
 cyg_cpuload_calibrate(&calibration[cpu]);
 cyg_cpuload_create(&cpuload[cpu],calibration[cpu],&handle[cpu]);
 }

 // Restore thread's original affinity.
 cyg_thread_set_affinity(cyg_thread_self(), old_affinity);
}

Following this, the following call, from any CPU, will return the load for the given CPU:

1857

CPU Load Measurements

cyg_cpuload_get(handle[cpu],&average_point1s,&average_1s,&average_10s);

1858

Part LXII. gprof Profiling Support

Name
CYGPKG_PROFILE_GPROF — eCos Support for the gprof profiling tool

Description

The GNU gprof tool provides profiling support. After a test run it can be used to find where the application spent most of its
time, and that information can then be used to guide optimization effort. Typical gprof output will look something like this:

Each sample counts as 0.003003 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 14.15 1.45 1.45 120000 12.05 12.05 Proc_7
 11.55 2.63 1.18 120000 9.84 9.84 Func_1
 8.04 3.45 0.82 main
 7.60 4.22 0.78 40000 19.41 86.75 Proc_1
 6.89 4.93 0.70 40000 17.60 28.99 Proc_6
 6.77 5.62 0.69 40000 17.31 27.14 Func_2
 6.62 6.30 0.68 40000 16.92 16.92 Proc_8
 5.94 6.90 0.61 strcmp
 5.58 7.47 0.57 40000 14.26 26.31 Proc_3
 5.01 7.99 0.51 40000 12.79 12.79 Proc_4
 4.46 8.44 0.46 40000 11.39 11.39 Func_3
 3.68 8.82 0.38 40000 9.40 9.40 Proc_5
 3.32 9.16 0.34 40000 8.48 8.48 Proc_2
…

This output is known as the flat profile. The data is obtained by having a hardware timer generate regular interrupts. The
interrupt handler stores the program counter of the interrupted code. gprof performs a statistical analysis of the resulting data
and works out where the time was spent.

gprof can also provide information about the call graph, for example:

index % time self children called name
…
 0.78 2.69 40000/40000 main [1]
[2] 34.0 0.78 2.69 40000 Proc_1 [2]
 0.70 0.46 40000/40000 Proc_6 [5]
 0.57 0.48 40000/40000 Proc_3 [7]
 0.48 0.00 40000/120000 Proc_7 [3]

This shows that function Proc_1 was called only from main, and Proc_1 in turn called three other functions. Callgraph
information is obtained only if the application code is compiled with the -pg option. This causes the compiler to insert extra
code into each compiled function, specifically a call to mcount, and the implementation of mcount stores away the data
for subsequent processing by gprof.

Caution

There are a number of reasons why the output will not be 100% accurate. Collecting the flat profile typically
involves timer interrupts so any code that runs with interrupts disabled will not appear. The current host-side
gprof implementation maps program counter values onto symbols using a bin mechanism. When a bin spans the
end of one function and the start of the next gprof may report the wrong function. This is especially likely on
architectures with single-byte instructions such as an x86. When examining gprof output it may prove useful to
look at a linker map or program disassembly.

The eCos profiling package requires some additional support from the HAL packages, and this may not be available on all
platforms:

1. There must be an implementation of the profiling timer. Typically this is provided by the variant or platform HAL
using one of the hardware timers. If there is no implementation then the configuration tools will report an unresolved
conflict related to CYGINT_PROFILE_HAL_TIMER and profiling is not possible. Some implementations overload
the system clock, which means that profiling is only possible in configurations containing the eCos kernel and
CYGVAR_KERNEL_COUNTERS_CLOCK.

1860

Profiling

2. There should be a hardware-specific implementation of mcount, which in turn will call the generic functionality provided
by this package. It is still possible to do some profiling without mcount but the resulting data will be less useful. To check
whether or not mcount is available, look at the current value of the CDL interface CYGINT_PROFILE_HAL_MCOUNT
in the graphical configuration tool or in an ecos.ecc save file.

3. The current profiling support is only suitable for single-core systems, it is not SMP-aware. Since profiling is driven by
interrupts from a timer, samples can only be collected from the CPU to which that interrupt is bound. There is no mechanism
for sampling the state of the other CPUs. The array of sample counters is not updated atomically, so updates to the same,
or close, entries may result in readings being lost. For these reasons, targets that might support profiling in a single-core
configuration will disable it in a multi-core configuration.

This document only describes the eCos profiling support. Full details of gprof functionality and output formats can be found
in the gprof documentation. However it should be noted that that documentation describes some functionality which cannot be
implemented using current versions of the gcc compiler: the section on annotated source listings describes basic block counting
which is not relevant. For basic block counting, the GNU gcov tool should be used instead.

Building Applications for Profiling
To perform application profiling the gprof package CYGPKG_PROFILE_GPROF must first be added to the eCos configuration.
On the command line this can be achieved using:

$ ecosconfig add profile_gprof
$ ecosconfig tree
$ make

Alternatively the same steps can be performed using the graphical configuration tool by adding the package "Application
profile support" with the Build->Packages menu item.

If the HAL packages implement mcount for the target platform then usually application code should be compiled
with -pg. Optionally eCos itself can also be compiled with this option by modifying the configuration option
CYGBLD_GLOBAL_CFLAGS. Compiling with -pg is optional but gives more complete profiling data.

Note

The profiling package itself must not be compiled with -pg because that could lead to infinite recursion when
doing mcount processing. This is handled automatically by the package's CDL.

Profiling does not happen automatically. Instead it must be started explicitly by the application, using a call to profile_on.
A typical example would be:

#include <pkgconf/system.h>
#ifdef CYGPKG_PROFILE_GPROF
include <cyg/profile/profile.h>
#endif
…
int
main(int argc, char** argv)
{
 …
#ifdef CYGPKG_PROFILE_GPROF
 {
 extern char _stext[], _etext[];
 profile_on(_stext, _etext, 16, 3500);
 }
#endif
 …
}

The profile_on takes four arguments:

start address
end address

These specify the range of addresses that will be profiled. Usually profiling should cover
the entire application. On most targets the linker script will export symbols _stext
and _etext corresponding to the beginning and end of code, so these can be used as
the addresses. It is possible to perform profiling on a subset of the code if that code is
located contiguously in memory.

1861

Profiling

bucket size profile_on divides the range of addresses into a number of buckets of this size. It
then allocates a single array of 16-bit counters with one entry for each bucket. When
the profiling timer interrupts the interrupt handler will examine the program counter of
the interrupted code and, assuming it is within the range of valid addresses, find the
containing bucket and increment the appropriate counter.

The size of the array counters is determined by the range of addresses being profiled
and by the bucket size. For a bucket size of 16, one counter is needed for every 16 bytes
of code. For an application with say 512K of code that means dynamically allocating a
64K array. If the target hardware is low on memory then this may be unacceptable, and
the requirements can be reduced by increasing the bucket size. However this will affect
the accuracy of the results and gprof is more likely to report the wrong function. It also
increases the risk of a counter overflow.

For the sake of run-time efficiency the bucket size must be a power of 2, and it will be
adjusted if necessary.

time interval The final argument specifies the interval between profile timer interrupts, in units of
microseconds. Increasing the interrupt frequency gives more accurate profiling results,
but at the cost of higher run-time overheads and a greater risk of a counter overflow.
The HAL package may modify this interval because of hardware restrictions, and the
generated profile data will contain the actual interval that was used. Usually it is a good
idea to use an interval that is not a simple fraction of the system clock, typically 10000
microseconds. Otherwise there is a risk that the profiling timer will disproportionally
sample code that runs only in response to the system clock.

profile_on can be invoked multiple times, and on subsequent invocations, it will delete profiling data and allocate a fresh
profiling range.

Profiling can be turned off using the function profile_off:

void profile_off(void);

This will also reset any existing profile data.

If the eCos configuration includes a TCP/IP stack and if a tftp daemon will be used to extract the data from the target then
the call to profile_on should happen after the network is up. profile_on will attempt to start a tftp daemon thread, and
this will fail if networking has not yet been enabled.

int
main(int argc, char** argv)
{
 …
 init_all_network_interfaces();
 …
#ifdef CYGPKG_PROFILE_GPROF
 {
 extern char _stext[], _etext[];
 profile_on(_stext, _etext, 16, 3000);
 }
#endif
 …
}

The application can then be linked and run as usual.

1862

Profiling

When gprof is used for native development rather than for embedded targets the profiling data will automatically be written
out to a file gmon.out when the program exits. This is not possible on an embedded target because the code has no direct
access to the host's file system. Instead the gmon.out file has to be extracted from the target as described below. gprof can
then be invoked normally:

$ gprof dhrystone
Flat profile:

Each sample counts as 0.003003 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 14.15 1.45 1.45 120000 12.05 12.05 Proc_7
 11.55 2.63 1.18 120000 9.84 9.84 Func_1
 8.04 3.45 0.82 main
…

If gmon.out does not contain call graph data, either because mcount is not supported or because this functionality was
explicitly disabled, then the -no-graph must be used.

$ gprof --no-graph dhrystone
Flat profile:

Each sample counts as 0.003003 seconds.
 % cumulative self self total
 time seconds seconds calls us/call us/call name
 14.15 1.45 1.45 Proc_7
 11.55 2.63 1.18 Func_1
 8.04 3.45 0.82 main
…

Extracting the Data
By default gprof expects to find the profiling data in a file gmon.out in the current directory. This package provides two
ways of extracting data: a gdb macro or tftp transfers. Using tftp is faster but requires a TCP/IP stack on the target. It also
consumes some additional target-side resources, including an extra tftp daemon thread and its stack. The gdb macro can be
used even when the eCos configuration does not include a TCP/IP stack. However it is much slower, typically taking tens of
seconds to retrieve all the data for a non-trivial application.

The gdb macro is called gprof_dump, and can be found in the file gprof.gdb in the host subdirectory of this package,
and in the ECOS_INSTALL_DIR/etc subdirectory. A typical way of using this macro is:

(gdb) source <ECOS_INSTALL_DIR>;/etc/gprof.gdb
(gdb) gprof_dump

This macro can be used any time after the call to profile_on. It will store the profiling data accumulated so far to the file
gmon.out in the current directory, and then reset all counts. gprof uses only a 16 bit counter for every bucket of code. These
counters can easily saturate if the profiling run goes on for a long time, or if the application code spends nearly all its time in just
a few tight inner loops. The counters will not actually wrap around back to zero, instead they will stick at 0xFFFF, but this will
still affect the accuracy of the gprof output. Hence it is desirable to reset the counters once the profiling data has been extracted.

The file gprof.gdb contains two other macros which may prove useful. gprof_fetch extracts the profiling data and generates
the file gmon.out, but does not reset the counters. gprof_reset only resets the counters, without extracting the data or
overwriting gmon.out.

If the configuration includes a TCP/IP stack then the profiling data can be extracted using tftp instead. There are two relevant
configuration options. CYGPKG_PROFILE_TFTP controls whether or not tftp is supported. It is enabled by default if the
configuration includes a TCP/IP stack, but can be disabled to save target-side resources. CYGNUM_PROFILE_TFTP_PORT
controls the UDP port which will be used. This port cannot be shared with other tftp daemons. If neither application code
nor any other package (for example the gcov test coverage package) provides a tftp service then the default port can be used.
Otherwise it will be necessary to assign unique ports to each daemon.

If enabled the tftp daemon will be started automatically by profile_on. This should only happen once the network is up
and running, typically after the call to init_all_network_interfaces.

1863

Profiling

The data can then be retrieved using a standard tftp client. There are a number of such clients available with very different
interfaces, but a typical session might look something like this:

$ tftp
tftp> connect 10.1.1.134
tftp> binary
tftp> get gmon.out
Received 64712 bytes in 0.9 seconds
tftp> quit

The address 10.1.1.134 should be replaced with the target's IP address. Extracting the profiling data by tftp will automat-
ically reset the counters.

Configuration Options
This package contains a number of configuration options. Two of these, CYGPKG_PROFILE_TFTP and
CYGNUM_PROFILE_TFTP_PORT, related to support for tftp transfers and have already been described.

Support for collecting the call graph data via mcount is optional and can be controlled via CYGPKG_PROFILE_CALLGRAPH.
This option will only be active if the HAL provides the underlying mcount support and implements
CYGINT_PROFILE_HAL_MCOUNT. The call graph data allows gprof to produce more useful output, but at the cost of extra
run-time and memory overheads. If this option is disabled then the -pg compiler flag should not be used.

If CYGPKG_PROFILE_CALLGRAPH is enabled then there are two further options which can be used to control memory
requirements. Collecting the data requires two blocks of memory, a simple hash table and an array of arc records. The mcount
code uses the program counter address to index into the hash table, giving the first element of a singly linked list. The array
of arc records contains the various linked lists for each hash slot. The required number of arc records depends on the number
of function calls in the application. For example if a function Proc_7 is called from three different places in the application
then three arc records will be needed.

CYGNUM_PROFILE_CALLGRAPH_HASH_SHIFT controls the size of the hash table. The default value of 8 means that the
program counter is shifted right by eight places to give a hash table index. Hence each hash table slot corresponds to 256 bytes
of code, and for an application with say 512K of code profile_on will dynamically allocate an 8K hash table. Increasing
the shift size reduces the memory requirement, but means that each hash table slot will correspond to more code and hence
mcount will need to traverse a longer linked list of arc records.

CYGNUM_PROFILE_CALLGRAPH_ARC_PERCENTAGE controls how much memory profile_on will allocate for the arc
records. This uses a simple heuristic, a percentage of the overall code size. By default the amount of arc record space allocated
will be 5% of the code size, so for a 512K executable that requires approximately 26K. This default should suffice for most
applications. In exceptional cases it may be insufficient and a diagnostic will be generated when the profiling data is extracted.

Implementing the HAL Support
The profiling package requires HAL support: A function hal_enable_profile_timer and an implementation of
mcount. The profile timer is required. Typically it will be implemented by the variant or platform HAL using a spare hardware
timer, and that HAL package will also implement the CDL interface CYGINT_PROFILE_HAL_TIMER. Support for mcount
is optional but very desirable. Typically it will be implemented by the architectural HAL, which will also implement the CDL
interface CYGINT_PROFILE_HAL_MCOUNT.

#include <pkgconf/system.h>
#ifdef CYGPKG_PROFILE_GPROF
include <cyg/profile/profile.h>
#endif

int
hal_enable_profile_timer(int resolution)
{
 …
 return actual_resolution;
}

This function takes a single argument, a time interval in microseconds. It should arrange for a timer interrupt to go off after
every interval. The timer VSR or ISR should then determine the program counter of the interrupted code and register this with
the profiling package:

1864

Profiling

 …
 __profile_hit(interrupted_pc);
 …

The exact details of how this is achieved, especially obtaining the interrupted PC, are left to the HAL implementor. The HAL
is allowed to modify the requested time interval because of hardware constraints, and should return the interval that is actually
used.

mcount can be more difficult. The calls to mcount are generated internally by the compiler and the details depend on the
target architecture. In fact mcount may not use the standard calling conventions at all. Typically implementing mcount
requires looking at the code that is actually generated, and possibly at the sources of the appropriate compiler back end.

The HAL mcount function should call into the profiling package using standard calling conventions:

 …
 __profile_mcount((CYG_ADDRWORD) caller_pc, (CYG_ADDRWORD) callee_pc);
 …

If mcount was invoked because main called Proc_1 then the caller pc should be an address inside main, typically
corresponding to the return location, and the callee pc should be an address inside Proc_1, usually near the start of the function.

For some targets the compiler does additional work, for example automatically allocating a per-function word of memory to
eliminate the need for the hash table. This is too target-specific and hence cannot easily be used by the generic profiling package.

1865

Part LXIII. gcov Test Coverage Support

Name
CYGPKG_GCOV — eCos Support for the gcov test coverage tool

Description
The GNU gcov tool provides test coverage support. After a test run it can be used to find code that was never actually executed.
The testing conditions can then be adjusted for another test run to ensure that all the code really has been tested. The tool
can also be used to find out how often each line of code was executed. That information can help application developers to
determine where cpu time is being spent, and optimization effort can be focussed on critical parts of the code.

A typical fragment of gcov output looks something like this:

 80002: 60: for (Run_Index = 1; Run_Index <= Number_Of_Runs; ++Run_Index)
 -: 61: {
 -: 62:
 80000: 63: Proc_5();
 80000: 64: while (Int_1_Loc < Int_2_Loc) /* loop body executed once */
 -: 65: {
 80000: 66: Int_3_Loc = 5 * Int_1_Loc - Int_2_Loc;
 80000: 67: Proc_7 (Int_1_Loc, Int_2_Loc, &Int_3_Loc);
 80000: 68: Int_1_Loc += 1;
 -: 69: } /* while */
 240000: 70: for (Ch_Index = 'A'; Ch_Index <= Ch_2_Glob; ++Ch_Index)
 -: 71: /* loop body executed twice */
 -: 72: {
 160000: 73: if (Enum_Loc == Func_1 (Ch_Index, 'C'))
 -: 74: /* then, not executed */
 -: 75: {
 ######: 76: Proc_6 (Ident_1, &Enum_Loc);
 ######: 77: strcpy (Str_2_Loc, "DHRYSTONE PROGRAM, 3'RD STRING");
 ######: 78: Int_2_Loc = Run_Index;
 ######: 79: Int_Glob = Run_Index;
 -: 80: }
 -: 81: }
 -: 82: …
 -: 83: }

Each line show the execution count and line number. An execution count of -: means that there is no executable code at that
line. In this example the main loop is executed 80000 times. The body of the inner for loop is executed more often, but the
if condition never triggers so four lines of code have not been tested.

The gcov tool works in conjunction with the gcc compiler. Application code should be built with two additional compiler
flags -fprofile-arcs and -ftest-coverage. The first option causes the compiler to generate additional code which
counts the number of times each basic block is executed. The second option results in additional files with .gcno suffixes
which allow gcov to map these basic blocks onto lines of source code. Older versions of the compiler used to generate files
with .bb and .bbg suffixes instead.

The resulting executable can be run on the target hardware as usual. The basic block counting will initialize automatically and
the counts will accumulate. If gcov is used for native development rather than for embedded targets then these counts will be
written out to .gcda data files automatically when the program exits (older versions of the compiler used to generate files

1867

Test Coverage

with .da suffixes). A typical embedded target will not have access to the host file system so a different approach must be used.
The counts can be extracted from the target using either a gdb macro or by a tftp transfer, giving a single ecosgcov.out
file with counts for the entire application. This file should then be processed with the ecosxda script to give count files for
each application source file.

It is now possible to run gcov on each source file. The exact format of the various files varies with the compiler version so it
is important to use the version of gcov that comes with the compiler.

$ m68k-elf-gcov dhrystone.c
 89.25% of 214 source lines executed in file dhrystone.c
Creating dhrystone.c.gcov.
#

gcov will read in the basic block counts from the generated .gcda file. These basic blocks are mapped onto the source code
using the information in the .gcno files.

gcov provides various options, for example it can output summaries for each function. Full details of the available functionality
can be found in the gcov section of the gcc documentation.

Building Applications for Test Coverage
To perform application test coverage the gcov package CYGPKG_GCOV must first be added to the eCos configuration. On the
command line this can be achieved using:

$ ecosconfig add gcov
$ ecosconfig tree
$ make

Alternatively the same steps can be performed using the graphical configuration tool. The package only has two configuration
options related to tftp transfers, described below.

In addition application code should be compiled with two additional options, -fprofile-arcs and -ftest-coverage.
The first option causes the compiler to insert additional code for basic block counting, plus an initialization call to
__gcov_init_func() which is provided by the eCos gcov package. The second option results in additional .gcno output
files which gcov will need later. The target-side memory needed to store the basic block counts is allocated statically.

When code is compiled with optimization the compiler may rearrange some of the code, if that leads to better performance.
Sometimes this causes the gcov output to be rather confusing. Compiling with -O0, thus disabling optimization, can help.

1868

Test Coverage

Extracting the Data
The basic block counts must be extracted from the target and saved to a file ecosgcov.out on the host. This package
provides two ways of doing this: a gdb macro or tftp transfers. Using tftp is faster but requires a TCP/IP stack on the target.
It also consumes some additional target-side resources, including an extra tftp daemon thread and its stack. The gdb macro
can be used even when the eCos configuration does not include a TCP/IP stack. However it is much slower, typically taking
several minutes to retrieve all the counts for a non-trivial application.

The gdb macro is called gcov_dump, and can be found in the file gcov.gdb in the host subdirectory of this package, and
in the ECOS_INSTALL_DIR/etc subdirectory. A typical way of using this macro is:

(gdb) source <ECOS_INSTALL_DIR>/etc/gcov.gdb
(gdb) gcov_dump

This macro can be used any time after the application has initialized, and will store the counts accumulated so far to the file
ecosgcov.out in the current directory. The counts are not reset.

If the configuration includes a TCP/IP stack then the data can be extracted using tftp instead. There are two relevant
configuration options. CYGPKG_GCOV_TFTPD controls whether or not tftp is supported. It is enabled by default if the
configuration includes a TCP/IP stack, but can be disabled to save target-side resources. CYGNUM_GCOV_TFTPD_PORT
controls the UDP port which will be used. This port cannot be shared with other tftp daemons. If neither application code nor
any other package (for example the gprof profiling package) provides a tftp service then the default port can be used. Otherwise
it will be necessary to assign unique ports to each daemon.

Using tftp requires some additional code in the application. Specifically the daemon cannot be started until the network is up
and running, and that usually happens at the behest of application code rather than automatically. The following code fragment
illustrates what is required:

#include <pkgconf/system.h>
#include <network.h>
#ifdef CYGPKG_GCOV
include <pkgconf/gcov.h>
include <cyg/profile/gcov.h>
#endif
…
int
main(int argc, char** argv)
{
 …
 init_all_network_interfaces();
#ifdef CYGPKG_GCOV_TFTPD
 gcov_start_tftpd();
#endif
 …
}

The data can then be retrieved using a standard tftp client. There are a number of such clients available with very different
interfaces, but a typical session might look something like this:

$ tftp
tftp> connect 10.1.1.134
tftp> binary
tftp> get ecosgcov.out
Received 138740 bytes in 1.7 seconds
tftp> quit

The address 10.1.1.134 should be replaced with the target's IP address.

ecosxda
gcov expects separate .gcda files for each application source file compiled with -fprofile-arcs. However it would be
inconvenient to extract each .gcda file via tftp or a gdb macro. Instead the data is first written to a single file ecosgcov.out.
The ecosxda utility script should then be used to process ecosgcov.out and generate the .gcda files.

1869

Test Coverage

The ecosxda script can be found in the host subdirectory of this package. Since it is a simple Tcl script it does not need to be
built or installed. If desired it can be copied to a suitable location on the user's PATH. Alternatively the subdirectory contains
suitable configure and Makefile.in files, allowing the script to be installed automatically as part of the generic eCos
host-side build system. The toplevel file README.host contains more information about this.

Typically ecosxda will be invoked with no arguments.

$ ecosxda

It will read in an ecosgcov.out file from the current directory and output or update the .gcda files appropriate for the
application. If a given .gcda file already exists then by default ecosxda will read it in and merge the old and new counts,
rather than write a new set. This allows data from several test runs to accumulate, giving more comprehensive test coverage.
Merging the counts is only possible if the source file has not been recompiled, otherwise the old counts will be discarded to
avoid contaminated results.

ecosxda takes a number of command line options.

-h
--help

Provide brief usage information.

-V
--version

Display the version of the ecosxda script being used.

-v
--verbose

Provide additional diagnostic output. Repeated uses increase the level of verbosity.

-n
--no-output

Do not actually create or modify any .gcda files. Typically this is used to find out whether any files
would be replaced rather than merged, and it can also be used to validate the ecosgcov.out file.

-r
--replace

This forces ecosxda to ignore any existing counts in the .gcda files, rather than try to merge the
existing and new counts. Typically it is used to discard the results from previous test runs.

In addition it is possible to specify the file containing the new counts, instead of the default ecosgcov.out. This may prove
useful if several sets of results are extracted to different files during a single test run, to determine what code gets run at various
stages. For example:

$ ecosxda -r stage2.out

Directories and eCos Test Coverage
In a simple build environment the source code, the .gcno files generated by the compiler, and the .gcda files output by
ecosxda, will all reside in the same directory. That makes it easy for gcov to find the various files it needs. gcov will also
generate its .gcov files in the same directory.

In more complicated build environments the source code may be kept completely separate from the build tree. eCos itself
provides an example of this: the source code is held in a clean component repository, and builds happen in separate build trees.
To use gcov in such an environment it is necessary to understand what files will be created where:

1. The compiler will output the .gcno file in the same directory as the object file. For an eCos build tree this will
be below the version directory of each package. For example, if the kernel source file sync/mutex.cxx is built
with -ftest-coverage then the kernel/current/src/sync subdirectory in the build tree will contain the
mutex.gcno files.

2. The .gcda files will end up in the same directory as the .gcno files. The compiler puts the full path name in each object
file, and this path is copied into the ecosgcov.out file and used by ecosxda. It is assumed that ecosgcov.out will
be processed on the same machine that was used to compile the code.

3. When gcov is invoked it can be given a full pathname for the source file. By default it assumes that the other files will be
in the current directory, but a -o command line option can be used to override this.

4. gcov will output its .gcov files in the current directory.

1870

Test Coverage

To perform test coverage of eCos itself, in addition to or instead of the application, it is necessary to rebuild eCos
with the appropriate flags. This involves changing the configuration option CYGBLD_GLOBAL_CFLAGS to include
-ftest-coverage and -fprofile-arcs, then performing a clean and a full make. The basic block counts can be
extracted and processed with ecosxda as before, and the .gcno and .gcda files will all end up in the build tree. This test
coverage data can then be processed in the build tree using, for example:

$ cd <build>
$ cd kernel/<version>
$ m68k-elf-gcov -o . <repo>/kernel/<version>/sync/mutex.cxx
…
 58.50% of 147 source lines executed in file <repo>/kernel/current/src/sync/mutex.cxx
Creating mutex.cxx.gcov.

Where <build> is the location of the build tree and <repo> is the location of the eCos component repository.

Additional Target-side Functions
The eCos gcov package provides a small number of additional target-side functions. Prototypes for these are provided in the
header file <cyg/profile/gcov.h>.

…
int
main(int argc, char** argv)
{
 …
 init_all_network_interfaces();
#ifdef CYGPKG_GCOV_TFTPD
 gcov_start_tftpd();
#endif
 …
}

If the eCos configuration includes a TCP/IP stack and if a target-side tftp daemon will be used to extract the data from the target
to the host then application code should call gcov_start_tftpd once the network is up. This cannot be done automatically
by the gcov package itself since that package has no simple way of detecting when the network is ready.

extern void gcov_reset(void);

This function can be used to reset all basic block counts. If the application operates in a number of distinct stages then it may
be useful to get coverage data for each stage, rather than a single set of results for the whole test run. It can also be used to
get test coverage for a specific sequence of external inputs.

64-bit arithmetic is used for the basic block counts. Hence it should not be necessary to perform occasional resets to avoid
counters overflowing.

To operate properly gcov_reset needs to disable interrupts for a while, so it should not be used in situations which require
hard real-time performance.

extern void gcov_dump(void);

This is a utility routine which outputs some of the basic block information via diag_printf calls. It is intended primarily
to help with debugging the gcov code itself.

In addition the <cyg/profile/gcov.h> header exports the data type gcov_module and a variable gcov_head which
acts as the head of a linked list of gcov_module structures. This allows application code to access and manipulate the basic
block data directly, if desired.

1871

Part LXIV. CRC Algorithms
The CRC package provides implementation of CRC algorithms. This includes the POSIX CRC calculation which produces
the same result as the cksum command on Linux, another 32 bit CRC by Gary S. Brown and a 16bit CRC. The CRC used
for Ethernet FCS is also implemented.

Table of Contents
205. CRC Functions .. 1874

CRC API ... 1874
cyg_posix_crc32 ... 1874
cyg_crc32 .. 1874
cyg_ether_crc32 .. 1874
cyg_crc16 .. 1874

1873

Chapter 205. CRC Functions
CRC API
The package implements a number of CRC functions as described below. The API to these functions is in the include file
cyg/crc/crc.h.

cyg_posix_crc32
This function implements a 32 bit CRC which is compliant to the POSIX 1008.2 Standard. This is the same as the Linux
cksum program.

cyg_uint32 cyg_posix_crc32(unsigned char * s, int len);

The CRC calculation is run over the data pointed to by s, of length len. The CRC is returned as an unsigned long.

cyg_crc32
These functions implement a 32 bit CRC by Gary S. Brown. They use the polynomial
X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0.

cyg_uint32 cyg_crc32(unsigned char * s, int len);
cyg_uint32 cyg_crc32_accumulate(cyg_uint32 crc, unsigned char * s, int len);

The CRC calculation is run over the data pointed to by s, of length len. The CRC is returned as an unsigned long.

The CRC can be calculated over data separated into multiple buffers by using the function cyg_crc32_accumulate().
The parameter crc should be the result from the previous CRC calculation.

cyg_ether_crc32
These functions implement the 32 bit CRC used by the Ethernet FCS word.

cyg_uint32 cyg_ether_crc32(unsigned char * s, int len);
cyg_uint32 cyg_ether_crc32_accumulate(cyg_uint32 crc, unsigned char * s, int len);

The CRC calculation is run over the data pointed to by s, of length len. The CRC is returned as an unsigned long.

The CRC can be calculated over data separated into multiple buffers by using the function
cyg_ether_crc32_accumulate(). The parameter crc should be the result from the previous CRC calculation.

cyg_crc16
This function implements a 16 bit CRC. It uses the polynomial x^16+x^12+x^5+1.

cyg_uint16 cyg_crc16(unsigned char * s, int len);

The CRC calculation is run over the data pointed to by s, of length len. The CRC is returned as an unsigned short.

1874

Part LXV. CryptoAuthLib

Table of Contents
206. CryptoAuthLib overview ... 1877

Introduction .. 1877
207. Configuration .. 1878

Configuration Overview ... 1878
Quick Start .. 1878

208. eCos port .. 1879
Overview ... 1879

209. Test Programs ... 1883
Test Programs .. 1883

1876

Chapter 206. CryptoAuthLib overview
Introduction
The CYGPKG_CRYPTOAUTHLIB package provides a standard CryptoAuthLib library implementation to eCos applications.

This package is covered by an “AS IS” license as distributed in the original CryptoAuthLib package:

Example 206.1. “AS IS” License

(c) 2015-2021 Microchip Technology Inc. and its subsidiaries.

Subject to your compliance with these terms, you may use the Microchip Software
and any derivatives exclusively with Microchip products. It is your
responsibility to comply with third party license terms applicable to your
use of third party software (including open source software) that may
accompany Microchip Software.

Redistribution of this Microchip Software in source or binary form is allowed
and must include the above terms of use and the following disclaimer with the
distribution and accompanying materials.

THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT,
SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE
OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF
MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE.
TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL
CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF
FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.

For definitive CryptoAuthLib documentation please refer to the main Microchip Trust Platform website. We do not duplicate
that documentation here.

1877

https://www.microchip.com/en-us/products/security/trust-platform

Chapter 207. Configuration
This chapter shows how to incorporate the CryptoAuthLib support into an eCos configuration, and how to configure it once
included.

Configuration Overview
The CryptoAuthLib support is contained in a single eCos package CYGPKG_CRYPTOAUTHLIB. However, some functionality
is dependant on other eCos features. e.g. the eCos I²C support.

Quick Start
Incorporating the CryptoAuthLib support into your application is straightforward. The essential starting point is to incorporate
the CryptoAuthLib eCos package (CYGPKG_CRYPTOAUTHLIB) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Depending on the CryptoAuthLib package configuration other packages may be required (e.g. I²C support). The package
requires that the CYGPKG_INFRA and CYGPKG_MEMALLOC packages are included in the eCos application configuration.

1878

Chapter 208. eCos port
Overview
The goal for the CYGPKG_CRYPTOAUTHLIB package is to avoid where possible having to have any core CryptoAuthLib
source file changes made specifically for eCos. This is to ensure that re-imports of newer versions of the library sources
involve minimal effort. The files are as provided in the official CryptoAuthLib release package as imported, with the following
exceptions:

1. Files have been moved, unmodified, to create a standard eCos package tree structure to integrate with the eCosPro build
environment

Only relevant files from the original project have been included in the eCos package.

2. The file include/hal/atca_hal.h has a different hal_delay_us() prototype to match the underlying eCos run-
time function actually referenced due to the naming clash.

The current CryptoAuthLib version provided by the eCos package is the github tagged release 20220614, which is a v3.3.3
release (8th October 2021) with bug fixes applied up to 14th June 2022.

The original project homepage can be found on github: cryptoauthlib

The release package was downloaded from the github project page: cryptoauthlib/releases/tag/20220614

The following table highlights the files taken from the CryptoAuthLib package and their new location within the eCos CYG-
PKG_CRYPTOAUTHLIB package:

Original github eCos package

include/atca_basic.h include/atca_basic.h

lib/atca_bool.h include/atca_bool.h

lib/atca_cfgs.h include/atca_cfgs.h

lib/atca_compiler.h include/atca_compiler.h

lib/atca_device.h include/atca_device.h

lib/atca_devtypes.h include/atca_devtypes.h

lib/atca_helpers.h include/atca_helpers.h

lib/atca_iface.h include/atca_iface.h

lib/atca_status.h include/atca_status.h

lib/atca_version.h include/atca_version.h

lib/cryptoauthlib.h include/cryptoauthlib.h

lib/atcacert/atcacert_client.h include/atcacert/atcacert_client.h

lib/atcacert/atcacert_date.h include/atcacert/atcacert_date.h

lib/atcacert/atcacert_def.h include/atcacert/atcacert_def.h

lib/atcacert/atcacert_der.h include/atcacert/atcacert_der.h

lib/atcacert/atcacert.h include/atcacert/atcacert.h

lib/atcacert/atcacert_host_hw.h include/atcacert/atcacert_host_hw.h

lib/atcacert/atcacert_host_sw.h include/atcacert/atcacert_host_sw.h

lib/atcacert/atcacert_pem.h include/atcacert/atcacert_pem.h

lib/calib/calib_aes_gcm.h include/calib/calib_aes_gcm.h

lib/calib/calib_basic.h include/calib/calib_basic.h

lib/calib/calib_command.h include/calib/calib_command.h

1879

https://github.com/MicrochipTech/cryptoauthlib
https://github.com/MicrochipTech/cryptoauthlib/releases/tag/20220614

eCos port

Original github eCos package

lib/calib/calib_execution.h include/calib/calib_execution.h

lib/crypto/atca_crypto_hw_aes.h include/crypto/atca_crypto_hw_aes.h

lib/crypto/atca_crypto_sw_ecdsa.h include/crypto/atca_crypto_sw_ecdsa.h

lib/crypto/atca_crypto_sw.h include/crypto/atca_crypto_sw.h

lib/crypto/atca_crypto_sw_rand.h include/crypto/atca_crypto_sw_rand.h

lib/crypto/atca_crypto_sw_sha1.h include/crypto/atca_crypto_sw_sha1.h

lib/crypto/atca_crypto_sw_sha2.h include/crypto/atca_crypto_sw_sha2.h

lib/crypto/hashes/sha1_routines.h include/crypto/hashes/sha1_routines.h

lib/crypto/hashes/sha2_routines. include/crypto/hashes/sha2_routines.

lib/hal/atca_hal.h include/hal/atca_hal.h

lib/host/atca_host.h include/host/atca_host.h

lib/jwt/atca_jwt.h include/jwt/atca_jwt.h

lib/mbedtls/atca_mbedtls_wrap.h include/mbedtls/atca_mbedtls_wrap.h

third_party/atca_mbedtls_patch.h include/third_party/atca_mbedtls_patch.h

lib/pkcs11/cryptoki.h include/pkcs11/cryptoki.h

lib/pkcs11/pkcs11_attrib.h include/pkcs11/pkcs11_attrib.h

lib/pkcs11/pkcs11_cert.h include/pkcs11/pkcs11_cert.h

lib/pkcs11/pkcs11_digest.h include/pkcs11/pkcs11_digest.h

lib/pkcs11/pkcs11_encrypt.h include/pkcs11/pkcs11_encrypt.h

lib/pkcs11/pkcs11f.h include/pkcs11/pkcs11f.h

lib/pkcs11/pkcs11_find.h include/pkcs11/pkcs11_find.h

lib/pkcs11/pkcs11.h include/pkcs11/pkcs11.h

lib/pkcs11/pkcs11_info.h include/pkcs11/pkcs11_info.h

lib/pkcs11/pkcs11_init.h include/pkcs11/pkcs11_init.h

lib/pkcs11/pkcs11_key.h include/pkcs11/pkcs11_key.h

lib/pkcs11/pkcs11_mech.h include/pkcs11/pkcs11_mech.h

lib/pkcs11/pkcs11_object.h include/pkcs11/pkcs11_object.h

lib/pkcs11/pkcs11_os.h include/pkcs11/pkcs11_os.h

lib/pkcs11/pkcs11_session.h include/pkcs11/pkcs11_session.h

lib/pkcs11/pkcs11_signature.h include/pkcs11/pkcs11_signature.h

lib/pkcs11/pkcs11_slot.h include/pkcs11/pkcs11_slot.h

lib/pkcs11/pkcs11t.h include/pkcs11/pkcs11t.h

lib/pkcs11/pkcs11_token.h include/pkcs11/pkcs11_token.h

lib/pkcs11/pkcs11_util.h include/pkcs11/pkcs11_util.h

third_party/atca_mbedtls_patch.h include/atca_mbedtls_patch.h

lib/atca_basic.c src/lib/atca_basic.c

lib/atca_cfgs.c src/lib/atca_cfgs.c

lib/atca_device.c src/lib/atca_device.c

lib/atca_helpers.c src/lib/atca_helpers.c

lib/atca_iface.c src/lib/atca_iface.c

lib/atca_utils_sizes.c src/lib/atca_utils_sizes.c

1880

eCos port

Original github eCos package

lib/atcacert/atcacert_client.c src/lib/atcacert/atcacert_client.c

lib/atcacert/atcacert_date.c src/lib/atcacert/atcacert_date.c

lib/atcacert/atcacert_def.c src/lib/atcacert/atcacert_def.c

lib/atcacert/atcacert_der.c src/lib/atcacert/atcacert_der.c

lib/atcacert/atcacert_host_hw.c src/lib/atcacert/atcacert_host_hw.c

lib/atcacert/atcacert_host_sw.c src/lib/atcacert/atcacert_host_sw.c

lib/atcacert/atcacert_pem.c src/lib/atcacert/atcacert_pem.c

lib/calib/calib_aes.c src/lib/calib/calib_aes.c

lib/calib/calib_checkmac.c src/lib/calib/calib_checkmac.c

lib/calib/calib_derivekey.c src/lib/calib/calib_derivekey.c

lib/calib/calib_gendig.c src/lib/calib/calib_gendig.c

lib/calib/calib_hmac.c src/lib/calib/calib_hmac.c

lib/calib/calib_lock.c src/lib/calib/calib_lock.c

lib/calib/calib_privwrite.c src/lib/calib/calib_privwrite.c

lib/calib/calib_secureboot.c src/lib/calib/calib_secureboot.c

lib/calib/calib_sign.c src/lib/calib/calib_sign.c

lib/calib/calib_write.c src/lib/calib/calib_write.c

lib/calib/calib_aes_gcm.c src/lib/calib/calib_aes_gcm.c

lib/calib/calib_command.c src/lib/calib/calib_command.c

lib/calib/calib_ecdh.c src/lib/calib/calib_ecdh.c

lib/calib/calib_genkey.c src/lib/calib/calib_genkey.c

lib/calib/calib_info.c src/lib/calib/calib_info.c

lib/calib/calib_mac.c src/lib/calib/calib_mac.c

lib/calib/calib_random.c src/lib/calib/calib_random.c

lib/calib/calib_selftest.c src/lib/calib/calib_selftest.c

lib/calib/calib_updateextra.c src/lib/calib/calib_updateextra.c

lib/calib/calib_basic.c src/lib/calib/calib_basic.c

lib/calib/calib_counter.c src/lib/calib/calib_counter.c

lib/calib/calib_execution.c src/lib/calib/calib_execution.c

lib/calib/calib_helpers.c src/lib/calib/calib_helpers.c

lib/calib/calib_kdf.c src/lib/calib/calib_kdf.c

lib/calib/calib_nonce.c src/lib/calib/calib_nonce.c

lib/calib/calib_read.c src/lib/calib/calib_read.c

lib/calib/calib_sha.c src/lib/calib/calib_sha.c

lib/calib/calib_verify.c src/lib/calib/calib_verify.c

lib/crypto/atca_crypto_hw_aes_cbc.c src/lib/crypto/atca_crypto_hw_aes_cbc.c

lib/crypto/atca_crypto_hw_aes_ccm.c src/lib/crypto/atca_crypto_hw_aes_ccm.c

lib/crypto/atca_crypto_hw_aes_ctr.c src/lib/crypto/atca_crypto_hw_aes_ctr.c

lib/crypto/atca_crypto_sw_ecdsa.c src/lib/crypto/atca_crypto_sw_ecdsa.c

lib/crypto/atca_crypto_sw_sha1.c src/lib/crypto/atca_crypto_sw_sha1.c

1881

eCos port

Original github eCos package

lib/crypto/atca_crypto_hw_aes_cbcmac.c src/lib/crypto/atca_crypto_hw_aes_cbc-
mac.c

lib/crypto/atca_crypto_hw_aes_cmac.c src/lib/crypto/atca_crypto_hw_aes_cmac.c

lib/crypto/atca_crypto_pbkdf2.c src/lib/crypto/atca_crypto_pbkdf2.c

lib/crypto/atca_crypto_sw_rand.c src/lib/crypto/atca_crypto_sw_rand.c

lib/crypto/atca_crypto_sw_sha2.c src/lib/crypto/atca_crypto_sw_sha2.c

lib/crypto/hashes/sha1_routines.c src/lib/crypto/hashes/sha1_routines.c

lib/crypto/hashes/sha2_routines.c src/lib/crypto/hashes/sha2_routines.c

lib/hal/atca_hal.c src/lib/hal/atca_hal.c

lib/host/atca_host.c src/lib/host/atca_host.c

lib/jwt/atca_jwt.c src/lib/jwt/atca_jwt.c

lib/mbedtls/atca_mbedtls_ecdh.c src/lib/mbedtls/atca_mbedtls_ecdh.c

lib/mbedtls/atca_mbedtls_ecdsa.c src/lib/mbedtls/atca_mbedtls_ecdsa.c

lib/mbedtls/atca_mbedtls_wrap.c src/lib/mbedtls/atca_mbedtls_wrap.c

lib/mbedtls/atca_mbedtls_wrap.h src/lib/mbedtls/atca_mbedtls_wrap.h

lib/mbedtls/README.md src/lib/mbedtls/README.md

lib/openssl/atca_openssl_interface.c src/lib/openssl/atca_openssl_interface.c

lib/openssl/README.md src/lib/openssl/README.md

lib/pkcs11/pkcs11_attrib.c src/lib/pkcs11/pkcs11_attrib.c

lib/pkcs11/pkcs11_config.c src/lib/pkcs11/pkcs11_config.c

lib/pkcs11/pkcs11_digest.c src/lib/pkcs11/pkcs11_digest.c

lib/pkcs11/pkcs11_find.c src/lib/pkcs11/pkcs11_find.c

lib/pkcs11/pkcs11_init.c src/lib/pkcs11/pkcs11_init.c

lib/pkcs11/pkcs11_main.c src/lib/pkcs11/pkcs11_main.c

lib/pkcs11/pkcs11_object.c src/lib/pkcs11/pkcs11_object.c

lib/pkcs11/pkcs11_session.c src/lib/pkcs11/pkcs11_session.c

lib/pkcs11/pkcs11_slot.c src/lib/pkcs11/pkcs11_slot.c

lib/pkcs11/pkcs11_util.c src/lib/pkcs11/pkcs11_util.c

lib/pkcs11/pkcs11_cert.c src/lib/pkcs11/pkcs11_cert.c

lib/pkcs11/pkcs11_debug.c src/lib/pkcs11/pkcs11_debug.c

lib/pkcs11/pkcs11_encrypt.c src/lib/pkcs11/pkcs11_encrypt.c

lib/pkcs11/pkcs11_info.c src/lib/pkcs11/pkcs11_info.c

lib/pkcs11/pkcs11_key.c src/lib/pkcs11/pkcs11_key.c

lib/pkcs11/pkcs11_mech.c src/lib/pkcs11/pkcs11_mech.c

lib/pkcs11/pkcs11_os.c src/lib/pkcs11/pkcs11_os.c

lib/pkcs11/pkcs11_signature.c src/lib/pkcs11/pkcs11_signature.c

lib/pkcs11/pkcs11_token.c src/lib/pkcs11/pkcs11_token.c

third_party/atca_mbedtls_patch.c src/third_party/atca_mbedtls_patch.c

app/tng/tng_atca.h include/app/tng/tng_atca.h

1882

Chapter 209. Test Programs
Test Programs
Some CryptoAuthLib specific tests are built and can be used to verify correct operation of the library.

1. basiccheck

This test executes some basic device sanity checks to exercise the I2C transport layer, and to verify target device operation.
It does not use the CryptoAuthLib test environment, put purely calls the CryptoAuthLib library functionality.

2. basicinfo

This test executes some basic device sanity checks to exercise the I2C transport layer, and to verify target device operation.
It uses the CryptoAuthLib test environment and provides similar diagnostic output as the direct basiccheck test.

3. cryptoauth_test

This test is only built when CYGBLD_CRYPTOAUTHLIB_TESTS_MANUAL is enabled since it relies on the /dev/hal-
diag diagnostic terminal connection for interactive command input.

The test is a build of the “command-line” test application allowing interaction with devices. On startup the application will
display an inital prompt and wait for user input:

INFO:<code from 0x20209008 -> 0x202420c4, CRC a43d^gt;
INFO:<Using haldiag for interactive test>
INFO:<Enter "help\n" to display help menu>
$

Depending on the eCos configuration, and the specific options for this CryptoAuthLib package, the features of the test may
vary. The following is purely an example. The help command should list all of the supported commands. Normally a
device needs to be selected prior to use. e.g.:

$ help
Usage:
help - Display Menu
ecc608 - Set Target Device to ATECC608
info - Get the Chip Revision
sernum - Get the Chip Serial Number
rand - Generate Some Random Numbers
readcfg - Read the Config Zone
lockstat - Zone Lock Status
tng - Run unit tests on TNG type part.
basic - Run Basic Test on Selected Device
util - Run Helper Function Tests
clkdivm0 - Set ATECC608 to ClockDivider M0(0x00)
clkdivm1 - Set ATECC608 to ClockDivider M1(0x05)
clkdivm2 - Set ATECC608 to ClockDivider M2(0x0D)
cd - Run Unit Tests on Cert Data
cio - Run Unit Test on Cert I/O
crypto - Run Unit Tests for Software Crypto Functions
pbkdf2 - Run pbkdf2 tests

$ ecc608
Device Selected.

$ info
revision:
00 00 60 01

$ sernum
serial number:
01 23 C4 71 E0 E7 45 37 EE

$

1883

Test Programs

Note

For some devices, e.g. ATECC608 family, some operations will not operate, or will return errors, if the device
is not locked or configured suitably. Knowledge of the device, and its features, being used should taken into
account when running commands and interpreting the results.

1884

Part LXVI. LibTomCrypt
Cryptography Library

Important

The LibTomCrypt Cryptography Library package for eCos is distributed as an optional eCos add-on package that
may not be included in your release of eCosPro. If this package is not listed in either the graphical or command
line eCos Configuration tool, please contact eCosCentric for availability and pricing.

Name
CYGPKG_CRYPT_LIBTOMCRYPT — Cryptography

Description
CYGPKG_CRYPT_LIBTOMCRYPT is a port to eCos of the Tom St Denis LibTomCrypt cryptography library. Full
documentation on this library can be found in the file crypt.pdf in the package's doc subdirectory.

The port to eCos has involved only very minor changes to the generic LibTomCrypt sources. Appropriate CDL has been added
to turn the library into an eCos package. The package's src subdirectory has essentially the same contents as a LibTomCrypt
tarball. The exported headers have been moved from the src/headers subdirectory to the package's include subdirectory
in accordance with eCos conventions. Some of these headers have had minor modifications to allow the package to be built and
used within an eCos configuration. The prebuilt documentation file crypt.pdf has been moved to the doc subdirectory.

The package has no architectural dependencies so can be added to any eCos configuration. However it does depend on dynamic
memory allocation support from CYGPKG_MEMALLOC, on standard C library support from CYGPKG_LIBC_STDLIB,
CYGPKG_LIBC_I18N, CYGPKG_LIBC_STRING, CYGPKG_LIBC_TIME, and on the multi-precision arithmetic support
provided by CYGPKG_LIBTOMMATH.

The package provides three CDL configuration options. CYGIMP_CRYPT_LIBTOMCRYPT_SMALL_CODE
corresponds to the libtomcrypt LTC_SMALL_CODE option and selects for smaller but slower code. Similarly
CYGIMP_CRYPT_LIBTOMCRYPT_NO_TABLES corresponds to LTC_NO_TABLES and also selects for smaller but slower
code. CYGDBG_CRYPT_LIBTOMCRYPT_ARGCHK determines what argument checking gets performed. By default in a debug
build (CYGPKG_INFRA_DEBUG enabled) invalid arguments result in an assertion failure, and in a normal build argument
checking is disabled.

Caution

In some jurisdictions use of this library may be subject to patent and trademark restrictions. More information
on this can be found in section 1.4 of the crypt.pdf document. It is the application developer's responsibility
to consider the legal issues before using this library.

1886

http://libtom.org/

Part LXVII. LibTomMath Multi-
Precision Math Package

Important

The LibTomMath Multi-Precision Math package for eCos is distributed as an optional eCos add-on package that
may not be included in your release of eCosPro. If this package is not listed in either the graphical or command
line eCos Configuration tool, please contact eCosCentric for availability and pricing.

Name
CYGPKG_MATH_LIBTOMMATH — Multi-Precision Maths

Description
CYGPKG_MATH_LIBTOMMATH is a port to eCos of the Tom St Denis LibTomMath Multi-Precision Math package. Full
documentation on this package can be found in the files bn.pdf, tommath.pdf, and poster.pdf in the package's doc
subdirectory.

The port to eCos has involved only very minor changes to the generic LibTomMath sources, to allow the code to adapt to
eCos configurations lacking standard I/O functionality. The package's src subdirectory has essentially the same contents as
a LibTomMath tarball. The exported headers tommath.h, tommath_class.h and tommath_superclass.h have
been moved to the package's include subdirectory, The prebuilt documentation files have been moved to the package's doc
subdirectory. Appropriate CDL has been added so that the package can be built as part of an eCos configuration.

The package has no architectural dependencies so can be added to any eCos configuration. However it does depend on dynamic
memory allocation support from CYGPKG_MEMALLOC and on standard C library support from CYGPKG_LIBC_STDLIB,
CYGPKG_LIBC_I18N, and CYGPKG_LIBC_STRING.

1888

http://libtom.org/

Part LXVIII. BootUp ROM loader

Table of Contents
210. BootUp overview ... 1891

Introduction .. 1891
Configuration ... 1892

Platform Support ... 1892
Building BootUp ... 1894

Applications using VALID_ALT .. 1894
Supported Platform HALs and targets .. 1895

1890

Chapter 210. BootUp overview
Introduction
eCosPro-BootUp is eCosCentric's commercial name for the CYGPKG_BOOTUP package. The package is not included as stan-
dard in eCosPro Developer's Kit releases. Review the board specific documentation to determine if support has been included
for your target platform.

The CYGPKG_BOOTUP package implements a lightweight bootROM that is intended to be easily portable and customizable
to support the requirements of a given platform. It is purposely designed to provide an uncomplicated and straightforward boot
mechanism, but does however provide a framework that the target platform code can use to easily extend its basic functionality.
This can be used to incorporate more advanced features such as secure boot capabilities and application or system updates.

The BootUp code does NOT support any debug ROM monitor features. It is targeted at deployment of SoC-based designs that
have limited memory resources and where hardware debugging (JTAG, SWD, BDM, etc.) will be used. It does not incorporate
a debug agent such as GDB stubs, a CLI or any other debug monitor features. If you require these kinds of features then the
RedBoot bootloader and debug firmware will be a more appropriate vehicle.

The BootUp package provides the generic, logical, framework for optional updating and execution of application images. Most
of the heavy-lifting implementation for this is provided by architecture, variant or platform specific code that is incorporated
when CYGPKG_BOOTUP is built. This is primarily because the location and format of the relevant application images is
platform specific. This provides the greatest flexibility to developers with regards to how applications are stored and what extra
information may be embedded to support updating and any other custom bootROM features.

Note

Normally it is envisaged that the BootUp ROM image will be loaded onto devices once, and then very rarely
(if ever) updated. The BootUp world is designed to be very simple to minimise the chances of errors in the
implementation that would stop the system from booting, or from allowing a different main application to be
loaded into the device. The simpler implementations make no use of specific run-time configuration, and all
implementations do not impose any footprint on the target after it has started the main application.

BootUp has been utilised by various example target platform implementations to support different mechanisms for safe appli-
cation updates. These examples can be used as the basis of an update mechanism for your target platform. For example:

• A simple implementation with no update support. The on-chip BootUp loader is simply used to validate, load and execute
an off-chip NVM based, RAM loaded, application.

The Atmel SAMA5D3x platform provides an example BootUp implementation for starting RAM based applications. This
platform also, optionally, supports secure booting an encrypted applications.

• A basic update mechanism that is intended to support booting and update of on-chip flash resident applications. In this case,
each time the target is reset BootUp checks if a different, valid, application is present in a separate non volatile memory
(NVM) area. If an update is found it will be installed into the on-chip flash, prior to the on-chip flash application being
executed. The term “different” is used when distinguishing main application images since BootUp does not interpret the
binary signature, which need not be a version number. This allows the update system to be used to revert to an earlier version
of the application. It will simply update the on-chip application if an application with a different signature is found in the
NVM.

The application itself is responsible for identifying, acquiring, verifying and storing any update into the NVM. BootUp is
responsible solely for installation and execution of the application held in on-chip flash.

The design of this mechanism avoids halving the available on-chip memory space in order to store images of both the existing
and updated application. It also avoids possible target complications resulting from executing out of the same memory space
that will need to be erased and written to. However, if the on-chip flash is large enough, and the final application small
enough, it is possible for the main and alternative application images to be held on the same on-chip flash.

The robustness (safe update) of an application via this BootUp mechanism relies on the code only attempting to perform an
update when a different valid application image is available. If the system loses power, or suffers a reset, during an update

1891

BootUp overview

the original alternative image will still be available. When the system recovers from the reset state it will just re-start the
update (regardless of whether the on-chip application image is still valid, since even if it is, it will still be different from the
alternative image that started the original update).

Specific examples of this style of BootUp implementation can be found in the ST STM324x9I-EVAL and
ST STM32F7xx-EVAL platforms' ROMAPP startup type.

• A more sophisticated update solution that supports a “bundle” of application specific files. In this case BootUp is responsible
for identifying, loading and executing the main application from within a bundle held in NVM. The application is loaded
into and executed in external RAM memory.

The application itself is generally responsible for identifying, acquiring, verifying and installing any available bundle updates
into NVM. BootUp is responsible solely for loading and executing an updated “main” application from within the bundle.
Optionally, as a fall-back, if no valid bundle can be located in NVM, then BootUp can locate, verify and install a complete
bundle from external media such as an SD card.

The design of this update mechanism enables, in addition to pure application updates, the update of other target resident code
and data. These files might include FPGA bitfiles, DSP firmware, application data and so forth. The bundle update system
includes support for decompression and checksumming of the bundle contents. See the Bundle image support chapter for
further details.

Examples of this BootUp approach are available in the ST STM324x9I-EVAL and ST STM32F7xx-EVAL platforms' bundle
support.

Architectures, variants or platforms that support the BootUp loader will implement CYGINT_BOOTUP_APPSTART. This
feature allows BootUp to start the main application and is an essential requirement for the BootUp world to be used.

If BootUp starts when there is no valid on-chip application, and no valid alternative application is available, then if the platform
provides the macro CYG_HAL_BOOTUP_BADAPP then that is used to call platform specific code. This provides a hook to
allow target specific feedback indicating the lack of an application.

Configuration
If CYGINT_BOOTUP_UPDATE is not defined then the BootUp loader will simply just execute the “main” application if it is
present and valid. If the platform defines CYG_HAL_BOOTUP_COPYAPP then platform supplied code to copy an application
to its executation location is called (e.g. for RAM loaded applications). In reality if neither CYGINT_BOOT_UPDATE and
CYG_HAL_BOOTUP_COPYAPP are provided by the target then there is no real need for the BootUp to be used, and a normal
simple ROM application configuration would suffice.

When CYGINT_BOOTUP_UPDATE is defined by a platform it indicates that the platform provides the mechanism for
identifying if a different alternative application image is available, and that the alternative image should replace the current
main (normally on-chip) application when different. It is the responsibility of the platform supplied routines to implement how
such image validation is performed.

The following configuration options control the main features of the BootUp bootROM world:

CYGBLD_BUILD_BOOTUP controls whether the BootUp image is created, and will normally be defined for all BootUp
configurations.

CYGIMP_BOOTUP_UPDATE controls whether the BootUp bootROM supports replacing the main application image with a
different image from the alternative storage location. If not defined then BootUp will simply start the main application.

CYG_HAL_BOOTUP_COPYAPP controls whether the platform provides code to copy an application from NVM to RAM for
execution.

Platform Support
A platform supporting the BootUp application update and start features provides the necessary support via specifically named
functions. When defined by the platform the BootUp code will call the named macro to perform the necessary action. In the

1892

BootUp overview

list below the function prototypes are shown using example names. Normally the platform will just map the macro name to
a specific named function provided by the platform HAL.

• CYG_HAL_BOOTUP_VALID_MAIN

cyg_bool plf_bootup_valid_main(void);

The function referenced by this macro returns boolean true if the main application image is valid (this is the application
image that BootUp starts). It will return boolean false if no valid main application is found.

• CYG_HAL_BOOTUP_VALID_ALT

cyg_bool plf_bootup_valid_alt(void);

The function referenced by this macro returns boolean true if the alternative (pending update) application image is valid
and different from the current main application. This is the application image that BootUp will automatically replace the main
application with when it is different from the current main application. It will return boolean false if no valid alternative
application is available, or the alternative image is the same as the current main application.

• CYG_HAL_BOOTUP_VALID_UPDATE

cyg_bool plf_bootup_validate_update(void);

The function referenced by this macro is only called if CYG_HAL_BOOTUP_VALID_MAIN has returned false to indicate
that the main application image is missing or invalid. This macro returns boolean true if the alternative (pending update)
application image is valid and the main application has been updated successfully. This macro will return boolean false
if no valid alternative image is available or the update process has failed.

Note

The CYG_HAL_BOOTUP_VALID_ALT and CYG_HAL_BOOTUP_VALID_UPDATE macros are mutually
exclusive, since they implement slightly different “update” logic based on the presence of a valid main
application. A platform should only define one of these macros depending on the style of automatic application
update required.

• CYG_HAL_BOOTUP_UPDATE

cyg_bool plf_bootup_update(void);

The function referenced by this macro will replace the main application image with the alternative image. It is only
called after the respective images have been validated and only when the alternative image is different as ascertained by
a CYG_HAL_BOOTUP_VALID_ALT call. It will return boolean true if it successfully updates the main application,
otherwise boolean false is returned to indicate failure.

• CYG_HAL_BOOTUP_COPYAPP

cyg_bool plf_bootup_copyapp(void);

The function referenced by this macro returns boolean true if the main application image has been successfully copied to
its execution location. It will return boolean false if no valid main application is available.

• CYG_HAL_BOOTUP_BADAPP

void plf_bootup_badapp(void);

The function referenced by this macro is called when no valid main application exists. This can be used to provide platform
specific feedback to the user that the system cannot boot.

If the CYGSEM_BOOTUP_PLF_STARTUP configuration option is enabled then the following C function is called:

void cyg_plf_bootup_startup();

1893

BootUp overview

This function can be used to provide platform specific optional initialisation prior to the normal BootUp operation being started.
This may be performing specific hardware initialisation, or some level of Power On Self Test support.

Application Identity

The identification of valid application images is the responsibility of the platform specific code. Depending on the BootUp
model implemented by the target platform, it may be the case that a simple binary value will be enough to distinguish different
applications, e.g. a monotonically increasing version number, or the UTC timestamp when the binary was produced.

If an application signature needs to be embedded inside the actual application binary then platforms that support the use of
BootUp will normally provide a mechanism to provide space within the produced eCos executable. For example the Cortex-
M architecture provides the CYGNUM_HAL_CORTEXM_VSR_TABLE_PAD configuration option that allows space for an
application specific header to be provided at a fixed offset from the binary start. Similarly the ARM architecture allows for the
PLATFORM_PREAMBLE macro to be define to allow for a header to be installed to hold, for example, the BootUp signature,
CRC, or whatever information is needed.

The header/block being used to hold such a “signature” need not just contain information for supporting BootUp. For example,
it may also need to hold information for the mechanism used to install the pending update application image into the alternative
location.

Building BootUp
Platforms that support a BootUp configuration will normally provide a suitable .ecm configuration file to allow a minimal
BootUp application to be constructed. The specific platform documentation will provide information regarding BootUp con-
figuration and use, and any specific build sequences. Such documentation should be read in conjunction with this generic
BootUp information.

This package provides an example import file in the $ECOS_REPOSITORY/bootup/<version>/misc/
bootup_ROM.ecm.example file. When porting BootUp support to a new platform this example file can be used as the
basis for the target specific .ecm fragment.

Should it prove necessary to rebuild a BootUp binary it is done most conveniently at the command line. The steps needed to
rebuild a ROM version would be similar to:

$ ecosconfig new <target> minimal
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/TARGETPATH/VERSION/misc/bootup_ROM.ecm
[… ecosconfig output elided …]
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory will contain the file bootup.bin. This may be programmed into
the target platform as specified for the system being targeted.

Applications using VALID_ALT
The following section is only relevant for target platforms that define CYG_HAL_BOOTUP_UPDATE and
CYG_HAL_BOOTUP_VALID_ALT where the BootUp world is designed to allow for robust in-field updates of the firmware
on a device.

For such systems the application started by BootUp must implement some of the support needed with regard to providing
the “pending update” application image. When a new firmware update has been downloaded by the main application it will
normally force a system restart, which will cause BootUp to perform the necessary update prior to starting the new main
application.

The main application, when loading a pending update application into the alternative memory/device (e.g. off-chip SPI), should
ensure that it does not set (write) the "valid signature" until it has validated the correct storage of the rest of the image. This
requirement ensures that if a system reset occurs before the signature has been written that the image will NOT be interpreted

1894

BootUp overview

by BootUp as being valid. This allows the BootUp loader to be simpler since it can treat a valid, complete, signature as an
indication that the application was written correctly.

At a minimum (and critically) the main application needs to ensure that it invalidates the alternative image signature prior to
starting the process of storing a new application image into the alternative area. This ensures a partial image is not incorrectly
identified as a valid, pending, update. If CRC checking is also being used by the platform HAL then this likelihood is minimised.

Note

This requirement that the alternative storage area must have a complete valid image, whenever there is a complete
signature present, ensures that in the case where the implementation does not use a CRC (or similar check)
for the BootUp code to perform validation of a complete image, that any previous previous valid signature is
not incorrectly accessed and treated as “valid”. For example, if the writing of a subsequent pending update is
interrupted (CPU reset, etc.) before it “overwrites” the signature of the previously stored image. If a pending
update is downloaded to the holding area, validated and marked as such BUT the system is not rebooted (so the
pending update is not applied). Subsequently another pending update starts to download a different image to
the holding area but the process is interrupted before the previous image “valid” signature is over-written. The
BootUp code could then incorrectly interpret the invalid (partially overwritten) image as being valid if no other
validity checks are performed. This is why the rule exists that the code performing the pending update storage
should first invalidate the signature.

It is the responsibility of the main application storing the pending update to ensure that the complete image is valid
PRIOR to finalising the platform specific signature. To reiterate, the BootUp package, in combination with the
platform HAL support, only requires a simple “signature validity check” for robustness WHEN the code storing
the pending update ensures that if there is a valid signature in the alternative area then the rest of the bytes are
also valid (i.e. a complete valid image is in place).

Since the BootUp will only perform an update when the valid alternative image is different, there is no strict need to erase
the signature/image until the main application needs to provide a new update. However, doing so during its normal startup
will avoid BootUp having to spend CPU cycles validating and checking the alternative image prior to checking the signature
and deciding not to update.

Notes

1. To reiterate, the main application (not BootUp) is responsible for invalidating (erasing/removing) the alterna-
tive image, or at least the signature. This allows BootUp to be simpler since it only needs to be able to read
from the alternative image location.

2. The signature can either be embedded in the application (assuming the caveat of it being the last data written),
or it can be a totally separate distinct section maintained in conjunction with the update application image.
Such design decisions are left to the specific platform HAL support. The use of other validation mechanisms,
e.g. a CRC, will only be required if the medium that is used to store the alternative (pending) image can suffer
from data corruption, or transient read errors. Such a situation will be extremely unlikely for the vast majority
of implementations.

Supported Platform HALs and targets
BootUp is supported by the following platform HALs:

• NXP i.MX RT10XX Variant HAL

• SAMA5D3x-MB Platform HAL

• SAMA5D3 Xplained Platform HAL

• ST STM324x9I-EVAL

• ST STM32F7xx-EVAL

1895

BootUp overview

• STM32F746G-DISCO Platform HAL

• STM32H735-DISCO Platform HAL

• STM32L4R9-DISCO Platform HAL

• STM32L476-DISCO Platform HAL

• Note

This is not a complete list. Refer to your platform documentation to determine if it supports CYGPKG_BOOTUP.

1896

Part LXIX. Bundle image support

Table of Contents
211. Bundle overview .. 1899

Introduction .. 1899
Configuration ... 1899

212. Bundle format ... 1901
Introduction .. 1901
Internal Structure .. 1901

213. Bundle API ... 1904
API ... 1904

214. Host tool .. 1916
Introduction .. 1916

215. Bundle tests .. 1918
bundle1 ... 1918

1898

Chapter 211. Bundle overview
Introduction
The CYGPKG_BUNDLE package implements support for a simple, compact, multi-element, binary distribution format,
referred to as a “bundle”. The bundle format is primarily designed to be used for in-field system updates in conjunction with
the BootUp lightweight BootROM package.

The format can be easily parsed and processed by deeply embedded systems, and is used to encapsulate multiple discrete binary
data blobs and optional metadata. Bundles can therefore incorporate all the elements that may be required for a system update,
including application executables, FPGA bitfiles, DSP firmware, application data and so forth.

The bundle package implements an API to parse and extract data from a bundle and an associated host tool used to create
and manage bundle images.

The STM324X9i-Eval platform includes an example implementation of the BootUp bootROM package that uses the bundle
package format as the distribution format underpinning its system update mechanism.

A bundle is normally expected to be used as a matched collection of binaries, and is treated as a whole with regards to production
and in-field updates. It is NOT expected that in-field operations will ever split and re-combine elements of a deployment
package in the field. As such the format is read-only for eCos applications.

Although the bundle format is designed to be flexible and allow modification and extensions, it is vital that for a given target
platform that the host-based creation tool and runtime code share a common format and set of expected features. For example
the use of MD5 as a “hash” and zlib as a compressor.

Configuration
This section shows how to include the bundle support into an eCos configuration, and how to configure it once installed.

The bundle support is contained in a single eCos package CYGPKG_BUNDLE. However, it depends on the services of a
collection of other packages for complete functionality.

Incorporating the bundle support into your application is straightforward. The essential starting point is to incorporate the
bundle eCos package (CYGPKG_BUNDLE) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

CYGFUN_BUNDLE_COMPRESS

If the eCos zlib package CYGPKG_COMPRESS_ZLIB is configured then, when enabled, this option provides support
for decompressing items. If the CYGPKG_COMPRESS_ZLIB package is not available, or this option is disabled, then only
uncompressed items within a bundle can be read.

CYGIMP_BUNDLE_HASH_MD5

This option can be enabled to include support for the RFC 1321 MD5 Message-Digest Algorithm as a valid hash used
to verify data integrity.

CYGIMP_BUNDLE_HASH_SHA256

This option can be enabled to include support for the FIPS PUB 180-2 SHA-256 hash as a valid hash used to verify data
integrity.

CYGIMP_BUNDLE_HASH_CRC32

This option when enabled implements support for the standard IEEE 802.3 (Ethernet) CRC-32 as a valid hash used to
verify data integrity.

1899

Bundle overview

CYGNUM_BUNDLE_BUFSIZE

This option defines the size of the internal buffer used for decompressing data. Currently it makes use of a dynamic memory
allocation and so may need to be tuned appropriately for target systems with a small dynamic heap.

CYGBLD_BUNDLE_BUNDLE

This option allows the host-side bundle tool to be automatically built on suitably capable systems.

Note

This option is disabled by default, since normally only a Linux system with a standard zlib library
installation would automatically succeed. The package supplied host/Makefile provides an example of
cross-building (under Linux) the host tool for Windows.

CYGDBG_BUNDLE_DEBUG

If this option is enabled then it provides access to individually controlled CDL debug options for various sub-systems
or package features. This allows the detail and amount of debug information to be controlled. Normally such diagnostic
output would only need to be enabled for developers working on the internals of the bundle processing.

CYGTST_BUNDLE_BUILD_TESTS

This option enables the building of any bundle run-time verification tests included in the package.

1900

Chapter 212. Bundle format
Introduction
A “bundle” file has a custom format, designed to minimise the code overhead of supporting the bundle on the target platform.

Note

An advantage of a custom binary format over, for example, the use of a tar-file, is that the binary image held on
an SD card for update delivery would be IDENTICAL to the version installed in the target's SPI flash.

With the tar-file format there is an overhead associated with individual entries (e.g. 512-byte header, per-item
padding) that would mean for (the limited space) target SPI flash storage the processing code would need to
extract the individual items for efficient storage in the SPI flash. This process can be avoided by a simple binary
structure that is copied unchanged.

A host-based command-line tool is provided to create a correctly formatted bundle binary image. The binary image can then
be used in manufacturing and in-field update processes to distribute the main target application and all associated target data.

Internal Structure
A bundle is a contiguous binary image containing a set of uniquely tagged items. Individual items may be compressed (using
the standard zlib compression library). The bundle, and each item within a bundle, can optionally have “arbitrary” metadata
attached. An overall hash object is used as a verification of the data integrity of the complete bundle image, but individual
items also have the option of hashes covering their specific item data, and in the case of compressed items, a hash that can
be used to validate the decompressed data.

The following figure highlights the underlying bundle format. The <header> block provides the basic bundle identification and
description information. As previously discussed the bundle <arbitrary> block is optional and may not be present in all bundle
images. It is perfectly valid for a bundle to contain no items, though a valid bundle always contains the <item> terminator
0x00000000 marker. The bundle is completed with a <hash> object providing the verification code for the complete bundle
up to (but not including) the <hash> block.

Figure 212.1. <bundle> image

The optional <arbitrary> data that may be attached to the complete <bundle>, or to individual <item>s, is just a contiguous,
uncompressed (as far as the bundle processing code is concerned), block of metadata. This metadata is not interpreted by the
host-tool or bundle API code, but may be used by the target application as required. For example it could be used to hold
a set of “key[=value];” pairs to provide “Identification” data for human-readable or programmatic access as required. e.g. it
could encode tags like:

Version=1.02_B02;Required-HW-Version=rev1b;Development;

This arbitrary metadata could also be used as a mechanism for “Manifest” style information, which may be needed to support
an organization's release process requirements.

Figure 212.2. <arbitrary> chunk

1901

Bundle format

A <hash> object is used to hold a validation hash which can be used to ensure data integrity. Support is provided for avoiding the
overhead of data verification by the special CYG_BUNDLE_HASH_NONE signature. However, in most situations (especially
when the bundle format is being used as an in-field update delivery mechanism for example) some level of hash verification
should be considered.

Figure 212.3. <hash> chunk

Table 212.1. HASH signatures

HASH Signature Description

CYG_BUNDLE_HASH_NONE This is used when no data validation hash support is required. The <hash> object
does not contain a “hash result”.

CYG_BUNDLE_HASH_CRC32 A standard 4-byte IEEE 802.3 (Ethernet) CRC-32 value.

CYG_BUNDLE_HASH_MD5 A 16-byte RFC 1321 MD5 Message-Digest Algorithm value is held. Though the
use of MD5 is deprecated for cryptographic security purposes, its use as a <hash>
for “data validity” checks is perfectly acceptable.

CYG_BUNDLE_HASH_SHA256 A 32-byte FIPS PUB 180-2 SHA-256 hash value is held.

A <bundle> comprises a set of items, each of which has a simple fixed “enum”-style tag rather than using fixed
“ASCII filenames” to identify its specific purpose or use. This tag “namespace” is managed by the platform/customer
and is not interpreted by the tools or bundle package API. For example, the customer may have the following mappings:
0x0001==HostMCU, 0x0401==MotorDSP, 0x0812==LineDSP, 0x8003==MotorTable, etc. The tag is used as both the
name and filetype as required by the target application. This approach saves some binary space in the bundle format, plus the
run-time overhead of string parsing when dealing with bundle items.

Data items are held either uncompressed or compressed, and may contain an optional <arbitrary> metadata block.

For uncompressed items a single <hash> object is appended covering the validation of the complete <item> chunk.

Figure 212.4. Uncompressed <item>

For compressed items a seperate <hash> object is maintained provided the hash value for the original, uncompressed, source
data.

Figure 212.5. Compressed <item>

All <bundle> and <item> descriptor fields are held in the binary image in the target native endianess, and it is the responsibility
of the host tool used to create the bundle to ensure the correct target endianness is selected. This ensures that the deeply
embedded target does not need to swap bytes, as might be the case if a single fixed endianness was chosen for the bundle format.
The bundle header 32-bit signature is designed to allow the endianness of the bundle to be detected at run-time, providing a
simple validity check on the target that the bundle is valid.

1902

Bundle format

Note

The host tool creating the bundle may need to be explicitly told the target endianness, which may be different from
the build host native order. The provided example host bundle application provides the --little-endian
and --big-endian options which can be used to override the host default selection if needed.

As discussed, a bundle is identified by a fixed header 32-bit signature. This signature is used to identify the binary as containing
a bundle. At its simplest this signature is used to identify the platform/hardware that will accept the bundle (since the platform
based applications will only recognise a valid matching signature value). The system support allows for a MASK/VALUE pair
to be defined to allow (if required) a subset of the 32-bit signature to be used for “bundle is valid for this run-time” acceptance.

Notes

1. The “customer specific” field (currently 8-bits) can be used to provide a mechanism to restrict <bundle> images
to specific platforms (or revisions of a platform) as required.

2. The bundle host executable provided within your eCosPro installation is required to construct, and examine,
“bundle” binaries. This executable must be on your path, and will normally be copied into eCosPro host tools
bin directory. Under Windows this is typically C:\eCosPro\ecoshosttools\bin and on Linux hosts
/opt/ecospro/ecoshosttools/bin. The above bin directory will be on your path if you use the eCos
GUI configuration tool or the eCos CLI Shell environment.

3. The bundle <header> and item <header> descriptors contain a flags field that can be extended as required to
have any extension settings as needed to add extra information blocks into a bundle or item respectively. This
allows for future extensions to the format to be added without affecting software (e.g. the BootUp firmware
or the BootUp loaded main application) already in the field, since they will not interpret or be affected by any
extra data that may be provided.

1903

Chapter 213. Bundle API
The bundle API provides routines to extract data from a binary bundle image.

For eCos applications the approach used is that a suitable “access” strategy is chosen depending on where the bundle image
is held. The access initialisation returns an opaque bundle descriptor reference that is used by an application to find a specific
item. Similarly the opaque item descriptor reference is subsequently used to read the required data. The descriptor references
need to be released when no longer required to ensure any held resources are returned to the system.

API

1904

Bundle API

Name
cyg_bundle_access_direct — Initialise “direct” bundle context

Synopsis
#include <cyg/bundle/bundle_api.h>

cyg_bundle_context_t *cyg_bundle_access_direct(bundle_mem, blen);

Description

Initialises context for accessing contiguous directly-accessable (memory-mapped) based bundle image. This access strategy
would be used for RAM or memory-mapped flash/ROM based bundles.

Return value

Pointer to object or NULL if unable to create context.

1905

Bundle API

Name
cyg_bundle_access_file — Initialise “file” bundle context

Synopsis
#include <cyg/bundle/bundle_api.h>

cyg_bundle_context_t *cyg_bundle_access_file(fd);

Description

Initialises context for accessing a file based bundle image. This function requires the caller to have initialised and accessed the
relevant file system, and to pass a valid “readable” file descriptor of an opened bundle image file. This functionality is only
available if CYGPKG_IO_FILEIO is configured.

Return value

Pointer to object or NULL if unable to create context.

1906

Bundle API

Name
cyg_bundle_access_flash — Initialise “flash” bundle context

Synopsis
#include <cyg/bundle/bundle_api.h>

cyg_bundle_context_t *cyg_bundle_access_flash(bundle_addr, limit_addr);

Description

Initialises context for accessing non-memory-mapped flash based bundle images via the standard eCos flash API. This “flash”
access mechanism is primarily for indirectly-accessed flash memory (e.g. SPI devices), though nothing prohibits the use of
the flash API from accessing memory-mapped flash images. This functionality is only available if CYGPKG_IO_FLASH is
configured.

Note

If the target flash memory is accessible as a readable memory-mapped area then it is highly recommended to use
the “direct” access mechanism for performance and dynamic memory footprint reasons.

Return value

Pointer to object or NULL if unable to create context.

1907

Bundle API

Name
cyg_bundle_access_init — Common bundle context initialisation

Synopsis
#include <cyg/bundle/bundle_api.h>

cyg_bundle_context_t *cyg_bundle_access_init(am, aminitctx);

Description

The application developer should only need to use this function if providing an alternative access method. This may be needed
if none of the default access strategies provide the necessary support. e.g. image is held on a memory using a non-standard
bus connection.

Return value

Pointer to object or NULL if unable to create context.

1908

Bundle API

Name
cyg_bundle_access_release — Release bundle context

Synopsis
#include <cyg/bundle/bundle_api.h>

void cyg_bundle_access_release(bc);

Description

Releases a previously allocated bundle context. To avoid resource leaks the application should always release a previously
initialized access bundle context when it is no longer required.

1909

Bundle API

Name
cyg_bundle_verify — Verify bundle and initialise context references

Synopsis
#include <cyg/bundle/bundle_api.h>

int cyg_bundle_verify(bc, valid_signature_mask, valid_signature);

Description

The bc parameter should be a bundle descriptor reference as returned by a suitable cyg_bundle_access_…() call.

After obtaining a context for the chosen “access” strategy this function must be called to verify that the bundle is valid prior
to any subsequent data access API calls, since this function also initialises context data-structures required by the item access
API functions.

Currently the valid_signature_mask and valid_signature parameters are not used. The code may be extended in
the future to allow bundle validity to be selected based on the 8-bits of platform/application ID specific signature.

The following pseudo code is an example of expected, normal, use case of this function after selecting an access method:

#include <pkgconf/system.h>
#include <pkgconf/bundle.h>

#include <cyg/bundle/bundle.h>
#include <cyg/bundle/bundle_api.h>

void do_some_work(int fd)
{
 cyg_bundle_context_t *bc;

 bc = cyg_bundle_access_file(fd);
 if (bc) {
 if (CYG_BUNDLE_VALID == cyg_bundle_verify(bc,CYG_BUNDLE_SIG_MASK,CYG_BUNDLE_SIG_BASE)) {

 … perform item, or bundle arbitrary data, operations …

 } else {
 …report bundle validity error…
 }

 cyg_bundle_access_release(bc);
 } else {
 …report file access error…
 }

 return;
}

Return value

If the bundle is valid then the value CYG_BUNDLE_VALID is returned, and the bc context will be valid for subsequent item
API calls. If the bundle data is invalid, or cannot be read, then CYG_BUNDLE_INVALID is returned.

1910

Bundle API

Name
cyg_bundle_item_find — Provide handle onto bundle item

Synopsis
#include <cyg/bundle/bundle_api.h>

cyg_bundle_object_t *cyg_bundle_item_find(bc, entag);

Description

This function is used to generate an item access descriptor that can be subsequently used to extract data from a bundle.

The bc parameter should be a bundle descriptor reference as returned by a suitable cyg_bundle_access_…() call.

The entag parameter identifies the information to be accessed. The simplest form consists of passing a simple 16-bit (non-
zero) tag identifier, used when the application requires access to the item data.

The CYG_BUNDLE_ARBITRARY flag can be OR-ed with the tag value to request access to any “arbitrary” data that may
be associated with the requested tag item. When using CYG_BUNDLE_ARBITRARY then a 0x0000 tag value is acceptable,
and is used to reference the parent bundle “arbitrary” data.

Return value

Pointer to the required object descriptor, or NULL if unable to find the data described by the entag or if an invalid entag
value was used.

1911

Bundle API

Name
cyg_bundle_item_release — Release reference to specific bundle item

Synopsis
#include <cyg/bundle/bundle_api.h>

void cyg_bundle_item_release(ic);

Description

Release handle onto bundle item. This releases any state held regarding the referenced item. The application should always
release the item descriptor when it is no longer required to avoid resource leaks.

1912

Bundle API

Name
cyg_bundle_enumerate — Enumerate bundle contents

Synopsis
#include <cyg/bundle/bundle_api.h>

int cyg_bundle_enumerate(bc, cb, private);

Description

This function is passed a callback function cb that is called once for each item present in the referenced bc bundle. The
private parameter is an application specific context passed to the callback routine, and may reference any data required.

The callback function is passed the specific item identifying tag, along with the length of the item data. The arblength
parameter provides the length of any arbitrary data associated with the item, or 0x00000000 if the item has no arbitrary
data attached.

The callback function is passed the special tag value of 0x0000 to indicate “no more items”.

Return value

If at least 1 item exists in the bundle then CYG_BUNDLE_VALID is returned. If the passed bc parameter is invalid, or the
bundle contains no items then the function will return CYG_BUNDLE_INVALID.

1913

Bundle API

Name
cyg_bundle_info — Length of raw item

Synopsis
#include <cyg/bundle/bundle_api.h>

uint32_t cyg_bundle_info(ic);

Description

This function returns the length of the referenced object data. For uncompressed items (or “arbitrary” attachments) this is the
length of the data as held in the bundle image. For compressed items this is the length of the original, raw, data.

Return value

Length of item or 0 if cannot be ascertained.

1914

Bundle API

Name
cyg_bundle_read — Extract data from a bundle item

Synopsis
#include <cyg/bundle/bundle_api.h>

uint32_t cyg_bundle_read(ic, dst, offset, amount);

Description

This function copies a chunk of data from the reference bundle object to the supplied dst address. The offset parameter is
the byte-offset within the data object where reading should start, with the amount specifying the number of bytes to be read.
If the data is held in a compressed format then it will be automatically decompressed before being written to the supplied dst
address. In this case the offset parameter always refers to the offset within the decompressed data.

Return value

Number of bytes read, or 0 on error. The returned number of bytes read may be less than the specified amount if an attempt
is made to read more data than is available for the referenced object.

1915

Chapter 214. Host tool
Introduction
The host-based command-line bundle tool is used to create bundle format images, as well as add and delete items, list and
verify the contents, extract data, and other relevant commands.

Usage: bundle [option(s)] <bundlefilename> [cmds]

For a full list of the bundle tool's options and commands use the --help option:

$ bundle --help

The <bundlefilename> should always be supplied. The default behaviour if no operations are specified is to verify the
<bundlefilename> and list its contents.

Explicit parameter options are case-insensitive. e.g. When providing a hash value either MD5 or md5 are acceptable and
identical in their result.

The command-line bundle parameters are processed left to right, with parameters for operations following the command. The
following examples are identical in the result produced:

$ bundle testbundle_minimum_md5.bin create hash md5

$ bundle testbundle_minimum_md5.bin hash md5 create

Both examples would create a bundle file testbundle_minimum_md5.bin that incorporates an md5 hash.

The following example creates a bundle called egbundle.bin. The bundle has a signature of 0x1 and includes bundle
metadata from the manifest.txt. The entire bundle's contents will be covered by an sha256-based hash. The bundle would
contain a single compressed item identified by a tag of 0x2. The item's data comes from short.bin and its metadata from
itemarb.txt. The item's contents including the tag, metadata, and compressed data will be covered by an md5 hash. Note
that as the item includes compressed data an additional md5 hash for the uncompressed data would also be incorporated.

$ bundle egbundle.bin create hash sha256 signature 0x01 arbitrary manifest.txt add \
 0x0002:short.bin:compress:md5:itemarb.txt

The bundle tool's add command is quite flexible in its usage. It has a single parameter describing the item to be added,
with multiple fields separated by ':' characters. Only the tag and srcfile are required, with other optional fields specifying
whether the source file should be compressed, whether or not a hash should be added and finally what metadata, if any, is to
be included with the item.

add tag:srcfile[:[compress][:hash[:arbitrarymetadata]]]

The tag value of 0x0000 is reserved for the system, with all other tag values being available for application use. This gives a
maximum possible bundle item count of 65635 items, which is unlikely to be a limitation for embedded targets. Most bundles
will contain a small (<10) number of items, e.g. the main target application, FPGA initialisation data, device initialisation
tables, etc.

add command examples:

Uncompressed, no hash

add 0x0001:datafile

Compressed, no hash

add 0x2:dfile:compress

Compressed, MD5 hash

add 11:dfile:c:md5

Uncompressed, CRC-32 hash with arbitrary data

1916

Host tool

add 0xF:dfile::crc32:textfile

Compressed, no hash with arbitrary data

add 2:dfile:C::textfile

The --commands option allows for a fixed set of bundle operations to be held in a file, rather than being passed individually
as command line options to the tool. Individual operations (e.g. command name and its required arguments) should NOT be
split across lines, but multiple lines are allowed. Lines that start with '#' as the first non-whitespace character are treated as
comments, and ignored.

Note

No item metadata add commands are included since we can use “extract” to get data and then “delete” and
re-“add” with the required arbitrary file if required.

Warning

Filenames in commands cannot contain ':' since it is used as a field delimiter in the <item> description.

The bundle package includes the complete sources for the host tool. eCosPro releases include a pre-built version of the tool
for either Linux or Windows as appropriate. If needed the tool can be built from the supplied source, with the only non-
standard-library dependency being the “zlib” library. Linux systems will normally provide “zlib” as standard, though it is easily
built if required for other host systems.

1917

Chapter 215. Bundle tests
bundle1
The bundle1 test application provides a set of pre-built valid and invalid bundle images, and verifies the bundle run-time support
against these “known” images. It provides a method of verifying that any changes to the eCos bundle access sources remain
backwards compatible and have not had an adverse effect.

1918

Part LXX. RTT

Table of Contents
216. RTT overview ... 1921

Introduction .. 1921
217. Configuration .. 1922

Configuration Overview ... 1922
Quick Start .. 1922
Options .. 1922

218. eCos port .. 1924
Overview ... 1924

219. Test Programs ... 1925
Test Programs .. 1925

1920

Chapter 216. RTT overview
Introduction
The CYGPKG_RTT package provides a standard Segger RTT (Real Time Transfer) implementation to eCos applications.

Note

Host access to RTT channels is not limited to the Segger debug tools. Access is supported by 3rd-party tools,
including, for example, Ronetix PEEDI and OpenOCD. It is not a feature limited to use with J-Link/J-TracePro
H/W debug setups.

This package is covered by an “AS IS” license as distributed in the original RTT package:

Example 216.1. “AS IS” License

 SEGGER Microcontroller GmbH
 The Embedded Experts

 (c) 1995 - 2021 SEGGER Microcontroller GmbH
 www.segger.com Support: support@segger.com

 SEGGER RTT Real Time Transfer for embedded targets

 All rights reserved.

 SEGGER strongly recommends to not make any changes
 to or modify the source code of this software in order to stay
 compatible with the RTT protocol and J-Link.

 Redistribution and use in source and binary forms, with or
 without modification, are permitted provided that the following
 condition is met:

 - Redistributions of source code must retain the above copyright
 notice, this condition and the following disclaimer.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL SEGGER Microcontroller BE LIABLE FOR
 ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
 DAMAGE.

For definitive RTT documentation please refer to the main Segger J-Link RTT website. We do not duplicate that documentation
here.

1921

https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/

Chapter 217. Configuration
This chapter shows how to incorporate the RTT support into an eCos configuration, and how to configure it once included.

Configuration Overview
The RTT support is contained in a single eCos package CYGPKG_RTT. However, some functionality may be dependant on
other eCos features. e.g. the Cortex-M HAL.

Quick Start

Incorporating the RTT support into your application is straightforward. The essential starting point is to incorporate the RTT
eCos package (CYGPKG_RTT) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Depending on the RTT package configuration, and the other packages present in the configuration, further package specific
configuration may be required. For example, the CYGPKG_HAL_CORTEXM packages allows for the use of RTT for HAL
diagnostics, but the option needs to be explicitly selected.

Options

Various package specific configuration settings define how the RTT world is present.

CYGNUM_RTT_MAX_UP_BUFFERS

This option configures the number of UP buffers (Target->Host) available. This value should be at least 2 if also using
CYGPKG_SYSTEMVIEW for event tracing.

CYGNUM_RTT_BUFFER_SIZE_UP

This option configures the size (in bytes) of the buffer used for terminal output (UP channel 0) from the Target to the Host.

CYGNUM_RTT_MAX_DOWN_BUFFER

This option configures the number of DOWN buffers (Host->Target) available.

CYGNUM_RTT_BUFFER_SIZE_DOWN

This option configures the size (in bytes) of the buffer for terminal input from the Host to the Target. For exampe this
could be used for keyboard input. Normally the terminal DOWN buffer can be significantly smaller than the corresponding
terminal UP buffer since external tool interaction is going to be less than diagnostics generated.

CYGNUM_RTT_BUFFER_SIZE_PRINTF

This option configures the size of the internal buffer used for RTT bulk-send of printf characters via RTT.

CYG_RTT_MODE

This option sets the default, initial, operation mode for Target->Host buffers. Use NO_BLOCK_SKIP for non-blocking
TX where data not yet uploaded is overwritten. Use NO_BLOCK_TRIM for non-blocking TX where further data is dropped
if the upload buffer is full. Use BLOCK_IF_FIFO_FULL when the RTT calls should block until space is available in the
upload buffer, so no data is lost. The default setting can be over-ridden at run-time by an application if required, via the
SEGGER_RTT_ConfigUpBuffer() function.

1922

Configuration

CYGNUM_RTT_MEMCPY_BYTELOOP

If required this option replaces the standard memcpy() usage with a byte loop. The byte loop can have a lower overhead
than memcpy() if small amounts of data are being copied, and may be required for some architectures where memory
access restrictions are in place.

CYGNUM_RTT_MAX_INTR_PRI

The priority for the RTT lock.

CYGDAT_RTT_SECTION

This option defines a string with the name of the section to be used for the RTT data objects. If relevent for a target
configuration this will allow the explicit placing of the RTT structures into a specific memory area (e.g. SRAM). It is the
responsibility of the developer to choose a section name supported by the target architecture linker script. For example,
for most target architectures this can be a section named with the prefix “.sram”, e.g. “.sram.rtt”. If the option is
not enabled then the RTT data structures are linked to the normal data section for the target configuration.

If this option is enabled then the further option CYGDAT_RTT_BUFFER_SECTION is available, which can be set to allow
the explicit placement of RTT buffers. The CYGDAT_RTT_BUFFER_SECTION option defines the string with the name
of the section to be used for the RTT up and down “Terminal” buffers. If this option is not enabled, but CYGDAT_RT-
T_SECTION is, then the buffers will be placed in the named CYGDAT_RTT_SECTION.

CYGBLD_RTT_PRINTF

The SEGGER_RTT_printf() implementation is not normally required, since the standard eCos diag_printf() provides
similar functionality. This option can be enabled if required by the application.

1923

Chapter 218. eCos port
Overview
The goal for the CYGPKG_RTT package is to avoid, where possible, having to have any core RTT source file changes made
specifically for eCos. This is to ensure that re-imports of newer versions of the Segger sources involve minimal effort. The
files are as provided in the official JLinkRTT release package as imported, with the following exceptions:

1. Files have been moved, unmodified, to create a standard eCos package tree structure to integrate with the eCosPro build
environment

Only relevant files from the original project have been included in the eCos package.

2. The file include/Config/SEGGER_RTT_Conf.h is a wrapper that includes the original, unmodified, version of the
Segger supplied header. This is done to allow for configuration of the underlying RTT system without having to change
the original header source file.

3. Portions of the test source files found in the original Examples directory have been used, but wrapped as eCos test appli-
cations. This has been done to avoid inclusion of unnecessary run-time code.

The current RTT version provided by the eCos package is the SEGGER_RTT_V788m release contained within the
JLink_Linux_V788m_x86_64.tgz Linux package.

The following table highlights the files taken from the RTT package and their new location within the eCos CYGPKG_RTT
package:

Original eCos package

Config/SEGGER_RTT_Conf.h include/Config/base/SEGGER_RTT_Conf.h

RTT/SEGGER_RTT.h include/RTT/SEGGER_RTT.h

RTT/SEGGER_RTT.c src/SEGGER_RTT.c

RTT/SEGGER_RTT_ASM_ARMv7M.S src/SEGGER_RTT_ASM_ARMv7M.S

RTT/SEGGER_RTT_printf.c src/SEGGER_RTT_printf.c

LICENSE.md doc/LICENSE.md

README.md doc/README.md

The include structure clunkiness is a side-effect of Segger embedding relative pathnames in their original sources, which
we have maintined for the sake of forward maintenance.

1924

Chapter 219. Test Programs
Test Programs
Some RTT specific tests are built and can be used to verify correct operation of the support. The test cases built depend on
the configuration options.

1. rtt_printf

This test is built when CYGBLD_RTT_PRINTF is enabled. It provides an example of SEGGER_RTT_printf() use.

Note

CYGBLD_RTT_PRINTF is disabled by default since the standard eCos diag_printf() et-al provides
for vararg based diagnostics, and so including SEGGER_RTT_printf() will just be an increase in the
application footprint, since the eCos diagnostic routines are likely to be present from use by other packages.

1925

Part LXXI. eCos Support for
Segger SystemView tracing

Table of Contents
220. SystemView overview .. 1928

Introduction .. 1928
221. SystemView Recording ... 1929

H/W debugger .. 1929
J-Link/J-Trace H/W debugger ... 1929
svproxy .. 1929

I/O Communication ... 1930
Performance and Analysis .. 1930

Overflows .. 1931
222. Events .. 1933

SystemView Events ... 1933
Kernel Instrumentation ... 1933
Infra Trace ... 1934

223. Configuration .. 1936
CYGBLD_SYSTEMVIEW_ENABLED .. 1936
CYGOPT_SYSTEMVIEW_RECORDER_HAL .. 1937
CYGOPT_SYSTEMVIEW_RECORDER .. 1938

CYGBLD_SYSTEMVIEW_RECORDER_UART .. 1939

1927

Chapter 220. SystemView overview
Introduction
Current version based on SystemView_Src_V350a.zip downloaded from the Segger website.

Some of the files in this package are covered by the Segger AS-IS license.

The RTT sample code can also be found in the JLink package. e.g. JLink_Linux_V695a_x86_64/Samples/RTT/
SEGGER_RTT_V695a.tgz

The following table highlights the files taken from the original SystemView_Src release, and their new location within the
eCos CYGPKG_SYSTEMVIEW package:

Original eCos package

Config/SEGGER_SYSVIEW_Conf.h include/Config/SEGGER_SYSVIEW_Conf.h

Config/Global.h include/Global.h

SEGGER/SEGGER.h include/SEGGER.h

SEGGER/SEGGER_SYSVIEW_ConfDefaults.h include/SEGGER_SYSVIEW_ConfDefaults.h

SEGGER/SEGGER_SYSVIEW.h include/segger_SYSVIEW.h

SEGGER/SEGGER_SYSVIEW_Int.h src/3rd_party/SEGGER/SEGGER_SYSVIEW_Int.h

SEGGER/SEGGER_SYSVIEW.c src/3rd_party/SEGGER/SEGGER_SYSVIEW.c

Currently these Segger supplied sources are unmodified, which should allow for easier updating to newer releases from Segger
if/when required.

The SystemView host application has support for receiving telemetry from: J-Link/RTT H/W debug connection, serial line
(UART) or a TCP/IP network connection.

The Segger SystemView documentation (Segger document: UM08027) provides an overview of using the host application, as
well as technical details of the target implementation API, of which this eCos package is an example. If required, the developer
can embed suitable target side calls into their code as needed (e.g. SEGGER_SYSVIEW_MarkStart()) when relying on
the support from this package.

Note

In this documentation we refer to the eCos target side implementation as CYGPKG_SYSTEMVIEW (the target
package), and use SystemView to refer to the host side Segger application.

1928

Chapter 221. SystemView Recording
There are two forms of continuous recording supported. The use of a H/W debugger or a dedicated Recorder communication
channel.

H/W debugger
This mechanism records data from an active H/W debugger RTT session, where the H/W debugger directly accesses the target
memory to extract the SystemView events. There is no requirement for any (other than the basic core CYGPKG_SYSTEMVIEW
setup) run-time code on the target being sampled, and normally would provide for the lowest overhead, highest throughput,
mechanism for obtaining instrumentation data.

As with all tracing involving target side software (in this case the writing of the event information into the RTT memory
buffers), there will be a cost to the performance of the system not experienced when CYGPKG_SYSTEMVIEW is not enabled.

Support for receiving RTT recorded events into the host SystemView application can take two forms. Direct J-Link/J-Trace
support or a socket based TCP/IP proxy helper service.

J-Link/J-Trace H/W debugger
This direct H/W debugger access is selected by the SystemView application J-Link Recorder Configuration option.

svproxy

When using a H/W debugger interface that supports exposing RTT channels via TCP/IP network streams then a proxy helper
application can be used to obtain the H/W debugger accessed RTT buffer data for SystemView from the debugger, and present
a SystemView application IP Recorder channel to the viewer application.

The host/svproxy.c source implements a simple BSD socket interface Linux example implementation. It provides a
connection between the Segger SystemView application IP Recorder support and a non-Segger H/W debugger which presents
the data from RTT channel 1 "SystemView" as a network stream (for example Ronetix PEEDI, or OpenOCD).

The proxy provides a service on a specified port allowing the SystemView application to connect and wait for event data to be
supplied. The proxy does not need to execute on the same host as the SystemView application.

The target H/W debugger supplied stream should be referenced using its network address and port number as presented by the
H/W debugger session. NOTE: The examples below assume that the target H/W debug session has been started, and that the
eCos application executed until after the SEGGER_SYSVIEW_Conf() function has completed (to initialise the data structure
searched for by the H/W debugger). This can be achieved by setting a breakpoint on the function cyg_hal_invoke_con-
structors() as a holding place whilst the H/W debugger network server is started and the svproxy tool executed.

For example, assuming a PEEDI configured to expose the RTT channel 1 on port 19112 as follows:

rt1064evk_swd> rtt setup 0x80030000 0x10000
rt1064evk_swd> rtt start
++ info: control block found at 0x8003AD1C
rt1064evk_swd> rtt list
target -> host (max 2):
 0: 'Terminal', size 1024
 1: 'SysView', size 8192
host -> target (max 2):
 0: 'Terminal', size 16
 1: 'SysView', size 8
rt1064evk_swd> rtt server_start 19112 1

Using OpenOCD is very similar, where via the telnet server exposed via OpenOCD or using the GDB monitor command
support, a RTT server can be started supplied channel 1 on a network connection. The only difference being that the rtt set-
up requires the Segger identification string when searching for the memory based descriptor. e.g.

rtt setup 0x24000000 0x40000 “SEGGER RTT”

1929

SystemView Recording

rtt start
rtt server start 19112 1

I/O Communication
The SystemView application Recorder Configuration allows for UART (serial) or IP (TCP/IP socket) to be selected as sources
for obtaining instrumentation events from the target device.

Note

Currently this eCos package does not yet support the direct provision of the IP mechanism. See the proxy support
for an IP Recorder access to a H/W debugger connection.

These I/O channel based mechanisms, whilst not requiring a H/W debugger to be attached, do require further resources on the
target system. Support code is required to provide the necessary I/O transport. Two mutually exclusive solutions are provided.

CYGOPT_SYSTEMVIEW_RECORDER_HAL

If the target platform/variant supports the feature then this option can be configured. It is a very simple, low-level, block-
ing-write transport implementation that will not by itself generate Kernel instrumentation events. This makes it usable if
high-frequency Kernel instrumentation is enabled (e.g. detailed ISR, thread and synchronisation object activity).

This approach assumes a UART-style interface is used. The platform supplies an initialisation routine and a pair of routines
to read and write data to the host SystemView application. This means that this option is only available on targets where
the HAL provides the relevant support (e.g. mimxrt1xxx_evk, stm32f746g_disco, ...).

CYGOPT_SYSTEMVIEW_RECORDER

When configured this enables a higher-level Recorder approach, where a (normally low-priority) helper thread provides
the periodic upload of event data to the host SystemView application.

The UART configuration requires a dedicated eCos serial I/O (UART port or USB CDC-ACM) connection. There is
a greater run-time overhead to supporting this transport option over and above the J-Link H/W debugger approach or
CYGOPT_SYSTEMVIEW_RECORDER_HAL approach. At least one helper thread is created, and the eCos I/O API is
used. If Kernel instrumentation is enabled then the helper code will also be instrumented, which will greatly increase the
instrumentation load.

If Kernel instrumentation is not enabled then this solution is sufficient for tracing the standard eCos thread, ISR and
operation activity, along with any application generated SystemView events (e.g. markers).

Support for the Recorder feature can be manually enabled in the package configuration if required.

Performance and Analysis
When performing analysis of data captured by the SystemView application, where a run-time I/O mechanism is in use, the
user needs to be aware that the act of recording measurement events will affect the overall performance of the system. This
needs to be taken into account when checking reported performance.

Note

The following timing measurements were made against a MIMXRT1064-EVK platform (Cortex-M7 clocked at
432MHz) with a simple GPIO driven signal on J23#1 measured using a Saleae LogicPro16. The GPIO line was
set and cleared as the first and last operations respectively of the Cyg_RealTimeClock::isr which is the
ISR handler for the SysTick event.

For the following table the SysTick ISR was chosen as an example, since it is a high-frequency, common event that is likely
to be used when analysing scheduling and thread interactions. On most systems it is configured with a 10ms period.

In the following table, the acronyms used in the headers are:

1930

SystemView Recording

KIM

Build with Kernel Instrumentation to Memory buffer configured, with interrupt events instrumented. This form of instru-
mentation has a reasonably low overhead, but is limited to the size of buffer that can be set aside on the target.

KIS

Build with Kernel Instrumentation to SystemView events (RTT memory buffer), with interrupt events instrumented. This
approach allows for the possibility of continuous recording over long execution runs depending on the RTT access tools
used.

SVHR

SystemView events delivered to the host application via an eCos SystemView HAL Recorder (low-level direct I/O) with
the UART using a baud rate of 1000000 (1MHz).

SVRTT

SystemView events delivered to the host application via a J-Trace PRO H/W debugger directly accessing RTT memory
buffers, via a 4MHz SWD connection.

Table 221.1. Example Instrumentation “cost”

Cyg_RealTimeClock::isr() -O2 -O0 -O2

KIM

-O0

KIM

-O0

SVRTT

-O0

KIS

SVRTT

-O0

KIS

SVHR

Handler function execution time captured as
the sampled GPIO SET/CLR period

0.7us ~3us ~8us ~18us ~3us ~4us ~202us

SystemView v3.52a reported SysTick ex-
ecution time (includes ISR entry/exit code)

- - - - ~3.8us ~8.9us ~370us

As can be seen there is a huge difference in the time taken to execute that single, relatively simple, ISR function depending
on the compiler optimisation level, whether or not memory-buffer based Kernel-instrumentation is enabled, or whether the
kernel-instrumentation is directed to a SystemView Recorder (the HAL recorder in the example above) where there is the cost of
transmitting the bytes over a UART channel (where the configured baud rate of that channel will also affect the timing reported)
or is accessed via H/W debugger background memory accesses. The table highlights that any software based instrumentation
solution has a hit on the system throughput.

So tuning of the SystemView captures, and the speed of the underlying transport channel need to be considered when performing
anaylsis based on how the data was captured for SystemView.

Overflows
Since the normal target operating mode is to perform non-blocking writes of events into the RTT capture buffer, it is possible
(and expected in some cases) that the host read side (whether J-Link or communication channel based Recorder) will detect
an *** Overflow ***.

This can occur if the volume/rate of events being generated is overloading the available I/O channel, in which case the target
configuration can be updated to reduce the quantity of events (by disabling tracking of certain events), or by increasing the
buffering available to the target-side CYGPKG_SYSTEMVIEW support.

It is also possible for overflow to occur as a side-effect of the host SystemView application not actually recording (i.e.
“Start Recording” not being triggered). If the CYGPKG_SYSTEMVIEW configuration is using CYGFUN_SYSTEMVIEW_S-
TART_ON_INIT then the eCos code will be recording events from startup, which may be before the host SystemView appli-
cation can actually connect to the device when using a communication channel Recorder implemented by the eCos run-time;
since before SystemView can attach the eCos target has to initialise and provide the drivers/software-stack needed for the I/O
access. e.g. Presenting the UART Recorder via a target USB CDC-ACM device.

1931

SystemView Recording

When configured for CYGOPT_SYSTEMVIEW_RECORDER_HAL as the event communication channel, the option CYGOP-
T_SYSTEMVIEW_RECORDER_HAL_WAIT is made available. This option is normally disabled, since when enabled it will
cause the run-time to disable interrupts and wait in a busy poll waiting to receive the host SystemView application “connect and
start a recording” commands. This feature can be used to ensure that all captured events are made available to the SystemView
application; which may be critical when instrumenting/analysising application initialisation. The caveat is that the target will
appear to be “hung” until it receives a valid hello message from the SystemView application.

1932

Chapter 222. Events
When the CYGBLD_SYSTEMVIEW_ENABLED option is enabled the eCos run-time will always generate SystemView thread
events. This allows basic application flow of control between threads to be analysed.

SystemView Events
The CYGPKG_SYSTEMVIEW package also provides for generation of records for some other system events.

The following options are enabled by default, but can be disabled to reduce the instrumentation capture load if overflows are
encountered.

CYGIMP_SYSTEMVIEW_TRACE_ISR

Used to track ISR (Interrupt Service Routine) entry and exit.

CYGIMP_SYSTEMVIEW_TRACE_TIMERS

Used to track Kernel alarm function calls. The events wrap the alarm calls within the Kernel Cyg_Counter::tick()
function.

CYGIMP_SYSTEMVIEW_TRACE_HEAP

Used to track CYGPKG_MEMALLOC heap creation, allocation and free events. These events can be used to track dynamic
memory allocation footprints of an application.

The following image is a screenshot from the SystemView “System” event window highlighting the basic thread and ISR
information recorded. It shows a thread named “SimpleTest” being woken, executing for 2.704ms before sleeping and the idle
thread executing again.

Figure 222.1. Example from application with SEGGER_SYSVIEW_Mark() use

Aside: The above example also highlights the use of an application generated SystemView “marker”. The events #455 and
#456 show the application marked block with the name tloop took 26.822us for the 11th execution of the code covered
by the marker.

Kernel Instrumentation
If the eCos Kernel instrumentation (CYGPKG_KERNEL_INSTRUMENT) feature is enabled along with the CYG-
BLD_SYSTEMVIEW_KERNEL_INSTRUMENT option then CYGPKG_SYSTEMVIEW provides a wrapper header (CYG-
BLD_KERNEL_INSTRUMENT_WRAPPER_H) to replace the Kernel package implementation with code to generate Sys-
temView events.

Note

In this case the normal Kernel instrumentation options CYGPKG_KERNEL_INSTRUMENT_TIMESTAMPS and
CYGPKG_KERNEL_INSTRUMENT_BUFFER are ignored, since the CYGPKG_SYSTEMVIEW support is used to
record instrumentation. However the CYGPKG_KERNEL_INSTRUMENT_BUFFER option should be disabled.

1933

Events

The specific CYGPKG_KERNEL instrumentation types can then be manually enabled/disabled as required for the SystemView
analysis being performed. e.g. CYGPKG_KERNEL_SCHED instrumenting low-level scheduler events can be disabled to save
on bandwith; if tracking thread and synchronisation object events is sufficient for the analysis.

Similarly, most packages that make use of Kernel instrumentation do so as eCos configuration conditionals.

These low-level kernel instrumentation events can provide very low-level detail of the inner processing of eCos, and the
application use of kernel scheduling objects, but it can generate vast amounts of trace data.

The following image is a screenshot from the SystemView “System” event window which highlights the level of detail available
when Kernel instrumentation is enabled. Entry #60098 is the start of a mutex lock operation, with the lock call completing
after 215.839us as shown by entry #60102.

Figure 222.2. Example from application with Kernel instrumentation enabled

The above screenshot is from an execution of the CYGPKG_KERNEL test mutex3, where the created thread has not been
given a name, hence the empty thread name being displayed as <<NULL>>. This example was captured on the eCos
stm32f746g_disco target platform (executing at 168MHz and using the UART HAL Recorder with a baud rate of 2MHz).

Warning

When using eCos itself to support the CYGOPT_SYSTEMVIEW_RECORDER channel this means that the act of
providing support to SystemView will itself add more low-level events, further compounded if the USB CDC-
ACM or network stacks are used for the Recorder support, since they will have their own threads and kernel
synchronisation objects that will further increase the load. It is more likely that RTT overflows will occur with
such a configuration.

It is recommended to use, when available for the selected target, the lower-level CYGOP-
T_SYSTEMVIEW_RECORDER_HAL option when using Kernel instrumentation if the use of H/W RTT access
is not available.

Infra Trace
In extremis, the Infrastructure (CYGPKG_INFRA) package option CYGDBG_USE_TRACING can be enabled in conjunction
with selecting CYGDBG_INFRA_DEBUG_TRACE_ASSERT_SYSTEMVIEW as the trace destination output module.

This feature will provide a trace of the execution of suitably annotated functions. This will mostly be similar in nature to the
information that can be obtained from enabling (the lighter weight) Kernel instrumentation, but can be useful for developers
wishing to understand the location of the source for the code being executed.

1934

Events

Note

The use of this feature is not normally recommended, but can be useful for some investigation/analysis cases.

The recording of long strings via the SystemView Log mechanism will affect the performance of the application
under test, due to the formatting and transfer overhead of long strings.

If detailed eCos operation is required then normally Kernel instrumentation would be sufficient, and whilst it can
also generate significant amounts of trace data it will be less than the overhead of the printf-style output from
the Infrastructure Tracing support.

The following image highlights the style of Tracing output generated.

The Detail entries are prefixed with the <source-filename>[source-line#]<function-name> fields, which
are then followed by the Tracing specific message text.

Figure 222.3. Example from application using INFRA trace

The example above was captured on the eCos stm32f746g_disco target platform (executing at 168MHz and using the
UART HAL Recorder with a baud rate of 2MHz).

1935

Chapter 223. Configuration

CYGBLD_SYSTEMVIEW_ENABLED
These are the main developer configurable options for controlling CYGPKG_SYSTEMVIEW operation when CYG-
BLD_SYSTEMVIEW_ENABLED is enabled.

CYGBLD_SYSTEMVIEW_KERNEL_INSTRUMENT

This option allows the Kernel instrumentation to be replaced by SystemView event record generation, without having
to explicitly add SystemView support to the existing eCos sources. A wrapper function is used to replace the low-level
instrumentation call used by packages configured for Kernel instrumentation.

Note

The Kernel option CYGPKG_KERNEL_INSTRUMENT_BUFFER should be disabled when using CYGP-
KG_SYSTEMVIEW to capture Kernel instrumentation.

It is also recommended to disable the CYGDBG_KERNEL_INSTRUMENT_FLAGS feature, so that instru-
mentation events are generated unconditionally.

CYGFUN_SYSTEMVIEW_START_ON_INIT

If enabled then SystemView tracing is started automatically during application initialisation, so that application initialisa-
tion and startup events are captured. When this option is enabled and H/W debugging is being used, it is normally useful
to have your debug session stop at the entry to the SEGGER_SYSVIEW_Start() function so that a host SystemView
session can be synchronised to capture all events.

CYGFUN_SYSTEMVIEW_STOP_ON_EXIT

If enabled this option provides a CYG_SYSTRACE macro that is used by the cyg_test_exit() function to stop the
SystemView event tracing. Since the normal test application exit implementation does not disable interrupts, it avoids
continuing to record events when the main application thread has terminated.

CYGNUM_SYSTEMVIEW_RTT_BUFFER_SIZE

This specifies the size in bytes of the SystemView Target->Host buffer. NOTE: Depending on the target CPU frequency,
and the enabled trace events a large buffer may be required to avoid capture overflow. The performance of the SystemView
tracing to avoid overrun also depends on the other RTT loads on the system (e.g. diagnostics Terminal channel). Some
tuning may be required in both the events captured and the RTT buffer sizes to ensure all events are captured in real-time.

CYGIMP_SYSTEMVIEW_USE_STATIC_BUFFER

If enabled then a statically allocated buffer for the configured maximum packlet size is used. If disabled then a stack buffer
is used, with a lock used to serialise packet writing.

Warning

It is important to ensure that the stack allocations of all threads are sufficient for the extra load of the RTT
operations for recording events, and also for the transmission code if a “Recorder” is being used.

CYGNUM_SYSTEMVIEW_MAX_STRING_LEN

This option defines the maximum string length that can be passed to the SEGGER_SYSVIEW print and description rou-
tines. It also defines the maximum packet size, so will affect stack requirements if CYGIMP_SYSTEMVIEW_USE_S-
TATIC_BUFFER is not enabled.

1936

Configuration

CYGIMP_SYSTEMVIEW_TRACE_ISR

When enabled this option controls generation of SystemView trace instrumentation for ISR entry/exit events. This is
distinct from the extra information recorded when the Kernel instrumentation INTR events are being generated.

CYGIMP_SYSTEMVIEW_TRACE_TIMERS

When enabled this option controls generation of SystemView trace instrumentation for timer callback function events.
This is distinct from the extra information recorded when the Kernel intsrumentation CLOCK and ALARM events are being
generated.

CYGIMP_SYSTEMVIEW_TRACE_HEAP

When enabled this option controls generation of SystemView trace instrumentation for memory allocation events from
the CYGPKG_MEMALLOC package.

CYGDAT_SYSTEMVIEW_APP_NAME

This is the string used for the Name property recorded for a SystemView trace. It can be used to identify specific applica-
tions when working with multiple “SystemView Data” captures.

CYGDAT_SYSTEMVIEW_CORE_NAME

This is the string used for the Core identificaion property recorded for a SystemView trace. It can identify the hardware
architecture used for a capture. Normally this option will have a default value set by the platform architecture support.

CYGDAT_SYSTEMVIEW_DEVICE_NAME

This is the string used for the Device identificaion property recorded for a SystemView trace. It can identify the hardware
device used for a capture. If this option is disabled then the HAL_PLATFORM_BOARD manifest is used.

CYGOPT_SYSTEMVIEW_RECORDER_HAL
The following options are specific to configurations where the simple, platform supplied, I/O channel support is used for direct
communication with the SystemView application UART Recorder support. The eCos HAL Recorder implementation allows for
Kernel instrumentation (and Infra tracing) to be generated without the Recorder itself increasing the instrumentation load.

CYGNUM_SYSTEMVIEW_RECORDER_HAL_UART_BAUD

This option defines the communication rate for the platform supplied low-level communication channel. The value con-
figured here should match the value set for the host SystemView application Target->Recorder Configura-
tion->UART selection.

CYGNUM_SYSTEMVIEW_RECORDER_HAL_TXBUF

This option defines the size of the temporary holding buffer used when transmitting data from the RTT buffer to the remote
host SystemView application. This option is a compromise between the data footprint and the amount of data written by
SystemView Record events.

This holding buffer can be smaller than the SystemView RTT buffer, and never needs to be larger. The buffer minimises
the number of SEGGER_RTT_ReadUpBufferNoLock() calls and provides for a tighter TX loop transmitting bytes
to the host SystemView application, which may be important since for the HAL Recorder world the performance/latency
of the event transmission will affect the application performance and the timing of the system.

Also, due to the ordering of the initialisation code it is possible for a number of Kernel instrumentation events to be
generated (and recorded in the SystemView RTT buffer) prior to the HAL communication channel being initialised and
pending RTT data forwarded to the host SystemView application.

CYGOPT_SYSTEMVIEW_RECORDER_HAL_WAIT

When enabled this option will block the system in the HAL Recorder callback until an active SystemView connection is
started. This can be used to ensure no event overflow occurs, allowing for a complete application startup to be instrumented.

1937

Configuration

This option should only be enabled when explicitly required by the developer, since the target will be unresponsive until
a SystemView connection is established.

CYGOPT_SYSTEMVIEW_RECORDER
As an alternative to the H/W debugger J-Link RTT direct-memory-access method of obtaining continuous events, the remote
SystemView application can utilise a network connection or a UART connection to communicate with a target application
supplied continuous recorder instance. This option, when enabled, provides the run-time support for such recorders. This uses
a helper thread to periodically poll the SystemView buffer and forward data using the appropriate eCos I/O world.

Note

Unlike the alternative CYGOPT_SYSTEMVIEW_RECORDER_HAL approach, this Recorder does not rely on tar-
get platform specific support, but purely on normal eCos support. However, since the standard eCos thread and
device driver interfaces are used, it means that if Kernel instrumentation is enabled then the Recorder helper
threads and drivers will record events as well as the application threads/drivers being analysed.

This means that this helper thread Recorder approach is not recommended for Kernel instrumented configuration.

The following options are common to the Recorder support, irrespective of the configured transport options.

CYGNUM_SYSTEMVIEW_RECORDER_PRI

The Recorder thread priority is normally low to minimise the instrusiveness of the SystemView support (defaults to 1
higher than “idle”). The priority can be raised if overflows are detected due to the thread not being scheduled often enough,
though the first approach (if possible) may just be to increase the SystemView buffer size (CYGNUM_SYSTEMVIEW_RT-
T_BUFFER_SIZE).

Note

It should be noted that since the recorder is a normal eCos thread, the operation of the recorder thread will
cause SystemView thread events to be generated, and other events depending on the configuration options
selected.

CYGNUM_SYSTEMVIEW_RECORDER_TX_IDLE

This option specifies the delay in milliseconds between checks for pending data from the remote SystemView application
when the TX side is idle. When TX data is available the channel is also checked for pending RX.

CYGNUM_SYSTEMVIEW_RECORDER_TX_POLL

This option specifies the number of milliseconds the Recorder thread will sleep between polled checks for pending data
for the remote SystemView application. The actual delay depends on the period of the scheduler tick, which is defined
by the target configuration, but is normally ~10ms. So the delay implemented by this option will be rounded to the next
higher scheduler tick boundary.

This setting in conjunction with the Recorder thread priority, the idle delay, the size of the RTT buffer and the corre-
sponding TX threshold, can be tuned to avoid loss of instrumentation (RTT overflow) and the timeliness of TX to the
SystemView application when matching the bandwidth of the Recorder channel with the frequency of SystemView events
being recorded.

CYGNUM_SYSTEMVIEW_RECORDER_TX_WATERMARK

This option sets the threshold for the SystemView RTT buffer fill used to trigger a transmission to the application over
the communication channel. This option can be tuned to affect the frequency of the Recorder write operations used to
flush the RTT event buffer.

As well as the common Recorder options above, the configured transport channels may provide further options for the helper
thread based Recorder configuration.

1938

Configuration

CYGBLD_SYSTEMVIEW_RECORDER_UART

This option enables the UART based continuous recording support to be available to the CYGOPT_SYSTEMVIEW_RECORDER
world.

Note

This serial support is distinct from, and mutually exclusive to, the separate direct-UART access support provided
when using the CYGOPT_SYSTEMVIEW_RECORDER_HAL feature.

This presents a serial I/O connection that can be accessed by the remote SystemView application to obtain event records. If
the relevant packages are configured this can be a U(S)ART connection or a CDC-ACM (USB) connection. The SystemView
event delivery is via the threaded CYGOPT_SYSTEMVIEW_RECORDER support.

CYGDAT_SYSTEMVIEW_RECORDER_UART_DEVICE

This option specifies the name of the serial peripheral device to use for the SystemView UART Recorder channel. This
needs to be configured appropriately for the target, to an available device that will not be used by the normal application
code. The serial channel is dedicated to SystemView event transport.

CYGNUM_SYSTEMVIEW_RECORDER_UART_BAUD

This option specifies the communication rate to be used for the Recorder serial channel. It should match the setting con-
figured for the host SystemView application UART Recorder.

1939

Part LXXII. RedBoot User's Guide

Table of Contents
224. Getting Started with RedBoot .. 1942

More information about RedBoot on the web .. 1942
Installing RedBoot .. 1942
User Interface ... 1943
RedBoot Editing Commands ... 1943
RedBoot Command History .. 1944
RedBoot Startup Mode .. 1944
RedBoot Resource Usage ... 1945

Flash Resources .. 1945
RAM Resources .. 1946

Configuring the RedBoot Environment ... 1946
Target Network Configuration ... 1946
Host Network Configuration ... 1947
Verification .. 1949

225. RedBoot Commands and Examples ... 1950
Introduction .. 1950
Common Commands ... 1951
Flash Image System (FIS) .. 1975
Filesystem Interface ... 1988
Persistent State Flash-based Configuration and Control .. 2002
Persistent State in a NAND-based environment .. 2005

Manipulating persistent state stored on NAND ... 2005
Executing Programs from RedBoot .. 2005
NAND configuration commands .. 2008
NAND manipulation commands .. 2015

226. Rebuilding RedBoot ... 2024
Introduction .. 2024
Variables ... 2024
Building RedBoot using ecosconfig .. 2025
Rebuilding RedBoot from the eCos Configuration Tool ... 2026

227. Updating RedBoot .. 2028
Introduction .. 2028
Load and start a RedBoot RAM instance .. 2028
Update the primary RedBoot flash image .. 2029
Reboot; run the new RedBoot image .. 2030

228. Initial Installation ... 2031
Hardware Installation ... 2031

What to Expect ... 2031

1941

Chapter 224. Getting Started with
RedBoot
RedBoot™ is an acronym for "Red Hat Embedded Debug and Bootstrap", and is the standard embedded system debug/bootstrap
environment from eCosCentric, replacing the previous generation of debug firmware: CygMon and GDB stubs. It provides
a complete bootstrap environment for a range of embedded operating systems, such as embedded Linux® and eCos®, and
includes facilities such as network downloading and debugging. It also provides a simple flash file system for boot images.

Note

Red Hat no longer maintain nor support RedBoot and have contributed both RedBoot and eCos to the stewardship
of the Free Software Foundation (FSF). eCosCentric are now the sole commercial maintainers of both eCos and
RedBoot.

RedBoot provides a wide set of tools for downloading and executing programs on embedded target systems, as well as tools
for manipulating the target system's environment. It can be used for both product development (debug support) and for end
product deployment (flash and network booting).

Here are some highlights of RedBoot‚s capabilities:

• Boot scripting support

• Simple command line interface for RedBoot configuration and management, accessible via serial (terminal) or Ethernet
(telnet)

• Integrated GDB stubs for connection to a host-based debugger via serial or ethernet. (Ethernet connectivity is limited to
local network only)

• Attribute Configuration - user control of aspects such as system time and date (if applicable), default Flash image to boot
from, default failsafe image, static IP address, etc.

• Configurable and extensible, specifically adapted to the target environment

• Network bootstrap support including setup and download, via BOOTP, DHCP and TFTP

• X/Y/Z Modem support for image download via serial

• Power On Self Test

Although RedBoot is derived from eCos, it may be used as a generalized system debug and bootstrap control software for any
embedded system and any operating system. For example, with appropriate additions, RedBoot could replace the commonly
used BIOS of PC (and certain other) architectures. Red Hat is currently installing RedBoot on all embedded platforms as
a standard practice, and RedBoot is now generally included as part of all eCosCentric eCos ports. Users who specifically
wish to use RedBoot with the eCos operating system should refer to the Getting Started with eCos document, which provides
information about the portability and extendability of RedBoot in an eCos environment.

More information about RedBoot on the web
The eCosCentric RedBoot Documentation contains updated documentation for all public and commercial versions of RedBoot,
including new features and capabilities.

The RedBoot Net Distribution web site contains downloadable sources and documentation for all publically released targets.

Installing RedBoot

1942

http://www.ecoscentric.com/
http://www.ecoscentric.com/ecospro/doc/html/ref/redboot-part.html
http://ecos.sourceware.org/redboot/

Getting Started with RedBoot

To install the RedBoot package on target hardware, follow the procedures detailed in the documentation accompanying the
release. This is normally found in the [eCos and eCosPro Reference Manual] or may also be found in the respective target
hardware documentation in eCosCentric's eCos and eCosPro Reference Manual for publically available target hardware.

Although there are other possible configurations, RedBoot is usually run from the target platform‚s flash boot sector or boot
ROM, and is designed to run when your system is initially powered on. The method used to install the RedBoot image into
non-volatile storage varies from platform to platform. In general, it requires that the image be programmed into flash in situ
or programmed into the flash or ROM using a device programmer. In some cases this will be done at manufacturing time; the
platform being delivered with RedBoot already in place. In other cases, you will have to program RedBoot into the appropriate
device(s) yourself. Installing to flash in situ may require special cabling or interface devices and software provided by the
board manufacturer. The details of this installation process for a given platform will be found in Installation and Testing. Once
installed, user- specific configuration options may be applied, using the fconfig command, providing that persistent data storage
in flash is present in the relevant RedBoot version. See the section called “Configuring the RedBoot Environment” for details.

User Interface
RedBoot provides a command line user interface (CLI). At the minimum, this interface is normally available on a serial port
on the platform. If more than one serial interface is available, RedBoot is normally configured to try to use any one of the
ports for the CLI. Once command input has been received on one port, that port is used exclusively until the board is reset or
the channel is manually changed by the user. If the platform has networking capabilities, the RedBoot CLI is also accessible
using the telnet access protocol. By default, RedBoot runs telnet on port TCP/9000, but this is configurable and/or
settable by the user.

RedBoot also contains a set of GDB “stubs”, consisting of code which supports the GDB remote protocol. GDB stub mode is
automatically invoked when the '$' character appears anywhere on a command line unless escaped using the '\' character. The
platform will remain in GDB stub mode until explicitly disconnected (via the GDB protocol). The GDB stub mode is available
regardless of the connection method; either serial or network. Note that if a GDB connection is made via the network, then
special care must be taken to preserve that connection when running user code. eCos contains special network sharing code to
allow for this situation, and can be used as a model if this methodology is required in other OS environments.

RedBoot Editing Commands
RedBoot uses the following line editing commands.

• Delete (0x7F) or Backspace (0x08) erases the character to the left of the cursor.

• ^A or HOME moves the cursor (insertion point) to the beginning of the line.

• ^K erases all characters on the line from the cursor to the end.

• ^E or END positions the cursor to the end of the line.

• ^D or DELETE erases the character under the cursor.

• ^F or RIGHT-ARROW moves the cursor one character to the right.

• ^B or LEFT-ARROW moves the cursor one character to the left.

• ^P or UP-ARROW replaces the current line by a previous line from the history buffer. A small number of lines can be kept
as history. Using ^P (and ^N), the current line can be replaced by any one of the previously typed lines.

• ^N or DOWN-ARROW replaces the current line by the next line from the history buffer.

Note

In this description, ^A means the character formed by typing the letter “A” while holding down the control key.

In the case of the fconfig command, additional editing commands are possible. As data are entered for this command, the
current/previous value will be displayed and the cursor placed at the end of that data. The user may use the editing keys (above)

1943

http://www.ecoscentric.com/ecospro/doc/html/ref/index.html

Getting Started with RedBoot

to move around in the data to modify it as appropriate. Additionally, when certain characters are entered at the end of the
current value, i.e. entered separately, certain behavior is elicited.

• ^ (caret) switch to editing the previous item in the fconfig list. If fconfig edits item A, followed by item B, pressing ^ when
changing item B, allows you to change item A. This is similar to the up arrow. Note: ^P and ^N do not have the same
meaning while editing fconfig data and should not be used.

• . (period) stop editing any further items. This does not change the current item.

• Return leaves the value for this item unchanged. Currently it is not possible to step through the value for the start-up script;
it must always be retyped.

RedBoot Command History
RedBoot provides support for listing and repeating previously entered commands. A list of previously entered commands may
be obtained by typing history at the command line:

RedBoot> history
 0 fis list
 1 fconfig -l
 2 load -m ymodem
 3 history

The following history expansions may be used to execute commands in the history list:

• !! repeats last command.

• !n repeats command n.

• !string repeats most recent command starting with string.

RedBoot Startup Mode
RedBoot can normally be configured to run in a number of startup modes (or just "modes" for short), determining its location
of residence and execution:

ROM mode
ROMINT mode
EEPROM mode

In this mode, RedBoot both resides and executes from ROM memory (ROMINT:internal flash, ROM:external flash,
EPROM: EEPROM memory). This mode is used when there are limited RAM resources. The flash commands cannot
update the region of flash where the RedBoot image resides. In order to update the RedBoot image in flash, it is necessary
to run a RAM mode instance of RedBoot. The exact location is defined by the port and provided in the target hardware
documentation section of the eCos and eCosPro Reference Manual.

ROMRAM mode

In this mode, RedBoot resides in ROM memory (flash or EPROM), but is copied to RAM memory before it starts executing.
The RAM footprint is larger than for ROM mode, but there are two advantages to make up for this: it normally runs faster
(relevant only on slower boards) and it is able to update the flash region where the image resides.The exact location is
defined by the port and provided in the target hardware documentation section of the eCos and eCosPro Reference Manual.

RAM mode
SRAM mode
JTAG mode

In this mode, RedBoot both resides and executes from RAM or SRAM memory. The memory may be on-chip RAM
or SRAM or external RAM or SRAM. The exact location is defined by the port and provided in the target hardware

1944

http://www.ecoscentric.com/ecospro/doc/html/ref/index.html
http://www.ecoscentric.com/ecospro/doc/html/ref/index.html

Getting Started with RedBoot

documentation section of the eCos and eCosPro Reference Manual. This is used for updating a primary ROM mode image
in situ and sometimes as part of the RedBoot installation on the board when there's already an existing (non-RedBoot)
boot monitor available.

You can only use ROM, ROMRAM and EEPROM mode images for booting a board - a RAM mode image cannot run
unless loaded by another ROM monitor. There is no need for this startup mode if a RedBoot ROMRAM mode image is
the primary boot monitor. When this startup mode is programmed into flash (as a convenience as it's fast to load from
flash) it will generally be named as "RedBoot[RAM]" in the FIS directory.

The chosen mode has influence on flash and RAM resource usage (see the section called “RedBoot Resource Usage”) and the
procedure of an in situ update of RedBoot in flash (see Chapter 227, Updating RedBoot).

The startup mode is controlled by the option CYG_HAL_STARTUP which resides in the platform HAL. Some platforms
provide only some of the RAM, ROM, ROMRAM, etc. modes, others provide additional modes.

To see mode of a currently executing RedBoot, issue the version command, which prints the RedBoot banner, including the
startup mode (here ROM):

RedBoot>version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

RedBoot Resource Usage
RedBoot takes up both flash and RAM resources depending on its startup mode and number of enabled features. There are
also other resources used by RedBoot, such as timers. Platform-specific resources used by RedBoot are listed in the platform
specific parts of this manual.

Both flash and RAM resources used by RedBoot depend to some degree on the features enabled in the RedBoot configuration.
It is possible to reduce in particular the RAM resources used by RedBoot by removing features that are not needed. Flash
resources can also be reduced, but due to the granularity of the flash (the block sizes), reductions in feature size do not always
result in flash resource savings.

Flash Resources
On many platforms, a ROM mode RedBoot image resides in the first flash sectors, working as the board's primary boot monitor.
On these platforms, it is also normal to reserve a similar amount of flash for a secondary RAM mode image, which is used
when updating the primary ROM mode image.

On other platforms, a ROMRAM mode RedBoot image is used as the primary boot monitor. On these platforms there is not
normally reserved space for a RAM mode RedBoot image, since the ROMRAM mode RedBoot is capable of updating the
primary boot monitor image.

Most platforms also contain a FIS directory (keeping track of available flash space) and a RedBoot config block (containing
RedBoot board configuration data).

To see the amount of reserved flash memory, run the fis list command:

RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot[RAM] 0x00020000 0x06020000 0x00020000 0x060213C0
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0x0000F000 0x00000000

To save flash resources, use a ROMRAM mode RedBoot, or if using a ROM mode RedBoot, avoid reserving space for the
RedBoot[RAM] image (this is done by changing the RedBoot configuration) and download the RAM mode RedBoot whenever
it is needed. If the RedBoot image takes up a fraction of an extra flash block, it may be possible to reduce the image size enough
to free this block by removing some features.

1945

http://www.ecoscentric.com/ecospro/doc/html/ref/index.html

Getting Started with RedBoot

RAM Resources
RedBoot reserves RAM space for its run-time data, and such things as CPU exception/interrupt tables. It normally does so at
the bottom of the memory map. It may also reserve space at the top of the memory map for configurable RedBoot features
such as the net stack and zlib decompression support.

To see the actual amount of reserved space, issue the version command, which prints the RedBoot banner, including the RAM
usage:

RedBoot> version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:31:57, May 17 2002

Platform: FooBar (SH 7615)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x06000000-0x06080000, 0x06012498-0x06061000 available
FLASH: 0x00000000 - 0x00080000, 8 blocks of 0x00010000 bytes each.

To simplify operations that temporarily need data in free memory, the limits of free RAM are also available as aliases (aligned
to the nearest kilo-byte limit). These are named FREEMEMLO and FREEMEMHI, and can be used in commands like any
user defined alias:

RedBoot> load -r -b %{FREEMEMLO} file
Raw file loaded 0x06012800-0x06013e53, assumed entry at 0x06012800

RedBoot> x -b %{FREEMEMHI}
06061000: 86 F5 EB D8 3D 11 51 F2 96 F4 B2 DC 76 76 8F 77 |….=.Q…..vv.w|
06061010: E6 55 DD DB F3 75 5D 15 E0 F3 FC D9 C8 73 1D DA |.U…u]…...s..|

To reduce RedBoot's RAM resource usage, use a ROM mode RedBoot. The RedBoot features that use most RAM are the net
stack, the flash support and the gunzip support. These, and other features, can be disabled to reduce the RAM footprint, but
obviously at the cost of lost functionality.

Configuring the RedBoot Environment
Once installed, RedBoot will operate fairly generically. However, there are some features that can be configured for a particular
installation. These depend primarily on whether flash and/or networking support are available. The remainder of this discussion
assumes that support for both of these options is included in RedBoot.

Target Network Configuration
Each node in a networked system needs to have a unique address. Since the network support in RedBoot is based on TCP/
IP, this address is an IP (Internet Protocol) address. There are two ways for a system to “know” its IP address. First, it can
be stored locally on the platform. This is known as having a static IP address. Second, the system can use the network itself
to discover its IP address. This is known as a dynamic IP address. RedBoot supports this dynamic IP address mode by use of
either the BOOTP protocol, or a subset of the DHCP protocol. In this case, RedBoot will ask the network (actually some
generic server on the network) for the IP address to use.

Note

Currently, RedBoot only supports BOOTP and a very simple form of DHCP which is limited to additional data
items, not lease-based address allocation. If you wish to use this subset of DHCP, then ensure you the configura-
tion option CYGSEM_REDBOOT_NETWORKING_DHCP is enabled in RedBoot's configuration.

If you are intending to use RedBoot for network debugging, and are also intending to use BOOTP or DHCP in the loaded
application, then you should not also use BOOTP/DHCP with RedBoot. Otherwise the DHCP server is likely to give both
RedBoot's and the application's network stacks the same IP address which will result in problems.

The choice of IP address type is made via the fconfig command. Once a selection is made, it will be stored in flash memory.
RedBoot only queries the flash configuration information at reset, so any changes will require restarting the platform.

1946

Getting Started with RedBoot

Here is an example of the RedBoot fconfig command, showing network addressing:

RedBoot> fconfig -l
Run script at boot: false
Use BOOTP for network configuration: false
Local IP address: 192.168.1.29
Default server IP address: 192.168.1.101
DNS server IP address: 192.168.1.1
GDB connection port: 9000
Network debug at boot time: false

In this case, the board has been configured with a static IP address listed as the Local IP address. The default server IP address
specifies which network node to communicate with for TFTP service. This address can be overridden directly in the TFTP
commands.

The DNS server IP address option controls where RedBoot should make DNS lookups. A setting of 0.0.0.0 will
disable DNS lookups. The DNS server IP address can also be set at runtime.

If the selection for Use BOOTP for network configuration had been true, these IP addresses would be determined
at boot time, via the BOOTP protocol. The final number which needs to be configured, regardless of IP address selection mode,
is the GDB connection port. RedBoot allows for incoming commands on either the available serial ports or via the
network. This port number is the TCP port that RedBoot will use to accept incoming connections.

These connections can be used for GDB sessions, but they can also be used for generic RedBoot commands. In particular, it
is possible to communicate with RedBoot via the telnet protocol. For example, on Linux®:

% telnet redboot_board 9000
Connected to redboot_board
Escape character is ’^]‚.
RedBoot>

Host Network Configuration
RedBoot may require three different classes of service from a network host:

• dynamic IP address allocation, using BOOTP

• TFTP service for file downloading

• DNS server for hostname lookups

Depending on the host system, these services may or may not be available or enabled by default.

In particular, on most Linux distributions, none of these services will be configured out of the box. As the method for configuring
and enabling these services varies widely between Linux distributions and even between versions of the same distribution, the
reader is advised to refer to the system documentation of your chosen Linux distribution and version for more details.

The Windows Desktop operating system does not provide these services. Instead these services are included with Windows
Server. Please refer to your system administrator, or Microsoft TechNet, for details on how to configure these services on
your Windows Server. Alternatively, if you do not have access to a Windows Server or Linux or do not wish to use either,
you can use freely available MaraDNS, currently available from http://www.maradns.org/, to provide a DNS server and the
Open TFTP Server, currently available from https://sourceforge.net/projects/tftp-server/, to provide a TFTP service on your
Windows Desktop.

BOOTP/DHCP server settings for most Linux distributions

First, ensure that you have the proper package, dhcp (not dhcpd) installed. The DHCP server provides Dynamic Host Con-
figuration, that is, IP address and other data to hosts on a network. It does this in different ways. Next, there can be a fixed
relationship between a certain node and the data, based on that node‚s unique Ethernet Station Address (ESA, sometimes called
a MAC address). The other possibility is simply to assign addresses that are free. The sample DHCP configuration file shown
does both. Refer to the DHCP documentation for more details.

1947

https://technet.microsoft.com/
http://www.maradns.org/
http://www.maradns.org/
https://sourceforge.net/projects/tftp-server/
https://sourceforge.net/projects/tftp-server/

Getting Started with RedBoot

Example 224.1. Sample DHCP configuration file

--------------- /etc/dhcpd.conf -----------------------------
default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.1.255;
option domain-name-servers 198.41.0.4, 128.9.0.107;
option domain-name “bogus.com”;
allow bootp;
shared-network BOGUS {
 subnet 192.168.1.0 netmask 255.255.255.0
 {
 option routers 192.168.1.101;
 range 192.168.1.1 192.168.1.254;
 }
}
host mbx {
 hardware ethernet 08:00:3E:28:79:B8;
 fixed-address 192.168.1.20;
 filename “/tftpboot/192.168.1.21/zImage”;
 default-lease-time -1;
 server-name “srvr.bugus.com”;
 server-identifier 192.168.1.101;
 option host-name “mbx”;
}

Once the DHCP package has been installed and the configuration file set up, type:

service dhcpd start

DNS server for most Linux distributions

First, ensure that you have the proper package installed. Then change the configuration (in /etc/named.conf) so that
the forwarders point to the primary nameservers for your machine, normally using the nameservers listed in /etc/
resolv.conf.

Example 224.2. Sample /etc/named.conf for most Linux distributions

--------------- /etc/named.conf -----------------------------
// generated by named-bootconf.pl

options {
 directory "/var/named";
 /*
 * If there is a firewall between you and nameservers you want
 * to talk to, you might need to uncomment the query-source
 * directive below. Previous versions of BIND always asked
 * questions using port 53, but BIND 8.1 uses an unprivileged
 * port by default.
 */
 // query-source address * port 53;

 forward first;
 forwarders {
 212.242.40.3;
 212.242.40.51;
 };
};

//
// a caching only nameserver config
//
// Uncomment the following for Red Hat Linux 7.2 or above:
// controls {
// inet 127.0.0.1 allow { localhost; } keys { rndckey; };
// };
// include "/etc/rndc.key";
zone "." IN {

1948

Getting Started with RedBoot

 type hint;
 file "named.ca";
};

zone "localhost" IN {
 type master;
 file "localhost.zone";
 allow-update { none; };
};

zone "0.0.127.in-addr.arpa" IN {
 type master;
 file "named.local";
 allow-update { none; };
};

Make sure the server is started. Older distributions may use the command:

service named start

and is started on the next reboot with the command

chkconfig named on

Newer Linux distributions may use the command:

systemctl start named

and is started on the next reboot with the command

systemctl enable named

Finally, if you are developing on Linux and using your host to provide the DNS server, you may wish to change /etc/
resolv.conf to use 127.0.0.1 as the nameserver for your local machine. Depending on the Linux distribution and its
age, you may have to manually set the nameserver in your Network Configuration.

RedBoot network gateway

RedBoot only provides simple routing. If a remote host is not on the same directly connected IP subnet as that associated with
the network interface (even if on the same ’wire‚), then you will need to configure a gateway which can be used to route packets
to the remote host. First you should ensure RedBoot has been built with support for using a gateway using the configuration
option CYGSEM_REDBOOT_NETWORKING_USE_GATEWAY. Then you can either:-

• Hard-code a gateway into the configuration with the option CYGDAT_REDBOOT_DEFAULT_GATEWAY_IP_ADDR;

• Use RedBoot's persistent flash configuration to set the “Gateway IP address” gateway persistently in flash using the fconfig
command; or

• Configure RedBoot to use obtain an address from a DHCP server (not just BOOTP), and then configure the DHCP server
to provide the gateway IP address.

Verification
Once your network setup has been configured, perform simple verification tests as follows:

• Reboot your system, to enable the setup, and then try to ’ping‚ the target board from a host.

• Once communication has been established, try to ping a host using the RedBoot ping command - both by IP address and
hostname.

• Try using the RedBoot load command to download a file from a host.

1949

Chapter 225. RedBoot Commands and
Examples
Introduction
RedBoot provides three basic classes of commands:

• Program loading and execution

• Flash image and configuration management

• Miscellaneous commands

Given the extensible and configurable nature of eCos and RedBoot, there may be extended or enhanced sets of commands
available.

The basic format for commands is:

RedBoot> COMMAND [-S]... [-s val]... operand

Commands may require additional information beyond the basic command name. In most cases this additional information is
optional, with suitable default values provided if they are not present.

Format Description Example

-S A boolean switch; the behavior of the command will
differ, depending on the presence of the switch. In this
example, the -f switch indicates that a complete ini-
tialization of the FIS data should be performed. There
may be many such switches available for any given
command and any or all of them may be present, in
any order.

RedBoot> fis init -f

-s val A qualified value; the letter "s" introduces the val-
ue, qualifying it's meaning. In the example, -b
0x100000 specifies where the memory dump should
begin. There may be many such switches available for
any given command and any or all of them may be
present, in any order.

RedBoot> dump -b 0x100000 -l 0x20

operand A simple value; some commands require a single pa-
rameter for which an additional -X switch would be
redundant. In the example, JFFS2 is the name of a
flash image. The image name is always required, thus
is no need to qualify it with a switch. Note that any
un-qualified operand must always appear at the end of
the command.

RedBoot> fis delete JFFS2

The list of available commands, and their syntax, can be obtained by typing help at the command line:

RedBoot> help
Manage aliases kept in FLASH memory
 alias name [value]
Set/Query the system console baud rate
 baudrate [-b <rate>]
Manage machine caches
 cache [ON | OFF]
Display/switch console channel
 channel [-1|<channel number>]
Display disk partitions

1950

RedBoot Commands and Examples

 disks
Display (hex dump) a range of memory
 dump -b <location> [-l <length>] [-s]
Manage flash images
 fis {cmds}
Manage configuration kept in FLASH memory
 fconfig [-i] [-l] [-n] [-f] [-d] | [-d] nickname [value]
Execute code at a location
 go [-w <timeout>] [-c] [-n] [entry]
Help about help?
 help [<topic>]
Set/change IP addresses
 ip_address [-l <local_ip_address>[/<mask_length>]] [-h <server_address>]
Load a file
 load [-r] [-v] [-d] [-c <channel>] [-h <host>] [-m {TFTP | HTTP | {x|y|z}MODEM | disk}]
 [-b <base_address>] <file_name>
Network connectivity test
 ping [-v] [-n <count>] [-t <timeout>] [-i <IP_addr]
 -h <host>
Reset the system
 reset
Display RedBoot version information
 version
Display (hex dump) a range of memory
 x -b <location> [-l <length>] [-s]

Commands can be abbreviated to their shortest unique string. Thus in the list above, d,du,dum and dump are all valid for the
dump command. The fconfig command can be abbreviated fc, but f would be ambiguous with fis.

There is one additional, special command. When RedBoot detects '$' or '+' (unless escaped via '\') in a command, it switches
to GDB protocol mode. At this point, the eCos GDB stubs take over, allowing connections from a GDB host. The only way
to get back to RedBoot from GDB mode is to restart the platform.

Note

Multiple commands may be entered on a single line, separated by the semi-colon “;” character.

The standard RedBoot command set is structured around the bootstrap environment. These commands are designed to be
simple to use and remember, while still providing sufficient power and flexibility to be useful. No attempt has been made to
render RedBoot as the end-all product. As such, things such as the debug environment are left to other modules, such as GDB
stubs, which are typically included in RedBoot.

The command set may be also be extended on a platform basis.

Common Commands

1951

RedBoot Commands and Examples

Name
alias — Manipulate command line aliases

Synopsis
alias { name } [value]

Arguments

Name Type Description Default

name Name The name for this alias. none

value String Replacement value for the alias. none

Description

The alias command is used to maintain simple command line aliases. These aliases are shorthand for longer expressions. When
the pattern %{name} appears in a command line, including in a script, the corresponding value will be substituted. Aliases
may be nested.

If no value is provided, then the current value of the alias is displayed.

If the system supports non-volatile configuration data via the fconfig command (see the section called “Persistent State Flash-
based Configuration and Control ”), then the value will be saved and used when the system is reset.

Examples

Set an alias.

RedBoot> alias joe "This is Joe"
Update RedBoot non-volatile configuration - continue (y/n)? n

Display an alias.

RedBoot> alias joe
'joe' = 'This is Joe'

Use an alias. Note: the "=" command simply echoes the command to to console.

RedBoot> = %{joe}
This is Joe

Aliases can be nested.

RedBoot> alias frank "Who are you? %{joe}"
Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %{frank}
Who are you? This is Joe

Notice how the value of %{frank} changes when %{joe} is changed since the value of %{joe} is not evaluated until %{frank}
is evaluated.

RedBoot> alias joe "This is now Josephine"
Update RedBoot non-volatile configuration - continue (y/n)? n
RedBoot> = %{frank}
Who are you? This is now Josephine

1952

RedBoot Commands and Examples

Name
baudrate — Set the baud rate for the system serial console

Synopsis
baudrate [-b rate]

Arguments

Name Type Description Default

-b rate Number The baud rate to use for the serial console. none

Description

The baudrate command sets the baud rate for the system serial console.

If no value is provided, then the current value of the console baud rate is displayed.

If the system supports non-volatile configuration data via the fconfig command (see the section called “Persistent State Flash-
based Configuration and Control ”), then the value will be saved and used when the system is reset.

Examples

Show the current baud rate.

RedBoot> baudrate
Baud rate = 38400

Change the console baud rate. In order to make this operation safer, there will be a slight pause after the first message to give
you time to change to the new baud rate. If it doesn't work, or a less than affirmative answer is given to the "continue" prompt,
then the baud rate will revert to the current value. Only after the baud rate has been firmly established will RedBoot give you
an opportunity to save the value in persistent storage.

RedBoot> baudrate -b 57600
Baud rate will be changed to 57600 - update your settings
Device baud rate changed at this point
Baud rate changed to 57600 - continue (y/n)? y
Update RedBoot non-volatile configuration - continue (y/n)? n

1953

RedBoot Commands and Examples

Name
cache — Control hardware caches

Synopsis
cache [[on] | [off]]

Arguments

Name Type Description Default

on Turn the caches on none

off Turn the caches off none

Description

The cache command is used to manipulate the caches on the processor.

With no options, this command specifies the state of the system caches.

When an option is given, the caches are turned off or on appropriately.

Examples

Show the current cache state.

RedBoot> cache
Data cache: On, Instruction cache: On

Disable the caches.

RedBoot> cache off
RedBoot> cache
Data cache: Off, Instruction cache: Off

Enable the caches.

RedBoot> cache on
RedBoot> cache
Data cache: On, Instruction cache: On

1954

RedBoot Commands and Examples

Name
channel — Select the system console channel

Synopsis
channel [[-1] | [channel_number]]

Arguments

Name Type Description Default

-1 Reset the console channel none

channel_number Number Select a channel none

Description

With no arguments, the channel command displays the current console channel number.

When passed an argument of 0 upward, this command switches the console channel to that channel number. The mapping
between channel numbers and physical channels is platform specific but will typically be something like channel 0 is the first
serial port, channel 1 is the second, etc.

When passed an argument of -1, this command reverts RedBoot to responding to whatever channel receives input first, as
happens when RedBoot initially starts execution.

Examples

Show the current channel.

RedBoot> channel
Current console channel id: 0

Change to an invalid channel.

RedBoot> channel 99
**Error: bad channel number '99'

Revert to the default channel setting (any console mode).

RedBoot> channel -1

1955

RedBoot Commands and Examples

Name
cksum — Compute POSIX checksums

Synopsis
cksum {-b location} {-l length}

Arguments

Name Type Description Default

-b location Memory address Location in memory for stat of data. none

-l length Number Length of data none

Description

Computes the POSIX checksum on a range of memory (either RAM or FLASH). The values printed (decimal cksum, decimal
length, hexadecimal cksum, hexadecimal length) can be compared with the output from the Linux program 'cksum'.

Examples

Checksum a buffer.

RedBoot> cksum -b 0x100000 -l 0x100
POSIX cksum = 3286483632 256 (0xc3e3c2b0 0x00000100)

Checksum an area of memory after loading a file. Note that the base address and length parameters are provided by the preceding
load command.

RedBoot> load -r -b %{FREEMEMLO} redboot.bin
Raw file loaded 0x06012800-0x0602f0a8
RedBoot> cksum
Computing cksum for area 0x06012800-0x0602f0a8
POSIX cksum = 2092197813 116904 (0x7cb467b5 0x0001c8a8)

1956

RedBoot Commands and Examples

Name
disks — List available disk partitions.

Synopsis
disks

Arguments

None.

Description

The disks command is used to list disk partitions recognized by RedBoot.

Examples

Show what disk partitions are available.

RedBoot> disks
hda1 Linux Swap
hda2 Linux
00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>..............|
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |...x.p.`.`.`.`.`|

1957

RedBoot Commands and Examples

Name
dump — Display memory.

Synopsis
dump {-b location} [-l length] [-s] [[-1] | [-2] | [-4]]

Arguments

Name Type Description Default

-b location Memory address Location in memory for start of data. none

-l length Number Length of data 32

-s Boolean Format data using Motorola S-records.

-1 Access one byte (8 bits) at a time. Only the
least significant 8 bits of the pattern will be
used.

-1

-2 Access two bytes (16 bits) at a time. Only
the least significant 16 bits of the pattern
will be used.

-1

-4 Access one word (32 bits) at a time. -1

Description

Display a range of memory on the system console.

The x is a synonym for dump.

Note that this command could be detrimental if used on memory mapped hardware registers.

The memory is displayed at most sixteen bytes per line, first as the raw hex value, followed by an ASCII interpretation of
the data.

Examples

Display a buffer, one byte at a time.

RedBoot> mfill -b 0x100000 -l 0x20 -p 0xDEADFACE
RedBoot> x -b 0x100000
00100000: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|
00100010: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|

Display a buffer, one short (16 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -2
00100000: FACE DEAD FACE DEAD FACE DEAD FACE DEAD
00100010: FACE DEAD FACE DEAD FACE DEAD FACE DEAD

Display a buffer, one word (32 bit) word at a time. Note in this case that the ASCII interpretation is suppressed.

RedBoot> dump -b 0x100000 -4
00100000: DEADFACE DEADFACE DEADFACE DEADFACE
00100010: DEADFACE DEADFACE DEADFACE DEADFACE

Display the same buffer, using Motorola S-record format.

RedBoot> dump -b 0x100000 -s
S31500100000CEFAADDECEFAADDECEFAADDECEFAADDE8E
S31500100010CEFAADDECEFAADDECEFAADDECEFAADDE7E

Display a buffer, with visible ASCII strings.

1958

RedBoot Commands and Examples

RedBoot> d -b 0xfe00b000 -l 0x80
0xFE00B000: 20 25 70 0A 00 00 00 00 41 74 74 65 6D 70 74 20 | %p.....Attempt |
0xFE00B010: 74 6F 20 6C 6F 61 64 20 53 2D 72 65 63 6F 72 64 |to load S-record|
0xFE00B020: 20 64 61 74 61 20 74 6F 20 61 64 64 72 65 73 73 | data to address|
0xFE00B030: 3A 20 25 70 20 5B 6E 6F 74 20 69 6E 20 52 41 4D |: %p [not in RAM|
0xFE00B040: 5D 0A 00 00 2A 2A 2A 20 57 61 72 6E 69 6E 67 21 |]...*** Warning!|
0xFE00B050: 20 43 68 65 63 6B 73 75 6D 20 66 61 69 6C 75 72 | Checksum failur|
0xFE00B060: 65 20 2D 20 41 64 64 72 3A 20 25 6C 78 2C 20 25 |e - Addr: %lx, %|
0xFE00B070: 30 32 6C 58 20 3C 3E 20 25 30 32 6C 58 0A 00 00 |02lX <> %02lX...|
0xFE00B080: 45 6E 74 72 79 20 70 6F 69 6E 74 3A 20 25 70 2C |Entry point: %p,|

1959

RedBoot Commands and Examples

Name
help — Display help on available commands

Synopsis
help [topic]

Arguments

Name Type Description Default

topic String Which command to provide help for. All commands

Description

The help command displays information about the available RedBoot commands. If a topic is given, then the display is restricted
to information about that specific command.

If the command has sub-commands, e.g. fis, then the topic specific display will print additional information about the available
sub-commands. special (ICMP) packets to a specific host. These packets should be automatically returned by that host. The
command will indicate how many of these round-trips were successfully completed.

Examples

Show generic help. Note that the contents of this display will depend on the various configuration options for RedBoot when
it was built.

RedBoot> help
Manage aliases kept in FLASH memory
 alias name [value]
Manage machine caches
 cache [ON | OFF]
Display/switch console channel
 channel [-1|<channel number>]
Compute a 32bit checksum [POSIX algorithm] for a range of memory
 cksum -b <location> -l <length>
Display (hex dump) a range of memory
 dump -b <location> [-l <length>] [-s] [-1|-2|-4]
Manage FLASH images
 fis {cmds}
Manage configuration kept in FLASH memory
 fconfig [-i] [-l] [-n] [-f] [-d] | [-d] nickname [value]
Execute code at a location
 go [-w <timeout>] [entry]
Uncompress GZIP compressed data
 gunzip -s <location> -d <location>
Help about help?
 help [<topic>]
Read I/O location
 iopeek [-b <location>] [-1|2|4]
Write I/O location
 iopoke [-b <location>] [-1|2|4] -v <value>
Set/change IP addresses
 ip_address [-l <local_ip_address>[/<mask_length>]] [-h <server_address>]
Load a file
 load [-r] [-v] [-d] [-h <host>] [-m {TFTP | HTTP | {x|y}MODEM -c <channel_number>}]
 [-f <flash_address>] [-b <base_address>] <file_name>
Compare two blocks of memory
 mcmp -s <location> -d <location> -l <length> [-1|-2|-4]
Fill a block of memory with a pattern
 mfill -b <location> -l <length> -p <pattern>
 [-1|-2|-4]
Network connectivity test
 ping [-v] [-n <count>] [-l <length>] [-t <timeout>] [-r <rate>]

1960

RedBoot Commands and Examples

 [-i <IP_addr>] -h <IP_addr>
Reset the system
 reset
Display RedBoot version information
 version
Display (hex dump) a range of memory
 x -b <location> [-l <length>] [-s] [-1|-2|-4]

Help about a command with sub-commands.

RedBoot> help fis
Manage FLASH images
 fis {cmds}
Create an image
 fis create -b <mem_base> -l <image_length> [-s <data_length>]
 [-f <flash_addr>] [-e <entry_point>] [-r <ram_addr>] [-n] <name>
Display an image from FLASH Image System [FIS]
 fis delete name
Erase FLASH contents
 fis erase -f <flash_addr> -l <length>
Display free [available] locations within FLASH Image System [FIS]
 fis free
Initialize FLASH Image System [FIS]
 fis init [-f]
Display contents of FLASH Image System [FIS]
 fis list [-c] [-d]
Load image from FLASH Image System [FIS] into RAM
 fis load [-d] [-b <memory_load_address>] [-c] name
Write raw data directly to FLASH
 fis write -f <flash_addr> -b <mem_base> -l <image_length>

1961

RedBoot Commands and Examples

Name
iopeek — Read I/O location

Synopsis
iopeek [-b location] [[-1] | [-2] | [-4]]

Arguments

Name Type Description Default

-b location I/O address I/O Location. none

-1 Access a one byte (8 bit) I/O location. -1

-2 Access a two byte (16 bit) I/O location. -1

-4 Access a one word (32 bit) I/O location. -1

Description

Reads a value from the I/O address space.

Examples

Examine 8 bit value at I/O location 0x3F8.

RedBoot> iopeek -b 0x3f8
0x03f8 = 0x30

Examine 32 bit value at I/O location 0x3f8.

RedBoot> iopeek -b 0x3f8 -4
0x03f8 = 0x03c10065

1962

RedBoot Commands and Examples

Name
iopoke — Write I/O location

Synopsis
iopoke [-b location] [[-1] | [-2] | [-4]] [-v value]

Arguments

Name Type Description Default

-b location I/O address I/O Location. none

-1 Access a one byte (8 bit) I/O location. On-
ly the 8 least significant bits of value will
be used

-1

-2 Access a two byte (16 bit) I/O location.
Only the 16 least significant bits of value
will be used

-1

-4 Access a one word (32 bit) I/O location. -1

Description

Writes a value to the I/O address space.

Examples

Write 0x0123 to 16 bit I/O location 0x200.

RedBoot> iopoke -b 0x200 -v 0x123 -2

1963

RedBoot Commands and Examples

Name
gunzip — Uncompress GZIP compressed data

Synopsis
gunzip {-s source} {-d destination}

Arguments

Name Type Description Default

-s location1 Memory address Location of GZIP compressed data to un-
compress.

Value set by last load or
fis load command.

-d location2 Memory address Destination to write uncompressed data to. none

Description

Uncompress GZIP compressed data.

Examples

Uncompress data at location 0x100000 to 0x200000.

RedBoot> gunzip -s 0x100000 -d 0x200000
Decompressed 38804 bytes

1964

RedBoot Commands and Examples

Name
ip_address — Set IP addresses

Synopsis
ip_address [-b] [-l local_IP_address [/ netmask_length]] [-h server_IP_address] [-d
DNS_server_IP_address]

Arguments

Name Type Description Default

-b Boolean Obtain an IP address using BOOTP
or DHCP.

don't use BOOTP/
DHCP

-l local_IP_address[/net-
mask_length]

Numeric IP or DNS name The IP address RedBoot should
use, optionally with the network
mask length.

none

-h server_IP_address Numeric IP or DNS name The IP address of the default serv-
er. Use of this address is implied
by other commands, such as load.

none

-d DNS_server_IP_address Numeric IP or DNS name The IP address of the DNS server. none

Description

The ip_address command is used to show and/or change the basic IP addresses used by RedBoot. IP addresses may be given
as numeric values, e.g. 192.168.1.67, or as symbolic names such as www.ecoscentric.com if DNS support is enabled.

The -b option is used to cause the target to perform a bootp or dhcp negotiation to get an IP address.

The -l option is used to set the IP address used by the target device. The network mask length can also be specified

The -h option is used to set the default server address, such as is used by the load command.

The -d option is used to set the default DNS server address which is used for resolving symbolic network addresses. Note
that an address of 0.0.0.0 will disable DNS lookups.

Examples

Display the current network settings.

RedBoot> ip_address
IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 0.0.0.0, DNS domain name:

Change the DNS server address.

RedBoot> ip_address -d 192.168.1.101
IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 192.168.1.101, DNS domain name:

Change the DNS domain name.

RedBoot> ip_address -D example.com
IP: 192.168.1.31, Default server: 192.168.1.101, DNS server IP: 192.168.1.101, DNS domain name: example.com

Change the default server address.

RedBoot> ip_address -h 192.168.1.104
IP: 192.168.1.31, Default server: 192.168.1.104, DNS server IP: 192.168.1.101, DNS domain name:

Set the IP address to something new, with a 255.255.255.0 netmask

RedBoot> ip_address -l 192.168.1.32/24

1965

RedBoot Commands and Examples

IP: 192.168.1.32, Default server: 192.168.1.104, DNS server IP: 192.168.1.101, DNS domain name:

1966

RedBoot Commands and Examples

Name
load — Download programs or data to the RedBoot platform

Synopsis
load [-v] [-d] [-r] [-m [{[[xmodem] | [ymodem] | [tftp] | [disk] | [file]]}]] [-h IP_address] [-f location] [-b
location] [-c channel] [file_name]

Arguments

Name Type Description Default

-v Boolean Display a small spinner (indicator) while the download is in
progress. This is just for feedback, especially during long loads.
Note that the option has no effect when using a serial download
method since it would interfere with the protocol.

quiet

-d Boolean Decompress data stream (gzip data) non-compressed
data

-r Boolean Raw (or binary) data. -b or -f must be used formatted (S-
records, ELF im-
age, etc)

-m tftp Transfer data via the network using TFTP protocol. TFTP

-m http Transfer data via the network using HTTP protocol. TFTP

-m xmodem Transfer data using X-modem protocol. TFTP

-m ymodem Transfer data using Y-modem protocol. TFTP

-m disk Transfer data from a local disk. TFTP

-m file Transfer data from a local filesystem such as JFFS2 or FAT. TFTP

-m mem Load data from a memory address. Enabled with the configu-
ration option CYGFUN_REDBOOT_LOAD_FROM_MEM. Sup-
ply the memory address and length to load from by using a
“filename” in the format: ADDRESS,LENGTH For example
0x10000400,0x54350

TFTP

-h IP_address Numeric
IP or DNS
name

The IP address of the TFTP or HTTP server. Value set by
ip_address

-b location Number Address in memory to load the data. Formatted data streams will
have an implied load address which this option may override.

Depends on data
format

-f location Number Address in flash to load the data. Formatted data streams will have
an implied load address which this option may override.

Depends on data
format

-c channel Number Specify which I/O channel to use for download. This option is only
supported when using either xmodem or ymodem protocol.

Depends on data
format

file_name String The name of the file on the TFTP or HTTP server or the local disk.
Details of how this is specified for TFTP are host- specific. For lo-
cal disk files, the name must be in disk: filename format. The disk
portion must match one of the disk names listed by the disks com-
mand.

None

Description

The load command is used to download data into the target system. Data can be loaded via a network connection, using either
the TFTP or HTTP protocols, or the console serial connection using the X/Y modem protocol. Files may also be loaded directly

1967

RedBoot Commands and Examples

from local filesystems on disk. Files to be downloaded may either be executable images in ELF executable program format,
Motorola S-record (SREC) format or raw data.

Note

When downloading an ELF image, RedBoot will forcibly terminate the transfer once all the relevant (loadable)
ELF sections have been received. This behaviour reduces download time when using the X/Y modem protocol
over a slow serial connection. However, the terminal emulator may report that the transfer is incomplete and has
been cancelled. Such messages are normal and may be ignored.

Examples

Download a Motorola S-record (or ELF) image, using TFTP, specifying the base memory address.

RedBoot> load redboot.ROM -b 0x8c400000
Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Download a Motorola S-record (or ELF) image, using HTTP, specifying the host [server] address.

RedBoot> load /redboot.ROM -m HTTP -h 192.168.1.104
Address offset = 0x0c400000
Entry point: 0x80000000, address range: 0x80000000-0x8000fe80

Load an ELF file from /dev/hda1 which should be an EXT2 partition:

RedBoot> load -mode disk hda1:hello.elf
Entry point: 0x00020000, address range: 0x00020000-0x0002fd70

Load an ELF file from /jffs2/applications which should be a directory in a JFFS2 filesystem:

RedBoot> load -mode file /jffs2/applications/hello.elf
Entry point: 0x00020000, address range: 0x00020000-0x0002fd70

1968

RedBoot Commands and Examples

Name
mcmp — Compare two segments of memory

Synopsis
mcmp {-s location1} {-d location1} {-l length} [[-1] | [-2] | [-4]]

Arguments

Name Type Description Default

-s location1 Memory address Location for start of data. none

-d location2 Memory address Location for start of data. none

-l length Number Length of data none

-1 Access one byte (8 bits) at a time. Only the
least significant 8 bits of the pattern will be
used.

-4

-2 Access two bytes (16 bits) at a time. Only
the least significant 16 bits of the pattern
will be used.

-4

-4 Access one word (32 bits) at a time. -4

Description

Compares the contents of two ranges of memory (RAM, ROM, FLASH, etc).

Examples

Compare two buffers which match (result is quiet).

RedBoot> mfill -b 0x100000 -l 0x20 -p 0xDEADFACE
RedBoot> mfill -b 0x200000 -l 0x20 -p 0xDEADFACE
RedBoot> mcmp -s 0x100000 -d 0x200000 -l 0x20

Compare two buffers which don't match.

Only the first non-matching element is displayed.

RedBoot> mcmp -s 0x100000 -d 0x200000 -l 0x30 -2
Buffers don't match - 0x00100020=0x6000, 0x00200020=0x0000

1969

RedBoot Commands and Examples

Name
mcopy — Copy memory

Synopsis
mcopy {-s source} {-d destination} {-l length} [[-1] | [-2] | [-4]]

Arguments

Name Type Description Default

-s location1 Memory address Location of data to copy. none

-d location2 Memory address Destination for copied data. none

-l length Number Length of data none

-1 Copy one byte (8 bits) at a time. -4

-2 Copy two bytes (16 bits) at a time. -4

-4 Copy one word (32 bits) at a time. -4

Description

Copies memory (RAM, ROM, FLASH, etc) from one area to another.

Examples

Copy 16 bits at a time.

RedBoot> mfill -b 0x100000 -l 0x20 -2 -p 0xDEAD
RedBoot> mfill -b 0x200000 -l 0x20 -2 -p 0x0
RedBoot> dump -b 0x200000 -l 0x20 -2
00200000: 0000 0000 0000 0000 0000 0000 0000 0000
00200010: 0000 0000 0000 0000 0000 0000 0000 0000
RedBoot> mcopy -s 0x100000 -d 0x200000 -2 -l 0x20
RedBoot> dump -b 0x200000 -l 0x20 -2
00200000: DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD
00200010: DEAD DEAD DEAD DEAD DEAD DEAD DEAD DEAD

1970

RedBoot Commands and Examples

Name
mfill — Fill RAM with a specified pattern

Synopsis
mfill {-b location} {-l length} {-p value} {-a mask} [[-1] | [-2] | [-4]]

Arguments

Name Type Description Default

-b location Memory address Location in memory for start of data. none

-l length Number Length of data none

-p pattern Number Data value to fill with 0

-a mask Number Use location address ANDed with mask as
pattern, overrides -p

0

-1 Access one byte (8 bits) at a time. Only the
least significant 8 bits of the pattern will be
used.

-4

-2 Access two bytes (16 bits) at a time. Only
the least significant 16 bits of the pattern
will be used.

-4

-4 Access one word (32 bits) at a time. -4

Description

Fills a range of memory with the given pattern.

Examples

Fill a buffer with zeros.

RedBoot> x -b 0x100000 -l 0x20
00100000: 00 3E 00 06 00 06 00 06 00 00 00 00 00 00 00 00 |.>..............|
00100010: 00 00 00 78 00 70 00 60 00 60 00 60 00 60 00 60 |...x.p.`.`.`.`.`|
RedBoot> mfill -b 0x100000 -l 0x20
RedBoot> x -b 0x100000 -l 0x20
00100000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00100010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

Fill a buffer with a pattern.

RedBoot> mfill -b 0x100000 -l 0x20 -p 0xDEADFACE
RedBoot> x -b 0x100000 -l 0x20
00100000: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|
00100010: CE FA AD DE CE FA AD DE CE FA AD DE CE FA AD DE |................|

Fill a buffer with masked address.

RedBoot> mfill -b 0x01000000 -l 0x20 -a 0x0FFF -2
RedBoot> x -b 0x01000000 -l 0x20 -2
01000000: 0000 0002 0004 0006 0008 000A 000C 000E
01000010: 0010 0012 0014 0016 0018 001A 001C 001E

1971

RedBoot Commands and Examples

Name
ping — Verify network connectivity

Synopsis
ping [-v] [-i local_IP_address] [-l length] [-n count] [-t timeout] [-r rate] {-h server_IP_address}

Arguments

Name Type Description Default

-v Boolean Be verbose, displaying information about
each packet sent.

quiet

-n local_IP_ad-
dress

Number Controls the number of packets to be sent. 10

-i local_IP_ad-
dress

Numeric IP or DNS
name

The IP address RedBoot should use. Value set by ip_address

-h server_IP_ad-
dress

Numeric IP or DNS
name

The IP address of the host to contact. none

-l length Number The length of the ICMP data payload. 64

-r length Number How fast to deliver packets, i.e. time be-
tween successive sends. A value of 0 sends
packets as quickly as possible.

1000ms (1 second)

-t length Number How long to wait for the round-trip to
complete, specified in milliseconds.

1000ms (1 second)

Description

The ping command checks the connectivity of the local network by sending special (ICMP) packets to a specific host. These
packets should be automatically returned by that host. The command will indicate how many of these round-trips were suc-
cessfully completed.

Examples

Test connectivity to host 192.168.1.101.

RedBoot> ping -h 192.168.1.101
Network PING - from 192.168.1.31 to 192.168.1.101
PING - received 10 of 10 expected

Test connectivity to host 192.168.1.101, with verbose reporting.

RedBoot> ping -h 192.168.1.101 -v -n 4
Network PING - from 192.168.1.31 to 192.168.1.101
 seq: 1, time: 1 (ticks)
 seq: 2, time: 1 (ticks)
 seq: 3, time: 1 (ticks)
 seq: 4, time: 1 (ticks)
PING - received 10 of 10 expected

Test connectivity to a non-existent host (192.168.1.109).

RedBoot> ping -h 192.168.1.109 -v -n 4
PING: Cannot reach server '192.168.1.109' (192.168.1.109)

1972

RedBoot Commands and Examples

Name
reset — Reset the device

Synopsis
reset

Arguments

None

Description

The reset command causes the target platform to be reset. Where possible (hardware support permitting), this will be equivalent
to a power-on reset condition.

Examples

Reset the platform.

RedBoot> reset
... Resetting.+... Waiting for network card: .
Socket Communications, Inc: Low Power Ethernet CF Revision C 5V/3.3V 08/27/98
Ethernet eth0: MAC address 00:c0:1b:00:ba:28
IP: 192.168.1.29, Default server: 192.168.1.101

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:41:41, May 14 2002

Platform: Compaq iPAQ Pocket PC (StrongARM 1110)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x01fc0000, 0x00014748-0x01f71000 available
FLASH: 0x50000000 - 0x51000000, 64 blocks of 0x00040000 bytes each.
RedBoot>

1973

RedBoot Commands and Examples

Name
version — Display RedBoot version information

Synopsis
version

Arguments

None

Description

The version command simply displays version information about RedBoot.

Examples

Display RedBoot's version.

RedBoot> version
RedBoot(tm) debug environment - built 09:12:03, Feb 12 2001
Platform: XYZ (PowerPC 860)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.
RAM: 0x00000000-0x00400000

1974

RedBoot Commands and Examples

Flash Image System (FIS)
If the platform has flash memory, RedBoot can use this for image storage. Executable images, as well as data, can be stored
in flash in a simple file store. The fis command (fis is short for Flash Image System) is used to manipulate and maintain flash
images.

1975

RedBoot Commands and Examples

Name
fis init — Initialize Flash Image System (FIS)

Synopsis
fis init [-f]

Arguments

Name Type Description Default

-f All blocks of flash memory (except for the boot blocks) will be erased as
part of the initialization procedure.

Description

This command is used to initialize the Flash Image System (FIS). It should normally only be executed once, when RedBoot
is first installed on the hardware. If the reserved images or their sizes in the FIS change, due to a different configuration of
RedBoot being used, it may be necessary to issue the command again though.

Note

Subsequent executions will cause loss of previously stored information in the FIS.

Examples

Initialize the FIS directory.

RedBoot> fis init
About to initialize [format] flash image system - continue (y/n)? y
*** Initialize FLASH Image System
 Warning: device contents not erased, some blocks may not be usable
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

Initialize the FIS directory and all of flash memory, except for first blocks of the flash where the boot monitor resides.

RedBoot> fis init -f
About to initialize [format] flash image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x00020000-0x00070000:
... Erase from 0x00080000-0x00080000:
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

1976

RedBoot Commands and Examples

Name
fis list — List Flash Image System directory

Synopsis
fis list [-c] [-d]

Arguments

Name Type Description Default

-c Show image checksum instead of memory address (column Mem addr is
replaced by Checksum).

-d Show image data length instead of amount of flash occupied by image (col-
umn Length is replaced by Datalen).

Description

This command lists the images currently available in the FIS. Certain images used by RedBoot have fixed names and have
reserved slots in the FIS (these can be seen after using the fis init command). Other images can be manipulated by the user.

Note

The images are listed in the order they appear in the FIS directory, not by name or creation time.

Examples

List the FIS directory.

RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00001000 0x00000000
FIS directory 0x00070000 0x00070000 0x0000F000 0x00000000

List the FIS directory, with image checksums substituted for memory addresses.

RedBoot> fis list -c
Name FLASH addr Checksum Length Entry point
RedBoot 0x00000000 0x00000000 0x00020000 0x00000000
RedBoot config 0x0007F000 0x00000000 0x00001000 0x00000000
FIS directory 0x00070000 0x00000000 0x0000F000 0x00000000

List the FIS directory with image data lengths substituted for flash block reservation lengths.

RedBoot> fis list -d
Name FLASH addr Mem addr Datalen Entry point
RedBoot 0x00000000 0x00000000 0x00000000 0x00000000
RedBoot config 0x0007F000 0x0007F000 0x00000000 0x00000000
FIS directory 0x00070000 0x00070000 0x00000000 0x00000000

1977

RedBoot Commands and Examples

Name
fis free — Free flash image

Synopsis
fis free

Description

This command shows which areas of the flash memory are currently not in use. When a block contains non-erased contents
it is considered in use. Since it is possible to force an image to be loaded at a particular flash location, this command can be
used to check whether that location is in use by any other image.

Note

There is currently no cross-checking between actual flash contents and the FIS directory, which mans that there
could be a segment of flash which is not erased that does not correspond to a named image, or vice-versa.

Examples

Show free flash areas.

RedBoot> fis free
 0xA0040000 .. 0xA07C0000
 0xA0840000 .. 0xA0FC0000

1978

RedBoot Commands and Examples

Name
fis create — Create flash image

Synopsis
fis create {-b data address} {-l length} [-f flash address] [-e entry] [-r relocation address]
[-s data length] [-n] [name]

Arguments

Name Type Description Default

-b Number Address of data to be written to the flash. Address of last loaded file. If not set in a
load operation, it must be specified.

-l Number Length of flash area to occupy. If specified, and the
named image already exists, the length must match the
value in the FIS directory.

Length of area reserved in FIS directory
if the image already exists, or the length
of the last loaded file. If neither are set, it
must be specified.

-f Number Address of flash area to occopy. The address of an area reserved in the FIS
directory for extant images. Otherwise the
first free block which is large enough will
be used.

-e Number Entry address for an executable image, used by the fis
load command.

The entry address of last loaded file.

-r Number Address where the image should be relocated to by the
fis load command. This is only relevant for images that
will be loaded with the fis load command.

The load address of the last loaded file.

-s Number Actual length of data written to image. This is used to
control the range over which the checksum is made.

It defaults to the length of the last loaded
file.

-n When set, no image data will be written to the flash. Only
the FIS directory will be updated.

name String Name of flash image.

Description

This command creates an image in the FIS directory. The data for the image must exist in RAM memory before the copy.
Typically, you would use the RedBoot load command to load file into RAM and then the fis create command to write it to
a flash image.

Examples

Trying to create an extant image, will require the action to be verified.

RedBoot> fis create RedBoot -f 0xa0000000 -b 0x8c400000 -l 0x20000
An image named ’RedBoot‚ exists - continue (y/n)? n

Create a new test image, let the command find a suitable place.

RedBoot> fis create junk -b 0x8c400000 -l 0x20000
... Erase from 0xa0040000-0xa0060000: .
... Program from 0x8c400000-0x8c420000 at 0xa0040000: .
... Erase from 0xa0fe0000-0xa1000000: .
... Program from 0x8c7d0000-0x8c7f0000 at 0xa0fe0000: .

Update the RedBoot[RAM] image.

RedBoot> load redboot_RAM.img

1979

RedBoot Commands and Examples

Entry point: 0x060213c0, address range: 0x06020000-0x06036cc0
RedBoot> fis create RedBoot[RAM]
No memory address set.
An image named 'RedBoot[RAM]' exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot[RAM]'
 at 0x00020000..0x00036cbf from 0x06020000 - continue (y/n)? y
... Erase from 0x00020000-0x00040000: ..
... Program from 0x06020000-0x06036cc0 at 0x00020000: ..
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

1980

RedBoot Commands and Examples

Name
fis load — Load flash image

Synopsis
fis load [-b load address] [-c] [-d] [name]

Arguments

Name Type Description Default

-b Number Address the image should be loaded to. Executable images
normally load at the location to which the file was linked.
This option allows the image to be loaded to a specific mem-
ory location, possibly overriding any assumed location.

If not specified, the address associ-
ated with the image in the FIS di-
rectory will be used.

-c Compute and print the checksum of the image data after it
has been loaded into memory.

-d Decompress gzipped image while copying it from flash to
RAM.

name String The name of the file, as shown in the FIS directory.

Description

This command is used to transfer an image from flash memory to RAM.

Once the image has been loaded, it may be executed using the go command.

Examples

Load and run RedBoot[RAM] image.

RedBoot> fis load RedBoot[RAM]
RedBoot> go

1981

RedBoot Commands and Examples

Name
fis delete — Delete flash image

Synopsis
fis delete { name }

Arguments

Name Type Description Default

name Number Name of image that should be deleted.

Description

This command removes an image from the FIS. The flash memory will be erased as part of the execution of this command,
as well as removal of the name from the FIS directory.

Note

Certain images are reserved by RedBoot and cannot be deleted. RedBoot will issue a warning if this is attempted.

Examples
RedBoot> fis list
Name flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000
RedBoot config 0xA0FC0000 0xA0FC0000 0x020000 0x00000000
FIS directory 0xA0FE0000 0xA0FE0000 0x020000 0x00000000
junk 0xA0040000 0x8C400000 0x020000 0x80000000
RedBoot> fis delete junk
Delete image ’junk‚ - continue (y/n)? y
... Erase from 0xa0040000-0xa0060000: .
... Erase from 0xa0fe0000-0xa1000000: .
... Program from 0x8c7d0000-0x8c7f0000 at 0xa0fe0000: .

1982

RedBoot Commands and Examples

Name
fis lock — Lock flash area

Synopsis
fis lock {-f flash_address} {-l length}

Arguments

Name Type Description Default

flash_address Number Address of area to be locked.

length Number Length of area to be locked.

Description

This command is used to write-protect (lock) a portion of flash memory, to prevent accidental overwriting of images. In order
to make any modifications to the flash, a matching fis unlock command must be issued. This command is optional and will
only be provided on hardware which can support write-protection of the flash space.

Note

Depending on the system, attempting to write to write-protected flash may generate errors or warnings, or be
benignly quiet.

Examples

Lock an area of the flash

RedBoot> fis lock -f 0xa0040000 -l 0x20000
... Lock from 0xa0040000-0xa0060000: .

1983

RedBoot Commands and Examples

Name
fis unlock — Unlock flash area

Synopsis
fis unlock {-f flash_address} {-l length}

Arguments

Name Type Description Default

flash_address Number Address of area to be unlocked.

length Number Length of area to be unlocked.

Description

This command is used to unlock a portion of flash memory forcibly, allowing it to be updated. It must be issued for regions
which have been locked before the FIS can reuse those portions of flash.

Note

Some flash devices power up in locked state and always need to be manually unlocked before they can be written
to.

Examples

Unlock an area of the flash

RedBoot> fis unlock -f 0xa0040000 -l 0x20000
... Unlock from 0xa0040000-0xa0060000: .

1984

RedBoot Commands and Examples

Name
fis erase — Erase flash area

Synopsis
fis erase {-f flash_address} {-l length}

Arguments

Name Type Description Default

flash_address Number Address of area to be erased.

length Number Length of area to be erased.

Description

This command is used to erase a portion of flash memory forcibly. There is no cross-checking to ensure that the area being
erased does not correspond to an existing image.

Examples

Erase an area of the flash

RedBoot> fis erase -f 0xa0040000 -l 0x20000
... Erase from 0xa0040000-0xa0060000: .

1985

RedBoot Commands and Examples

Name
fis read — Read flash area

Synopsis
fis read {-b mem_address} {-l length} {-f flash_address}

Arguments

Name Type Description Default

mem_address Number Address data should be written to.

length Number Length of data to be read.

flash_address Number Address in flash to read from.

Description

This command is used to read data from flash to memory. This command is only present if a flash device does not support
direct random access (for example an SPI NOR flash).

Examples

Read an area of flash into memory

RedBoot> fis read -b 0x0606f000 -l 0x1000 -f 0x00020000

1986

RedBoot Commands and Examples

Name
fis write — Write flash area

Synopsis
fis write {-b mem_address} {-l length} {-f flash_address}

Arguments

Name Type Description Default

mem_address Number Address of data to be written to flash.

length Number Length of data to be writtem.

flash_address Number Address of flash to write to.

Description

This command is used to write data from memory to flash. There is no cross-checking to ensure that the area being written
to does not correspond to an existing image.

Examples

Write an area of data to the flash

RedBoot> fis write -b 0x0606f000 -l 0x1000 -f 0x00020000
* CAUTION * about to program FLASH
 at 0x00020000..0x0002ffff from 0x0606f000 - continue (y/n)? y
... Erase from 0x00020000-0x00030000: .
... Program from 0x0606f000-0x0607f000 at 0x00020000: .

1987

RedBoot Commands and Examples

Filesystem Interface
If the platform has access to secondary storage, then RedBoot may be able to access a filesystem stored on this device. RedBoot
can access FAT filesystems stored on IDE disks, CompactFlash devices, MMC and SD cards or USB mass storage devices and
can use JFFS2 filesystems stored in FLASH memory. The fs command is used to manipulate files on filesystems. Applications
may be loaded into memory using the file mode of the load command.

1988

RedBoot Commands and Examples

Name
fs info — Print filesystem information

Synopsis
fs info

Arguments

The command takes no arguments.

Description

This command prints information about the filesystems that are available. Three lists are produced. The first is a list of the
filsystem implementations available in RedBoot; names from this list may be used in the -t option to the fs mount command.
The second list describes the block devices and partitions that are available for mounting a filesystem; names from this list
may be used in the -d option to the fs mount command. The last list describes the filesystems that are already mounted.

Examples
RedBoot> fs info
Filesystems available:
fatfs

Devices available:
/dev/mmcsd0/0
/dev/mmcsd0/1
/dev/mmcsd0/2
/dev/usbms/0/0
/dev/usbms/0/1

Mounted filesystems:
 Mountpoint Device Filesystem
 /usb /dev/usbms/0/1 fatfs:sync=write
 /boot /dev/mmcsd0/1 fatfs:sync=write
RedBoot>

1989

RedBoot Commands and Examples

Name
fs mount — Mount a filesystem

Synopsis
fs mount [-d device] [-t fstype] {mountpoint}

Arguments

Name Type Description Default

device String Device containing filsystem to mount. undefined

fstype String Filesystem type. fatfs:sync=write

mountpoint String Pathname for filesystem root. /

Description

This command is used make a filesystem available for access with the filesystem access commands. Three things need to be
defined to do this. First, the name of the device on which the filesystem is stored needs to be given to the -d option. Secondly,
the type of filesystem it is needs to be given to the -t option. Finally, the pathname by which the new filesystem will be
accessed needs to be supplied. Following a successful mount, the root of the filesystem will be accessible at the mountpoint.

The -t option is optional. If not given a default filesystem type is chosen. At present this is "fatfs:sync=write" which chooses
a FAT filesystem that writes data back to the device immediately. See the FAT filesystem documentation for more details of
the options available.

RedBoot must have been built with the required filesystem support enabled in its eCos configuration in order to be able to
access filesystems of the necessary type. On the majority of platforms, no filesystems are included in RedBoot at all due to the
extra memory footprint overhead for RedBoot this would otherwise incur.

Examples

The following example mounts a JFFS2 partition identified by the FIS partition name "jffs2test" at location /flash :

RedBoot> fs info
Filesystems available:
ramfs
jffs2
fatfs

Devices available:
/dev/flash/
/dev/mmcsd0/

Mounted filesystems:
 Device Filesystem Mounted on
 <undefined> ramfs /
RedBoot> fs mount -d /dev/flash/fis/jffs2test -t jffs2 /flash
RedBoot> fs info
Filesystems available:
ramfs
jffs2
fatfs

Devices available:
/dev/flash/
/dev/mmcsd0/

Mounted filesystems:
 Device Filesystem Mounted on
 <undefined> ramfs /
 /dev/flash/fis/jffs2test jffs2 /flash

1990

RedBoot Commands and Examples

RedBoot>

Consult the documentation within the generic Flash driver package on Flash I/O devices for further information on configuration
and usage of /dev/flash/ devices for use with JFFS2.

Further examples of mount commands are:

• Mount a JFFS2 partition located at offset 0x40000 in the first flash device, of length 2Mbytes, at location /jffs2 :

RedBoot> fs mount -d /dev/flash/0/0x40000,0x200000 -t jffs2 /jffs2

• Mount a FAT partition located on the first partition of an SD card at location / :

RedBoot> fs mount -d /dev/mmcsd0/1 -t fatfs /

• Mount a ROMfs partition located at address 0x48000000 in flash at location /romfs :

RedBoot> fs mount -d 0x48000000 -t romfs /romfs

Note that ROMfs uses absolute addresses as the device name, and not /dev/flash/ Flash I/O devices.

1991

RedBoot Commands and Examples

Name
fs umount — Unmount filesystem

Synopsis
fs umount { mountpoint }

Arguments

Name Type Description Default

mountpoint String Mountpoint of filesystem to unmount.

Description

This command removes a filesystem from being accessible using the filesystem commands. The single argument needs to be
the mountpoint that was used when mounting the filesystem. This command will fail if the current directory is currently within
the filesystem to be unmounted.

Examples

Unmount a JFF2 partititon:

RedBoot> fs info
Filesystems available:
ramfs
jffs2

Devices available:
/dev/flash1

Mounted filesystems:
 Device Filesystem Mounted on
 <undefined> ramfs /
 /dev/flash1 jffs2 /flash
RedBoot> fs umount /flash
RedBoot> fs info
Filesystems available:
ramfs
jffs2

Devices available:
/dev/flash1

Mounted filesystems:
 Device Filesystem Mounted on
 <undefined> ramfs /
RedBoot>

1992

RedBoot Commands and Examples

Name
fs cd — Change filesystem directory

Synopsis
fs cd [directory]

Arguments

Name Type Description Default

directory String Pathname to directory to change to. Root directory

Description

This command changes the current filesystem directory. Subsequent filesystem commands will be executed in the new direc-
tory. If no argument is given, then the current directory is set back to the root of the filesystem name space.

Examples

Change current directory:

RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
d--------- 96 tests
---------- 4096 image
RedBoot> fs cd tests
RedBoot> fs ls
d--------- 96 .
d--------- 128 ..
---------- 16384 test1
RedBoot>

1993

RedBoot Commands and Examples

Name
fs mkdir — Create filesystem directory

Synopsis
fs mkdir { directory }

Arguments

Name Type Description Default

directory String Pathname to directory to delete.

Description

This command creates (makes) a directory in the filesystem.

Examples
RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
---------- 4096 image
RedBoot> fs mkdir tests
RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
d--------- 64 tests
---------- 4096 image
RedBoot>

1994

RedBoot Commands and Examples

Name
fs rmdir — Delete filesystem directory

Synopsis
fs rmdir { directory }

Arguments

Name Type Description Default

directory String Pathname to directory to delete.

Description

This command deletes a directory from the filesystem. If the directory contains files or other directories then this command
will fail.

Examples

Delete directory:

RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
d--------- 96 tests
---------- 4096 image
RedBoot> fs rmdir tests
RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
---------- 4096 image
RedBoot>

1995

RedBoot Commands and Examples

Name
fs rm — Delete file

Synopsis
fs rm { file }

Arguments

Name Type Description Default

file String Pathname of file to delete.

Description

This command deletes a file from the filesystem.

Examples

Change current directory:

RedBoot> fs ls tests
d--------- 96 .
d--------- 128 ..
---------- 16384 test1
RedBoot> fs rm tests/test1
RedBoot> fs ls tests
d--------- 96 .
d--------- 128 ..
RedBoot>

1996

RedBoot Commands and Examples

Name
fs mv — Move file

Synopsis
fs mv { source } { dest }

Arguments

Name Type Description Default

source String Pathname of file to move.

dest String Pathname to new file location.

Description

This command moves a file within a filesystem. This command will fail if the destination file already exists, or is in a different
filesystem.

Examples

Rename a file:

RedBoot> fs ls tests
d--------- 96 .
d--------- 128 ..
---------- 12288 test1
RedBoot> fs mv tests/test1 tests/test2
RedBoot> fs ls tests
d--------- 128 .
d--------- 128 ..
---------- 12288 test2
RedBoot>

1997

RedBoot Commands and Examples

Name
fs cp — Copy file

Synopsis
fs cp { source } { dest }

Arguments

Name Type Description Default

source String Pathname of file to copy.

dest String Pathname to new file location.

Description

This command copies a file from one location to another. Source and destination need not be on the same file system. If the
destination file already exists it will be overwritten with the new file contents. This command will fail if the source file does
not exist.

Examples

Copy a file:

RedBoot> fs ls /usb
drwxrwxrwx 0 System Volume Information
drwxrwxrwx 0 TEST
RedBoot> fs cp /boot/LICENCE.broadcom /usb/LICENCE.broadcom
RedBoot> fs ls /usb
drwxrwxrwx 0 System Volume Information
drwxrwxrwx 0 TEST
-rwxrwxrwx 1494 LICENCE.broadcom
RedBoot>

1998

RedBoot Commands and Examples

Name
fs cat — Display file

Synopsis
fs cat { file }

Arguments

Name Type Description Default

file String Pathname of file to display.

Description

This command displays the contents of the given file on the console. It is useful for examining configuration, script or other
text files. The file is sent to the console with no additional interptetation, so applying this to a binary file may result in chaos
on screen. The command will fail if the file does not exist.

Examples

Copy a file:

RedBoot> fs cat /boot/redboot.txt
RedBoot init file
#--
Network setup

Optional command to set a specific IP address
#ip_address -l 10.44.44.44/8

#--
JTAG setup

Default ALT4 set
jtag 22 23 24 25 26 27

ALT5 set, with TRST on pin 22 ALT4
#jtag 4 5 6 12 13 22

Alternate mixed set used by some earlier JTAG implementations
jtag 4 22 24 25 27

All JTAG pins, useful for testing changes to pin settings.
#jtag 4 5 6 12 13 22 23 24 25 26 27

#--
EOF
RedBoot>

1999

RedBoot Commands and Examples

Name
fs ls — List filesystem directory

Synopsis
fs ls [directory]

Arguments

Name Type Description Default

directory String Pathname to directory to list. Current directory

Description

This command prints a list of the contents of the named directory. Each line of the listing starts with a set of UNIX-like access
flags, the first character of this will be a ”d“ if this entry is a directory. Following this is the size of the file in bytes and the
last item is its name.

Examples

List the current directory:

RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
---------- 4096 image
d--------- 96 tests
RedBoot>

List a subdirectory:

RedBoot> fs ls tests
d--------- 96 .
d--------- 128 ..
---------- 16384 test1
RedBoot>

2000

RedBoot Commands and Examples

Name
fs write — Write to filesystem

Synopsis
fs write [-b mem_address] [-l length] {name}

Arguments

Name Type Description Default

mem_address Number Address of data to be written to flash. Address of last loaded
file. If not set by a load
operation it must be
specified.

length Number Length of data to be written. Length of last loaded
file.

name String Name of file to create.

Description

This command is used to write data from memory to a file. If the file does not exist it will be created. If it does exist, then it
will be overwritten with the new contents.

Examples

Write an area of data to a file

RedBoot> fs write -b 0x0606f000 -l 0x1000 image
RedBoot> fs ls
d--------- 128 .
d--------- 128 ..
---------- 4096 image
d--------- 96 tests
RedBoot>

2001

RedBoot Commands and Examples

Persistent State Flash-based Configuration and
Control
RedBoot provides flash management support for storage in the flash memory of multiple executable images and of non-volatile
information such as IP addresses and other network information.

RedBoot on platforms that support flash based configuration information will report the following message the first time that
RedBoot is booted on the target:

flash configuration checksum error or invalid key

This error can be ignored if no flash based configuration is desired, or can be silenced by running the fconfig command as
described below. At this point you may also wish to run the fis init command. See other fis commands in the section called
“Flash Image System (FIS)”.

Certain control and configuration information used by RedBoot can be stored in flash.

The details of what information is maintained in flash differ, based on the platform and the configuration. However, the basic
operation used to maintain this information is the same. Using the fconfig -l command, the information may be displayed and/
or changed.

If the optional flag -i is specified, then the configuration database will be reset to its default state. This is also needed the first
time RedBoot is installed on the target, or when updating to a newer RedBoot with different configuration keys.

If the optional flag -l is specified, the configuration data is simply listed. Otherwise, each configuration parameter will be
displayed and you are given a chance to change it. The entire value must be typed - typing just carriage return will leave a
value unchanged. Boolean values may be entered using the first letter (t for true, f for false). At any time the editing process
may be stopped simply by entering a period (.) on the line. Entering the caret (^) moves the editing back to the previous item.
See “RedBoot Editing Commands”, the section called “RedBoot Editing Commands”.

If any changes are made in the configuration, then the updated data will be written back to flash after getting acknowledgment
from the user.

If the optional flag -n is specified (with or without -l) then “nicknames” of the entries are used. These are shorter and less
descriptive than “full” names. The full name may also be displayed by adding the -f flag.

The reason for telling you nicknames is that a quick way to set a single entry is provided, using the format

 RedBoot> fconfig nickname value

If no value is supplied, the command will list and prompt for only that entry. If a value is supplied, then the entry will be set
to that value. You will be prompted whether to write the new information into flash if any change was made. For example

 RedBoot> fconfig -l -n
 boot_script: false
 bootp: false
 bootp_my_ip: 10.16.19.176
 bootp_server_ip: 10.16.19.66
 dns_ip: 10.16.19.1
 gdb_port: 9000
 net_debug: false
 RedBoot> fconfig bootp_my_ip 10.16.19.177
 bootp_my_ip: 10.16.19.176 Setting to 10.16.19.177
 Update RedBoot non-volatile configuration - continue (y/n)? y
 ... Unlock from 0x507c0000-0x507e0000: .
 ... Erase from 0x507c0000-0x507e0000: .
 ... Program from 0x0000a8d0-0x0000acd0 at 0x507c0000: .
 ... Lock from 0x507c0000-0x507e0000: .
 RedBoot>

Additionally, nicknames can be used like aliases via the format %{nickname}. This allows the values stored by fconfig to
be used directly by scripts and commands.

2002

RedBoot Commands and Examples

Depending on how your terminal program is connected and its capabilities, you might find that you are unable to use line-
editing to delete the ’old‚ value when using the default behaviour of fconfig nickname or just plain fconfig, as shown in
this example:

RedBoot> fco bootp
bootp: false_

The user deletes the word “false;” and enters “true” so the display looks like this:

RedBoot> fco bootp
bootp: true
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlock from ...
RedBoot> _

To edit when you cannot backspace, use the optional flag -d (for “dumb terminal”) to provide a simpler interface thus:

RedBoot> fco -d bootp
bootp: false ? _

and you enter the value in the obvious manner thus:

RedBoot> fco -d bootp
bootp: false ? true
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlock from ...
RedBoot> _

One item which is always present in the configuration data is the ability to execute a script at boot time. A sequence of RedBoot
commands can be entered which will be executed when the system starts up. Optionally, a time-out period can be provided
which allows the user to abort the startup script and proceed with normal command processing from the console.

RedBoot> fconfig -l
Run script at boot: false
Use BOOTP for network configuration: false
Local IP address: 192.168.1.29
Default server IP address: 192.168.1.101
DNS domain name: example.com
DNS server IP address: 192.168.1.1
GDB connection port: 9000
Network debug at boot time: false

The following example sets a boot script and then shows it running.

RedBoot> fconfig
Run script at boot: false t
 Boot script:
Enter script, terminate with empty line
>> fi li
 Boot script timeout: 0 10
Use BOOTP for network configuration: false .
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0xa0fc0000-0xa0fe0000: .
... Program from 0x8c021f60-0x8c022360 at 0xa0fc0000: .
RedBoot>
RedBoot(tm) debug environment - built 08:22:24, Aug 23 2000
Copyright (C) 2000, Free Software Foundation, Inc.

RAM: 0x8c000000-0x8c800000
flash: 0xa0000000 - 0xa1000000, 128 blocks of 0x00020000 bytes ea.
Socket Communications, Inc: Low Power Ethernet CF Revision C \
5V/3.3V 08/27/98 IP: 192.168.1.29, Default server: 192.168.1.101 \
== Executing boot script in 10 seconds - enter ^C to abort
RedBoot> fi li
Name flash addr Mem addr Length Entry point
RedBoot 0xA0000000 0xA0000000 0x020000 0x80000000
RedBoot config 0xA0FC0000 0xA0FC0000 0x020000 0x00000000
FIS directory 0xA0FE0000 0xA0FE0000 0x020000 0x00000000

2003

RedBoot Commands and Examples

RedBoot>

Notes

• The bold characters above indicate where something was entered on the console. As you can see, the fi li
command at the end came from the script, not the console. Once the script is executed, command processing
reverts to the console.

• RedBoot supports the notion of a boot script timeout, i.e. a period of time that RedBoot waits before executing
the boot time script. This period is primarily to allow the possibility of canceling the script. Since a timeout
value of zero (0) seconds would never allow the script to be aborted or canceled, this value is not allowed. If
the timeout value is zero, then RedBoot will abort the script execution immediately.

On many targets, RedBoot may be configured to run from ROM or it may be configured to run from RAM. Other configurations
are also possible. All RedBoot configurations will execute the boot script, but in certain cases it may be desirable to limit the
execution of certain script commands to one RedBoot configuration or the other. This can be accomplished by prepending
{<startup type>} to the commands which should be executed only by the RedBoot configured for the specified startup
type. The following boot script illustrates this concept by having the ROM based RedBoot load and run the RAM based
RedBoot. The RAM based RedBoot will then list flash images.

RedBoot> fco
Run script at boot: false t
Boot script:
Enter script, terminate with empty line
>> {ROM}fis load RedBoot[RAM]
>> {ROM}go
>> {RAM}fis li
>>
Boot script timeout (1000ms resolution): 2
Use BOOTP for network configuration: false
 ...
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlock from 0x007c0000-0x007e0000: .
... Erase from 0x007c0000-0x007e0000: .
... Program from 0xa0015030-0xa0016030 at 0x007df000: .
... Lock from 0x007c0000-0x007e0000: .
RedBoot> reset
... Resetting.
+Ethernet eth0: MAC address 00:80:4d:46:01:05
IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version R1.xx - built 12:27:26, Sep 11 2003

Platform: IQ80310 (XScale)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0xa0000000-0xa2000000, 0xa001b088-0xa1fdf000 available
FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter ^C to abort
RedBoot> fis load RedBoot[RAM]
RedBoot> go
+Ethernet eth0: MAC address 00:80:4d:46:01:05
IP: 192.168.1.153, Default server: 192.168.1.10

RedBoot(tm) bootstrap and debug environment [RAM]
eCosCentric certified release, version R1.xx - built 18:03:27, Sep 11 2003

Platform: IQ80310 (XScale)
Copyright (C) 2000, 2001, Free Software Foundation, Inc.

RAM: 0xa0000000-0xa2000000, 0xa0057fe8-0xa1fdf000 available
FLASH: 0x00000000 - 0x00800000, 64 blocks of 0x00020000 bytes each.
== Executing boot script in 2.000 seconds - enter ^C to abort
RedBoot> fis li
Name FLASH addr Mem addr Length Entry point
RedBoot 0x00000000 0x00000000 0x00040000 0x00002000
RedBoot config 0x007DF000 0x007DF000 0x00001000 0x00000000
FIS directory 0x007E0000 0x007E0000 0x00020000 0x00000000

2004

RedBoot Commands and Examples

RedBoot>

Persistent State in a NAND-based environment
On some boards it is necessary to use NAND flash to store persistent state and configuration. This is normally provided by
the config store.

For simplicity, a bridge driver has been developed which allows the config store to be used by RedBoot as if it were NOR
flash. (The reason for this is that the RedBoot fconfig system has a much lower overhead than the NAND storage system, in
order to operate in environments with very limited resources. NAND-based boards have much more flash and RAM available,
so the overhead of the extra layers is not an issue.)

To RedBoot, the config store behaves identically to regular (NOR) flash storage. However its use has a number of implications:

• If the NAND is repartitioned or erased, all persistent configuration is likely to be lost.

• The configuration is susceptible to the same wearout and read disturb effects that affect all NAND parts over time. (This is
mitigated by allowing multiple NAND blocks for the config store partition, which are used in rotation.)

Even though the bridge driver may be in use, it is still possible to use the config store directly for other options.

Note

Some platform HALs use this mechanism to set the size of the config store partition in such a way that does not
depend on RedBoot. Refer to the documentation for those HAL ports for details.

Manipulating persistent state stored on NAND
To modify configuration items managed by RedBoot, use the fconfig command in the usual way. See the section called
“Persistent State Flash-based Configuration and Control ”.

To modify items in the config store which are not managed by RedBoot, use the nconfig command. See the section called
“NAND configuration commands ”. You may also wish to manipulate the NAND array with the nand command family; see
the section called “NAND manipulation commands ”.

Executing Programs from RedBoot
Once an image has been loaded into memory, either via the load command or the fis load command, execution may be transfered
to that image.

Note

The image is assumed to be a stand-alone entity, as RedBoot gives the entire platform over to it. Typical examples
would be an eCos application or a Linux kernel.

2005

RedBoot Commands and Examples

Name
go — Execute a program

Synopsis
go [-w timeout] [-c] [-n] [start_address]

Arguments

Name Type Description Default

-w timeout Number How long to wait before starting execution. 0

-c Boolean Go with caches enabled. caches off

-n Boolean Go with network interface stopped. network enabled

start_address Number Address in memory to begin execution. Value set by last load or
fis load command.

Description

The go command causes RedBoot to give control of the target platform to another program. This program must execute stand
alone, e.g. an eCos application or a Linux kernel.

If the -w option is used, RedBoot will print a message and then wait for a period of time before starting the execution. This is
most useful in a script, giving the user a chance to abort executing a program and move on in the script.

Examples

Execute a program - no explicit output from RedBoot.

RedBoot> go 0x40040

Execute a program with a timeout.

RedBoot> go -w 10
About to start execution at 0x00000000 - abort with ^C within 10 seconds
^C
RedBoot>

Note that the starting address was implied (0x00000000 in this example). The user is prompted that execution will commence
in 10 seconds. At anytime within that 10 seconds the user may type Ctrl+C on the console and RedBoot will abort execution
and return for the next command, either from a script or the console.

2006

RedBoot Commands and Examples

Name
exec — Execute a Linux kernel

Synopsis
exec [-w timeout] [-r ramdisk_address] [-s ramdisk_length] [-b load_address {-l load_length}]
[-c kernel_command_line] [entry_point]

Arguments

Name Type Description Default

-w timeout Number Time to wait before starting execution. 0

-r ramdisk_address Number Address in memory of "initrd"-style ramdisk -
passed to Linux kernel.

None

-s ramdisk_length Number Length of ramdisk image - passed to Linux
kernel.

None

-b load_address Number Address in memory of the Linux kernel image. Value set by load or fis
load

-l load_length Number Length of Linux kernel image. none

-c kernel_command_line String Command line to pass to the Linux kernel. None

-x Boot kernel with endianess opposite of Red-
Boot endianess.

Boot kernel with same en-
dianess as RedBoot

entry_address Number Starting address for Linux kernel execution Implied by architecture

Description

The exec command is used to execute a non-eCos application, typically a Linux kernel. Additional information may be passed
to the kernel at startup time. This command is quite special (and unique from the go command) in that the program being
executed may expect certain environmental setups, for example that the MMU is turned off, etc.

The Linux kernel expects to have been loaded to a particular memory location which is architecture dependent(0xC0008000 in
the case of the SA1110). Since this memory is used by RedBoot internally, it is not possible to load the kernel to that location
directly. Thus the requirement for the "-b" option which tells the command where the kernel has been loaded. When the exec
command runs, the image will be relocated to the appropriate location before being started. The "-r" and "-s" options are used
to pass information to the kernel about where a statically loaded ramdisk (initrd) is located.

The "-c" option can be used to pass textual "command line" information to the kernel. If the command line data contains any
punctuation (spaces, etc), then it must be quoted using the double-quote character '"'. If the quote character is required, it should
be written as '\"'.

The "-x" option is optionally available on some bi-endian platforms. It is used to boot a kernel built with an endianess opposite
of RedBoot.

Examples

Execute a Linux kernel, passing a command line, which needs relocation. The result from RedBoot is normally quiet, with the
target platform being passed over to Linux immediately.

RedBoot> exec -b 0x100000 -l 0x80000 -c "noinitrd root=/dev/mtdblock3 console=ttySA0"

Execute a Linux kernel, default entry address and no relocation required, with a timeout. The emphasized lines are output
from the loaded kernel.

RedBoot> exec -c "console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh" -w 5

2007

RedBoot Commands and Examples

Now booting linux kernel:
Base address 0x8c001000 Entry 0x8c210000
Cmdline : console=ttyS0,38400 ip=dhcp nfsroot=/export/elfs-sh
About to start execution at 0x8x210000 - abort with ^C within 5 seconds
Linux version 2.4.10-pre6 (...) (gcc version 3.1-stdsh-010931) #3 Thu Sep 27 11:04:23 BST 2001

NAND configuration commands
Note

This section does not cover configuration items managed by RedBoot; for those, use the fconfig command
instead (the section called “Persistent State Flash-based Configuration and Control ”).

The config store is the backing store for this persistent information. Data is stored as (key, value) pairs; values are typed. This
section refers only to the RedBoot commands for manipulating the config store.

Note

The config key ecos.fakeflash.config contains the RedBoot configuration information as managed by
the fconfig command. Do not edit this key directly; it is automatically managed by RedBoot and the driver stack.

2008

RedBoot Commands and Examples

Name
nconfig list — List configuration keys

Synopsis
nconfig list

Arguments

The command takes no arguments.

Description

This command lists all known configuration keys. The list is output in arbitrary order.

Examples
RedBoot> nconfig list
The config store contains:
 nand.partition1.size
 nand.partition1.base
 ecos.fakeflash.config
RedBoot>

Note

The config key ecos.fakeflash.config contains the RedBoot configuration information as managed by
the fconfig command. Do not edit this key directly; it is automatically managed by RedBoot and the driver stack.

2009

RedBoot Commands and Examples

Name
nconfig info — Query metadata for one or more config keys

Synopsis
nconfig info <key> [<key>...]

Arguments

One or more config keys. Information is returned about each of them in turn.

Description

This command outputs the metadata (type and data size) for the requested configuration key(s) in the form they currently
appear in the store.

Note

The type of a data key is not fixed; it may be changed later, either via RedBoot or by an application. Similarly,
the reported size of a variable-length type (string or bytes) only reflects its current size in storage and may
change later.

Examples
RedBoot> nconfig info nand.partition1.base nand.partition1.size
Key : nand.partition1.base
 type : uint
 data size : 4
Key : nand.partition1.size
 type : uint
 data size : 4
RedBoot> nconfig info foo
Key foo not found
RedBoot>

2010

RedBoot Commands and Examples

Name
nconfig types — List all known config data types

Synopsis
nconfig types

Arguments

This command takes no arguments.

Description

This command lists all data types the config store knows about.

Config store data types

uint Unsigned 32-bit integer

bool Boolean

string A printable, NULL-terminated string of arbitrary length.

bytes A byte array of arbitrary length.

Note

It is possible that data could be present of an unknown type, if support for new types has been added to an
application. The config store has been specifically designed to cope with unknown types and not disturb them.

Examples
RedBoot> nconfig types
This build supports the following types:
uint, bool, bytes, string
RedBoot>

2011

RedBoot Commands and Examples

Name
nconfig get — Outputs the current value of one or more config keys

Synopsis
nconfig get <key> [<key>...]

Arguments

One or more config keys.

Description

This command retrieves and outputs the current values of one or more config keys. Byte arrays are pretty-printed in hex; strings
are output without line breaks.

Note

It is possible that data could be present of an unknown type, if support for new types has been added to an
application. The get logic will not be able to display types it does not know about.

Examples
RedBoot> nconfig get nand.partition1.base nand.partition1.size
nand.partition1.base=16
nand.partition1.size=200
RedBoot> nconfig get app1.magic
app1.magic=This is a string example
RedBoot> nconfig get app2.magic
ecos.fakeflash.config: <64 bytes, hex follows>a
 00100000cefaad0b 010c0100626f6f74 5f73637269707400 000000000411010c
 626f6f745f736372 6970745f64617461 00626f6f745f7363 7269707400000000
RedBoot>

2012

RedBoot Commands and Examples

Name
nconfig put — Writes a config key

Synopsis
nconfig put <key> <type> <value>

Arguments

The config key, type and the value or data to be written to it.

Description

This command writes a single key to the store. If the key was already present in the store, its existing value is overwritten.

The value of a bool variable may be specified as true, True, t, T, 1; false, False, f, F, or 0.

Notes

• This interface does not support the bytes type yet.

• To write a string containing a space from within RedBoot, it is necessary to surround the string in quote marks.

• This command may be configured out with the CYGSEM_REDBOOT_CONFIGSTORE_PUT_CMD option.

Examples
RedBoot> nconfig put nand.partition1.size uint 100
Written OK
RedBoot> nconfig put app1.magic string "This is a string"
Written OK
RedBoot> nconfig put baz.qux bool true
Written OK
RedBoot> nconfig get baz.qux
baz.qux=True
RedBoot>

2013

RedBoot Commands and Examples

Name
nconfig del — Deletes a config key

Synopsis
nconfig del <key>

Arguments

The config key to delete.

Description

This command deletes a key and its data from the store.

Note

This command may be configured out with the CYGSEM_REDBOOT_CONFIGSTORE_DEL_CMD option.

Examples
RedBoot> nconfig del foo.bar
Deleted OK
RedBoot> nconfig del foo.bar
Key foo.bar not found
RedBoot>

2014

RedBoot Commands and Examples

Name
nconfig dump — Diagnostic dump output

Synopsis
nconfig dump

Arguments

This command takes no arguments.

Description

This command outputs a diagnostic dump of all the configuration data in the store.

Note

This command is not present by default. It may be configured in, with the CYGSEM_REDBOOT_CONFIGS-
TORE_DUMP_CMD option.

Caution

This command can generate excessive amounts of output, which may take a long time to send over a slow debug
channel.

Note

While this command outputs byte arrays in hex, they are not line-wrapped.

Examples
RedBoot> nconfig dump
Store serial number 52:
 app1.magic=This is a string
 nand.partition1.size=200
 nand.partition1.base=16
 ecos.fakeflash.config=00100000cefaad0b 010c0100626f6f74 5f73637269707400 626f6f745f736372 6970745f64617461 \
00626f6f745f7363 7269707400000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 \
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 \
0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000
 (Ends)
RedBoot>

NAND manipulation commands
Notes

• These commands are only available when there is at least one NAND driver configured.

• All the nand badblocks commands may be configured out simultaneously by turning off the
CYGSEM_REDBOOT_NAND_BADBLOCKS_CMD option.

2015

RedBoot Commands and Examples

Name
nand list — List NAND devices

Synopsis
nand list

Arguments

The command takes no arguments.

Description

This command lists all known NAND devices for which a driver is loaded in the current eCos configuration. The list is output
in arbitrary order.

Examples
RedBoot> nand list
NAND devices available:
 onboard
RedBoot>

2016

RedBoot Commands and Examples

Name
nand info — Output information about a NAND device

Synopsis
nand info <dev> [<dev>...]

Arguments

Specify the NAND device name(s) to query. If none are given, all available devices will be queried in turn.

Description

This command outputs information about selected NAND devices. The output includes information about the device physical
configuration (not including the spare area of each page) as well as the current configured partition table.

Note

For information about how the partition table is defined and controlled on a particular device, refer to the relevant
platform HAL documentation. Some devices can be reconfigured dynamically from within RedBoot; others have
a static configuration which requires that eCos (and RedBoot) be rebuilt.

Examples
RedBoot> nand info
NAND device `onboard':
 2048 bytes/page, 64 pages/block, capacity 2048 blocks x 128 kB = 256 MB
 Partition Start Blocks
 0 6 10
 1 16 200
RedBoot>

2017

RedBoot Commands and Examples

Name
nand badblocks states — List all current valid BBT states

Synopsis
nand badblocks states

Arguments

This command takes no arguments.

Description

This command lists the names of the possible states that may be applied to each block within the Bad Block Table.

Examples
RedBoot> nand badblocks states
The possible block states are:
 0 : OK
 1 : worn bad
 2 : reserved
 3 : factory bad
RedBoot>

2018

RedBoot Commands and Examples

Name
nand badblocks summary — Summary of the Bad Block Table

Synopsis
nand badblocks summary [-d <device>]

Arguments

This command takes an optional device argument. If not specified, and only one device is present, it applies to the single device;
if more than one device is present, it must be specified.

Description

This command outputs a human-readable summary of the information held within the Bad Block Table of a device.

Examples
RedBoot> nand badblocks summary
Device `onboard' has 2048 blocks, of which 2 are factory bad, 2 reserved. 2044 blocks (99%) are OK.
RedBoot>

2019

RedBoot Commands and Examples

Name
nand badblocks list — List not-OK blocks in a Bad Block Table

Synopsis
nand badblocks list [-d <device>]

Arguments

This command takes an optional device argument. If not specified, and only one device is present, it applies to the single device;
if more than one device is present, it must be specified.

Description

This command outputs a human-readable list of the numbers of all not-OK blocks in a device, according to its Bad Block Table.

Examples
RedBoot> nand badblocks list -d onboard
factory bad: 100, 101. (count: 2 blocks)
worn bad: no blocks
reserved: 2046, 2047. (count: 2 blocks)
RedBoot>

2020

RedBoot Commands and Examples

Name
nand badblocks mark — Manipulate the Bad Block Table

Synopsis
nand badblocks mark [-d <device>] -b <block> -s <state>

Arguments

-b block The block number whose state is to be manipulated.

Note

Block numbers to this command are device block numbers, with 0 meaning
the first block on the device.

-s state The new state for the given block. This must be a state number, as output by nand
badblocks states.

-d device (Optional.) If not specified, and only one device is present, the command is assumed to
apply to the NAND device; if more than one device is present, it must be specified.

Description

This command explicitly manipulates the Bad Block Table.

Note

This command may be configured out with the CYGSEM_REDBOOT_NAND_BADBLOCKS_MARK_CMD option.

Warning

Misuse of this command is likely to cause corruption of data you care about!

• Live data in affected blocks can be rendered inaccessible to eCos.

• Blocks which have been marked as unreliable due to wear can be brought back into circulation but will still
be unreliable.

Examples
RedBoot> nand badblocks mark -d onboard -b 2000 -s 1
OK
RedBoot> nand badblocks list -d onboard
factory bad: 100, 101. (count: 2 blocks)
worn bad: 2000. (count: 1 blocks)
reserved: 2046, 2047. (count: 2 blocks)
RedBoot> nand badblocks mark -d onboard -b 2000 -s 0
OK
RedBoot> nand badblocks list -d onboard
factory bad: 100, 101. (count: 2 blocks)
worn bad: no blocks
reserved: 2046, 2047. (count: 2 blocks)
RedBoot>

2021

RedBoot Commands and Examples

Name
nand erase — Erase an entire NAND partition

Synopsis
nand erase <device>/<partition>

Arguments

This command takes a single argument encoding the device and partition to erase.

Description

This command erases every block of a NAND partition.

Note

This command may be configured out with the CYGSEM_REDBOOT_NAND_ERASE_CMD option.

Examples
RedBoot> nand info
NAND device `onboard':
 2048 bytes/page, 64 pages/block, capacity 2048 blocks x 128 kB = 256 MB
 Partition Start Blocks
 0 6 10
 1 16 200
RedBoot> nand erase onboard/2
nand erase: partition not found
RedBoot> nand erase onboard/1
Erasing partition blocks 0 to 199...
............................Skipping block 84 (factory bad)
.Skipping block 85 (factory bad)
......................................
Erase complete.
RedBoot>

2022

RedBoot Commands and Examples

Name
nand eraseblock — Erase a specific NAND block

Synopsis
nand eraseblock -d <device> -b <block> [-n <count>]

Arguments

-b block The block number to erase (or, if -n is given, the first block).

Note

Block numbers to this command are device block numbers, with 0 meaning
the first block on the device.

-n count The number of blocks to erase. This defaults to 1.

-d device The name of the device to affect.

Description

This command erases one or more blocks on a NAND device.

Notes

• This command may be configured out with the CYGSEM_REDBOOT_NAND_ERASEBLOCK_CMD option.

• This command ignores the Bad Blocks Table. It will attempt to erase any block on the device, regardless of
its state.

Warning

This command is powerful, but potentially dangerous as it will erase data without any safety checks. It is possible
to erase RedBoot, other files required for system bootstrap, the Bad Block Table itself, any stored configuration
data, etc. Be very sure of the block number before committing!

Examples
RedBoot> nand eraseblock -d onboard -b 42 -n 2
Erasing device onboard blocks 42-43...
Erase complete.
RedBoot>

2023

Chapter 226. Rebuilding RedBoot
Introduction
Prebuilt images of RedBoot are provided for all target platforms supported by an eCosCentric release, so it is not normally
required to rebuild RedBoot in order to be able to begin your software development on eCos/eCosPro and the target platform.
However, for later development you may wish to build your own cut down version of RedBoot or custom enhanced version
that includes features such as manufacturing tests, initial programming, recovery, security and so on. This chapter describes
the process of building, or rebuilding, RedBoot.

RedBoot is built as an application on top of eCos. The makefile rules for building RedBoot are part of the eCos CDL package so
building RedBoot may be easily achieved. Typically building involves a command shell and the command line tool ecosconfig,
with additional configuration or final build done through the eCos Configuration Tool.

Building RedBoot requires only a few steps: selecting the platform and the RedBoot template, importing a platform specific
configuration file, and finally starting the build.

The platform specific configuration file makes sure the settings are correct for building RedBoot for the given target platform.
Each target platform supporting RedBoot normally provides at least one configuration file whose name typically indicates
the startup mode of RedBoot (see the section called “RedBoot Startup Mode”). For example, redboot_RAM.ecm indicates
the filename of a RAM mode RedBoot configuration and redboot_ROM.ecm or redboot_ROMRAM.ecm for a ROM or
ROMRAM mode RedBoot configuration filename respectively. There may be additional configuration files according to the
requirements of the particular platform. These files are placed into the install/etc/redboot/<target> directory of
the install tree, or may be found in the misc sub-directory of the platform HAL directory for older releases of eCos.

The RedBoot build process results in a number of files in the install/bin directory. The ELF file redboot.elf is the
principal result. Depending on the platform CDL, there will also be generated versions of RedBoot in other file formats, such
as redboot.bin (binary format, good when doing an update of a primary RedBoot image, see the section called “Update the
primary RedBoot flash image”), redboot.srec (Motorola S-record format, good when downloading a RAM mode image
for execution), and redboot.img (stripped ELF format, good when downloading a RAM mode image for execution, smaller
than the .srec file). Some platforms may provide additional file formats and also relocate some of these files to a particular
address making them more suitable for downloading using a different boot monitor or flash programming tools.

The platform specific information in the relevant platform's HAL documentation must be consulted as there may be other
special instructions required to build RedBoot.

Variables
These instructions assume that the ECOS_REPOSITORY environment variable contains the full pathname of the packages
subdirectory or directories containing the eCosPro repository or repositories from which RedBoot is to be built.

These instructions also make use of the ECOS_TARGET and REDBOOT_CFG environment variables to simplify and provide
generic instructions for building RedBoot. Their used is not required and users are free to replace these with their own actual
values in the instructions provided.

The instructions provided in this section are for a bash shell environment but are also applicable to a Windows CMD environ-
ment. The only differences between the instructions for either is the appearance of environment variables in the instructions and
the different format of directory paths. For example, where you see the use of the ${REDBOOT_CFG} environment variable
in the bash shell, %REDBOOT_CFG% must be used in the Windows CMD environment.

The setting of an envirnment variable also differs. For example in the bash shell a variables may be set as follows:

$ export REDBOOT_CFG=redboot_RAM

In the windows CMD environment a variable is set as follows:

C:\users\demo> set REDBOOT_CFG=redboot_RAM

2024

Rebuilding RedBoot

The same applies for the ${ECOS_TARGET} environment variable. In the example below it is set for at91sam9g45ek
target platform, the AT91SAM9G45-EKES board. For the bash shell:

$ export ECOS_TARGET=at91sam9g45ek

For the Windows CMD:

C:\users\demo> set ECOS_TARGET=at91sam9g45ek

Note

Windows users using eCosPro Developer's Kits may also use the bash shell by changing the shell opened from the
eCos Configuration Tool using the Tools → Shell menu option by selecting View → Settings (Ctrl+T) , selecting
the Viewers/Shell tab within the resulting dialog and changing the Command Shell to bash.

Building RedBoot using ecosconfig
To build RedBoot using the ecosconfig tool in a command line environment:

1. Create a temporary directory for building RedBoot, and change into it. For example:

$ mkdir /tmp/${REDBOOT_CFG}
$ cd /tmp/${REDBOOT_CFG}

2. Create a partial build tree to instantiate the platform specific configuration files for the chosen platform:

$ ecosconfig --noresolve new ${ECOS_TARGET} redboot
$ ecosconfig --ignore-errors --no-resolve tree
$ make etc

At this point all the relevant RedBoot configuration files should be found in the install/etc/
redboot/${ECOS_TARGET} subdirectory. install/etc will become further populated with other configuration
files, such as example PEEDI and OpenOCD configuration files, after a complete build of RedBoot.

3. Import the appropriate platform RedBoot configuration file:

$ ecosconfig --no-resolve import install/etc/${ECOS_TARGET}/${REDBOOT_CFG}.ecm

At this point the eCos configuration in ecos.ecc will contain all the unresolved settings required to build a
${REDBOOT_CFG} for the ${ECOS_TARGET} platform

4. Resolve any conflicts and create build tree for RedBoot:

$ ecosconfig resolve
$ ecosconfig tree

5. RedBoot can now be built:

$ make

The resulting RedBoot files will be in the associated install directory, in this example, ./install/bin.

Note

Older revisions of eCos or some platforms may not support the etc make target. In these instances the RedBoot
configuration file will not be found in the install/etc/${ECOS_TARGET}/ subdirectory but may be found
in the misc subdirectory of the platform HAL within ${ECOS_REPOSITORY}. In these instances please refer
to the specific platform HAL documentation for instructions on how to build RedBoot using an appropriate
configuration file.

To build for another configuration, simply change the REDBOOT_CFG definition accordingly. For example:

export REDBOOT_CFG=redboot_ROM
mkdir /tmp/${REDBOOT_CFG}

2025

Rebuilding RedBoot

cd /tmp/${REDBOOT_CFG}
ecosconfig --no-resolve new ${ECOS_TARGET} redboot
ecosconfig --no-resolve --ignore-errors tree
make etc
ecosconfig --no-resolve import install/etc/${REDBOOT_CFG}.ecm
ecosconfig resolve
ecosconfig tree
make

Notes

• The options --no-resolve and --ignore-errors are essential to certain targets. Their purpose is
to delay the libcdl inferrence engine from being applied to a configuration until the required settings for
the RedBoot configuration have been imported. This prevents any inferrences from being made during each
creation step of the RedBoot configuration which may steer the final outcome to an unresolveable conflict.
This is because inferrences cannot currently be implicitly undone within a configuration, and some inferences
may need to be reversed by settings imported within ${REDBOOT_CFG}.ecm. The final ecosconfig resolve
command above therefore applies the libcdl inferrence engine to the configuration settings once all the required
settings have been made. The options are otherwise harmless for targets which are not sensitive to premature
inferrences.

• If the bash shell or Windows CMD was started from within the eCos Configuration Tool, the environment
variable ECOS_TARGET will be set within the shell to the target of the configuration tool's eCos configuration
at the time bash or CMD was started.

Rebuilding RedBoot from the eCos Configuration
Tool
While it is possible to rebuild RedBoot from the eCos Configuration Tool, creating a RedBoot configuration is not always
simple due to certain behavioural limitations of the eCos Configuration Tool. Instead, developers are recommended to use the
Tools → Shell menu option to create a command shell and follow the instructions in the section called “Building RedBoot using
ecosconfig” up to and including the make etc step with the inclusion of the --compat and --config=<savefile>.ecc
options to every ecosconfig command. For example, assuming a working directory of /tmp:

cd /tmp
ecosconfig --compat --config=<savefile>.ecc --no-resolve new ${ECOS_TARGET} redboot
ecosconfig --compat --config=<savefile>.ecc --no-resolve --ignore-errors tree
make etc

Note

The environment variable ${ECOS_TARGET} will be set by the eCos Configuration Tool to the current
configuration's hardware, or profile's default hardware if no configuration has been created. It may therefore not
be necessary to set this variable.

At this point the 1st stage RedBoot configuration can be loaded into the eCos Configuration Tool using File → Open to
open the file /tmp/<savefile>.ecc and the RedBoot settings imported from /tmp/<savefile>_install/etc/
redboot/${ECOS_TARGET}/${REDBOOT_CFG}.ecm. using File → Import .

Depending on the platform, a number of conflicts may need to be resolved before the build can be started. To resolve conflicts,
if any, use the menu item Tools → Resolve Conflicts .

If you wish to switch to a different location or filename, you may now do so using the menu option File → Save As .

Generate a build tree to instantiate the platform specific configuration files for the chosen platform Build → Generate Build
Tree .

Then start the build (Build → Library (F7)) and wait for it to complete. The resulting RedBoot files will be in the associated
install directory, for the example this would be <savefile>_install/bin

2026

Rebuilding RedBoot

As noted above, please also refer to the platform's HAL documentation to determine if there are any additional platform specific
instructions that must be followed when rebuilding RedBoot.

2027

Chapter 227. Updating RedBoot
Introduction
RedBoot normally resides in internal flash on the CPU or external flash on the board. It is often possible to update RedBoot in
situ using a hardware debugger or even Redboot's flash management commands. Occasionally vendor specific software tools
such as ATMEL's SAM-BA In- system Programmer may also be required.

The process of updating RedBoot in situ is documented in this section. For this process, it is assumed that the target is con-
nected to a host system and that there is a serial or TCPIP connection giving access to the RedBoot CLI. For platforms with a
ROMRAM mode RedBoot, skip to the section called “Update the primary RedBoot flash image”.

Older boards may use EEPROM although this is a lot less common nowadays. In this case of EPROM, updating RedBoot
normally necessitates physically removing the part and reprogramming a new RedBoot image into it using prommer hardware.

Note

The addresses and sizes included in the below are examples only, and will differ from those you will see. This
is normal and should not cause concern.

Load and start a RedBoot RAM instance
There are a number of choices here. The basic case is where a RAM mode image has been stored in the FIS (flash Image
System). To load and execute this image, use the commands:

RedBoot> fis load RedBoot[RAM]
RedBoot> go

If this image is not available, or does not work, then an alternate RAM mode image can be loaded via one of several other
methods:

• TFTP via a network connection:

RedBoot> load redboot_RAM.img
Entry point: 0x060213c0, address range: 0x06020000-0x060369c8
RedBoot> go

• X, Y or Z modem: (y modem in this example)

RedBoot> load -m y -r -b %{FREEMEMLO}
...
Raw file loaded 0x06046800-0x06062fe8, assumed entry at 0x06046800
RedBoot> go

• A filesystem, if available:

RedBoot> load hda2:redboot_RAM.img
Entry point: 0x060213c0, address range: 0x06020000-0x060369c8
RedBoot> go

Notes

• Refer to the load command for a complete list of options available.

• If you expect to be doing this more than once, it is a good idea to program the RAM mode image into the
flash. You do this using the fis create command after having downloaded the RAM mode image, but before
you start it.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your
platform does not support locking, simply ignore the fis unlock and fis lock steps (the commands will not be
recognized by RedBoot).

2028

Updating RedBoot

RedBoot> fis unlock RedBoot[RAM]
 ... Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot[RAM]
An image named 'RedBoot[RAM]' exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot[RAM]'
 at 0x00020000..0x000369c7 from 0x06020000 - continue (y/n)?y
... Erase from 0x00020000-0x00040000: ..
... Program from 0x06020000-0x060369c8 at 0x00020000: ..
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot[RAM]
 ... Lock from 0x00000000-0x00020000: ..

Update the primary RedBoot flash image
An instance of RedBoot should now be running on the target from RAM. This can be verified by looking for the mode identifier
in the banner. It should be either [RAM] or [ROMRAM].

If this is the first time RedBoot is running on the board or if the flash contents has been damaged, initialize the FIS directory:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x00020000-0x00070000:
... Erase from 0x00080000-0x00080000:
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .

It is important to understand that the presence of a correctly initialized FIS directory allows RedBoot to automatically determine
the flash parameters. Additionally, executing the steps below as stated without loading other data or using other flash commands
(than possibly fis list) allows RedBoot to automatically determine the image location and size parameters. This greatly reduces
the risk of potential critical mistakes due to typographical errors. It is still always possible to explicitly specify parameters,
and indeed override these, but it is not advised.

Note

If the new RedBoot image has grown beyond the slot in flash reserved for it, it is necessary to change the RedBoot
configuration option CYGBLD_REDBOOT_MIN_IMAGE_SIZE so the FIS is created with adequate space re-
served for RedBoot images. In this case, it is necessary to re-initialize the FIS directory as described above, using
a RAM mode RedBoot compiled with the updated configuration.

Using the load command, download the new flash based image from the host, relocating the image to RAM:

RedBoot> load -r -b %{FREEMEMLO} redboot_ROM.bin
Raw file loaded 0x06046800-0x06062fe8, assumed entry at 0x06046800

Notes

• This command loads the RedBoot image using the TFTP protocol via a network connection. Other methods
of loading are available, refer to the load command for more details.

• The binary version of the image is being downloaded. This is to ensure that the memory after the image is
loaded should match the contents of the file on the host. Loading SREC or ELF versions of the image does not
guarantee this since these formats may contain holes, leaving bytes in these holes in an unknown state after
the load, and thus causing a likely cksum difference. It is possible to use these, but then the step verifying the
cksum below may fail.

Once the image is loaded into RAM, it should be checksummed, thus verifying that the image on the target is indeed the image
intended to be loaded, and that no corruption of the image has happened. This is done using the cksum command:

RedBoot> cksum
Computing cksum for area 0x06046800-0x06062fe8

2029

Updating RedBoot

POSIX cksum = 2535322412 116712 (0x971df32c 0x0001c7e8)

Compare the numbers with those for the binary version of the image on the host. If they do not match, try downloading the
image again.

Assuming the cksum matches, the next step is programming the image into flash using the FIS commands.

Some platforms support locking (write protecting) certain regions of the flash, while others do not. If your platform does not
support locking, simply ignore the fis unlock and fis lock steps (the commands will not be recognized by RedBoot).

RedBoot> fis unlock RedBoot
... Unlock from 0x00000000-0x00020000: ..
RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
* CAUTION * about to program 'RedBoot'
 at 0x00000000..0x0001c7e7 from 0x06046800 - continue (y/n)? y
... Erase from 0x00000000-0x00020000: ..
... Program from 0x06046800-0x06062fe8 at 0x00000000: ..
... Erase from 0x00070000-0x00080000: .
... Program from 0x0606f000-0x0607f000 at 0x00070000: .
RedBoot> fis lock RedBoot
 ... Lock from 0x00000000-0x00020000: ..

Reboot; run the new RedBoot image
Once the image has been successfully written into the flash, simply reset the target OR RUN THE reset command and the
new version of RedBoot should be running.

When installing RedBoot for the first time, or after updating to a newer RedBoot with different configuration keys, it is nec-
essary to update the configuration directory in the flash using the fconfig command. See the section called “Persistent State
Flash-based Configuration and Control ”.

2030

Chapter 228. Initial Installation
Hardware Installation
Initial installation of RedBoot into the internel or external flash, or EEPROM, of target hardware is described alongside the
respective target hardware documentation in the eCos and eCosPro Reference Manual.

Note

The RedBoot installation documentation of outdated hardware and hardware no longer supported has been re-
moved from editions of this document from July 2016 onwards. If the eCos and eCosPro Reference Manual does
not contain instructions on installing RedBoot for your hardware, please refer to the [RedBoot User's Guide] or
[eCos Reference Manual] accompanying your eCos distribution.

What to Expect
The initial installation of RedBoot into a target's internal or external flash may normally be achieved using a hardware debugger,
an application or tools provided by either the target hardware's manufacturer or the chip vendor of the target hardware, or even
RedBoot's flash management commands from a revision of RedBoot running on the target hardware. In the latter case, a RAM
executable RedBoot would have been loaded into the target hardware's RAM through the use of a hardware debugger from
where it would have been started.

For example:

• ATMEL's SAM-BA In-system Programmer is a vendor specific software tool used for, amongst other, programming binary
images into internal or external flash of ATMEL components.

• The Ronetix PEEDI is a hardware debugger that may be used to either program the internal or external flash of target
hardware, or may be used to load RedBoot into the RAM (internal, external or otherwise) and commence it's execution,
thereby allowing RedBoot to program itself into the flash of the target hardware.

2031

http://www.ecoscentric.com/ecospro/doc/html/ref/index.html
http://www.ecoscentric.com/ecospro/doc/html/ref/index.html

Part LXXIII. Robust Boot Loader

Name
CYGPKG_RBL — provide a robust boot service

Description

The Robust Boot Loader (RBL) package provides an alternative to the usual RedBoot facilities for managing flash hardware,
the fis and fconfig commands. It provides the following facilities:

1. An application can be stored in flash memory. This can be loaded and run automatically during RedBoot startup, or it can
started manually.

2. The application can be updated in a robust fashion. The RBL code will automatically maintain a backup copy of the previous
version of the application in flash. If something goes wrong during the update, for example a power cut, the system can
still boot up using the backup.

3. There is also support for a block of persistent data. Applications can save a block of memory to flash and restore it later,
possibly after a reboot. Again updates will happen in a robust fashion with a primary and a backup copy.

4. The RBL functionality can be accessed by application code via a suitable API. Some of the functionality is also available
via RedBoot commands.

The RBL package is aimed primarily at field deployment of production systems rather than at application development. The
code update facility allows the application to be updated when necessary. The persistent data can be used to hold per-unit
settings and any state that should be preserved across power failures or anything else that causes a reboot. There is also some
control over standard I/O: in a deployed system the serial port may be connected to some other hardware and outputting a
RedBoot banner during startup could be confusing.

The package comes in two parts. When building RedBoot for a particular target platform the package detects the presence of
CYGPKG_REDBOOT in the configuration and modifies the available functionality. In any other configuration, used for building
the application, the package provides a set of library routines that allow access to this functionality.

The RBL code has gone through a number of versions, affecting the protocol used between the RedBoot code and the
application. The version is selected via the configuration option CYGNUM_RBL_VERSION. RedBoot and the application must
use the same version of RBL: an application linked against a V1 version of the RBL library routines will not work on top of a
RedBoot built with the V2 code, and vice versa. By default the latest version of the protocol will be used.

RedBoot Builds

The first step in building RedBoot with RBL support is to create a RedBoot configuration appropriate for the target platform.
This is somewhat target specific so the appropriate platform HAL or RedBoot documentation should be consulted for further
details. Typically RedBoot should be configured for ROM startup.

Given this initial configuration the RBL package CYGPKG_RBL should now be added to the configuration, using one of the
eCos configuration tools. For example with the command line tool this involves using ecosconfig add rbl. This involves a
conflict related to the configuration option CYGPKG_REDBOOT_FLASH. The RBL code replaces the standard RedBoot flash
support, based around the fis and fconfig commands, so that must be disabled.

It is also possible to enable the configuration option CYGOPT_RBL_FLASH_OVERRIDE to continue to permit use of
RedBoot's standard flash management facilities, but use of this option is discouraged as it is possible to use RedBoot's flash
management commands in ways that conflict with RBL. In particular RedBoot's FIS will not be aware of the location of the
RBL-managed code and data blocks. Also, RBL is not aware of the location of RedBoot's FIS and fconfig data in Flash, so it
is strongly recommended to use the CYGDAT_RBL_RESERVED_FLASH_BLOCKS option to reserve the flash area used for
FIS and fconfig data, usually the final one or two blocks in flash. As a result of these sorts of complications, caution is strongly
advised if considering use of CYGOPT_RBL_FLASH_OVERRIDE.

There are a number of other configuration options which may need to be changed at this point:

2033

Robust Boot Loader

CYGNUM_RBL_VERSION

This determines the protocol used between the RedBoot code and the application library routines. The default is to use
the latest version. If RedBoot should continue to work with existing application binaries using an older version then this
configuration option should be updated to match.

CYGNUM_RBL_FLASH_BASE

This option is only of interest if the target hardware has multiple banks of flash. The current version of the package requires
that all RBL code and data blocks reside in a single bank. By default this will be the same bank of flash that holds RedBoot,
either as determined by CYGNUM_REDBOOT_FLASH_BASE or the first bank of flash. If CYGNUM_RBL_FLASH_BASE
is enabled then its value will determine the bank of flash used for the RBL code and data blocks. This may be useful if
for example the board has a small NOR flash for holding RedBoot and a much larger serial dataflash for holding the eCos
application and its data.

CYGDAT_RBL_RESERVED_FLASH_BLOCKS

Some of the flash blocks should not be used by the RBL package to store code or data. On a typical system it will
be necessary to reserve at least flash block 0 because that is used to hold RedBoot itself. If a single flash block is too
small to hold RedBoot or if there are other blocks which should be reserved then these should be listed in the value of
CYGDAT_RBL_RESERVED_FLASH_BLOCKS, using a comma-separated list of numbers.

Note that if there are (smaller) boot blocks, RBL will instead consider them merged together as full sized blocks. For
example, if the normal block size is 64K, but there are eight 8K boot blocks, those boot blocks will be counted as if they
were another single 64K block, and the block numbers used for this option must reflect that.

CYGNUM_RBL_CODE_BLOCKS
CYGNUM_RBL_DATA_BLOCKS

The RBL code inside RedBoot needs to know how many flash blocks to allocate for the application code and for the
persistent data. Because it maintains both primary and backup versions the actual requirements will be double the sum of
these two options. These values will be hard-coded into the versions of RedBoot that get deployed in the field and cannot
easily be changed, so they should be chosen carefully.

CYGDAT_REDBOOT_DEFAULT_IP_ADDR

Because the flash is used for storing RBL blocks there is nowhere for Redboot to store an fis directory or any fconfig
settings. Hence certain settings like the default IP address cannot be managed via fconfig. Instead such settings must be
configured statically via configuration options. Typically this will not be a problem because RBL will be used primarily
in systems deployed in the field and RedBoot is used only to start the application. If application code needs such settings
then they can be held in the RBL persistent data.

CYGDAT_REDBOOT_DEFAULT_BOOT_SCRIPT
CYGNUM_REDBOOT_BOOT_SCRIPT_DEFAULT_TIMEOUT

Usually RedBoot will obtain its boot script, if any, from the fconfig data. This is not available when using
RBL so instead the boot script should be specified using a configuration option. For a deployed system
CYGDAT_REDBOOT_DEFAULT_BOOT_SCRIPT should be set to "rbl boot\n" (including the double quotes). If
the flash contains a valid application then this will be loaded and run automatically.

RedBoot gives users a chance to interrupt the system before running the boot script. Typically this is irrelevant for a
deployed system because there will be nothing attached to the terminal port, but it can be useful during development if for
example a broken version of the application has been installed by mistake. For a deployed system it may be desirable to
reduce the timeout from the default 10 seconds, so that the application restarts more quickly after a power failure.

CYGGLO_RBL_STDIO

This provides control over standard I/O behaviour and is described in more detail below.

Once RedBoot has been appropriately configured it can be built and installed as usual for the target platform.

2034

Robust Boot Loader

Application Builds
In addition to the RedBoot extensions the RBL package provides a number of functions for use by application code. These
functions interact with the main RBL code inside the currently installed RedBoot using the eCos virtual vector mechanism.

The RBL package is not part of any standard eCos configuration so it must be added explicitly to the configuration used for
application builds, for example by using ecosconfig add. The package's CDL script will detect that CYGPKG_REDBOOT is
not defined and hence know that the package is being used for an application build rather than for extending RedBoot. The
package does not require any special support from other parts of eCos.

The package's misc subdirectory contains three example programs that illustrate the use of the RBL API, together with a
README and various support files.

Standard I/O
The RBL package builds on standard RedBoot functionality such as boot scripts. Some of this functionality is desirable in a
development environment but can cause problems for a system deployed in the field. For example during startup RedBoot
will usually output a banner message via a serial port, and it will listen on that serial port for an incoming control-C character
in case the developer wants to abort the boot script. When a system is deployed that serial port may be connected to other
hardware which does not expect the banner message, or which might be sending a stream of data that happens to include the
occasional control-C.

When configuring and building RedBoot it is possible to change the default standard I/O behaviour using the configuration
option CYGGLO_RBL_STDIO. This can take one of three values:

standard RedBoot I/O behaves as usual, so typically the RedBoot banner will be sent out of a
serial port and RedBoot will abort the boot script if it detects an incoming control-C.
Application standard I/O is also not affected so for example a printf call will result
in data being sent out of the serial port.

suppress_redboot RedBoot I/O is suppressed. Any RedBoot output such as the banner message will be
discarded, and incoming characters will be ignored. When the application is started via
rbl boot I/O is reset so the application behaves as normal.

suppress_all RedBoot I/O is suppressed as before, but I/O is not reset when the application is started.
Hence any printf or similar output produced by the application gets discarded as
well (at least in the default configuration where output is sent via the HAL diagnostic
pseudo-device). The serial port is now available for other purposes, for example it can
be accessed via a full serial driver.

Suppressing application I/O in this way will only work if the application uses the
HAL virtual vector mechanisms to route I/O activity via RedBoot. If instead the
application is configured to ignore the virtual vectors, for example by disabling
CYGSEM_HAL_USE_ROM_MONITOR, then the RedBoot CYGGLO_RBL_OUTPUT
setting will have no effect on application I/O.

Manipulating the standard I/O behaviour like this should only be done when the application will be started automatically via
an rbl boot command in the boot script. If instead applications will be run via a gdb session interacting with RedBoot then
suppressing RedBoot I/O will interfere with the gdb traffic.

There is also a common HAL configuration option that application developers should be aware of:
CYGDBG_HAL_DEBUG_GDB_CTRLC_SUPPORT. By default this will be enabled for a RAM startup application. It causes
the system startup code to install an interrupt handler that looks for incoming control-C characters and switch control to the
gdb stubs. Usually this is sensible behaviour during development, but the option should be disabled for a deployed system.
Note that it is the application configuration that needs to be changed, not the RedBoot configuration.

2035

Name
rbl — access RBL functionality via the RedBoot prompt

Synopsis
rbl info

rbl newcode -b <buffer> -l <length>

rbl newdata -b <buffer> -l <length>

rbl boot

rbl condboot

Description
A RedBoot configured with RBL support will provide a new command rbl with various sub-commands. These allow users to
access the RBL functionality at the RedBoot prompt.

rbl info can be used to get information about the RBL subsystem, for example how many flash blocks are allocated to each
code block. Typical output might look like:

RedBoot> rbl info
Code block A : backup
 First flash block 1 (address 0xffe40000)
 Size 52012, sequence number 3
Code block B : primary
 First flash block 3 (address 0xffec0000)
 Size 52028, sequence number 4
Data block A : primary
 First flash block 2 (address 0xffe80000)
 Size 272, sequence number 11
Data block B : backup
 First flash block 5 (address 0xfff40000)
 Size 272, sequence number 10

This shows that the code is currently on its fourth revision and is held in flash block 2 at the given address. Here all code and
data blocks fit into a single flash block, which will not always be the case. The data is currently on revision 11.

The rbl newcode command can be used to install a new revision of the code, although usually this will be done by the
application itself via a call to rbl_update_code. However the RedBoot command can be used for the initial installation
or if the currently installed version is broken somehow. Typically the code will first be loaded into RAM using a RedBoot
load command, then programmed into flash.

RedBoot> load -r -m ymodem -b %{freememlo}
Raw file loaded 0x0000d400-0x00019f3b, assumed entry at 0x0000d400
xyzModem - CRC mode, 409(SOH)/0(STX)/0(CAN) packets, 3 retries
RedBoot> rbl newcode -b %{freememlo} -l 52028
... Erase from 0xffe40000-0xffe80000: .
... Program from 0x0000d400-0x00019f3c at 0xffe40000: .
... Program from 0x00005728-0x0000573c at 0xffe7ffec: .

The loaded program should be a stripped ELF executable appropriate for the target platform. The -b option specifies the
memory location. Usually the RedBoot %{freememlo} variable will be used for this. The -l option corresponds to the file
length. First the appropriate flash block or blocks are erased. Next the code is written to the flash. Finally the RBL code writes
a little trailer at the end of the flash block containing a checksum, a sequence number, and similar information.

The rbl newdata command provides the same functionality for persistent data. Again the data is first loaded into RAM, then
programmed into flash.

RedBoot> load -r -m ymodem -b %{freememlo}
Raw file loaded 0x0000d400-0x0000d5ba, assumed entry at 0x0000d400
xyzModem - CRC mode, 6(SOH)/0(STX)/0(CAN) packets, 3 retries

2036

RedBoot Commands

RedBoot> rbl newdata -b %{freememlo} -l 443
... Erase from 0xfff40000-0xfff80000: .
... Program from 0x0000d400-0x0000d5bb at 0xfff40000: .
... Program from 0x00005728-0x0000573c at 0xfff7ffec: .

The rbl boot command is used to load and run the current primary code block. The block should contain a stripped
ELF executable which still contains the required relocation tables and the entry point, so there is no need for additional
options. During development this command can be run manually to try out the current version of the application. In
a production system RedBoot can be configured to run this command automatically by setting the configuration option
CYGDAT_REDBOOT_DEFAULT_BOOT_SCRIPT. The command does not return. If it is necessary to get back to a RedBoot
prompt then either the target board should be reset or the loaded application should call rbl_reset.

rbl condboot is a variant of rbl boot, available only on certain platforms. The command checks a platform-specific
condition, for example the state of a jumper or a button. Depending on the condition condboot will either proceed to
load and run the current primary code block in exactly the same way as rbl boot, or it will do nothing. Again in a
production system RedBoot can be configured to run this command automatically by setting the configuration option
CYGDAT_REDBOOT_DEFAULT_BOOT_SCRIPT. Following power up or reset RedBoot will normally run the current
application, but if the button is held down then it will provide an interactive session instead (unless of course the boot script
runs additional commands after rbl condboot). The interactive session allows the usual RedBoot and rbl commands to be
executed, so for example the user can perform a ymodem transfer and then replace the primary code block via rbl newcode.

Jumpers and buttons are inherently platform-specific so rbl condboot will only be built if the platform HAL provides a suitable
macro HAL_RBL_CONDBOOT. Typically this macro would be defined in the header file cyg/hal/plf_io.h which is
automatically #include'd by the RBL code. The macro should take the following form:

#define HAL_RBL_CONDBOOT(_do_boot_) \
 CYG_MACRO_START \
 … \
 CYG_MACRO_END

_do_boot_ should be set to 1 if the system should proceed with the bootstrap, i.e. load and run the primary code block.
It should be set to 0 if rbl condboot should do nothing. Depending on the complexity of the hardware the macro body may
involve just a couple of lines of inline code or it may involve a function call into the main platform HAL code, for example:

#define HAL_RBL_CONDBOOT(_do_boot_) \
 CYG_MACRO_START \
 extern int hal_alaia_rbl_condboot(void); \
 _do_boot_ = hal_alaia_rbl_condboot(); \
 CYG_MACRO_END

2037

Name
RBL functions — allow applications to access RBL services

Synopsis

#include <cyg/rbl/rbl.h>

cyg_bool rbl_get_flash_details(details);

rbl_flash_block_purpose rbl_get_flash_block_purpose(block);

cyg_bool rbl_get_block_details(which, details);

cyg_bool rbl_update_code(buffer, length);

cyg_bool rbl_update_data(buffer, length);

cyg_bool rbl_load_data(buffer, length);

void rbl_reset();

Flash Details
rbl_get_flash_details can be used by application code to get information about the flash hardware and how it is being
used by the RBL code inside RedBoot. The function takes a single argument, a pointer to an rbl_flash_details structure.

typedef struct rbl_flash_details {
 cyg_uint8* rbl_flash_base;
 int rbl_flash_block_size;
 int rbl_flash_num_blocks;
 int rbl_code_num_blocks;
 int rbl_data_num_blocks;
 int rbl_trailer_size;
} rbl_flash_details;

The rbl_flash_base field gives the location of the flash in the target's memory map. Application code does not usually
need this information since the flash hardware is entirely managed by RedBoot, but it may be useful for debugging purposes.

The rbl_flash_block_size and rbl_flash_num_blocks provide further information about the flash hardware.
Typical sets of values might be 8 blocks of 256K apiece, or 64 blocks of 64K. If the flash chips support smaller boot blocks
then the eCos flash management code will usually treat these as a single full-size block.

rbl_code_num_blocks gives the number of flash blocks that will be used for the primary and the backup code blocks.
It corresponds to the value of the CYGNUM_RBL_CODE_BLOCKS configuration option used when building RedBoot.
rbl_data_num_blocks provides the same information for the persistent data blocks, with a value of 0 indicating that the
support for persistent data was disabled.

The RBL code uses a small amount of flash memory for management purposes. This amount of memory is given by
rbl_trailer_size. Application code can determine the maximum size of an executable using:

rbl_flash_details details;
if (! rbl_get_flash_details(&details)) {
 fputs("Error: failed to get RBL flash details\n", stderr);
 return false;
 }
size = (details.rbl_flash_block_size * details.rbl_code_num_blocks) -
 details.rbl_trailer_size;

The rbl_get_flash_details function will return true on success, false on failure. The most likely reason for failure is
that the current RedBoot installation does not have RBL support.

2038

Application Library

Flash Blocks
rbl_get_flash_block_purpose can be used to find out how the RBL code inside RedBoot has allocated each
flash block. Typically this is used only for debugging purposes. The argument should be a small number between 0 and
details.rbl_flash_num_blocks - 1. The return value will be one of the following:

rbl_flash_block_reserved This flash block is reserved, for example it may hold some or all of the
RedBoot code. Flash blocks can be reserved using the configuration option
CYGDAT_RBL_RESERVED_FLASH_BLOCKS when building RedBoot.

rbl_flash_block_code_A
rbl_flash_block_code_B
rbl_flash_block_data_A
rbl_flash_block_data_B

The flash block is used for an RBL code or data block.

rbl_flash_block_free This flash block is not used by the RBL code. It may be used by application code for
other purposes.

rbl_flash_block_invalid This value will be returned if the argument to rbl_get_flash_block_purpose
is outside the valid range. It will also be returned if the current RedBoot installation does
not have RBL support.

RBL Block Details
rbl_get_block_details can be used to get information about a specific RBL block, for example the primary code block.
The function takes two arguments. The first identifies the particular RBL block that is of interest:

rbl_block_code_primary
rbl_block_code_backup
rbl_block_data_primary
rbl_block_data_backup

These identify an RBL block by purpose.

rbl_block_code_A
rbl_block_code_B
rbl_block_data_A
rbl_block_data_B

These identify an RBL block by memory location. RedBoot will allocate flash blocks
to code and data in the above order.

The second argument should be a pointer to an rbl_block_details structure which will be used for storing the results.

typedef struct rbl_block_details {
 cyg_bool rbl_valid;
 cyg_uint32 rbl_first_flash_block;
 void* rbl_address;
 cyg_uint32 rbl_size;
 cyg_uint32 rbl_sequence_number;
} rbl_block_details;

At any time a particular RBL block may or may not contain valid code or data. For example if the system has an installed
application which has not yet been updated then the primary code block will be valid but the backup code block will be invalid.
The other fields will only be valid if the rbl_valid flag is set.

The rbl_first_flash_block and rbl_address fields give information about where an RBL block is held in memory.
If an RBL block is spread over multiple flash blocks then care has to be taken: there may be one or more reserved flash blocks
in the middle of an RBL block.

The rbl_size field gives the current size of a code or data block. This is the actual size specified when the block was
updated, not the maximum size.

The rbl_sequence_number is used by the RBL code to distinguish between primary and backup blocks. It may also prove
useful for debugging purposes.

2039

Application Library

rbl_get_block_details returns true on success, false on failure. The function can fail if the current RedBoot installation
does not have RedBoot support, or if an invalid argument is passed.

Updating the Code
rbl_update_code is used to install a new code image. It takes two arguments, a buffer and a length. The buffer should
contain an ELF executable valid for the target platform, usually stripped to remove unnecessary debug information. Filling
this buffer is left to application code.

The function returns true on success, false on failure. It can fail if the current RedBoot installation does not have RedBoot
support, if an invalid argument is passed, or if the specified size is larger than the flash space available for a code block.

A flash update involves erasing one or more flash blocks and then programming in the new data. It is important that while this
is happening no other threads or interrupt handlers access the flash hardware since that would interfere with the update. Hence
interrupts will be disabled for some time while the update is happening.

Updating the Data
rbl_update_data is used to install a new version of the persistent data. It takes two arguments, a buffer and a length. The
RBL code does not care about the contents of the buffer, this is left entirely to application code.

The function returns true on success, false on failure. It can fail if the current RedBoot installation does not have RBL
support, if an invalid argument is passed, or if the specified size is larger than the flash space available for a data block. It
is also possible that support for persistent data was disabled completely inside RedBoot by setting the configuration option
CYGNUM_RBL_DATA_BLOCKS to 0.

A flash update involves erasing one or more flash blocks and then programming in the new data. It is important that while this
is happening no other threads or interrupt handlers access the flash hardware since that would interfere with the update. Hence
interrupts will be disabled for some time while the update is happening.

Loading the Data
rbl_load_data is used to load the current version of the persistent data back into memory. It takes two arguments, a buffer
and a length. If there is a valid primary data block then the RBL code will transfer that data into the specified buffer. The
amount of data transferred will be either the actual block size or the length argument, whichever is smaller.

The function returns true on success, false on failure. It can fail if the current RedBoot installation does not have RBL support,
if an invalid argument is passed, or if there is no current primary data block.

Restarting the Hardware
rbl_reset can be used to restart the hardware. Typically this is used after a code update. The function takes no arguments
and does not return.

2040

Name
V2 RBL functions — allow applications to access RBL services

Synopsis
#include <cyg/rbl/rbl.h>

cyg_bool rbl_update_codeV(count, buffers[], lengths[]);

cyg_bool rbl_update_dataV(count, buffers[], lengths[]);

cyg_bool rbl_load_dataV(count, buffers[], lengths[]);

cyg_bool rbl_update_code_begin();

cyg_bool rbl_update_code_block(buffer, length);

cyg_bool rbl_update_code_end();

cyg_bool rbl_update_code_abort();

cyg_bool rbl_update_data_begin();

cyg_bool rbl_update_data_block(buffer, length);

cyg_bool rbl_update_data_end();

cyg_bool rbl_update_data_abort();

cyg_bool rbl_load_data_begin();

cyg_bool rbl_load_data_block(where, length);

cyg_bool rbl_update_data_end();

Description
The original V1 API required single buffers for all update and load operations. This proved unduly restrictive, especially when
installing a new code image obtained over a network, because there would be no guarantee that a single buffer of the required
size could be dynamically allocated when required. Hence the API was extended for V2 with vector functions, allowing the
code and data to be spread over multiple buffers, and with transaction functions, allowing new code images to be installed
a piece at a time.

Vector Functions
The three vector functions rbl_update_codeV, rbl_update_dataV and rbl_load_dataV work in terms of a series
of buffers rather than a single buffer. For example rbl_load_data is equivalent to:

cyg_bool
rbl_load_data(cyg_uint8* where, cyg_uint32 size)
{
 cyg_uint8 dataV[1];
 cyg_uint32 sizesV[1];

 dataV[0] = where;
 sizesV[0] = size;
 return rbl_load_dataV(1, dataV, sizesV);
}

Obviously the vector functions become rather more useful for counts greater than 1. The update functions still require that all
of the new images are resident in memory, but they no longer have to be in a single contiguous buffer.

2041

Application Library Extensions

When updating some flash drivers may impose limitations on the sizes. For example if the target hardware has a single 16-
bit wide flash device then the flash driver may require that all flash write operations happen in multiples of 2 bytes, and the
entries in the sizesV array should satisfy this requirement.

Transaction Functions
The transaction functions begin/block/end allow RBL operations to be performed in stages. For example rbl_load_dataV
is equivalent to:

cyg_bool
rbl_load_dataV(cyg_uint32 count, cyg_uint8* whereV[], cyg_uint32 sizesV[])
{
 cyg_uint32 i;

 if (! rbl_load_data_begin()) {
 return false;
 }
 for (i = 0; i < count; i++) {
 if (! rbl_load_data_block(whereV[i], sizesV[i])) {
 return false;
 }
 }
 return rbl_load_data_end();
}

The begin function must be called at the start of a function. At any one time there can be only one code update, one data update,
and one data load in progress, and the begin function will block if another thread is performing a conflicting RBL operation.
Once the transaction is started the application can perform one or more block operations, and the transaction should normally
be committed with an end function call. For an update the begin function will erase the appropriate flash blocks, the block
function will write data to the flash, and the end function will write trailer data containing size, checksum and sequence number.
At that point the image becomes the new primary code or data RBL block.

As an additional restriction, rbl_update_data_end will block if some other thread is currently loading data. This avoids
confusion since otherwise that thread would end up loading data that is no longer primary, and it also avoids problems if another
update operation is started immediately.

Unlike the simple or vector update functions, the transaction functions do not require that all of the new image is present in
memory at the same time. Instead it is possible to begin a transaction, fetch the first part of the image over the network and
install that, fetch the next part, and so on. If the application is unable to complete an update, for example because the network
connection is lost, then there should be a call to the abort function instead of to the end function. When a transaction is aborted
no trailer gets written to flash so the new image remains invalid and the old image stays as the primary.

As with the vector operations the flash driver may impose limitations on the size arguments to rbl_update_code_block
and rbl_update_block. For example if the target hardware uses a 16-bit wide flash chip then the size argument may have
to be a multiple of two bytes.

Error Conditions
All of the RBL functions return a simple boolean to indicate failure. In reality failures are unlikely, but can be caused by the
following:

1. The currently installed RedBoot was built without RBL functionality so there is no code in the system to keep track of RBL
images and install new ones.

2. RedBoot uses a different version of the RBL protocol, for example V1 when the application has been built with V2.

3. The RedBoot RBL code was unable to initialize the system. This can happen if the actual hardware does not match the
RedBoot configuration, for example if the flash chips actually present are smaller than expected and cannot hold all the
code and data blocks specified by the CYGDAT_RBL_RESERVED_FLASH_BLOCKS, CYGNUM_RBL_CODE_BLOCKS
and CYGNUM_RBL_DATA_BLOCKS configuration options.

4. An attempt is made to load or update data when RedBoot has been configured with zero RBL data blocks,

2042

Application Library Extensions

5. An attempt is made to load more data than is actually present in the current data image, or to install a new image that does
not fit in the number of configured flash blocks.

6. An unexpected error occurs inside the flash driver, for example an attempt to erase a flash block fails.

For the transaction functions, if an error occurs then the transaction is automatically aborted. There is no need for the application
to call rbl_update_code_abort or rbl_update_data_abort explicitly, or to end a load operation.

2043

Part LXXIV. RedBoot Extra Initialization

Name
CYGPKG_RBINIT — provide extra RedBoot initialization

Description
The RedBoot Extra Initialisation (RBINIT) package provides extra default initialization for RedBoot. This may be used to
execute a set of initial commands, or to perform any additional platform or system specific initialization. The RBINIT package
is aimed primarily at field deployment of production systems rather than at application development.

Building RedBoot
The first step in building RedBoot with RBINIT support is to create a RedBoot configuration appropriate for the target platform.
This is somewhat target specific so the appropriate platform HAL or RedBoot documentation should be consulted for further
details. Typically RedBoot should be configured for ROM startup.

Given this initial configuration the RBINIT package CYGPKG_RBINIT should now be added to the configuration, using one
of the eCos configuration tools. For example with the command line tool this involves using ecosconfig add rbinit.

There are a number of other configuration options which may be changed at this point:

CYGGLO_RBINIT_STDIO_DISABLE

This option causes all output generated during the extra initialization to be discarded. Turn this option off to get output
for debugging purposes.

CYGPKG_RBINIT_PRI

This option selects the priority of the extra initialization routine. The value of this option may either be Red-
Boot_INIT_BEFORE_NET or RedBoot_INIT_AFTER_NET which, as the names imply, cause the extra initializa-
tion to occur either before or after any network device is initialized.

Once RedBoot has been appropriately configured it can be built and installed as usual for the target platform.

Extra Initialization Function
The purpose of the extra initialization package is to execute the rbinit_exec() function. A default version of this function
is contained in the rbinit_exec.c file within this package in the source repository.

The default content of this function provides support for loading and executing primary or secondary applications from a
filesystem. The default function will first attempt to mount a JFFS2 filesystem named “jffs2” in the RedBoot FIS table. If
that fails it will attempt to mount the first partition of an IDE hard disk using a FAT filesystem. Finally if that fails it will
attempt to mount a RAM filesystem, although it will be empty. If a filesystem has been successfully mounted, it will attempt
to load into RAM and run a program named “app.primary” from the root of the filesystem, and if that fails, a program
named “app.secondary”.

A customized version of this function may be provided instead by using one of the following methods:

• Editing the file directly in the source repository.

• Adding an equivalent function in your application build and ensure its object file is linked into your application. This will
cause the default implementation of rbinit_exec() provided in this package to be overridden. You may wish to use
the version in this package as a template to start with.

• By copying the rbinit_exec.c file into the configuration's build tree and editing it there.

2045

Part LXXV. Unity

Table of Contents
229. Unity overview .. 2048

Introduction .. 2048
230. Configuration .. 2049

Configuration Overview ... 2049
Quick Start .. 2049

231. eCos port .. 2050
Overview ... 2050

232. Test Programs ... 2052
Test Programs .. 2052

2047

Chapter 229. Unity overview
Introduction
The CYGPKG_UNITY package provides a standard Unity Test framework implementation to eCos applications.

This package is covered by an “MIT” license as distributed in the original Unity package:

Example 229.1. “MIT” License

The MIT License (MIT)

Copyright (c) <year> 2007-21 Mike Karlesky, Mark VanderVoord, Greg Williams

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

For definitive Unity documentation please refer to the main Unit Test website. We do not duplicate that documentation here.

2048

https://github.com/ThrowTheSwitch/Unity

Chapter 230. Configuration
This chapter shows how to incorporate the Unity support into an eCos configuration, and how to configure it once included.

Configuration Overview
The Unity support is contained in a single eCos package CYGPKG_UNITY. However, some functionality is dependant on other
eCos features. e.g. the eCos dynamic memory allocator.

Quick Start
Incorporating the Unity support into your application is straightforward. The essential starting point is to incorporate the Unity
eCos package (CYGPKG_UNITY) into your configuration.

This may be achieved directly using ecosconfig add on the command line, or the Build->Packages… menu item within the
eCos Configuration Tool.

Depending on the Unity package configuration other packages may be required. The package requires that the CYGPKG_INFRA
packages is included in the eCos application configuration.

2049

Chapter 231. eCos port

Overview
The goal for the CYGPKG_UNITY package is to avoid where possible having to have any core Unity source file changes made
specifically for eCos. This is to ensure that re-imports of newer versions of the library sources involve minimal effort. The files
are as provided in the official Unity release package as imported, with the following exceptions:

1. Files have been moved, unmodified, to create a standard eCos package tree structure to integrate with the eCosPro build
environment

Only relevant files from the original project have been included in the eCos package.

The current Unity version provided by the eCos package is the github tagged release v2.5.2 (released 26th January 2021).

The original project homepage can be found on github: Unity

The release package was downloaded from the github project page: releases/tag/v2.5.2

The following table highlights the files taken from the Unity package and their new location within the eCos CYGPKG_UNITY
package:

Original github eCos package

src/unity.h include/unity.h

src/unity_internals.h include/unity_internals.h

extras/memory/src/unity_internals.h include/unity_memory.h

extras/fixture/src/unity_fixture.h include/unity_fixture.h

extras/fixture/src/unity_fixture_inter-
nals.h

include/unity_fixure_internals.h

src/unity.c src/unity.c

extras/memory/src/unity_memory.c src/unity_memory.c

extras/fixture/src/unity_fixture.c src/unity_fixture.c

test/tests/self_assessment_utils.h tests/tests/self_assessment_utils.h

test/tests/test_unity_core.c tests/tests/test_unity_core.c

extras/memory/test/unity_memory_Test.c tests/memory/unity_memory_Test.c

extras/memory/test/unity_output_Spy.c tests/memory/unity_output_Spy.c

extras/memory/test/unity_output_Spy.h tests/memory/unity_output_Spy.h

test/tests/test_unity_arrays.c tests/tests/test_unity_arrays.c

test/tests/test_unity_doubles.c tests/tests/test_unity_doubles.c

test/tests/test_unity_floats.c tests/tests/test_unity_floats.c

test/tests/test_unity_integers.c tests/tests/test_unity_integers.c

test/tests/test_unity_integers_64.c tests/tests/test_unity_integers_64.c

test/tests/test_unity_memory.c tests/tests/test_unity_memory.c

test/tests/test_unity_parameterized.c tests/tests/test_unity_parameterized.c

test/tests/test_unity_strings.c tests/tests/test_unity_strings.c

examples/example_1/src/ProductionCode.h tests/example_1/ProductionCode.h

examples/example_1/src/ProductionCode.c tests/example_1/ProductionCode.c

2050

https://github.com/ThrowTheSwitch/Unity
https://github.com/ThrowTheSwitch/Unity/releases/tag/v2.5.2

eCos port

Original github eCos package

examples/example_1/test/TestProduction-
Code.c

tests/example_1/TestProductionCode.c

examples/example_1/src/ProductionCode2.h tests/example_1/ProductionCode2.h

examples/example_1/src/ProductionCode2.c tests/example_1/ProductionCode2.c

examples/example_1/test/TestProduction-
Code2.c

tests/example_1/TestProductionCode2.c

2051

Chapter 232. Test Programs
Test Programs
Some Unity specific tests are built and can be used to verify correct operation of the library.

The original Unity examples are all very slight variations of the same underlying example for different build environments,
so we only provide a single variant for the eCos tests build.

1. unity_core

This test exercises the core Unity functionality.

2. unity_core_memory

This test exercises the extra memory functionality if CYGPKG_UNITY_MEMORY is enabled.

3. unity_floats

This test exercises the single-precision floating point (float) support when UNITY_EXCLUDE_FLOAT is not defined.

4. unity_doubles

This test exercises the double-precision floating point (double) support when UNITY_EXCLUDE_DOUBLE is not de-
fined.

5. unity_integers

This test exercises the basic integer assert functionality.

6. unity_integers_64

This test exercises the 64-bit support when UNITY_SUPPORT_64 is defined, which is the case when using the default
eCos unity_config.h configuration header.

7. unity_memory

This test exercises the memory equality support. It is not related to the extra CYGPKG_UNIT_MEMORY functionality, but
tests the core memory buffer assert support.

8. unity_strings

This test exercises the core string functionality.

9. example_1_1

This test is a simple example of using Unity based on the original Unity package examples/example_1/test/Test-
ProductionCode.c source.

10.example_1_2

This test is a simple example of using Unity based on the original Unity package examples/example_1/test/Test-
ProductionCode2.c source.

2052

Part LXXVI. Synthetic Target Architecture

Table of Contents
233. eCos Synthetic Target ... 2055

Overview ... 2056
Installation ... 2058
Running a Synthetic Target Application .. 2060
The I/O Auxiliary's User Interface ... 2064
The Console Device .. 2068
System Calls .. 2070
Writing New Devices - target ... 2071
Writing New Devices - host ... 2075
Porting .. 2083

2054

Chapter 233. eCos Synthetic Target

2055

eCos Synthetic Target

Name
The eCos synthetic target — Overview

Description
Usually eCos runs on either a custom piece of hardware, specially designed to meet the needs of a specific application, or on a
development board of some sort that is available before the final hardware. Such boards have a number of things in common:

1. Obviously there has to be at least one processor to do the work. Often this will be a 32-bit processor, but it can be smaller or
larger. Processor speed will vary widely, depending on the expected needs of the application. However the exact processor
being used tends not to matter very much for most of the development process: the use of languages such as C or C++
means that the compiler will handle those details.

2. There needs to be memory for code and for data. A typical system will have two different types of memory. There will
be some non-volatile memory such as flash, EPROM or masked ROM. There will also be some volatile memory such as
DRAM or SRAM. Often the code for the final application will reside in the non-volatile memory and all of the RAM will
be available for data. However updating non-volatile memory requires a non-trivial amount of effort, so for much of the
development process it is more convenient to burn suitable firmware, for example RedBoot, into the non-volatile memory
and then use that to load the application being debugged into RAM, alongside the application data and a small area reserved
for use by the firmware.

3. The platform must provide certain mimimal I/O facilities. Most eCos configurations require a clock signal of some sort.
There must also be some way of outputting diagnostics to the user, often but not always via a serial port. Unless special
debug hardware is being used, source level debugging will require bidirectional communication between a host machine
and the target hardware, usually via a serial port or an ethernet device.

4. All the above is not actually very useful yet because there is no way for the embedded device to interact with the rest of
the world, except by generating diagnostics. Therefore an embedded device will have additional I/O hardware. This may
be fairly standard hardware such as an ethernet or USB interface, or special hardware designed specifically for the intended
application, or quite often some combination. Standard hardware such as ethernet or USB may be supported by eCos device
drivers and protocol stacks, whereas the special hardware will be driven directly by application code.

Much of the above can be emulated on a typical PC running Linux. Instead of running the embedded application being devel-
oped on a target board of some sort, it can be run as a Linux process. The processor will be the PC's own processor, for example
an x86, and the memory will be the process' address space. Some I/O facilities can be emulated directly through system calls.
For example clock hardware can be emulated by setting up a SIGALRM signal, which will cause the process to be interrupted
at regular intervals. This emulation of real hardware will not be particularly accurate, the number of cpu cycles available to the
eCos application between clock ticks will vary widely depending on what else is running on the PC, but for much development
work it will be good enough.

Other I/O facilities are provided through an I/O auxiliary process, ecosynth, that gets spawned by the eCos application during
startup. When an eCos device driver wants to perform some I/O operation, for example send out an ethernet packet, it sends
a request to the I/O auxiliary. That is an ordinary Linux application so it has ready access to all normal Linux I/O facilities.
To emulate a device interrupt the I/O auxiliary can raise a SIGIO signal within the eCos application. The HAL's interrupt
subsystem installs a signal handler for this, which will then invoke the standard eCos ISR/DSR mechanisms. The I/O auxiliary
is based around Tcl scripting, making it easy to extend and customize. It should be possible to configure the synthetic target so
that its I/O functionality is similar to what will be available on the final target hardware for the application being developed.

A key requirement for synthetic target code is that the embedded application must not be linked with any of the standard Linux
libraries such as the GNU C library: that would lead to a confusing situation where both eCos and the Linux libraries attempted
to provide functions such as printf. Instead the synthetic target support must be implemented directly on top of the Linux

2056

eCos Synthetic Target

kernels' system call interface. For example, the kernel provides a system call for write operations. The actual function write
is implemented in the system's C library, but all it does is move its arguments on to the stack or into certain registers and
then execute a special trap instruction such as int 0x80. When this instruction is executed control transfers into the kernel,
which will validate the arguments and perform the appropriate operation. Now, a synthetic target application cannot be linked
with the system's C library. Instead it contains a function cyg_hal_sys_write which, like the C library's write function,
pushes its arguments on to the stack and executes the trap instruction. The Linux kernel cannot tell the difference, so it will
perform the I/O operation requested by the synthetic target. With appropriate knowledge of what system calls are available, this
makes it possible to emulate the required I/O facilities. For example, spawning the ecosynth I/O auxiliary involves system calls
cyg_hal_sys_fork and cyg_hal_sys_execve, and sending a request to the auxiliary uses cyg_hal_sys_write.

In many ways developing for the synthetic target is no different from developing for real embedded targets. eCos must be
configured appropriately: selecting a suitable target such as i386linux will cause the configuration system to load the ap-
propriate packages for this hardware; this includes an architectural HAL package and a platform-specific package; the archi-
tectural package contains generic code applicable to all Linux platforms, whereas the platform package is for specific Linux
implementations such as the x86 version and contains any processor-specific code. Selecting this target will also bring in some
device driver packages. Other aspects of the configuration such as which API's are supported are determined by the template,
by adding and removing packages, and by fine-grained configuration.

In other ways developing for the synthetic target can be much easier than developing for a real embedded target. For example
there is no need to worry about building and installing suitable firmware on the target hardware, and then downloading and
debugging the actual application over a serial line or a similar connection. Instead an eCos application built for the synthetic
target is mostly indistinguishable from an ordinary Linux program. It can be run simply by typing the name of the executable
file at a shell prompt. Alternatively you can debug the application using whichever version of gdb is provided by your Linux
distribution. There is no need to build or install special toolchains. Essentially using the synthetic target means that the various
problems associated with real embedded hardware can be bypassed for much of the development process.

The eCos synthetic target provides emulation, not simulation. It is possible to run eCos in suitable architectural simulators but
that involves a rather different approach to software development. For example, when running eCos on the psim PowerPC
simulator you need appropriate cross-compilation tools that allow you to build PowerPC executables. These are then loaded
into the simulator which interprets every instruction and attempts to simulate what would happen if the application were running
on real hardware. This involves a lot of processing overhead, but depending on the functionality provided by the simulator it
can give very accurate results. When developing for the synthetic target the executable is compiled for the PC's own processor
and will be executed at full speed, with no need for a simulator or special tools. This will be much faster and somewhat simpler
than using an architectural simulator, but no attempt is made to accurately match the behaviour of a real embedded target.

2057

eCos Synthetic Target

Name
Installation — Preparing to use the synthetic target

Host-side Software
To get the full functionality of the synthetic target, users must build and install the I/O auxiliary ecosynth and various support
files. It is possible to develop applications for the synthetic target without the auxiliary, but only limited I/O facilities will be
available. The relevant code resides in the host subdirectory of the synthetic target architectural HAL package, and building
it involves the standard configure, make, and make install steps.

There are two main ways of building the host-side software. It is possible to build both the generic host-side software and all
package-specific host-side software, including the I/O auxiliary. in a single build tree. This involves using the configure script
at the toplevel of the eCos repository, which will automatically search the packages hierarchy for host-side software. For
more information on this, see the README.host file at the top of the repository. Note that if you have an existing build tree
which does not include the synthetic target architectural HAL package then it will be necessary to rerun the toplevel configure
script: the search for appropriate packages happens at configure time.

The alternative is to build just the host-side for this package. This involves creating a suitable build directory and running the
configure script. Note that building directly in the source tree is not allowed.

$ cd <somewhere suitable>
$ mkdir synth_build
$ cd synth_build
$ <repo<>/packages/hal/synth/arch/<version>/host/configure <options>
$ make
$ make install

The code makes extensive use of Tcl/TK and requires version 8.3 or later. This is checked by the configure script. By de-
fault it will use the system's Tcl installation in /usr. If a different, more recent Tcl installation should be used then its lo-
cation can be specified using the options --with-tcl=<path>, --with-tcl-header=<path> and --with-tcl-
lib=<path>. For more information on these options see the README.host file at the toplevel of the eCos repository.

Some users may also want to specify the install location using a --prefix=<path> option. The default install location is
/usr/local. It is essential that the bin subdirectory of the install location is on the user's search PATH, otherwise the eCos
application will be unable to locate and execute the I/O auxiliary ecosynth.

Because ecosynth is run automatically by an eCos application rather than explicitly by the user, it is not installed in the bin
subdirectory itself. Instead it is installed below libexec, together with various support files such as images. At configure
time it is usually possible to specify an alternative location for libexec using --exec-prefix=<path> or --libex-
ecdir=<path>. These options should not be used for this package because the eCos application is built completely sepa-
rately and does not know how the host-side was configured.

Toolchain
When developing eCos applications for a normal embedded target it is necessary to use a suitable cross-compiler and related
tools such as the linker. Developing for the synthetic target is easier because you can just use the standard GNU tools (gcc, g+
+, ld, …) which were provided with your Linux distribution, or which you used to build your own Linux setup. Any reasonably
recent version of the tools, for example gcc 2.96(Red Hat) as shipped with Red Hat Linux 7, should be sufficient.

There is one important limitation when using these tools: current gdb will not support debugging of eCos threads on the
synthetic target. As far as gdb is concerned a synthetic target application is indistinguishable from a normal Linux application,
so it assumes that any threads will be created by calls to the Linux pthread_create function provided by the C library.
Obviously this is not the case since the application is never linked with that library. Therefore gdb never notices the eCos thread
mechanisms and assumes the application is single-threaded. Fixing this is possible but would involve non-trivial changes to gdb.

Theoretically it is possible to develop synthetic target applications on, for example, a PC running Windows and then run the
resulting executables on another machine that runs Linux. This is rarely useful: if a Linux machine is available then usually
that machine will also be used for building ecos and the application. However, if for some reason it is necessary or desirable
to build on another machine then this requires a suitable cross-compiler and related tools. If the application will be running

2058

eCos Synthetic Target

on a typical PC with an x86 processor then a suitable configure triplet would be i686-pc-linux-gnu. The installation
instructions for the various GNU tools should be consulted for further information.

Hardware Preparation
Preparing a real embedded target for eCos development can be tricky. Often the first step is to install suitable firmware, usually
RedBoot. This means creating and building a special configuration for eCos with the RedBoot template, then somehow updating
the target's flash chips with the resulting RedBoot image. Typically it will also be necessary to get a working serial connection,
and possibly set up ethernet as well. Although usually none of the individual steps are particularly complicated, there are plenty
of ways in which things can go wrong and it can be hard to figure out what is actually happening. Of course some board
manufacturers make life easier for their developers by shipping hardware with RedBoot preinstalled, but even then it is still
necessary to set up communication between host and target.

None of this is applicable to the synthetic target. Instead you can just build a normal eCos configuration, link your application
with the resulting libraries, and you end up with an executable that you can run directly on your Linux machine or via gdb. A
useful side effect of this is that application development can start before any real embedded hardware is actually available.

Typically the memory map for a synthetic target application will be set up such that there is a read-only ROM region containing
all the code and constant data, and a read-write RAM region for the data. The default locations and sizes of these regions
depend on the specific platform being used for development. Note that the application always executes out of ROM: on a real
embedded target much of the development would involve running RedBoot firmware there, with application code and data
loaded into RAM; usually this would change for the final system; the firmware would be replaced by the eCos application
itself, configured for ROM bootstrap, and it would perform the appropriate hardware initialization. Therefore the synthetic
target actually emulates the behaviour of a final system, not of a development environment. In practice this is rarely significant,
although having the code in read-only memory can help catch some problems in application code.

2059

eCos Synthetic Target

Name
Execution — Arguments and configuration files

Description
The procedure for configuring and building eCos and an application for the synthetic target is the same as for any other eCos
target. Once an executable has been built it can be run like any Linux program, for example from a shell prompt,

$ ecos_hello <options>

or using gdb:

$ gdb --nw --quiet --args ecos_hello <options>
(gdb) run
Starting program: ecos_hello <options>

By default use of the I/O auxiliary is disabled. If its I/O facilities are required then the option --io must be used.

Note

In future the default behaviour may change, with the I/O auxiliary being started by default. The option --nio
can be used to prevent the auxiliary from being run.

Command-line Arguments
The syntax for running a synthetic target application is:

$ <ecos_app> [options] [-- [app_options]]

Command line options up to the -- are passed on to the I/O auxiliary. Subsequent arguments are not passed on to the auxil-
iary, and hence can be used by the eCos application itself. The full set of arguments can be accessed through the variables
cyg_hal_sys_argc and cyg_hal_sys_argv.

The following options are accepted as standard:

--io This option causes the eCos application to spawn the I/O auxiliary during HAL initial-
ization. Without this option only limited I/O will be available.

--nio This option prevents the eCos application from spawning the I/O auxiliary. In the current
version of the software this is the default.

-nw, --no-windows The I/O auxiliary can either provide a graphical user interface, or it can run in a text-
only mode. The default is to provide the graphical interface, but this can be disabled
with -nw. Emulation of some devices, for example buttons connected to digital inputs,
requires the graphical interface.

-w, --windows The -w causes the I/O auxiliary to provide a graphical user interface. This is the default.

-v, --version The -v option can be used to determine the version of the I/O auxiliary being used
and where it has been installed. Both the auxiliary and the eCos application will exit
immediately.

-h, --help -h causes the I/O auxiliary to list all accepted command-line arguments. This happens
after all devices have been initialized, since the host-side support for some of the devices
may extend the list of recognised options. After this both the auxiliary and the eCos
application will exit immediately. This option implies -nw.

-k, --keep-going If an error occurs in the I/O auxiliary while reading in any of the configuration files
or initializing devices, by default both the auxiliary and the eCos application will exit.
The -k option can be used to make the auxiliary continue in spite of errors, although
obviously it may not be fully functional.

2060

eCos Synthetic Target

-nr, --no-rc Normally the auxiliary processes two user configuration files during startup: initr-
c.tcl and mainrc.tcl. This can be suppressed using the -nr option.

-x, --exit When providing a graphical user interface the I/O auxiliary will normally continue run-
ning even after the eCos application has exited. This allows the user to take actions such
as saving the current contents of the main text window. If run with -x then the auxiliary
will exit as soon the application exits.

-nx, --no-exit When the graphical user interface is disabled with -nw the I/O auxiliary will normally
exit immediately when the eCos application exits. Without the graphical frontend there
is usually no way for the user to interact directly with the auxiliary, so there is no point
in continuing to run once the eCos application will no longer request any I/O operations.
Specifying the -nx option causes the auxiliary to continue running even after the ap-
plication has exited.

-V, --verbose This option causes the I/O auxiliary to output some additional information, especially
during initialization.

-l <file>, --logfile
<file>

Much of the output of the eCos application and the I/O auxiliary is simple text, for ex-
ample resulting from eCos printf or diag_printf calls. When running in graph-
ical mode this output goes to a central text window, and can be saved to a file or edited
via menus. The -l can be used to automatically generate an additional logfile contain-
ing all the text. If graphical mode is disabled then by default all the text just goes to
the current standard output. Specifying -l causes most of the text to go into a logfile
instead, although some messages such as errors generated by the auxiliary itself will still
go to stdout as well.

-t <file>, --target
<file>

During initialization the I/O auxiliary reads in a target definition file. This file holds
information such as which Linux devices should be used to emulate the various eCos
devices. The -t option can be used to specify which target definition should be used for
the current run, defaulting to default.tdf. It is not necessary to include the .tdf
suffix, this will be appended automatically if necessary.

-geometry <geometry> This option can be used to control the size and position of the main window, as per X
conventions.

The I/O auxiliary loads support for the various devices dynamically and some devices may accept additional command line
arguments. Details of these can be obtained using the -h option or by consulting the device-specific documentation. If an
unrecognised command line argument is used then a warning will be issued.

The Target Definition File
The eCos application will want to access devices such as eth0 or /dev/ser0. These need to be mapped on to Linux devices.
For example some users may all traffic on the eCos /dev/ser0 serial device to go via the Linux serial device /dev/
ttyS1, while ethernet I/O for the eCos eth0 device should be mapped to the Linux ethertap device tap3. Some devices
may need additional configuration information, for example to limit the number of packets that should be buffered within the
I/O auxiliary. The target definition file provides all this information.

By default the I/O auxiliary will look for a file default.tdf. An alternative target definition can be specified on the com-
mand line using -t, for example:

$ bridge_app --io -t twineth

A .tdf suffix will be appended automatically if necessary. If a relative pathname is used then the I/O auxiliary will search
for the target definition file in the current directory, then in ~/.ecos/synth/, and finally in its install location.

A typical target definition file might look like this:

synth_device console {
 # appearance -foreground white -background black

2061

eCos Synthetic Target

 filter trace {^TRACE:.*} -foreground HotPink1 -hide 1
}

synth_device ethernet {
 eth0 real eth1
 eth1 ethertap tap4 00:01:02:03:FE:06

 ## Maximum number of packets that should be buffered per interface.
 ## Default 16
 #max_buffer 32

 ## Filters for the various recognised protocols.
 ## By default all filters are visible and use standard colours.
 filter ether -hide 0
 #filter arp -hide 1
 #filter ipv4 -hide 1
 #filter ipv6 -hide 1
}

A target definition file is actually a Tcl script that gets run in the main interpreter of the I/O auxiliary during initialization.
This provides a lot of flexibility if necessary. For example the script could open a socket to a resource management server
of some sort to determine which hardware facilities are already in use and adapt accordingly. Another possibility is to adapt
based on command line arguments. Users who are not familiar with Tcl programming should still be able to edit a simple target
definition file without too much difficulty, using a mixture of cut'n'paste, commenting or uncommenting various lines, and
making small edits such as changing tap4 to eth2.

Each type of device will have its own entry in the target definition file, taking the form:

synth_device <device type> {
 <options>
}

The documentaton for each synthetic target device should provide details of the options available for that device, and often
a suitable fragment that can be pasted into a target definition file and edited. There is no specific set of options that a given
device will always provide. However in practice many devices will use common code exported by the main I/O auxiliary, or
their implementation will involve some re-use of code for an existing device. Hence certain types of option are common to
many devices.

A good example of this is filters, which control the appearance of text output. The above target definition file defines a filter
trace for output from the eCos application. The regular expression will match output from the infrastructure package's tracing
facilities when CYGDBG_USE_TRACING and CYGDBG_INFRA_DEBUG_TRACE_ASSERT_SIMPLE are enabled. With the
current settings this output will not be visible by default, but can be made visible using the menu item System Filters. If made
visible the trace output will appear in an unusual colour, so users can easily distinguish the trace output from other text. All
filters accept the following options:

-hide [0|1] This controls whether or not text matching this filter should be invisible by default or
not. At run-time the visibility of each filter can be controlled using the System Filters
menu item.

-foreground <colour> This specifies the foreground colour for all text matching this filter. The colour can be
specified using an RGB value such as #F08010, or a symbolic name such as "light
steel blue". The X11 utility showrgb can be used to find out about the available
colours.

-background <colour> This specifies the background colour for all text matching the filter. As with -fore-
ground the colour can be specified using a symbolic name or an RGB value.

Some devices may create their own subwindows, for example to monitor ethernet traffic or to provide additional I/O facilities
such as emulated LED's or buttons. Usually the target definition file can be used to control the layout of these windows.

The I/O auxiliary will not normally warn about synth_device entries in the target definition file for devices that are not actually
needed by the current eCos application. This makes it easier to use a single file for several different applications. However it
can lead to confusion if an entry is spelled incorrectly and hence does not actually get used. The -V command line option can
be used to get warnings about unused device entries in the target definition file.

2062

eCos Synthetic Target

If the body of a synth_device command contains an unrecognised option and the relevant device is in use, the I/O auxiliary
will always issue a warning about such options.

User Configuration Files
During initialization the I/O auxiliary will execute two user configuration files, initrc.tcl and mainrc.tcl. It will look
for these files in the directory ~/.ecos/synth/. If that directory does not yet exist it will be created and populated with
initial dummy files.

Both of these configuration files are Tcl scripts and will be run in the main interpreter used by the I/O auxiliary itself. This
means that they have full access to the internals of the auxiliary including the various Tk widgets, and they can perform file or
socket I/O if desired. The section Writing New Devices - host contains information about the facilities available on the host-
side for writing new device drivers, and these can also be used in the initialization scripts.

The initrc.tcl script is run before the auxiliary has processed any requests from the eCos application, and hence before
any devices have been instantiated. At this point the generic command-line arguments has been processed, the target definition
file has been read in, and the hooks functionality has been initialized. If running in graphical mode the main window will have
been created, but has been withdrawn from the screen to allow new widgets to be added without annoying screen flicker. A
typical initrc.tcl script could add some menu or toolbar options, or install a hook function that will be run when the
eCos application exits.

The mainrc.tcl script is run after eCos has performed all its device initialization and after C++ static constructors have run,
and just before the call to cyg_start which will end up transferring control to the application itself. A typical mainrc.tcl
script could look at what interrupt vectors have been allocated to which devices and create a little monitor window that shows
interrupt activity.

Session Information
When running in graphical mode, the I/O auxiliary will read in a file ~/.ecos/synth/guisession containing session
information. This file should not normally be edited manually, instead it gets updated automatically when the auxiliary exits.
The purpose of this file is to hold configuration options that are manipulated via the graphical interface, for example which
browser should be used to display online help.

Warning

GUI session functionality is not yet available in the current release. When that functionality is fully implemented
it is possible that some target definition file options may be removed, to be replaced by graphical editing via a
suitable preferences dialog, with the current settings saved in the session file.

2063

eCos Synthetic Target

Name
User Interface — Controlling the I/O Auxiliary

Description

The synthetic target auxiliary is designed to support both extensions and user customization. Support for the desired devices is
dynamically loaded, and each device can extend the user interface. For example it is possible for a device to add menu options,
place new buttons on the toolbar, create its own sub-window within the overall layout, or even create entire new toplevel
windows. These subwindows or toplevels could show graphs of activity such as interrupts or packets being transferred. They
could also allow users to interact with the eCos application, for example by showing a number of buttons which will be mapped
on to digital inputs in the eCos application. Different applications will have their own I/O requirements, changing the host-side
support files that get loaded and that may modify the user interface. The I/O auxiliary also reads in user configuration scripts
which can enhance the interface in the same way. Therefore the exact user interface will depend on the user and on the eCos
application being run. However the overall layout is likely to remain the same.

The title bar identifies the window as belonging to an eCos synthetic target application and lists both the application name
and its process id. The latter is especially useful if the application was started directly from a shell prompt and the user now
wants to attach a gdb session. The window has a conventional menu bar with the usual entries, plus a toolbar with buttons for
common operations such as cut and paste. Balloon help is supported.

There is a central text window, possibly surrounded by various sub-windows for various devices. For example there could be a
row of emulated LED's above the text window, and monitors of ethernet traffic and interrupt activity on the right. At the bottom
of the window is a status line, including a small animation that shows whether or not the eCos application is still running.

Menus and the Toolbar

Usually there will be four menus on the menu bar: File , Edit, View and Help.

2064

eCos Synthetic Target

On the File menu there are three entries related to saving the current contents of the central text window. Save is used to save
the currently visible contents of the text window. Any text that is hidden because of filters will not be written to the savefile. If
there has been a previous Save or Save As operation then the existing savefile will be re-used, otherwise the user will be asked
to select a suitable file. Save As also saves just the currently visible contents but will always prompt the user for a filename.
Save All can be used to save the full contents of the text window, including any text that is currently hidden. It will always
prompt for a new filename, to avoid confusion with partial savefiles.

Usually the eCos application will be run from inside gdb or from a shell prompt. Killing off the application while it is being
debugged in a gdb session is not a good idea, it would be better to use gdb's own kill command. Alternatively the eCos
application itself can use the CYG_TEST_EXIT or cyg_hal_sys_exit functionality. However it is possible to terminate
the application from the I/O auxiliary using Kill eCos . A clean shutdown will be attempted, but that can fail if the application
is currently halted inside gdb or if it has crashed completely. As a last resort SIGKILL will be used.

When operating in graphical mode the I/O auxiliary will normally continue to run even after the eCos application has exited.
This allows the user to examine the last few lines of output, and perhaps perform actions such as saving the output to a file. The
Exit menu item can be used to shut down the auxiliary. Note that this behaviour can be changed with command line arguments
--exit and --no-exit.

If Exit is used while the eCos application is still running then the I/O auxiliary will first attempt to terminate the application
cleanly, and then exit.

The Edit menu contains the usual entries for text manipulation: Cut, Copy , Paste, Clear and Select All. These all operate on
the central text window. By default this window cannot be edited so the cut, paste and clear operations are disabled. If the user
wants to edit the contents of the text window then the Read Only checkbutton should be toggled.

The Preferences menu item brings up a miscellaneous preferences dialog. One of the preferences relates to online help: the I/
O auxiliary does not currently have a built-in html viewer; instead it will execute an external browser of some sort. With the
example settings shown, the I/O auxiliary will first attempt to interact with an existing mozilla session. If that fails it will try
to run a new mozilla instance, or as a last result use the Gnome help viewer.

The View menu contains the System Filters entry, used to edit the settings for the current filters.

2065

eCos Synthetic Target

The Help menu can be used to activate online help for eCos generally, for the synthetic target as a whole, and for specific
devices supported by the generic target. The Preferences dialog can be used to select the browser that will be used.

Note

At the time of writing there is no well-defined toplevel index file for all eCos documentation. Hence the relevant
menu item is disabled. Documentation for the synthetic target and the supported devices is stored as part of
the package itself so can usually be found fairly easily. It may be necessary to set the ECOS_REPOSITORY
environment variable.

The Main Text Window
The central text window holds the console output from the eCos application: the screen shot above shows DHCP initialization
data from the TCP/IP stack, and some output from the main thread at the bottom. Some devices can insert text of their own, for
example the ethernet device support can be configured to show details of incoming and outgoing packets. Mixing the output
from the eCos application and the various devices can make it easier to understand the order in which events occur.

The appearance of text from different sources can be controlled by means of filters, and it is also possible to hide some of the
text. For example, if tracing is enabled in the eCos configuration then the trace output can be given its own colour scheme,
making it stand out from the rest of the output. In addition the trace output is generally voluminous so it can be hidden by
default, made visible only to find out more about what was happening when a particular problem occurred. Similarly the
ethernet device support can output details of the various packets being transferred, and using a different background colour for
this output again makes it easier to distinguish from console output.

The default appearance for most filters is controlled via the target definition file. An example entry might be:

 filter trace {^TRACE:.*} -foreground HotPink1 -hide 1

The various colours and the hide flag for each filter can be changed at run-time, using the System Filters item on the View
menu. This will bring up a dialog like the following:

2066

eCos Synthetic Target

It should be noted that the text window is line-oriented, not character-oriented. If an eCos application sends a partial line of
text then that will remain buffered until a newline character is received, rather than being displayed immediately. This avoids
confusion when there is concurrent output from several sources.

By default the text window is read-only. This means it will not allow cut, paste and clear operations, and keyboard input will
be ignored. The Edit menu has a checkbutton Read Only which can be toggled to allow write operations. For example, a user
could type in a reminder of what was happening at this time, or paste in part of a gdb session. Such keyboard input does not get
forwarded to the eCos application: if the latter requires keyboard input then that should happen via a separate keyboard device.

Positioning Optional Windows
Some devices may create their own subwindows, for example to monitor ethernet traffic or to provide additional I/O facilities
such as emulated LED's or buttons. Usually the target definition file can be used to control the layout of these windows. This
requires an understanding of the overall layout of the display.

Subwindows are generally packed in one of eight frames surrounding the central text window: .main.nw, .main.n,
.main.ne, .main.w, .main.e, .main.sw, .main.s, and .main.se. To position a row of LED's above the text win-
dow and towards the left, a target definition file could contain an entry such as:

synth_device led {
 pack -in .main.n -side left
 …
}

Similarly, to put a traffic monitor window on the right of the text window would involve something like:

 …
 monitor_pack -in .main.e -side bottom
 …

Often it will be sufficient to specify a container frame and one of left, right, top or bottom. Full control over the
positioning requires an understanding of Tcl/Tk and in particular the packing algorithm, and an appropriate reference work
should be consulted.

Global Settings

Note

This section still to be written - it should document the interaction between X resources and ecosynth, and how
users can control settings such as the main foreground and background colours.

2067

eCos Synthetic Target

Name
The console device — Show output from the eCos application

Description

The eCos application can generate text output in a variety of ways, including calling printf or diag_printf. When the
I/O auxiliary is enabled the eCos startup code will instantiate a console device to process all such output. If operating in text
mode the output will simply go to standard output, or to a logfile if the -l command line option is specified. If operating in
graphical mode the output will go to the central text window, and optionally to a logfile as well. In addition it is possible to
control the appearance of the main text via the target definition file, and to install extra filters for certain types of text.

It should be noted that the console device is line-oriented, not character-oriented. This means that outputting partial lines is
not supported, and some functions such as fflush and setvbuf will not operate as expected. This limitation prevents
much possible confusion when using filters to control the appearance of the text window, and has some performance benefits
- especially when the eCos application generates a great deal of output such as when tracing is enabled. For most applications
this is not a problem, but it is something that developers should be aware of.

The console device is output-only, it does not provide any support for keyboard input. If the application requires keyboard
input then that should be handled by a separate eCos device package and matching host-side code.

Installation

The eCos side of the console device is implemented by the architectural HAL itself, in the source file synth_diag.c,
rather than in a separate device package. Similarly the host-side implementation, console.tcl, is part of the architectural
HAL's host-side support. It gets installed automatically alongside the I/O auxiliary itself, so no separate installation procedure
is required.

Target Definition File

The target definition file can contain a number of entries related to the console device. These are all optional, they only control
the appearance of text output. If such control is desired then the relevant options should appear in the body of a synth_device
entry:

synth_device console {
 …
}

The first option is appearance, used to control the appearance of any text generated by the eCos application that does not
match one of the installed filters. This option takes the same argument as any other filter, for example:

synth_device console {
 appearance -foreground white -background black
 …
}

Any number of additional filters can be created with a filter option, for example:

synth_device console {
 …
 filter trace {^TRACE:.*} -foreground HotPink1 -hide 1
 …
}

The first argument gives the new filter a name which will be used in the filters dialog. Filter names should be unique. The
second argument is a Tcl regular expression. The console support will match each line of eCos output against this regular
expression, and if a match is found then the filter will be used for this line of text. The above example matches any line of output
that begins with TRACE:, which corresponds to the eCos infrastructure's tracing facilities. The remaining options control the
desired appearance for matched text. If some eCos output matches the regular expressions for several different filters then only
the first match will be used.

2068

eCos Synthetic Target

Target-side Configuration Options
There are no target-side configuration options related to the console device.

Command Line Arguments
The console device does not use any command-line arguments.

Hooks
The console device does not provide any hooks.

Additional Tcl Procedures
The console device does not provide any additional Tcl procedures that can be used by other scripts.

2069

eCos Synthetic Target

Name
cyg_hal_sys_xyz — Access Linux system facilities

Synopsis
#include <cyg/hal/hal_io.h>

int cyg_hal_sys_xyzzy(...);

Description
On a real embedded target eCos interacts with the hardware by peeking and poking various registers, manipulating special
regions of memory, and so on. The synthetic target does not access hardware directly. Instead I/O and other operations are
emulated by making appropriate Linux system calls. The HAL package exports a number of functions which allow other
packages, or even application code, to make these same system calls. However this facility must be used with care: any code
which calls, for example, cyg_hal_sys_write will only ever run on the synthetic target; that functionality is obviously
not provided on any real hardware because there is no underlying Linux kernel to implement it.

The synthetic target only provides a subset of the available system calls, specifically those calls which have proved useful
to implement I/O emulation. This subset can be extended fairly easily if necessary. All of the available calls, plus associated
data structures and macros, are defined in the header file cyg/hal/hal_io.h. There is a simple convention: given a Linux
system call such as open, the synthetic target will prefix cyg_hal_sys and provide a function with that name. The second
argument to the open system call is a set of flags such as O_RDONLY, and the header file will define a matching constant
CYG_HAL_SYS_O_RDONLY. There are also data structures such as cyg_hal_sys_sigset_t, matching the Linux data structure
sigset_t.

In most cases the functions provided by the synthetic target behave as per the documentation for the Linux system calls, and
section 2 of the Linux man pages can be consulted for more information. There is one important difference: typically the
documentation will say that a function returns -1 to indicate an error, with the actual error code held in errno; the actual
underlying system call and hence the cyg_hal_sys_xyz provided by eCos instead returns a negative number to indicate
an error, with the absolute value of that number corresponding to the error code; usually it is the C library which handles this
and manipulates errno, but of course synthetic target applications are not linked with that Linux library.

However, there are some exceptions. The Linux kernel has evolved over the years, and some of the original system call inter-
faces are no longer appropriate. For example the original select system call has been superseded by _newselect, and
that is what the select function in the C library actually uses. The old call is still available to preserve binary compatibility
but, like the C library, eCos makes use of the new one because it provides the appropriate functionality. In an attempt to re-
duce confusion the eCos function is called cyg_hal_sys__newselect, in other words it matches the official system call
naming scheme. The authoritive source of information on such matters is the Linux kernel sources themselves, and especially
its header files.

eCos packages and applications should never #include Linux header files directly. For example, doing a #include </
usr/include/fcntl.h> to access additional macros or structure definitions, or alternatively manipulating the header file
search path, will lead to problems because the Linux header files are likely to duplicate and clash with definitions in the eCos
headers. Instead the appropriate functionality should be extracted from the Linux headers and moved into either cyg/hal/
hal_io.h or into application code, with suitable renaming to avoid clashes with eCos names. Users should be aware that
large-scale copying may involve licensing complications.

Adding more system calls is usually straightforward and involves adding one or more lines to the platform-specific file in the
appropriate platform HAL, for example syscall-i386-linux-1.0.S. However it is necessary to do some research first
about the exact interface implemented by the system call, because of issues such as old system calls that have been superseded.
The required information can usually be found fairly easily by searching through the Linux kernel sources and possibly the
GNU C library sources.

2070

eCos Synthetic Target

Name
Writing New Devices — extending the synthetic target, target-side

Synopsis
#include <cyg/hal/hal_io.h>

int synth_auxiliary_instantiate(package, version, device, instance, data);

void synth_auxiliary_xchgmsg(device_id, request, arg1, arg2, txdata, txlen, reply,
rxdata, rxlen, max_rxlen);

Description
In some ways writing a device driver for the synthetic target is very similar to writing one for a real target. Obviously it has
to provide the standard interface for that class of device, so for example an ethernet device has to provide can_send, send,
recv and similar functions. Many devices will involve interrupts, so the driver contains ISR and DSR functions and will call
cyg_drv_interrupt_create, cyg_drv_interrupt_acknowledge, and related functions.

In other ways writing a device driver for the synthetic target is very different. Usually the driver will not have any direct access
to the underlying hardware. In fact for some devices the I/O may not involve real hardware, instead everything is emulated
by widgets on the graphical display. Therefore the driver cannot just peek and poke device registers, instead it must interact
with host-side code by exchanging message. The synthetic target HAL provides a function synth_auxiliary_xchgmsg
for this purpose.

Initialization of a synthetic target device driver is also very different. On real targets the device hardware already exists when the
driver's initialization routine runs. On the synthetic target it is first necessary to instantiate the device inside the I/O auxiliary, by
a call to synth_auxiliary_instantiate. That function performs a special message exchange with the I/O auxiliary,
causing it to load a Tcl script for the desired type of device and run an instantiation procedure within that script.

Use of the I/O auxiliary is optional: if the user does not specify --io on the command line then the auxiliary will not be
started and hence most I/O operations will not be possible. Device drivers should allow for this possibility, for example by just
discarding any data that gets written. The HAL exports a flag synth_auxiliary_running which should be checked.

Instantiating a Device
Device instantiation should happen during the C++ prioritized static constructor phase of system initialization, before control
switches to cyg_user_start and general application code. This ensures that there is a clearly defined point at which the
I/O auxiliary knows that all required devices have been loaded. It can then perform various consistency checks and clean-ups,
run the user's mainrc.tcl script, and make the main window visible.

For standard devices generic eCos I/O code will call the device initialization routines at the right time, iterating through the
DEVTAB table in a static constructor. The same holds for network devices and file systems. For more custom devices code
like the following can be used:

#include <cyg/infra/cyg_type.h>
class mydev_init {
 public:
 mydev_init() {
 …
 }
};
static mydev_init mydev_init_object CYGBLD_ATTRIB_INIT_PRI(CYG_INIT_IO);

Some care has to be taken because the object mydev_init_object will typically not be referenced by other code, and
hence may get eliminated at link-time. If the code is part of an eCos package then problems can be avoided by putting the
relevant file in libextras.a:

cdl_package CYGPKG_DEVS_MINE {
 …
 compile -library=libextras.a init.cxx

2071

eCos Synthetic Target

}

For devices inside application code the same can be achieved by linking the relevant module as a .o file rather than putting
it in a .a library.

In the device initialization routine the main operation is a call to synth_auxiliary_instantiate. This takes five
arguments, all of which should be strings:

package For device drivers which are eCos packages this should be a directory path relative to
the eCos repository, for example devs/eth/synth/ecosynth. This will allow the
I/O auxiliary to find the various host-side support files for this package within the install
tree. If the device is application-specific and not part of an eCos package then a NULL
pointer can be used, causing the I/O auxiliary to search for the support files in the current
directory and then in ~/.ecos/synth instead.

version For eCos packages this argument should be the version of the package that is be-
ing used, for example current. A simple way to get this version is to use the
SYNTH_MAKESTRING macro on the package name. If the device is application-specif-
ic then a NULL pointer should be used.

device This argument specifies the type of device being instantiated, for example ethernet.
More specifically the I/O auxiliary will append a .tcl suffix, giving the name of a Tcl
script that will handle all I/O requests for the device. If the application requires several
instances of a type of device then the script will only be loaded once, but the script will
contain an instantiation procedure that will be called for each device instance.

instance If it is possible to have multiple instances of a device then this argument identifies the
particular instance, for example eth0 or eth1. Otherwise a NULL pointer can be used.

data This argument can be used to pass additional initialization data from eCos to the host-
side support. This is useful for devices where eCos configury must control certain as-
pects of the device, rather than host-side configury such as the target definition file, be-
cause eCos has compile-time dependencies on some or all of the relevant options. An
example might be an emulated frame buffer where eCos has been statically configured
for a particular screen size, orientation and depth. There is no fixed format for this string,
it will be interpreted only by the device-specific host-side Tcl script. However the string
length should be limited to a couple of hundred bytes to avoid possible buffer overflow
problems.

Typical usage would look like:

 if (!synth_auxiliary_running) {
 return;
 }
 id = synth_auxiliary_instantiate("devs/eth/synth/ecosynth",
 SYNTH_MAKESTRING(CYGPKG_DEVS_ETH_ECOSYNTH),
 "ethernet",
 "eth0",
 (const char*) 0);

The return value will be a device identifier which can be used for subsequent calls to synth_auxiliary_xchgmsg. If
the device could not be instantiated then -1 will be returned. It is the responsibility of the host-side software to issue suitable
diagnostics explaining what went wrong, so normally the target-side code should fail silently.

Once the desired device has been instantiated, often it will be necessary to do some additional initialization by a message
exchange. For example an ethernet device might need information from the host-side about the MAC address, the interrupt
vector, and whether or not multicasting is supported.

Communicating with a Device
Once a device has been instantiated it is possible to perform I/O by sending messages to the appropriate Tcl script running
inside the auxiliary, and optionally getting back replies. I/O operations are always initiated by the eCos target-side, it is not

2072

eCos Synthetic Target

possible for the host-side software to initiate data transfers. However the host-side can raise interrupts, and the interrupt handler
inside the target can then exchange one or more messages with the host.

There is a single function to perform I/O operations, synth_auxiliary_xchgmsg. This takes the following arguments:

device_id This should be one of the identifiers returned by a previous call to synth_auxil-
iary_instantiate, specifying the particular device which should perform some
I/O.

request Request are just signed 32-bit integers that identify the particular I/O operation being
requested. There is no fixed set of codes, instead each type of device can define its own.

arg1
arg2

For some requests it is convenient to pass one or two additional parameters alongside
the request code. For example an ethernet device could define a multicast-all request,
with arg1 controlling whether this mode should be enabled or disabled. Both arg1
and arg2 should be signed 32-bit integers, and their values are interpreted only by the
device-specific Tcl script.

txdata
txlen

Some I/O operations may involve sending additional data, for example an ethernet pack-
et. Alternatively a control operation may require many more parameters than can easi-
ly be encoded in arg1 and arg2, so those parameters have to be placed in a suitable
buffer and extracted at the other end. txdata is an arbitrary buffer of txlen bytes that
should be sent to the host-side. There is no specific upper bound on the number of bytes
that can be sent, but usually it is a good idea to allocate the transmit buffer statically and
keep transfers down to at most several kilobytes.

reply If the host-side is expected to send a reply message then reply should be a pointer
to an integer variable and will be updated with a reply code, a simple 32-bit integer.
The synthetic target HAL code assumes that the host-side and target-side agree on the
protocol being used: if the host-side will not send a reply to this message then the reply
argument should be a NULL pointer; otherwise the host-side must always send a reply
code and the reply argument must be valid.

rxdata
rxlen

Some operations may involve additional data coming from the host-side, for example
an incoming ethernet packet. rxdata should be a suitably-sized buffer, and rxlen a
pointer to an integer variable that will end up containing the number of bytes that were
actually received. These arguments will only be used if the host-side is expected to send
a reply and hence the reply argument was not NULL.

max_rxlen If a reply to this message is expected and that reply may involve additional data,
max_rxlen limits the size of that reply. In other words, it corresponds to the size of
the rxdata buffer.

Most I/O operations involve only some of the arguments. For example transmitting an ethernet packet would use the request,
txdata and txlen fields (in addition to device_id which is always required), but would not involve arg1 or arg2 and
no reply would be expected. Receiving an ethernet packet would involve request, rxdata, rxlen and max_rxlen; in
addition reply is needed to get any reply from the host-side at all, and could be used to indicate whether or not any more
packets are buffered up. A control operation such as enabling multicast mode would involve request and arg1, but none
of the remaining arguments.

Interrupt Handling
Interrupt handling in the synthetic target is much the same as on a real target. An interrupt object is created using
cyg_drv_interrupt_create, attached, and unmasked. The emulated device - in other words the Tcl script running
inside the I/O auxiliary - can raise an interrupt. Subject to interrupts being disabled and the appropriate vector being masked,
the system will invoke the specified ISR function. The synthetic target HAL implementation does have some limitations: there
is no support for nested interrupts, interrupt priorities, or a separate interrupt stack. Supporting those might be appropriate
when targetting a simulator that attempts to model real hardware accurately, but not for the simple emulation provided by the
synthetic target.

2073

eCos Synthetic Target

Of course the actual implementation of the ISR and DSR functions will be rather different for a synthetic target device driver.
For real hardware the device driver will interact with the device by reading and writing device registers, managing DMA
engines, and the like. A synthetic target driver will instead call synth_auxiliary_xchgmsg to perform the I/O operations.

There is one other significant difference between interrupt handling on the synthetic target and on real hardware. Usually the
eCos code will know which interrupt vectors are used for which devices. That information is fixed when the target hardware
is designed. With the synthetic target interrupt vectors are assigned to devices on the host side, either via the target definition
file or dynamically when the device is instantiated. Therefore the initialization code for a target-side device driver will need
to request interrupt vector information from the host-side, via a message exchange. Such interrupt vectors will be in the range
1 to 31 inclusive, with interrupt 0 being reserved for the real-time clock.

2074

eCos Synthetic Target

Name
Writing New Devices — extending the synthetic target, host-side

Description

On the host-side adding a new device means writing a Tcl/Tk script that will handle instantiation and subsequent requests
from the target-side. These scripts all run in the same full interpreter, extended with various commands provided by the main
I/O auxiliary code, and running in an overall GUI framework. Some knowledge of programming with Tcl/Tk is required to
implement host-side device support.

Some devices can be implemented entirely using a Tcl/Tk script. For example, if the final system will have some buttons then
those can be emulated in the synthetic target using a few Tk widgets. A simple emulation could just have the right number of
buttons in a row. A more advanced emulation could organize the buttons with the right layout, perhaps even matching the colour
scheme, the shapes, and the relative sizes. With other devices it may be necessary for the Tcl script to interact with an external
program, because the required functionality cannot easily be accessed from a Tcl script. For example interacting with a raw
ethernet device involves some ioctl calls, which is easier to do in a C program. Therefore the ethernet.tcl script which
implements the host-side ethernet support spawns a separate program rawether, written in C, that performs the low-level I/
O. Raw ethernet access usually also requires root privileges, and running a small program rawether with such privileges is
somewhat less of a security risk than the whole eCos application, the I/O auxiliary, and various dynamically loaded Tcl scripts.

Because all scripts run in a single interpreter, some care has to be taken to avoid accidental sharing of global variables. The
best way to avoid problems is to have each script create its own Tcl namespace, so for example the ethernet.tcl script
creates a namespace ethernet:: and all variables and procedures reside in this namespace. Similarly the I/O auxiliary itself
makes use of a synth:: namespace.

Building and Installation

When an eCos device driver or application code instantiates a device, the I/O auxiliary will attempt to load a matching Tcl
script. The third argument to synth_auxiliary_instantiate specifies the type of device, for example ethernet,
and the I/O auxiliary will append a .tcl suffix and look for a script ethernet.tcl.

If the device being instantiated is application-specific rather than part of an eCos package, the I/O auxiliary will look first in
the current directory, then in ~/.ecos/synth. If it is part of an eCos package then the auxiliary will expect to find the Tcl
script and any support files below libexec/ecos in the install tree - note that the same install tree must be used for the I/
O auxiliary itself and for any device driver support. The directory hierarchy below libexec/ecos matches the structure of
the eCos repository, allowing multiple versions of a package to be installed to allow for incompatible protocol changes.

The preferred way to build host-side software is to use autoconf and automake. Usually this involves little more than copying
the acinclude.m4, configure.in and Makefile.am files from an existing package, for example the synthetic target
ethernet driver, and then making minor edits. In acinclude.m4 it may be necessary to adjust the path to the root of the
repository. configure.in may require a similar change, and the AC_INIT macro invocation will have to be changed
to match one of the files in the new package. A critical macro in this file is ECOS_PACKAGE_DIRS which will set up the
correct install directory. Makefile.am may require some more changes, for example to specify the data files that should be
installed (including the Tcl script). These files should then be processed using aclocal, autoconf and automake in that order.
Actually building the software then just involves configure, make and make install, as per the instructions in the toplevel
README.host file.

To assist developers, if the environment variable ECOSYNTH_DEVEL is set then a slightly different algorithm is used for
locating device Tcl scripts. Instead of looking only in the install tree the I/O auxiliary will also look in the source tree, and
if the script there is more recent than the installed version it will be used in preference. This allows developers to modify the
master copy without having to run make install all the time.

If a script needs to know where it has been installed it can examine the Tcl variable synth::device_install_dir
. This variable gets updated whenever a script is loaded, so if the value may be needed later it should be saved away in a
device-specific variable.

2075

eCos Synthetic Target

Instantiation
The I/O auxiliary will source the device-specific Tcl script when the eCos application first attempts to instantiate a device of
that type. The script should return a procedure that will be invoked to instantiate a device.

namespace eval ethernet {
 …
 proc instantiate { id instance data } {
 …
 return ethernet::handle_request
 }
}
return ethernet::instantiate

The id argument is a unique identifier for this device instance. It will also be supplied on subsequent calls to the request
handler, and will match the return value of synth_auxiliary_instantiate on the target side. A common use for this
value is as an array index to support multiple instances of this types of device. The instance and data arguments match
the corresponding arguments to synth_auxiliary_instantiate on the target side, so a typical value for instance
would be eth0, and data is used to pass arbitrary initialization parameters from target to host.

The actual work done by the instantiation procedure is obviously device-specific. It may involve allocating an interrupt vector,
adding a device-specific subwindow to the display, opening a real Linux device, establishing a socket connection to some
server, spawning a separate process to handle the actual I/O, or a combination of some or all of the above.

If the device is successfully instantiated then the return value should be a handler for subsequent I/O requests. Otherwise the
return value should be an empty string, and on the target-side the synth_auxiliary_instantiate call will return -1.
The script is responsible for providing diagnostics explaining why the device could not be instantiated.

Handling Requests
When the target-side calls synth_auxiliary_xchgmsg, the I/O auxiliary will end up calling the request handler for the
appropriate device instance returned during instantiation:

namespace eval ethernet {
 …
 proc handle_request { id request arg1 arg2 txdata txlen max_rxlen } {
 …
 if { <some condition> } {
 synth::send_reply <error code> 0 ""
 return
 }
 …
 synth::send_reply <reply code> $packet_len $packet
 }
 …
}

The id argument is the same device id that was passed to the instantiate function, and is typically used as an array index to
access per-device data. The request, arg1, arg2, and max_rxlen are the same values that were passed to synth_aux-
iliary_xchgmsg on the target-side, although since this is a Tcl script obviously the numbers have been converted to strings.
The txdata buffer is raw data as transmitted by the target, or an empty string if the I/O operation does not involve any addi-
tional data. The Tcl procedures binary scan, string index and string range may be found especially useful when manipulating
this buffer. txlen is provided for convenience, although string length $txdata would give the same information.

The code for actually processing the request is of course device specific. If the target does not expect a reply then the request
handler should just return when finished. If a reply is expected then there should be a call to synth::send_reply. The first
argument is the reply code, and will be turned into a 32-bit integer on the target side. The second argument specifies the length
of the reply data, and the third argument is the reply data itself. For some devices the Tcl procedure binary format may prove
useful. If the reply involves just a code and no additional data, the second and third arguments should be 0 and an empty
string respectively.

Attempts to send a reply when none is expected, fail to send a reply when one is expected, or send a reply that is larger than
the target-side expects, will all be detected by the I/O auxiliary and result in run-time error messages.

2076

eCos Synthetic Target

It is not possible for the host-side code to send unsolicited messages to the target. If host-side code needs attention from the
target, for example because some I/O operation has completed, then an interrupt should be raised.

Interrupts
The I/O auxiliary provides a number of procedures for interrupt handling.

synth::interrupt_allocate <name>
synth::interrupt_get_max
synth::interrupt_get_devicename <vector>
synth::interrupt_raise <vector>

synth::interrupt_allocate is normally called during device instantiation, and returns the next free interrupt vector. This can
be passed on to the target-side device driver in response to a suitable request, and it can then install an interrupt handler on
that vector. Interrupt vector 0 is used within the target-side code for the real-time clock, so the allocated vectors will start at
1. The argument identifies the device, for example eth0. This is not actually used internally, but can be accessed by user-
initialization scripts that provide some sort of interrupt monitoring facility (typically via the interrupt hook). It is possible
for a single device to allocate multiple interrupt vectors, but the synthetic target supports a maximum of 32 such vectors.

synth::interrupt_get_max returns the highest interrupt vector that has been allocated, or 0 if there have been no calls to
synth::interrupt_allocate. synth::interrupt_get_devicename returns the string that was passed to synth::interrupt_allo-
cate when the vector was allocated.

synth::interrupt_raise can be called any time after initialization. The argument should be the vector returned by synth::in-
terrupt_allocate for this device. It will activate the normal eCos interrupt handling mechanism so, subject to interrupts being
enabled and this particular interrupt not being masked out, the appropriate ISR will run.

Note

At this time it is not possible for a device to allocate a specific interrupt vector. The order in which interrupt
vectors are assigned to devices effectively depends on the order in which the eCos devices get initialized, and that
may change if the eCos application is rebuilt. A future extension may allow devices to allocate specific vectors,
thus making things more deterministic. However that will introduce new problems, in particular the code will
have to start worrying about requests for vectors that have already been allocated.

Flags and Command Line Arguments
The generic I/O auxiliary code will process the standard command line arguments, and will set various flag variables accord-
ingly. Some of these should be checked by device-specific scripts.

synth::flag_gui This is set when the I/O auxiliary is operating in graphical mode rather than text mode.
Some functionality such as filters and the GUI layout are only available in graphical
mode.

 if { $synth::flag_gui } {
 …
 }

synth::flag_verbose The user has requested additional information during startup. Each device driver can
decide how much additional information, if any, should be produced.

synth::flag_keep_going The user has specified -k or --keep-going, so even if an error occurs the I/O aux-
iliary and the various device driver scripts should continue running if at all possible.
Diagnostics should still be generated.

Some scripts may want to support additional command line arguments. This facility should be used with care since there is no
way to prevent two different scripts from trying to use the same argument. The following Tcl procedures are available:

synth::argv_defined <name>
synth::argv_get_value <name>

2077

eCos Synthetic Target

synth::argv_defined returns a boolean to indicate whether or not a particular argument is present. If the argument is the name
part of a name/value pair, an = character should be appended. Typical uses might be:

 if { [synth::argv_defined "-o13"] } {
 …
 }

 if { [synth::argv_defined "-mark="] } {
 …
 }

The first call checks for a flag -o13 or --o13 - the code treats options with single and double hyphens interchangeably. The
second call checks for an argument of the form -mark=<value> or a pair of arguments -mark <value>. The value part
of a name/value pair can be obtained using synth::argv_get_value;

 variable speed 1
 if { [synth::argv_defined "-mark="] } {
 set mark [synth::argv_get_value "-mark="]
 if { ![string is integer $mark] || ($mark < 1) || ($mark > 9) } {
 <issue diagnostic>
 } else {
 set speed $mark
 }
 }

synth::argv_get_value should only be used after a successful call to synth::argv_defined. At present there is no support for
some advanced forms of command line argument processing. For example it is not possible to repeat a certain option such as
-v or --verbose, with each occurrence increasing the level of verbosity.

If a script is going to have its own set of command-line arguments then it should give appropriate details if the user specifies
--help. This involves a hook function:

namespace eval my_device {
 proc help_hook { } {
 puts " -o13 : activate the omega 13 device"
 puts " -mark <speed> : set speed. Valid values are 1 to 9."
 }

 synth::hook_add "help" my_device::help_hook
}

The Target Definition File
Most device scripts will want to check entries in the target definition file for run-time configuration information. The Tcl
procedures for this are as follows:

synth::tdf_has_device <name>
synth::tdf_get_devices
synth::tdf_has_option <devname> <option>
synth::tdf_get_option <devname> <option>
synth::tdf_get_options <devname> <option>
synth::tdf_get_all_options <devname>

synth::tdf_has_device can be used to check whether or not the target definition file had an entry synth_device <name>.
Usually the name will match the type of device, so the console.tcl script will look for a target definition file entry con-
sole. synth::tdf_get_devices returns a list of all device entries in the target definition file.

Once it is known that the target definition file has an entry for a certain device, it is possible to check for options within the
entry. synth::tdf_has_option just checks for the presence, returning a boolean:

 if { [synth::tdf_has_option "console" "appearance"] } {
 …
 }

synth::tdf_get_option returns a list of all the arguments for a given option. For example, if the target definition file contains
an entry:

synth_device console {

2078

eCos Synthetic Target

 appearance -foreground white -background black
 filter trace {^TRACE:.*} -foreground HotPink1 -hide 1
 filter xyzzy {.*xyzzy.*} -foreground PapayaWhip
}

A call synth::tdf_get_option console appearance will return the list {-foreground white -background black}.
This list can be manipulated using standard Tcl routines such as llength and lindex. Some options can occur multiple times
in one entry, for example filter in the console entry. synth::tdf_get_options returns a list of lists, with one entry for
each option occurrence. synth::tdf_get_all_options returns a list of lists of all options. This time each entry will include the
option name as well.

The I/O auxiliary will not issue warnings about entries in the target definition file for devices which were not loaded, unless
the -v or --verbose command line argument was used. This makes it easier to use a single target definition file for different
applications. However the auxiliary will issue warnings about options within an entry that were ignored, because often these
indicate a typing mistake of some sort. Hence a script should always call synth::tdf_has_option, synth:;tdf_get_option or
synth::tdf_get_options for all valid options, even if some of the options preclude the use of others.

Hooks
Some scripts may want to take action when particular events occur, for example when the eCos application has exited and
there is no need for further I/O. This is supported using hooks:

namespace eval my_device {
 …
 proc handle_ecos_exit { arg_list } {
 …
 }
 synth::hook_add "ecos_exit" my_device::handle_ecos_exit
}

It is possible for device scripts to add their own hooks and call all functions registered for those hooks. A typical use for this is
by user initialization scripts that want to monitor some types of I/O. The available Tcl procedures for manipulating hooks are:

synth::hook_define <name>
synth::hook_defined <name>
synth::hook_add <name> <function>
synth::hook_call <name> <args>

synth::hook_define creates a new hook with the specified name. This hook must not already exist. synth::hook_defined can
be used to check for the existence of a hook. synth::hook_add allows other scripts to register a callback function for this
hook, and synth::hook_call allows the owner script to invoke all such callback functions. A hook must already be defined
before a callback can be attached. Therefore typically device scripts will only use standard hooks and their own hooks, not
hooks created by some other device, because the order of device initialization is not sufficiently defined. User scripts run from
mainrc.tcl can use any hooks that have been defined.

synth::hook_call takes an arbitrary list of arguments, for example:

 synth::hook_call "ethernet_rx" "eth0" $packet

The callback function will always be invoked with a single argument, a list of the arguments that were passed to
synth::hook_call:

 proc rx_callback { arg_list } {
 set device [lindex $arg_list 0]
 set packet [lindex $arg_list 1]
 }

Although it might seem more appropriate to use Tcl's eval procedure and have the callback functions invoked with the right
number of arguments rather than a single list, that would cause serious problems if any of the data contained special characters
such as [or $. The current implementation of hooks avoids such problems, at the cost of minor inconvenience when writing
callbacks.

A number of hooks are defined as standard. Some devices will add additional hooks, and the device-specific documentation
should be consulted for those. User scripts can add their own hooks if desired.

2079

eCos Synthetic Target

exit This hook is called just before the I/O auxiliary exits. Hence it provides much the same
functionality as atexit in C programs. The argument list passed to the callback func-
tion will be empty.

ecos_exit This hook is called when the eCos application has exited. It is used mainly to shut down
I/O operations: if the application is no longer running then there is no point in raising
interrupts or storing incoming packets. The callback argument list will be empty.

ecos_initialized The synthetic target HAL will send a request to the I/O auxiliary once the static con-
structors have been run. All devices should now have been instantiated. A script could
now check how many instances there are of a given type of device, for example eth-
ernet devices, and create a little monitor window showing traffic on all the devices.
The ecos_initialized callbacks will be run just before the user's mainrc.tcl
script. The callback argument list will be empty.

help This hook is also invoked once static constructors have been run, but only if the user
specified -h or --help. Any scripts that add their own command line arguments
should add a callback to this hook which outputs details of the additional arguments.
The callback argument list will be empty.

interrupt Whenever a device calls synth::interrupt_raise the interrupt hook will be called
with a single argument, the interrupt vector. The main use for this is to allow user scripts
to monitor interrupt traffic.

Output and Filters
Scripts can use conventional facilities for sending text output to the user, for example calling puts or directly manipulating
the central text widget .main.centre.text. However in nearly all cases it is better to use output facilities provided by
the I/O auxiliary itself:

synth::report <msg>
synth::report_warning <msg>
synth::report_error <msg>
synth::internal_error <msg>
synth::output <msg> <filter>

synth::report is intended for messages related to the operation of the I/O auxiliary itself, especially additional output resulting
from -v or --verbose. If running in text mode the output will go to standard output. If running in graphical mode the output
will go to the central text window. In both modes, use of -l or --logfile will modify the behaviour.

synth::report_warning, synth::report_error and synth::internal_error have the obvious meaning, including prepending
strings such as Warning: and Error:. When the eCos application informs the I/O auxiliary that all static constructors have
run, if at that point there have been any calls to synth::error then the I/O auxiliary will exit. This can be suppressed with
command line arguments -k or --keep-going. synth::internal_error will output some information about the current state
of the I/O auxiliary and then exit immediately. Of course it should never be necessary to call this function.

synth::output is the main routine for outputting text. The second argument identifies a filter. If running in text mode the filter is
ignored, but if running in graphical mode the filter can be used to control the appearance of this output. A typical use would be:

 synth::output $line "console"

This outputs a single line of text using the console filter. If running in graphical mode the default appearance of this text can
be modified with the appearance option in the synth_device console entry of the target definition file. The System filters
menu option can be used to change the appearance at run-time.

Filters should be created before they are used. The procedures available for this are:

synth::filter_exists <name>
synth::filter_get_list
synth::filter_add <name> [options]
synth::filter_parse_options <options> <parsed_options> <message>
synth::filter_add_parsed <name> <parsed_options>

2080

eCos Synthetic Target

synth::filter_exists can be used to check whether or not a particular filter already exists: creating two filters with the same
name is not allowed. synth::filter_get_list returns a list of the current known filters. synth::filter_add can be used to create
a new filter. The first argument names the new filter, and the remaining arguments control the initial appearance. A typical
use might be:

 synth::filter_add "my_device_tx" -foreground yellow -hide 1

It is assumed that the supplied arguments are valid, which typically means that they are hard-wired in the script. If instead the
data comes out of a configuration file and hence may be invalid, the I/O auxiliary provides a parsing utility. Typical usage
would be:

 array set parsed_options [list]
 set message ""
 if { ![synth::filter_parse_options $console_appearance parsed_options message] } {
 synth::report_error \
 "Invalid entry in target definition file $synth::target_definition\
 \n synth_device \"console\", entry \"appearance\"\n$message"
 } else {
 synth::filter_add_parsed "console" parsed_options
 }

On success parsed_options will be updated with an internal representation of the desired appearance, which can then be
used in a call to synth::filter_add_parsed. On failure message will be updated with details of the parsing error that occurred.

The Graphical Interface
When the I/O auxiliary is running in graphical mode, many scripts will want to update the user interface in some way. This may
be as simple as adding another entry to the help menu for the device, or adding a new button to the toolbar. It may also involve
adding new subwindows, or even creating entire new toplevel windows. These may be simple monitor windows, displaying
additional information about what is going on in the system in a graphical format. Alternatively they may emulate actual I/O
operations, for example button widgets could be used to emulate real physical buttons.

The I/O auxiliary does not provide many procedures related to the graphical interface. Instead it is expected that scripts will
just update the widget hierarchy directly.

So adding a new item to the Help menu involves a .menubar.help add operation with suitable arguments. Adding a new
button to the toolbar involves creating a child window in .toolbar and packing it appropriately. Scripts can create their
own subwindows and then pack it into one of .main.nw, .main.n, .main.ne, .main.w, .main.e, .main.sw,
.main.s or .main.se. Normally the user should be allowed to control this via the target definition file. The central window
.main.centre should normally be left alone by other scripts since it gets used for text output.

The following graphics-related utilities may be found useful:

2081

eCos Synthetic Target

synth::load_image <image name> <filename>
synth::register_ballon_help <widget> <message>
synth::handle_help <URL>

synth::load_image can be used to add a new image to the current interpreter. If the specified file has a .xbm extension then
the image will be a monochrome bitmap, otherwise it will be a colour image of some sort. A boolean will be returned to indicate
success or failure, and suitable diagnostics will be generated if necessary.

synth::register_balloon_help provides balloon help for a specific widget, usually a button on the toolbar.

synth::handle_help is a utility routine that can be installed as the command for displaying online help, for example:

 .menubar.help add command -label "my device" -command \
 [list synth::handle_help "file://$path"]

2082

eCos Synthetic Target

Name
Porting — Adding support for other hosts

Description
The initial development effort of the eCos synthetic target happened on x86 Linux machines. Porting to other platforms involves
addressing a number of different issues. Some ports should be fairly straightforward, for example a port to Linux on a processor
other than an x86. Porting to Unix or Unix-like operating systems other than Linux may be possible, but would involve more
effort. Porting to a completely different operating system such as Windows would be very difficult. The text below complements
the eCos Porting Guide.

Other Linux Platforms
Porting the synthetic target to a Linux platform that uses a processor other than x86 should be straightforward. The simplest
approach is to copy the existing i386linux directory tree in the hal/synth hierarchy, then rename and edit the ten or so
files in this package. Most of the changes should be pretty obvious, for example on a 64-bit processor some new data types
will be needed in the basetype.h header file. It will also be necessary to update the toplevel ecos.db database with an
entry for the new HAL package, and a new target entry will be needed.

Obviously a different processor will have different register sets and calling conventions, so the code for saving and restoring
thread contexts and for implementing setjmp and longjmp will need to be updated. The exact way of performing Linux
system calls will vary: on x86 linux this usually involves pushing some registers on the stack and then executing an int 0x080
trap instruction, but on a different processor the arguments might be passed in registers instead and certainly a different trap
instruction will be used. The startup code is written in assembler, but needs to do little more than extract the process' argument
and environment variables and then jump to the main linux_entry function provided by the architectural synthetic target
HAL package.

The header file hal_io.h provided by the architectural HAL package provides various structure definitions, function proto-
types, and macros related to system calls. These are correct for x86 linux, but there may be problems on other processors. For
example a structure field that is currently defined as a 32-bit number may in fact may be a 64-bit number instead.

The synthetic target's memory map is defined in two files in the include/pkgconf subdirectory. For x86 the default
memory map involves eight megabytes of read-only memory for the code at location 0x1000000 and another eight megabytes
for data at 0x2000000. These address ranges may be reserved for other purposes on the new architecture, so may need changing.
There may be some additional areas of memory allocated by the system for other purposes, for example the startup stack and
any environment variables, but usually eCos applications can and should ignore those.

Other HAL functionality such as interrupt handling, diagnostics, and the system clock are provided by the architectural HAL
package and should work on different processors with few if any changes. There may be some problems in the code that
interacts with the I/O auxiliary because of lurking assumptions about endianness or the sizes of various data types.

When porting to other processors, a number of sources of information are likely to prove useful. Obviously the Linux kernel
sources and header files constitute the ultimate authority on how things work at the system call level. The GNU C library
sources may also prove very useful: for a normal Linux application it is the C library that provides the startup code and the
system call interface.

Other Unix Platforms
Porting to a Unix or Unix-like operating system other than Linux would be somewhat more involved. The first requirement
is toolchains: the GNU compilers, gcc and g++, must definitely be used; use of other GNU tools such as the linker may be
needed as well, because eCos depends on functionality such as prioritizing C++ static constructors, and other linkers may not
implement this or may implement it in a different and incompatible way. A closely related requirement is the use of ELF format
for binary executables: if the operating system still uses an older format such as COFF then there are likely to be problems
because they do not provide the flexibility required by eCos.

In the architectural HAL there should be very little code that is specific to Linux. Instead the code should work on any operating
system that provides a reasonable implementation of the POSIX standard. There may be some problems with program startup,

2083

eCos Synthetic Target

but those could be handled at the architectural level. Some changes may also be required to the exception handling code.
However one file which will present a problem is hal_io.h, which contains various structure definitions and macros used
with the system call interface. It is likely that many of these definitions will need changing, and it may well be appropriate
to implement variant HAL packages for the different operating systems where this information can be separated out. Another
possible problem is that the generic code assumes that system calls such as cyg_hal_sys_write are available. On an
operating system other than Linux it is possible that some of these are not simple system calls, and instead wrapper functions
will need to be implemented at the variant HAL level.

The generic I/O auxiliary code should be fairly portable to other Unix platforms. However some of the device drivers may
contain code that is specific to Linux, for example the PF_PACKET socket address family and the ethertap virtual tunnelling
interface. These may prove quite difficult to port.

The remaining porting task is to implement one or more platform HAL packages, one per processor type that is supported. This
should involve much the same work as a port to another processor running Linux.

When using other Unix operating systems the kernel source code may not be available, which would make any porting effort
more challenging. However there is still a good chance that the GNU C library will have been ported already, so its source
code may contain much useful information.

Windows Platforms
Porting the current synthetic target code to some version of Windows or to another non-Unix platform is likely to prove very
difficult. The first hurdle that needs to be crossed is the file format for binary executables: current Windows implementations
do not use ELF, instead they use their own format PE which is a variant of the rather old and limited COFF format. It may well
prove easier to first write an ELF loader for Windows executables, rather than try to get eCos to work within the constraints
of PE. Of course that introduces new problems, for example existing source-level debuggers will still expect executables to
be in PE format.

Under Linux a synthetic target application is not linked with the system's C library or any other standard system library.
That would cause confusion, for example both eCos and the system's C library might try to define the printf function, and
introduce complications such as working with shared libraries. For much the same reasons, a synthetic target application under
Windows should not be linked with any Windows DLL's. If an ELF loader has been specially written then this may not be
much of a problem.

The next big problem is the system call interface. Under Windows system calls are generally made via DLL's, and it is not
clear that the underlying trap mechanism is well-documented or consistent between different releases of Windows.

The current code depends on the operating system providing an implementation of POSIX signal handling. This is used for I/O
purposes, for example SIGALRM is used for the system clock, and for exceptions. It is not known what equivalent functionality
is available under Windows.

Given the above problems a port of the synthetic target to Windows may or may not be technically feasible, but it would
certainly require a very large amount of effort.

2084

Part LXXVII. ARM7/ARM9/
XScale/Cortex-A Architecture

Table of Contents
234. ARM Architectural Support ... 2092

ARM Architectural HAL .. 2093
Configuration ... 2094
The HAL Port .. 2097

235. Atmel AT91 Processor Variant Support ... 2101
Overview of Atmel AT91 Processor Variant .. 2102
Hardware definitions ... 2103
Interrupt Controller .. 2104
Timers ... 2105
Serial UARTs ... 2106

236. Atmel AT91SAM7 Processor Variant Support .. 2107
eCos Support for the Atmel AT91SAM7 Processor Variant .. 2108
Hardware definitions ... 2109
Interrupt Vector Definitions .. 2110

237. Atmel AT91SAM7A2-EK Board Support ... 2113
eCos Support for the Atmel AT91SAM7A2-EK ... 2114
Setup .. 2115
Configuration ... 2120
JTAG debugging support .. 2122
The HAL Port .. 2123

238. Atmel AT91SAM7A3-EK Board Support ... 2126
eCos Support for the Atmel AT91SAM7A3-EK ... 2127
Setup .. 2128
Configuration ... 2131
JTAG debugging support .. 2133
The HAL Port .. 2135

239. Atmel AT91SAM7S-EK Board Support ... 2138
eCos Support for the Atmel AT91SAM7S-EK ... 2139
Setup .. 2140
Configuration ... 2145
JTAG debugging support .. 2147
The HAL Port .. 2149

240. Atmel AT91SAM7X-EK Board Support .. 2152
eCos Support for the Atmel AT91SAM7X-EK ... 2153
Setup .. 2154
Configuration ... 2160
JTAG debugging support .. 2163
The HAL Port .. 2165

241. NXP LPC2xxx variant HAL .. 2168
Overview ... 2169
On-chip subsystems and peripherals ... 2170
The HAL Port .. 2172

242. Ashling EVBA7 Eval Board Support ... 2174
Overview ... 2175
Setup .. 2176
Configuration ... 2178
The HAL Port .. 2179

243. Embedded Artists LPC2468 OEM Board Support .. 2181
Overview ... 2182
Setup .. 2183
Configuration ... 2186
The HAL Port .. 2191

244. Embedded Artists QuickStart Board Support ... 2192
Overview ... 2193
Setup .. 2195

2086

ARM7/ARM9/XScale/Cortex-A Architecture

Configuration ... 2197
The HAL Port .. 2199

245. IAR KickStart Card Support .. 2203
Overview ... 2204
Setup .. 2206
Configuration ... 2208
The HAL Port .. 2210

246. Keil MCB2387 Board Support ... 2214
Overview ... 2215
Setup .. 2216
Configuration ... 2217
The HAL Port .. 2221

247. Phytec phyCORE LPC2294 Board Support .. 2222
Overview ... 2223
Setup .. 2224
Configuration ... 2227
The HAL Port .. 2229

248. ST STR7XX variant HAL ... 2231
Overview ... 2232
On-chip Subsystems and Peripherals .. 2233
The HAL Port .. 2235
Power Management ... 2236

249. ST STR710-EVAL Board HAL .. 2241
Overview ... 2242
Setup .. 2243
Configuration ... 2249
JTAG debugging support .. 2252
The HAL Port .. 2253

250. Atmel AT91RM9200 Processor Support .. 2254
eCos Support for the Atmel AT91RM9200 Processor .. 2255
Hardware definitions ... 2256
Interrupt controller .. 2257
Timer counters ... 2260
Serial UARTs ... 2261
Multimedia Card Interface (MCI) driver ... 2262
Two-Wire Interface (TWI) driver .. 2263
Power saving support .. 2264

251. Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support ... 2266
eCos Support for the Atmel AT91RM9200 Development Kit/Evaluation Kit ... 2267
Setup .. 2269
Configuration ... 2275
JTAG debugging support .. 2278
The HAL Port .. 2280

252. Cogent CSB337 Board Support .. 2284
Overview ... 2285
Setup .. 2286
Configuration ... 2289
The HAL Port .. 2291

253. SSV DNP/9200 with DNP/EVA9 Board Support ... 2292
Overview ... 2293
Setup .. 2294
Configuration ... 2300
JTAG debugging support .. 2303
The HAL Port .. 2305

254. KwikByte KB920x Board Family Support .. 2309
Overview ... 2310
Setup .. 2311
Configuration ... 2317

2087

ARM7/ARM9/XScale/Cortex-A Architecture

The HAL Port .. 2319
255. Motorola MX1ADS/A Board Support .. 2322

Overview ... 2323
Setup .. 2324
Configuration ... 2329
The HAL Port .. 2331

256. Texas Instruments OMAP L1xx Processor Support .. 2332
Overview ... 2333
Hardware definitions ... 2334
Interrupt Controller .. 2335
Timers ... 2336
Serial UARTs ... 2337
Multimedia Card Interface (MMC/SD) Driver .. 2338
I2C Two Wire Interface ... 2339
Pin Configuration and GPIO Support ... 2340
Peripheral Power Control ... 2342
DMA Support ... 2343

257. Atmel SAM9 Processor Support ... 2345
Overview ... 2346
Hardware definitions ... 2347
Interrupt controller .. 2348
Timers ... 2351
Serial UARTs ... 2352
Two-Wire Interface (TWI) driver .. 2353
Power saving support .. 2354

258. Atmel AT91SAM9260 Evaluation Kit Board Support ... 2356
Overview ... 2357
Setup .. 2359
Configuration ... 2363
JTAG debugging support .. 2366
The HAL Port .. 2367

259. Atmel AT91SAM9261 Evaluation Kit Board Support ... 2371
Overview ... 2372
Setup .. 2374
Configuration ... 2378
JTAG debugging support .. 2381
The HAL Port .. 2382

260. Atmel AT91SAM9263 Evaluation Kit Board Support ... 2387
Overview ... 2388
Setup .. 2390
Configuration ... 2394
JTAG debugging support .. 2397
The HAL Port .. 2398

261. Atmel AT91SAM9G20 Evaluation Kit Board Support .. 2402
Overview ... 2403
Setup .. 2405
Configuration ... 2409
JTAG debugging support .. 2412
The HAL Port .. 2413

262. Atmel AT91SAM9G45-EKES Evaluation Kit Board Support ... 2417
Overview ... 2418
Setup .. 2420
Configuration ... 2424
JTAG debugging support .. 2427
The HAL Port .. 2428

263. ARM Versatile 926EJ-S Board Support ... 2432
Overview ... 2433
Setup .. 2434

2088

ARM7/ARM9/XScale/Cortex-A Architecture

Configuration ... 2437
The HAL Port .. 2439

264. Spectrum Digital OMAP-L137 Board Support .. 2440
Overview ... 2441
Setup .. 2442
Configuration ... 2447
JTAG debugging support .. 2451
The HAL Port .. 2452

265. Logic Zoom Board Support ... 2454
Overview ... 2455
Setup .. 2457
Configuration ... 2461
JTAG debugging support .. 2463
The HAL Port .. 2464

266. Freescale i.MXxx Processor Support ... 2468
Overview ... 2469
Hardware definitions ... 2470
Interrupt Controller .. 2471
Timers ... 2472
Serial UARTs ... 2473
Pin Configuration and GPIO Support ... 2474
Peripheral Clock Control .. 2477

267. Freescale MCIMX25WPDK Board Support .. 2478
Overview ... 2479
Setup .. 2481
Configuration ... 2486
JTAG debugging support .. 2488
The HAL Port .. 2489

268. Intel IQ80321 Board Support ... 2494
Overview ... 2495
Setup .. 2496
Configuration ... 2503
The HAL Port .. 2505

269. Intel XScale IXP4xx Network Processor Support ... 2507
Overview ... 2508
IXP4xx hardware definitions ... 2509
IXP4xx interrupt controller ... 2510
General-purpose timers .. 2512
Watchdog .. 2513
Serial UARTs ... 2514
PCI bus controller ... 2515
PCI bus IDE controllers ... 2516
CompactFlash cards in TrueIDE mode ... 2517
GPIO .. 2518

270. Intel XScale IXDP425 Network Processor Evaluation Board Support .. 2519
Overview ... 2520
Setup .. 2521
Configuration ... 2526
JTAG debugging support .. 2528
The HAL Port .. 2529

271. Altera Hard Processor System Support .. 2532
Overview ... 2533
Hardware definitions ... 2534
Interrupt Controller .. 2535
Timers ... 2536
Serial UARTs ... 2537
Multimedia Card Interface (MMC/SD) Driver .. 2538
I2C Interface .. 2540

2089

ARM7/ARM9/XScale/Cortex-A Architecture

Pin Configuration and GPIO Support ... 2541
272. Broadcom IProc Support ... 2543

Overview ... 2544
Hardware definitions ... 2545
Interrupt Controller .. 2546
Timers ... 2547
Serial UARTs ... 2548

273. Broadcom BCM283X Processor Support .. 2549
Overview ... 2550
Hardware Definitions ... 2551
Interrupt Controller .. 2552
Timers ... 2553
Serial UARTs ... 2554
I²C Interface ... 2555
GPIO Support ... 2556
DMA Support ... 2558
GPU Communication Support ... 2560
Frequency Control ... 2562

274. Broadcom BCM56150 Reference Board Support ... 2563
Overview ... 2564
Setup .. 2565
Configuration ... 2569
The HAL Port .. 2571

275. Altera Cyclone V SX Board Support ... 2575
Overview ... 2576
Setup .. 2578
Configuration ... 2583
SMP Development and Debugging Support ... 2586
The HAL Port .. 2588

276. Dream Chip A10 Board Support ... 2592
Overview ... 2593
Setup .. 2595
Configuration ... 2601
JTAG debugging support .. 2603
SMP Development and Debugging Support ... 2604
The HAL Port .. 2605

277. Atmel ATSAMA5D3 Variant HAL ... 2608
Atmel SAMA5D3 Variant HAL .. 2609
Hardware definitions ... 2610
Bootstrap ... 2611
On-chip Subsystems and Peripherals .. 2612
GPIO Support on SAMA5D3 processors ... 2617
Peripheral clock control ... 2620
DMA Support ... 2621
Configuration ... 2622
Test Programs .. 2625

278. Atmel SAMA5D3x-MB (MotherBoard) Platform HAL ... 2626
SAMA5D3x-MB Platform HAL .. 2627
Setup .. 2629
Configuration ... 2632
The HAL Port .. 2633
BootUp Integration .. 2634

279. Atmel SAMA5D3x-CM (CPU Module) Platform HAL ... 2641
SAMA5D3x-CM Platform HAL .. 2642
The HAL Port .. 2643

280. Atmel SAMA5D3 Xplained Platform HAL .. 2648
SAMA5D3 Xplained Platform HAL ... 2649
Setup .. 2650

2090

ARM7/ARM9/XScale/Cortex-A Architecture

Configuration ... 2657
The HAL Port .. 2661
BootUp Integration .. 2665

281. Raspberry Pi Board Support ... 2667
Overview ... 2668
Setup .. 2670
JTAG Debugger Support .. 2678
Configuration ... 2680
SMP Development and Debugging Support ... 2684
The HAL Port .. 2685
RedBoot Extensions .. 2689

282. Virtual Machine Support ... 2693
Overview ... 2694
Configuration ... 2695
The HAL Port .. 2697

283. QEMU Virtual Machine Support .. 2698
Overview ... 2699
Setup .. 2700
Configuration ... 2702
SMP Development and Debugging Support ... 2704
The HAL Port .. 2705

284. Xvisor Virtual Machine Support ... 2708
Overview ... 2709
Setup .. 2710
Configuration ... 2712
SMP Development and Debugging Support ... 2714
The HAL Port .. 2715

2091

Chapter 234. ARM Architectural Support

2092

ARM Architectural Support

Name
CYGPKG_HAL_ARM — eCos Support for the ARM Architecture

Description
The ARM architecture HAL provides support for members of the ARM7, ARM9, XScale and Cortex-A families. This includes
support for the ARM, Thumb and Thumb2 instruction sets.

The architectural HAL provides support for those features which are common to all members of the ARM family, and for certain
features which are present on some, but not all, members. This HAL contains support for CPU initialization, exception and
interrupt entry and exit, thread context switching, interrupt masking, timer management, cache management and debugging.
A typical eCos configuration will also contain a variant HAL package with support code for a family of processors, possibly
a processor HAL package with support for one specific processor, and a platform HAL which contains the code needed for a
specific hardware platform. For example the variant or processor HAL may define the exact interrupt controller hardware that
is available, and the platform HAL will define the external interrupt vector connections.

If appropriate the variant or platform HAL may also enable support for an ARM architectural hardware Floating Point Unit
(FPU). Not all ARM architectures provide hardware floating point as an option, and also not all of the various ARM architectural
hardware floating point implementations are currently supported by this architectural HAL.

Support is available for the Advanced SIMD Architecture, commonly known as NEON. Since NEON uses the same registers
as the FPU, it is necessary to also have FPU support enabled when NEON support is required.

Support for SMP is available for the Cortex-A processor family based on the ARM MPCore cluster technology. This includes
the Generic Interrupt Controller, Snoop Control Unit, private and global timers and the PL310 level 2 cache controller.

2093

ARM Architectural Support

Name
Options — Configuring the ARM Architectural HAL Package

Description
The ARM architectural HAL is included in all ecos.db entries for ARM targets, so the package will be loaded automatically
when creating a configuration. It should never be necessary to load the package explicitly or to unload it.

The ARM architectural HAL contains a number of configuration points. Few of these should be altered by the user, they
are mainly present for the variant and platform HALs to select different architectural features. For example, the CPU family
being used, whether the Thumb or Thumb2 instruction sets are supported, if the ARM EABI (Embedded Application Binary
Interface) is being used, etc.

CYGINT_HAL_ARM_BIGENDIAN

This interface controls whether the CPU is capable of being run in big endian mode. It should be implemented by either
the variant or platform HAL to reflect the setting of the hardware.

CYGHWR_HAL_ARM_BIGENDIAN

On targets which are capable of big-endian operation, this option is used to select whether big- or little-endian operation
is desired. It provides the main test point for HAL, eCos and application code to test for a big-endian target. It is inactive
if CYGINT_HAL_ARM_BIGENDIAN is not implemented.

CYGINT_HAL_ARM_FPU

This interface controls whether the CPU is capable of supporting a hardware FPU (Floating Point Unit). It is the “common”
FPU marker and is implemented when either the variant or platform HAL in turn implements a supported FPU type.

For example, a Cortex-A5 target may define CYGINT_HAL_VFPV4_D16 when it provides the ARMv7 VFPv4-D16
architecture floating point unit.

CYGHWR_HAL_ARM_FPU

On targets which are capable of hardware FPU operation, this option is used to select whether soft or hard floating point
operation is desired. It provides the main test point for HAL, eCos and application code to test for a hard-FP target. It is
inactive if CYGINT_HAL_ARM_FPU is not implemented.

Even though an architecture may provide a hardware FPU, it is not always suitable for all applications. For example, there is
the associated scheduler and RAM cost in preserving FPU context for multi-threaded applications. If CYGHWR_HAL_AR-
M_FPU is enabled then some further configuration options are made available:

CYGHWR_HAL_ARM_FPU_SWITCH

This option selects the FPU context switching scheme.

Table 234.1. Context Switch

SWITCH Description

ALL This mode is the most straightforward, and means that on every context switch, all FPU registers
are saved and restored between threads.

This mode makes the most sense if you need determinism and/or most or all of your threads will
use FP. However if few threads use FP, it can result in a lot of overhead due to saves and restores
of unchanged registers.

LAZY In this mode, if a thread has not used the FPU, the FPU context will not be saved or restored for it.
The HAL installs a handler in the ARM undefined instruction exception vector in order to detect
the first time the FPU is accessed by that thread. Once the FPU is accessed, the fault handler en-

2094

ARM Architectural Support

SWITCH Description

ables the FPU for that thread, and from then on, the FPU context will be saved and restored when
switching from or to that thread.

In a system where some or many threads do not use the FPU, this can greatly improve context
switch time. However if the system spends most of its time swapping between two or more threads
which do both use the FPU, then there may be additional overhead compared to the ALL mode
(due to the need to check if the FPU was enabled for a particular thread on switch). This means the
worst case context switch time is longer than with ALL mode. It also reduces determinism as there
is an unavoidable latency at the point the thread first accesses the FPU, so that the fault handler
can execute to enable the FPU; and determinism is further affected as context switch time depends
on whether threads use the FPU.

The LAZY mode does not save on stack usage, as the number of registers which might need to be
saved remains the same.

NONE In this mode, the FPU is enabled, but no floating point context is stored at any point, which natu-
rally means there is no overhead on context switch. However this means that only one thread or
context may use the FPU at a time.

If using this mode, either all FP operations must be constrained to a single thread. Or there must be
locking to ensure that multiple threads do not access the FPU registers simultaneously. But if you
rely on locking, great care must be taken as the compiler has the potential to reorder floating point
accesses outside of the critical region if it is still in the same function. The use of the HAL_RE-
ORDER_BARRIER() call from the <cyg/hal/hal_arch.h> HAL header can be useful to
prevent reordering across a particular point in the code.

CYGIMP_HAL_ARM_FPU_EXC_SAVE

This option allows the FPU context to be saved over exceptions, including interrupts. Normally this option will be
disabled by default, since the hardware FPU instructions will only ever be used from application thread level code.

Disabling this option avoids the unnecessary cost associated with saving the hardware FPU context for interrupt or
exception handlers. When disabled this does impose the restriction that the developer should ensure that no attached
ISR, DSR or exception handler routine can make use of hardware FPU instructions. For the vast majority of eCos
configurations this is not an issue.

When this option is enabled the code will preserve the FPU context over exception handlers (including interrupt calls).
This option may become a “requirement” if the compiler is configured to make use of hardware FPU registers as
temporary storage. However, such use is not recommended since the extra performance cost in saving and restoring
the FPU context across (for example) every interrupt probably far outweighs the gain from being able to use the
hardware FPU within such handlers. NOTE: If an interrupt or exception handler does make use of the FPU hardware
there is NO FPU state preserved across successive handler calls, since each call is a unique instance.

CYGINT_HAL_ARM_NEON

This interface controls whether the CPU contains support for the ARM Advanced SIMD architecture, commonly referred
to as NEON. It is usually implemented by the variant or platform HAL to enable NEON support. Since NEON shares
registers with the FPU, it is also usually necessary to implement the appropriate FPU option.

For example, a Cortex-A53 target may implement CYGINT_HAL_VFPV4_D32 when it provides the ARMv7 VFPv4-D32
architecture floating point unit and in addition implement CYGINT_HAL_ARM_NEON to indicate that the FPU also im-
plements the NEON architecture.

CYGHWR_HAL_ARM_NEON

On targets which are capable of NEON operation, this option is used to select whether NEON support is enabled. It pro-
vides the main test point for HAL, eCos and application code to test for a NEON capable target. It is inactive if either
CYGINT_HAL_ARM_FPU or CYGINT_HAL_ARM_NEON are not implemented. If this option is enabled, then CYGH-
WR_HAL_ARM_FPU will also be enabled automatically. When NEON is enabled, the compiler may generate NEON in-

2095

ARM Architectural Support

structions for data manipulation in any function, including those that may be called from an ISR or DSR. Consequently,
CYGIMP_HAL_ARM_FPU_EXC_SAVE is also enabled automatically.

Even though an architecture may provide NEON support, it is not always suitable for all applications. NEON shares the
FPU registers and the same context save and restore issues apply. Consequently, the FPU options described above for
managing the FPU context are active and also apply to NEON applications.

CYGINT_HAL_ARM_SYSTEM_DEBUG_DCC

This interface controls whether the CPU supports the ARM Debug Communications Channel (DCC) feature. It is normally
implemented by the variant HAL to reflect the availability of the hardware.

CYGHWR_HAL_ARM_DIAGNOSTICS_INTERFACE

By default the architectural HAL does not implement diagnostic support, with the default Serial support being left to
the variant or platform HAL implementation.

However, if the CPU variant implements the on-chip Debug Communications Channel feature then selecting DCC for this
option will configure the system to use the generic architectural HAL DCC diagnostic output support. Accessing DCC
diagnostic output will require corresponding support from the hardware debugger host tools being used to connect to the
target system.

The discard option configures the system so that all diagnostic output is discarded. This can be selected and used when
no I/O channel is available for diagnostics.

When DCC is being used for HAL diagnostics the option CYGDBG_HAL_ARM_DIAGNOSTICS_INTERFACE_DC-
C_TYPE should match the attached host debugger interface used to capture the diagnostic output. The Character in-
terface simply transfers single characters through the DCC interface, and is compatible with the Linux ICEDCC support
and with either of the Lauterbach DCC and DCC3 formats. The LIBDCC format (as used by OpenOCD for example) uses
a specific single character encoding that inter-operates with features not currently supported by eCos.

Compiler Flags
It is normally the responsibility of the platform HAL to define the default compiler and linker flags for all packages, although
it is possible to override these on a per-package basis. Most of the flags used are the same as for other architectures supported
by eCos.

Linker Scripts
The architecture HAL does not provide the main linker script. Instead this must be supplied by the variant HAL, and the
makefile rules to generate the final target.ld must be included in the variant's CDL file.

2096

ARM Architectural Support

Name
HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto the ARM hardware and should be read
in conjunction with the relevant Architecture Reference Manual and the Technical Reference Manual for the revision of the
ARM architecture being used. It should be noted that the architectural HAL is usually complemented by a variant HAL and a
platform HAL, and those may affect or redefine some parts of the implementation.

Exports

The architectural HAL provides header files cyg/hal/hal_arch.h, cyg/hal/hal_intr.h, cyg/hal/hal_io.h
and cyg/hal/hal_mmu.h. These header files export the functionality provided by all the ARM HALs for a given target,
automatically including headers from the lower-level HALs as appropriate. For example the platform HAL may provide a
header cyg/hal/plf_io.h containing additional I/O functionality, but that header will be automatically included by cyg/
hal/hal_io.h so there is no need to include it directly.

Additionally, the architecture HAL provides the cyg/hal/basetype.h header, which defines the basic properties of the
architecture, including endianness, data type sizes and alignment constraints.

Startup

The architectural HAL provides a default implementation of the low-level startup code which will be appropriate in nearly all
scenarios. For a ROM startup this includes copying initialized data from flash to RAM. For all startup types it will involve
zeroing BSS regions and setting up the general C environment. It will also set up the initial exception priorities, switches the
CPU into the correct execution mode, enables the debug monitor and enables error exception handling.

In addition to the setup it does itself, the initialization code calls out to the variant and platform HALs to perform their own
initialization via the hal_hardware_init() function.

The architectural HAL also initializes the VSR and virtual vector tables, sets up HAL diagnostics, and invokes C++ static
constructors, prior to calling the first application entry point cyg_start. This code resides in src/vectors.S.

Interrupts and Exceptions

The eCos interrupt and exception architecture is built around a table of pointers to Vector Service Routines that translate hard-
ware exceptions and interrupts into the function calls expected by eCos. The ARM vector table provides exactly this function-
ality, so it is used directly as the eCos VSR table. The HAL_VSR_GET and HAL_VSR_SET macros therefore manipulate the
vector table directly. The hal_intr.h header provides definitions for all the standard ARM exception vectors.

The vector table is constructed at runtime. For ROM, ROMRAM and SRAM startup all entries are initialized. For RAM startup
only the interrupt vectors are (re-)initialized to point to the VSR in the loaded code, the exception vectors are left pointing to
the VSRs of the loading software, usually RedBoot or GDB stubs.

When an exception occurs it is delivered via the relevant handler provided in vectors.S. The handler will save the CPU
state and call exception_handler in hal_misc.c, which passes the exception on to either the kernel or the GDB stub
handler. If it returns then the CPU state is restored and the code continued.

When an interrupt occurs it is delivered to a shared VSR, hal_default_irq_vsr, which saves some state and calls
hal_IRQ_handler.

The architectural HAL provides default implementations of HAL_DISABLE_INTERRUPTS, HAL_RESTORE_INTERRUP-
TS, HAL_ENABLE_INTERRUPTS and HAL_QUERY_INTERRUPTS. These involve manipulation of the status register I
flag. Similarly there are default implementations of the interrupt controller macros HAL_INTERRUPT_MASK, HAL_INTER-
RUPT_UNMASK, HAL_INTERRUPT_ACKNOWLEDGE and HAL_INTERRUPT_CONFIGURE macros.

HAL_INTERRUPT_SET_LEVEL manipulates the relevant interrupt priority registers. The valid range of interrupts supported
depends on the number of interrupt priority bits supported by the CPU variant.

2097

ARM Architectural Support

Stacks and Stack Sizes

cyg/hal/hal_arch.h defines values for minimal and recommended thread stack sizes, CYGNUM_HAL_S-
TACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPICAL. These values depend on a number of configuration
options.

A number of system stacks are provided, and their properties controlled in this package's configuration. By default, the ARM
HAL will use a separate stack for calling interrupt handlers. This separate interrupt stack means that the worst case overhead of
interrupt handling does not need to be considered when determining each thread's maximum stack usage, which reduces over-
all stack overhead. The size of this interrupt stack is controlled by the common HAL's configuration (CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE) or can be disabled entirely by turning off CYGIMP_HAL_COMMON_INTERRUP-
TS_USE_INTERRUPT_STACK.

System startup code will also run on the interrupt stack, if enabled, as it is usually sufficiently large for this. Optionally, a
separate startup stack can be enabled in this HAL by disabling CYGIMP_HAL_ARM_INT_STACK_IS_STARTUP_STACK,
in which case when control is passed to the application by the cyg_start() or cyg_user_start() entry points, this
startup stack will then be used. Alternatively, if the interrupt stack has been disabled entirely then a startup stack must be
present, and will be used for all initialisation. Its size can be set with CYGNUM_HAL_ARM_STARTUP_STACK_SIZE. Note
that global C++ object constructors defined by either the system, or in application code, will have their constructors run on
the interrupt stack. Using the C library startup package's "Invoke default static constructors" option (CYGSEM_LIBC_IN-
VOKE_DEFAULT_STATIC_CONSTRUCTORS) would instead ensure the user application constructors are called in the con-
text of main(), which can be more appropriate.

If including GDB stubs in the application, then a separate GDB stub stack is required in order to guarantee that application
problems with stack use will not prevent the GDB stub being able to debug the application. Again the size is controlled via
this package's CDL (CYGNUM_HAL_ARM_GDB_STACK_SIZE)

Separate small stacks are also created to do the initial handling of Abort Prefetch, Abort Data, Undefined Instruction exceptions,
as well as IRQ and FIQ interrupts. Assuming the default eCos VSRs are in place for these exceptions/interrupts, these small
stacks are only used very temporarily until the context is switched to supervisor (SVC) mode.

At that point, in the case of the first three exceptions, if GDB stubs are included, the stack then used will be the GDB stack
mentioned above. Alternatively, in the case of the first three exceptions without GDB stubs, the stack used will be that of the
supervisor mode (SVC) context at the time of the exception. This is usually the running thread, but can also be a DSR running
on the interrupt stack.

In the case of the IRQ and FIQ interrupts, these small stacks are only used by the default eCos VSRs temporarily until the stack
is switched to the interrupt stack (or if that is disabled, the stack of the interrupted thread).

The above describes the situation when using the normal eCos VSRs for handling the Abort Data, Abort Prefetch, Undefined
Instruction, IRQ and FIQ exceptions/interrupts. However if the user overrides the eCos VSRs with their own VSRs, then it
may be necessary to change the stack sizes for these contexts depending on the stack use by those new VSRs. Therefore each
of the stack sizes corresponding to these exception/interrupt contexts can be changed in the ARM HAL package configuration.

Thread Contexts and setjmp/longjmp

cyg/hal/hal_arch.h defines a thread context data structure, the context-related macros, and the setjmp/longjmp
support. The implementations can be found in src/context.S.

Bit Indexing

The architectural HAL provides implementations in the source file hal_misc.c that are referenced by the HAL_LSBIT_IN-
DEX and HAL_MSBIT_INDEX macros.

Idle Thread Processing

Normally the variant HAL provides the HAL_IDLE_THREAD_ACTION implementation. It usually implements code that can
be used to put the CPU into a low power mode ready to respond quickly to the next interrupt.

2098

ARM Architectural Support

Clock Support

The architectural HAL provides default implementations of the various system clock macros such as
HAL_CLOCK_INITIALIZE. The variant or platform HAL are responsible for providing the necessary implementation rou-
tines.

HAL I/O

The ARM architecture does not have a separate I/O bus. Instead all hardware is assumed to be memory-mapped. Further it is
assumed that all peripherals on the memory bus will switch endianness with the processor and that there is no need for any
byte swapping. Hence the various HAL macros for performing I/O simply involve pointers to volatile memory.

The variant and platform files included by the cyg/hal/hal_io.h header will typically also provide details of some or all
of the peripherals, for example register offsets and the meaning of various bits in those registers.

Cache Handling

The architecture HAL does not provide direct support for dealing with caches, since there is no common mechanism for doing
this. The cache support is the responsibility of the variant HAL to, which will supply the cyg/hal/hal_cache.h header.

Linker Scripts

The architectural HAL will generate the linker script for eCos applications. This involves the architectural file src/arm.ld
and a .ldi memory layout file, typically provided by the platform HAL. It is the .ldi file which places code and data in the
appropriate places for the startup type, but most of the hard work is done via macros in the arm.ld file.

Diagnostic Support

The architectural HAL implements diagnostic support for DCC output if available, or for discarding all output. However, by
default, the diagnostics output is left to the variant or platform HAL, depending on whether suitable peripherals are available on-
chip or off-chip. The CYGHWR_HAL_ARM_DIAGNOSTICS_INTERFACE can be configured to direct the diagnostic output
support used to the appropriate destination.

SMP Support

The ARM architectural HAL provides SMP support for Cortex-A class processors. If the configuration option CYGP-
KG_HAL_SMP_SUPPORT is enabled then the hal_smp.h header defines the standard SMP macros described in the HAL
documentation. The architectural HAL only provides the SMP components that are common to all CPUs. It is the responsibility
of variant and platform HALs to complete SMP support.

The variant HAL needs to supply a number of services for SMP. Access to the interrupt controller needs to be multi-core safe.
The design of the standard ARM GIC provides this by default, but other controllers may need a spinlock. MMU and cache
support are linked since any memory containing a spinlock must be cached and marked shareable. The variant HAL should also
contain cyg_hal_cpu_start(), which is used to start up the secondary CPUs and cyg_hal_smp_start(), which is
the initial entry point for secondary CPUs. It must also supply cyg_hal_cpu_message(), and associated ISR and DSR,
which are used to pass scheduling messages between CPUs.

The platform HAL (which may comprise more than one layer of hardware specific HALs) is responsible for the memory map
and initialization. Initialization will usually involve starting clocks, setting up pin multiplexing and configuring the CPU state.
Most of this is common to single and multi-core configurations, although there will be some SMP specific settings. This HAL
will also need to supply the PLATFORM_SETUP_CPU macro to initialize the secondary CPUs.

Debug Support

The architectural HAL provides basic support for gdb stubs using the debug monitor exceptions. Breakpoints are implemented
using a fixed-size list of breakpoints, as per the configuration option CYGNUM_HAL_BREAKPOINT_LIST_SIZE. When a
JTAG device is connected to a ARM device, it will steal breakpoints and other exceptions from the running code. Therefore
debugging from RedBoot or the GDB stubs can only be done after detaching any JTAG debugger and power-cycling the board.

2099

ARM Architectural Support

HAL_DELAY_US() Macro

The variant or platform HAL is responsible for providing an implementation of the HAL_DELAY_US macro. The system timer
must be initialized before this macro is used. The include/hal_intr.h defined HAL_CLOCK_INITIALIZE() macro is
called during initialization after the variant and platform initialization functions are called, but before constructors are invoked.

Profiling Support

When using local memory based profiling the ARM architectural HAL implements the mcount function, allowing profiling
tools like gprof to determine the application's call graph. It does not implement the profiling timer. Instead that functionality
needs to be provided by the variant or platform HAL.

2100

Chapter 235. Atmel AT91 Processor
Variant Support

2101

Atmel AT91 Processor Variant Support

Name
eCos Support for the Atmel AT91 Processor Variant — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Atmel AT91 processor
family which includes the AT91R4xxxx series, the M42xxxx and M55xxxx series and the AT91SAM7S, -X and -A series.
It is expected to be read in conjunction with platform HAL-specific documentation, as well as the eCos HAL specification.
This processor HAL package complements the ARM architectural HAL, AT91SAM7 variant HAL (where appropriate) and
the platform HAL. It provides functionality common to all AT91-based board implementations.

This support is found in the eCos package located at packages/hal/arm/at91/var within the eCos source repository.

The AT91 processor HAL package is loaded automatically when eCos is configured for an AT91-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Supported Hardware
Supported features of the Atmel AT91 processor within this processor HAL package include:

• AT91-specific hardware definitions

• Interrupt controller

• Timer counters

• Serial UARTs

Support for the interrupt-driven serial, SPI, watchdog and wallclock (RTC) features of the AT91 are also present and can be
found in separate packages, outside of this processor HAL.

The watchdog hardware may also used within this HAL to perform software reset.

2102

Atmel AT91 Processor Variant Support

Name
AT91 hardware definitions — Details on obtaining hardware definitions for AT91

Register definitions
The file <cyg/hal/var_io.h> provides definitions related to AT91 subsystems. This file should not be included explicitly,
but is included automatically whenever <cyg/hal/hal_io.h> is included. This file includes register definitions for the
interrupt controller, power management controller, clock generator, memory controller, external bus interface, GPIO, USART,
MCI, CAN, TWI (I²C®), Ethernet, timer counter, RTC, and SPI subsystems, depending on the exact model.

2103

Atmel AT91 Processor Variant Support

Name
AT91 interrupt controller — Advanced Interrupt Controller definitions and usage

Interrupt Controller Support
The AT91 variant HAL contains generic support for the AIC (GIC on SAM7XA1 and -A2). It queries the interrupt controller
to identify the current interrupt and vectors to the matching service routine. If the device supports the SYSTEM interrupt then
the devices that raise this interrupt will be queried individually and vectored to their own interrupt handlers. The mapping
between interrupts and vector numbers is defined in the hal_platform_ints.h file in either the platform HAL or the
AT91SAM7 variant HAL.

As indicated above, further decoding is performed on the SYSTEM interrupt to identify the cause more specifically. Note that
as a result, placing an interrupt handler on the SYSTEM interrupt will not work as expected. Conversely, masking a decoded
derivative of the SYSTEM interrupt will not work as this would mask other SYSTEM interrupts, but masking the SYSTEM
interrupt itself will work. On the other hand, unmasking a decoded SYSTEM interrupt will unmask the SYSTEM interrupt as
a whole, thus unmasking interrupts for the other units on this shared interrupt.

Interrupt Controller Functions
The source file src/at91_misc.c within this package provides most of the support functions to manipulate the interrupt
controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions hal_in-
terrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function, where the level and up arguments are inter-
preted as follows:

level up interrupt on

0 0 Falling Edge

0 1 Rising Edge

1 0 Low Level

1 1 High Level

To fit into the eCos interrupt model, interrupts essentially must be acknowledged immediately once decoded, and as a result,
the hal_interrupt_acknowledge function is empty.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the Advanced Interrupt
Controller.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

Interrupt handling within standalone applications
For non-eCos standalone applications running under RedBoot, it is possible to install an interrupt handler into the interrupt
vector table manually. Memory layouts are platform-dependent and so the platform documentation should be consulted, but in
general the address of the interrupt table can be determined by analyzing RedBoot's symbol table, and searching for the address
of the symbol name hal_interrupt_handlers. Table slots correspond to the interrupt numbers defined in the platform
or AT91SAM7 HAL. Pointers inserted in this table should be pointers to a C/C++ function with the following prototype:

extern unsigned int isr(unsigned int vector, unsigned int data);

For non-eCos applications run from RedBoot, the return value can be ignored. The vector argument will also be the interrupt
vector number. The data argument is extracted from a corresponding table named hal_interrupt_data which imme-
diately follows the interrupt vector table. It is still the responsibility of the application to enable and configure the interrupt
source appropriately if needed.

2104

Atmel AT91 Processor Variant Support

Name
Timers — Use of on-chip Timer

Hardware Timer
The eCos kernel system clock is implemented using an on-chip Timer. Depending on the device this will either be a Timer
Counter, a Simple Timer, or the Periodic Interval Timer. The kind of device used is determined by the platform HAL. By
default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the configura-
tion option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings are
recalculated automatically if the denominator is changed. If the desired frequency cannot be expressed accurately solely with
changes to CYGNUM_HAL_RTC_DENOMINATOR, then the configuration option CYGNUM_HAL_RTC_NUMERATOR may also
be adjusted, and again clock-related settings will automatically be recalculated.

The selected Timer is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some
device drivers, and in non-kernel configurations such as with RedBoot where this timer is needed for loading program images
via X/Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as de-
bugging, should avoid use of this timer.

Timer-based profiling support
Timer-based profiling support is implemented using timer counter 1 (TC1). If the gprof package, CYGPKG_PROFILE_GPROF,
is included in the configuration, then TC1 is reserved for use by the profiler.

2105

Atmel AT91 Processor Variant Support

Name
Serial UARTs — Configuration and implementation details of serial UART support

Overview
Support is included in this processor HAL package for the AT91's on-chip debug unit UART and serial USART serial devices.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 38400,8,N,1 with no flow control.

HAL diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the AT91
processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel
to use as the console at startup time. This will be the channel that receives output from, for example, diag_printf().
The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven serial driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent ctrl-c operation when debugging.

This driver is contained in the CYGPKG_IO_SERIAL_ARM_AT91 package. That driver package should also be consulted for
documentation and configuration options. The driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration
option within the generic serial driver support package CYGPKG_IO_SERIAL is enabled in the configuration.

The USARTs are named "/dev/ser0", "/dev/ser1" and so on. The DEBUG serial port is given the name "/dev/dbg". These names
are all configurable.

Note that unlike the USART devices, the serial debug port does not support modem control signals such as those used for
hardware flow control. In addition, USART devices for a particular platform may also not have these control signals brought
out to the physical serial port.

2106

Chapter 236. Atmel AT91SAM7 Processor
Variant Support

2107

Atmel AT91SAM7 Processor Variant Support

Name
eCos Support for the Atmel AT91SAM7 Processor Variant — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Atmel AT91SAM7
processor family which includes the AT91SAM7S, -X an -A series. It is expected to be read in conjunction with platform
HAL-specific documentation, as well as the eCos HAL specification. This HAL package complements the ARM architectural
HAL, AT91 variant HAL (where appropriate) and the platform HAL. It provides functionality common to all AT91SAM7-
based board implementations.

This support is found in the eCos package located at packages/hal/arm/at91/at91sam7 within the eCos source
repository.

The AT91SAM7 HAL package is loaded automatically when eCos is configured for an AT91SAM7-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Supported Hardware
Supported features of the Atmel AT91SAM7 within this processor HAL package include:

• AT91SAM7-specific hardware definitions

• Interrupt Vector Definitions

Support for the interrupt-driven serial, SPI, watchdog and wallclock (RTC) features of the AT91SAM7 are also present and
can be found in separate packages, outside of this processor HAL.

2108

Atmel AT91SAM7 Processor Variant Support

Name
AT91SAM7 hardware definitions — Details on obtaining hardware definitions for AT91

Device Definitions
The file <cyg/hal/plf_io.h> provides definitions related to AT91SAM7 subsystems. This file should not be included
explicitly, but is included automatically whenever <cyg/hal/hal_io.h> is included. This file mainly includes base ad-
dress definitions for the interrupt controller, power management controller, clock generator, memory controller, external bus
interface, GPIO, USART, MCI, CAN, TWI (I²C®), Ethernet, timer counter, RTC, and SPI subsystems, depending on the exact
model.

2109

Atmel AT91SAM7 Processor Variant Support

Name
AT91SAM7 interrupt vector definitions — Advanced Interrupt Controller vector definitions

Interrupt Vector Definitions

The file <cyg/hal/hal_platform_ints.h> (located at hal/arm/arm9/at91sam7/VERSION/in-
clude/hal_platform_ints.h in the eCos source repository) contains interrupt vector number definitions for use with
the eCos kernel and driver interrupt APIs. The exact set of vectors supported depends on the AT91SAM7 model:

For the AT91SAM7S family:

#define CYGNUM_HAL_INTERRUPT_FIQ 0 // Advanced Interrupt Controller (FIQ)
#define CYGNUM_HAL_INTERRUPT_SYS 1 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_INTERRUPT_PIOA 2 // Parallel IO Controller A
#define CYGNUM_HAL_INTERRUPT_ADC 4 // Analog-to-Digital Converter
#define CYGNUM_HAL_INTERRUPT_SPI 5 // Serial Peripheral Interface
#define CYGNUM_HAL_INTERRUPT_USART0 6 // USART 0
#define CYGNUM_HAL_INTERRUPT_USART1 7 // USART 1
#define CYGNUM_HAL_INTERRUPT_SSC 8 // Serial Synchronous Controller
#define CYGNUM_HAL_INTERRUPT_TWI 9 // Two-Wire Interface (I2C)
#define CYGNUM_HAL_INTERRUPT_PWMC 10 // PWM Controller
#define CYGNUM_HAL_INTERRUPT_UDP 11 // USB Device Port
#define CYGNUM_HAL_INTERRUPT_TC0 12 // Timer Counter 0
#define CYGNUM_HAL_INTERRUPT_TC1 13 // Timer Counter 1
#define CYGNUM_HAL_INTERRUPT_TC2 14 // Timer Counter 2
#define CYGNUM_HAL_INTERRUPT_IRQ0 30 // External IRQ0
#define CYGNUM_HAL_INTERRUPT_IRQ1 31 // External IRQ0

// Interrupts which are multiplexed on to the System Interrupt
#define CYGNUM_HAL_INTERRUPT_PITC 32 // Period Interval Timer
#define CYGNUM_HAL_INTERRUPT_RTTC 33 // Real-Time Timer
#define CYGNUM_HAL_INTERRUPT_PMC 34 // Power Management Controller
#define CYGNUM_HAL_INTERRUPT_MC 35 // Memory Controller
#define CYGNUM_HAL_INTERRUPT_WDTC 36 // Watchdog
#define CYGNUM_HAL_INTERRUPT_RSTC 37 // Reset Controller
#define CYGNUM_HAL_INTERRUPT_DEBUG 38 // Debug Serial Port

For the AT91SAM7X family:

#define CYGNUM_HAL_INTERRUPT_FIQ 0 // Advanced Interrupt Controller (FIQ)
#define CYGNUM_HAL_INTERRUPT_SYS 1 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_INTERRUPT_PIOA 2 // Parallel IO Controller A
#define CYGNUM_HAL_INTERRUPT_PIOB 3 // Parallel IO Controller B
#define CYGNUM_HAL_INTERRUPT_SPI 4 // Serial Peripheral Interface
#define CYGNUM_HAL_INTERRUPT_SPI1 5 // Serial Peripheral Interface 1
#define CYGNUM_HAL_INTERRUPT_USART0 6 // USART 0
#define CYGNUM_HAL_INTERRUPT_USART1 7 // USART 1
#define CYGNUM_HAL_INTERRUPT_SSC 8 // Serial Synchronous Controller
#define CYGNUM_HAL_INTERRUPT_TWI 9 // Two-Wire Interface (I2C)
#define CYGNUM_HAL_INTERRUPT_PWMC 10 // PWM Controller
#define CYGNUM_HAL_INTERRUPT_UDP 11 // USB Device Port
#define CYGNUM_HAL_INTERRUPT_TC0 12 // Timer Counter 0
#define CYGNUM_HAL_INTERRUPT_TC1 13 // Timer Counter 1
#define CYGNUM_HAL_INTERRUPT_TC2 14 // Timer Counter 2
#define CYGNUM_HAL_INTERRUPT_CAN 15 // CAN Controller
#define CYGNUM_HAL_INTERRUPT_EMAC 16 // Ethernet MAC
#define CYGNUM_HAL_INTERRUPT_ADC 17 // Analog-to-Digital Converter
#define CYGNUM_HAL_INTERRUPT_IRQ0 30 // External IRQ0
#define CYGNUM_HAL_INTERRUPT_IRQ1 31 // External IRQ0

// Interrupts which are multiplexed on to the System Interrupt
#define CYGNUM_HAL_INTERRUPT_PITC 32 // Period Interval Timer
#define CYGNUM_HAL_INTERRUPT_RTTC 33 // Real-Time Timer
#define CYGNUM_HAL_INTERRUPT_PMC 34 // Power Management Controller
#define CYGNUM_HAL_INTERRUPT_MC 35 // Memory Controller
#define CYGNUM_HAL_INTERRUPT_WDTC 36 // Watchdog
#define CYGNUM_HAL_INTERRUPT_RSTC 37 // Reset Controller
#define CYGNUM_HAL_INTERRUPT_DEBUG 38 // Debug Serial Port

2110

Atmel AT91SAM7 Processor Variant Support

For the AT91SAM7A3:

#define CYGNUM_HAL_INTERRUPT_FIQ 0 // Advanced Interrupt Controller (FIQ)
#define CYGNUM_HAL_INTERRUPT_SYS 1 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_INTERRUPT_PIOA 2 // Parallel IO Controller A
#define CYGNUM_HAL_INTERRUPT_PIOB 3 // Parallel IO Controller B
#define CYGNUM_HAL_INTERRUPT_CAN0 4 // CAN Controller 0
#define CYGNUM_HAL_INTERRUPT_CAN1 5 // CAN Controller 1
#define CYGNUM_HAL_INTERRUPT_USART0 6 // USART 0
#define CYGNUM_HAL_INTERRUPT_USART1 7 // USART 1
#define CYGNUM_HAL_INTERRUPT_USART2 8 // USART 2
#define CYGNUM_HAL_INTERRUPT_MCI 9 // Multimedia Card Interface
#define CYGNUM_HAL_INTERRUPT_TWI 10 // Two-Wire Interface (I2C)
#define CYGNUM_HAL_INTERRUPT_SPI 11 // Serial Parallel Interface 0
#define CYGNUM_HAL_INTERRUPT_SPI1 12 // Serial Parallel Interface 1
#define CYGNUM_HAL_INTERRUPT_SSC0 13 // Serial Synchronous Controller 0
#define CYGNUM_HAL_INTERRUPT_SSC1 14 // Serial Synchronous Controller 1
#define CYGNUM_HAL_INTERRUPT_TC0 15 // Timer Counter 0
#define CYGNUM_HAL_INTERRUPT_TC1 16 // Timer Counter 1
#define CYGNUM_HAL_INTERRUPT_TC2 17 // Timer Counter 2
#define CYGNUM_HAL_INTERRUPT_TC3 18 // Timer Counter 3
#define CYGNUM_HAL_INTERRUPT_TC4 19 // Timer Counter 4
#define CYGNUM_HAL_INTERRUPT_TC5 20 // Timer Counter 5
#define CYGNUM_HAL_INTERRUPT_TC6 21 // Timer Counter 6
#define CYGNUM_HAL_INTERRUPT_TC7 22 // Timer Counter 7
#define CYGNUM_HAL_INTERRUPT_TC8 23 // Timer Counter 8
#define CYGNUM_HAL_INTERRUPT_ADC0 24 // Analog-to-Digital Converter 0
#define CYGNUM_HAL_INTERRUPT_ADC1 25 // Analog-to-Digital Converter 1
#define CYGNUM_HAL_INTERRUPT_PWMC 26 // PWM Controller
#define CYGNUM_HAL_INTERRUPT_UDP 27 // USB Device Port
#define CYGNUM_HAL_INTERRUPT_IRQ0 28 // External Interrupt 0
#define CYGNUM_HAL_INTERRUPT_IRQ1 29 // External Interrupt 1
#define CYGNUM_HAL_INTERRUPT_IRQ2 30 // External Interrupt 2
#define CYGNUM_HAL_INTERRUPT_IRQ3 31 // External Interrupt 3

// Interrupts which are multiplexed on to the System Interrupt
#define CYGNUM_HAL_INTERRUPT_PITC 32 // Period Interval Timer
#define CYGNUM_HAL_INTERRUPT_RTTC 33 // Real-Time Timer
#define CYGNUM_HAL_INTERRUPT_PMC 34 // Power Management Controller
#define CYGNUM_HAL_INTERRUPT_MC 35 // Memory Controller
#define CYGNUM_HAL_INTERRUPT_WDTC 36 // Watchdog
#define CYGNUM_HAL_INTERRUPT_RSTC 37 // Reset Controller
#define CYGNUM_HAL_INTERRUPT_DEBUG 38 // Debug Serial Port

For the AT91SAM7A1 and AT91SAM7A2:

#define CYGNUM_HAL_INTERRUPT_FIQ 0 // Advanced Interrupt Controller (FIQ)
#define CYGNUM_HAL_INTERRUPT_SWIIRQ0 1 // Software Interrupt 0
#define CYGNUM_HAL_INTERRUPT_WD 2 // Watchdog
#define CYGNUM_HAL_INTERRUPT_WT 3 // Watch Timer
#define CYGNUM_HAL_INTERRUPT_USART0 4 // USART 0
#define CYGNUM_HAL_INTERRUPT_USART1 5 // USART 1
#define CYGNUM_HAL_INTERRUPT_CAN3 6 // CAN Controller 3
#define CYGNUM_HAL_INTERRUPT_SPI 7 // Serial Peripheral Interface
#define CYGNUM_HAL_INTERRUPT_CAN1 8 // CAN Controller 1
#define CYGNUM_HAL_INTERRUPT_CAN2 9 // CAN Controller 2
#define CYGNUM_HAL_INTERRUPT_ADC0 10 // Analog-to-Digital Converter 0
#define CYGNUM_HAL_INTERRUPT_ADC1 11 // Analog-to-Digital Converter 1
#define CYGNUM_HAL_INTERRUPT_GPT0CH0 12 // General Purpose Timer 0 Channel 0
#define CYGNUM_HAL_INTERRUPT_GPT0CH1 13 // General Purpose Timer 0 Channel 1
#define CYGNUM_HAL_INTERRUPT_GPT0CH2 14 // General Purpose Timer 0 Channel 2
#define CYGNUM_HAL_INTERRUPT_SWIIRQ1 15 // Software Interrupt 1
#define CYGNUM_HAL_INTERRUPT_SWIIRQ2 16 // Software Interrupt 2
#define CYGNUM_HAL_INTERRUPT_SWIIRQ3 17 // Software Interrupt 3
#define CYGNUM_HAL_INTERRUPT_GPT1CH0 18 // General Purpose Timer 1 Channel 0
#define CYGNUM_HAL_INTERRUPT_PWM 19 // PWM Controller
#define CYGNUM_HAL_INTERRUPT_CAN0 20 // CAN Controller 0
#define CYGNUM_HAL_INTERRUPT_UPIO 21 // Unified Parallel IO Controller
#define CYGNUM_HAL_INTERRUPT_CAPT0 22 // Capture 0
#define CYGNUM_HAL_INTERRUPT_CAPT1 23 // Capture 1
#define CYGNUM_HAL_INTERRUPT_ST0 24 // Simple Timer 0
#define CYGNUM_HAL_INTERRUPT_ST1 25 // Simple Timer 1

2111

Atmel AT91SAM7 Processor Variant Support

#define CYGNUM_HAL_INTERRUPT_SWIIRQ4 26 // Software Interrupt 4
#define CYGNUM_HAL_INTERRUPT_SWIIRQ5 27 // Software Interrupt 5
#define CYGNUM_HAL_INTERRUPT_IRQ0 28 // External Interrupt 0
#define CYGNUM_HAL_INTERRUPT_IRQ1 29 // External Interrupt 1
#define CYGNUM_HAL_INTERRUPT_SWIIRQ6 30 // Software Interrupt 6
#define CYGNUM_HAL_INTERRUPT_SWIIRQ7 31 // Software Interrupt 7

2112

Chapter 237. Atmel AT91SAM7A2-EK
Board Support

2113

Atmel AT91SAM7A2-EK Board Support

Name
eCos Support for the Atmel AT91SAM7A2-EK — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91SAM7A2-EK Evaluation Kit. The
AT91SAM7A2-EK Evaluation Kit contains the AT91SAM7A2 processor, 512KiB of SRAM, 2MiB of parallel NOR Flash
memory, external connections for a singe serial channel, CAN and LIN ports. eCos support for the devices and peripherals
on the AT91SAM7A2 is described below.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot into this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. Applications may also be loaded into RAM via a JTAG debugger, or may be programmed
into flash.

This documentation is expected to be read in conjunction with the AT91 processor HAL and AT91SAM7 variant HAL docu-
mentation and further device support and subsystems are described and documented there.

Supported Hardware
The parallel NOR flash memory consists of 31 blocks of 16KiBytes each, followed by 8 blocks of 8KiBytes each. In a typical
setup, the first 128 KiBytes are reserved for the use of the RedBoot image. The topmost 8 blocks are used to manage the
flash and hold RedBoot fconfig values. The remaining blocks can be used by application code. There are 30 blocks available
between 0x40020000 and 0x401EFFFF.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port can be used for communication. If RedBoot is installed, it uses the Debug Unit serial device. The serial
driver package is loaded automatically when configuring for the AT91SAM7A2-EK target.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91. This driver is also loaded automatically when
configuring for the AT91SAM7A2-EK target.

In general, devices (PIO, UARTs, etc.) are initialized only as far as is necessary for eCos to run. Other devices (RTC, I²C,
SPI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will set up
the appropriate PIO configuration.

Tools
The AT91SAM7A2-EK support is intended to work with GNU tools configured for an arm-elf target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2114

Atmel AT91SAM7A2-EK Board Support

Name
Setup — Preparing the AT91SAM7A2-EK board for eCos Development

Overview
In a typical development environment, the AT91SAM7A2-EK boards boot from the parallel NOR Flash and run the RedBoot
ROM monitor directly. eCos applications are configured for RAM startup and then downloaded and run on the board via
the debugger arm-elf-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash
memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.bin

JTAG RedBoot running from RAM,
loaded via JTAG

redboot_JTAG.ecm redboot_JTAG.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud.

The ROM version is programmed into flash to boot the system; however, it is not able to reprogram the RedBoot image in
flash. The RAM version is provided to allow for updating the resident RedBoot image in Flash. The JTAG version is only used
if loading RedBoot into RAM via a JTAG debugger or ICE. The ELF format image of this JTAG version of RedBoot can be
loaded and executed from GDB using the Abatron BDI2000 bdiGDB support, to allow it to be debugged.

Initial Installation
For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot into this image
from reset. Two mechanisms are described below to program RedBoot into Flash. Both of them require a JTAG device. In
the following documentation it is assumed that the Abatron BDI2000 is being used. For a different JTAG device, equivalent
operations will need to be performed.

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Locate the file bdi2000.at91sam7a2ek.cfg within the eCos platform HAL package in the source repository. This
will be in the directory packages/hal/arm/at91/at91sam7a2ek/VERSION/misc relative to the root of your
eCos installation.

5. Locate the file reg920t.def within the installation of the BDI2000 bdiGDB support software.

6. Place the bdi2000.at91sam7a2ek.cfg in a location on the PC accessible to the TFTP server. Later you will configure the
BDI2000 to load this file via TFTP as its configuration file.

7. Similarly place the file reg920t.def in a location accessible to the TFTP server.

8. Open bdi2000.at91sam7a2ek.cfg in an editor such as emacs or notepad and if necessary adjust the path of the
reg920t.def file in the [REGS] section to match its location relative to the TFTP server root.

2115

Atmel AT91SAM7A2-EK Board Support

9. Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
bdi2000.at91sam7a2ek.cfg configuration file at the appropriate point of this process.

Preparing the AT91SAM7A2-EK board for programming

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the JTAG interface connector to the Target A
port on the BDI2000.

4. Power up the AT91SAM7A2-EK board.

5. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

SAM7A2>

6. Confirm correct connection with the BDI2000 with the reset halt command as follows:

SAM7A2> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x1F0F0F0F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
SAM7A2>

7. Locate the redboot_ROM.bin image within the loaders subdirectory of the base of the eCos installation.

8. Copy the redboot_ROM.bin file into a location on the host computer accessible to its TFTP server.

Using the BDI2000 to directly program RedBoot into Flash

As previously mentioned, there are two methods of programming a RedBoot image into the parallel NOR Flash. This method
uses the built-in capabilities of the BDI2000.

This is a three stage process. The relevant Flash blocks must first be unlocked, then erased, and finally programmed. This can
be accomplished with the following steps:

1. Connect to the BDI2000 telnet port as before.

2. Erase the 8 initial 8Kbyte sized Flash blocks, and the following 64Kbyte Flash block with the following command:

SAM7A>erase
Erasing flash at 0x40000000
Erasing flash at 0x40002000
Erasing flash at 0x40004000
Erasing flash at 0x40006000
Erasing flash at 0x40008000
Erasing flash at 0x4000a000
Erasing flash at 0x4000c000

2116

Atmel AT91SAM7A2-EK Board Support

Erasing flash at 0x4000e000
Erasing flash at 0x40010000
Erasing flash passed
SAM7A>

3. Program the RedBoot image into Flash with the following command, replacing /RBPATH with the location of the red-
boot_ROM.bin file relative to the TFTP server root directory:

SAM7A>prog 0x40000000 /RBPATH/redboot_ROM.bin bin
Programming redboot_ROM.bin , please wait
Programming flash passed
SAM7A>

This operation can take some time.

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. The RedBoot banner should be visible on the serial port. RedBoot's Flash configuration can be
initialized using the same procedure as required in Method 2 below.

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Method 2 - Program RedBoot into Flash with RAM RedBoot

With this approach, the BDI2000 is used to load a RAM RedBoot image, which can then in turn be used to load and program
a ROMRAM RedBoot image into Flash.

There are three stages, firstly loading the RAM RedBoot image, then initializing RedBoot's Flash configuration, and finally
loading and programming the ROMRAM RedBoot.

Loading a RAM RedBoot

1. Locate the redboot_JTAG.bin image within the loaders subdirectory of the base of the eCos installation.

2. Copy the redboot_JTAG.bin file into a location on the host computer accessible to its TFTP server.

3. With the BDI2000 telnet interface, execute the following command, replacing /RBPATH with the location of the redboot_J-
TAG.bin file relative to the TFTP server root directory:

SAM7A>load 0x48000000 /RBPATH/redboot_JTAG.bin bin
Loading /RBPATH/redboot_JTAG.bin , please wait
Loading program file passed
SAM7A>

4. Run the loaded RAM RedBoot:

SAM7A>go 0x48000040
SAM7A>

The terminal emulator connected to the serial debug port should now have displayed the RedBoot banner and prompt similar
to the following:

Warning FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database

RedBoot(tm) bootstrap and debug environment [JTAG]
Non-certified release, version UNKNOWN - built 11:03:18, Oct 27 2006

Platform: Atmel AT91SAM7A2-EK (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x48000000-0x48040000, [0x48017078-0x4802d000] available
FLASH: 0x40000000-0x401fffff, 31 x 0x10000 blocks, 8 x 0x2000 blocks
RedBoot>

2117

Atmel AT91SAM7A2-EK Board Support

Note

It is also possible to use the RAM startup version of RedBoot and the redboot_RAM.bin file instead of redboot_J-
TAG.bin above. If so, then the address to the load command must be 0x48008000, and the start address given
to the go command should be 0x48008040.

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration. This must be performed when using a RAM
RedBoot to program Flash, but is also applicable to initial configuration of a ROM RedBoot loaded using Method 1.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x40020000-0x401effff:
... Erase from 0x401f0000-0x401fffff:
... Program from 0x48030000-0x48040000 to 0x401f0000:
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
... Erase from 0x401f0000-0x401fffff:
... Program from 0x48030000-0x48040000 to 0x401f0000:
RedBoot>

Loading and programming the ROM RedBoot

This section describes the steps required to load the ROM RedBoot from the TFTP server and program it into Flash.

1. Load the RedBoot ROM binary image using Y-Modem protocol over the serial line. First give this command to RedBoot:

RedBoot> load -r -m y -b %{freememlo}
C
RedBoot>

Use the Y-Modem protocol support of your terminal emulator to send the redboot_ROM.bin file at this point. When
the transfer is finished RedBoot will report:

Raw file loaded 0x48017400-0x4802abd3, assumed entry at 0x48017400
xyzModem - CRC mode, 627(SOH)/0(STX)/0(CAN) packets, 8 retries
RedBoot>

2. Finally install the loaded image into Flash:

RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x40000000-0x4001ffff:
... Program from 0x48017400-0x4802abd4 to 0x40000000:
... Erase from 0x401f0000-0x401fffff: .
... Program from 0x48030000-0x48040000 to 0x401f0000: .
RedBoot>

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. Output similar to the following should be seen on the serial port.

+
RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 11:41:25, Oct 27 2006

Platform: Atmel AT91SAM7A2-EK (ARM7TDMI)

2118

Atmel AT91SAM7A2-EK Board Support

Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x48000000-0x48040000, [0x48005150-0x4802d000] available
FLASH: 0x40000000-0x401fffff, 8 x 0x2000 blocks, 31 x 0x10000 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

2119

Atmel AT91SAM7A2-EK Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The AT91SAM7A2-EK platform HAL package is loaded automatically when eCos is configured for the at91sam7a2ek
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-elf-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by the stubs. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from the stubs, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x40000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

JTAG This is an alternative development startup type. The application is loaded into RAM via a JTAG device and is run
and debugged from there. The application will be self-contained with no dependencies on services provided by other
software. It is expected that hardware setup will have been performed via the JTAG device prior to loading.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubs.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The AT91SAM7A2-EK board contains a quantity of on-chip flash memory. The CYGPKG_DE-
VS_FLASH_AMD_AM29XXXXX_V2 package contains the code necessary to support this part and the platform HAL package
contains definitions necessary to support this part. This driver is not active until the generic Flash support package, CYGP-
KG_IO_FLASH, is included in the configuration.

Watchdog Driver

The AT91SAM7A2-EK board use the AT91SAM7A2's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91 package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by default
will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package, CYG-
PKG_IO_WATCHDOG, is included in the configuration.

2120

Atmel AT91SAM7A2-EK Board Support

USART Serial Driver
The AT91SAM7A2-EK board use the AT91SAM7A2's internal USART serial support as described in the AT91 processor
HAL documentation. One serial ports is available: USART 0 which is mapped to virtual vector channel 0 and "/dev/ser0".
USART 0 does not support modem control signals such as those used for hardware flow control.

Compiler Flags
The SAM7 variant HAL defines the default compiler and linker flags for all packages, although it is possible to override these
on a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm7tdmi The arm-elf-gcc compiler supports many variants of the ARM architecture. A -m option
should be used to select the specific variant in use, and with current tools -mcpu=ar-
m7tdmi is the correct option for the ARM7TDMI processor in the SAM7A2.

-mthumb The arm-elf-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2121

Atmel AT91SAM7A2-EK Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM7TDMI core of the AT91SAM7A2
only supports two such hardware breakpoints, and so they should be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the bdi2000.at91sam7a2ek.cfg file should be used to setup and configure the hardware to
an appropriate state to load programs. This includes setting up the PLL and flash memory controller.

The bdi2000.at91sam7a2ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break
points, and remember to use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-elf-gdb and the bdiGDB interface.
In the case of the latter, arm-elf-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the
bdi2000.at91sam7a2ek.cfg file (which configures the SDRAM among other things), and halts the target. This behav-
iour is repeated with the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot from ROM as normal.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

SAM7A2>load 0x00201000 /test.bin bin
Loading /test.bin , please wait
Loading program file passed
SAM7A2>go 0x00201000

Consult the BDI2000 documentation for information on other formats.

Configuration of RAM applications

If the JTAG device has initialized the processor, such as by using the bdi2000.at91sam7a2ek.cfg configuration on the
BDI2000, applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG startup
type in the configuration tool sets these options automatically.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial port.

2122

Atmel AT91SAM7A2-EK Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM7A2-EK hardware, and
should be read in conjunction with that specification. The AT91SAM7A2-EK platform HAL package complements the ARM
architectural HAL, the AT91 variant HAL and the AT91SAM7 processor HAL. It provides functionality which is specific to
the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor or JTAG device for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the PLL and programming the various internal
registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The AT91SAM7 processor HAL package provides the memory layout information needed to generate the linker script. The
key memory locations are as follows:

Flash This is located at address 0x40000000 of the physical memory space.

RAM This is located at address 0x48000000 of the physical memory space. During booting this
memory is only available at this address, but during the boot process it is also remapped
to location 0x00000000 in order to allow the hardware exception vectors to be in RAM.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM startup, all remaining RAM is available. For RAM startup, available RAM starts
at location 0x48008000, with the bottom 32KiB reserved for use by RedBoot.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 237.1. at91sam7a2ek Real-time characterization

 Startup, main stack : stack used 416 size 3920
 Startup : Interrupt stack used 148 size 4096
 Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 61.00 microseconds (57 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 10
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128

2123

Atmel AT91SAM7A2-EK Board Support

 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 46.93 43.73 50.13 1.71 40% 30% Create thread
 8.96 8.53 9.60 0.51 60% 60% Yield thread [all suspended]
 9.28 8.53 9.60 0.45 70% 30% Suspend [suspended] thread
 10.03 9.60 10.67 0.51 60% 60% Resume thread
 13.87 13.87 13.87 0.00 100% 100% Set priority
 1.49 1.07 2.13 0.51 60% 60% Get priority
 32.00 32.00 32.00 0.00 100% 100% Kill [suspended] thread
 9.07 8.53 9.60 0.53 100% 50% Yield [no other] thread
 16.96 16.00 17.07 0.19 90% 10% Resume [suspended low prio] thread
 9.60 9.60 9.60 0.00 100% 100% Resume [runnable low prio] thread
 12.80 12.80 12.80 0.00 100% 100% Suspend [runnable] thread
 8.96 8.53 9.60 0.51 60% 60% Yield [only low prio] thread
 9.17 8.53 9.60 0.51 60% 40% Suspend [runnable->not runnable]
 32.00 32.00 32.00 0.00 100% 100% Kill [runnable] thread
 23.15 22.40 23.47 0.45 70% 30% Destroy [dead] thread
 46.51 45.87 46.93 0.51 60% 40% Destroy [runnable] thread
 62.29 60.80 69.33 1.41 60% 90% Resume [high priority] thread
 24.07 23.47 32.00 0.59 50% 49% Thread switch

 1.60 1.07 2.13 0.53 100% 50% Scheduler lock
 6.93 6.40 7.47 0.53 100% 50% Scheduler unlock [0 threads]
 6.93 6.40 7.47 0.53 100% 50% Scheduler unlock [1 suspended]
 6.93 6.40 7.47 0.53 100% 50% Scheduler unlock [many suspended]
 6.93 6.40 7.47 0.53 100% 50% Scheduler unlock [many low prio]

 2.67 2.13 3.20 0.53 100% 50% Init mutex
 10.40 9.60 10.67 0.40 75% 25% Lock [unlocked] mutex
 11.73 11.73 11.73 0.00 100% 100% Unlock [locked] mutex
 9.87 9.60 10.67 0.40 75% 75% Trylock [unlocked] mutex
 8.47 7.47 8.53 0.12 93% 6% Trylock [locked] mutex
 1.07 1.07 1.07 0.00 100% 100% Destroy mutex
 62.57 61.87 62.93 0.48 65% 34% Unlock/Lock mutex

 3.53 3.20 4.27 0.46 68% 68% Create mbox
 1.00 0.00 1.07 0.12 93% 6% Peek [empty] mbox
 11.73 11.73 11.73 0.00 100% 100% Put [first] mbox
 1.00 0.00 1.07 0.12 93% 6% Peek [1 msg] mbox
 11.20 10.67 11.73 0.53 100% 50% Put [second] mbox
 1.00 0.00 1.07 0.12 93% 6% Peek [2 msgs] mbox
 11.67 10.67 11.73 0.12 93% 6% Get [first] mbox
 11.60 10.67 11.73 0.23 87% 12% Get [second] mbox
 9.53 8.53 9.60 0.12 93% 6% Tryput [first] mbox
 8.93 8.53 9.60 0.50 62% 62% Peek item [non-empty] mbox
 10.40 9.60 10.67 0.40 75% 25% Tryget [non-empty] mbox
 8.73 8.53 9.60 0.32 81% 81% Peek item [empty] mbox
 9.13 8.53 9.60 0.52 56% 43% Tryget [empty] mbox
 1.13 1.07 2.13 0.12 93% 93% Waiting to get mbox
 1.13 1.07 2.13 0.12 93% 93% Waiting to put mbox
 3.47 3.20 4.27 0.40 75% 75% Delete mbox
 43.40 42.67 43.73 0.46 68% 31% Put/Get mbox

 2.27 2.13 3.20 0.23 87% 87% Init semaphore
 8.60 8.53 9.60 0.12 93% 93% Post [0] semaphore
 9.60 9.60 9.60 0.00 100% 100% Wait [1] semaphore
 8.00 7.47 8.53 0.53 100% 50% Trywait [0] semaphore
 8.33 7.47 8.53 0.33 81% 18% Trywait [1] semaphore
 2.47 2.13 3.20 0.46 68% 68% Peek semaphore
 1.20 1.07 2.13 0.23 87% 87% Destroy semaphore
 39.17 38.40 39.47 0.43 71% 28% Post/Wait semaphore

 3.73 3.20 4.27 0.53 100% 50% Create counter
 1.33 1.07 2.13 0.40 75% 75% Get counter value
 1.33 1.07 2.13 0.40 75% 75% Set counter value
 10.20 9.60 10.67 0.52 56% 43% Tick counter

2124

Atmel AT91SAM7A2-EK Board Support

 1.27 1.07 2.13 0.32 81% 81% Delete counter

 2.27 2.13 3.20 0.23 87% 87% Init flag
 9.13 8.53 9.60 0.52 56% 43% Destroy flag
 7.93 7.47 8.53 0.52 56% 56% Mask bits in flag
 9.53 8.53 9.60 0.12 93% 6% Set bits in flag [no waiters]
 13.87 13.87 13.87 0.00 100% 100% Wait for flag [AND]
 13.60 12.80 13.87 0.40 75% 25% Wait for flag [OR]
 13.93 13.87 14.93 0.12 93% 93% Wait for flag [AND/CLR]
 13.73 12.80 13.87 0.23 87% 12% Wait for flag [OR/CLR]
 0.93 0.00 1.07 0.23 87% 12% Peek on flag

 5.97 5.33 6.40 0.51 59% 40% Create alarm
 17.60 17.07 18.13 0.53 100% 50% Initialize alarm
 8.23 7.47 8.53 0.43 71% 28% Disable alarm
 16.23 16.00 17.07 0.36 78% 78% Enable alarm
 9.87 9.60 10.67 0.40 75% 75% Delete alarm
 11.87 11.73 12.80 0.23 87% 87% Tick counter [1 alarm]
 74.13 73.60 74.67 0.53 100% 50% Tick counter [many alarms]
 22.67 22.40 23.47 0.40 75% 75% Tick & fire counter [1 alarm]
 452.10 450.13 504.53 3.28 96% 96% Tick & fire counters [>1 together]
 85.70 85.33 86.40 0.48 65% 65% Tick & fire counters [>1 separately]
 58.67 58.67 58.67 0.00 100% 100% Alarm latency [0 threads]
 65.02 58.67 72.53 3.94 42% 30% Alarm latency [2 threads]
 64.89 58.67 72.53 3.99 42% 35% Alarm latency [many threads]
 100.33 100.27 108.80 0.13 99% 99% Alarm -> thread resume latency

 10.68 10.67 11.73 0.00 Clock/interrupt latency

 24.98 21.33 146.13 0.00 Clock DSR latency

 274 232 292 (main stack: 804) Thread stack used (1360 total)
 All done, main stack : stack used 804 size 3920
 All done : Interrupt stack used 208 size 4096
 All done : Idlethread stack used 252 size 2048

Timing complete - 30940 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM7A2-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
AT91SAM7 processor HAL, AT91 variant HAL, and the ARM architectural HAL documentation should be consulted for
further details.

2125

Chapter 238. Atmel AT91SAM7A3-EK
Board Support

2126

Atmel AT91SAM7A3-EK Board Support

Name
eCos Support for the Atmel AT91SAM7A3-EK — Overview

Description
This document covers the configuration and usage of eCos and GDB Stubs on the Atmel AT91SAM7A3-EK Evaluation Kit.
The AT91SAM7A3-EK Evaluation Kit contains the AT91SAM7A3 processor, external connections for one serial channel,
USB host/device, MMC card. eCos support for the devices and peripherals on the AT91SAM7A3 is described below.

Application development on this board can take one of several approaches. Applications may be loaded into RAM via a JTAG
device; however, the application size is limited by the amount of on-chip RAM: 32KiB. Applications may also be loaded into
the on-chip flash memory where the RAM limit will only apply to the data portion of the application. Finally, it is possible to
program a GDB debugging stub into flash which will then allow applications to be loaded into RAM via the serial port. This
allows development to proceed without needing to use a JTAG device, although one will be required to program the debugging
stub in the first place, and application size is limited to just 28KiB, since the GDB stub uses the least significant 4KiB.

This documentation is expected to be read in conjunction with the AT91 processor HAL and AT91SAM7 variant HAL docu-
mentation and further device support and subsystems are described and documented there.

Supported Hardware
The on-chip NOR flash is organized into 1024 pages of 256 bytes each.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports the Debug Unit and USART serial devices. The
debug serial port at J2 can be used for communication. If the GDB stub ROM is installed, it uses the Debug Unit serial device.
The serial driver package is loaded automatically when configuring for the AT91SAM7A3-EK target.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the AT91SAM7A3-EK target.

In general, devices (PIO, UARTs, etc.) are initialized only as far as is necessary for eCos to run. Other devices (RTC, I²C,
SPI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will set up
the appropriate PIO configuration.

Tools
The AT91SAM7A3-EK support is intended to work with GNU tools configured for an arm-elf target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2127

Atmel AT91SAM7A3-EK Board Support

Name
Setup — Preparing the AT91SAM7A3-EK board for eCos Development

Overview
eCos applications are either programmed into the on-chip flash, or run from RAM using either a JTAG device or the GDB
stubs ROM. To install a flash-resident application, or the GDB stubs requires use of a JTAG device to write to the flash. So,
in all cases it is necessary to set up a JTAG device for the board. This document describes how to set up an Abatron BDI2000
and then use it to program an application into the flash.

Initial Installation

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Locate the file bdi2000.at91sam7a3ek.cfg within the eCos platform HAL package in the source repository. This
will be in the directory packages/hal/arm/at91/at91sam7a3ek/VERSION/misc relative to the root of your
eCos installation.

5. Locate the file reg920t.def within the installation of the BDI2000 bdiGDB support software.

6. Place the bdi2000.at91sam7a3ek.cfg in a location on the PC accessible to the TFTP server. Later you will configure the
BDI2000 to load this file via TFTP as its configuration file.

7. Similarly place the file reg920t.def in a location accessible to the TFTP server.

8. Open bdi2000.at91sam7a3ek.cfg in an editor such as emacs or notepad and if necessary adjust the path of the
reg920t.def file in the [REGS] section to match its location relative to the TFTP server root.

9. Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
bdi2000.at91sam7a3ek.cfg configuration file at the appropriate point of this process.

Preparing the AT91SAM7A3-EK board for programming

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the JTAG interface connector to the Target A
port on the BDI2000.

4. Power up the AT91SAM7A3-EK board.

5. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

SAM7A3>

2128

Atmel AT91SAM7A3-EK Board Support

6. Confirm correct connection with the BDI2000 with the reset halt command as follows:

SAM7A3> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x3F0F0F0F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
SAM7A3>

Installation into Flash
Installation of an application into the on-chip flash, or the installation of the GDB stubs take exactly the same form:

1. Locate the binary image of the executable to be installed. For the GDB stubs do this by locating the file gdb.module.bin
within the loaders subdirectory of the base of the eCos installation. For applications use arm-elf-objcopy -O binary to
convert the ELF output of the linker into binary.

2. Copy the file into a location on the host computer accessible to its TFTP server.

3. Connect to the BDI2000 telnet port as before.

4. Give the unlock command to ensure that the flash area we want to program is writable:

SAM7A3>unlock 0x100000 0x100 256
Unlocking flash at 0x00100000
Unlocking flash at 0x00100100
Unlocking flash at 0x00100200
...
Unlocking flash at 0x0010fe00
Unlocking flash at 0x0010ff00
Unlocking flash passed
SAM7A3>

This command unlocks 256 pages, i.e. 64KiB. The number of pages unlocked should match at least the size of the executable
to be programmed.

5. Give the erase command to clear any previous contents:

SAM7A3>erase 0x100000 0x100 256
Erasing flash at 0x00100000
Erasing flash at 0x00100100
Erasing flash at 0x00100200
...
Erasing flash at 0x0010fe00
Erasing flash at 0x0010ff00
Erasing flash passed
SAM7A3>

As with the unlock command, the size of the area erased must be at least the size of the executable to be programmed.

6. Now give the prog command to fetch the executable from the TFTP server and program it to the flash.

SAM7A3>prog 0x100000 sam7.bin bin
Programming sam7.bin , please wait
Programming flash passed
SAM7A3>

The installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then powering
on the board again. A ROM based application should start immediately, and any output will be seen on the serial connection.
If the GDB stub ROM has been installed, then something similar to the following will be seen on the serial port:

2129

Atmel AT91SAM7A3-EK Board Support

+$T050f:cc061000;0d:18082000;#4d

2130

Atmel AT91SAM7A3-EK Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The AT91SAM7A3-EK platform HAL package is loaded automatically when eCos is configured for the at91sam7a3ek
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has GDB stubs programmed
into flash and boots into that initially. arm-elf-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by the stubs. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from the stubs, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x00100000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

JTAG This is an alternative development startup type. The application is loaded into RAM via a JTAG device and is run
and debugged from there. The application will be self-contained with no dependencies on services provided by other
software. It is expected that hardware setup will have been performed via the JTAG device prior to loading.

GDB Stubs and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubs.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The AT91SAM7A3-EK board contains a quantity of on-chip flash memory. The CYGPKG_DEVS_FLASH_AT91 package
contains all the code and data definitions necessary to support this part. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Watchdog Driver
The AT91SAM7A3-EK board use the AT91SAM7A3's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Note that on the AT91, the on-chip watchdog peripheral always starts running immediately, and so in configurations that do
not include the watchdog driver, it is always disabled via its write-once register. In configurations which include the watchdog

2131

Atmel AT91SAM7A3-EK Board Support

driver obviously the watchdog is not disabled otherwise it could not be subsequently re-enabled, and so the application must
start and periodically reset the watchdog from the very beginning of execution.

USART Serial Driver
The AT91SAM7A3-EK board use the AT91SAM7A3's internal USART serial support as described in the AT91 processor
HAL documentation. Two serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the
HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver; and USART 0 which is mapped to virtual vector channel
1 and "/dev/ser0". Only USART 0 supports modem control signals such as those used for hardware flow control.

Compiler Flags
The SAM7 variant HAL defines the default compiler and linker flags for all packages, although it is possible to override these
on a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm7tdmi The arm-elf-gcc compiler supports many variants of the ARM architecture. A -m option
should be used to select the specific variant in use, and with current tools -mcpu=ar-
m7tdmi is the correct option for the ARM7TDMI processor in the SAM7A3.

-mthumb The arm-elf-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2132

Atmel AT91SAM7A3-EK Board Support

Name
JTAG support — Usage

Use of JTAG for debugging

JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM7TDMI core of the AT91SAM7A3
only supports two such hardware breakpoints, and so they should be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the bdi2000.at91sam7a3ek.cfg file should be used to setup and configure the hardware to
an appropriate state to load programs. This includes setting up the PLL and flash memory controller.

The bdi2000.at91sam7a3ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break
points, and remember to use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-elf-gdb and the bdiGDB interface.
In the case of the latter, arm-elf-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the
bdi2000.at91sam7a3ek.cfg file (which configures the SDRAM among other things), and halts the target. This behav-
iour is repeated with the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot from ROM as normal.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

SAM7A3>load 0x00201000 /test.bin bin
Loading /test.bin , please wait
Loading program file passed
SAM7A3>go 0x00201000

Consult the BDI2000 documentation for information on other formats.

Configuration of RAM applications

If the JTAG device has initialized the processor, such as by using the bdi2000.at91sam7a3ek.cfg configuration on the
BDI2000, applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG startup
type in the configuration tool sets these options automatically.

2133

Atmel AT91SAM7A3-EK Board Support

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial debug port. USART 0 can be
chosen instead by setting the CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform
HAL to channel 1.

2134

Atmel AT91SAM7A3-EK Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM7A3-EK hardware, and
should be read in conjunction with that specification. The AT91SAM7A3-EK platform HAL package complements the ARM
architectural HAL, the AT91 variant HAL and the AT91SAM7 processor HAL. It provides functionality which is specific to
the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor or JTAG device for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the PLL and programming the various internal
registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The AT91SAM7 processor HAL package provides the memory layout information needed to generate the linker script. The
key memory locations are as follows:

On-chip Flash This is located at address 0x00100000 of the physical memory space.

On-chip RAM This is located at address 0x00200000 of the physical memory space. During booting this
memory is only available at this address, but during the boot process it is also remapped
to location 0x00000000 in order to allow the hardware exception vectors to be in RAM.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM startup, all remaining RAM is available. For RAM startup, available RAM starts
at location 0x00201000, with the bottom 4KiB reserved for use by the GDB stubs.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 238.1. at91sam7a3ek Real-time characterization

 Startup, main stack : stack used 456 size 3920
 Startup : Interrupt stack used 4064 size 4096
 Startup : Idlethread stack used 120 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 47.13 microseconds (141 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 1
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 21
 Semaphores: 32
 Scheduler operations: 128

2135

Atmel AT91SAM7A3-EK Board Support

 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 144.33 144.33 144.33 0.00 100% 100% Create thread
 18.33 18.33 18.33 0.00 100% 100% Yield thread [all suspended]
 14.67 14.67 14.67 0.00 100% 100% Suspend [suspended] thread
 14.67 14.67 14.67 0.00 100% 100% Resume thread
 17.33 17.33 17.33 0.00 100% 100% Set priority
 0.67 0.67 0.67 0.00 100% 100% Get priority
 32.33 32.33 32.33 0.00 100% 100% Kill [suspended] thread
 18.67 18.67 18.67 0.00 100% 100% Yield [no other] thread
 22.67 22.67 22.67 0.00 100% 100% Resume [suspended low prio] thread
 14.67 14.67 14.67 0.00 100% 100% Resume [runnable low prio] thread
 18.00 18.00 18.00 0.00 100% 100% Suspend [runnable] thread
 18.67 18.67 18.67 0.00 100% 100% Yield [only low prio] thread
 14.67 14.67 14.67 0.00 100% 100% Suspend [runnable->not runnable]
 32.00 32.00 32.00 0.00 100% 100% Kill [runnable] thread
 31.33 31.33 31.33 0.00 100% 100% Destroy [dead] thread
 55.67 55.67 55.67 0.00 100% 100% Destroy [runnable] thread
 106.67 106.67 106.67 0.00 100% 100% Resume [high priority] thread

 0.85 0.67 1.00 0.16 56% 43% Scheduler lock
 13.31 13.00 13.33 0.04 93% 6% Scheduler unlock [0 threads]
 13.31 13.00 13.33 0.04 93% 6% Scheduler unlock [1 suspended]
 13.31 13.00 13.33 0.04 93% 6% Scheduler unlock [many suspended]
 13.31 13.00 13.33 0.04 93% 6% Scheduler unlock [many low prio]

 2.33 2.33 2.33 0.00 100% 100% Init mutex
 18.58 18.33 18.67 0.13 75% 25% Lock [unlocked] mutex
 20.68 20.67 21.00 0.02 96% 96% Unlock [locked] mutex
 16.58 16.33 16.67 0.13 75% 25% Trylock [unlocked] mutex
 15.96 15.67 16.00 0.07 87% 12% Trylock [locked] mutex
 1.00 1.00 1.00 0.00 100% 100% Destroy mutex
 85.56 85.33 85.67 0.14 68% 31% Unlock/Lock mutex

 3.90 3.67 4.00 0.14 71% 28% Create mbox
 0.29 0.00 0.33 0.08 85% 14% Peek [empty] mbox
 19.90 19.67 20.00 0.14 71% 28% Put [first] mbox
 0.33 0.33 0.33 0.00 100% 100% Peek [1 msg] mbox
 19.92 19.67 20.00 0.12 76% 23% Put [second] mbox
 0.33 0.33 0.33 0.00 100% 100% Peek [2 msgs] mbox
 20.00 20.00 20.00 0.00 100% 100% Get [first] mbox
 20.00 20.00 20.00 0.00 100% 100% Get [second] mbox
 18.92 18.67 19.00 0.12 76% 23% Tryput [first] mbox
 16.49 16.33 16.67 0.17 52% 52% Peek item [non-empty] mbox
 17.49 17.33 17.67 0.17 52% 52% Tryget [non-empty] mbox
 16.33 16.33 16.33 0.00 100% 100% Peek item [empty] mbox
 16.56 16.33 16.67 0.15 66% 33% Tryget [empty] mbox
 0.40 0.33 0.67 0.10 80% 80% Waiting to get mbox
 0.40 0.33 0.67 0.10 80% 80% Waiting to put mbox
 2.16 2.00 2.33 0.17 52% 52% Delete mbox
 68.73 68.67 69.00 0.10 80% 80% Put/Get mbox

 2.33 2.33 2.33 0.00 100% 100% Init semaphore
 14.00 14.00 14.00 0.00 100% 100% Post [0] semaphore
 14.50 14.33 14.67 0.17 100% 50% Wait [1] semaphore
 13.96 13.67 14.00 0.07 87% 12% Trywait [0] semaphore
 14.00 14.00 14.00 0.00 100% 100% Trywait [1] semaphore
 2.38 2.33 2.67 0.07 87% 87% Peek semaphore
 0.83 0.67 1.00 0.17 100% 50% Destroy semaphore
 58.07 58.00 58.33 0.11 78% 78% Post/Wait semaphore

 4.00 4.00 4.00 0.00 100% 100% Create counter
 0.46 0.33 0.67 0.16 62% 62% Get counter value
 0.46 0.33 0.67 0.16 62% 62% Set counter value
 15.46 15.33 15.67 0.16 62% 62% Tick counter
 0.50 0.33 0.67 0.17 100% 50% Delete counter

2136

Atmel AT91SAM7A3-EK Board Support

 2.25 2.00 2.33 0.13 75% 25% Init flag
 14.33 14.33 14.33 0.00 100% 100% Destroy flag
 13.75 13.67 14.00 0.13 75% 75% Mask bits in flag
 15.67 15.67 15.67 0.00 100% 100% Set bits in flag [no waiters]
 19.83 19.67 20.00 0.17 100% 50% Wait for flag [AND]
 19.58 19.33 19.67 0.13 75% 25% Wait for flag [OR]
 19.83 19.67 20.00 0.17 100% 50% Wait for flag [AND/CLR]
 19.58 19.33 19.67 0.13 75% 25% Wait for flag [OR/CLR]
 0.25 0.00 0.33 0.13 75% 25% Peek on flag

 5.27 5.00 5.33 0.10 81% 18% Create alarm
 20.54 20.33 20.67 0.16 62% 37% Initialize alarm
 13.90 13.67 14.00 0.14 68% 31% Disable alarm
 19.85 19.67 20.00 0.16 56% 43% Enable alarm
 14.65 14.33 14.67 0.04 93% 6% Delete alarm
 17.42 17.33 17.67 0.13 75% 75% Tick counter [1 alarm]
 82.65 82.33 82.67 0.04 93% 6% Tick counter [many alarms]
 26.08 26.00 26.33 0.13 75% 75% Tick & fire counter [1 alarm]
 371.00 369.67 402.67 1.98 96% 96% Tick & fire counters [>1 together]
 91.63 91.33 91.67 0.07 87% 12% Tick & fire counters [>1 separately]
 38.33 38.33 38.33 0.00 100% 100% Alarm latency [0 threads]
 40.89 38.33 44.67 2.44 27% 47% Alarm latency [many threads]
 93.75 93.67 104.67 0.17 99% 99% Alarm -> thread resume latency

 6.66 6.33 6.67 0.00 Clock/interrupt latency

 14.37 13.00 261.33 0.00 Clock DSR latency

 1360 1360 1360 (main stack: 3920) Thread stack used (1360 total)
 All done, main stack : stack used 896 size 3920
 All done : Interrupt stack used 212 size 4096
 All done : Idlethread stack used 304 size 2048

Timing complete - 23730 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM7A3-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
AT91SAM7 processor HAL, AT91 variant HAL, and the ARM architectural HAL documentation should be consulted for
further details.

2137

Chapter 239. Atmel AT91SAM7S-EK Board
Support

2138

Atmel AT91SAM7S-EK Board Support

Name
eCos Support for the Atmel AT91SAM7S-EK — Overview

Description
This document covers the configuration and usage of eCos and GDB Stubs on the Atmel AT91SAM7S-EK Evaluation Kit.
The AT91SAM7S-EK Evaluation Kit contains the AT91SAM7S processor, external connections for two serial channels (one
debug, one full), USB host/device. eCos support for the devices and peripherals on the AT91SAM7S is described below.

Application development on this board can take one of several approaches. Applications may be loaded into RAM via a JTAG
device; however, the application size is limited by the amount of on-chip RAM, which is 64KiB on the AT91SAM7S256 and
AT91SAM7S512, and 32KiB on the AT91SAM7S128. Applications may also be loaded into the on-chip flash memory where
the RAM limit will only apply to the data portion of the application. Finally, it is possible to program a GDB debugging stub
into flash which will then allow applications to be loaded into RAM via the serial port. This allows development to proceed
without needing to use a JTAG device and application size is limited to the RAM size less 4KiB used by the stub. It is therefore
recommended that JTAG debugging be used to debug applications since memory is limited on this platform.

This documentation is expected to be read in conjunction with the AT91 processor HAL and AT91SAM7 variant HAL docu-
mentation and further device support and subsystems are described and documented there.

Supported Hardware
The on-chip NOR flash is organized into pages of 128 or 256 bytes each. The number of pages is determined by the device
variant, from 2048 for the AT91SAM7S512 to 128 for the AT91SAM7S32.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J3 and DTE port at J2 (connected to USART channel 0) can be used for communication. If the GDB
stub ROM is installed, it uses the Debug Unit serial device only. The serial driver package is loaded automatically when
configuring for the AT91SAM7S-EK target.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the AT91SAM7S-EK target.

In general, devices (PIO, UARTs, etc.) are initialized only as far as is necessary for eCos to run. Other devices (RTC, I²C,
SPI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will set up
the appropriate PIO configuration.

Tools
The AT91SAM7S-EK support is intended to work with GNU tools configured for an arm-eabi target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2139

Atmel AT91SAM7S-EK Board Support

Name
Setup — Preparing the AT91SAM7S-EK board for eCos Development

Overview
eCos applications are either programmed into the on-chip flash, or run from RAM using either a JTAG device or the GDB
stubs ROM. The installation of the GDB stubs or any flash-resident application requires use of a JTAG device to write to the
flash, or the Atmel-supplied SAM-BA program that interacts with the on-chip boot program. This document describes how to
set up an Abatron BDI2000 Ronetix PEEDI for programming the gdb stubs and applications into the flash, and use the Atmel
SAM-BA application to program the gdb stubs into the flash.

Initial Installation with Abatron BDI2000

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Locate the file bdi2000.at91sam7sek.cfg within the eCos platform HAL package in the source repository. This will
be in the directory packages/hal/arm/at91/at91sam7sek/VERSION/misc relative to the root of your eCos
installation.

5. Locate the file regSAM7S.def within the installation of the BDI2000 bdiGDB support software.

6. Place the bdi2000.at91sam7sek.cfg file in a location on the PC accessible to the TFTP server. Later you will
configure the BDI2000 to load this file via TFTP as its configuration file.

7. Similarly place the file regSAM7S.def in a location accessible to the TFTP server.

8. Open bdi2000.at91sam7sek.cfg in an editor such as emacs or notepad and if necessary adjust the path of the
regSAM7S.def file in the [REGS] section to match its location relative to the TFTP server root.

9. Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
bdi2000.at91sam7sek.cfg configuration file at the appropriate point of this process.

Preparing the AT91SAM7S-EK board for programming with BDI2000

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the JTAG interface connector to the Target A
port on the BDI2000.

4. Power up the AT91SAM7S-EK board.

2140

http://www.abatron.ch
http://www.ronetix.at/peedi.html

Atmel AT91SAM7S-EK Board Support

5. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

SAM7S>

6. Confirm correct connection with the BDI2000 with the reset halt command as follows:

SAM7S> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x3F0F0F0F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
SAM7S>

Initial Installation with Ronetix PEEDI

Preparing the Ronetix PEEDI JTAG debugger

The PEEDI must first be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. The following steps give a typical outline of setting up the PEEDI using TFTP. Consult the
PEEDI documentation for alternative mechanisms.

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the PEEDI JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial cable supplied
with the PEEDI (straight through, not null modem).

3. Locate the file peedi.at91sam7sek.cfg within the eCos platform HAL package in the source repository. This will
be in the directory packages/hal/arm/at91/at91sam7sek/VERSION/misc relative to the root of your eCos
installation.

4. Place the peedi.at91sam7sek.cfg file in a location on the PC accessible to the TFTP server. Later you will configure
the PEEDI to load this file via TFTP as its configuration file.

5. Open at91sam7sek.cfg in an editor such as emacs or notepad and insert your own license information in the [LI-
CENSE] section.

6. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring PEEDI's
RedBoot with the network information. Configure it to use the peedi.at91sam7sek.cfg target configuration file on
the TFTP server at the appropriate point of the fconfig process, for example with a path such as: tftp://192.168.7.9/
peedi.at91sam7sek.cfg

7. Reset the PEEDI.

8. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet 192.168.7.225
Trying 192.168.7.225...
Connected to 192.168.7.225.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2007 www.ronetix.at - All rights reserved
Hw:1.2, Fw:2.0.13, SN: PD-0000-XXXX-XXXX
--

2141

Atmel AT91SAM7S-EK Board Support

sam7sek>

Preparing the AT91SAM7S-EK board for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the PEEDI using a 20-pin ARM/Xscale cable from the JTAG interface connector on the board to the
Target port on the PEEDI.

4. Power up the AT91SAM7S-EK board.

5. Connect to the PEEDI's CLI on port 23 as before.

6. Confirm correct connection with the PEEDI with the reset command as follows:

sam7sek> reset
++ info: user reset
sam7sek>
++ info: RESET and TRST asserted
++ info: TRST released
++ info: 1 TAP controller(s) detected
++ info: TAP : IDCODE = 0x3F0F0F0F, ARM7TDMI compliant
++ info: RESET released
++ info: core 0: initialized

sam7sek>

Installation into Flash
Installation of an application into the on-chip flash, or the installation of the GDB stubs, using a JTAG programmer takes
exactly the same form:

1. Locate the binary image of the executable to be installed. For the GDB stubs do this by locating the file gdb_module.bin
within the loaders subdirectory of the base of the eCos installation. For applications use arm-eabi-objcopy -O binary
to convert the ELF output of the linker into binary.

2. Copy the file into a location on the host computer accessible to its TFTP server.

3. Connect to the JTAG device telnet port as before.

4. The flash must be unlocked to ensure that the flash area we want to program is writable.

For the BDI2000, use the unlock command:

SAM7S>unlock 0x100000 0x100 256
Unlocking flash at 0x00100000
Unlocking flash at 0x00100100
Unlocking flash at 0x00100200
...
Unlocking flash at 0x0010fe00
Unlocking flash at 0x0010ff00
Unlocking flash passed
SAM7S>

For the PEEDI, use the flash unlock command:

sam7sek> flash unlock 0x100000 65536
unlocking region #0 at 0x00100000

2142

Atmel AT91SAM7S-EK Board Support

unlocking region #1 at 0x00104000
unlocking region #2 at 0x00108000
unlocking region #3 at 0x0010C000

sam7sek>

This command unlocks 256 pages, i.e. 64KiB on the AT91SAM7S512. The number of pages unlocked should match at
least the size of the executable to be programmed. With the PEEDI you can use an unadorned flash unlock to unlock the
entire flash.

5. Give the erase (BDI2000) or flash erase (PEEDI) command to clear any previous contents.

For the BDI2000:

SAM7S>erase 0x100000 0x100 256
Erasing flash at 0x00100000
Erasing flash at 0x00100100
Erasing flash at 0x00100200
...
Erasing flash at 0x0010fe00
Erasing flash at 0x0010ff00
Erasing flash passed
SAM7S>

As with the unlock command, the size of the area erased must be at least the size of the executable to be programmed.

For the PEEDI, only full flash erase is supported:

sam7sek> flash erase

done.

sam7sek>

6. Now give the prog (BDI2000) or flash program (PEEDI) command to fetch the executable from the TFTP server and
program it to the flash.

For the BDI2000:

SAM7S>prog 0x100000 sam7.bin bin
Programming sam7.bin , please wait
Programming flash passed
SAM7S>

For the PEEDI:

sam7sek> flash program tftp://192.168.7.9/gdb_module.bin bin 0x100000
++ info: Programming directly
++ info: Programming image file: tftp://192.168.7.9/gdb_module.bin
++ info: At absolute addres: 0x00100000
unlocking at 0x00100000 (region #0)
programming at 0x00100000
programming at 0x00101000
programming at 0x00102000
programming at 0x00103000
unlocking at 0x00104000 (region #1)
programming at 0x00104000
programming at 0x00105000
programming at 0x00106000
programming at 0x00107000

++ info: successfully programmed 32.00 KB in 0.93 sec

sam7sek>

The installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then powering
on the board again. A ROM based application should start immediately, and any output will be seen on the serial connection.
If the GDB stub ROM has been installed, then something similar to the following will be seen on the serial port:

+$T050f:cc061000;0d:18082000;#4d

2143

Atmel AT91SAM7S-EK Board Support

Programming GDB Stubs into Flash using SAM-BA
The following gives the steps needed to program the gdb stubs into Flash using SAM-BA. The user should refer to the SAM-
BA documentation for full details of how to run the program.

1. Download the AT91 In-system Programmer software package from the Atmel website. Install it on a suitable PC running
Windows or Linux. The remainder of this section documents the behaviour seen under Windows, although the behaviour
on Linux should not be too different.

2. Copy gdb_module.bin from either the at91sam7sek_256 or at91sam7sek_512 subdirectories, depending on which of
the two boards you are using, to a suitable location on the PC.

3. Connect a null-modem serial cable between the DEBUG serial port of the board and a serial port on a convenient host
(which need not be the PC running SAM-BA). Run a terminal emulator (Hyperterm or minicom) at 38400 baud. Connect
a USB cable between the PC and the AT91SAM7S-EK board.

4. JP5 (TST) jumper needs to be temporarily closed and USB connected into the PC for 10 seconds. This writes the SAM-
BA bootstrap into the boot sectors so the board can then be programmed. USB should then be disconnected and JP5 moved
to the open position. If you do not do this then the option of connecting SAM-BA to the \usb\ARM0 will not be available
when the USB cable is reconnected to the PC.

5. Power up the board by plugging the USB cable from the AT91SAM7S-EK board into the PC and Windows should now
recognize the USB device.

6. Start SAM-BA. Select "\usb\ARM0" for the communication interface, and "at91sam7s256-ek" or "at91sam7s512-ek" for
the board to match the board you are about to program. If the USB option does not appear, check the cable and look in the
Windows Device Manager for the active device. If all is well, click on "Connect".

7. In the SAM-BA main window, select the "FLASH" tab and in the "Send File Name" field, select the gdb_module.bin.
Ensure that the Address field contains "0x100000" and click "Send File". The following output should be seen:

(AT91-ISP v1.12) 1 % send_file {Flash} "gdb_module.bin" 0x100000 0
-I- Send File gdb_module.bin at address 0x100000
 first_sector 0 last_sector 1
-I- Writing: 0x740C bytes at 0x0 (buffer addr : 0x202B68)
-I- 0x740C bytes written by applet
(AT91-ISP v1.12) 1 %

You may get a popup asking if you want to unlock sectors 0, 1 of flash. Select "Y" if prompted.

You may also get a pop-up asking "Do you want to lock involved lock region(s) (0 to 1)?". Select "No" if prompted.

8. Shut down SAM-BA, disconnect and reconnect the USB cable. Press the reset button on the board and something similar
to the following should be output for a AT91SAM7S256-EK board on the DEBUG serial line:

$T050f:cc051000;0d:e8072000;#7f

For a AT91SAM7S512-EK board you should see something similar. For example:

$T050f:c0051000;0d:e0072000;#44

2144

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=388

Atmel AT91SAM7S-EK Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The AT91SAM7S-EK platform HAL package is loaded automatically when eCos is configured for the at91sam7sek target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has GDB stubs programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by the stubs. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from the stubs, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x00100000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

JTAG This is an alternative development startup type. The application is loaded into RAM via a JTAG device and is run
and debugged from there. The application will be self-contained with no dependencies on services provided by other
software. It is expected that hardware setup will have been performed via the JTAG device prior to loading.

GDB Stubs and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubs.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The AT91SAM7S-EK board contains a quantity of on-chip flash memory. The CYGPKG_DEVS_FLASH_AT91 package con-
tains all the code and data definitions necessary to support this part. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Watchdog Driver
The AT91SAM7S-EK board use the AT91SAM7S's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_AR-
M_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Note that on the AT91, the on-chip watchdog peripheral always starts running immediately, and so in configurations that do
not include the watchdog driver, it is always disabled via its write-once register. In configurations which include the watchdog

2145

Atmel AT91SAM7S-EK Board Support

driver obviously the watchdog is not disabled otherwise it could not be subsequently re-enabled, and so the application must
start and periodically reset the watchdog from the very beginning of execution.

USART Serial Driver
The AT91SAM7S-EK board use the AT91SAM7S's internal USART serial support as described in the AT91 processor HAL
documentation. Two serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the HAL
diagnostic driver or "/dev/dbg" in the interrupt-driven driver; and USART 0 which is mapped to virtual vector channel 1
and "/dev/ser0". Only USART 0 supports modem control signals such as those used for hardware flow control.

Compiler Flags
The SAM7 variant HAL defines the default compiler and linker flags for all packages, although it is possible to override these
on a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm7tdmi The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm7tdmi is the correct option for the ARM7TDMI processor in the SAM7S.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2146

Atmel AT91SAM7S-EK Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM7TDMI core of the AT91SAM7S
only supports two such hardware breakpoints, and so they should be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the bdi2000.at91sam7sek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the PLL and flash memory controller.

The bdi2000.at91sam7sek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break
points, and remember to use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the bdiGDB interface.
In the case of the latter, arm-eabi-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the
bdi2000.at91sam7sek.cfg file (which configures the CPU clock among other things), and halts the target. This behav-
iour is repeated with the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot from ROM as normal.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

SAM7S>load 0x00201000 /test.bin bin
Loading /test.bin , please wait
Loading program file passed
SAM7S>go 0x00201000

Consult the BDI2000 documentation for information on other formats.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam7sek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the PLL and flash memory controller.

The peedi.at91sam7sek.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to
software breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The
default can be changed to hardware breakpoints, and remember to use the reboot command on the PEEDI command line
interface, or press the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

2147

Atmel AT91SAM7S-EK Board Support

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.at91sam7sek.cfg file (which configures the CPU clock among other things), and halts the target. This behaviour is
repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the CORE0_STARTUP_MODE directive in the [TARGET] section of the peedi.at91sam7sek.cfg file.
This conveniently allows the target to be connected to the JTAG debugger, and be able to reset it with the reset button, without
being required to always type 'go' every time.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

sam7sek> memory load tftp://192.168.7.9/test.bin bin 0x201000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x00201000
loading at 0x201000
loading at 0x205000

Successfully loaded 28KB (29064 bytes) in 0.1s
sam7sek> go 0x201000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

Configuration of RAM applications

If the JTAG device has initialized the processor, such as by using the bdi2000.at91sam7sek.cfg configuration on
the BDI2000 or peedi.at91sam7sek.cfg configuration on the PEEDI, applications can be loaded directly into RAM
without requiring a ROM monitor. This loading can be done directly through the JTAG device, or where supported by the
JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be disabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG
startup type in the configuration tool sets these options automatically.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial debug port. USART 0 can be
chosen instead by setting the CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform
HAL to channel 1.

2148

Atmel AT91SAM7S-EK Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM7S-EK hardware, and
should be read in conjunction with that specification. The AT91SAM7S-EK platform HAL package complements the ARM
architectural HAL, the AT91 variant HAL and the AT91SAM7 processor HAL. It provides functionality which is specific to
the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor or JTAG device for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the PLL and programming the various internal
registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The AT91SAM7 processor HAL package provides the memory layout information needed to generate the linker script. The
key memory locations are as follows:

On-chip Flash This is located at address 0x00100000 of the physical memory space.

On-chip RAM This is located at address 0x00200000 of the physical memory space. During booting this
memory is only available at this address, but during the boot process it is also remapped
to location 0x00000000 in order to allow the hardware exception vectors to be in RAM.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM startup, all remaining RAM is available. For RAM startup, available RAM starts
at location 0x00201000, with the bottom 4KiB reserved for use by the GDB stubs.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 239.1. at91sam7sek Real-time characterization

 Startup, main stack : stack used 416 size 3920
 Startup : Interrupt stack used 148 size 4096
 Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 33.54 microseconds (100 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 2
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128

2149

Atmel AT91SAM7S-EK Board Support

 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 22.00 21.67 22.33 0.33 100% 50% Create thread
 4.50 4.33 4.67 0.17 100% 50% Yield thread [all suspended]
 4.67 4.67 4.67 0.00 100% 100% Suspend [suspended] thread
 5.00 5.00 5.00 0.00 100% 100% Resume thread
 7.33 7.33 7.33 0.00 100% 100% Set priority
 0.67 0.67 0.67 0.00 100% 100% Get priority
 16.67 16.67 16.67 0.00 100% 100% Kill [suspended] thread
 4.67 4.67 4.67 0.00 100% 100% Yield [no other] thread
 8.67 8.33 9.00 0.33 100% 50% Resume [suspended low prio] thread
 5.00 5.00 5.00 0.00 100% 100% Resume [runnable low prio] thread
 6.50 6.33 6.67 0.17 100% 50% Suspend [runnable] thread
 4.50 4.33 4.67 0.17 100% 50% Yield [only low prio] thread
 4.33 4.33 4.33 0.00 100% 100% Suspend [runnable->not runnable]
 16.33 16.33 16.33 0.00 100% 100% Kill [runnable] thread
 11.67 11.67 11.67 0.00 100% 100% Destroy [dead] thread
 23.67 23.67 23.67 0.00 100% 100% Destroy [runnable] thread
 33.50 31.33 35.67 2.17 100% 50% Resume [high priority] thread
 12.62 12.33 17.33 0.14 74% 25% Thread switch

 0.44 0.33 0.67 0.14 68% 68% Scheduler lock
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [0 threads]
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [1 suspended]
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [many suspended]
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [many low prio]

 1.00 1.00 1.00 0.00 100% 100% Init mutex
 4.96 4.67 5.00 0.07 87% 12% Lock [unlocked] mutex
 5.84 5.67 6.00 0.17 53% 46% Unlock [locked] mutex
 4.83 4.67 5.00 0.17 100% 50% Trylock [unlocked] mutex
 4.13 4.00 4.33 0.16 62% 62% Trylock [locked] mutex
 0.50 0.33 0.67 0.17 100% 50% Destroy mutex
 32.27 32.00 32.33 0.10 81% 18% Unlock/Lock mutex

 1.46 1.33 1.67 0.16 62% 62% Create mbox
 0.33 0.33 0.33 0.00 100% 100% Peek [empty] mbox
 5.46 5.33 5.67 0.16 62% 62% Put [first] mbox
 0.29 0.00 0.33 0.07 87% 12% Peek [1 msg] mbox
 5.46 5.33 5.67 0.16 62% 62% Put [second] mbox
 0.29 0.00 0.33 0.07 87% 12% Peek [2 msgs] mbox
 5.58 5.33 5.67 0.13 75% 25% Get [first] mbox
 5.58 5.33 5.67 0.13 75% 25% Get [second] mbox
 4.63 4.33 4.67 0.07 87% 12% Tryput [first] mbox
 4.33 4.33 4.33 0.00 100% 100% Peek item [non-empty] mbox
 5.08 5.00 5.33 0.13 75% 75% Tryget [non-empty] mbox
 4.25 4.00 4.33 0.13 75% 25% Peek item [empty] mbox
 4.42 4.33 4.67 0.13 75% 75% Tryget [empty] mbox
 0.42 0.33 0.67 0.13 75% 75% Waiting to get mbox
 0.42 0.33 0.67 0.13 75% 75% Waiting to put mbox
 1.50 1.33 1.67 0.17 100% 50% Delete mbox
 22.02 22.00 22.33 0.04 93% 93% Put/Get mbox

 0.92 0.67 1.00 0.13 75% 25% Init semaphore
 4.00 4.00 4.00 0.00 100% 100% Post [0] semaphore
 4.54 4.33 4.67 0.16 62% 37% Wait [1] semaphore
 4.00 4.00 4.00 0.00 100% 100% Trywait [0] semaphore
 4.00 4.00 4.00 0.00 100% 100% Trywait [1] semaphore
 1.00 1.00 1.00 0.00 100% 100% Peek semaphore
 0.50 0.33 0.67 0.17 100% 50% Destroy semaphore
 19.92 19.67 20.00 0.13 75% 25% Post/Wait semaphore

 1.54 1.33 1.67 0.16 62% 37% Create counter
 0.46 0.33 0.67 0.16 62% 62% Get counter value
 0.46 0.33 0.67 0.16 62% 62% Set counter value
 4.92 4.67 5.00 0.13 75% 25% Tick counter

2150

Atmel AT91SAM7S-EK Board Support

 0.50 0.33 0.67 0.17 100% 50% Delete counter

 0.88 0.67 1.00 0.16 62% 37% Init flag
 4.38 4.33 4.67 0.07 87% 87% Destroy flag
 4.00 4.00 4.00 0.00 100% 100% Mask bits in flag
 4.33 4.33 4.33 0.00 100% 100% Set bits in flag [no waiters]
 6.92 6.67 7.00 0.13 75% 25% Wait for flag [AND]
 6.79 6.67 7.00 0.16 62% 62% Wait for flag [OR]
 6.92 6.67 7.00 0.13 75% 25% Wait for flag [AND/CLR]
 6.83 6.67 7.00 0.17 100% 50% Wait for flag [OR/CLR]
 0.33 0.33 0.33 0.00 100% 100% Peek on flag

 2.67 2.67 2.67 0.00 100% 100% Create alarm
 8.63 8.33 8.67 0.07 87% 12% Initialize alarm
 3.92 3.67 4.00 0.13 75% 25% Disable alarm
 7.92 7.67 8.00 0.13 75% 25% Enable alarm
 4.67 4.67 4.67 0.00 100% 100% Delete alarm
 5.88 5.67 6.00 0.16 62% 37% Tick counter [1 alarm]
 40.75 40.67 41.00 0.13 75% 75% Tick counter [many alarms]
 11.54 11.33 11.67 0.16 62% 37% Tick & fire counter [1 alarm]
 232.75 232.67 233.00 0.13 75% 75% Tick & fire counters [>1 together]
 46.75 46.67 47.00 0.13 75% 75% Tick & fire counters [>1 separately]
 32.33 32.33 32.33 0.00 100% 100% Alarm latency [0 threads]
 35.22 33.33 39.67 1.90 78% 78% Alarm latency [2 threads]
 35.22 32.33 39.67 1.90 77% 52% Alarm latency [many threads]
 54.37 54.33 59.00 0.07 99% 99% Alarm -> thread resume latency

 6.65 6.33 7.00 0.00 Clock/interrupt latency

 12.95 11.33 19.67 0.00 Clock DSR latency

 292 292 292 (main stack: 772) Thread stack used (1360 total)
 All done, main stack : stack used 772 size 3920
 All done : Interrupt stack used 208 size 4096
 All done : Idlethread stack used 248 size 2048

Timing complete - 30250 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM7S-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
AT91SAM7 processor HAL, AT91 variant HAL, and the ARM architectural HAL documentation should be consulted for
further details.

2151

Chapter 240. Atmel AT91SAM7X-EK Board
Support

2152

Atmel AT91SAM7X-EK Board Support

Name
eCos Support for the Atmel AT91SAM7X-EK — Overview

Description
This document covers the configuration and usage of eCos and GDB Stubs on the Atmel AT91SAM7X-EK Evaluation Kit.
The AT91SAM7X-EK Evaluation Kit contains the AT91SAM7X256 processor, external connections for two serial channels
(one debug, one full), ethernet, USB host/device. eCos support for the devices and peripherals on the AT91SAM7X256 is
described below.

Application development on this board can take one of several approaches. Applications may be loaded into RAM via a JTAG
device; however, the application size is limited by the amount of on-chip RAM, which is 64KiB on the AT91SAM7X256,
32KiB on the AT91SAM7X128 and 128KiB on the AT91SAM7X512. Applications may also be loaded into the on-chip flash
memory where the RAM limit will only apply to the data portion of the application. Finally, it is possible to program a GDB
debugging stub into flash which will then allow applications to be loaded into RAM via the serial port. This allows development
to proceed without needing to use a JTAG device and application size is limited to the RAM size less 4KiB used by the stub.
It is therefore recommended that JTAG debugging be used to debug applications since memory is limited on this platform.

This documentation is expected to be read in conjunction with the AT91 processor HAL and AT91SAM7 variant HAL docu-
mentation and further device support and subsystems are described and documented there.

Supported Hardware
The on-chip NOR flash is organized into pages of 256 bytes each. The number of pages is determined by the device variant,
from 512 for the AT91SAM7X128 to 2048 for the AT91SAM7X512.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J3 and DTE port at J2 (connected to USART channel 0) can be used for communication. If the GDB
stub ROM is installed, it uses the Debug Unit serial device only. The serial driver package is loaded automatically when
configuring for the AT91SAM7X-EK target.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the AT91SAM7X-EK target.

The AT91SAM7 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91SAM7X. This
type of bus is also known as I²C®.

There is a network driver for the on-chip Ethernet and DM9161A PHY. This is only recommended for use with the lwIP TCP/
IP stack due to the low RAM requirements.

The AT91SAM7X-EK on-board dataflash device is accessible at virtual address 0x10000000 and a dataflash card connected
at J30 is accessible at virtual address 0x20000000.

In general, devices (PIO, UARTs, etc.) are initialized only as far as is necessary for eCos to run. Other devices (RTC, I²C,
SPI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will set up
the appropriate PIO configuration.

Tools
The AT91SAM7X-EK support is intended to work with GNU tools configured for an arm-eabi target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2153

Atmel AT91SAM7X-EK Board Support

Name
Setup — Preparing the AT91SAM7X-EK board for eCos Development

Overview
eCos applications are either programmed into the on-chip flash, or run from RAM using either a JTAG device or the GDB
stubs ROM. The installation of the GDB stubs or any flash-resident application requires use of a JTAG device to write to the
flash, or the Atmel-supplied SAM-BA program that interacts with the on-chip boot program. So, in all cases it is necessary
to set up a JTAG device for the board. This document describes how to set up either an Abatron BDI3000 or Ronetix PEEDI
and then use them to program an application into the flash.

Initial Installation with Abatron BDI3000

Preparing the Abatron BDI3000 JTAG debugger

The BDI3000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI3000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI3000.

3. Install the Abatron BDI3000 bdiGDB support software on the host PC.

4. Locate the file bdi3000.at91sam7xek.cfg within the eCos platform HAL package in the source repository. This will
be in the directory packages/hal/arm/at91/at91sam7xek/VERSION/misc relative to the root of your eCos
installation.

5. Locate the file regSAM7S.def within the installation of the BDI3000 bdiGDB support software.

6. Place the bdi3000.at91sam7xek.cfg file in a location on the PC accessible to the TFTP server. Later you will
configure the BDI3000 to load this file via TFTP as its configuration file.

7. Similarly place the file regSAM7S.def in a location accessible to the TFTP server.

8. Open bdi3000.at91sam7xek.cfg in an editor such as emacs or notepad and if necessary adjust the path of the
regSAM7S.def file in the [REGS] section to match its location relative to the TFTP server root.

9. Install and configure the Abatron BDI3000 in line with the bdiGDB instruction manual. Configure the BDI3000 to use the
bdi3000.at91sam7xek.cfg configuration file at the appropriate point of this process.

Preparing the AT91SAM7X-EK board for programming with BDI3000

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the BDI3000 using a 20-pin ARM/Xscale cable from the JTAG interface connector to the Target A
port on the BDI3000.

4. Power up the AT91SAM7X-EK board.

2154

http://www.abatron.ch
http://www.ronetix.at/peedi.html

Atmel AT91SAM7X-EK Board Support

5. Connect to the BDI3000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

SAM7X>

6. Confirm correct connection with the BDI3000 with the reset halt command as follows:

SAM7X> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x3F0F0F0F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
SAM7X>

Initial Installation with Ronetix PEEDI

Preparing the Ronetix PEEDI JTAG debugger

The PEEDI must first be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. The following steps give a typical outline of setting up the PEEDI using TFTP. Consult the
PEEDI documentation for alternative mechanisms.

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the PEEDI JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial cable supplied
with the PEEDI (straight through, not null modem).

3. Locate the file peedi.at91sam7xek.cfg within the eCos platform HAL package in the source repository. This will
be in the directory packages/hal/arm/at91/at91sam7xek/VERSION/misc relative to the root of your eCos
installation.

4. Place the peedi.at91sam7xek.cfg file in a location on the PC accessible to the TFTP server. Later you will configure
the PEEDI to load this file via TFTP as its configuration file.

5. Open at91sam7xek.cfg in an editor such as emacs or notepad and insert your own license information in the [LI-
CENSE] section.

6. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring PEEDI's
RedBoot with the network information. Configure it to use the peedi.at91sam7xek.cfg target configuration file on
the TFTP server at the appropriate point of the fconfig process, for example with a path such as: tftp://192.168.7.9/
peedi.at91sam7xek.cfg

7. Reset the PEEDI.

8. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet 192.168.7.225
Trying 192.168.7.225...
Connected to 192.168.7.225.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2007 www.ronetix.at - All rights reserved
Hw:1.2, Fw:2.0.13, SN: PD-0000-XXXX-XXXX
--

2155

Atmel AT91SAM7X-EK Board Support

sam7xek>

Preparing the AT91SAM7X-EK board for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the PEEDI using a 20-pin ARM/Xscale cable from the JTAG interface connector on the board to the
Target port on the PEEDI.

4. Power up the AT91SAM7X-EK board.

5. Connect to the PEEDI's CLI on port 23 as before.

6. Confirm correct connection with the PEEDI with the reset command as follows:

sam7xek> reset
++ info: user reset
sam7xek>
++ info: RESET and TRST asserted
++ info: TRST released
++ info: 1 TAP controller(s) detected
++ info: TAP : IDCODE = 0x3F0F0F0F, ARM7TDMI compliant
++ info: RESET released
++ info: core 0: initialized

sam7xek>

Installation into Flash
Installation of an application into the on-chip flash, or the installation of the GDB stubs, using a JTAG programmer takes
exactly the same form:

1. Locate the binary image of the executable to be installed. For the GDB stubs do this by locating the file gdb.module.bin
within the loaders subdirectory of the base of the eCos installation. For applications use arm-eabi-objcopy -O binary
to convert the ELF output of the linker into binary.

2. Copy the file into a location on the host computer accessible to its TFTP server.

3. Connect to the JTAG device telnet port as before.

4. The flash must be unlocked to ensure that the flash area we want to program is writable.

For the BDI3000, use the unlock command:

SAM7X>unlock 0x100000 0x100 256
Unlocking flash at 0x00100000
Unlocking flash at 0x00100100
Unlocking flash at 0x00100200
...
Unlocking flash at 0x0010fe00
Unlocking flash at 0x0010ff00
Unlocking flash passed
SAM7X>

For the PEEDI, use the flash unlock command:

sam7xek> flash unlock 0x100000 65536

2156

Atmel AT91SAM7X-EK Board Support

unlocking region #0 at 0x00100000
unlocking region #1 at 0x00104000
unlocking region #2 at 0x00108000
unlocking region #3 at 0x0010C000

sam7xek>

This command unlocks 256 pages, i.e. 64KiB. The number of pages unlocked should match at least the size of the executable
to be programmed. With the PEEDI you can use an unadorned flash unlock to unlock the entire flash.

5. Give the erase (BDI3000) or flash erase (PEEDI) command to clear any previous contents.

For the BDI3000:

SAM7X>erase 0x100000 0x100 256
Erasing flash at 0x00100000
Erasing flash at 0x00100100
Erasing flash at 0x00100200
...
Erasing flash at 0x0010fe00
Erasing flash at 0x0010ff00
Erasing flash passed
SAM7X>

As with the unlock command, the size of the area erased must be at least the size of the executable to be programmed.

For the PEEDI, only full flash erase is supported:

sam7xek> flash erase

done.

sam7xek>

6. Now give the prog (BDI3000) or flash program (PEEDI) command to fetch the executable from the TFTP server and
program it to the flash.

For the BDI3000:

SAM7X>prog 0x100000 sam7.bin bin
Programming sam7.bin , please wait
Programming flash passed
SAM7X>

For the PEEDI:

sam7xek> flash program tftp://192.168.7.9/gdb_module.bin bin 0x100000
++ info: Programming directly
++ info: Programming image file: tftp://192.168.7.9/gdb_module.bin
++ info: At absolute addres: 0x00100000
unlocking at 0x00100000 (region #0)
programming at 0x00100000
programming at 0x00101000
programming at 0x00102000
programming at 0x00103000
unlocking at 0x00104000 (region #1)
programming at 0x00104000
programming at 0x00105000
programming at 0x00106000
programming at 0x00107000

++ info: successfully programmed 32.00 KB in 0.93 sec

sam7xek>

7. Finally, the processor must be switched to boot from the flash rather than the internal ROM. This is done by programming a
General Purpose NVM bit in the flash memory. This can be done using memory write commands in the JTAG device telnet
interface. On the BDI3000 this is done using the following commands:

SAM7X>md 0xffffff60 3

2157

Atmel AT91SAM7X-EK Board Support

ffffff60 : 0x00480100 4718848 ..0.
ffffff64 : 0x00000000 0
ffffff68 : 0x00000001 1
SAM7X>mm 0xffffff64 0x5a00020b
SAM7X>md 0xffffff60 3
ffffff60 : 0x00480100 4718848 ..0.
ffffff64 : 0x00000000 0
ffffff68 : 0x00000401 1025
SAM7X>

And on the PEEDI:

sam7xek> mem read 0xffffff60 3

0xFFFFFF60: 0x00480100 0x00000000 0x00000001
sam7xek> mem write 0xffffff64 0x5a00020b
sam7xek> mem read 0xffffff60 3

0xFFFFFF60: 0x00480100 0x00000000 0x00000401
sam7xek>

The installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then powering
on the board again. A ROM based application should start immediately, and any output will be seen on the serial connection.
If the GDB stub ROM has been installed, then something similar to the following will be seen on the serial port:

+$T050f:cc061000;0d:18082000;#4d

Programming GDB Stubs into Flash using SAM-BA
The following gives the steps needed to program the gdb stubs into Flash using SAM-BA. The user should refer to the SAM-
BA documentation for full details of how to run the program.

1. Download the AT91 In-system Programmer software package from the Atmel website. Install it on a suitable PC running
Windows or Linux. The remainder of this section documents the behaviour seen under Windows, although the behaviour
on Linux should not be too different.

2. Copy gdb_module.bin from either the at91sam7xek_256 or at91sam7xek_512 subdirectories, depending on which of
the two boards you are using, to a suitable location on the PC.

3. Connect a null-modem serial cable between the DEBUG serial port of the board and a serial port on a convenient host
(which need not be the PC running SAM-BA). Run a terminal emulator (Hyperterm or minicom) at 38400 baud. Connect
a USB cable between the PC and the AT91SAM7X-EK board.

4. Power up the board by plugging the USB cable from the AT91SAM7X-EK board into the PC and Windows should recognize
the USB device. If it does not, then you will need to erase the existing program that has already been programmed into flash.
To do this, disconnect the USB cable from the PC, effectively powering down the device, connect jumper J8 (ERASE) on
the AT91SAM7X-EK board and reconnect the USB cable. This step should have erased the flash. Finally disconnect the
USB cable followed by J8, reconnect the USB cable and the board should be recognized now. Windows may ask you to
install a new driver, in which case follow the instructions.

5. Start SAM-BA. Select "\usb\ARM0" for the communication interface, and "at91sam7x256-ek" or "at91sam7x512-ek" for
the board to match the board you are about to program. If the USB option does not appear, check the cable and look in the
Windows Device Manager for the active device. If all is well, click on "Connect".

6. In the SAM-BA main window, select the "FLASH" tab and in the "Send File Name" field, select the gdb_module.bin.
Ensure that the Address field contains "0x100000" and click "Send File". The following output should be seen:

(AT91-ISP v1.13) 1 % send_file {Flash} "gdb_module.bin" 0x100000 0
-I- Send File gdb_module.bin at address 0x100000
 first_sector 0 last_sector 1
-I- Writing: 0x7400 bytes at 0x0 (buffer addr : 0x202BC8)
-I- 0x7400 bytes written by applet
(AT91-ISP v1.13) 1 %

You may get a pop-up asking "Do you want to lock involved lock region(s) (0 to 1)?". Select "No" if prompted.

2158

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=388

Atmel AT91SAM7X-EK Board Support

7. In the Scripts section, select the script "Boot from Flash (GPNVM2)" and press "Execute". The following output should
be seen:

(AT91-ISP v1.13) 1 % FLASH::ScriptGPNMV 4
-I- GPNVM2 set
(AT91-ISP v1.13) 1 %

8. Shut down SAM-BA, disconnect and reconnect the USB cable. Press the reset button on the board and something similar
to the following should be output for a AT91SAM7X256-EK board on the DEBUG serial line:

$T050f:cc051000;0d:e8072000;#7f

For a AT91SAM7X512-EK board you should see something similar. For example:

$T050f:d0051000;0d:e8072000;#4d

2159

Atmel AT91SAM7X-EK Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The AT91SAM7X-EK platform HAL package is loaded automatically when eCos is configured for the at91sam7xek target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has GDB stubs programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by the stubs. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from the stubs, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x00100000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

JTAG This is an alternative development startup type. The application is loaded into RAM via a JTAG device and is run
and debugged from there. The application will be self-contained with no dependencies on services provided by other
software. It is expected that hardware setup will have been performed via the JTAG device prior to loading.

GDB Stubs and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubs.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The AT91SAM7X-EK board contains a quantity of on-chip flash memory. The CYGPKG_DEVS_FLASH_AT91 package
contains all the code and data definitions necessary to support this part. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Watchdog Driver
The AT91SAM7X-EK board uses the AT91SAM7X's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_AR-
M_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Note that on the AT91, the on-chip watchdog peripheral always starts running immediately, and so in configurations that do
not include the watchdog driver, it is always disabled via its write-once register. In configurations which include the watchdog

2160

Atmel AT91SAM7X-EK Board Support

driver obviously the watchdog is not disabled otherwise it could not be subsequently re-enabled, and so the application must
start and periodically reset the watchdog from the very beginning of execution.

USART Serial Driver
The AT91SAM7X-EK board use the AT91SAM7X's internal USART serial support as described in the AT91 processor HAL
documentation. Two serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the HAL
diagnostic driver or "/dev/dbg" in the interrupt-driven driver; and USART 0 which is mapped to virtual vector channel 1
and "/dev/ser0". Only USART 0 supports modem control signals such as those used for hardware flow control.

Ethernet Driver
The AT91SAM7X-EK board can use the AT91SAM7X's internal ethernet MAC (EMAC) support. The package CYGPKG_DE-
VS_ETH_ARM_AT91 contains the necessary device driver support.

Due to the amount of RAM available, it is not possible to use the BSD-derived TCP/IP stack. Instead either the lwIP TCP/IP
stack (in CYGPKG_NET_LWIP) should be used, or your application can operate the driver directly in standalone mode. To en-
able the Ethernet driver in your configuration, either include the “Common Ethernet Support” (CYGPKG_IO_ETH_DRIVERS)
package in your configuration, or base your configuration on an appropriate template, in particular the “lwip_eth” template.

Support for the Davicom DM9161A PHY (which comes from the CYGPKG_DEVS_ETH_PHY package) is automatically con-
figured when ethernet support is enabled.

The AT91 ethernet device driver package in fact includes two separate driver implementations: one standard driver suitable for
use in standalone mode, or with various TCP/IP stacks including at least RedBoot, BSD and lwIP; and one specific to lwIP. It
is strongly recommended that the lwIP-specific driver is used with lwIP, given the low memory constraints. The lwIP-specific
driver is a streamlined efficient version designed for very low RAM overhead. As a result it is implemented intentionally at the
expense of features irrelevant to the AT91SAM7X, such as multiple network device support, and network debugging under
RedBoot. Instead it has improvements such as zero-copy reception and transmission of data packets, leading to both faster
operation, and smaller code and data memory footprint.

The choice between using the standard driver, or the lwIP-specific driver is not made within this package, but is instead made
in the generic ethernet I/O package CYGPKG_IO_ETH_DRIVERS using the options within the lwIP driver model component
(CYGIMP_IO_ETH_DRIVERS_LWIP_DRIVER_MODEL). The standard driver is the default, and thus needs to be explicitly
changed to select the lwIP-specific driver model.

Careful selection and tuning of the configuration settings within the AT91 Ethernet package, and more especially, the lwIP
stack, can result in realistic application use of TCP/IP at high speeds, despite the low RAM availability.

Note that a board design issue has required a workaround to be used in order to correctly initialize the PHY. This has two
notable consequences: there is an extra delay of 700ms at startup time; and the programmatic use of the NRST line from the
processor can confuse attached JTAG units into believing the processor has reset, which can in turn adversely affect debugging
sessions. In the case of the Abatron BDI3000, it has been found that ensuring the last reset command was a "reset run", and
then connecting via GDB immediately after target reset results in a stable debug session, albeit at the expense of the processor
already having run some of the early HAL startup sequence.

Compiler Flags
The SAM7 variant HAL defines the default compiler and linker flags for all packages, although it is possible to override these
on a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm7tdmi The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm7tdmi is the correct option for the ARM7TDMI processor in the SAM7X.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

2161

Atmel AT91SAM7X-EK Board Support

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2162

Atmel AT91SAM7X-EK Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM7TDMI core of the AT91SAM7X
only supports two such hardware breakpoints, and so they should be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI3000 notes

On the Abatron BDI3000, the bdi3000.at91sam7xek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the PLL and flash memory controller.

The bdi3000.at91sam7xek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break
points, and remember to use the boot command on the BDI3000 command line interface to make the changes take effect.

On the BDI3000, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the bdiGDB interface.
In the case of the latter, arm-eabi-gdb needs to connect to TCP port 2001 on the BDI3000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI3000 is powered up, the target will always run the initialization section of the
bdi3000.at91sam7xek.cfg file (which configures the CPU clock among other things), and halts the target. This behav-
iour is repeated with the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot from ROM as normal.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

SAM7X>load 0x00201000 /test.bin bin
Loading /test.bin , please wait
Loading program file passed
SAM7X>go 0x00201000

Consult the BDI3000 documentation for information on other formats.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam7xek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the PLL and flash memory controller.

The peedi.at91sam7xek.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to
software breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The
default can be changed to hardware breakpoints, and remember to use the reboot command on the PEEDI command line
interface, or press the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

2163

Atmel AT91SAM7X-EK Board Support

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.at91sam7x-
ek.cfg file (which configures the CPU clock among other things), and halts the target. This behaviour is repeated with the
reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the CORE0_STARTUP_MODE directive in the [TARGET] section of the peedi.at91sam7xek.cfg file.
This conveniently allows the target to be connected to the JTAG debugger, and be able to reset it with the reset button, without
being required to always type 'go' every time.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

sam7xek> memory load tftp://192.168.7.9/test.bin bin 0x201000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x00201000
loading at 0x201000
loading at 0x205000

Successfully loaded 28KB (29064 bytes) in 0.1s
sam7xek> go 0x201000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

Configuration of RAM applications

If the JTAG device has initialized the processor, such as by using the bdi3000.at91sam7xek.cfg configuration on
the BDI3000 or peedi.at91sam7xek.cfg configuration on the PEEDI, applications can be loaded directly into RAM
without requiring a ROM monitor. This loading can be done directly through the JTAG device, or where supported by the
JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be disabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG
startup type in the configuration tool sets these options automatically.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial debug port. USART 0 can be
chosen instead by setting the CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform
HAL to channel 1.

2164

Atmel AT91SAM7X-EK Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM7X-EK hardware, and
should be read in conjunction with that specification. The AT91SAM7X-EK platform HAL package complements the ARM
architectural HAL, the AT91 variant HAL and the AT91SAM7 processor HAL. It provides functionality which is specific to
the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor or JTAG device for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the PLL and programming the various internal
registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The AT91SAM7 processor HAL package provides the memory layout information needed to generate the linker script. The
key memory locations are as follows:

On-chip Flash This is located at address 0x00100000 of the physical memory space.

On-chip RAM This is located at address 0x00200000 of the physical memory space. During booting this
memory is only available at this address, but during the boot process it is also remapped
to location 0x00000000 in order to allow the hardware exception vectors to be in RAM.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM startup, all remaining RAM is available. For RAM startup, available RAM starts
at location 0x00201000, with the bottom 4KiB reserved for use by the GDB stubs.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 240.1. at91sam7xek Real-time characterization

 Startup, main stack : stack used 416 size 3920
 Startup : Interrupt stack used 148 size 4096
 Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 3 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 33.54 microseconds (100 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 2
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128

2165

Atmel AT91SAM7X-EK Board Support

 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 22.00 21.67 22.33 0.33 100% 50% Create thread
 4.50 4.33 4.67 0.17 100% 50% Yield thread [all suspended]
 4.67 4.67 4.67 0.00 100% 100% Suspend [suspended] thread
 5.00 5.00 5.00 0.00 100% 100% Resume thread
 7.33 7.33 7.33 0.00 100% 100% Set priority
 0.67 0.67 0.67 0.00 100% 100% Get priority
 16.67 16.67 16.67 0.00 100% 100% Kill [suspended] thread
 4.67 4.67 4.67 0.00 100% 100% Yield [no other] thread
 8.67 8.33 9.00 0.33 100% 50% Resume [suspended low prio] thread
 5.00 5.00 5.00 0.00 100% 100% Resume [runnable low prio] thread
 6.50 6.33 6.67 0.17 100% 50% Suspend [runnable] thread
 4.50 4.33 4.67 0.17 100% 50% Yield [only low prio] thread
 4.33 4.33 4.33 0.00 100% 100% Suspend [runnable->not runnable]
 16.33 16.33 16.33 0.00 100% 100% Kill [runnable] thread
 11.67 11.67 11.67 0.00 100% 100% Destroy [dead] thread
 23.67 23.67 23.67 0.00 100% 100% Destroy [runnable] thread
 33.50 31.33 35.67 2.17 100% 50% Resume [high priority] thread
 12.62 12.33 17.33 0.14 74% 25% Thread switch

 0.44 0.33 0.67 0.14 68% 68% Scheduler lock
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [0 threads]
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [1 suspended]
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [many suspended]
 3.35 3.33 3.67 0.04 93% 93% Scheduler unlock [many low prio]

 1.00 1.00 1.00 0.00 100% 100% Init mutex
 4.96 4.67 5.00 0.07 87% 12% Lock [unlocked] mutex
 5.84 5.67 6.00 0.17 53% 46% Unlock [locked] mutex
 4.83 4.67 5.00 0.17 100% 50% Trylock [unlocked] mutex
 4.13 4.00 4.33 0.16 62% 62% Trylock [locked] mutex
 0.50 0.33 0.67 0.17 100% 50% Destroy mutex
 32.27 32.00 32.33 0.10 81% 18% Unlock/Lock mutex

 1.46 1.33 1.67 0.16 62% 62% Create mbox
 0.33 0.33 0.33 0.00 100% 100% Peek [empty] mbox
 5.46 5.33 5.67 0.16 62% 62% Put [first] mbox
 0.29 0.00 0.33 0.07 87% 12% Peek [1 msg] mbox
 5.46 5.33 5.67 0.16 62% 62% Put [second] mbox
 0.29 0.00 0.33 0.07 87% 12% Peek [2 msgs] mbox
 5.58 5.33 5.67 0.13 75% 25% Get [first] mbox
 5.58 5.33 5.67 0.13 75% 25% Get [second] mbox
 4.63 4.33 4.67 0.07 87% 12% Tryput [first] mbox
 4.33 4.33 4.33 0.00 100% 100% Peek item [non-empty] mbox
 5.08 5.00 5.33 0.13 75% 75% Tryget [non-empty] mbox
 4.25 4.00 4.33 0.13 75% 25% Peek item [empty] mbox
 4.42 4.33 4.67 0.13 75% 75% Tryget [empty] mbox
 0.42 0.33 0.67 0.13 75% 75% Waiting to get mbox
 0.42 0.33 0.67 0.13 75% 75% Waiting to put mbox
 1.50 1.33 1.67 0.17 100% 50% Delete mbox
 22.02 22.00 22.33 0.04 93% 93% Put/Get mbox

 0.92 0.67 1.00 0.13 75% 25% Init semaphore
 4.00 4.00 4.00 0.00 100% 100% Post [0] semaphore
 4.54 4.33 4.67 0.16 62% 37% Wait [1] semaphore
 4.00 4.00 4.00 0.00 100% 100% Trywait [0] semaphore
 4.00 4.00 4.00 0.00 100% 100% Trywait [1] semaphore
 1.00 1.00 1.00 0.00 100% 100% Peek semaphore
 0.50 0.33 0.67 0.17 100% 50% Destroy semaphore
 19.92 19.67 20.00 0.13 75% 25% Post/Wait semaphore

 1.54 1.33 1.67 0.16 62% 37% Create counter
 0.46 0.33 0.67 0.16 62% 62% Get counter value
 0.46 0.33 0.67 0.16 62% 62% Set counter value
 4.92 4.67 5.00 0.13 75% 25% Tick counter

2166

Atmel AT91SAM7X-EK Board Support

 0.50 0.33 0.67 0.17 100% 50% Delete counter

 0.88 0.67 1.00 0.16 62% 37% Init flag
 4.38 4.33 4.67 0.07 87% 87% Destroy flag
 4.00 4.00 4.00 0.00 100% 100% Mask bits in flag
 4.33 4.33 4.33 0.00 100% 100% Set bits in flag [no waiters]
 6.92 6.67 7.00 0.13 75% 25% Wait for flag [AND]
 6.79 6.67 7.00 0.16 62% 62% Wait for flag [OR]
 6.92 6.67 7.00 0.13 75% 25% Wait for flag [AND/CLR]
 6.83 6.67 7.00 0.17 100% 50% Wait for flag [OR/CLR]
 0.33 0.33 0.33 0.00 100% 100% Peek on flag

 2.67 2.67 2.67 0.00 100% 100% Create alarm
 8.63 8.33 8.67 0.07 87% 12% Initialize alarm
 3.92 3.67 4.00 0.13 75% 25% Disable alarm
 7.92 7.67 8.00 0.13 75% 25% Enable alarm
 4.67 4.67 4.67 0.00 100% 100% Delete alarm
 5.88 5.67 6.00 0.16 62% 37% Tick counter [1 alarm]
 40.75 40.67 41.00 0.13 75% 75% Tick counter [many alarms]
 11.54 11.33 11.67 0.16 62% 37% Tick & fire counter [1 alarm]
 232.75 232.67 233.00 0.13 75% 75% Tick & fire counters [>1 together]
 46.75 46.67 47.00 0.13 75% 75% Tick & fire counters [>1 separately]
 32.33 32.33 32.33 0.00 100% 100% Alarm latency [0 threads]
 35.22 33.33 39.67 1.90 78% 78% Alarm latency [2 threads]
 35.22 32.33 39.67 1.90 77% 52% Alarm latency [many threads]
 54.37 54.33 59.00 0.07 99% 99% Alarm -> thread resume latency

 6.65 6.33 7.00 0.00 Clock/interrupt latency

 12.95 11.33 19.67 0.00 Clock DSR latency

 292 292 292 (main stack: 772) Thread stack used (1360 total)
 All done, main stack : stack used 772 size 3920
 All done : Interrupt stack used 208 size 4096
 All done : Idlethread stack used 248 size 2048

Timing complete - 30250 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM7X-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
AT91SAM7 processor HAL, AT91 variant HAL, and the ARM architectural HAL documentation should be consulted for
further details.

2167

Chapter 241. NXP LPC2xxx variant HAL

2168

NXP LPC2xxx variant HAL

Name
eCos Support for the NXP LPC2xxx ARM microcontrollers — Overview

Description
The NXP LPC2xxx series of ARM microcontrollers is supported by eCos with an eCos processor variant HAL and a number
of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-chip serial, watchdog,
RTC (wallclock) and Flash devices. In addition it provides common functionality and definitions that LPC2xxx based platform
ports may require, as well as definitions useful to application developers.

This documentation covers the LPC2xxx functionality provided but should be read in conjunction with the specific HAL
documentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here,
and may also describe differences that override or supersede what the LPC2xxx variant HAL provides. The areas that are
specific to platform HALs and not the LPC2xxx variant HAL include:

• memory map and related configuration and setup

• memory remapping

• External Memory Controller (EMC) and Memory Accelerator Module (MAM) setup (if applicable)

• Definitions of clock (OSC) inputs to PLL

• PLL setup

• PINSEL and GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED control

This variant HAL provides helper macros and defines for some of these, but their use or otherwise is governed by the platform
HAL.

2169

NXP LPC2xxx variant HAL

Name
On-chip subsystems and peripherals — Hardware support

Hardware support

On-chip memory

The NXP LPC2xxx parts include a small amount of on-chip SRAM, and a limited amount of on-chip Flash. Specific capacities
vary between parts. The SRAM is generally too small to be useful to RedBoot and some form of external RAM is employed
if remote debugging is required, although some limited applications can be run if a GDB stub ROM image is programmed to
internal Flash instead. Otherwise for processor models with no external RAM, applications must be programmed directly to
internal Flash. The platform HAL may opt to use the SRAM to store the interrupt vectors mapped to address 0, or as a buffer
for reprogramming internal flash when using the LPC2xxx Flash driver. The on-chip Flash is generally sufficient to include
RedBoot or a GDB stub ROM image, although the on-chip SRAM may not be - again consult the platform HAL documentation.
At this time, there is no support for initial programming of the on-chip Flash and so the NXP LPC2000 Flash Utility, Flash
Magic or a JTAG/ICE is generally used for this.

Typically, an eCos platform HAL port will expect a RedBoot image to be programmed into the LPC2xxx on-chip Flash memory
for development, and the board would boot this image from reset. RedBoot provides gdb stub functionality so it is then possible
to download and debug stand-alone and eCos applications via the gdb debugger using serial interfaces or other debug channels.

Serial I/O

The LPC2xxx variant HAL supports basic polled HAL diagnostic I/O over either of the two on-chip serial devices. There is also
a fully interrupt-driven serial device driver suitable for eCos applications for both on-chip serial devices. The serial driver con-
sists of two eCos packages: CYGPKG_IO_SERIAL_GENERIC_16X5X which is a “generic” package for 16x5x compatible
serial devices; and CYGPKG_IO_SERIAL_ARM_LPC2XXX which provides more specific definitions for the LPC2xxx on-
chip serial devices. Using the HAL diagnostic I/O support, either of these devices can be used by RedBoot for communication
with the host. If you are only using UART 0, a small amount of memory can be saved by reducing the number of communica-
tion channels with the CDL option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS from 2 to 1 if the platform HAL
permits this. It is not possible to enable UART 1 but not UART 0 at this time. If a serial device is needed by the application,
either directly or via the serial driver, then it cannot also be used for RedBoot communication with the HAL I/O support. The
alternative serial port should be used instead, if available on the platform. The serial driver supports the line status and modem
control (including hardware handshaking) lines on UART 1 only.

Watchdog

A device driver is included for the on-chip watchdog device. This driver allows the use of the standard eCos watchdog API
accessible with the CYGPKG_IO_WATCHDOG eCos package. If the watchdog is not reset within a time period defined in the
watchdog device driver CDL, an interrupt is generated and a user-supplied function called. Alternatively it may be configured
to automatically reset the system.

The watchdog device is also used to implement reset functionality, such as required by the RedBoot reset command. It may
also be called directly by applications using the following function:

#include <cyg/hal/hal_diag.h>
extern void hal_lpc2xxx_reset_cpu(void);

RTC/Wallclock

Support is provided for the on-chip RTC (wallclock) device. This allows the use of the standard eCos wallclock API accessible
with the CYGPKG_IO_WALLCLOCK eCos package. The wallclock is also used by other eCos subsystems such as the C library
and POSIX compatibility layer to provide calendar time functionality.

Interrupt controller

eCos manages the on-chip Vectored Interrupt Controller (VIC). The VIC is only configured to use interrupts in non-vectored
mode.

2170

NXP LPC2xxx variant HAL

Timers

Timer 0 is used to implement the eCos system clock. If the gprof package, CYGPKG_PROFILE_GPROF, is included in the
configuration, then timer 1 is reserved for use by the profiler. Any remaining timers are available for application use.

I²C Bus

The on-chip I²C bus devices are supported by the NXPI2C driver package, CYGPKG_DEVS_I2C_NXPI2C. Platform HALs
need to enable the attached buses and define the clock speed and lines to be used for SDA and SCL.

SPI Bus

The on-chip SSP SPI devices (not the Legacy SPI device) are supported by the PL022 driver package, CYGPKG_DE-
VS_SPI_ARM_PL022. This needs some configuration in the platform HAL to enable the attached buses and define the GPIO
lines used for chip select.

Other

Other on-chip devices (SPI, PWM, A/D converter, etc.) are not touched by the LPC2xxx variant HAL and unless used by the
platform HAL are free for use for applications.

2171

NXP LPC2xxx variant HAL

Name
HAL Port — Implementation Details

Overview
This section covers any remaining items of note related to the LPC2xxx variant support, not covered in previous sections.

LEDs
If a platform port has support for display values on LEDs, that support is standardised to be accessible from C with the following
function:

#include <cyg/infra/hal_diag.h>
extern void hal_diag_led(int leds);

PLL configuration
CDL variables related to the PLL configuration are standardised across LPC2xxx implementations. The platform HAL must
provide the input oscillator frequency (CYGNUM_HAL_ARM_LPC2XXX_OSC_FREQ), as well as the desired PLL multi-
pliers and dividers selected by the user and relevant for the chosen part (CYGNUM_HAL_ARM_LPC2XXX_PLL_MULTI-
PLIER and CYGNUM_HAL_ARM_LPC2XXX_PLL_DIVIDER). It must also supply the VPB divider (CYGNUM_HAL_AR-
M_LPC2XXX_VPB_DIVIDER) which divides down the core clock (CCLK) to generate the peripheral clock (PCLK). Where
applicable a platform may also define a CCLK divider (CYGNUM_HAL_ARM_LPC2XXX_CCLK_DIVIDER).

As a result, the variant HAL calculates CDL options for the absolute values of CCLK (CYGNUM_HAL_ARM_LPC2XXX_C-
CLK_SPEED) and PCLK (CYGNUM_HAL_ARM_LPC2XXX_PCLK_SPEED) which are exported to the rest of the system, and
accessible to applications from <pkgconf/hal.h>.

It is still the responsibility of the platform HAL to initialize the PLL, although assembler helper macros are provided in <cyg/
hal/var_io.h to ease implementation.

LPC2xxx definitions
The LPC2xxx variant HAL port includes the header file var_io.h which provides useful register definitions used by eCos,
but can also be freely used by applications. It includes register definitions for subsystems unused by eCos.

It may be found in the include/cyg/hal directory relative to your configuration's install tree, or alternatively in the source
repository at hal/arm/lpc2xxx/var/VERSION/include/var_io.h. However it should be properly included by
applications by using:

#include <cyg/hal/hal_io.h>

This will allow for platform HALs to augment or override any relevant definitions.

Power control
The kernel idle thread is scheduled to run when the system has no other tasks able to run. The idle thread can call a HAL
supplied macro to place the chip into an appropriate power saving mode instead of just going around a busy loop. The LPC2xxx
variant HAL defines the HAL_IDLE_THREAD_ACTION macro to use the LPC2xxx power control support to place the chip
into IDLE mode which will stop the processor clock, without disabling the on-chip peripherals. This state continues until an
interrupt is received. This mode has no deleterious effect on program execution, however it has been known to interfere with
JTAG/ICE hardware debuggers. Therefore the CDL option CYGIMP_HAL_ARM_LPC2XXX_IDLE_THREAD_USES_IDLE
exists in the variant HAL to ensure the processor does not enter the idle mode from the idle thread. It is recommended this
option be disabled if hardware debugging solutions are used, especially if reliability is erratic.

Unless specified otherwise by the platform HAL port, no other power saving features are used and no peripherals are disabled,
even those unsupported by the eCos LPC2xxx variant port. Therefore if the application wishes to conserve power it is its
responsibility to place the relevant peripherals into power down modes.

2172

NXP LPC2xxx variant HAL

Memory Acceleration Module support
The variant HAL supplies helper macros to the platform HALs to centralise initialisation code for common subsystems, in-
cluding the Memory Acceleration Module (MAM).

However it is known that there are errata which affect the MAM, and specifically restrict what mode the MAM should operate
in. In some cases, such as the LPC2148, there are conflicting errata, that recommend that the MAM be used only in Full
mode in some cases to avoid one erratum, or only Partial mode in others to avoid a different erratum.

Therefore the choice of MAM mode is left to the user and can be set with the CDL option CYGHWR_HAL_AR-
M_LPC2XXX_MAM_MODE in the variant HAL.

Virtual Vector support
As described in the common HAL documentation, virtual vectors are used to abstract certain services which could be shared
between a resident ROM monitor, and an application. In the case where an application is entirely stand-alone, and does not use
any resident ROM monitor - for example, if it is itself a ROM application - then virtual vector support is unnecessary.

The CDL configuration option CYGFUN_HAL_LPC2XXX_VIRTUAL_VECTOR_SUPPORT can be used to control the pres-
ence of virtual vectors, although it is expected that the default value will be selected appropriately in any case. Disabling virtual
vector support can save both Flash and RAM use, which can be important for targets with restricted memory.

2173

Chapter 242. Ashling EVBA7 Eval Board
Support

2174

Ashling EVBA7 Eval Board Support

Name
eCos Support for the Ashling EVBA7 Eval Board — Overview

Description
The Ashling EVBA7 Eval Board is fitted with a Philips LPC2000 processor rated to 60MHz, which contains up to 64KB of
SRAM and up to 256KB of FLASH. The board has two 9-pin RS-232 serial interfaces connected to the LPC2000 on-chip
UARTs, an LED bank and JTAG/USB debug interfaces. Refer to the board documentation for full details.

The standard EVBA7 is fitted with an LPC2106 microcontroller. Some versions of the EVBA7 board are fitted with an adaptor
that either contains a specific LPC2000 part, or a socket into which one of several LPC2000 parts may be fitted.

For typical eCos development, a RedBoot or GDB Stubrom image is programmed into the LPC2000 on-chip flash memory,
and the board will boot this image from reset. Both RedBoot and the GDB stub ROM provide GDB stub functionality so it is
then possible to download and debug stand-alone and eCos applications via the gdb debugger using UART 0.

This documentation describes platform-specific elements of the EVBA7 Eval Board support within eCos. Documentation on
the Philips LPC2xxx variants is available separately, and should be read in conjunction with this documentation. The LPC2xxx
documentation covers various topics including HAL support common to LPC2xxx variants, and on-chip device support. This
document complements the LPC2xxx documentation.

Supported Hardware
The EVBA7 Eval Board has up to 128Kbyte of on-chip Flash memory. In a typical setup, RedBoot or the GDB Stubrom will
load and run from this internal flash. No support for managing internal Flash is included in this port - the Ashling FlashLPC
Utility is required to program the internal Flash. 24Kbytes of internal flash memory should be reserved for the GDB Stubrom,
the remainder being free for the application's use. RedBoot will occupy the entire internal ROM.

EVBA7 boards fitted with the PA-EVBA7-144 adaptor also have 1MByte of external RAM on the adaptor. In this case, eCos
is configured to use this memory rather than the internal SRAM. These are also the only boards capable of running RedBoot.

The first 64 bytes of on-chip SRAM are mapped by the HAL startup code using the LPC2000 memory mapping control to
location 0x00000000 for speed of interrupt vector processing. SRAM from location 0x40000040 to 0x40001000 is used by the
GDB Stubrom. The rest of SRAM is available for use by the application.

The Philips LPC2xxx variant HAL includes support for the two LPC2000 on-chip serial devices and is documented in the
variant HAL. The interrupt-driven serial driver supports the line status and modem control (including hardware handshaking)
lines on UART1 only.

The EVBA7 Eval Board port includes support for the on-chip watchdog, RTC (wallclock), and interrupt controller (VIC). This
support is documented in the LPC2xxx variant HAL.

Tools
The EVBA7 Eval Board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is supported.
The original port was done using arm-elf-gcc version 3.3.3, arm-elf-gdb version 6.1, and binutils version 2.14.

2175

Ashling EVBA7 Eval Board Support

Name
Setup — Preparing the EVBA7 Eval Board for eCos Development

Overview

In a typical development environment, the EVBA7 Eval Board boots from internal flash into the GDB stubrom monitor or
RedBoot. eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-
eabi-gdb. Preparing the board therefore usually involves programming a suitable ROM or RedBoot image into flash memory.

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed
via the configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD and rebuilding the stubrom
or RedBoot.

Initial Installation

Flash Installation

This process assumes that a Microsoft Windows machine with the Ashling FlashLPC Utility installed is available. The first
step is to connect the RS232 cable supplied with the EVBA7 between port 0 of the EVBA7 and the host PC. Now install the
jumper labelled “ENABLE SERIAL ISP”. On the base EVBA7 this is jumper JP6; on boards fitted with one of the FA-EVBA7
adaptors, this is JP5 on the adaptor; on boards fitted with a PA-EVBA7 adaptor, this is JP3 on the adaptor. Refer to the board
documentation for full details. Apply the power, or press the reset button.

The board is now running a special Philips boot loader. Start the FlashLPC Utility, and ensure that the selected device matches
the device installed on the EVBA7. Choose the appropriate COM port that is being used on your PC and select 115200 baud
for both the initial and final baud rates. Set the Crystal KHz value to 14745, ensure that the stop bits value is set to 1 and the
packet size is set to 100%. Establish communication with the board by pressing the “Connect” button.

Now in the “Flash Programming” section, select the stubrom.srec or redboot.srec file. Set the file format to “S-
Record Format”,select “Erase individual sectors before programming” under the Programming Options and ensure that “Au-
tomatically add checksum to vector table” is ticked. Finally press “Program”, or “Program and Verify” to program the ROM
image.

When the process completes, remove the “ENABLE SERIAL ISP” jumper. Verify the programming has been successful by
starting a terminal emulation application such as HyperTerminal on the host PC and set the serial communication parameters
to 38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Reset the board and the stubrom
should start. For boards programmed with GDB stubs the output should be similar to the following:

+$T050f:ec070000;0d:28080040;#52

This is the stubrom attempting to communicate with GDB and indicates that it is functioning correctly.

For boards fitted with RedBoot, you should see the RedBoot startup messages ending with a RedBoot prompt.

Rebuilding GDB Stubrom

Should it prove necessary to rebuild the Stubrom binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild the stubrom are:

$ mkdir stub_rom
$ cd stub_rom
$ ecosconfig new evba7 stubs
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file stubrom.srec.

2176

Ashling EVBA7 Eval Board Support

Rebuilding RedBoot
Should it prove necessary to rebuild the RedBoot binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild RedBoot are:

$ mkdir evba7_redboot
$ cd evba7_redboot
$ ecosconfig new evba7_2294 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/lpc2000/evba7/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.srec.

2177

Ashling EVBA7 Eval Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The evba7 platform HAL package is loaded automatically when eCos is configured for a evba7 target. It should never be nec-
essary to load this package explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The evba7 platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has the GDB stubrom or
RedBoot programmed into flash at location 0x0 in internal on-chip Flash and boots from that location. arm-eabi-gdb
is then used to load a RAM startup application into memory and debug it. It is assumed that the hardware has already
been initialized by the ROM monitor. By default the application will use the eCos virtual vectors mechanism to obtain
certain services from the ROM monitor, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into internal flash at location 0x0.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

The ROM Monitor and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubrom or RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
or as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port UART0 will be claimed for HAL
diagnostics.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The PLL multipliers and dividers may be configured to allow a
core clock (CCLK) speed of up to 60MHz. The description of the clock-related CDL options may be found in the LPC2xxx
variant HAL documentation.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

However there are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used.

2178

Ashling EVBA7 Eval Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the EVBA7 Eval Board hardware, and
should be read in conjunction with that specification. The EVBA7 Eval Board platform HAL package complements the ARM
architectural HAL and the LPC2xxx variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. This includes the PINSEL
functions and LED bank. There is an exception for RAM startup applications which depend on a ROM monitor for certain
services.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including PLL
(for the clocks), Memory Mapping control registers to map SRAM to 0x0, and Memory Acceleration Module (MAM). The
details of the early hardware startup may be found in the header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

on-chip Flash This is located at address 0x0 of the memory space, although after hardware initialization, the
start of internal SRAM is mapped over locations 0x0 to 0x40. This region ends at 0x20000.
No flash driver is provided for the on-chip Flash. The MAM is enabled to accelerate memory
reads from this area.

internal SRAM This is located at address 0x40000000 of the memory space, and is 16, 32 or 64k in size, de-
pending on the chip fitted. The first 64 bytes are mapped to location 0x0000000. When this is the
only RAM available, the virtual vector table starts at 0x40000050 and extends to 0x40000150.
The remainder of SRAM is available for use by ROM based applications. For RAM startup
applications, SRAM below 0x40001000 is reserved for the GDB stubrom and the remainder is
available for the application.

On boards fitted with the PA-EVBA7-144 adaptor and where the external SRAM is being used,
only the first 64 bytes are used as described above. The remainder of internal SRAM is not
used by eCos.

external SRAM This SRAM is only present if the EVBA7 is fitted with a PA-EVBA7-144 adaptor. It is located
at address 0x81000000 of the memory space, and is 1MByte in size. When this memory is being
used for applications the virtual vector table starts at 0x81000050 and extends to 0x81000150.
The remainder is available for use by ROM based applications. For RAM startup applications,
memory below 0x81010000 is reserved for RedBoot and the remainder is available for the
application.

on-chip peripherals These are accessible at location 0xE0000000 onwards. Descriptions of the contents can be found
in the LPC2000 User Manual.

Other Issues
The LEDs may be accessed from C with the following function:

#include <cyg/infra/hal_diag.h>
extern void hal_diag_led(int leds);

Values from 0 to 16 will be displayed on the LED bank representing the binary value with 1 being on and 0 being off, and
with P0.7 being the MSB, and P0.4 the LSB.

2179

Ashling EVBA7 Eval Board Support

The LEDs are also used during platform initialization and only P0.4 should be illuminated if booting has been successful. Other
LED indications represent the stage in the initialization process that failed.

2180

Chapter 243. Embedded Artists LPC2468
OEM Board Support

2181

Embedded Artists LPC2468 OEM Board Support

Name
eCos Support for the Embedded Artists LPC2468 OEM Board — Overview

Description
The Embedded Artists LPC2468 OEM Board is fitted with an NXP LPC2468 processor rated up to 72MHz, which contains
64KB of SRAM and 512KB of FLASH. When used in conjunction with the OEM base board, it provides access to two on-
chip UARTs (one via USB, one via a 9-pin connector), a single GPIO LED, an MMC/SD card socket, and a PHY connected
to the on-chip Ethernet MAC. Refer to the board documentation for full details.

Two variants of the LPC2468 OEM board are supported. The LPC2468-16 board provides a 16 bit data bus to external RAM,
works with all versions of the base board, and supports UART 1. The LPC2468-32 board provides a 32 bit data bus to external
RAM, works only with v1.4 and later versions of the base board, and does not allow UART 1 to be used.

For typical eCos development, a RedBoot image is programmed into the LPC2468 on-chip flash memory, and the board will
boot this image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone
and eCos applications via the gdb debugger using either UART or via the ethernet.

This documentation describes platform-specific elements of the LPC2468 OEM Board support within eCos. Documentation on
the NXP LPC2xxx variants is available separately, and should be read in conjunction with this documentation. The LPC2xxx
documentation covers various topics including HAL support common to LPC2xxx variants, and on-chip device support. This
document complements the LPC2xxx documentation.

Supported Hardware
The LPC2468 OEM Board has 512Kbyte of on-chip Flash memory. In a typical setup, RedBoot will load and run from this
internal flash. An initial image must be programmed into this flash using either the FlashMagic utility, or via a JTAG debugger.
Following this, it may be reprogrammed using flash drivers in RedBoot.

The first 64 bytes of on-chip SRAM are mapped by the HAL startup code using the LPC2468 memory mapping control to
location 0x00000000 for speed of interrupt vector processing. The rest of SRAM is available for use by the application. 4MB
of external NOR flash is available at 0x80000000; the topmost 64K of this is used by RedBoot for configuration data, the rest is
available for application use and can be managed by RedBoot's flash file system. 32 MB of SDRAM is available at 0x81000000;
the first 1MByte of this is reserved for use by RedBoot, the rest is available for the code and data of loaded applications.

The NXP LPC2xxx variant HAL includes support for the on-chip serial devices which is documented in the variant HAL. The
interrupt-driven serial driver supports the line status and modem control (including hardware handshaking) lines on UART1
only.

The LPC2468 OEM Board port includes support for the on-chip watchdog, RTC (wallclock), and interrupt controller (VIC).
This support is documented in the LPC2xxx variant HAL.

The on-chip Ethernet MAC is supported. The LPC2468-16 and LPC2468-32 use different PHYs, and both of these are sup-
ported.

The on-chip Multimedia Card Interface (MCI) is supported to allow access to Multimedia Cards (MMC) or Secure Digital
(SD) cards using the socket on the OEM board.

Tools
The LPC2468 OEM Board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is sup-
ported. The original port was done using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.16.

2182

Embedded Artists LPC2468 OEM Board Support

Name
Setup — Preparing the LPC2468 OEM Board for eCos Development

Overview
In a typical development environment, the LPC2468 OEM Board boots from internal flash into RedBoot. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the
board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.hex

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.srec

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed
via the RedBoot baud command.

Initial Installation

Flash Installation

This process assumes that a Microsoft Windows machine with the Embedded Systems Academy Flash Magic utility is available.

The first step is to set up the board as described in the Embedded Artists documentation. The FlashMagic tool from
http://www.flashmagictool.com must be installed to program applications or RedBoot into flash. Older versions of Windows
may also require the FTDI USB driver from http://www.ftdichip.com/Drivers/VCP.htm be installed and configured as
described in the Embedded Artists documentation.

Install the ISP jumpers (P2.10 and RESET) and press the reset button. The board is now running a special NXP boot loader.
Start FlashMagic and set the Serial Port to the FTDI USB COMx device activated when the target hardware is connected to
the host by a suitable USB cable. Select 38400 baud and change the device to LPC2468. Older versions of FlashMagic also
require the Interface “None (ISP)” and 12MHz Oscillator Frequency - these settings are available under preferences in newer
versions and are set correctly by default.

Test communication with the board by using the “ISP->Read Device Signature” menu entry. If communication is not successful,
check that the correct USB cable is used and connected, the ISP jumpers are installed and the correct COM port is being used.

Check “Erase blocks used by Hex File” under “Erase” OR in recent versions of FlashMagic select “Sectors used by File” next to
“Erase”. In the “File” section, select the redboot_ROM.hex file. Under “Options”, all boxes should be clear except “Verify
after programming”. Now press the “Start” button. The utility should show the progress of the flash erase and write operations.

When the process completes, the utility should be closed. Verify the programming has been successful by starting a terminal
emulation application such as HyperTerminal or minicom on the host PC and set the serial communication parameters to 38400
baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Remove the ISP jumpers. Reset the board and
RedBoot should start. The output should be similar to the following:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.2.8/255.0.0.0, Gateway: 10.0.0.3
Default server: 0.0.0.0, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version 4.5.9 - built 10:17:51, Apr 26 2021

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2021 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.

2183

http://www.flashmagictool.com
http://www.ftdichip.com/Drivers/VCP.htm

Embedded Artists LPC2468 OEM Board Support

Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Embedded Artists LPC2468 OEM Board (ARM7TDMI)
RAM: 0xa0000000-0xa2000000 [0xa000aa18-0xa1fed000 available]
FLASH: 0x00000000-0x0007dfff, 8 x 0x1000 blocks, 14 x 0x8000 blocks, 6 x 0x1000 blocks
FLASH: 0x80000000-0x803fffff, 64 x 0x10000 blocks
RedBoot>

It is now necessary to initialize the flash file system and the flash configuration. This can be done with the following commands:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x803f0000-0x803fffff: .
... Program from 0xa1ff0000-0xa2000000 to 0x803f0000: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.0.1.2
Console baud rate: 38400
DNS server IP address: 10.0.0.1
Network hardware address [MAC] for eth0: 0x0E:0x00:0x00:0xEA:0x18:0xF0
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: lpc2xxx
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x803f0000-0x803fffff: .
... Program from 0xa1ff0000-0xa2000000 to 0x803f0000: .
RedBoot>

Replace the IP addresses in the above with those for your own network. The above also accepts the default for the MAC address,
if more than one LPC2468 is to be used on the same network then different MAC addresses should be used; Embedded Artists
boards are supplied with a sticker showing an assigned MAC address, and this should be used by preference.

It is it ever necessary to reinstall RedBoot, the above directions can be repeated. Alternatively, a new RedBoot may be installed
from RedBoot itself. It is not possible to do this directly, since RedBoot is executing from the flash that needs to be erased
and reprogrammed. Instead it is necessary to run a RAM version of RedBoot, use that to download the new ROM RedBoot
to RAM, and then program that to flash.

The following shows an example session to do this. It assumes that redboot_RAM.srec and redboot_ROM.bin are
available via TFTP on the server set up in fconfig.

RedBoot> load redboot_RAM.srec
Using default protocol (TFTP)
Entry point: 0xa0100040, address range: 0xa0100000-0xa011bab4
RedBoot> go
+Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.2.8/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.2, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [RAM]
eCosCentric certified release, version 4.5.9 - built 10:17:32, Apr 26 2021

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2021 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

2184

Embedded Artists LPC2468 OEM Board Support

Platform: Embedded Artists LPC2468 OEM Board (ARM7TDMI)
RAM: 0xa0000000-0xa2000000 [0xa0126970-0xa1fed000 available]
FLASH: 0x00000000-0x0007dfff, 8 x 0x1000 blocks, 14 x 0x8000 blocks, 6 x 0x1000 blocks
FLASH: 0x80000000-0x803fffff, 64 x 0x10000 blocks
RedBoot> load -r -b %{freememlo} redboot_ROM.bin
Using default protocol (TFTP)
Raw file loaded 0xa0125c00-0xa0142ba3, assumed entry at 0xa0125c00
RedBoot> fis write -f 0x00000000 -b %{freememlo} -l 0x20000
* CAUTION * about to program FLASH
 at 0x00000000..0x0001ffff from 0xa0125c00 - continue (y/n)? y
... Erase from 0x00000000-0x0001ffff:
... Program from 0xa0125c00-0xa0145c00 to 0x00000000:
RedBoot> reset
+Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.2.8/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.2, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version 4.5.9 - built 10:17:51, Apr 26 2021

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2021 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Embedded Artists LPC2468 OEM Board (ARM7TDMI)
RAM: 0xa0000000-0xa2000000 [0xa000aa18-0xa1fed000 available]
FLASH: 0x00000000-0x0007dfff, 8 x 0x1000 blocks, 14 x 0x8000 blocks, 6 x 0x1000 blocks
FLASH: 0x80000000-0x803fffff, 64 x 0x10000 blocks
RedBoot>

Rebuilding RedBoot
Should it prove necessary to rebuild the RedBoot binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild RedBoot for the
LPC2468-32 are:

$ mkdir redboot_ealpc2468_rom
$ cd redboot_ealpc2468_rom
$ ecosconfig new ea_lpc2468_32 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/lpc2xxx/ea_lpc2468/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.hex.

Substitute 16 for 32 in the above to build RedBoot for the LPC2468-16 module.

2185

Embedded Artists LPC2468 OEM Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The ea_lpc2468 platform HAL package is loaded automatically when eCos is configured for an ea_lpc2468_32 or
ea_lpc2468_16 target. It should never be necessary to load this package explicitly. Unloading the package should only
happen as a side effect of switching target hardware.

Startup
The ea_lpc2468 platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash at location 0x0 in internal on-chip Flash and boots from that location. arm-eabi-gdb is then used to load a RAM
startup application into memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By
default the application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including
diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into internal flash at location 0x0.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
or as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port UART0 will be claimed for HAL
diagnostics.

Flash Driver
The LPC2468 OEM board contains an SST 39VF3201 NOR flash device. The CYGPKG_DEVS_FLASH_SST_39VFXXX_V2
package contains all the code necessary to support this part and the platform HAL package contains definitions that customize
the driver to the Embedded Artists LPC2468 OEM board.

Ethernet Driver
The LPC2468 contains an ethernet MAC device. The CYGPKG_DEVS_ETH_ARM_LPC2XXX package contains all the code
necessary to support this device and the platform HAL package contains definitions that customize the driver to the LPC2468
OEM board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The PLL multipliers and dividers may be configured to allow a
core clock (CCLK) speed of up to 72MHz. However, the platform HAL currently sets the clock to 48MHz, duplicating the
configuration in the supplied example code as a consequence of CPU errata affecting various revisions of the LPC2468. Setting
the CPU revision with the CYGHWR_HAL_ARM_LPC2XXX_EA_LPC2468_CPU_REVISION configuration option can be

2186

Embedded Artists LPC2468 OEM Board Support

used to provide default clock settings appropriate to the CPU revision in use. If the CPU revision cannot be guaranteed it should
be left as "Initial". The description of the clock-related CDL options may be found in the LPC2xxx variant HAL documentation.

I²C Bus Configuration
The on-chip I²C devices are supported by a driver in the variant HAL package. Each bus for this driver needs to be configured
in the platform HAL with the following options:

CYGPKG_HAL_ARM_LPC2XXX_I2CX

This is the master component, enabling this activates all the other configuration options and causes the driver to create
the data structures to access this bus.

CYGPKG_HAL_ARM_LPC2XXX_I2CX_CLOCK

Bus clock speed in Hz. Usually frequencies of either 100kHz or 400kHz are chosen, the latter sometimes known as fast
mode.

CYGPKG_HAL_ARM_LPC2XXX_I2CX_SDA

This option describes the pin used for SDA on this bus. This takes the form of an invocation of the macro
__LPC2XXX_PINSEL_FUNC. Parameters are the port number, pin within that port, and the alternate select function for
the pin. See the LPC2468 user manual for details of which pins may be used by each bus.

CYGPKG_HAL_ARM_LPC2XXX_I2CX_SCL

This option describes the pin used for SCL on this bus. Like SDA this takes the form of a call to
__LPC2XXX_PINSEL_FUNC.

Note that "I2CX" is a placeholder for a given bus instance: "I2C0", "I2C1" or "I2C2". By default the platform HAL only
enables I²C bus 0 in order to access the PCA9532 LED controller on the base board.

SPI Bus Configuration
The on-chip SSP SPI devices (not the Legacy SPI device) are supported by the NXPSSP driver package, CYGPKG_DE-
VS_SPI_ARM_NXPSSP. This needs some configuration in the platform HAL:

CYGPKG_HAL_ARM_LPC2XXX_SPI

This is the master component, enabling this activates all the other configuration options. It also causes
ea_lpc2468_spi.c to be compiled, which contains descriptions of the devices on the SPI buses.

CYGPKG_HAL_ARM_LPC2XXX_SPIX

This is the master component for each bus. Enabling this activates the other configuration options for this bus, and causes
the driver to support this bus.

CYGPKG_HAL_ARM_LPC2XXX_SPIX_SCLK

This option describes the pin used for SCLK on SPIX. It takes the form of an invocation of __LPC2XXX_PINSEL_FUNC.
The parameters are the port number, pin within that port, and the alternate select function for the pin. See the LPC2468
user manual for details."

CYGPKG_HAL_ARM_LPC2XXX_SPIX_MISO

This option describes the pin used for MISO on SPIX. Like SCLK it takes the form of a call to
__LPC2XXX_PINSEL_FUNC.

CYGPKG_HAL_ARM_LPC2XXX_SPIX_MOSI

This option describes the pin used for MOSI on SPIX. Like SCLK it takes the form of a call to
__LPC2XXX_PINSEL_FUNC.

2187

Embedded Artists LPC2468 OEM Board Support

CYGPKG_HAL_ARM_LPC2XXX_SPIX_CS_PINS

This defines the pins to be uses as chip selects for this bus. It is a comma separated list of GPIO pin names, the first for
device 0, the second for device 1, and so on. Pin names are defined in the var_io.h header in the LPC2xxx variant HAL.

Note that "SPIX" is a placeholder for a given bus instance: "SPI0" or "SPI1". By default the platform HAL only enables SPI0,
for testing only.

MCI peripheral configuration
The on-chip Multimedia Card Interface (MCI) is supported to allow access to Multimedia Cards (MMC) or Secure Digital (SD)
cards using the socket on the OEM board. This support is provided in conjunction with the generic MMC/SD driver package
(CYGPKG_DEVS_DISK_MMC), the Primecell MCI driver package (CYGPKG_DEVS_MMCSD_ARM_PRIMECELL_MCI) and
the LPC2xxx variant HAL in order to provide some elements of the DMA support. Documentation and configuration options
within those packages should also be consulted. Note that the miniSD socket on the CPU board is not supported.

In order to configure the hardware for access to the socket, Jumper J47 on the base board must be set with pins 2-3 connected
(P0.22 selected for MCIDAT0), and Jumper J27 must be set with MCIPWR active low.

The following CDL configuration options are used to control the behaviour of the MMC/SD card support:

MMC/SD card support (CYGPKG_HAL_ARM_LPC2XXX_EA_LPC2468_MCI)

This option allows the MMC/SD card support as a whole to be enabled or disabled, although the generic disk device driver
package (CYGPKG_IO_DISK) must be loaded in order to enable the MMC/SD support.

Use on-chip USB memory for DMA (CYGSEM_HAL_ARM_LPC2XXX_EA_LPC2468_MCI_USE_USB_MEM_FOR_DMA

The LPC2468 cannot always keep up with the data transfer requirements, especially at slower CPU clock speeds. This
is because the DMA controller runs at the speed of the CPU clock (CCLK) along with the fact that some LPC2468 have
errata which decreases their achievable CPU clock frequency.

Using on-chip memory dedicated to USB helps reduce or remove these problems, depending on CPU frequency. Clearly
this option must be disabled if the on-chip USB peripheral is to be used. It is also desirable to disable this option if the
CPU frequency is high enough, in order to remove an extra copy on every data transfer, thus improving performance. The
USB memory used is 512 bytes at the start of the USB memory space (0x7FD00000).

If this option is disabled and the DMA is not able to proceed quickly enough, this will be visible in the form of I/
O errors. In that case, if it is not possible to enable this option it is recommended to adjust the CYGDAT_HAL_AR-
M_LPC2XXX_EA_LPC2468_MCI_BUS_SPEED_LIMIT configuration option.

Lock AHB bus during DMA transfer (CYGSEM_HAL_ARM_LPC2XXX_EA_LPC2468_MCI_DMA_LOCKS_AHB)

The AMBA Hardware Bus (AHB) is used to connect AMBA peripherals within the LPC2468, including the ARM core,
DMA controller and memory controllers. When this option is enabled, the AHB is locked for the duration of MCI DMA
transfer bursts. If another AMBA host needs to make a transfer it may be delayed as a result, which may not be desirable.

Disabling this option allows the AHB arbiter to permit other AHB hosts to perform transfers. Of course this may mean
the MCI DMA transfers can in turn themselves get delayed, risking data overruns or underruns in MCI transfers, resulting
in I/O errors during block reads or writes. This is particularly likely on processors running at slower clock speeds where
there may already be difficulties with the DMA servicing data transfers quickly enough.

MMC/SD bus frequency limit (CYGNUM_HAL_ARM_LPC2XXX_EA_LPC2468_MCI_BUS_SPEED_LIMIT)

The LPC2468 cannot always keep up with the data transfer requirements, especially at slower CPU clock speeds. This
is because the DMA controller runs at the speed of the CPU clock (CCLK) along with the fact that some LPC2468 have
errata which decreases their achievable CPU clock frequency. The adjacent options to use on-chip USB memory and to
lock the AHB bus can help prevent this, but sometimes they are insufficient to prevent data overruns or underruns resulting
in I/O errors during block reads or writes. In which case the only remaining recourse is to reduce the required data transfer
rate between the MCI and the card.

2188

Embedded Artists LPC2468 OEM Board Support

This option can be used to impose an upper limit on the MMC/SD bus frequency. The value used in this option is measured
in Hertz, and the use of 4-bit mode with SD cards is not a factor - this option provides the bus frequency, so a 4-bit bus
will transfer four times the amount of data as a 1-bit bus in the same time period.

Note that this option provides a limit, and does not mean the card bus will operate at that frequency. The frequency is
also governed by what the card will support, and the resolution of the clock used to derive the MMC/SD clock signal,
and how it can be divided down.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

However there are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Samsung K9F1G08U08 NAND flash memory chip. To en-
able the driver, activate the CDL option CYGHWR_HAL_ARM_LPC2XXX_EA_LPC2468_NAND and ensure that the CYGP-
KG_DEVS_NAND_SAMSUNG_K9 package is present in your eCos configuration. The driver is capable of operating with or
without the NAND_RDY line connected.

CYGHWR_HAL_ARM_LPC2XXX_EA_LPC2468_USE_NAND_RDY
The EA OEM Base Board provides a jumper which connects the ready line of the NAND chip (NAND_RDY) to pin P2.12
on the CPU. Setting this option indicates to the driver that that jumper, or similar layout with the same effect, is in place.
This provides an improvement in efficiency, but must not be set if the jumper is not so connected.

CYGHWR_HAL_ARM_LPC2XXX_EA_LPC2468_NAND_RDY_USE_INTERRUPT
(Only active if CYGHWR_HAL_ARM_LPC2XXX_EA_LPC2468_USE_NAND_RDY is set.) If set, pin P2.12 (see above)
is set up as an interrupt (EINT2). Setting this causes the thread invoking the driver to sleep when waiting for a program
or erase operation to complete, as opposed to entering a polling loop. This potentially represents an efficiency gain if you
have at least one other thread which can carry on performing useful work while the NAND chip works.

If this option is not set, the driver polls the ready line.

When this option is set, the driver automatically detects whether the eCos kernel scheduler is running; if it is not, interrupt
mode cannot operate, and the driver falls back to polling the ready line.

Interrupt mode imposes its own overheads on the driver thread. Benchmarking chip program and erase operations alone
will necessarily appear to show a slow-down in interrupt mode when the scheduler is running. This option can only improve
efficiency on a holistic basis, and only then in the case where there are other threads which can continue to work while
the driver is waiting for the NAND operation to complete.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DE-
VS_NAND_EA_LPC2468_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will au-
tomatically be set up for you when the device is initialised. By default, the manual config CDL script sets up a single partition
(number 0) encompassing the entire device.

2189

Embedded Artists LPC2468 OEM Board Support

It is possible to configure the partitions in some other way, should it be appropriate for your setup. To do so you will have to
add appropriate code to ea_lpc2468_nand.c.

2190

Embedded Artists LPC2468 OEM Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the LPC2468 OEM Board hardware, and
should be read in conjunction with that specification. The LPC2468 platform HAL package complements the ARM architectural
HAL and the LPC2xxx variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor to do most of this.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including PLL
(for the clocks); Memory Mapping control registers to map SRAM to 0x0; the memory controller for access to external FLASH
and SDRAM; and the Memory Acceleration Module (MAM). The details of the early hardware startup may be found in the
header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

on-chip Flash This is located at address 0x0 of the memory space, although after hardware initialization, the
start of internal SRAM is mapped over locations 0x0 to 0x40. This region ends at 0x80000. The
MAM is enabled to accelerate memory reads from this area. A driver is available for using this
flash via the eCos flash API.

external Flash This is located at address 0x80000000 of the memory space. It is not used by default by eCos,
although if RedBoot is asked to manage the Flash, it reserves flash addresses 0x803F0000 thru
0x803FEFFF. If RedBoot stores its configuration data in Flash, then addresses 0x803FF000
thru 0x803FFFFF are reserved by RedBoot.

internal SRAM This is located at address 0x40000000 of the memory space, ending at location 0x4000FFFF.
The first 64 bytes are mapped to location 0x0000000.

external SDRAM This is located at address 0xa0000000 of the memory space, ending at location 0xa2000000. For
RAM startup, available SRAM starts at location 0xa1100000, with the bottom 1Mbyte reserved
for use by RedBoot.

on-chip peripherals These are accessible via location 0xE0000000 onwards. Descriptions of the contents can be
found in the LPC2468 User Manual.

2191

Chapter 244. Embedded Artists
QuickStart Board Support

2192

Embedded Artists QuickStart Board Support

Name
eCos Support for the Embedded Artists QuickStart Boards — Overview

Introduction
This platform HAL is designed to support the QuickStart board series from Embedded Artists, fitted with an NXP LPC2xxx
microcontroller, and optionally connected to an Embedded Artists QuickStart Prototype Board.

The support for the QuickStart board series provided by this HAL has been initially developed for the Embedded Artists
(henceforth 'EA') LPC2148 USB QuickStart Board. This HAL documentation therefore presently corresponds to that particular
board instance, and future supported variants will cause this documentation to be updated accordingly.

Description
The Embedded Artists QuickStart Board is fitted with an NXP LPC2xxx processor rated at up to 60MHz, which contains up
to 64KB of SRAM and up to 512KB of FLASH, depending on choice of LPC2xxx variant. The board itself has a single 9-pin
RS-232 serial interface connected to the LPC2xxx on-chip UART 0, an I²C EEPROM, and a USB device interface. Refer to
EA's QuickStart board documentation for full details.

Further peripheral support is available if the board is mounted on to the EA QuickStart Prototype Board, including push buttons,
LEDs, JTAG, MMC/SD card socket, buzzer, 7-segment LED, and a further 9-pin RS-232 serial interface connected to the
LPC2xxx on-chip UART 1.

The typical mode of operation for eCos development usually depends on the amount of memory available. On LPC2xxx variants
with 64Kbytes or more of SRAM, a GDB stub ROM image is programmed into the LPC2xxx on-chip flash memory, and the
board will boot this image from reset. While RedBoot may also be used, its larger RAM footprint requirements usually make
it unsuitable. Both RedBoot and the GDB stub ROM provide GDB stub functionality so it is then possible to download and
debug stand-alone and eCos applications via the gdb debugger using UART 0.

On LPC2xxx variants with less than 64KBytes SRAM, such as the 32KBytes on the LPC2148, it is typically expected that
standalone applications will be programmed directly to on-chip Flash, either using a hardware JTAG/ICE unit via the Quick-
Start Prototype Board, or by serial using the on-chip In-System Programming (ISP) mechanism included with NXP LPC2xxx
microcontrollers and a suitable host application running on a PC.

This documentation describes platform-specific elements of the EA QuickStart Board support within eCos. Documentation on
the NXP LPC2xxx variants is available separately, and should be read in conjunction with this documentation. The LPC2xxx
documentation covers various topics including HAL support common to LPC2xxx variants, and on-chip device support. This
document complements the LPC2xxx documentation.

Supported Hardware
The NXP LPC2xxx microcontrollers on the EA QuickStart Boards have up to 512Kbytes of on-chip Flash memory. In a typical
setup, the GDB stub ROM or the user application will load and run from this internal flash. For initial programming of the
internal Flash, external support is required, such as the NXP LPC2000 Flash Utility, the Flash Magic tool, or a hardware
JTAG/ICE unit. The latter may be used with its own in-built LPC2xxx flash programming support if it exists, or the eCosPro®
ecoflash utility. 28Kbytes of internal flash memory should be reserved for the GDB Stub ROM, the remainder being free for
the application's use. Note that the LPC2xxx primary boot loader and IAP code reside in boot blocks located at the end of on-
chip Flash. To determine the number and size of blocks reserved for their use, consult the specific LPC2xxx variant's datasheet.

The first 64 bytes of on-chip SRAM are mapped by the HAL startup code using the LPC2xxx memory mapping control to
location 0x00000000. When loading applications using the GDB stub ROM, SRAM from location 0x40000040 to 0x40001000
is reserved for its use. The rest of SRAM is generally available for use by the application. Programs booted from ROM, or
loaded directly into SRAM via JTAG may use all SRAM. In all cases, if using the eCos LPC2xxx Flash driver, the last 32
bytes (or more if a separate program buffer is used) become reserved due to the requirements of the IAP code.

The NXP LPC2xxx variant HAL includes support for the two LPC2xxx on-chip serial devices and is documented in the variant
HAL. Although the interrupt-driven serial driver supports the line status and modem control lines on UART 1 (UART 0 not
having such support), the QuickStart boards do not connect these pins, and so that functionality is unavailable.

2193

Embedded Artists QuickStart Board Support

The EA QuickStart port includes support for the on-chip watchdog, RTC (wallclock), interrupt controller (VIC) and on-chip
Flash. This support is documented in the LPC2xxx variant HAL.

Tools
The QuickStart Board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is supported.
The original port was created using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.16.

2194

Embedded Artists QuickStart Board Support

Name
Setup — Preparing the EA QuickStart Board for eCos Development

Overview
In a typical development environment, the EA QuickStart Board boots from internal flash into either the GDB stub ROM
monitor or directly into the user application. In the case of microcontrollers with less than 64Kbytes of SRAM, the latter is
recommended. eCos applications to be loaded and run from the GDB stub ROM monitor may be configured for RAM startup
and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the board therefore usually involves
programming a suitable ROM image into Flash memory, either the GDB stub ROM or application images.

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed via
the configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD and rebuilding the application,
or if applicable, GDB stub ROM. A "straight through" 9-pin RS232 serial cable, with Male<->Female connectors is required.
Using a "null modem" serial cable will not work.

Initial Installation

Board setup

Jumper settings must be checked and potentially changed on the board to ensure correct operation. This section describes
jumper settings that are known to require attention. In general, any board-specific documentation from Embedded Artists takes
precedence over the documentation here, as this may reflect hardware which has been modified since the time of writing of
this documentation. Most QuickStart boards are very similar to each other, the only change of note being of course the choice
of LPC2xxx microcontroller fitted. But if your board does not fit the description here (which has initially been based on the
LPC2148 USB QuickStart) then you should consult the board documentation.

Firstly, there are two jumpers located close to the serial connector. In general, these jumpers should only be closed (i.e. jumper
fitted and connecting the two pins) when wishing to reprogram the on-chip Flash via ISP. Otherwise they should remain open
(jumper not connecting the two pins) so that any unplugging of the serial connector, movement of the serial connector, or use
of flow control signals from the host PC, do not cause a spurious reset or interrupt (on the EINT1 line) of the board.

If the board is being powered directly by USB, then a jumper next to the USB connector should be closed. Otherwise it must
be open. This also means the jumper must be open if the QuickStart board is mounted on the Prototype Board, and power is
being provided by either the DC power connector or USB connector on the Prototype Board.

Note that if the Prototype Board is fitted, but the QuickStart board is being powered by its USB connector as opposed to the
Prototype board's USB connector (thus meaning that the above jumper would be closed), then pin P0.23 is used as a USB power
indication on LPC214x boards. This prevents its use as an SPI chip select line for the 7-segment LED on the Prototype Board.

If mounting the QuickStart LPC2xxx board on the QuickStart Prototype Board, then consult the EA documentation for the
correct jumper settings and socket location appropriate to the fitted LPC2xxx model. This includes settings for the JTAG con-
nector. In the case of the LPC213x/LPC214x, the jumper labelled "JTAG" must be closed, and the jumper labelled "DBGSEL"
must be open.

It may also be useful to be aware that although eCos configures the PWM pin for the buzzer, it does not directly support it, and
so it is probably useful to open the jumper labelled "P0.7" to disable the buzzer.

The jumpers adjacent to the LEDs may remain in their default state of closed, in order to get insight into system operation, and
to allow use of the user-configurable LEDs, as described later.

Flash Installation

This process assumes that a Microsoft Windows machine with the Flash Magic utility installed is available. Flash Magic is
a tool for programming flash based microcontrollers from NXP using a protocol via the RS232 serial port to communicate
with the In-System Programming (ISP) firmware on the LPC2xxx. The Flash Magic utility is sponsored by NXP and available
from this website.

2195

http://www.flashmagictool.com/

Embedded Artists QuickStart Board Support

The first step is to connect the RS232 cable between the serial port of the QuickStart board and the host PC. Do not use the
serial port on the Prototype board. Now close the two jumpers adjacent to the serial port on the QuickStart board. These allow
the software on the PC to reset the LPC2xxx and enter the ISP firmware. Finally apply the power.

Start the Flash Magic utility on the host PC, and a window will be displayed allowing various parameters to be configured
in a series of steps. For step 1, firstly choose the appropriate COM port that is being used on your PC and set the Baud Rate
to 38400 baud. Next select the appropriate LPC2xxx device in use such as LPC2148. The "Interface" should be set to "None
(ISP)". And finally for step 1 choose the appropriate Oscillator Frequency for the QuickStart board in use. This may be found
in the board documentation, and is usually visibly readable on the surface of the oscillator on the board (in a metal package).
For example for the LPC2148 USB QuickStart, the oscillator reads 12.000 indicating 12MHz.

For step 2, it is usually adequate to leave the option "Erase blocks used by hex file" checked, and ignore the other settings. For
step 3, you must select the program image to be downloaded, in Intel HEX format. To program the pre-built GDB stub ROM
image, locate the file gdb_module.hex in the loaders subdirectory of your release. To generate an Intel HEX format
version of an application you have built yourself run the following command at a shell prompt:

 $ arm-eabi-objcopy -O ihex app.elf app.hex

This converts the application image in ELF format (as output by the linker), to Intel HEX format in the file app.hex. Note
that the arm-eabi tools must be on your path at this point. If they are not, run the command below before you run the above
arm-eabi-objcopy command:

 $. /opt/ecos/ecosenv.sh

In step 4, it is recommended to set the option "Verify after programming". Finally it is possible to click on "Start" to program
the image into the on-chip Flash.

Tip

If there is a problem communicating with the board, such as a report of a failure to autobaud, then this may imply
that the Flash Magic tool was not able to control the serial lines properly. This can happen with some USB-Serial
converters. For Prototype Board users, to workaround this issue, power the board off and remove (i.e. open)
the two jumpers next to the serial port. Then simultaneously press the buttons marked 'Reset' and 'P0.14' on the
prototype board (the latter corresponds to interrupt EINT1), then release the Reset button, and finally release the
'P0.14' button. This is an alternative mechanism of forcing the ISP firmware to be entered. Once this has been
successfully performed, the programming operation may be retried from the Flash Magic utility.

When the process completes, remove (i.e. open) the two jumpers next to the serial port. If a GDB stub ROM image has been
programmed, verify the programming has been successful by starting a terminal emulation application such as HyperTerminal
on the host PC and set the serial communication parameters to 38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no
flow control (handshaking). Reset the board and the stubrom should start. For boards programmed with GDB stubs the output
should be similar to the following:

+$T050f:ec070000;0d:28080040;#52

This is the stubrom attempting to communicate with GDB and indicates that it is functioning correctly.

Rebuilding the GDB Stub ROM
Should it prove necessary to rebuild the GDB Stub ROM binary, this is done most conveniently at the command line. Your
PATH and ECOS_REPOSITORY environment variables must first be set correctly, The following steps given an example of
how to rebuild the stubs for a QuickStart board with LPC2148:

$ mkdir stub_rom
$ cd stub_rom
$ ecosconfig new ea_quickstart_lpc2148 stubs
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the files gdb_module.img (ELF format),
gdb_module.srec (Motorola S-Record format), gdb_module.bin (raw binary format), and gdb_module.hex (Intel
HEX format).

2196

Embedded Artists QuickStart Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The EA QuickStart platform HAL package is loaded automatically when eCos is configured for a target which uses it. The
target names include the LPC2xxx model in use. At this time the only target supported is the ea_quickstart_lpc2148
target. It should never be necessary to load this platform HAL package explicitly. Unloading the package should only happen
as a side effect of switching target hardware.

Startup
The EA QuickStart platform HAL package supports three separate startup types:

ROM This startup type can be used for finished applications which will be programmed into internal flash at location 0x0.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization. On targets with less than 64Kbytes of SRAM, this is the startup
type normally used.

RAM This is the startup type which is normally used during application development on targets with 64Kbytes of SRAM or
greater. The board has the GDB stubrom or RedBoot programmed into flash at location 0x0 in internal on-chip Flash
and boots from that location. arm-eabi-gdb is then used to load a RAM startup application into memory and debug it.
It is assumed that the hardware has already been initialized by the ROM monitor. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from the ROM monitor, including diagnostic output.
Larger applications may not fit into the available SRAM, in which case ROM startup may be required.

JTAG This is an alternative development startup type. The application is loaded into RAM via a JTAG device and is run
and debugged from there. The application will be self-contained with no dependencies on services provided by other
software. It is expected that hardware setup will have been performed via the JTAG device prior to loading. Some
sample configuration and initialisation scripts for a number of JTAG debugging solutions may be found in the misc
subdirectory of the platform HAL package within the component repository.

The ROM Monitor and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubrom or RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained, or
as a testing step before switching to ROM startup. Virtual vector support is usually only required for RAM startup applications
or ROM monitors. The CDL option CYGFUN_HAL_LPC2XXX_VIRTUAL_VECTOR_SUPPORT within the LPC2xxx variant
HAL allows manual control of this facility.

If the application does not rely on a ROM monitor for diagnostic services then by default serial port UART0 will be claimed
for HAL diagnostics. If using the Prototype Board, it becomes possible to use UART1 as well, and in order to allow its
selection as a potential debug or diagnostic channel, the number of communications channels can be increased from 1 to 2 with
the option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS. To specify which serial port is used for diagnostics, the
configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL may be set accordingly, and its baud rate
configured with CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The PLL multiplier may be configured to allow a core clock
(CCLK) speed of up to 60MHz. The description of the clock-related CDL options may be found in the LPC2xxx variant HAL

2197

Embedded Artists QuickStart Board Support

documentation. Note there are frequency constraints on the Current Controlled Oscillator (CCO) within the LPC2xxx, and the
datasheet should be consulted to ensure the required specifications are not exceeded.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

However there are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. To build eCos in Thumb mode, enable the CYGHWR_THUMB
configuration option in the ARM architecture HAL.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
For example, allowing a Thumb application to be used with eCos built in normal ARM
mode. Without this option, some memory can be saved. This option should be used if -
mthumb is used. eCos may be built with Thumb interworking support by enabling the
CYGBLD_ARM_ENABLE_THUMB_INTERWORK CDL option in the ARM architecture
HAL. Use of the LPC2xxx Flash driver requires Thumb interworking support to be
enabled as the calls into the IAP firmware are must be made allowing a switch to Thumb
mode.

2198

Embedded Artists QuickStart Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the EA QuickStart board hardware, and
should be read in conjunction with that specification. The QuickStart Board platform HAL package complements the ARM
architectural HAL and the LPC2xxx variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. This includes the PINSEL
functions and LED bank. There is an exception for RAM startup applications which depend on a ROM monitor for certain
services.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including PLL
(for the clocks), Memory Mapping control registers to map SRAM to 0x0, and Memory Acceleration Module (MAM). The
details of the early hardware startup may be found in the header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

on-chip Flash This is located at address 0x0 of the memory space, although after hardware initialization, the
start of internal SRAM is mapped over locations 0x0 to 0x40. The size of this region depends
on the LPC2xxx microcontroller variant in use. In the case of the LPC2148, the region is of size
512Kbytes, ending at 0x80000. However the last few blocks of Flash are reserved for use as
bootblocks for the ISP/IAP firmware, resulting in a usable Flash size of 500Kbytes, ending at
0x7d000. The MAM is enabled to accelerate memory reads from this area.

internal SRAM This is located at address 0x40000000 of the memory space, and is 16, 32 or 64k in size, de-
pending on the chip fitted. The first 64 bytes are mapped to location 0x0000000. If using GDB
stubs ROM, or another ROM monitor, the virtual vector table starts at 0x40000050 and extends
to 0x40000150. The remainder of SRAM is available for use by applications. For RAM startup
applications, SRAM below 0x40001000 is reserved for the GDB stubrom and the remainder
is available for the application. An exception is if the on-chip Flash driver is to be used. In
that case, the top 32 bytes of SRAM are used by it. This is automatically handled in the port's
memory layout files if the flash driver is present in the configuration.

on-chip peripherals These are accessible at location 0xE0000000 onwards. Descriptions of the contents can be found
in the LPC2xxx User Manual for the appropriate microcontroller variant.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 244.1. ea_quickstart Real-time characterization

 Startup, main stack : stack used 420 size 3920
 Startup : Interrupt stack used 148 size 4096
 Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 15.31 microseconds (9 raw clock ticks)

2199

Embedded Artists QuickStart Board Support

Testing parameters:
 Clock samples: 32
 Threads: 1
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 21
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 15.00 15.00 15.00 0.00 100% 100% Create thread
 5.00 5.00 5.00 0.00 100% 100% Yield thread [all suspended]
 3.33 3.33 3.33 0.00 100% 100% Suspend [suspended] thread
 5.00 5.00 5.00 0.00 100% 100% Resume thread
 6.67 6.67 6.67 0.00 100% 100% Set priority
 1.67 1.67 1.67 0.00 100% 100% Get priority
 11.67 11.67 11.67 0.00 100% 100% Kill [suspended] thread
 3.33 3.33 3.33 0.00 100% 100% Yield [no other] thread
 6.67 6.67 6.67 0.00 100% 100% Resume [suspended low prio] thread
 5.00 5.00 5.00 0.00 100% 100% Resume [runnable low prio] thread
 6.67 6.67 6.67 0.00 100% 100% Suspend [runnable] thread
 5.00 5.00 5.00 0.00 100% 100% Yield [only low prio] thread
 5.00 5.00 5.00 0.00 100% 100% Suspend [runnable->not runnable]
 11.67 11.67 11.67 0.00 100% 100% Kill [runnable] thread
 8.33 8.33 8.33 0.00 100% 100% Destroy [dead] thread
 16.67 16.67 16.67 0.00 100% 100% Destroy [runnable] thread
 25.00 25.00 25.00 0.00 100% 100% Resume [high priority] thread

 1.41 0.00 1.67 0.44 84% 15% Scheduler lock
 3.49 3.33 5.00 0.28 90% 90% Scheduler unlock [0 threads]
 3.49 3.33 5.00 0.28 90% 90% Scheduler unlock [1 suspended]
 3.41 3.33 5.00 0.15 95% 95% Scheduler unlock [many suspended]
 3.52 3.33 5.00 0.32 89% 89% Scheduler unlock [many low prio]

 1.82 1.67 3.33 0.28 90% 90% Init mutex
 4.38 3.33 5.00 0.78 62% 37% Lock [unlocked] mutex
 5.00 5.00 5.00 0.00 100% 100% Unlock [locked] mutex
 4.11 3.33 5.00 0.83 53% 53% Trylock [unlocked] mutex
 3.80 3.33 5.00 0.67 71% 71% Trylock [locked] mutex
 1.35 0.00 1.67 0.51 81% 18% Destroy mutex
 21.67 21.67 21.67 0.00 100% 100% Unlock/Lock mutex

 1.98 1.67 3.33 0.51 80% 80% Create mbox
 1.19 0.00 1.67 0.68 71% 28% Peek [empty] mbox
 4.60 3.33 5.00 0.61 76% 23% Put [first] mbox
 1.43 0.00 1.67 0.41 85% 14% Peek [1 msg] mbox
 4.52 3.33 5.00 0.68 71% 28% Put [second] mbox
 0.87 0.00 1.67 0.83 52% 47% Peek [2 msgs] mbox
 4.76 3.33 5.00 0.41 85% 14% Get [first] mbox
 4.76 3.33 5.00 0.41 85% 14% Get [second] mbox
 4.05 3.33 5.00 0.82 57% 57% Tryput [first] mbox
 3.89 3.33 5.00 0.74 66% 66% Peek item [non-empty] mbox
 4.29 3.33 5.00 0.82 57% 42% Tryget [non-empty] mbox
 3.81 3.33 5.00 0.68 71% 71% Peek item [empty] mbox
 4.05 3.33 5.00 0.82 57% 57% Tryget [empty] mbox
 1.35 0.00 1.67 0.51 80% 19% Waiting to get mbox
 1.43 0.00 1.67 0.41 85% 14% Waiting to put mbox
 2.30 1.67 3.33 0.79 61% 61% Delete mbox
 15.00 15.00 15.00 0.00 100% 100% Put/Get mbox

 1.72 1.67 3.33 0.10 96% 96% Init semaphore
 3.91 3.33 5.00 0.75 65% 65% Post [0] semaphore
 3.96 3.33 5.00 0.78 62% 62% Wait [1] semaphore
 3.91 3.33 5.00 0.75 65% 65% Trywait [0] semaphore
 3.75 3.33 5.00 0.63 75% 75% Trywait [1] semaphore

2200

Embedded Artists QuickStart Board Support

 1.72 1.67 3.33 0.10 96% 96% Peek semaphore
 1.46 0.00 1.67 0.36 87% 12% Destroy semaphore
 13.91 13.33 15.00 0.75 65% 65% Post/Wait semaphore

 1.93 1.67 3.33 0.44 84% 84% Create counter
 1.46 0.00 1.67 0.36 87% 12% Get counter value
 1.35 0.00 1.67 0.51 81% 18% Set counter value
 4.32 3.33 5.00 0.80 59% 40% Tick counter
 1.46 0.00 1.67 0.36 87% 12% Delete counter

 1.72 1.67 3.33 0.10 96% 96% Init flag
 4.06 3.33 5.00 0.82 56% 56% Destroy flag
 3.59 3.33 5.00 0.44 84% 84% Mask bits in flag
 4.06 3.33 5.00 0.82 56% 56% Set bits in flag [no waiters]
 5.63 5.00 6.67 0.78 62% 62% Wait for flag [AND]
 5.63 5.00 6.67 0.78 62% 62% Wait for flag [OR]
 5.57 5.00 6.67 0.75 65% 65% Wait for flag [AND/CLR]
 5.52 5.00 6.67 0.72 68% 68% Wait for flag [OR/CLR]
 1.35 0.00 1.67 0.51 81% 18% Peek on flag

 2.86 1.67 3.33 0.67 71% 28% Create alarm
 6.61 5.00 6.67 0.10 96% 3% Initialize alarm
 3.91 3.33 5.00 0.75 65% 65% Disable alarm
 6.15 5.00 6.67 0.72 68% 31% Enable alarm
 4.38 3.33 5.00 0.78 62% 37% Delete alarm
 4.95 3.33 5.00 0.10 96% 3% Tick counter [1 alarm]
 23.33 23.33 23.33 0.00 100% 100% Tick counter [many alarms]
 8.28 6.67 8.33 0.10 96% 3% Tick & fire counter [1 alarm]
 138.96 138.33 140.00 0.78 62% 62% Tick & fire counters [>1 together]
 26.88 26.67 28.33 0.36 87% 87% Tick & fire counters [>1 separately]
 15.00 15.00 15.00 0.00 100% 100% Alarm latency [0 threads]
 15.00 15.00 15.00 0.00 100% 100% Alarm latency [many threads]
 26.69 26.67 30.00 0.05 99% 99% Alarm -> thread resume latency

 3.38 3.33 5.00 0.00 Clock/interrupt latency

 8.33 8.33 8.33 0.00 Clock DSR latency

 312 312 312 (main stack: 716) Thread stack used (1360 total)
 All done, main stack : stack used 716 size 3920
 All done : Interrupt stack used 204 size 4096
 All done : Idlethread stack used 256 size 2048

Timing complete - 23650 ms total

PASS:<Basic timing OK>
EXIT:<done>

LED use
LEDs are available on the Prototype board. Most of these are attached to lines associated with peripherals present on the
Prototype board, or the QuickStart board itself. However 9 LEDS are available for application use from C. The following C
function may be used:

#include <cyg/infra/hal_diag.h>
extern void hal_diag_led(int leds);

Values from 0 to 511 will be displayed on the LED bank representing the binary value with 1 being on and 0 being off. The
LEDs used are connected to P0.10-P0.13 and P0.17-P0.21, and with P0.21 being the MSB, and P0.10 the LSB.

The LEDs are also used during platform initialization and only P0.10 should be illuminated if booting has been successful.
Other LED indications represent the stage in the initialization process that failed.

Other Issues
The following pin assignments are configured by default for LPC2148 at board initialisation time:

PINSEL0:

2201

Embedded Artists QuickStart Board Support

 P0.0/P0.1 for UART0
 P0.2/P0.3 for I²C
 P0.4/P0.5/P0.6 for SPI
 P0.7 as PWM2 for buzzer on Prototype board
 P0.8/P0.9 for UART1 (which is available on prototype board)
 P0.10-P0.13 as GPIO-controlled LEDs
 P0.14 EINT1 (available as button on prototype board)
 P0.15 EINT2 (available as button on prototype board)

 PINSEL1:
 P0.16 EINT0 (available as button on prototype board)
 P0.17-P0.21 as GPIO-controlled LEDs
 P0.22 as GPIO output for SPI_SEL_MMC on prototype board
 P0.23 as GPIO output for SPI_SEL_LED on prototype board
 P0.29 as GPIO input for MMC/SD card detect on prototype board
 P0.30 as EINT3 (available as button on prototype board)
 (rather than GPIO input for SD write protect on prototype board)
 All other pins set as GPIO inputs

 PINSEL2:
 P1.26-P1.31 for JTAG
 All other pins set as inputs

2202

Chapter 245. IAR KickStart Card Support

2203

IAR KickStart Card Support

Name
eCos Support for the IAR KickStart Cards — Overview

Introduction

This platform HAL is designed to support the KickStart Card series from IAR, fitted with an NXP LPC2xxx microcontroller.

The support for the KickStart board series provided by this HAL has been initially developed for the IAR LPC2106 KickStart
Card. This HAL documentation therefore presently corresponds to that particular board instance, and future supported variants
will cause this documentation to be updated accordingly.

Description

The IAR KickStart Board is fitted with an NXP LPC2xxx processor rated at up to 60MHz, which contains up to 64KB of
SRAM and up to 512KB of FLASH, depending on choice of LPC2xxx variant. The board itself has two 9-pin RS-232 serial
interfaces connected to the LPC2xxx on-chip UART 0 and UART 1, push buttons connected to interrupt lines, LEDs, a JTAG
debug port, anda prototyping area. Refer to IAR's KickStart board documentation for full details.

The typical mode of operation for eCos development usually depends on the amount of memory available. On LPC2xxx variants
with 64Kbytes or more of SRAM, a GDB stub ROM image is programmed into the LPC2xxx on-chip flash memory, and the
board will boot this image from reset. While RedBoot may also be used, its larger RAM footprint requirements usually make
it unsuitable. Both RedBoot and the GDB stub ROM provide GDB stub functionality so it is then possible to download and
debug stand-alone and eCos applications via the gdb debugger using UART 0.

On LPC2xxx variants with less than 64KBytes SRAM, it is typically expected that standalone applications will be programmed
directly to on-chip Flash, either using a hardware JTAG/ICE unit, or by serial using the on-chip In-System Programming (ISP)
mechanism included with NXP LPC2xxx microcontrollers and a suitable host application running on a PC.

This documentation describes platform-specific elements of the IAR KickStart Board support within eCos. Documentation on
the NXP LPC2xxx variants is available separately, and should be read in conjunction with this documentation. The LPC2xxx
documentation covers various topics including HAL support common to LPC2xxx variants, and on-chip device support. This
document complements the LPC2xxx documentation.

Supported Hardware

The NXP LPC2xxx microcontrollers on the IAR KickStart Boards have up to 512Kbytes of on-chip Flash memory. In a typical
setup, the GDB stub ROM or the user application will load and run from this internal flash. For initial programming of the
internal Flash, external support is required, such as the NXP LPC2000 Flash Utility, the Flash Magic tool, or a hardware
JTAG/ICE unit. The latter may be used with its own in-built LPC2xxx flash programming support if it exists, or the eCosPro®
ecoflash utility. 28Kbytes of internal flash memory should be reserved for the GDB Stub ROM, the remainder being free for
the application's use. Note that the LPC2xxx primary boot loader and IAP code reside in boot blocks located at the end of on-
chip Flash. To determine the number and size of blocks reserved for their use, consult the specific LPC2xxx variant's datasheet.

The first 64 bytes of on-chip SRAM are mapped by the HAL startup code using the LPC2xxx memory mapping control to
location 0x00000000. When loading applications using the GDB stub ROM, SRAM from location 0x40000040 to 0x40001000
is reserved for its use. The rest of SRAM is generally available for use by the application. Programs booted from ROM, or
loaded directly into SRAM via JTAG may use all SRAM. In all cases, if using the eCos LPC2xxx Flash driver, the last 32
bytes (or more if a separate program buffer is used) become reserved due to the requirements of the IAP code.

The NXP LPC2xxx variant HAL includes support for the two LPC2xxx on-chip serial devices and is documented in the variant
HAL. Although the interrupt-driven serial driver supports the line status and modem control lines on UART 1 (UART 0 not
having such support), the KickStart boards do not connect these pins, and so that functionality is unavailable.

The IAR KickStart port includes support for the on-chip watchdog, RTC (wallclock), interrupt controller (VIC) and on-chip
Flash. This support is documented in the LPC2xxx variant HAL.

2204

IAR KickStart Card Support

Tools
The KickStart Board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is supported.
The original port was created using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.16.

2205

IAR KickStart Card Support

Name
Setup — Preparing the IAR KickStart Board for eCos Development

Overview
In a typical development environment, the IAR KickStart Board boots from internal flash into either the GDB stub ROM
monitor or directly into the user application. In the case of microcontrollers with less than 64Kbytes of SRAM, the latter is
recommended. eCos applications to be loaded and run from the GDB stub ROM monitor may be configured for RAM startup
and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the board therefore usually involves
programming a suitable ROM image into Flash memory, either the GDB stub ROM or application images.

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed via
the configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD and rebuilding the application,
or if applicable, GDB stub ROM. A "straight through" 9-pin RS232 serial cable, with Male<->Female connectors is required.
Using a "null modem" serial cable will not work.

Initial Installation

Board setup

Jumper settings must be checked and potentially changed on the board to ensure correct operation. This section describes jumper
settings that are known to require attention. In general, any board-specific documentation from IAR takes precedence over the
documentation here, as this may reflect hardware which has been modified since the time of writing of this documentation.
Many KickStart boards are similar to each other, the only change of note being of course the choice of LPC2xxx microcontroller
fitted. But if your board does not fit the description here (which has initially been based on the LPC2106 KickStart) then you
should consult the board documentation.

Firstly, there are two jumpers located close to the serial connectors, labelled JP3 and JP4 on the LPC2106 KickStart. These
can both be closed (i.e. jumper fitted and connecting the two pins) in order to permit use of both serial ports.

There are two jumpers labelled EN_SW_ISP and EN_SW_RST close to the push buttons, also labelled JP7 and JP8 respectively
on the LPC2106 KickStart. In general, these jumpers should only be closed when wishing to reprogram the on-chip Flash via
ISP. Otherwise they should remain open (jumper not connecting the two pins) so that any unplugging of the serial connector,
movement of the serial connector, or use of flow control signals from the host PC, do not cause a spurious reset or interrupt
(on the EINT1 line) of the board.

The jumpers controlling the LEDs (labelled LED Jumper Block on the LPC2106 KickStart) may remain in their default state
of being connected to P0.0-P0.15. This is assumed by code which allows use of the user-configurable LEDs, as described later.

All other jumpers can remain in their factory-supplied default state.

Flash Installation

This process assumes that a Microsoft Windows machine with the Flash Magic utility installed is available. Flash Magic is
a tool for programming flash based microcontrollers from NXP using a protocol via the RS232 serial port to communicate
with the In-System Programming (ISP) firmware on the LPC2xxx. The Flash Magic utility is sponsored by NXP and available
from this website.

The first step is to connect the RS232 cable between UART0 of the KickStart board and the host PC. Do not use UART1. Now
close the two jumpers mentioned earlier labelled EN_SW_ISP and EN_SW_RST. These allow the software on the PC to reset
the LPC2xxx and enter the ISP firmware. Finally apply the power.

Start the Flash Magic utility on the host PC, and a window will be displayed allowing various parameters to be configured
in a series of steps. For step 1, firstly choose the appropriate COM port that is being used on your PC and set the Baud Rate
to 38400 baud. Next select the appropriate LPC2xxx device in use such as LPC2106. The "Interface" should be set to "None
(ISP)". And finally for step 1 choose the appropriate Oscillator Frequency for the KickStart board in use. This may be found
in the board documentation, and is usually visibly readable on the surface of the oscillator on the board (in a metal package).
For example for the LPC2106 KickStart, the oscillator reads T14.7456 indicating 14.7456MHz.

2206

http://www.flashmagictool.com/

IAR KickStart Card Support

For step 2, it is usually adequate to leave the option "Erase blocks used by hex file" checked, and ignore the other settings. For
step 3, you must select the program image to be downloaded, in Intel HEX format. To program the pre-built GDB stub ROM
image, locate the file gdb_module.hex in the loaders subdirectory of your release. To generate an Intel HEX format
version of an application you have built yourself run the following command at a shell prompt:

 $ arm-eabi-objcopy -O ihex app.elf app.hex

This converts the application image in ELF format (as output by the linker), to Intel HEX format in the file app.hex. Note
that the arm-eabi tools must be on your path at this point. If they are not, run the command below before you run the above
arm-eabi-objcopy command:

 $. /opt/ecos/ecosenv.sh

In step 4, it is recommended to set the option "Verify after programming". Finally it is possible to click on "Start" to program
the image into the on-chip Flash.

Tip

If there is a problem communicating with the board, such as a report of a failure to autobaud, then this may
imply that the Flash Magic tool was not able to control the serial lines properly. This can happen with some
USB-Serial converters. To workaround this issue, power the board off and remove (i.e. open) the EN_SW_ISP
and EN_SW_RST jumpers. Then simultaneously press the buttons marked 'Reset' and 'ISP/INT1' then release
the Reset button, and finally release the 'ISP/INT1' button. This is an alternative mechanism of forcing the ISP
firmware to be entered. Once this has been successfully performed, the programming operation may be retried
from the Flash Magic utility.

When the process completes, remove (i.e. open) the two jumpers next to the serial port. If a GDB stub ROM image has been
programmed, verify the programming has been successful by starting a terminal emulation application such as HyperTerminal
on the host PC and set the serial communication parameters to 38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no
flow control (handshaking). Reset the board and the stubrom should start. For boards programmed with GDB stubs the output
should be similar to the following:

+$T050f:ec070000;0d:28080040;#52

This is the stubrom attempting to communicate with GDB and indicates that it is functioning correctly.

Rebuilding the GDB Stub ROM
Should it prove necessary to rebuild the GDB Stub ROM binary, this is done most conveniently at the command line. Your
PATH and ECOS_REPOSITORY environment variables must first be set correctly, The following steps given an example of
how to rebuild the stubs for a KickStart board with LPC2106:

$ mkdir stub_rom
$ cd stub_rom
$ ecosconfig new iar_kickstart_lpc2106 stubs
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the files gdb_module.img (ELF format),
gdb_module.srec (Motorola S-Record format), gdb_module.bin (raw binary format), and gdb_module.hex (Intel
HEX format).

2207

IAR KickStart Card Support

Name
Configuration — Platform-specific Configuration Options

Overview
The IAR KickStart platform HAL package is loaded automatically when eCos is configured for a target which uses it. The
target names include the LPC2xxx model in use. At this time the only target supported is the iar_kickstart_lpc2106
target. It should never be necessary to load this platform HAL package explicitly. Unloading the package should only happen
as a side effect of switching target hardware.

Startup
The IAR KickStart platform HAL package supports three separate startup types:

ROM This startup type can be used for finished applications which will be programmed into internal flash at location 0x0.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization. On targets with less than 64Kbytes of SRAM, this is the startup
type normally used.

RAM This is the startup type which is normally used during application development on targets with 64Kbytes of SRAM or
greater. The board has the GDB stubrom or RedBoot programmed into flash at location 0x0 in internal on-chip Flash
and boots from that location. arm-eabi-gdb is then used to load a RAM startup application into memory and debug it.
It is assumed that the hardware has already been initialized by the ROM monitor. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from the ROM monitor, including diagnostic output.
Larger applications may not fit into the available SRAM, in which case ROM startup may be required.

JTAG This is an alternative development startup type. The application is loaded into RAM via a JTAG device and is run
and debugged from there. The application will be self-contained with no dependencies on services provided by other
software. It is expected that hardware setup will have been performed via the JTAG device prior to loading. Some
sample configuration and initialisation scripts for a number of JTAG debugging solutions may be found in the misc
subdirectory of the platform HAL package within the component repository.

The ROM Monitor and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB Stubrom or RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained, or
as a testing step before switching to ROM startup. Virtual vector support is usually only required for RAM startup applications
or ROM monitors. The CDL option CYGFUN_HAL_LPC2XXX_VIRTUAL_VECTOR_SUPPORT within the LPC2xxx variant
HAL allows manual control of this facility.

If the application does not rely on a ROM monitor for diagnostic services then by default serial port UART0 will be claimed
for HAL diagnostics. If using the Prototype Board, it becomes possible to use UART1 as well, and in order to allow its
selection as a potential debug or diagnostic channel, the number of communications channels can be increased from 1 to 2 with
the option CYGNUM_HAL_VIRTUAL_VECTOR_COMM_CHANNELS. To specify which serial port is used for diagnostics, the
configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL may be set accordingly, and its baud rate
configured with CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The PLL multiplier may be configured to allow a core clock
(CCLK) speed of up to 60MHz. The description of the clock-related CDL options may be found in the LPC2xxx variant HAL

2208

IAR KickStart Card Support

documentation. Note there are frequency constraints on the Current Controlled Oscillator (CCO) within the LPC2xxx, and the
datasheet should be consulted to ensure the required specifications are not exceeded.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

However there are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. To build eCos in Thumb mode, enable the CYGHWR_THUMB
configuration option in the ARM architecture HAL.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
For example, allowing a Thumb application to be used with eCos built in normal ARM
mode. Without this option, some memory can be saved. This option should be used if -
mthumb is used. eCos may be built with Thumb interworking support by enabling the
CYGBLD_ARM_ENABLE_THUMB_INTERWORK CDL option in the ARM architecture
HAL. Use of the LPC2xxx Flash driver requires Thumb interworking support to be
enabled as the calls into the IAP firmware are must be made allowing a switch to Thumb
mode.

2209

IAR KickStart Card Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the IAR KickStart board hardware, and
should be read in conjunction with that specification. The KickStart Board platform HAL package complements the ARM
architectural HAL and the LPC2xxx variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. This includes the PINSEL
functions and LED bank. There is an exception for RAM startup applications which depend on a ROM monitor for certain
services.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including PLL
(for the clocks), Memory Mapping control registers to map SRAM to 0x0, and Memory Acceleration Module (MAM). The
details of the early hardware startup may be found in the header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

on-chip Flash This is located at address 0x0 of the memory space, although after hardware initialization, the
start of internal SRAM is mapped over locations 0x0 to 0x40. The size of this region depends
on the LPC2xxx microcontroller variant in use. In the case of the LPC2106, the region is of size
128Kbytes, ending at 0x20000. However the last few blocks of Flash are reserved for use as
bootblocks for the ISP/IAP firmware, resulting in a usable Flash size of 120Kbytes, ending at
0x1e000. The MAM is enabled to accelerate memory reads from this area.

internal SRAM This is located at address 0x40000000 of the memory space, and is 16, 32 or 64k in size, de-
pending on the chip fitted. The first 64 bytes are mapped to location 0x0000000. If using GDB
stubs ROM, or another ROM monitor, the virtual vector table starts at 0x40000050 and extends
to 0x40000150. The remainder of SRAM is available for use by applications. For RAM startup
applications, SRAM below 0x40001000 is reserved for the GDB stubrom and the remainder
is available for the application. An exception is if the on-chip Flash driver is to be used. In
that case, the top 32 bytes of SRAM are used by it. This is automatically handled in the port's
memory layout files if the flash driver is present in the configuration.

on-chip peripherals These are accessible at location 0xE0000000 onwards. Descriptions of the contents can be found
in the LPC2xxx User Manual for the appropriate microcontroller variant.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 245.1. iar_kickstart Real-time characterization

 Startup, main stack : stack used 420 size 3920
 Startup : Interrupt stack used 148 size 4096
 Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 14.94 microseconds (8 raw clock ticks)

2210

IAR KickStart Card Support

Testing parameters:
 Clock samples: 32
 Threads: 2
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 13.56 13.56 13.56 0.00 100% 100% Create thread
 3.39 3.39 3.39 0.00 100% 100% Yield thread [all suspended]
 4.24 3.39 5.09 0.85 100% 50% Suspend [suspended] thread
 3.39 3.39 3.39 0.00 100% 100% Resume thread
 5.09 5.09 5.09 0.00 100% 100% Set priority
 1.70 1.70 1.70 0.00 100% 100% Get priority
 11.87 11.87 11.87 0.00 100% 100% Kill [suspended] thread
 4.24 3.39 5.09 0.85 100% 50% Yield [no other] thread
 5.93 5.09 6.78 0.85 100% 50% Resume [suspended low prio] thread
 4.24 3.39 5.09 0.85 100% 50% Resume [runnable low prio] thread
 5.93 5.09 6.78 0.85 100% 50% Suspend [runnable] thread
 3.39 3.39 3.39 0.00 100% 100% Yield [only low prio] thread
 3.39 3.39 3.39 0.00 100% 100% Suspend [runnable->not runnable]
 11.87 11.87 11.87 0.00 100% 100% Kill [runnable] thread
 8.48 8.48 8.48 0.00 100% 100% Destroy [dead] thread
 15.26 15.26 15.26 0.00 100% 100% Destroy [runnable] thread
 22.04 20.35 23.74 1.70 100% 50% Resume [high priority] thread
 8.38 6.78 11.87 0.23 92% 7% Thread switch

 1.38 0.00 1.70 0.52 81% 18% Scheduler lock
 3.31 1.70 3.39 0.15 95% 4% Scheduler unlock [0 threads]
 3.31 1.70 3.39 0.15 95% 4% Scheduler unlock [1 suspended]
 3.31 1.70 3.39 0.15 95% 4% Scheduler unlock [many suspended]
 3.31 1.70 3.39 0.15 95% 4% Scheduler unlock [many low prio]

 1.75 1.70 3.39 0.10 96% 96% Init mutex
 4.24 3.39 5.09 0.85 100% 50% Lock [unlocked] mutex
 4.82 3.39 5.09 0.45 84% 15% Unlock [locked] mutex
 4.08 3.39 5.09 0.82 59% 59% Trylock [unlocked] mutex
 3.71 3.39 5.09 0.52 81% 81% Trylock [locked] mutex
 1.38 0.00 1.70 0.52 81% 18% Destroy mutex
 20.35 20.35 20.35 0.00 100% 100% Unlock/Lock mutex

 1.96 1.70 3.39 0.45 84% 84% Create mbox
 1.38 0.00 1.70 0.52 81% 18% Peek [empty] mbox
 4.50 3.39 5.09 0.76 65% 34% Put [first] mbox
 1.27 0.00 1.70 0.64 75% 25% Peek [1 msg] mbox
 4.56 3.39 5.09 0.73 68% 31% Put [second] mbox
 1.22 0.00 1.70 0.68 71% 28% Peek [2 msgs] mbox
 4.56 3.39 5.09 0.73 68% 31% Get [first] mbox
 4.56 3.39 5.09 0.73 68% 31% Get [second] mbox
 3.97 3.39 5.09 0.76 65% 65% Tryput [first] mbox
 3.39 3.39 3.39 0.00 100% 100% Peek item [non-empty] mbox
 4.40 3.39 5.09 0.82 59% 40% Tryget [non-empty] mbox
 3.66 3.39 5.09 0.45 84% 84% Peek item [empty] mbox
 3.92 3.39 5.09 0.73 68% 68% Tryget [empty] mbox
 1.38 0.00 1.70 0.52 81% 18% Waiting to get mbox
 1.43 0.00 1.70 0.45 84% 15% Waiting to put mbox
 2.44 1.70 3.39 0.83 56% 56% Delete mbox
 13.88 13.56 15.26 0.52 81% 81% Put/Get mbox

 1.70 1.70 1.70 0.00 100% 100% Init semaphore
 3.71 3.39 5.09 0.52 81% 81% Post [0] semaphore
 3.97 3.39 5.09 0.76 65% 65% Wait [1] semaphore
 3.66 3.39 5.09 0.45 84% 84% Trywait [0] semaphore

2211

IAR KickStart Card Support

 3.60 3.39 5.09 0.37 87% 87% Trywait [1] semaphore
 1.75 1.70 3.39 0.10 96% 96% Peek semaphore
 1.70 1.70 1.70 0.00 100% 100% Destroy semaphore
 13.56 13.56 13.56 0.00 100% 100% Post/Wait semaphore

 2.01 1.70 3.39 0.52 81% 81% Create counter
 1.70 1.70 1.70 0.00 100% 100% Get counter value
 1.22 0.00 1.70 0.68 71% 28% Set counter value
 4.13 3.39 5.09 0.83 56% 56% Tick counter
 1.43 0.00 1.70 0.45 84% 15% Delete counter

 1.70 1.70 1.70 0.00 100% 100% Init flag
 4.13 3.39 5.09 0.83 56% 56% Destroy flag
 3.50 3.39 5.09 0.20 93% 93% Mask bits in flag
 4.03 3.39 5.09 0.79 62% 62% Set bits in flag [no waiters]
 5.40 5.09 6.78 0.52 81% 81% Wait for flag [AND]
 5.30 5.09 6.78 0.37 87% 87% Wait for flag [OR]
 5.30 5.09 6.78 0.37 87% 87% Wait for flag [AND/CLR]
 5.35 5.09 6.78 0.45 84% 84% Wait for flag [OR/CLR]
 1.22 0.00 1.70 0.68 71% 28% Peek on flag

 2.70 1.70 3.39 0.82 59% 40% Create alarm
 6.46 5.09 6.78 0.52 81% 18% Initialize alarm
 3.81 3.39 5.09 0.64 75% 75% Disable alarm
 6.04 5.09 6.78 0.83 56% 43% Enable alarm
 4.29 3.39 5.09 0.84 53% 46% Delete alarm
 4.82 3.39 5.09 0.45 84% 15% Tick counter [1 alarm]
 22.15 22.04 23.74 0.20 93% 93% Tick counter [many alarms]
 8.05 6.78 8.48 0.64 75% 25% Tick & fire counter [1 alarm]
 138.82 137.33 139.03 0.37 87% 12% Tick & fire counters [>1 together]
 25.70 25.43 27.13 0.45 84% 84% Tick & fire counters [>1 separately]
 13.56 13.56 13.56 0.00 100% 100% Alarm latency [0 threads]
 15.54 13.56 18.65 1.49 50% 32% Alarm latency [2 threads]
 15.54 13.56 18.65 1.49 50% 32% Alarm latency [many threads]
 27.14 27.13 28.82 0.02 99% 99% Alarm -> thread resume latency

 3.39 3.39 3.39 0.00 Clock/interrupt latency

 7.93 6.78 11.87 0.00 Clock DSR latency

 272 272 272 (main stack: 764) Thread stack used (1360 total)
 All done, main stack : stack used 764 size 3920
 All done : Interrupt stack used 204 size 4096
 All done : Idlethread stack used 248 size 2048

Timing complete - 30220 ms total

PASS:<Basic timing OK>
EXIT:<done>

LED use
LEDs are available on the KickStart boards although most of these are attached to lines associated with peripherals. However
4 LEDS are available for application use from C. The following C function may be used:

#include <cyg/infra/hal_diag.h>
extern void hal_diag_led(int leds);

Values from 0 to 15 will be displayed on the LED bank representing the binary value with 1 being on and 0 being off. The
LEDs used are connected to P0.10-P0.13 P0.13 being the MSB, and P0.10 the LSB.

The LEDs are also used during platform initialization and only P0.10 should be illuminated if booting has been successful.
Other LED indications represent the stage in the initialization process that failed.

Other Issues
The following pin assignments are configured by default for LPC2106 at board initialisation time:

PINSEL0:

2212

IAR KickStart Card Support

 P0.0/P0.1 for UART0
 P0.2/P0.3 for I2C
 P0.4/P0.5/P0.6/P0.7 for SPI
 P0.8/P0.9 for UART1
 P0.10-P0.13 as GPIO-controlled LEDs
 P0.14 EINT1
 P0.15 EINT2

 PINSEL1:
 P0.16 EINT0
 P0.17-P0.21 as GPIO, although in practice these are used for JTAG
 if a JTAG unit is connected.
 P0.22-P0.31 as GPIO inputs

2213

Chapter 246. Keil MCB2387 Board
Support

2214

Keil MCB2387 Board Support

Name
eCos Support for the Keil MCB2387 Board — Overview

Description
The Keil MCB2387 Board is fitted with an NXP LPC2387 processor rated up to 72MHz, which contains 64KB of SRAM and
512KB of FLASH. It provides access to two on-chip UARTs, an MMC/SD card socket, and a PHY connected to the on-chip
Ethernet MAC. Refer to the board documentation for full details.

For typical eCos development, a GDB StubROM image is programmed into the LPC2387 on-chip flash memory, and the board
will boot this image from reset. This provides gdb stub functionality so it is then possible to download and debug stand-alone
and eCos applications via the gdb debugger using UART 0.

This documentation describes platform-specific elements of the MCB2387 Board support within eCos. Documentation on the
NXP LPC2xxx variants is available separately, and should be read in conjunction with this documentation. The LPC2xxx
documentation covers various topics including HAL support common to LPC2xxx variants, and on-chip device support. This
document complements the LPC2xxx documentation.

Supported Hardware
The MCB2387 board has 512Kbyte of on-chip Flash memory. In a typical setup, the stubrom will run from this internal flash.
An image must be programmed into this flash using either the FlashMagic utility, or via a JTAG debugger.

The first 64 bytes of on-chip SRAM are mapped by the HAL startup code using the LPC2387 memory mapping control to
location 0x00000000 for speed of interrupt vector processing. The rest of SRAM is available for use by the application.

The NXP LPC2xxx variant HAL includes support for the on-chip serial devices which is documented in the variant HAL.
While the interrupt-driven serial driver supports the line status and modem control features of the UART devices, none of these
lines are made available on the COM0 or COM1 connectors.

The MCB2387 board port includes support for the on-chip watchdog, RTC (wallclock), and interrupt controller (VIC). This
support is documented in the LPC2xxx variant HAL.

The on-chip Ethernet MAC is supported.

The on-chip Multimedia Card Interface (MCI) is supported to allow access to Multimedia Cards (MMC) or Secure Digital
(SD) cards using the socket on the OEM board.

Drivers for I²C and SPI are present. However, since there are no on-board devices connected to these busses, they have only
been tested using external devices attached to the board for the purpose.

Tools
The MCB2387 board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is supported.
The original port was done using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.16.

2215

Keil MCB2387 Board Support

Name
Setup — Preparing the MCB2387 Board for eCos Development

Overview
In a typical development environment, the MCB2387 board boots from internal flash into the GDB stubrom. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the
board therefore usually involves programming a suitable image into flash memory.

Initial Installation

Flash Installation

This process assumes that a Microsoft Windows machine with the Embedded Systems Academy Flash Magic utility is available.
Install Flash Magic from http://www.flashmagictool.com. Connect a 9-pin serial cable from a COM port on the PC to the
COM0 connector on the MCB2387 Board. Power the board via a USB cable.

Set the ISP jumpers (J9(RST) and J10(ISP) on, J13(ETM) off) and press the reset button. The board is now running a special
NXP boot loader. Start Flash Magic and set the Communications section to select the COM port used above, 38400 baud,
device LPC2387, Interface “None (ISP)” and 12MHz Oscillator Frequency. Test communication with the board by using the
“ISP->Read Device Signature” menu entry. If communication is not successful, check that the serial cable is connected, the
ISP jumpers are installed and the correct COM port is being used.

Check “Erase blocks used by Hex File” under “Erase”. In the “Hex File” section, select the stubrom.hex file. Under “Op-
tions”, all boxes should be clear except “Verify after programming”. Now press the “Start” button. The utility should show
the progress of the upload.

When the process completes, the utility should be closed. Reset the ISP jumpers (J9(RST) and J10(ISP) off, J13(ETM) on).
Verify the programming has been successful by starting a terminal emulation application such as HyperTerminal or minicom
on the host PC and set the serial communication parameters to 38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow
control (handshaking). Reset the board and the stubrom should start. The output should be similar to the following:

+$T050f:98070000;0d:48070040;#fc

This is the stubrom reporting it's state using the GDB remote protocol.

Rebuilding the Stubrom
Should it prove necessary to rebuild the Stubrom binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild RedBoot for the
MCB2387 are:

$ mkdir stub_mcb2387_rom
$ cd stub_mcb2387_rom
$ ecosconfig new mcb2387 stubs
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file stubrom.hex.

2216

http://www.flashmagictool.com

Keil MCB2387 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The mcb2387 platform HAL package is loaded automatically when eCos is configured for an mcb2387 target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup
The mcb2387 platform HAL package supports three separate startup types:

JTAG This is the startup type which is normally used during JTAG based application development. arm-eabi-gdb is then
used to connect to the JTAG device and load a JTAG startup application into memory and debug it. It is assumed that
the basic hardware has already been initialized via the JTAG device's initialization script. Otherwise the application
is entirly self contained and should contain drivers for all hardware used.

RAM This is the startup type which is normally used during stubrom based application development. The board has the
stubrom programmed into flash at location 0x0 in internal on-chip Flash and boots from that location. arm-eabi-gdb
is then used to load a RAM startup application into memory and debug it. It is assumed that the basic hardware has
already been initialized by the stubs. By default the application will use the eCos virtual vectors mechanism to obtain
certain services from the stubrom, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into internal flash at location 0x0.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the stubrom.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
or as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port UART0 will be claimed for HAL
diagnostics.

Flash Driver
The CYGPKG_DEVS_FLASH_LPC2XXX package contains all the code necessary to support the on-chip flash.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The PLL multipliers and dividers may be configured to allow a
core clock (CCLK) speed of up to 72MHz. However, the platform HAL currently sets the clock to 48MHz, duplicating the
configuration in the supplied example code as a consequence of CPU errata affecting various revisions of the LPC2387. Setting
the CPU revision with the CYGHWR_HAL_ARM_LPC2XXX_MCB2387_CPU_REVISION configuration option can be used
to provide default clock settings appropriate to the CPU revision in use. If the CPU revision cannot be guaranteed it should be
left as "Initial". The description of the clock-related CDL options may be found in the LPC2xxx variant HAL documentation.

2217

Keil MCB2387 Board Support

I²C Bus Configuration
The on-chip I²C devices are supported by a driver in the variant HAL package. Each bus for this driver needs to be configured
in the platform HAL with the following options:

CYGPKG_HAL_ARM_LPC2XXX_I2CX

This is the master component, enabling this activates all the other configuration options and causes the driver to create
the data structures to access this bus.

CYGPKG_HAL_ARM_LPC2XXX_I2CX_CLOCK

Bus clock speed in Hz. Usually frequencies of either 100kHz or 400kHz are chosen, the latter sometimes known as fast
mode.

CYGPKG_HAL_ARM_LPC2XXX_I2CX_SDA

This option describes the pin used for SDA on this bus. This takes the form of an invocation of the macro
__LPC2XXX_PINSEL_FUNC. Parameters are the port number, pin within that port, and the alternate select function for
the pin. See the LPC2387 user manual for details of which pins may be used by each bus.

CYGPKG_HAL_ARM_LPC2XXX_I2CX_SCL

This option describes the pin used for SCL on this bus. Like SDA this takes the form of a call to
__LPC2XXX_PINSEL_FUNC.

Note that "I2CX" is a placeholder for a given bus instance: "I2C0", "I2C1" or "I2C2". By default the platform HAL does not
enable any I²C buses since there are no on-board devices.

SPI Bus Configuration
The on-chip SSP SPI devices (not the Legacy SPI device) are supported by the NXPSSP driver package, CYGPKG_DE-
VS_SPI_ARM_NXPSSP. This needs some configuration in the platform HAL:

CYGPKG_HAL_ARM_LPC2XXX_SPI

This is the master component, enabling this activates all the other configuration options. It also causes mcb2387_spi.c
to be compiled, which contains descriptions of the devices on the SPI buses.

CYGPKG_HAL_ARM_LPC2XXX_SPIX

This is the master component for each bus. Enabling this activates the other configuration options for this bus, and causes
the driver to support this bus.

CYGPKG_HAL_ARM_LPC2XXX_SPIX_SCLK

This option describes the pin used for SCLK on SPIX. It takes the form of an invocation of __LPC2XXX_PINSEL_FUNC.
The parameters are the port number, pin within that port, and the alternate select function for the pin. See the LPC2387
user manual for details."

CYGPKG_HAL_ARM_LPC2XXX_SPIX_MISO

This option describes the pin used for MISO on SPIX. Like SCLK it takes the form of a call to
__LPC2XXX_PINSEL_FUNC.

CYGPKG_HAL_ARM_LPC2XXX_SPIX_MOSI

This option describes the pin used for MOSI on SPIX. Like SCLK it takes the form of a call to
__LPC2XXX_PINSEL_FUNC.

2218

Keil MCB2387 Board Support

CYGPKG_HAL_ARM_LPC2XXX_SPIX_CS_PINS

This defines the pins to be uses as chip selects for this bus. It is a comma separated list of GPIO pin names, the first for
device 0, the second for device 1, and so on. Pin names are defined in the var_io.h header in the LPC2xxx variant HAL.

Note that "SPIX" is a placeholder for a given bus instance: "SPI0" or "SPI1". By default the platform HAL does not enable
any SPI busses since there are on on-chip devices.

MCI peripheral configuration
The on-chip Multimedia Card Interface (MCI) is supported to allow access to Multimedia Cards (MMC) or Secure Digital
(SD) cards using the socket on the board. This support is provided in conjunction with the generic MMC/SD driver package
(CYGPKG_DEVS_DISK_MMC), the Primecell MCI driver package (CYGPKG_DEVS_MMCSD_ARM_PRIMECELL_MCI) and
the LPC2xxx variant HAL in order to provide some elements of the DMA support. Documentation and configuration options
within those packages should also be consulted.

The following CDL configuration options are used to control the behaviour of the MMC/SD card support:

MMC/SD card support (CYGPKG_HAL_ARM_LPC2XXX_MCB2387_MCI)

This option allows the MMC/SD card support as a whole to be enabled or disabled, although the generic disk device driver
package (CYGPKG_IO_DISK) must be loaded in order to enable the MMC/SD support.

Use on-chip USB memory for DMA (CYGSEM_HAL_ARM_LPC2XXX_MCB2387_MCI_USE_USB_MEM_FOR_DMA

The LPC2387 cannot always keep up with the data transfer requirements, especially at slower CPU clock speeds. This
is because the DMA controller runs at the speed of the CPU clock (CCLK) along with the fact that some LPC2387 have
errata which decreases their achievable CPU clock frequency.

Using on-chip memory dedicated to USB helps reduce or remove these problems, depending on CPU frequency. Clearly
this option must be disabled if the on-chip USB peripheral is to be used. It is also desirable to disable this option if the
CPU frequency is high enough, in order to remove an extra copy on every data transfer, thus improving performance. The
USB memory used is 512 bytes at the start of the USB memory space (0x7FD00000).

If this option is disabled and the DMA is not able to proceed quickly enough, this will be visible in the form of I/O errors.
In that case, if it is not possible to enable this option it is recommended to adjust the CYGDAT_HAL_ARM_LPC2XXX_M-
CB2387_MCI_BUS_SPEED_LIMIT configuration option.

Lock AHB bus during DMA transfer (CYGSEM_HAL_ARM_LPC2XXX_MCB2387_MCI_DMA_LOCKS_AHB)

The AMBA Hardware Bus (AHB) is used to connect AMBA peripherals within the LPC2387, including the ARM core,
DMA controller and memory controllers. When this option is enabled, the AHB is locked for the duration of MCI DMA
transfer bursts. If another AMBA host needs to make a transfer it may be delayed as a result, which may not be desirable.

Disabling this option allows the AHB arbiter to permit other AHB hosts to perform transfers. Of course this may mean
the MCI DMA transfers can in turn themselves get delayed, risking data overruns or underruns in MCI transfers, resulting
in I/O errors during block reads or writes. This is particularly likely on processors running at slower clock speeds where
there may already be difficulties with the DMA servicing data transfers quickly enough.

MMC/SD bus frequency limit (CYGNUM_HAL_ARM_LPC2XXX_MCB2387_MCI_BUS_SPEED_LIMIT)

The LPC2387 cannot always keep up with the data transfer requirements, especially at slower CPU clock speeds. This
is because the DMA controller runs at the speed of the CPU clock (CCLK) along with the fact that some LPC2387 have
errata which decreases their achievable CPU clock frequency. The adjacent options to use on-chip USB memory and to
lock the AHB bus can help prevent this, but sometimes they are insufficient to prevent data overruns or underruns resulting
in I/O errors during block reads or writes. In which case the only remaining recourse is to reduce the required data transfer
rate between the MCI and the card.

This option can be used to impose an upper limit on the MMC/SD bus frequency. The value used in this option is measured
in Hertz, and the use of 4-bit mode with SD cards is not a factor - this option provides the bus frequency, so a 4-bit bus
will transfer four times the amount of data as a 1-bit bus in the same time period.

2219

Keil MCB2387 Board Support

Note that this option provides a limit, and does not mean the card bus will operate at that frequency. The frequency is
also governed by what the card will support, and the resolution of the clock used to derive the MMC/SD clock signal,
and how it can be divided down.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

However there are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used.

2220

Keil MCB2387 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the MCB2387 board hardware, and should
be read in conjunction with that specification. The LPC2387 platform HAL package complements the ARM architectural HAL
and the LPC2xxx variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor to do most of this and for JTAG startup, where some initialization
will be done by the JTAG device.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including PLL
(for the clocks); Memory Mapping control registers to map SRAM to 0x0 and the Memory Acceleration Module (MAM). The
details of the early hardware startup may be found in the header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

on-chip Flash This is located at address 0x0 of the memory space, although after hardware initialization, the
start of internal SRAM is mapped over locations 0x0 to 0x40. This region ends at 0x80000. The
MAM is enabled to accelerate memory reads from this area. A driver is available for using this
flash via the eCos flash API.

internal SRAM This is located at address 0x40000000 of the memory space, ending at location 0x4000FFFF.
The first 64 bytes are mapped to location 0x0000000.

on-chip peripherals These are accessible via location 0xE0000000 onwards. Descriptions of the contents can be
found in the LPC2387 User Manual.

2221

Chapter 247. Phytec phyCORE LPC2294
Board Support

2222

Phytec phyCORE LPC2294 Board Support

Name
eCos Support for the Phytec phyCORE LPC2294 Board — Overview

Description
The Phytec phyCORE LPC2294 Board is fitted with a Philips LPC2294 processor rated to 60MHz, which contains up to 64KB
of SRAM and up to 256KB of FLASH. When used in conjunction with the phyCORE HD200 development board, it provides
two 9-pin RS-232 serial interfaces connected to the LPC2294 on-chip UARTs, a single LED, two CAN interfaces and an SMSC
LAN91C111 ethernet interface. Refer to the board documentation for full details.

For typical eCos development, a RedBoot image is programmed into the LPC2294 on-chip flash memory, and the board will
boot this image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone
and eCos applications via the gdb debugger using UART 0 or via the ethernet.

This documentation describes platform-specific elements of the phyCORE LPC2294 Board support within eCos. Documen-
tation on the Philips LPC2xxx variants is available separately, and should be read in conjunction with this documentation.
The LPC2xxx documentation covers various topics including HAL support common to LPC2xxx variants, and on-chip device
support. This document complements the LPC2xxx documentation.

Supported Hardware
The phyCORE LPC2294 Board has 128Kbyte of on-chip Flash memory. In a typical setup, RedBoot will load and run from
this internal flash. An initial image must be programmed into this flash using either the FlashMagic utility, or via a JTAG
debugger. Following this, it may be reprogrammed using flash drivers in RedBoot.

The first 64 bytes of on-chip SRAM are mapped by the HAL startup code using the LPC2294 memory mapping control to
location 0x00000000 for speed of interrupt vector processing. The rest of SRAM is available for use by the application. One
MByte of SRAM is available at 0x81000000; the first 64KBytes of this is reserved for use by RedBoot, the rest is available
for the code and data of loaded applications.

The Philips LPC2xxx variant HAL includes support for the two on-chip serial devices and is documented in the variant HAL.
The interrupt-driven serial driver supports the line status and modem control (including hardware handshaking) lines on UART1
only. These handshaking lines are not accessible at the DB9 connector (P1B).

The phyCORE LPC2294 Board port includes support for the on-chip watchdog, RTC (wallclock), and interrupt controller
(VIC). This support is documented in the LPC2xxx variant HAL.

The SMSC LAN91C111 ethernet MAC is supported. However, due to PCB tracking problems, it is only capable of running
at 10MBit/s and the driver forces the device to only operate at that speed.

Tools
The phyCORE LPC2294 Board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is
supported. The original port was done using arm-elf-gcc version 3.3.3, arm-elf-gdb version 6.1, and binutils version 2.14.

2223

Phytec phyCORE LPC2294 Board Support

Name
Setup — Preparing the phyCORE LPC2294 Board for eCos Development

Overview
In a typical development environment, the phyCORE LPC2294 Board boots from internal flash into RedBoot. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the
board therefore usually involves programming a suitable stubrom image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.hex

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.srec

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed
via the configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD and rebuilding the stubrom.

Initial Installation

Flash Installation

This process assumes that a Microsoft Windows machine with the Embedded Systems Academy Flash Magic utility is available.

Install Flash Magic from http://www.flashmagictool.com.

Connect the RS232 cable supplied with the phyCORE LPC2294 between port 0 of the phyCORE LPC2294 and the host PC.
Apply power to the board and with the Boot button (S_1) held down, press and release the reset button (S_2). The board is
now running a special NXP boot loader. Start Flash Magic and set the Communications section to select the appropraite serial
port, 38400 baud, device LPC2294, Interface “None (ISP)” and 12MHz Oscillator Frequency. Test communication with the
board by using the “ISP->Read Device Signature” menu entry. If communication is not successful, check that the serial cable
is connected correctly, that the board was booted with the Boot button (S_1) held down and that the correct communication
parameters have been selected in Flash Magic.

Check “Erase blocks used by Hex File” under “Erase”. In the “Hex File” section, select the redboot_ROM.hex file. Under
“Options”, all boxes should be clear except “Verify after programming”. Now press the “Start” button. The utility should show
the progress of the upload.

When the process completes, the utility should be closed. Verify that programming has been successful by starting a terminal
emulation application such as HyperTerminal or minicom on the host PC and set the serial communication parameters to 38400
baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Reset the board and RedBoot should start.
The output should be similar to the following:

+... Read from 0x801e0000-0x801fffff to 0x810e0000:
... Read from 0x801ff000-0x801fffff to 0x810df000:
... waiting for BOOTP information
Ethernet eth0: MAC address 00:50:c2:32:ad:40
IP: 10.0.0.200/255.255.255.0, Gateway: 10.0.0.3
Default server: 10.0.0.102, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 17:10:02, Dec 1 2004

Platform: Phytec phyCORE LPC229x Board (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

RAM: 0x81000000-0x81100000, [0x8100b1a8-0x810dd000] available

2224

http://www.flashmagictool.com

Phytec phyCORE LPC2294 Board Support

FLASH: 0x80000000 - 0x801fffff 16 x 0x20000 blocks
RedBoot>

If is it ever necessary to reinstall RedBoot, the above directions can be repeated. Alternatively, a new RedBoot may be installed
from RedBoot itself. It is not possible to do this directly, since RedBoot is executing from the flash that needs to be erased
and reprogrammed. Instead it is necessary to run a RAM version of RedBoot, use that to download the new ROM RedBoot
to RAM, and then program that to flash.

The following shows an example session to do this. It assumes that redboot_RAM.srec and redboot_ROM.bin are
available via TFTP on the server set up in fconfig.

RedBoot> load redboot_RAM.srec
Using default protocol (TFTP)
Entry point: 0x81010040, address range: 0x81010000-0x8102c04c
RedBoot> go
+Ethernet eth0: MAC address 00:50:c2:3b:aa:9d
IP: 192.168.7.251/255.255.255.0, Gateway: 192.168.7.11
Default server: 192.168.7.5
DNS server IP: 192.168.7.11, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [RAM]
eCosCentric certified release, version v2_0_105 - built 15:42:30, Dec 5 2008

Platform: Phytec phyCORE LPC229x Board (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited

RAM: 0x81000000-0x81800000, [0x81035f90-0x817dd000] available
FLASH: 0x00000000-0x0003dfff, 8 x 0x2000 blocks, 2 x 0x10000 blocks, 7 x 0x2000s
FLASH: 0x80000000-0x80ffffff, 63 x 0x20000 blocks, 8 x 0x4000 blocks, 63 x 0x20s
RedBoot> load -r -b %{freememlo} redboot_ROM.bin
Raw file loaded 0x81036000-0x81053463, assumed entry at 0x81036000
RedBoot> fis write -f 0x00000000 -b %{freememlo} -l 0x20000
* CAUTION * about to program FLASH
 at 0x00000000..0x0001ffff from 0x81036000 - continue (y/n)? y
... Erase from 0x00000000-0x0001ffff:
... Program from 0x81036000-0x81056000 to 0x00000000:
RedBoot> reset
+Ethernet eth0: MAC address 00:50:c2:3b:aa:9d
IP: 192.168.7.251/255.255.255.0, Gateway: 192.168.7.11
Default server: 192.168.7.5
DNS server IP: 192.168.7.11, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v2_0_105 - built 15:42:52, Dec 5 2008

Platform: Phytec phyCORE LPC229x Board (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited

RAM: 0x81000000-0x81800000, [0x8100acc8-0x817dd000] available
FLASH: 0x00000000-0x0003dfff, 8 x 0x2000 blocks, 2 x 0x10000 blocks, 7 x 0x2000s
FLASH: 0x80000000-0x80ffffff, 63 x 0x20000 blocks, 8 x 0x4000 blocks, 63 x 0x20s
RedBoot>

Rebuilding RedBoot
Should it prove necessary to rebuild the RedBoot binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild RedBoot are:

$ mkdir redboot_phycore_rom
$ cd redboot_phycore_rom
$ ecosconfig new phycore_lpc2294 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/lpc2xxx/phycore_lpc229x/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.hex.

2225

Phytec phyCORE LPC2294 Board Support

Note

The PhyCORE LPC2294 board can be fitted with a wide range of flash and SRAM parts. So it may be necessary
to adjust the configuration after importing the redboot_ROM.ecm file to match the hardware being used. The
Memory Configuration section contains full details of the options available for this.

2226

Phytec phyCORE LPC2294 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The phycore platform HAL package is loaded automatically when eCos is configured for an phycore_lpc2294 target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup
The phyCORE LPC229x platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash at location 0x0 in internal on-chip Flash and boots from that location. arm-eabi-gdb is then used to load a
RAM startup application into memory and debug it. It is assumed that the hardware has already been initialized by
the stubrom. By default the application will use the eCos virtual vectors mechanism to obtain certain services from the
stubrom, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into internal flash at location 0x0.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
or as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port UART0 will be claimed for HAL
diagnostics.

Flash Driver
The phyCORE LPC2294 board contains a number of AMD flash devices. The CYGPKG_DE-
VS_FLASH_AMD_AM29XXXXX_V2 package contains all the code necessary to support these parts and the CYGPKG_DE-
VS_FLASH_ARM_PHYCORE package contains definitions that customize the driver to the phyCORE LPC2294 board.

Ethernet Driver
The phyCORE-LPC229x board contains an SMSC LAN91C111 ethernet MAC. The CYGPKG_DE-
VS_ETH_SMSC_LAN91CXX package contains all the code necessary to support this device and the CYGPKG_DE-
VS_ETH_ARM_PHYCORE package contains definitions that customize the driver to the phyCORE LPC2294 board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The PLL multipliers and dividers may be configured to allow a
core clock (CCLK) speed of up to 60MHz. The description of the clock-related CDL options may be found in the LPC2xxx
variant HAL documentation.

2227

Phytec phyCORE LPC2294 Board Support

Memory Configuration
The PhyCORE LPC2294 board can be fitted with a wide range of flash and SRAM parts. The following options adjust the
configuration of eCos and RedBoot to accommodate these variations:

CYGHWR_HAL_ARM_LPC2XXX_PHYCORE_MEMORY_CONFIGURATION_FLASH

This option describes the flash devices fitted to the board. Possible values are: AM29DL800BT, AM29LV800BT,
AM29LV160BT and AM29LV320BT. Of these only the AM29DL800BT and AM29LV320BT variants have been tested.

CYGHWR_HAL_ARM_LPC2XXX_PHYCORE_MEMORY_CONFIGURATION_FLASH_COUNT

This option defines the number of flash devices fitted. Flash devices can only be fitted in pairs, and there is only space
for up to 4, so this value can only be 2 or 4.

CYGHWR_HAL_ARM_LPC2XXX_PHYCORE_MEMORY_CONFIGURATION_SRAM_SIZE

This option defines the total SRAM size. The board can be fitted with two or four SRAM devices, of 512KB, 1MB or
2MB each, giving Possible possible SRAM sizes of: 0x100000, 0x200000, 0x400000 or 0x800000.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

However there are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used.

2228

Phytec phyCORE LPC2294 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the phyCORE LPC2294 Board hardware,
and should be read in conjunction with that specification. The phyCORE LPC229x platform HAL package complements the
ARM architectural HAL and the LPC2xxx variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. This includes the PINSEL
functions and LED bank. There is an exception for RAM startup applications which depend on a ROM monitor for certain
services.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including PLL (for
the clocks); Memory Mapping control registers to map SRAM to 0x0; the memory controller for access to external FLASH,
SRAM and ethernet; and the Memory Acceleration Module (MAM). The details of the early hardware startup may be found
in the header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

on-chip Flash This is located at address 0x0 of the memory space, although after hardware initialization, the
start of internal SRAM is mapped over locations 0x0 to 0x40. This region ends at 0x40000. The
MAM is enabled to accelerate memory reads from this area. A driver is available for using this
flash via the eCos flash API.

external Flash This is located at address 0x80000000 of the memory space. It is not used by default by eCos,
although if RedBoot is asked to manage the Flash, it reserves flash addresses 0x801E0000 thru
0x801FF000. If RedBoot stores its configuration data in Flash, then addresses 0x801FF000
thru 0x801FFFFF are reserved by RedBoot. RedBoot also reserves the first block of Flash at
0x80000000 thru 0x80001FFFF to ensure that it remains erased and does not therefore inhibit
the execution of RedBoot from the internal Flash. External flash is 32bits wide and accessed
with 7 wait states.

internal SRAM This is located at address 0x40000000 of the memory space, ending at location 0x40004000.
The first 64 bytes are mapped to location 0x0000000.

external SRAM This is located at address 0x81000000 of the memory space, ending at location 0x81100000.
For RAM startup, available SRAM starts at location 0x81010000, with the bottom 64Kbytes
reserved for use by RedBoot.

on-chip peripherals These are accessible via location 0xE0000000 onwards. Descriptions of the contents can be
found in the LPC2294 User Manual.

Other Issues
The LEDs may be accessed from C with the following function:

#include <cyg/infra/hal_diag.h>
extern void hal_diag_led(int leds);

Values from 0 to 16 will be displayed on the LED bank representing the binary value with 1 being on and 0 being off, and
with P0.7 being the MSB, and P0.4 the LSB.

2229

Phytec phyCORE LPC2294 Board Support

The LEDs are also used during platform initialization and only P0.4 should be illuminated if booting has been successful. Other
LED indications represent the stage in the initialization process that failed.

2230

Chapter 248. ST STR7XX variant HAL

2231

ST STR7XX variant HAL

Name
eCos Support for the ST Microelectronics STR7XX ARM microcontrollers — Overview

Description
The ST STR7XX series of ARM microcontrollers is supported by eCos with an eCos processor variant HAL and a number
of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-chip flash, serial and
watchdog devices. In addition it provides common functionality and definitions that STR7XX based platform ports may require,
as well as definitions useful to application developers.

This documentation covers the STR7XX functionality provided but should be read in conjunction with the specific HAL
documentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here,
and may also describe differences that override or supersede what the STR7XX variant HAL provides. The areas that are
specific to platform HALs and not the STR7XX variant HAL include:

• memory map and related configuration and setup

• memory remapping

• Clock parameters

• GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

2232

ST STR7XX variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support

On-chip memory

The ST STR7XX parts include on-chip SRAM, and on-chip FLASH. The RAM consists of a single 64KiB block. The FLASH
comprises a block of program memory which is either 64KiB, 128KiB or 256KiB in size depending on model, plus a 16KiB
area of higher durability data memory. There is also support in some models for external SRAM and flash, which eCos may
use where available.

Typically, an eCos platform HAL port will expect a GDB stub ROM monitor or RedBoot image to be programmed into either
the external FLASH or the STR7XX on-chip ROM memory for development, and the board would boot this image from reset.
The stub ROM/RedBoot provides GDB stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger using serial interfaces or other debug channels. The JTAG interface may also be used for
development if a suitable JTAG device is available. If RedBoot is present it may also be used to manage the on-chip and
external flash memory. For production purposes, applications are programmed into the external or on-chip ROM and will be
self-booting.

Serial I/O

The STR7XX variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a fully
interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver consists of
an eCos package: CYGPKG_IO_SERIAL_ARM_STR7XX which provides all support for the STR7XX on-chip serial devices.
Using the HAL diagnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication
with GDB. If a device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB
communication using the HAL I/O support. An alternative serial port should be used instead.

The STR7XX UARTs only provide the minimal TX and RX data lines; hardware flow control using RTS/CTS is not supported.
The eCos device drivers have been extended to permit the use of a pair of GPIO lines as flow control lines. It is the responsibility
of the platform HAL to enable this functionality and define the GPIO lines to be used in this way.

I2C Support

The I²C® driver uses the STR7XX's internal support. This is controlled within the STR7XX variant HAL. The CYGP-
KG_HAL_STR7XX_I2C CDL component controls whether the I2C driver is enabled. Within that component, there are two
sub-options:

• CYGNUM_HAL_STR7XX_I2C_BUS0_CLOCK sets the speed of the I2C bus 0 clock in Hz. This is usually 100kHz, but can
be set up to 400kHz (fast mode) if the devices on the bus support this speed. Other values below 400kHz can also be chosen,
subject to the accuracy of the clock waveform generation parameters.

• CYGNUM_HAL_STR7XX_I2C_BUS1_CLOCK sets the speed of the I2C bus 1 clock in Hz. This is usually 100kHz, but can
be set up to 400kHz (fast mode) if the devices on the bus support this speed. Other values below 400kHz can also be chosen,
subject to the accuracy of the clock waveform generation parameters.

The I2C driver is accessed via the generic I2C driver package CYGPKG_IO_I2C. Documentation for its API may be found
elsewhere.

This driver only operates in interrupt mode. It does not operate in polled mode, and thus does not operate when interrupts are
disabled. It cannot therefore be used in an initialization context, before the eCos kernel thread scheduler starts, and it cannot
be used with RedBoot.

Watchdog

A device driver is included for the on-chip watchdog device. This driver allows the use of the standard eCos watchdog API
accessible with the CYGPKG_IO_WATCHDOG eCos package. If the watchdog is not reset within a time period defined in the
watchdog device driver CDL, then the system is automatically reset.

2233

ST STR7XX variant HAL

The watchdog device is also used to implement reset functionality, it may also be called directly by applications using the
following function:

#include <cyg/hal/hal_diag.h>
extern void hal_str7xx_reset_cpu(void);

Interrupt controller

eCos manages the on-chip Enhanced Interrupt Controller (EIC). The EIC is configured to use interrupts in non-vectored mode,
although the vector mechanism is used to aid interrupt source decoding. External interrupts controlled by the XTI unit are also
decoded into individual vectors.

Timer 0 is used to implement the eCos system clock. Timer-based profiling support is implemented using timer 1. If the gprof
package, CYGPKG_PROFILE_GPROF, is included in the configuration, then timer 1 is reserved for use by the profiler. Timers
2 and 3 are free for use by applications.

Other

Other on-chip devices (SPI, USB, CAN, HDLC etc.) are not touched by the STR7XX variant HAL and unless used by the
platform HAL are free for use for applications.

2234

ST STR7XX variant HAL

Name
HAL Port — Implementation Details

Overview
This section covers any remaining items of note related to the STR7xx variant support, not covered in previous sections.

LEDs
If a platform port has support for the display of values on LEDs, that support is standardised to be accessible from C with
the following function:

#include <cyg/infra/hal_diag.h>
extern void hal_diag_led(int leds);

Clock Control
The platform HAL must provide the input clock frequency (CYGARC_HAL_STR7XX_INPUT_CLOCK) in its CDL file.

STR7XX definitions
The STR7XX variant HAL port includes the header file var_io.h which provides useful register definitions used by eCos,
that can also be freely used by applications. It includes only limited register definitions for subsystems unused by eCos.

It may be found in the include/cyg/hal directory relative to your configuration's install tree, or alternatively in the
source repository at hal/arm/str7xx/var/VERSION/include/var_io.h. However it should be properly included
by applications by using the following to allow for platform HALs to augment or override any relevant definitions:

#include <cyg/hal/hal_io.h>

Power Control
The kernel idle thread is scheduled to run when the system has no other tasks able to run. The idle thread can call a HAL
supplied macro to place the chip into an appropriate power saving mode instead of just going around a busy loop. The STR7XX
variant HAL defines the HAL_IDLE_THREAD_ACTION macro to use the STR7XX power control support to place the chip
into WFI mode which will stop the processor clock, without disabling the on-chip peripherals. This state continues until an
interrupt is received.

Further power saving can be achieved by reducing the system clock frequencies using hal_str7xx_clocks_setup()
described above. This function only changes the clock frequencies; it may also be necessary to change the values of dividers
in various peripherals to compensate. There are several routines supplied in the HAL to do this.

Calling hal_str7xx_uart_reinit() will cause all the UART baud rate dividers to be reset to match the current value of
PCLK1. Note that there are limitations to the range of baud rates that can be set, PCLK1 must be at least 16 times the required
rate. Also, the resolution of the baud rate divider may make certain baud rates less accurate at different PCLK1 frequencies.

Calling hal_str7xx_watchdog_init(CYGNUM_DEVS_WATCHDOG_ARM_STR7XX_DESIRED_TIMEOUT_US)
will cause the watchdog to be reinitialized with a timeout based on the current value of PCLK2. The resolution of the prescaler
and the size of the 16 bit counter may render certain watchdog timeouts unachievable at some clock rates.

Calling HAL_CLOCK_INITIALIZE(CYGNUM_HAL_RTC_PERIOD) will cause the main system timer to be reinitialized
based on the current value of PCLK2.

2235

ST STR7XX variant HAL

Name
Power Management — Details

Synopsis

#include <cyg/hal/hal_io.h>

void hal_str7xx_clocks_setup(index);

void hal_str7xx_set_clock_speed(index);

cyg_uint32 hal_str7xx_get_clock_speed();

cyg_bool hal_str7xx_mode_stop();

void hal_str7xx_mode_standby();

cyg_uint32 hal_str7xx_startup_mode();

void hal_str7xx_uart_setbaud(uart, baud);

void hal_str7xx_uart_reinit();

void hal_str7xx_i2c_init(bus, clock);

void hal_str7xx_i2c_reinit();

void hal_str7xx_watchdog_init(timeout);

void hal_str7xx_can_init(devno, clock);

void hal_str7xx_can_reinit();

void hal_str7xx_adc_init(rate);

void hal_str7xx_adc_reinit();

void hal_str7xx_rtc_init();

void hal_str7xx_rtc_alarm_set(secs);

void hal_str7xx_rtc_alarm_cancel();

cyg_uint32 hal_str7xx_rtc_counter();

cyg_uint32 hal_str7xx_rtc_counter_set(secs);

Description
The STR7XX variant HAL provides support for managing the power consumption of the device. This consists of a collection
of functions that may be used to adjust clock frequencies, system modes and other aspects of the device. These routines mainly
comprise a "kit of parts" from which applications may construct their own power management policy. The reader is referred
to the STR7XX hardware documentation for full details of clock and power management.

The main function is hal_str7xx_clocks_setup(index) which controls the frequencies of the main clocks: MCLK,
which supplies the CPU and memories; PCLK1, which supplies APB1 including the I²C, SPI and UARTs; and PCLK2,
which supplies APB2 including IO ports, Timers, RTC etc. The single argument to this function is an index into a table of
hal_str7xx_clock_params structures, which is defined by the platform HAL. Each entry in the table has the following structure:

2236

ST STR7XX variant HAL

typedef struct
{
 char *name; // Name string
 cyg_uint8 clk2_divider; // 1, 2
 cyg_uint8 pll1_multiplier; // 12, 16, 20, 24
 cyg_uint8 pll1_divider; // 1..7
 cyg_uint8 rclk_select; // RCLK_SELECT_* below
 cyg_uint8 mclk_divider; // 1, 2, 4, 8
 cyg_uint8 pclk1_divider; // 1, 2, 4, 8
 cyg_uint8 pclk2_divider; // 1, 2, 4, 8
} hal_str7xx_clock_params;

#define RCLK_SELECT_CLK2 0
#define RCLK_SELECT_CLK2_16 1
#define RCLK_SELECT_PLL1 2
#define RCLK_SELECT_AF 3

__externC cyg_uint32 hal_str7xx_clock_param_index;

Each entry in the table corresponds to a single configuration of the clock hardware. Some care must be taken in specifying these
entries, the resulting clocks will depend on the system input clock and the various multipliers and dividers; many configurations
will result in out of range or otherwise illegal clock frequencies. See the manuals for the STR7XX variant and the platform
for details.

It is recommended that the clk2_divider field is always set to 2. This causes the ocillator input to be divided by 2 and
provides a more stable input to the rest of the clock circuity. Also, some registers in the RCCU are only accessible if MCLK is
equal to RCLK, so the mclk_divider field should always be 1. These restrictions may be relaxed in special circumstances.

The last entry in this table should be all zeros, to mark the end of the table. A typical table would appear as follows:

const hal_str7xx_clock_params hal_str7xx_clock_param_table[] =
{
 // name clk/ pll1* pll1/ rclk source mclk/ pclk1/ pclk2/
 { "32KHz" , 2, 0, 0, RCLK_SELECT_AF , 1, 1, 1 },
 { "500KHz" , 2, 0, 0, RCLK_SELECT_CLK2_16, 1, 1, 1 },
 { "8MHz" , 2, 0, 0, RCLK_SELECT_CLK2 , 1, 1, 1 },
 { "24/6/3MHz" , 2, 12, 4, RCLK_SELECT_PLL1 , 1, 4, 8 },
 { "32/32MHz" , 2, 16, 4, RCLK_SELECT_PLL1 , 1, 1, 1 },
 { "40/10/5MHz" , 2, 20, 4, RCLK_SELECT_PLL1 , 1, 4, 8 },
 { "40/40MHz" , 2, 20, 4, RCLK_SELECT_PLL1 , 1, 1, 1 },
 { "48/12/6MHz" , 2, 12, 2, RCLK_SELECT_PLL1 , 1, 4, 8 },
 { "48/24/12MHz" , 2, 12, 2, RCLK_SELECT_PLL1 , 1, 2, 4 },

 { 0 , 0, 0, 0, 0, 0, 0, 0 }
};

cyg_uint32 hal_str7xx_clock_param_index = 5;

The naming convention used above is that a single frequency implies that all 3 clocks (MCLK, PCLK1 and PCLK2) are set to
the same value. Two frequencies mean that MCLK is set to the first and both PCLK1 and PCLK2 are set to the second. Three
frequencies show the values for MCLK/PCLK1/PCLK2 in order.

The variable hal_str7xx_clock_param_index indicates the table entry of the parameter set that is currently set. This
should be initialized by the platform HAL to the index of the default parameter set, which will be used during initialization.
hal_str7xx_clocks_setup() also sets a number of other global variables with the clock rates resulting from the pa-
rameter set in use:

__externC cyg_uint32 hal_str7xx_pclk1; // PCLK1 frequency in Hz
__externC cyg_uint32 hal_str7xx_pclk2; // PCLK2 frequency in Hz
__externC cyg_uint32 hal_str7xx_mclk; // MCLK frequency in Hz

Functions to initialize baud rate generators or prescaler dividers for various devices are also present:

hal_str7xx_uart_setbaud(uart, baud) sets the baud rate generator of the given UART to the given baud rate,
based on the current value of PCLK1. UARTs are numbered 0 to 3, corresponding to the UARTs available on the device and
baud rate is given in Hz. hal_str7xx_uart_reinit() causes all UARTs baud rate generators to be reinitialized using
the last baud rate setting and the current PCLK1 value. It is usually called after changing the system clocks.

2237

ST STR7XX variant HAL

hal_str7xx_i2c_init(bus, clock) initializes the clock divider of the given I2C bus to the given value based on the
current value of PCLK1. The bus numbers are either 0 or 1, and the clock rate is given in Hz. hal_str7xx_i2c_reinit()
causes all I2C busses clock dividers to be reinitialized using the last clock rate setting and the current PCLK1 value.

hal_str7xx_watchdog_init(timeout) initializes the watchdog timeout based on the current PCLK2 setting. The
timeout is given in microseconds. Some care is needed in setting this value since the resolution of the prescaler and the width
of the 16 bit counter mean that certain timeouts may not be achievable at different PCLK2 frequencies.

hal_str7xx_can_init(devno, clock) initializes the clock divider of the given CAN device to the given baud rate
based on the current PCLK1 setting. This function sets the entire Bit Timing Register, including the bit segment lengths and the
synchronization jump width as well as the clock divider. While this interface is designed to support multiple CAN devices, the
current implementation only supports a single CAN bus. The return value from this function indicates whether the requested
clock frequency can be supported: zero if it is, -1 if not. hal_str7xx_can_reinit() causes the bit timings for all CAN
busses to be reinitialized based on the current value of PCLK1.

hal_str7xx_adc_init(rate) initializes the prescaler for the ADC device based on the current PCLK2 setting. The
rate argument gives the sample rate for each channel in samples per second. All channels share the same sample rate and are
sampled on a round-robin basis. Therefore the combined sample rate, and hence maximum interrupt rate, will be four times
this frequency. hal_str7xx_adc_reinit() causes the rate to be reinitialized based on the current value of PCLK2.

hal_str7xx_mode_stop() puts the STR7XX into STOP mode. Aside from entering STOP mode, all this routine does
is set the WKUP-INT bit in the XTI CTRL register so that any of the external interrupt lines may be used to restart the system
from STOP. However, it does not configure or unmask these lines. Instead, they may be unmasked and configured using the
standard interrupt control API (cyg_interrupt_unmask(), cyg_interrupt_configure() etc.) It is also possible
to configure the RTC to wake the STR7XX from STOP mode. The value returned from this function indicates whether STOP
mode was entered: true if it was, false if not. It is usually adequate to just retry in the case of failed entry.

hal_str7xx_mode_standby() puts the STR7XX into STANDBY mode. As with entering STOP mode, it is the respon-
sibility of the caller to configure the external interrupt lines and RTC to bring the system out of STANDBY mode. Exit from
STANDBY mode causes the STR7XX to reboot, so if this function returns, then an error has occurred during entry to STAND-
BY. It is usually adequate to just retry in this case.

Note

At the time of writing, it has not been possible, at least on the STR710-EVAL board, to test RTC wakeup from
STANDBY mode. It is believed that this is due to a silicon bug in the version of the STR710 present on the board.

hal_str7xx_startup_mode() returns the reason for the last restart. It indicates whether the restart was as a result of
one of the following events:

• STARTUP_MODE_RESET: Standard power-on reset.

• STARTUP_MODE_WAKEUP: External WAKEUP event.

• STARTUP_MODE_LOW_VOLTAGE: Low voltage detected.

• STARTUP_MODE_RTC_ALARM: RTC alarm.

• STARTUP_MODE_WATCHDOG: Watchdog expiry.

• STARTUP_MODE_SOFTWARE: Software reset.

hal_str7xx_set_clock_speed(index) is a wrapper function that reprograms all the clocks and baud rate genera-
tors. The argument is the same index into the platform HAL supplied parameter table as given to hal_str7xx_clock-
s_setup(). After calling that function it also calls hal_str7xx_uart_reinit(), hal_str7xx_i2c_reinit(),
hal_str7xx_can_reinit(), HAL_CLOCK_INITIALIZE() and hal_str7xx_watchdog_init(). Unlike
hal_str7xx_clocks_setup(), this function checks that the supplied index is valid, and returns false if it is not.

hal_str7xx_get_clock_speed() returns the parameter table index given to the last call to hal_str7xx_clock-
s_setup() or hal_str7xx_set_clock_speed().

2238

ST STR7XX variant HAL

The HAL also contains functions to control the Real Time Clock, RTC. These are mainly oriented towards using the RTC to
resume the system from STOP or STANDBY mode. Before making any other calls to the RTC routines, the application must
call hal_str7xx_rtc_init() to initialize the device. Calling hal_str7xx_rtc_alarm_set(secs) sets the alarm
to fire after the given number of seconds. After the alarm had fired, or to prevent it firing, call hal_str7xx_rtc_alar-
m_cancel(). Calling hal_str7xx_rtc_counter() returns the current value of the RTC counter, which counts sec-
onds. Function hal_str7xx_rtc_counter_set(secs) sets the RTC counter to the given value. These last two
function may be used by a wallclock driver to provide time and date functionality.

RedBoot Support
The STR7XX HAL installs a number of RedBoot commands to allow testing of the power management support.

speed [-l] [index]

This command reports and sets the clock speed of the STR7XX. Giving the command on its own, with no arguments, lists
the available speed settings:

RedBoot> speed
 0 32KHz
 1 500KHz
 2 8MHz
 3 24/6/3MHz
 4 40/10/5MHz
* 5 48/12/6MHz
 6 48/24/12MHz
RedBoot>

The index numbers on the left are used as arguments to the speed command. The names on the right correspond to the clock
parameter set names described before. The parameter set currently in force is indicated by an asterisk in the first column. If
the -l option is given, then more details of the parameter sets are given, together with the current settings of MCLK, PCLK1
and PCLK2:

RedBoot> speed -l
MCLK: 48000000, PCLK1 12000000, PCLK2 6000000
C Ix Name CLK/ PLL1* PLL1/ RCLK MCLK/ PCLK1/ PCLK2/
 0 32KHz 2 0 0 AF 1 1 1
 1 500KHz 2 0 0 CLK2/16 1 1 1
 2 8MHz 2 0 0 CLK2 1 1 1
 3 24/6/3MHz 2 12 4 PLL1 1 4 8
 4 40/10/5MHz 2 20 4 PLL1 1 4 8
* 5 48/12/6MHz 2 12 2 PLL1 1 4 8
 6 48/24/12MHz 2 24 2 PLL1 2 4 8
RedBoot>

Supplying the speed command with the index number of a parameter set will change the STR7XX to use that set of clock
parameters:

RedBoot> speed 3
Set clock speed 3, please wait...
Now running at new speed
RedBoot> speed -l
MCLK: 32000000, PCLK1 32000000, PCLK2 32000000
C Ix Name CLK/ PLL1* PLL1/ RCLK MCLK/ PCLK1/ PCLK2/
 0 32KHz 2 0 0 AF 1 1 1
 1 500KHz 2 0 0 CLK2/16 1 1 1
 2 8MHz 2 0 0 CLK2 1 1 1
 3 24/6/3MHz 2 12 4 PLL1 1 4 8
* 4 32/32MHz 2 16 4 PLL1 1 1 1
 5 40/10/5MHz 2 20 4 PLL1 1 4 8
 6 40/40MHz 2 20 4 PLL1 1 1 1
 7 48/12/6MHz 2 12 2 PLL1 1 4 8
 8 48/24/12MHz 2 12 2 PLL1 1 2 4
RedBoot>

Note that setting too low a speed may result in RedBoot not being able to program the serial baud rate generator to maintain
the current speed.

2239

ST STR7XX variant HAL

stop

The stop command puts the STR7XX into STOP mode. The RTC will be programmed to wake the system up after 5 seconds.
The device may also be woken up before that timeout using the WAKEUP line, if it is connected to a switch (as it is on the
STR710-EVAL board).

standby

The standby command puts the STR7XX into STANDBY mode. The RTC will be programmed to wake the system up after
5 seconds. The device may also be woken up before that timeout using the WAKEUP line, if it is connected to a switch (as
it is on the STR710-EVAL board).

2240

Chapter 249. ST STR710-EVAL Board HAL

2241

ST STR710-EVAL Board HAL

Name
eCos Support for the ST STR710-EVAL Board — Overview

Description
The ST STR710-EVAL Board is fitted with an STR710FZ2T6 microcontroller to provide a development environment for all
STR71X microcontrollers. The board is fitted with 4MiB of external RAM and 4MiB of external FLASH memory. The board
has two 9-pin RS-232 serial interfaces connected to two of the STR710 on-chip UARTs, LEDs, and LCD display, and a JTAG
debug interface. Refer to the board documentation and the STR7XX documentation for full details.

For typical eCos development, a RedBoot image is programmed into the external FLASH and the switches set so that the board
will boot this image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-
alone and eCos applications via the gdb debugger using either UART0 or UART1.

This documentation describes platform-specific elements of the STR710-EVAL Board support within eCos. The STR7XX
documentation covers various topics including HAL support common to STR7XX variants, and on-chip device support. This
document complements the STR7XX documentation.

Supported Hardware
The STR7XX has two on-chip memory regions. A RAM region of 64KiB is present at 0x20000000, which is mapped to
0x00000000 after booting. A FLASH region is present at 0x40000000 and is comprised of 64KiB, 128KiB or 256KiB of
program memory plus 16KiB of higher durability data flash. The STR710FZ2T6 on the STR710-EVAL board is equipped
with 256KiB.

On-board memory consists of 4MiB of SRAM mapped to 0x62000000 and 4MiB of FLASH mapped to 0x60000000. During
booting the external flash is mapped to 0x00000000 but will be replaced with the internal flash for normal execution.

The STR7XX variant HAL includes support for the four on-chip serial devices which are documented in the variant HAL.
Only two of these serial devices are connected to external connectors on the board, so only these are normally usable.

The STR710-EVAL board port includes support for the on-chip watchdog and interrupt controller. This support is documented
in the STR7XX variant HAL.

Tools
The STR710-EVAL Board port is intended to work with GNU tools configured for an arm-eabi target. Thumb mode is sup-
ported. The original port was done using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.16.

2242

ST STR710-EVAL Board HAL

Name
Setup — Preparing the STR710-EVAL Board for eCos Development

Overview
In a typical development environment, the STR710-EVAL board boots from external flash into RedBoot. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from external
FLASH

redboot_ROM.ecm redboot_ROM.bin

ROM_INT RedBoot running from internal
FLASH

redboot_ROM_INT.ecm redboot_ROM_INT.bin

ROM_INT_EXTRAM RedBoot running from internal
FLASH, using external RAM
for DATA, BSS and heap

redboot_ROM_INT_EX-
TRAM.ecm

redboot_ROM_INT_EX-
TRAM.bin

RAM RedBoot running from external
RAM

redboot_RAM.ecm redboot_RAM.bin

JTAG RedBoot running from external
RAM, loaded via JTAG

redboot_JTAG.ecm redboot_JTAG.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed
via the configuration option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD and rebuilding the stubrom.

Under normal circumstances, RedBoot runs in-place from the external Flash. The RAM version is provided to allow for updat-
ing the resident RedBoot image in Flash. The JTAG version is only used if loading RedBoot into RAM via a JTAG debugger or
ICE. It is similar to the RAM version, but loads at a lower address within RAM, and so can be used to load eCos applications,
as if it is the normal resident boot monitor. The ELF format image of this JTAG version of RedBoot can also be loaded and
executed from GDB using the Abatron BDI2000 bdiGDB support, to allow it to be debugged. The ROM_INT version does
not contain support for the flash filesystem or flash config since it uses only internal RAM, which is not large enough for the
necessary data structures. The ROM_INT_EXTRAM version uses external RAM instead of internal RAM and is therefore
able to contain a full implementation of the flash filesystem and configuration.

Initial Installation
Two mechanisms are described below to program RedBoot into the external Flash. Both of them require a JTAG device. In
the following documentation it is assumed that the Abatron BDI2000 is being used. For a different JTAG device, equivalent
operations will need to be performed.

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Locate the file bdi2000.str710eval.cfg within the eCos platform HAL package in the source repository. This will
be in the directory packages/hal/arm/str710eval/VERSION/misc relative to the root of your eCos installation.

2243

ST STR710-EVAL Board HAL

5. Place the bdi2000.str710eval.cfg file in a location on the PC accessible to the TFTP server. Later you will configure the
BDI2000 to load this file via TFTP as its configuration file.

6. Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
bdi2000.str710eval.cfg configuration file at the appropriate point of this process.

Preparing the STR710-EVAL board for programming

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the JTAG interface connector to the Target A
port on the BDI2000.

4. Locate switches SW13, SW14 and SW15 on the board, they are in a bank of 3 next to the processor. Set all these switches
to the 2-3 position, this is the position away from the processor. In due course this will ensure that the board boots RedBoot
from the external Flash device.

5. Power up the STR710-EVAL board.

6. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

Core#0>

7. Confirm correct connection with the BDI2000 with the reset command as follows:

Core#0> reset
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x00000001 => 0xFFFFFFFF
- TARGET: JTAG exists check failed
- TARGET: Remove RESET and try again
- TARGET: BDI waits for RESET inactive
- TARGET: Bypass check 0x00000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x3F0F0F0F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
Core#0>

8. Locate the redboot_ROM.bin image within the loaders subdirectory of the base of the eCos installation.

9. Copy the redboot_ROM.bin file into a location on the host computer accessible to its TFTP server.

Method 1 - Using the BDI2000 to directly program RedBoot into Flash

As previously mentioned, there are two methods of programming a RedBoot image into the parallel NOR Flash. This method
uses the built-in capabilities of the BDI2000.

This is a three stage process. The relevant Flash blocks must first be unlocked, then erased, and finally programmed. This can
be accomplished with the following steps:

1. Connect to the BDI2000 telnet port as before.

2244

ST STR710-EVAL Board HAL

2. Cut and paste the following commands into the BDI2000 telnet session. They are used to unlock the relevant Flash blocks
that will contain RedBoot.

Core#0>unlock 0x60000000 0x2000 8
Unlocking flash at 0x60000000
Unlocking flash at 0x60002000
Unlocking flash at 0x60004000
Unlocking flash at 0x60006000
Unlocking flash at 0x60008000
Unlocking flash at 0x6000a000
Unlocking flash at 0x6000c000
Unlocking flash at 0x6000e000
Unlocking flash passed
Core#0>unlock 0x60010000 0x10000 2
Unlocking flash at 0x60010000
Unlocking flash at 0x60020000
Unlocking flash passed

3. Erase the 8 initial 8Kbyte sized Flash blocks, and the following 2 64Kbyte Flash blocks with the following command (the
blocks to erase are defined in the .cfg file):

Core#0>erase
Erasing flash at 0x60000000
Erasing flash at 0x60002000
Erasing flash at 0x60004000
Erasing flash at 0x60006000Information System (FIS):
Erasing flash at 0x60008000
Erasing flash at 0x6000a000
Erasing flash at 0x6000c000
Erasing flash at 0x6000e000
Erasing flash at 0x60010000
Erasing flash at 0x60020000
Erasing flash passed
Core#0>

4. Program the RedBoot image into Flash with the following command, replacing /RBPATH with the location of the red-
boot_ROM.bin file relative to the TFTP server root directory:

Core#0>prog 0x60000000 /RBPATH/redboot_ROM.bin bin
Programming /RBPATH/redboot_ROM.bin , please wait
Programming flash passed
Core#0>

This operation can take some time.

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. The RedBoot banner should be visible on the serial port. RedBoot's Flash configuration can be
initialized using the same procedure as required in Method 2 below.

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Method 2 - Program RedBoot into External Flash with RAM RedBoot

With this approach, the BDI2000 is used to load a RedBoot image into RAM, which can then in turn be used to load and
program a ROM RedBoot image into Flash.

There are three stages, firstly loading the RAM RedBoot image, then initializing RedBoot's Flash configuration, and finally
loading and programming the ROM RedBoot.

Loading a RAM RedBoot

1. Locate the redboot_JTAG.bin image within the loaders subdirectory of the base of the eCos installation.

2. Copy the redboot_JTAG.bin file into a location on the host computer accessible to its TFTP server.

2245

ST STR710-EVAL Board HAL

3. With the BDI2000 telnet interface, execute the following command, replacing /RBPATH with the location of the redboot_J-
TAG.bin file relative to the TFTP server root directory:

Core#0>load 0x62000000 /RBPATH/redboot_JTAG.bin bin
Loading /RBPATH/redboot_JTAG.bin , please wait
Loading program file passed
Core#0>

4. Run the loaded RAM RedBoot:

Core#0>go 0x62000000
Core#0>

The terminal emulator connected to the serial debug port should now have displayed the RedBoot banner and prompt similar
to the following:

+RedBoot(tm) bootstrap and debug environment [JTAG]
Non-certified release, version UNKNOWN - built 17:29:34, Apr 10 2006

Platform: ST STR710-EVAL Board (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x62000000-0x62400000, [0x62019a20-0x623ed000] available
 0x00000000-0x00010000, [0x00000000-0x00010000] available
FLASH: 0x40000000-0x40c40000, 4 x 0x2000 blocks, 1 x 0x8000 blocks, 3 x 0x10000 blocks, 8 x 0x10000 blocks, 2 x 0x2000 blocks
FLASH: 0x60000000-0x603fffff, 8 x 0x2000 blocks, 63 x 0x10000 blocks
RedBoot>

Note

It is also possible to use the RAM startup version of RedBoot and the redboot_RAM.bin file instead of redboot_J-
TAG.bin above. If so, then the address to the load command must be 0x62020000, as must be the address to
the go command.

RedBoot Flash Configuration

The following steps describe how to initialize RedBoot's Flash configuration. This must be performed when using a JTAG or
RAM RedBoot to program Flash, but is also applicable to initial configuration of a ROM RedBoot loaded using Method 1.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Unlocking from 0x603f0000-0x603fffff: .
... Erase from 0x603f0000-0x603fffff: .
... Program from 0x623f0000-0x62400000 to 0x603f0000: .
... Locking from 0x603f0000-0x603fffff: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Console baud rate: 38400
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x603f0000-0x603fffff: .
... Erase from 0x603f0000-0x603fffff: .
... Program from 0x623f0000-0x62400000 to 0x603f0000: .
... Locking from 0x603f0000-0x603fffff: .
RedBoot>

Loading and programming the ROM RedBoot

This section describes the steps required to load the ROM RedBoot via the serial line and program it into Flash.

1. Load the RedBoot ROM binary image from the serial line. Use the following command:

RedBoot> load -r -m y -b %{freememlo}

2246

ST STR710-EVAL Board HAL

CRaw file loaded 0x62038c00-0x6204eacb, assumed entry at 0x62038c00
xyzModem - CRC mode, 704(SOH)/0(STX)/0(CAN) packets, 3 retries
RedBoot>

2. Finally install the loaded image into Flash:

RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Unlocking from 0x60000000-0x6001ffff:
... Erase from 0x60000000-0x6001ffff:
... Program from 0x62038c00-0x6204eacc to 0x60000000:
... Locking from 0x60000000-0x6001ffff:
... Unlocking from 0x603f0000-0x603fffff: .
... Erase from 0x603f0000-0x603fffff: .
... Program from 0x623f0000-0x62400000 to 0x603f0000: .
... Locking from 0x603f0000-0x603fffff: .
RedBoot>

It is also possible to use the fis write command to write the image into Flash, but if so, the relevant Flash blocks must also
be explicitly unlocked with the command:

RedBoot> fis unlock -f 0x60000000 -l 0x20000

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. Output similar to the following should be seen on the serial port.

+RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:22:53, Apr 10 2006

Platform: ST STR710-EVAL Board (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x62000000-0x62400000, [0x62004910-0x623ed000] available
 0x00000000-0x00010000, [0x00000000-0x00010000] available
FLASH: 0x40000000-0x40c40000, 4 x 0x2000 blocks, 1 x 0x8000 blocks, 3 x 0x10000 blocks, 8 x 0x10000 blocks, 2 x 0x2000 blocks
FLASH: 0x60000000-0x603fffff, 8 x 0x2000 blocks, 63 x 0x10000 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Method 3 - Program RedBoot into Internal Flash with RAM RedBoot

This is a variant of Method 2, which puts RedBoot into the internal flash of the STR710, rather than the external M28W320CB
flash device.

The first part of this is exactly the same as Method 2: load a RAM version of RedBoot as described in the Loading a RAM Red-
Boot section and configure is as described in the RedBoot Flash Configuration section. Now load the redboot_ROM_IN-
T.bin binary image from the serial line as follows:

RedBoot> load -r -m y -b %{freememlo}
CRaw file loaded 0x6201a800-0x6202c733, assumed entry at 0x6201a800
xyzModem - CRC mode, 577(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

Install the loaded image into Flash:

RedBoot> fis write -f 0x40000000 -b %{freememlo} -l 0x20000
* CAUTION * about to program FLASH
 at 0x40000000..0x4001ffff from 0x6201a800 - continue (y/n)? y
... Erase from 0x40000000-0x4001ffff:
... Program from 0x6201a800-0x6203a800 to 0x40000000:
RedBoot>

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. Output similar to the following should be seen on the serial port.

+
RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 18:41:12, Jun 1 2006

2247

ST STR710-EVAL Board HAL

Platform: ST STR710-EVAL Board (ARM7TDMI)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x00000000-0x00010000, [0x000048b0-0x00010000] available
FLASH: 0x40000000-0x40c40000, 4 x 0x2000 blocks, 1 x 0x8000 blocks, 3 x 0x10000 blocks, 8 x 0x10000 blocks, 2 x 0x2000 blocks
FLASH: 0x60000000-0x603fffff, 8 x 0x2000 blocks, 63 x 0x10000 blocks
RedBoot>

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot are:

$ mkdir redboot_str710eval_rom
$ cd redboot_str710eval_rom
$ ecosconfig new str710eval redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/str7xx/str710eval/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

The other versions of RedBoot - ROM, RAM or JTAG - may be similarly built by choosing the appropriate alternative .ecm file.

2248

ST STR710-EVAL Board HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STR710-EVAL Board platform HAL package is loaded automatically when eCos is configured for an str710eval
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup
The STR710-EVAL Board platform HAL package supports four separate startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot programmed into
external Flash at location 0x60000000 and uses external RAM at location 0x62000000. arm-eabi-gdb is then used to load
a RAM startup application into memory from 0x62020000 and debug it. It is assumed that the hardware has already been
initialized by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain certain services
from RedBoot, including diagnostic output.

ROM

This startup type can be used for finished applications which will be programmed into external ROM at location
0x60000000. The application will be self-contained with no dependencies on services provided by other software. The
program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the 0x20000000
region and map internal RAM to location zero. eCos startup code will perform all necessary hardware initialization.

ROM_INT

This startup type can be used for finished applications which will be programmed into internal Flash at location
0x40000000. The application will be self-contained with no dependencies on services provided by other software. The
program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the 0x40000000
region and map internal RAM to location zero. eCos startup code will perform all necessary hardware initialization.

This startup is enabled by setting the CYGHWR_HAL_STR7XX_FLASH_INTERNAL option, when CYG_HAL_STARTUP
is set to ROM.

ROM_INT_EXTRAM

This startup type can be used for finished applications which will be programmed into internal Flash at location
0x40000000. The application will be self-contained with no dependencies on services provided by other software. The
program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the 0x40000000
region and map internal RAM to location zero. eCos startup code will perform all necessary hardware initialization. The
application will also use external RAM at 0x62000000 for its DATA, BSS and heap, rather than the internal SRAM.

This startup is enabled by setting the CYGHWR_HAL_STR7XX_FLASH_INTERNAL option, when CYG_HAL_STARTUP
is set to ROM and additionally setting CYGHWR_HAL_ARM_STR710EVAL_EXT_RAM.

JTAG

This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-contained
with no dependencies on services provided by other software. The program expects to be loaded from 0x62000000 and
entered at that address. It will then map internal RAM to location zero. eCos startup code will perform all necessary
hardware initialization and the system will be in a condition suitable for loading and running RAM applications.

The Stubrom and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

2249

ST STR710-EVAL Board HAL

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port 0 will be claimed for HAL diagnostics.

Flash Drivers

The STR710-EVAL board contains a 4Mbyte ST M28W320CB parallel Flash device. The CYGPKG_DEVS_FLASH_STRA-
TA_V2 package contains all the code necessary to support this part and the platform HAL package contains definitions that
customize the driver to the STR710-EVAL board. This driver is not active until the generic Flash support package, CYGP-
KG_IO_FLASH, is included in the configuration.

A driver is also present for the internal Flash. The package CYGPKG_DEVS_FLASH_STR7XX contains all the code necessary
to support this memory and the platform HAL package contains definitions that customize the driver to the STR710-EVAL
board. This driver is not active until the generic Flash support package, CYGPKG_IO_FLASH, is included in the configuration.

Watchdog Driver

The STR710-EVAL board use the STR7XX's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_AR-
M_STR7XX package contains all the code necessary to support this device. Within that package the CYGNUM_DEVS_WATCH-
DOG_ARM_STR7XX_DESIRED_TIMEOUT_US configuration option controls the watchdog timeout, and by default will
force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package, CYGP-
KG_IO_WATCHDOG, is included in the configuration.

UART Serial Driver

The STR710-EVAL boards use the STR7XX's internal UART serial support. As well as the polled HAL diagnostic interface,
there is also a CYGPKG_IO_SERIAL_ARM_STR7XX package which contains all the code necessary to support interrupt-dri-
ven operation with greater functionality. All four UARTs can be supported by this driver, although only UARTs 0 and 1 are
actually routed to external connectors. Note that it is not recommended to enable this driver on the port used for HAL diagnostic
I/O. This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver
support package CYGPKG_IO_SERIAL is enabled in the configuration.

The STR7XX UARTs only provide the minimal TX and RX data lines; hardware flow control using RTS/CTS is not supported.
The eCos device drivers have been extended to permit the use of a pair of GPIO lines to be use as flow control lines. These
must be defined by the platform for each UART using the following CDL options:

CYGHWR_HAL_ARM_STR7XX_UARTX_RTS

This value encodes which PIO line will be used as the RTS line for UARTX. The value of this option is an invocation of
the macro UART_PIO(), which takes three arguments: the first is the PIO port number and the second is the bit number
in that port for the PIO line. The third argument gives the polarity of the line, 0 if it is active low, 1 if it is active high.

CYGHWR_HAL_ARM_STR7XX_UARTX_CTS

This value encodes which PIO line will be used as the CTS line for UARTX. UART_PIO() takes three arguments: the
first is the PIO port number and the second is the bit number in that port for the PIO line. The third argument gives the
polarity of the line, 0 if it is active low, 1 if it is active high.

CYGHWR_HAL_ARM_STR7XX_UARTX_CTS_INT

This must be the name of the interrupt vector, from var_intr.h, that corresponds to the PIO bit selected for CTS. It is
essential that the PIO bit selected be capable of generating an interrupt, so only those that have an XTI interrupt vector
can be used. The polarity of the CTS line will decide whether this interrupt occurs on a rising or falling edge.

2250

ST STR710-EVAL Board HAL

I2C Support
Support for the two I²C® busses is provided by the variant HAL (CYGPKG_HAL_ARM_STR7XX). The STR710-EVAL board
carries an ST M24C08 I2C serial EEPROM connected to bus 0.

The M24C08 is an 8Kibit device, 1024 bytes. This memory is addressed by using a single byte for the least signifi-
cant 8 bits of the address plus 2 bits from the device's I2C address. Within eCos, this EEPROM is presented as four
separate I2C devices at addresses 0xA8, 0xAA, 0xAC, 0xAE. These are instantiated as four I2C device objects, named
cyg_i2c_str710eval_m24c08_0, cyg_i2c_str710eval_m24c08_1, cyg_i2c_str710eval_m24c08_2
and cyg_i2c_str710eval_m24c08_3 respectively.

A test application for use with the EEPROM is provided within the tests subdirectory of the CYGPKG_HAL_AR-
M_STR7XX_STR710EVAL package. This test communicates with the I2C EEPROM on the board to perform read and write
operations using I2C. Since it overwrites the contents of the EEPROM, this test is not built by default. It may be built by
enabling the configuration option CYGBLD_HAL_ARM_STR7XX_STR710EVAL_TEST_M24C08.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed. The description of the clock-related options may be found in the
STR7XX variant HAL documentation.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

The option "-mcpu=arm7tdmi" should be set for all compilations for this platform.

There are two flags that are used if Thumb mode is to be supported:

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used.

2251

ST STR710-EVAL Board HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including RedBoot.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM7TDMI core of the STR7XX only
supports two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check
it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the bdi2000.str710eval.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs.

The bdi2000.str710eval.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break points,
and remember to use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the bdiGDB interface.
In the case of the latter, arm-eabi-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the bdi2000.str710e-
val.cfg file, and halt the target. This behaviour is repeated with the reset command.

If the board is reset when in 'reset' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button) and
the 'go' command is then given, then the board will boot as normal. If a ROM RedBoot is resident in Flash, it will be run.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured JTAG applications can be loaded either via GDB, or directly via the telnet CLI. For example:

Core#0>load 0x62000000 test.bin bin
Loading /test.bin , please wait
Loading program file passed
Core#0>go 0x620000000

Consult the BDI2000 documentation for information on other formats.

Configuration of JTAG applications

JTAG applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Both of these settings are
made automatically if the JTAG startup type is selected.

2252

ST STR710-EVAL Board HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STR710-EVAL Board hardware,
and should be read in conjunction with that specification. The STR710-EVAL Board platform HAL package complements the
ARM architectural HAL and the STR7XX variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers includ-
ing the PLL, peripheral clocks, GPIO pins and memory mapping control to map internal RAM 0x0. The details of the early
hardware startup may be found in the header cyg/hal/hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External RAM This is located at address 0x62000000 of the memory space, and is 4MiB long. For ROM appli-
cations, all of RAM is available for use. For RAM startup applications, RAM below 0x62020000
is reserved for RedBoot and the remainder is available for the application.

External ROM This is located at address 0x60000000 of the memory space. If switches SW13, SW14 and
SW15 are all set to 2-3 this region will be mapped to 0x00000000 at reset. This region is 4MiB
in size. RedBoot is normally programmed into this memory and the rest managed by the FIS
flash file system.

Internal RAM This is located at address 0x20000000 of the memory space, and is 64KiB in size. Normally this
RAM area will be mapped to location 0x00000000 after bootstrap. The CPU vector table and
the eCos VSR table occupy the bottom 64 bytes. The virtual vector table starts at 0x00000050
and extends to 0x00000150. The remainder of internal RAM is available for use by applications.

Internal ROM This is located at address 0x40000000 of the memory space. If switches SW13 and SW14 are
set to 1-2 and SW15 to 2-3 this region will be mapped to 0x00000000 at reset. This region is
256KiB in size. Applications may be configured to run from this memory by setting the CYGH-
WR_HAL_STR7XX_FLASH_INTERNAL option. This memory is not managed by RedBoot's
FIS system, but it can be written using the fis write command and erased using the fis erase
command.

on-chip peripherals These are accessible at locations 0xC0000000 and 0xE0000000 upwards, depending on which
APB bus they are on. Descriptions of the contents can be found in the STR7XX User Manual.

2253

Chapter 250. Atmel AT91RM9200
Processor Support

2254

Atmel AT91RM9200 Processor Support

Name
eCos Support for the Atmel AT91RM9200 Processor — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Atmel AT91RM9200
processor. It is expected to be read in conjunction with platform HAL-specific documentation, as well as the eCos HAL
specification. This processor HAL package complements the ARM architectural HAL, ARM9 variant HAL and the platform
HAL. It provides functionality common to AT91RM9200-based board implementations.

This support is found in the eCos package located at packages/hal/arm/arm9/at91rm9200 within the eCos source
repository.

The AT91RM9200 processor HAL package is loaded automatically when eCos is configured for an AT91RM9200-based
platform. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side
effect of switching target hardware.

Supported Hardware
Supported features of the Atmel AT91RM9200 processor within this processor HAL package include:

• AT91RM9200-specific hardware definitions

• Interrupt controller

• Timer counters

• Serial UARTs

• MultiMedia Card Interface (MCI)

• Two-Wire Interface (TWI)

• Power saving

Support for the on-chip ethernet, interrupt-driven serial, SPI, watchdog and wallclock (RTC) features of the AT91RM9200 are
also present and can be found in separate packages, outside of this processor HAL.

The watchdog hardware is also used within this HAL to perform software reset.

2255

Atmel AT91RM9200 Processor Support

Name
AT91RM9200 hardware definitions — Details on obtaining hardware definitions for AT91RM9200

Register definitions
The file <cyg/hal/at91rm9200.h> can be included from application and eCos package sources to provide definitions
related to AT91RM9200 subsystems. These include register definitions for the interrupt controller, power management con-
troller, clock generator, memory controller, external bus interface, GPIO, USART, MCI, TWI (I²C®), Ethernet, timer counter,
RTC, and SPI subsystems.

Initialization helper macros
The file <cyg/hal/at91rm9200_init.inc> contains definitions of helper macros which may be used by AT91RM9200
platform HALs in order to initialise common AT91RM9200 subsystems without excessive duplication between the platform
HALs. Typically this file will be included by the hal_platform_setup.h header in the platform HAL, in turn included
from the architectural HAL file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary.

2256

Atmel AT91RM9200 Processor Support

Name
AT91RM9200 interrupt controller — Advanced Interrupt Controller definitions and usage

Interrupt controller definitions
The file <cyg/hal/var_ints.h> (located at hal/arm/arm9/at91rm9200/VERSION/include/var_ints.h
in the eCos source repository) contains interrupt vector number definitions for use with the eCos kernel and driver interrupt
APIs:

#define CYGNUM_HAL_INTERRUPT_FIQ 0 // Advanced Interrupt Controller (FIQ)
#define CYGNUM_HAL_INTERRUPT_SYSTEM 1 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_INTERRUPT_PIOA 2 // Parallel IO Controller A
#define CYGNUM_HAL_INTERRUPT_PIOB 3 // Parallel IO Controller B
#define CYGNUM_HAL_INTERRUPT_PIOC 4 // Parallel IO Controller C
#define CYGNUM_HAL_INTERRUPT_PIOD 5 // Parallel IO Controller D
#define CYGNUM_HAL_INTERRUPT_US0 6 // USART 0
#define CYGNUM_HAL_INTERRUPT_US1 7 // USART 1
#define CYGNUM_HAL_INTERRUPT_US2 8 // USART 2
#define CYGNUM_HAL_INTERRUPT_US3 9 // USART 3
#define CYGNUM_HAL_INTERRUPT_MCI 10 // Multimedia Card Interface
#define CYGNUM_HAL_INTERRUPT_UDP 11 // USB Device Port
#define CYGNUM_HAL_INTERRUPT_TWI 12 // Two-Wire Interface
#define CYGNUM_HAL_INTERRUPT_SPI 13 // Serial Peripheral Interface
#define CYGNUM_HAL_INTERRUPT_SSC0 14 // Serial Synchronous Controller 0
#define CYGNUM_HAL_INTERRUPT_SSC1 15 // Serial Synchronous Controller 1
#define CYGNUM_HAL_INTERRUPT_SSC2 16 // Serial Synchronous Controller 2
#define CYGNUM_HAL_INTERRUPT_TC0 17 // Timer Counter 0
#define CYGNUM_HAL_INTERRUPT_TC1 18 // Timer Counter 1
#define CYGNUM_HAL_INTERRUPT_TC2 19 // Timer Counter 2
#define CYGNUM_HAL_INTERRUPT_TC3 20 // Timer Counter 3
#define CYGNUM_HAL_INTERRUPT_TC4 21 // Timer Counter 4
#define CYGNUM_HAL_INTERRUPT_TC5 22 // Timer Counter 5
#define CYGNUM_HAL_INTERRUPT_UHP 23 // USB Host port
#define CYGNUM_HAL_INTERRUPT_EMAC 24 // Ethernet MAC
#define CYGNUM_HAL_INTERRUPT_IRQ0 25 // Advanced Interrupt Controller (IRQ0)
#define CYGNUM_HAL_INTERRUPT_IRQ1 26 // Advanced Interrupt Controller (IRQ1)
#define CYGNUM_HAL_INTERRUPT_IRQ2 27 // Advanced Interrupt Controller (IRQ2)
#define CYGNUM_HAL_INTERRUPT_IRQ3 28 // Advanced Interrupt Controller (IRQ3)
#define CYGNUM_HAL_INTERRUPT_IRQ4 29 // Advanced Interrupt Controller (IRQ4)
#define CYGNUM_HAL_INTERRUPT_IRQ5 30 // Advanced Interrupt Controller (IRQ5)
#define CYGNUM_HAL_INTERRUPT_IRQ6 31 // Advanced Interrupt Controller (IRQ6)

// The following interrupts are derived from the SYSTEM interrupt
#define CYGNUM_HAL_INTERRUPT_DEBUG 32 // Debug unit
#define CYGNUM_HAL_INTERRUPT_PMC 33 // Power Management Controller
#define CYGNUM_HAL_INTERRUPT_RTCH 34 // Real Time Clock
#define CYGNUM_HAL_INTERRUPT_PIT 35 // System Timer Period Interval Timer
#define CYGNUM_HAL_INTERRUPT_WDOVF 36 // System Timer Watchdog Overflow
#define CYGNUM_HAL_INTERRUPT_RTTINC 37 // System Timer Real-Time Timer Increment
#define CYGNUM_HAL_INTERRUPT_ALM 38 // System Timer Alarm

As indicated above, further decoding is performed on the SYSTEM interrupt to identify the cause more specifically. Note that
as a result, placing an interrupt handler on the SYSTEM interrupt will not work as expected. Conversely, masking a decoded
derivative of the SYSTEM interrupt will not work as this would mask other SYSTEM interrupts, but masking the SYSTEM
interrupt itself will work. On the other hand, unmasking a decoded SYSTEM interrupt will unmask the SYSTEM interrupt as
a whole, thus unmasking interrupts for the other units on this shared interrupt.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt controller functions
The source file src/at91rm9200_misc.c within this package provides most of the support functions to manipulate the
interrupt controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions
hal_interrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

2257

Atmel AT91RM9200 Processor Support

Interrupts are configured in the hal_interrupt_configure function, where the level and up arguments are inter-
preted as follows:

level up interrupt on

0 0 Falling Edge

0 1 Rising Edge

1 0 Low Level

1 1 High Level

To fit into the eCos interrupt model, interrupts essentially must be acknowledged immediately once decoded, and as a result,
the hal_interrupt_acknowledge function is empty.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the Advanced Interrupt
Controller.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

Using the Advanced Interrupt Controller for VSRs
The AT91RM9200 HAL has been designed to exploit benefits of the on-chip Advanced Interrupt Controller (AIC) on the
AT91RM9200. Support has been included for exploiting its ability to provide hardware vectoring for VSR interrupt handlers.

This support is dependent on definitions that may only be provided by the platform HAL and therefore is only enabled if the
platform HAL package implements the CYGINT_HAL_AT91RM9200_AIC_VSR CDL interface. The necessary definitions
are available to all platform HALs which use the facilities of the at91rm9200_init.inc header file.

The interrupt decoding path has been optimised by allowing the AIC to be interrogated for the interrupt handler VSR to use.
These vectored interrupts are by default still configured to point to the default ARM architecture HAL IRQ and FIQ VSRs.
However applications may set their own VSRs to override this default behaviour to allow optimised interrupt handling.

The VSR vector numbers to use when overriding are defined as follows:

#define CYGNUM_HAL_VECTOR_FIQ 7 // FIQ
#define CYGNUM_HAL_VECTOR_SYSTEM 8 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_VECTOR_PIOA 9 // Parallel IO Controller A
#define CYGNUM_HAL_VECTOR_PIOB 10 // Parallel IO Controller B
#define CYGNUM_HAL_VECTOR_PIOC 11 // Parallel IO Controller C
#define CYGNUM_HAL_VECTOR_PIOD 12 // Parallel IO Controller D
#define CYGNUM_HAL_VECTOR_US0 13 // USART 0
#define CYGNUM_HAL_VECTOR_US1 14 // USART 1
#define CYGNUM_HAL_VECTOR_US2 15 // USART 2
#define CYGNUM_HAL_VECTOR_US3 16 // USART 3
#define CYGNUM_HAL_VECTOR_MCI 17 // Multimedia Card Interface
#define CYGNUM_HAL_VECTOR_UDP 18 // USB Device Port
#define CYGNUM_HAL_VECTOR_TWI 19 // Two-Wire Interface
#define CYGNUM_HAL_VECTOR_SPI 20 // Serial Peripheral Interface
#define CYGNUM_HAL_VECTOR_SSC0 21 // Serial Synchronous Controller 0
#define CYGNUM_HAL_VECTOR_SSC1 22 // Serial Synchronous Controller 1
#define CYGNUM_HAL_VECTOR_SSC2 23 // Serial Synchronous Controller 2
#define CYGNUM_HAL_VECTOR_TC0 24 // Timer Counter 0
#define CYGNUM_HAL_VECTOR_TC1 25 // Timer Counter 1
#define CYGNUM_HAL_VECTOR_TC2 26 // Timer Counter 2
#define CYGNUM_HAL_VECTOR_TC3 27 // Timer Counter 3
#define CYGNUM_HAL_VECTOR_TC4 28 // Timer Counter 4
#define CYGNUM_HAL_VECTOR_TC5 29 // Timer Counter 5
#define CYGNUM_HAL_VECTOR_UHP 30 // USB Host port
#define CYGNUM_HAL_VECTOR_EMAC 31 // Ethernet MAC
#define CYGNUM_HAL_VECTOR_IRQ0 32 // Advanced Interrupt Controller (IRQ0)
#define CYGNUM_HAL_VECTOR_IRQ1 33 // Advanced Interrupt Controller (IRQ1)
#define CYGNUM_HAL_VECTOR_IRQ2 34 // Advanced Interrupt Controller (IRQ2)
#define CYGNUM_HAL_VECTOR_IRQ3 35 // Advanced Interrupt Controller (IRQ3)
#define CYGNUM_HAL_VECTOR_IRQ4 36 // Advanced Interrupt Controller (IRQ4)

2258

Atmel AT91RM9200 Processor Support

#define CYGNUM_HAL_VECTOR_IRQ5 37 // Advanced Interrupt Controller (IRQ5)
#define CYGNUM_HAL_VECTOR_IRQ6 38 // Advanced Interrupt Controller (IRQ6)

Consult the kernel and generic HAL documentation for more information on VSRs and how to set them.

Interrupt handling within standalone applications
For non-eCos standalone applications running under RedBoot, it is possible to install an interrupt handler into the interrupt
vector table manually. Memory mappings are platform-dependent and so the platform documentation should be consulted, but
in general the address of the interrupt table can be determined by analyzing RedBoot's symbol table, and searching for the
address of the symbol name hal_interrupt_handlers. Table slots correspond to the interrupt numbers above. Pointers
inserted in this table should be pointers to a C/C++ function with the following prototype:

extern unsigned int isr(unsigned int vector, unsigned int data);

For non-eCos applications run from RedBoot, the return value can be ignored. The vector argument will also be the interrupt
vector number. The data argument is extracted from a corresponding table named hal_interrupt_data which imme-
diately follows the interrupt vector table. It is still the responsibility of the application to enable and configure the interrupt
source appropriately if needed.

2259

Atmel AT91RM9200 Processor Support

Name
Timer counters — Use of on-chip timer counters

Timer counter 0
The eCos kernel system clock is implemented using Timer Counter 0. By default, the system clock interrupts once every 10ms,
corresponding to a 100Hz clock. This can be changed by the configuration option CYGNUM_HAL_RTC_DENOMINATOR which
corresponds to the clock frequency. Other clock-related settings are recalculated automatically if the denominator is changed.
If the desired frequency cannot be expressed accurately solely with changes to CYGNUM_HAL_RTC_DENOMINATOR, then
the configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjusted, and again clock-related settings will auto-
matically be recalculated.

Timer Counter 0 is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some device
drivers, and in non-kernel configurations such as with RedBoot where this timer is needed for loading program images via X/
Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

Timer-based profiling support
Timer-based profiling support is implemented using timer counter 1 (TC1). If the gprof package, CYGPKG_PROFILE_GPROF,
is included in the configuration, then TC1 is reserved for use by the profiler.

2260

Atmel AT91RM9200 Processor Support

Name
Serial UARTs — Configuration and implementation details of serial UART support

Overview
Support is included in this processor HAL package for the AT91RM9200's on-chip debug unit UART and four serial USART
serial devices.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 115200,8,N,1 with no flow control.

HAL diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the AT91R-
M9200 processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port
channel to use as the console at startup time. This will be the channel that receives output from, for example, diag_print-
f(). The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven serial driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent ctrl-c operation when debugging.

This driver is contained in the CYGPKG_IO_SERIAL_ARM_AT91 package. That driver package should also be consulted for
documentation and configuration options. The driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration
option within the generic serial driver support package CYGPKG_IO_SERIAL is enabled in the configuration.

Note that unlike the USART devices, the serial debug port does not support modem control signals such as those used for
hardware signals. In addition, USART devices for a particular platform may also not have these control signals brought out
to the physical serial port.

2261

Atmel AT91RM9200 Processor Support

Name
Multimedia Card Interface (MCI) driver — Using MMC/SD cards with block drivers and filesystems

Overview
The MultiMedia Card Interface (MCI) driver in the AT91RM9200 processor HAL allows use of MultiMedia Cards (MMC
cards) and Secure Digital (SD) flash storage cards within eCos, exported as block devices. This makes them suitable for use
as the underlying devices for filesystems such as FAT.

Configuration
This driver provides the necessary support for the generic MMC/SD bus layer within the CYGPKG_DEVS_DISK_MMC package
to export a disk block device. The disk block device is only available if the generic disk I/O layer found in the package
CYGPKG_IO_DISK is included in the configuration.

The block device may then be used as the device layer for a filesystem such as FAT. Example devices are "/dev/mmc0/1"
to refer to the first partition on the card, or "/dev/mmc0/0" to address the whole device including potentially the partition
table at the start.

The driver may be forcibly disabled within this processor HAL package with the configuration option CYGPKG_HAL_AR-
M_ARM9_AT91RM9200_MCI.

If the driver is enabled, there are only two AT91RM9200 specific options:

CYGIMP_HAL_ARM_AR-
M9_AT91RM9200_MCI_INT-
MODE

This indicates that the driver should operate in interrupt-driven mode if possible. This
is enabled by default if the eCos kernel is enabled. Note though that if the driver finds
that global interrupts are off when running, then it will fall back to polled mode even if
this option is enabled. This allows for use of the MCI driver in an initialisation context.

CYGNUM_HAL_ARM_AR-
M9_AT91RM9200_MCI_POW-
ERSAVE_DIVIDER

The AT91RM9200 MCI peripheral allows the MCI clock to be divided down if told to
enter power saving mode. This option specifies the divider to use. The driver itself does
not implement any power saving - it is up to the application to enable power saving in
the MCI control register if it is required.

Usage notes
MMC/SD cards may only be used in a MMC/SD card slot, and not a dataflash slot. The driver will detect the appropriate card
sizes. Hotswapping of cards is supported by the driver, and in the case of eCosPro, the FAT filesystem. Although any cards
removed before explicit unmounting or a sync() call to flush filesystem buffers will likely result in a corrupted filesystem
on the removed card.

The MMC/SD bus layer will parse partition tables, although it can be configured to allow handling of cards with no partition
table.

2262

Atmel AT91RM9200 Processor Support

Name
Two-Wire Interface (TWI) driver — Configuration and implementation details of TWI (I²C®) driver

Overview
The AT91RM9200 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91RM9200. This
type of bus is also known as I²C®. The API for this may be found within the CYGPKG_IO_I2C package.

I²C®/TWI driver configuration
The I²C® driver uses the AT91RM9200's internal Two-Wire Interface (TWI) support. This is controlled within the AT91R-
M9200 processor HAL (CYGPKG_HAL_AT91RM9200). The CYGPKG_HAL_AT91RM9200_TWI CDL component controls
whether the TWI driver is enabled. Within that component, there are two sub-options:

• CYGNUM_HAL_AT91RM9200_TWI_CLOCK sets the speed of the TWI bus clock in Hz. This is usually 100kHz, but can
be set up to 400kHz if the devices on the bus support this speed, also known as fast mode. However other values below
400kHz can also be chosen, subject to the accuracy of the clock waveform generation parameters.

• The second option within the CYGPKG_HAL_AT91RM9200_TWI component is CYGNUM_HAL_AT91R-
M9200_TWI_CKDIV. This is the clock divider used when configuring the TWI_CWGR register. Consult the AT91R-
M9200 datasheet description of the TWI_CWGR register for the formula used to determine the clock frequency. Increas-
ing the divider will decrease the accuracy in practice of the generated I²C bus clock compared to CYGNUM_HAL_AT91R-
M9200_TWI_CLOCK. But the divider must also be sufficiently low that the relevant factors do not overflow valid values for
CHDIV/CLDIV in TWI_CWGR. Note that when the AT91RM9200 is using a 60MHz MCK, then for 100kHz operation, a
value for this option of 1 is most appropriate. For 400kHz, a value for this option of 0 is most appropriate. The default value
of this CDL is an appropriate value for CKDIV assuming a 60MHz MCK and a TWI clock between 29kHz and 400kHz.

To be specific, the CLDIV/CHDIV fields of the TWI_CWGR are considered equal. The value of, for example, CLDIV,
can be expressed as:

To use the I²C/TWI driver, the generic I²C driver package CYGPKG_IO_I2C must be used. Documentation for its API may
be found elsewhere.

Usage notes
This driver only operates in interrupt mode. It does not operate in polled mode, and thus does not operate when interrupts are
disabled. It cannot therefore be used in an initialization context, before the eCos kernel thread scheduler starts. And it cannot
be used with RedBoot.

Due to the characteristics of the AT91RM9200's operation, it is not possible to provide support for repeated starts with the I²C
package API. Similarly indicating a NACK when performing a receive is equivalent to also sending a STOP.

A test application for use with the Aardvark I²C/SPI Activity Board is provided within the tests subdirectory of the CYG-
PKG_HAL_AT91RM9200 package. This test communicates with the I²C EEPROM on the board to perform read and write
operations using I²C. This test is not built by default. It may be built by enabling the configuration option CYGBLD_HAL_AR-
M_ARM9_AT91RM9200_TEST_TWI_AT24C02A within the AT91RM9200 processor HAL.

2263

http://www.totalphase.com/products/accessories/activity-board/

Atmel AT91RM9200 Processor Support

Name
Power saving support — Extensions for saving power

Overview
There is support in the AT91RM9200 processor HAL for a simple power saving mechanism. This is provided by two functions:

#include <cyg/hal/hal_intr.h>

__externC void cyg_hal_at91rm9200_powersave_init(cyg_uint32 ip_addr);

__externC void cyg_hal_at91rm9200_powerdown(void);

The powersaving system is initialized by calling cyg_hal_at91rm9200_powersave_init(). The argument should
be the IP address of this machine in network order. This can usually be fetched from the bootp data for an interface after
completion of the call to init_all_network_interfaces(). e.g. eth0_bootp_data.bp_ciaddr.s_addr.

A call to cyg_hal_at91rm9200_powerdown() will put the machine into a low power mode. This will involve switching
to a slower system clock speed, disabling all peripherals except those that are defined to cause the system to wake up and
return from this function.

Configuration
The exact behaviour of the power saving system is controlled by the following configuration options:

CYGPKG_HAL_ARM_ARM9_AT91RM9200_POWERSAVE

This option controls the overall inclusion of the power saving system.

Default value: on

CYGSEM_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_POLL_ETHERNET

This option enables polling of the ethernet interface for relevant ARP packets and unicast IP packets. It is necessary for
the CPU to run at a higher CPU speed for this option to work.

Default value: off

CYGSEM_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_IDLE

If this option is set, the CPU will go into idle mode, which will cause it to halt until an interrupt is delivered.

Default value: off

CYGVAR_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_ACTIVE_DEVICES

This option defines the devices that are to be kept running during power down mode. An interrupt from one of these
devices is usually the only way of bringing the system out of idle mode. The value of this option is a bit mask with bits set
for each device that is to be kept active. The bits correspond to the peripheral identifiers described in the AT91RM9200
documentation.

Default value: 0x00000000

CYGSEM_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_POLL_GPIO

This option control whether the power saving system will poll GPIO pins during power saving. For this to work the CPU
cannot be put into idle mode.

Default value: on

2264

Atmel AT91RM9200 Processor Support

CYGVAR_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_PIO_HI

This is an array of bitmasks of the bits in the PIO PDSR registers. Within the array, index 0 corresponds to PIOA, index 1
to PIOB and so on. For each set bit in these masks, if the value is seen to be 1, then the low power mode will be terminated.

Default value: 0, 0, 0, 0

CYGVAR_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_PIO_LO

This is an array of bitmasks of the bits in the PIO PDSR registers. Within the array, index 0 corresponds to PIOA, index 1
to PIOB and so on. For each set bit in these masks, if the value is seen to be 0, then the low power mode will be terminated.

Default value: 0, 0, 0, 0

CYGVAR_HAL_ARM_ARM9_AT91RM9200_POWERSAVE_PIO_CHANGE

This is an array of bitmasks of the bits in the PIO PDSR registers. Within the array, index 0 corresponds to PIOA, index
1 to PIOB and so on. For each set bit in these masks, if the value is seen to change between successive polls, then the
low power mode will be terminated.

Default value: 0, 0, 0, 0

CYGBLD_HAL_ARM_ARM9_AT91RM9200_TEST_POWERSAVE

This option controls whether a simple test is built to exercise power saving support. The test is not built by default as an
external means is required to wake the processor up by one of the above configured mechanisms.

Default value: 0

2265

Chapter 251. Atmel AT91RM9200
Development Kit/Evaluation Kit Board
Support

2266

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

Name
eCos Support for the Atmel AT91RM9200 Development Kit/Evaluation Kit — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91RM9200 Development Kit and
Atmel AT91RM9200 Evaluation Kit. The AT91RM9200 Evaluation Kit (EK board) contains the AT91RM9200 processor,
8Mbytes of SDRAM, 8Mbytes of parallel NOR flash memory, a Davicom DM9161A PHY, a SD/MMC/DataFlash socket, a
DAC, external connections for two serial channels (one debug, one full), ethernet, USB host/device, graphics, and the various
other peripherals supported by the AT91RM9200. The AT91RM9200 Development Kit (DK board) is similar but also comes
with a 128Kbytes TWI (I2C) EEPROM, IrDA port, and 8Mbytes of SPI DataFlash, although only 2Mbytes of parallel NOR
flash memory. eCos support for the many devices and peripherals on the boards and the AT91RM9200 is described below.

In this document, an EK board will be assumed for the purposes of examples and output.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot into this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the AT91RM9200 processor HAL documentation and further
device support and subsystems are described and documented there.

Supported Hardware
On the EK board, the parallel NOR flash memory consists of 8 blocks of 8Kbytes each, followed by 127 blocks of 64Kbytes
each. In a typical setup, the first 192 Kbytes are reserved for the use of the ROMRAM RedBoot image. The topmost block is
used to manage the flash and hold RedBoot fconfig values. The remaining blocks can be used by application code. There are
125 blocks available between 0x60030000 and 0x607EFFFF.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J10 and DTE port at J14 (connected to USART channel 1) can be used by RedBoot for communication
with the host. If either of these devices is needed by the application, either directly or via the serial driver, then it cannot also be
used for RedBoot communication. Another communication channel such as ethernet should be used instead. The serial driver
package is loaded automatically when configuring for the AT91RM9200-EK or AT91RM9200-DK targets.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91RM9200 for the on-chip ethernet device. The platform HAL
package is responsible for configuring this generic driver to the EK/DK hardware. This driver is also loaded automatically
when configuring for the EK or DK targets.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91RM9200. This driver is also loaded automatically
when configuring for the EK or DK targets.

There is a driver for the on-chip real-time clock (RTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91. This driver is also
loaded automatically when configuring for the EK or DK targets.

The AT91RM9200 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91RM9200. This
type of bus is also known as I²C®. Further documentation may be found in the AT91RM9200 processor HAL documentation.

The AT91RM9200 processor HAL contains a driver for the MultiMedia Card Interface (MCI). This driver is loaded automat-
ically when configuring for the EK or DK targets and allows use of MMC and Secure Digital (SD) flash storage cards within
eCos, exported as block devices. Further documentation may be found in the AT91RM9200 processor HAL documentation.

There is a driver CYGPKG_DEVS_SPI_ARM_ATMEL_AT91RM9200_KITS to allow access to devices on the SPI bus. This
driver provides information to the more general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides
the underlying implementation for the SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically
loaded when configuring for the EK or DK targets.

Furthermore, the platform HAL package contains support for SPI dataflash cards. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_ATMEL_DATAFLASH package as well as the above SPI packages. That package is automatically loaded

2267

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

when configuring for the EK or DK targets. Dataflash media is then accessed as a Flash device, using the Flash I/O API within
the CYGPKG_IO_FLASH package, if that package is loaded in the configuration.

In general, devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run. Other devices
(RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot
sequence will set up the appropriate PIO configuration.

Tools
The AT91RM9200-EK and AT91RM9200-DK support is intended to work with GNU tools configured for an arm-eabi target.
The original port was undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2268

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

Name
Setup — Preparing the AT91RM9200-EK and AT91RM9200-DK boards for eCos Development

Overview
In a typical development environment, the AT91RM9200-EK/DK boards boot from the parallel NOR Flash and run the Red-
Boot ROM monitor directly. eCos applications are configured for RAM startup and then downloaded and run on the board
via the debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into
flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector

redboot_ROMRAM.ecm redboot_ROMRAM.bin

JTAG RedBoot running from RAM,
loaded via JTAG

redboot_JTAG.ecm redboot_JTAG.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

The ample provision of RAM memory on the board allows the ROMRAM version of RedBoot to be preferential to the standard
ROM version which executes directly from Flash. Alternatively, if the ROM version is to be chosen, then the RAM version is
provided to allow for updating the resident RedBoot image in Flash. The JTAG version is only used if loading RedBoot into
RAM via a JTAG debugger or ICE. It is similar to the RAM version, but loads at a lower address within RAM, and so can be
used to in turn load eCos applications, as if it is the normal resident boot monitor. The ELF format image of this JTAG version of
RedBoot can also be loaded and executed from GDB using the Abatron BDI2000 bdiGDB support, to allow it to be debugged.

Initial Installation
The on-chip boot program on the AT91RM9200 is only capable of loading programs into 12Kbytes of on-chip SRAM and is
therefore quite restrictive. Consequently two mechanisms are described below to program RedBoot into Flash. Both of them
require a JTAG device. In the following documentation it is assumed that the Abatron BDI2000 is being used. For a different
JTAG device, equivalent operations will need to be performed.

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Locate the file bdi2000.at91rm9200ek.cfg within the eCos platform HAL package in the source repository. This
will be in the directory packages/hal/arm/arm9/atmel-at91rm9200-kits/VERSION/misc relative to the
root of your eCos installation.

5. Locate the file reg920t.def within the installation of the BDI2000 bdiGDB support software.

6. Place the bdi2000.at91rm9200ek.cfg in a location on the PC accessible to the TFTP server. Later you will configure the
BDI2000 to load this file via TFTP as its configuration file.

2269

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

7. Similarly place the file reg920t.def in a location accessible to the TFTP server.

8. Open bdi2000.at91rm9200ek.cfg in an editor such as emacs or notepad and if necessary adjust the path of the
reg920t.def file in the [REGS] section to match its location relative to the TFTP server root.

9. Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
bdi2000.at91rm9200ek.cfg configuration file at the appropriate point of this process.

Preparing the AT91RM9200-EK/DK board for programming

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between the Serial Debug Port on the board and a serial port on
the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 115200 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to your host PC's LAN with an Ethernet cable.

4. You should designate the board with a new Ethernet MAC address. The RedBoot binary image contains a default address,
but each board requires its own unique address. It is advisable to mark each board with its programmed MAC address for
future identification.

5. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the ICE interface connector to the Target A
port on the BDI2000.

6. Locate jumper J15 on the board, which is by default set to INT. It should be reset to EXT. In due course this will ensure
that the board boots RedBoot from the external parallel Flash device.

7. Power up the AT91RM9200-EK board. You should see the three ethernet LEDs illuminate.

8. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

Core#0>

9. Confirm correct connection with the BDI2000 with the reset halt command as follows:

Core#0> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x05B0203F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
Core#0>

10.Locate the redboot_ROMRAM.bin image within the loaders subdirectory of the base of the eCos installation.

11.Copy the redboot_ROMRAM.bin file into a location on the host computer accessible to its TFTP server.

Method 1 - Using the BDI2000 to directly program RedBoot into Flash

As previously mentioned, there are two methods of programming a RedBoot image into the parallel NOR Flash. This method
uses the built-in capabilities of the BDI2000.

This is a three stage process. The relevant Flash blocks must first be unlocked, then erased, and finally programmed. This can
be accomplished with the following steps:

2270

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

1. Connect to the BDI2000 telnet port as before.

2. Cut and paste the following commands into the BDI2000 telnet session. They are used to unlock the relevant Flash blocks
that will contain RedBoot. The BDI2000 does have an unlock command, however this only works with Intel StrataFLASH
and is therefore not suitable.

mmh 0x1000aaaa 0x00aa
mmh 0x10000000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x10002000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x10004000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x10006000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x10008000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x1000a000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x1000c000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x1000e000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x10010000 0x0070
mmh 0x1000aaaa 0x00aa
mmh 0x10020000 0x0070

3. Erase the 8 initial 8Kbyte sized Flash blocks, and the following 2 64Kbyte Flash blocks with the following commands:

Core#0>erase 0x10000000 0x2000 8
Erasing flash at 0x10000000
Erasing flash at 0x10002000
Erasing flash at 0x10004000
Erasing flash at 0x10006000
Erasing flash at 0x10008000
Erasing flash at 0x1000a000
Erasing flash at 0x1000c000
Erasing flash at 0x1000e000
Erasing flash passed
Core#0>erase 0x10010000 0x10000 2
Erasing flash at 0x10010000
Erasing flash at 0x10020000
Erasing flash passed
Core#0>

4. Program the RedBoot image into Flash with the following command, replacing /RBPATH with the location of the red-
boot_ROMRAM.bin file relative to the TFTP server root directory:

Core#0>prog 0x10000000 /RBPATH/redboot_ROMRAM.bin bin
Programming /RBPATH/redboot_ROMRAM.bin , please wait
Programming flash passed
Core#0>

This operation can take some time.

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. The RedBoot banner should be visible on the serial port. RedBoot's Flash configuration can be
initialized using the same procedure as required in Method 2 below.

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Method 2 - Program RedBoot into Flash with RAM RedBoot

With this approach, the BDI2000 is used to load a RAM RedBoot image, which can then in turn be used to load and program
a ROMRAM RedBoot image into Flash.

2271

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

There are three stages, firstly loading the RAM RedBoot image, then initializing RedBoot's Flash configuration, and finally
loading and programming the ROMRAM RedBoot.

Loading a RAM RedBoot

1. Locate the redboot_JTAG.bin image within the loaders subdirectory of the base of the eCos installation.

2. Copy the redboot_JTAG.bin file into a location on the host computer accessible to its TFTP server.

3. With the BDI2000 telnet interface, execute the following command, replacing /RBPATH with the location of the redboot_J-
TAG.bin file relative to the TFTP server root directory:

Core#0>load 0x20008000 /RBPATH/redboot_JTAG.bin bin
Loading /RBPATH/redboot_JTAG.bin , please wait
Loading program file passed
Core#0>

4. Run the loaded RAM RedBoot:

Core#0>go 0x20008000
Core#0>

The terminal emulator connected to the serial debug port should now have displayed the RedBoot banner and prompt similar
to the following:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
PHY: Davicom DM9161A
AT91RM9200 ETH: Waiting for link to come up.
AT91RM9200 ETH: 100Mb/Full Duplex
... waiting for BOOTP information
Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 192.168.7.190/255.255.255.0, Gateway: 192.168.7.1
Default server: 192.168.7.11, DNS server IP: 192.168.7.11

RedBoot(tm) bootstrap and debug environment [RAM]
eCosCentric certified release, version v2_XX - built 18:51:18, Aug 25 2005

Platform: Atmel AT91RM9200-EK (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

RAM: 0x20000000-0x20800000, [0x2002f4e0-0x207ed000] available
FLASH: 0x60000000 - 0x607fffff 8 x 0x2000 blocks 127 x 0x10000 blocks
RedBoot>

In the above output, a local BOOTP/DHCP server was able to serve an address to the device.

Note

It is also possible to use the RAM startup version of RedBoot and the redboot_RAM.bin file instead of redboot_J-
TAG.bin above. If so, then the address to the load command must be 0x20040000, as must be the address to
the go command.

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration. This must be performed when using a RAM
RedBoot to program Flash, but is also applicable to initial configuration of a ROMRAM RedBoot loaded using Method 1.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x60030000-0x607effff: ...
... Unlocking from 0x607f0000-0x607fffff: .
... Erase from 0x607f0000-0x607fffff: .

2272

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

... Program from 0x207f0000-0x20800000 to 0x607f0000: .

... Locking from 0x607f0000-0x607fffff: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

Remember to substitute the appropriate MAC address for this board at the appropriate step. If a BOOTP/DHCP server is
not available, then IP configuration may be set manually. The default server IP address can be set to a PC that will act as a
TFTP host for future RedBoot load operations, or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.222
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.9
Console baud rate: 115200
DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x00:0x23:0x31:0x37:0x00:0x4e
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: at91rm9200_eth
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x607f0000-0x607fffff: .
... Erase from 0x607f0000-0x607fffff: .
... Program from 0x207f0000-0x20800000 to 0x607f0000: .
... Locking from 0x607f0000-0x607fffff: .
RedBoot>

Loading and programming the ROMRAM RedBoot

This section describes the steps required to load the ROMRAM RedBoot from the TFTP server and program it into Flash.

1. Load the RedBoot ROMRAM binary image from the TFTP server. Use the following command, replacing
111.222.333.444 with the TFTP server IP address (or domain name if a DNS server has been configured), and /RB-
PATH with the location of the redboot_ROMRAM.bin file relative to the TFTP server root directory:

RedBoot> load -r -b %{freememlo} -h 111.222.333.444 /RBPATH/redboot_ROMRAM.bin
Using default protocol (TFTP)
Raw file loaded 0x2002f800-0x2004e367, assumed entry at 0x2002f800
RedBoot>

2. Finally install the loaded image into Flash:

RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Unlocking from 0x60000000-0x6002ffff:
... Erase from 0x60000000-0x6002ffff:
... Program from 0x0002f800-0x0004e368 to 0x60000000:
... Locking from 0x60000000-0x6002ffff:
... Unlocking from 0x607f0000-0x607fffff: .
... Erase from 0x607f0000-0x607fffff: .
... Program from 0x007f0000-0x00800000 to 0x607f0000: .
... Locking from 0x607f0000-0x607fffff: .
RedBoot>

It is also possible to use the fis write command to write the image into Flash, but if so, the relevant Flash blocks must also
be explicitly unlocked with the command:

RedBoot> fis unlock -f 0x60000000 -l 0x30000

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. Output similar to the following should be seen on the serial port. Verify the IP settings are as
expected.

2273

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

+PHY: Davicom DM9161A
AT91RM9200 ETH: Waiting for link to come up.
AT91RM9200 ETH: 100Mb/Full Duplex
Ethernet eth0: MAC address 00:23:31:37:00:3d
IP: 192.168.7.222/255.255.255.0, Gateway: 192.168.7.1
Default server: 192.168.7.9, DNS server IP: 192.168.7.11

RedBoot(tm) bootstrap and debug environment [ROMRAM]
eCosCentric certified release, version v2_XX - built 18:55:20, Aug 25 2005

Platform: Atmel AT91RM9200-EK (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

RAM: 0x20000000-0x20800000, [0x20030470-0x207ed000] available
FLASH: 0x60000000 - 0x607fffff 8 x 0x2000 blocks 127 x 0x10000 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROMRAM version of RedBoot for the AT91RM9200-EK are:

$ mkdir redboot_at91rm9200ek_romram
$ cd redboot_at91rm9200ek_romram
$ ecosconfig new at91rm9200ek redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/atmel-at91rm9200-kits/VERSION/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

The other versions of RedBoot - ROM, RAM or JTAG - may be similarly built by choosing the appropriate alternative .ecm file.

2274

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The AT91RM9200-EK/DK platform HAL package is loaded automatically when eCos is configured for at91rm9200ek
or at91rm9200dk targets. It should never be necessary to load this package explicitly. Unloading the package should only
happen as a side effect of switching target hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into
memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the
application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diag-
nostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x10000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x10000000. However, when it starts up, the application will first copy itself to RAM at virtual address 0x00000000
and then run from there. RAM is generally faster than flash memory, so the program will run more quickly than
a ROM-startup application. The application will be self-contained with no dependencies on services provided by
other software. eCos startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The AT91RM9200-EK board contains an 8Mbyte Atmel AT49BV6416 parallel Flash device. The CYGPKG_DE-
VS_FLASH_AMD_AM29XXXXX_V2 package contains all the code necessary to support this part and the platform HAL pack-
age contains definitions that customize the driver to the AT91RM9200-EK board. This driver is not active until the generic
Flash support package, CYGPKG_IO_FLASH, is included in the configuration.

Ethernet Driver
The AT91RM9200-EK/DK boards use the AT91RM9200's internal EMAC ethernet device attached to an external Davicom
DM9161A PHY. The CYGPKG_DEVS_ETH_ARM_AT91RM9200 package contains all the code necessary to support this
device and the platform HAL package contains definitions that customize the driver to the AT91RM9200-EK/DK boards. This
driver is not active until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2275

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

RTC Driver
The AT91RM9200-EK/DK boards use the AT91RM9200's internal RTC support. The CYGPKG_DEVICES_WALL-
CLOCK_ARM_AT91 package contains all the code necessary to support this device. This driver is not active until the generic
wallclock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The AT91RM9200-EK/DK boards use the AT91RM9200's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91RM9200 package contains all the code necessary to support this device. Within that package the
CYGNUM_DEVS_WATCHDOG_ARM_AT91RM9200_DESIRED_TIMEOUT_MS configuration option controls the watchdog
timeout, and by default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device
support package, CYGPKG_IO_WATCHDOG, is included in the configuration.

USART Serial Driver
The AT91RM9200-EK/DK boards use the AT91RM9200's internal USART serial support as described in the AT91RM9200
processor HAL documentation. Two serial ports are available: the serial debug port which is mapped to virtual vector channel
0 in the HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver; and USART 1 which is mapped to virtual vector
channel 1 and "/dev/ser1". Only USART 1 supports modem control signals such as those used for hardware flow control.

MCI Driver
As the AT91RM9200 MCI driver is part of the AT91RM9200 HAL, nothing is required to load it. Similarly the MMC/SD bus
driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific configuration for this
target. All that is required to enable the support is to include the generic disk I/O infrastructure package (CYGPKG_IO_DISK),
along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its package dependencies
(including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

Various options can be used to control specific of the AT91RM9200 MCI driver. Consult the AT91RM9200 HAL documen-
tation for information on its configuration.

On this target, the MMC/SD socket allows detection of when cards are inserted and removed. This may be used with the
removeable media support and disk insertion/removal event notification system in the disk I/O package so that the application
or other eCos subsystems are informed when cards are inserted and removed. This in turn allows use of the automounter
contained within the File I/O package (CYGPKG_FILEIO) to mount and unmount cards automatically.

Caution

Remember that the ability to unmount cards after removal does not prevent those cards containing corrupt filesys-
tems - instead cards should be preferably unmounted before removal, or at least have the filesystem's in-memory
buffers flushed to the media using the sync() function).

The MMC/SD socket also allows detection of the write-protect (or "lock") switch present on SD cards. "Locked" cards will be
detected and mounted read-only, and attempts to write to them will fail.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM920T CPU in the AT91RM9200.

2276

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2277

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM, including Red-
Boot.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM920T core of the AT91RM9200
only supports two such hardware breakpoints, and so they should be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the bdi2000.at91rm9200ek.cfg file should be used to setup and configure the hardware to
an appropriate state to load programs. This includes setting up the SDRAM controller.

The bdi2000.at91rm9200ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break
points, and remember to use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the bdiGDB interface.
In the case of the latter, arm-eabi-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the bdi2000.at91r-
m9200ek.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is repeated with
the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot as normal. If a ROMRAM RedBoot is resident in Flash, it will
be run.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

Core#0>load 0x20008000 /test.bin bin
Loading /test.bin , please wait
Loading program file passed
Core#0>go 0x20008000

Consult the BDI2000 documentation for information on other formats.

Configuration of RAM applications

If the JTAG device has initialized the SDRAM, such as by using the bdi2000.at91rm9200ek.cfg configuration on the
BDI2000, RAM applications can be loaded directly into SDRAM without requiring a ROM monitor. This loading can be done
directly through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. This will also cause the CYGBLD_HAL_ARM9_ATMEL_AT91R-
M9200_KITS_LOAD_LOW_RAM configuration option to be enabled allowing the application to be built with a set of mem-
ory layout files that will configure the linker script to set the program load address to be within the physical SDRAM space.

2278

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be disabled in order to prevent HAL diagnostic output
being encoded into GDB ($O) packets.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial debug port. USART 1 can be
chosen instead by setting the CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform
HAL to channel 1.

Warning

If resetting the board using the JTAG device, such as by using the BDI2000 reset command, the Ethernet PHY
fails to interface correctly with the AT91RM9200, and consequently all subsequent ethernet operations are im-
possible. Only a reset by pressing the reset button or due to a watchdog timeout will cause the PHY to reset
correctly.

2279

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91RM9200-EK/DK hardware,
and should be read in conjunction with that specification. The AT91RM9200-EK/DK platform HAL package complements
the ARM architectural HAL, the ARM9 variant HAL and the AT91RM9200 processor HAL. It provides functionality which
is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_plat-
form_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x10000000 of the physical memory space. The HAL uses the
MMU to locate it at virtual address 0x60000000 after initialization. It remains accessible
at address 0x1000000 but accesses to this address range are uncached.

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL config-
ures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to as-
sign hardware exception vectors vectors at address 0x00000000, the HAL also uses the
MMU to create a clone of this memory at virtual address 0x00000000. The same mem-
ory is also accessible uncached and unbuffered at virtual location 0x30000000 for use
by devices. The first 32 bytes are used for hardware exception vectors. The next 32 bytes
are used for the VSR table and the next 256 bytes are normally used for the eCos virtual
vectors, allowing RAM-based applications to use services provided by the ROM moni-
tor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte bound-
ary. These therefore occupy memory from 0x4000 to 0x8000. For ROM/ROMRAM
startup, all remaining SDRAM is available. For RAM startup, available RAM starts at
virtual location 0x00040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is entirely reserved for use by the ethernet interface, since there
are problems using external SDRAM for ethernet buffers.

On-chip ROM This is located at address 0x00100000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x71800000.

USB host port The USB host port (UHP) registers are located at address 0x00300000 of the physical
memory space. However the HAL uses the MMU to relocate this to virtual address
0x72800000. Memory accessed at this address is uncached and unbuffered. There is no
cached variant.

SPI dataflash SPI Dataflash media can only be accessed with the Flash API. For the purposes of this
API a placeholder address range has been allocated as if the Flash is present at this
address. The base of this address range is 0x30000000 and the extent will clearly depend

2280

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

on the Dataflash capacity. This reserved range is not real memory and any attempt to
access it directly by the processor other than via the Flash API will result in a memory
address exception.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, parallel NOR flash, ethernet PHY, SPI dataflash and MCI fa-
cilities on the AT91RM9200-EK/DK boards. eCos does not currently make any use of
any other off-chip peripherals present on these boards.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91RM9200, using the facilities
of the AT91RM9200 processor HAL. Consult the documentation in that package for details.

SPI Dataflash
eCos supports SPI access to Dataflash on the AT91RM9200. Two physical slots are provided on the board, but only the upper
one may be used for SPI dataflash, not the one on the underside. This is due to an AT91RM9200 errata affecting SPI chip selects.

Accesses to Dataflash are performed via the Flash API, using 0x30000000 as the nominal address of the device, although it
does not truly exist in the processor address space. On driver initialisation, eCos and RedBoot can detect the presence of a card
in the socket. In particular, on reset RedBoot will indicate the presence of Flash at the 0x30000000 address range in its startup
banner if it has been successfully detected. Hot swapping is not possible.

Since Dataflash is not directly addressable, access from RedBoot is only possible using fis command operations. Flash partitions
within the FIS can be created, although users should be aware that the FIS partition data is stored in the NOR flash, and not
on a per-Dataflash card basis. Therefore if a second Dataflash card is inserted it will appear to have the same FIS partitions
residing on the card. Care must be taken if swapping between cards with differing partition layouts.

The MCI driver cannot be enabled simultaneously with the SPI driver, as the drivers need differing pin configurations for the
same pins on this board due to the shared socket.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 251.1. atmel-at91rm9200-kits Real-time characterization

 Startup, main stack : stack used 412 size 3920
 Startup : Interrupt stack used 524 size 4096
 Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 13.02 microseconds (6 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

2281

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 14.09 8.55 19.23 2.46 45% 25% Create thread
 2.10 0.00 4.27 0.13 95% 3% Yield thread [all suspended]
 2.74 2.14 6.41 0.88 73% 73% Suspend [suspended] thread
 2.54 2.14 4.27 0.65 81% 81% Resume thread
 3.30 2.14 6.41 1.09 51% 46% Set priority
 0.47 0.00 2.14 0.73 78% 78% Get priority
 7.24 6.41 14.96 1.09 65% 65% Kill [suspended] thread
 2.10 0.00 4.27 0.13 95% 3% Yield [no other] thread
 4.21 2.14 6.41 0.19 93% 4% Resume [suspended low prio] thread
 2.40 2.14 4.27 0.47 87% 87% Resume [runnable low prio] thread
 2.94 2.14 4.27 1.00 62% 62% Suspend [runnable] thread
 2.14 0.00 4.27 0.07 96% 1% Yield [only low prio] thread
 2.17 2.14 4.27 0.06 98% 98% Suspend [runnable->not runnable]
 7.08 6.41 12.82 0.96 71% 71% Kill [runnable] thread
 5.41 4.27 8.55 1.10 50% 48% Destroy [dead] thread
 10.32 8.55 14.96 0.72 78% 20% Destroy [runnable] thread
 12.69 10.68 19.23 0.81 70% 20% Resume [high priority] thread
 5.56 4.27 8.55 1.04 58% 40% Thread switch

 0.52 0.00 2.14 0.78 75% 75% Scheduler lock
 1.77 0.00 2.14 0.61 82% 17% Scheduler unlock [0 threads]
 1.77 0.00 2.14 0.61 82% 17% Scheduler unlock [1 suspended]
 1.77 0.00 2.14 0.61 82% 17% Scheduler unlock [many suspended]
 1.78 0.00 4.27 0.61 82% 17% Scheduler unlock [many low prio]

 0.87 0.00 2.14 1.03 59% 59% Init mutex
 2.74 2.14 6.41 0.90 75% 75% Lock [unlocked] mutex
 3.07 2.14 4.27 1.05 56% 56% Unlock [locked] mutex
 2.34 2.14 4.27 0.36 90% 90% Trylock [unlocked] mutex
 2.14 2.14 2.14 0.00 100% 100% Trylock [locked] mutex
 0.53 0.00 2.14 0.80 75% 75% Destroy mutex
 12.89 12.82 14.96 0.13 96% 96% Unlock/Lock mutex

 0.80 0.00 4.27 1.05 65% 65% Create mbox
 0.80 0.00 2.14 1.00 62% 62% Peek [empty] mbox
 2.60 2.14 4.27 0.73 78% 78% Put [first] mbox
 0.33 0.00 2.14 0.56 84% 84% Peek [1 msg] mbox
 2.67 2.14 4.27 0.80 75% 75% Put [second] mbox
 0.53 0.00 2.14 0.80 75% 75% Peek [2 msgs] mbox
 2.60 2.14 4.27 0.73 78% 78% Get [first] mbox
 2.47 2.14 4.27 0.56 84% 84% Get [second] mbox
 2.47 2.14 4.27 0.56 84% 84% Tryput [first] mbox
 2.20 2.14 4.27 0.13 96% 96% Peek item [non-empty] mbox
 2.54 2.14 4.27 0.65 81% 81% Tryget [non-empty] mbox
 2.07 0.00 2.14 0.13 96% 3% Peek item [empty] mbox
 2.20 2.14 4.27 0.13 96% 96% Tryget [empty] mbox
 0.47 0.00 2.14 0.73 78% 78% Waiting to get mbox
 0.47 0.00 2.14 0.73 78% 78% Waiting to put mbox
 2.67 2.14 6.41 0.83 78% 78% Delete mbox
 6.61 6.41 12.82 0.38 96% 96% Put/Get mbox

 0.73 0.00 2.14 0.96 65% 65% Init semaphore
 2.20 0.00 4.27 0.26 90% 3% Post [0] semaphore
 2.20 2.14 4.27 0.13 96% 96% Wait [1] semaphore
 2.00 0.00 2.14 0.25 93% 6% Trywait [0] semaphore
 2.07 0.00 2.14 0.13 96% 3% Trywait [1] semaphore
 0.73 0.00 2.14 0.96 65% 65% Peek semaphore
 0.33 0.00 2.14 0.56 84% 84% Destroy semaphore
 7.28 6.41 10.68 1.08 62% 62% Post/Wait semaphore

 1.00 0.00 2.14 1.06 53% 53% Create counter
 0.93 0.00 2.14 1.05 56% 56% Get counter value
 0.60 0.00 2.14 0.86 71% 71% Set counter value
 2.74 2.14 4.27 0.86 71% 71% Tick counter
 0.53 0.00 2.14 0.80 75% 75% Delete counter

 0.73 0.00 2.14 0.96 65% 65% Init flag

2282

Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support

 2.54 2.14 4.27 0.65 81% 81% Destroy flag
 2.00 0.00 4.27 0.38 87% 9% Mask bits in flag
 2.40 2.14 4.27 0.47 87% 87% Set bits in flag [no waiters]
 3.40 2.14 6.41 1.11 53% 43% Wait for flag [AND]
 3.27 2.14 4.27 1.06 53% 46% Wait for flag [OR]
 3.27 2.14 4.27 1.06 53% 46% Wait for flag [AND/CLR]
 3.34 2.14 4.27 1.05 56% 43% Wait for flag [OR/CLR]
 0.40 0.00 2.14 0.65 81% 81% Peek on flag

 1.53 0.00 2.14 0.86 71% 28% Create alarm
 4.41 2.14 8.55 0.51 84% 6% Initialize alarm
 2.00 0.00 4.27 0.38 87% 9% Disable alarm
 4.34 4.27 6.41 0.13 96% 96% Enable alarm
 2.40 2.14 4.27 0.47 87% 87% Delete alarm
 3.14 2.14 4.27 1.06 53% 53% Tick counter [1 alarm]
 14.69 12.82 14.96 0.47 87% 12% Tick counter [many alarms]
 5.01 4.27 6.41 0.96 65% 65% Tick & fire counter [1 alarm]
 86.34 85.47 87.61 1.03 59% 59% Tick & fire counters [>1 together]
 16.89 14.96 17.09 0.36 90% 9% Tick & fire counters [>1 separately]
 10.75 10.68 19.23 0.13 99% 99% Alarm latency [0 threads]
 13.59 10.68 21.37 1.64 76% 22% Alarm latency [2 threads]
 13.89 10.68 25.64 1.30 92% 4% Alarm latency [many threads]
 19.63 19.23 61.97 0.77 96% 96% Alarm -> thread resume latency

 2.15 2.14 6.41 0.00 Clock/interrupt latency

 5.05 2.14 8.55 0.00 Clock DSR latency

 48 0 296 (main stack: 1408) Thread stack used (1360 total)
 All done, main stack : stack used 1408 size 3920
 All done : Interrupt stack used 208 size 4096
 All done : Idlethread stack used 732 size 2048

Timing complete - 29590 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91RM9200-EK/DK platform HAL does not affect the implementation of other parts of the eCos HAL specification.
The AT91RM9200 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted
for further details.

2283

Chapter 252. Cogent CSB337 Board
Support

2284

Cogent CSB337 Board Support

Name
eCos Support for the CSB337 Board — Overview

Description
This document covers the Cogent CSB337 single board computer based on the Atmel AT91RM9200. The CSB337 contains
the AT91RM9200 processor, 32Mb of SDRAM, 8MB of flash memory, an Intel LXT971 PHY and external connections for
two serial channels, ethernet and the various other peripherals supported by the AT91RM9200. The CSB337 is usually plugged
into a breakout board such as a Cogent CSB300 or CSB300CF.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of 64 blocks of 128k bytes each. In a typical setup, the first flash block is used for the ROMRAM
RedBoot image. The topmost block is used to manage the flash and hold RedBoot fconfig values. The remaining 60 blocks
between 0x60020000 and 0x607DFFFF can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
These devices can be used by RedBoot for communication with the host. If either of these devices is needed by the application,
either directly or via the serial driver, then it cannot also be used for RedBoot communication. Another communication channel
such as ethernet should be used instead. The serial driver package is loaded automatically when configuring for the CSB337
target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91RM9200 for the on-chip ethernet device. A second package
CYGPKG_DEVS_ETH_ARM_CSB337 is responsible for configuring this generic driver to the CSB337 hardware. These drivers
are also loaded automatically when configuring for the CSB337 target.

The on-chip TWI device is not supported. Instead there is a bit-banged I²C bus using GPIO pins PA25 and PA26, with one
attached device: a DS1307 battery-backed wallclock. The bus is supported by the CYGPKG_IO_I2C package and some plat-
form-specific support. The platform HAL provides a cyg_i2c_bus structure hal_csb337_i2c_bus, and one cyg_i2c_de-
vice structure cyg_i2c_wallclock_ds1307. The wallclock is used mainly by the DS1307 device driver, but it also pro-
vides 56 bytes of non-volatile storage which can be used by the application. Any unused I²C functionality will be eliminated
at link-time.

CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307 provides support for the DS1307 clock. This will be inactive unless
the generic wallclock support CYGPKG_IO_WALLCLOCK is loaded. Some templates load this automatically, otherwise it must
be loaded explicitly. The wallclock is not normally accessed directly. Instead it provides support for the standard C library time-
related routines such as time and asctime, and can be updated by an eCos-specific function cyg_libc_time_settime.

eCos manages the on-chip interrupt controller. Timer counter 0 is used to implement the eCos system clock and the microsecond
delay function. Other on-chip devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to
run. Other devices (SPI, MCI etc.) are not touched.

Tools
The CSB337 port is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.2.1, arm-elf-gdb version 5.3, and binutils version 2.13.1.

2285

Cogent CSB337 Board Support

Name
Setup — Preparing the CSB337 board for eCos Development

Overview
In a typical development environment, the CSB337 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the
board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector.

redboot_ROMRAM.ecm redboot_ROMRAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. RedBoot also supports ethernet
communication and flash management.

Initial Installation

Flash Installation

The CSB337 boards are shipped from Cogent with a version of Micromonitor installed.

Installing RedBoot is a matter of downloading a new binary image and overwriting the existing Micromonitor ROM image.
This is a two stage process, you must first download a RAM-resident version of RedBoot and then use that to download the
ROM image to be programmed into the flash memory.

Connect a serial cable between the CSB337 board serial port 0 and a host computer and start a terminal emulator such as
HyperTerminal. Experiments indicate that the version of the Xmodem protocol used by Micromonitor is incompatible with
that used by the Linux minicom program. It does work with HyperTerminal, so at present RedBoot must be installed from
a Windows host.

When Micromonitor starts up you will see something similar to this:

TFS Scanning //FLASH/...
EMAC: Auto-Negotiate Complete, Link = 100MBIT, Full Duplex.
MICRO MONITOR
CPU: AT91RM9200 ARM920T
Platform: Cogent CSB337 - AT91RM9200 SBC
Built: Jan_29,2004 @ 11:42:57
Monitor RAM: 0x20000000-0x2001a044
Application RAM Base: 0x20100000
MAC: 00:23:31:37:00:01
IP: 192.168.254.210
uMON>

Start the download by giving the following command to Micromonitor:

uMON>xmodem -d -a 0x20040000

You may get a sequence of binary characters, which indicate that Micromonitor is waiting for the download to start. Use
HyperTerminal's X-Modem file transfer option to send the file redboot_RAM.bin.

When the transfer is finished you will see something like:

Rcvd 868 pkts (111104 bytes)
EMAC: Auto-Negotiate Complete, Link = 100MBIT, Full Dupex.
uMON>

2286

Cogent CSB337 Board Support

Start RedBoot with the call command, which should result in RedBoot starting up.

uMON>call 0x20040040
+Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 10.0.0.210/255.255.255.0, Gateway: 10.0.0.1
Default server: 10.0.0.102, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version v2_0_11a1 - built 13:21:01, Feb 12 2004

Platform: Cogent CSB337 (ARM9)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x02000000, [0x00065e40-0x01fdd000] available
FLASH: 0x60000000 - 0x60800000, 64 blocks of 0x00020000 bytes each.
RedBoot>

Now the ROM image can be downloaded using the following RedBoot command:

RedBoot> load -r -b %{FREEMEMLO} -m xmodem

Again, use HyperTerminal's Xmodem support to send the file redboot_ROMRAM.bin. This should result in something like
the following output:

Raw file loaded 0x00030000-0x0004d15f, assumed entry at 0x00030000
xyzModem - CRC mode, 932(SOH)/0(STX)/0(CAN) packets, 3 retries
RedBoot>

Once the file has been uploaded, you can check that it has been transferred correctly using the cksum command. On the host
(Linux or Cygwin) run the cksum program on the binary file:

$ cksum redboot_ROMRAM.bin
2299507324 119136 redboot_ROMRAM.bin

In RedBoot, run the cksum command on the data that has just been loaded:

RedBoot> cksum -b %{FREEMEMLO} -l 119136
POSIX cksum = 2299507324 119136 (0x890fb27c 0x0001d160)

The second number in the output of the host cksum program is the file size, which should be used as the argument to the -l
option in the RedBoot cksum command. The first numbers in each instance are the checksums, which should be equal.

If the program has downloaded successfully, then it can be programmed into the flash using the following commands:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x60020000-0x607e0000:
... Erase from 0x60800000-0x60800000:
... Unlock from 0x607e0000-0x60800000: .
... Erase from 0x607e0000-0x60800000: .
... Program from 0x01fe0000-0x02000000 at 0x607e0000: .
... Lock from 0x607e0000-0x60800000: .
RedBoot> fis create -b %{FREEMEMLO} RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x60000000-0x60020000: .
... Program from 0x00100000-0x00120000 at 0x60000000: .
... Unlock from 0x607e0000-0x60800000: .
... Erase from 0x607e0000-0x60800000: .
... Program from 0x01fe0000-0x02000000 at 0x607e0000: .
... Lock from 0x607e0000-0x60800000: .
RedBoot>

The CBS337 board may now be reset either by cycling the power, pressing the reset switch, or with the reset command. It
should then display the startup screen for the ROMRAM version of RedBoot.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROMRAM version of RedBoot for the CSB337 are:

2287

Cogent CSB337 Board Support

$ mkdir redboot_csb337_romram
$ cd redboot_csb337_romram
$ ecosconfig new csb337 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/csb337/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

To rebuild the RAM version of RedBoot:

$ mkdir redboot_csb337_ram
$ cd redboot_csb337_ram
$ ecosconfig new csb337 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/csb337/current/misc/redboot_RAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This is the case for both
the above builds, take care not to mix the two files up, since programming the RAM RedBoot into the ROM will render the
board unbootable.

2288

Cogent CSB337 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The CSB337 platform HAL package is loaded automatically when eCos is configured for a csb337 target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup

The CSB337 platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into
memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the
application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diag-
nostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x10000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x10000000. However, when it starts up the application will first copy itself to RAM at 0x00000000 and then run
from there. RAM is generally faster than flash memory, so the program will run more quickly than a ROM-startup
application. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The CBS337 board contains an 8Mb Intel StrataFlash flash device. The CYGPKG_DEVS_FLASH_STRATA package contains
all the code necessary to support these parts and the CYGPKG_DEVS_FLASH_CSB337 package contains definitions that
customize the driver to the CSB337 board.

Ethernet Driver

The CSB337 board uses the AT91RM9200's internal EMAC ethernet device attached to an external Intel LXT971 PHY. The
CYGPKG_DEVS_ETH_ARM_AT91RM9200 package contains all the code necessary to support this device and the CYGP-
KG_DEVS_ETH_ARM_CSB337 package contains definitions that customize the driver to the CSB337 board.

2289

Cogent CSB337 Board Support

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is just one flag
specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM920T CPU in the AT91RM9200.

2290

Cogent CSB337 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the CSB337 hardware, and should be
read in conjunction with that specification. The CSB337 platform HAL package complements the ARM architectural HAL
and the ARM9 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_plat-
form_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x10000000 of the physical memory space. However, the HAL
uses the MMU to relocate it to virtual address 0x60000000 after initialization.

SDRAM This is located at address 0x20000000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x00000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x20000000 for use by devices.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM/ROMRAM startup, all remaining SDRAM is available. For RAM startup, avail-
able RAM starts at virtual location 0x00040000, with the bottom 256kB reserved for
use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is entirely reserved for use by the ethernet interface, since there
are problems using external SDRAM for ethernet buffers.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals Apart from the SDRAM, flash and ethernet PHY, eCos does not currently make any use
of the off-chip peripherals present on the CSB337.

Other Issues
The CSB337 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The ARM9
variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2291

Chapter 253. SSV DNP/9200 with DNP/
EVA9 Board Support

2292

SSV DNP/9200 with DNP/EVA9 Board Support

Name
eCos Support for the SSV DNP/9200 with DNP/EVA9 Evaluation Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the DNP/9200 with DNP/EVA9 evaluation board
as provided in the SSV SK23 starter kit. This kit provides the AT91RM9200 processor, 32Mbytes of SDRAM, 16Mbytes of
parallel NOR flash memory, a Davicom DM9161A PHY, a SD/MMC/DataFlash socket, a DAC, external connections for two
serial channels, ethernet, USB host/device and the various other peripherals supported by the AT91RM9200. eCos support for
the many devices and peripherals on the boards and the AT91RM9200 is described below.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot into this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the AT91RM9200 processor HAL documentation and further
device support and subsystems are described and documented there.

Supported Hardware
The parallel NOR flash memory consists of 128 blocks of 128Kbytes each. In a typical setup, the first 256 Kbytes are reserved
for the use of the ROMRAM RedBoot image. The topmost block is used to manage the flash and hold RedBoot fconfig values.
The remaining blocks can be used by application code. There are 126 blocks available between 0x60030000 and 0x60FDFFFF.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The serial port at J6 COM1 (connected to USART channel 1) and DTE port at J7 COM2 (connected to USART channel 2) can
be used by RedBoot for communication with the host. If either of these devices is needed by the application, either directly or
via the serial driver, then it cannot also be used for RedBoot communication. Another communication channel such as ethernet
should be used instead. The serial driver package is loaded automatically when configuring for the DNP/9200 target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91RM9200 for the on-chip ethernet device. The platform HAL
package is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when
configuring for the DNP/9200 target.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91RM9200. This driver is also loaded automatically
when configuring for the DNP/9200 target.

There is a driver for the on-chip real-time clock (RTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91. This driver is also
loaded automatically when configuring for the DNP/9200 target.

The AT91RM9200 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91RM9200. This
type of bus is also known as I²C®. Further documentation may be found in the AT91RM9200 processor HAL documentation.

The AT91RM9200 processor HAL contains a driver for the MultiMedia Card Interface (MCI). This driver is loaded automat-
ically when configuring for the DNP/9200 target and allows use of MMC and Secure Digital (SD) flash storage cards within
eCos, exported as block devices. Further documentation may be found in the AT91RM9200 processor HAL documentation.

There is a general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which provides the underlying implementation for
the SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the
DNP/9200 target.

In general, devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run. Other devices
(RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot
sequence will set up the appropriate PIO configuration.

Tools
The DNP/9200 support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2293

SSV DNP/9200 with DNP/EVA9 Board Support

Name
Setup — Preparing the DNP/9200 with DNP/EVA9 evaluation board for eCos Development

Overview
In a typical development environment, the DNP/9200 board boots from the parallel NOR Flash and run the RedBoot ROM
monitor directly. eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger
arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector

redboot_ROMRAM.ecm redboot_ROMRAM.bin

JTAG RedBoot running from RAM,
loaded via JTAG

redboot_JTAG.ecm redboot_JTAG.bin

UBOOT RedBoot running from RAM,
loaded via U-Boot

redboot_UBOOT.ecm redboot_UBOOT.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

The ample provision of RAM memory on the board allows the ROMRAM version of RedBoot to be preferential to the standard
ROM version which executes directly from Flash. Alternatively, if the ROM version is to be chosen, then the RAM version is
provided to allow for updating the resident RedBoot image in Flash. The JTAG version is only used if loading RedBoot into
RAM via a JTAG debugger or ICE. It is similar to the RAM version, but loads at a lower address within RAM, and so can
be used to in turn load eCos applications, as if it is the normal resident boot monitor. The ELF format image of this JTAG
version of RedBoot can also be loaded and executed from GDB using the Abatron BDI2000 bdiGDB support, to allow it to be
debugged. The UBOOT version may be used to load RedBoot into RAM using the UBOOT bootloader. This is usually only
used to then load a ROMRAM executable for programming into flash. Like the JTAG version it loads at a lower RAM address
and can therefore be used to load RAM applications.

Initial Installation
The on-chip boot program on the AT91RM9200 is only capable of loading programs into 12Kbytes of on-chip SRAM and
is therefore quite restrictive. Consequently two mechanisms are described below to program RedBoot into Flash. The first
requires a JTAG device while the other makes use of the U-Boot bootloader that is shipped with the board.

Method 1 - Program RedBoot into Flash with RAM RedBoot loaded by
JTAG

With this approach, the BDI2000 is used to load a RAM RedBoot image, which can then in turn be used to load and program a
ROMRAM RedBoot image into Flash. In the following documentation it is assumed that the Abatron BDI2000 is being used.
For a different JTAG device, equivalent operations will need to be performed.

There are three stages, firstly loading the RAM RedBoot image, then initializing RedBoot's Flash configuration, and finally
loading and programming the ROMRAM RedBoot. First, however, we must set up the BDI2000 and the board.

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

2294

SSV DNP/9200 with DNP/EVA9 Board Support

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Locate the file bdi2000.dnp_sk23.cfg within the eCos platform HAL package in the source repository. This will be in
the directory packages/hal/arm/arm9/dnp_sk23/VERSION/misc relative to the root of your eCos installation.

5. Locate the file reg920t.def within the installation of the BDI2000 bdiGDB support software.

6. Place the bdi2000.dnp_sk23.cfg in a location on the PC accessible to the TFTP server. Later you will configure the BDI2000
to load this file via TFTP as its configuration file.

7. Similarly place the file reg920t.def in a location accessible to the TFTP server.

8. Open bdi2000.dnp_sk23.cfg in an editor such as emacs or notepad and if necessary adjust the path of the
reg920t.def file in the [REGS] section to match its location relative to the TFTP server root.

9. Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
bdi2000.dnp_sk23.cfg configuration file at the appropriate point of this process.

Preparing the DNP/9200 with DNP/EVA9 evaluation board for programming

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a null modem DB9 serial cable between COM1 on the board and a serial port on the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 115200 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to your host PC's LAN with an Ethernet cable.

4. You should designate the board with a new Ethernet MAC address. The RedBoot binary image contains a default address,
but each board requires its own unique address. It is advisable to mark each board with its programmed MAC address for
future identification.

5. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the JTAG interface connector on the DNP/9200
to the Target A port on the BDI2000. Since the JTAG connector on the DNP/9200 is non-standard, this will require an
adaptor cable.

6. Power up the DNP/EVA9 board. You should see the power LED and some of the ethernet LEDs illuminate.

7. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

Core#0>

8. Confirm correct connection with the BDI2000 with the reset halt command as follows:

Core#0> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x00000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x05B0203F
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed

2295

SSV DNP/9200 with DNP/EVA9 Board Support

Core#0>

9. Locate the redboot_ROMRAM.bin image within the loaders subdirectory of the base of the eCos installation.

10.Copy the redboot_ROMRAM.bin file into a location on the host computer accessible to its TFTP server.

Loading a RAM RedBoot

1. Locate the redboot_JTAG.bin image within the loaders subdirectory of the base of the eCos installation.

2. Copy the redboot_JTAG.bin file into a location on the host computer accessible to its TFTP server.

3. With the BDI2000 telnet interface, execute the following command, replacing /RBPATH with the location of the redboot_J-
TAG.bin file relative to the TFTP server root directory:

Core#0>load 0x20010000 /RBPATH/redboot_JTAG.bin bin
Loading /RBPATH/redboot_JTAG.bin , please wait
Loading program file passed
Core#0>

4. Run the loaded RAM RedBoot:

Core#0>go 0x20010040
Core#0>

The terminal emulator connected to the serial debug port should now have displayed the RedBoot banner and prompt similar
to the following:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
PHY: Davicom DM9161A
AT91RM9200 ETH: Waiting for link to come up.
AT91RM9200 ETH: 100Mb
... waiting for BOOTP information
Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 10.0.2.9/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.2, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 17:10:26, Jun 8 2006

Platform: DNP/9200 with DNP/EVA9 (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x20000000-0x20800000, [0x2002f2e0-0x207dd000] available
FLASH: 0x60000000-0x60ffffff, 128 x 0x20000 blocks
RedBoot>

In the above output, a local BOOTP/DHCP server was able to serve an address to the device.

Note

It is also possible to use the RAM startup version of RedBoot and the redboot_RAM.bin file instead of redboot_J-
TAG.bin above. If so, then the address to the load command must be 0x20100000, as must be the address to
the go command.

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration. This must be performed when using a RAM
RedBoot to program Flash.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Unlocking from 0x60fe0000-0x60ffffff: .

2296

SSV DNP/9200 with DNP/EVA9 Board Support

... Erase from 0x60fe0000-0x60ffffff: .

... Program from 0x207e0000-0x20800000 to 0x60fe0000: .

... Locking from 0x60fe0000-0x60ffffff: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

Remember to substitute the appropriate MAC address for this board at the appropriate step. If a BOOTP/DHCP server is
not available, then IP configuration may be set manually. The default server IP address can be set to a PC that will act as a
TFTP host for future RedBoot load operations, or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.222
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.9
Console baud rate: 115200
DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x00:0x23:0x31:0x37:0x00:0x4e
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: at91rm9200_eth
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x60fe0000-0x60ffffff: .
... Erase from 0x60fe0000-0x60ffffff: .
... Program from 0x207e0000-0x20800000 to 0x60fe0000: .
... Locking from 0x60fe0000-0x60ffffff: .
RedBoot>

Loading and programming the ROMRAM RedBoot

This section describes the steps required to load the ROMRAM RedBoot from the TFTP server and program it into Flash.

1. Load the RedBoot ROMRAM binary image from the TFTP server. Use the following command, replacing
111.222.333.444 with the TFTP server IP address (or domain name if a DNS server has been configured), and /RB-
PATH with the location of the redboot_ROMRAM.bin file relative to the TFTP server root directory:

RedBoot> load -r -b %{freememlo} -h 111.222.333.444 /RBPATH/redboot_ROMRAM.bin
Using default protocol (TFTP)
Raw file loaded 0x20030000-0x2004e91b, assumed entry at 0x20030000
RedBoot>

2. Finally install the loaded image into Flash:

RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x60000000-0x6003ffff: ..
... Program from 0x20030000-0x2004e91c to 0x60000000: .
... Locking from 0x60000000-0x6003ffff: ..
... Unlocking from 0x60fe0000-0x60ffffff: .
... Erase from 0x60fe0000-0x60ffffff: .
... Program from 0x21fe0000-0x22000000 to 0x60fe0000: .
... Locking from 0x60fe0000-0x60ffffff: .
RedBoot>

It is also possible to use the fis write command to write the image into Flash, but if so, the relevant Flash blocks must also
be explicitly unlocked with the command:

RedBoot> fis unlock -f 0x60000000 -l 0x30000

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. Output similar to the following should be seen on the serial port. Verify the IP settings are as
expected.

2297

SSV DNP/9200 with DNP/EVA9 Board Support

+PHY: Davicom DM9161A
AT91RM9200 ETH: 100Mb
... waiting for BOOTP information
Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 10.0.2.9/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.2, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 18:10:00, Jun 8 2006

Platform: DNP/9200 with DNP/EVA9 (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x20000000-0x22000000, [0x2002ff78-0x21fdd000] available
FLASH: 0x60000000-0x60ffffff, 128 x 0x20000 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Method 2 - Program RedBoot into Flash with RAM Redboot loaded by U-
Boot

With this approach, the existing U-Boot bootloader is used to load a RAM RedBoot which is then used to load and program a
ROMRAM RedBoot image to replace U-Boot in Flash. A JTAG debugger is not needed for this method.

There are three stages, firstly loading the RAM RedBoot image, then initializing RedBoot's Flash configuration, and finally
loading and programming the ROMRAM RedBoot. The first of these stages is described here, the remaining two stages are
identical to the equivalent stages in Method 1, above.

Loading a RAM RedBoot

1. First you must connect a null modem DB9 serial cable between COM1 on the board and a serial port on the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 115200 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to your host PC's LAN with an Ethernet cable.

4. You should designate the board with a new Ethernet MAC address. The RedBoot binary image contains a default address,
but each board requires its own unique address. It is advisable to mark each board with its programmed MAC address for
future identification.

5. Locate the redboot_UBOOT.bin image within the loaders subdirectory of the base of the eCos installation.

6. Copy the redboot_UBOOT.bin file into a location on the host computer accessible to its TFTP server.

7. Power up the DNP/EVA9 board. You should see the power LED and some of the ethernet LEDs illuminate.

8. After a few seconds the following output should be seen on the serial line. Hit a key to stop the auto boot:

U-Boot 1.1.2 (Dec 14 2005 - 13:12:14)

U-Boot code: 21F00000 -> 21F1666C BSS: -> 21F1AC44
RAM Configuration:
Bank #0: 20000000 32 MB
Flash: 16 MB

In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0
U-Boot>

2298

SSV DNP/9200 with DNP/EVA9 Board Support

9. Set up the environment of U-Boot to download the RAM RedBoot. Users with access to a TFTP server should substitute
their own IP address, TFTP server address and netmask in the following commands:

U-Boot> setenv ipaddr 10.0.2.22
U-Boot> setenv serverip 10.0.1.2
U-Boot> setenv netmask 255.0.0.0
U-Boot> setenv bootfile redboot_UBOOT.bin

10.Download the RAM RedBoot. Users with access to a TFTP server should use the following command:

U-Boot> tftpboot 0x20040000
TFTP from server 10.0.1.2; our IP address is 10.0.2.22
Filename 'redboot_UBOOT.bin'.
Load address: 0x20040000
Loading: ########################
done
Bytes transferred = 120760 (1d7b8 hex)

11.Users without access to a TFTP server may use Kermit to send the file redboot_UBOOT.bin:

U-Boot> loadb 0x20040000

12.The downloaded RedBoot image may now be executed:

U-Boot> go 0x20040000
.+PHY: Davicom DM9161A
AT91RM9200 ETH: 100Mb
... waiting for BOOTP information
Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 10.0.2.9/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.2, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [UBOOT]
Non-certified release, version UNKNOWN - built 18:18:48, Jun 8 2006

Platform: DNP/9200 with DNP/EVA9 (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006 eCosCentric Limited

RAM: 0x20000000-0x22000000, [0x20067040-0x21fdd000] available
FLASH: 0x60000000-0x60ffffff, 128 x 0x20000 blocks
RedBoot>

13.Now follow the directions in the previous method to initialize the flash and program the ROMRAM RedBoot.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROMRAM version of RedBoot for the DNP/9200 with DNP/EVA9 are:

$ mkdir redboot_dnp_sk23_romram
$ cd redboot_dnp_sk23_romram
$ ecosconfig new dnp_sk23 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/dnp_sk23/VERSION/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

The other versions of RedBoot - ROM, RAM, JTAG or UBOOT - may be similarly built by choosing the appropriate alter-
native .ecm file.

2299

SSV DNP/9200 with DNP/EVA9 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The DNP/9200 with DNP/EVA9 platform HAL package is loaded automatically when eCos is configured for dnp_sk23
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into
memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the
application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diag-
nostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x10000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x10000000. However, when it starts up, the application will first copy itself to RAM at virtual address 0x00000000
and then run from there. RAM is generally faster than flash memory, so the program will run more quickly than
a ROM-startup application. The application will be self-contained with no dependencies on services provided by
other software. eCos startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The DNP/9200 board contains a 16Mbyte Intel 28F128J3 parallel Flash device. The CYGPKG_DEVS_FLASH_STRATA_V2
package contains all the code necessary to support this part and the platform HAL package contains definitions that customize
the driver to the board. This driver is not active until the generic Flash support package, CYGPKG_IO_FLASH, is included
in the configuration.

Ethernet Driver
The DNP/9200 board uses the AT91RM9200's internal EMAC ethernet device attached to an external Davicom DM9161
PHY. The CYGPKG_DEVS_ETH_ARM_AT91RM9200 package contains all the code necessary to support this device and the
platform HAL package contains definitions that customize the driver to the DNP/9200 board. This driver is not active until the
generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2300

SSV DNP/9200 with DNP/EVA9 Board Support

RTC Driver
The DNP/9200 board uses the AT91RM9200's internal RTC support. The CYGPKG_DEVICES_WALLCLOCK_ARM_AT91
package contains all the code necessary to support this device. This driver is not active until the generic wallclock device
support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The DNP/9200 board uses the AT91RM9200's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_AR-
M_AT91RM9200 package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91RM9200_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and
by default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support
package, CYGPKG_IO_WATCHDOG, is included in the configuration.

USART Serial Driver
The DNP/9200 board uses the AT91RM9200's internal USART serial support as described in the AT91RM9200 processor HAL
documentation. Two serial ports are available: USART 1 which is mapped to virtual vector channel 0 in the HAL diagnostic
driver or "/dev/ser1" in the interrupt-driven driver; and USART 2 which is mapped to virtual vector channel 1 and "/dev/
ser2". Both UARTs support modem control signals such as those used for hardware flow control.

MCI Driver
As described in the SSV board documentation, in order to use the MMC/SD socket on the EVA9 board, the JP8 jumper block
must have all jumpers in place, i.e. closed . The SPI jumper block JP9 must have all jumpers removed, i.e. open.

As the AT91RM9200 MCI driver is part of the AT91RM9200 HAL, nothing is required to load it. Similarly the MMC/SD bus
driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific configuration for this
target. All that is required to enable the support is to include the generic disk I/O infrastructure package (CYGPKG_IO_DISK),
along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its package dependencies
(including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

Various options can be used to control specific of the AT91RM9200 MCI driver. Consult the AT91RM9200 HAL documen-
tation for information on its configuration.

On this target, it is not possible to detect from the MMC/SD socket whether cards have been inserted or removed. Thus the
disk I/O layer's removeable media support will not detect when cards have been inserted or removed, and therefore the only
way to detect if a card has been inserted is to attempt mounts.

The MMC/SD socket also does not permit detection of the write-protect (or "lock") switch present on SD cards. "Locked"
cards will therefore not be detected which means that despite the switch position, it is still possible to write to them since the
lock switch does not physically enforce write protection.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM920T CPU in the AT91RM9200.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

2301

SSV DNP/9200 with DNP/EVA9 Board Support

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2302

SSV DNP/9200 with DNP/EVA9 Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM, including Red-
Boot.

Debugging of ROM applications is only possible if using hardware breakpoints. The ARM920T core of the AT91RM9200
only supports two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the bdi2000.dnp_sk23.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the SDRAM controller.

The bdi2000.dnp_sk23.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break points, and
remember to use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the bdiGDB interface.
In the case of the latter, arm-eabi-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the bdi2000.d-
np_sk23.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is repeated with
the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot as normal. If a ROMRAM RedBoot is resident in Flash, it will
be run.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

Core#0>load 0x20008000 /test.bin bin
Loading /test.bin , please wait
Loading program file passed
Core#0>go 0x20008000

Consult the BDI2000 documentation for information on other formats.

Configuration of RAM applications

If the JTAG device has initialized the SDRAM, such as by using the bdi2000.dnp_sk23.cfg configuration on the
BDI2000, RAM applications can be loaded directly into SDRAM without requiring a ROM monitor. This loading can be done
directly through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. This will also cause the CYGBLD_HAL_ARM9_ATMEL_AT91R-
M9200_KITS_LOAD_LOW_RAM configuration option to be enabled allowing the application to be built with a set of mem-
ory layout files that will configure the linker script to set the program load address to be within the physical SDRAM space.

2303

SSV DNP/9200 with DNP/EVA9 Board Support

Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output
being encoded into GDB ($O) packets.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial debug port. USART 1 can be
chosen instead by setting the CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform
HAL to channel 1.

Warning

If resetting the board using the JTAG device, such as by using the BDI2000 reset command, the Ethernet PHY
fails to interface correctly with the AT91RM9200, and consequently all subsequent ethernet operations are im-
possible. Only a reset by pressing the reset button, cycling the power or due to a watchdog timeout will cause
the PHY to reset correctly.

2304

SSV DNP/9200 with DNP/EVA9 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the DNP/9200 and DNP/EVA9 hardware,
and should be read in conjunction with that specification. The DNP/9200 with DNP/EVA9 platform HAL package complements
the ARM architectural HAL, the ARM9 variant HAL and the AT91RM9200 processor HAL. It provides functionality which
is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_plat-
form_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x10000000 of the physical memory space. The HAL uses the
MMU to locate it at virtual address 0x60000000 after initialization. It remains accessible
at address 0x1000000 but accesses to this address range are uncached.

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL config-
ures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to as-
sign hardware exception vectors at address 0x00000000, the HAL also uses the MMU to
create a clone of this memory at virtual address 0x00000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x30000000 for use by devices.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vec-
tors, allowing RAM-based applications to use services provided by the ROM monitor.
Memory is required for the MMU tables, and must be aligned on a 16Kbyte boundary.
These therefore occupy memory from 0x4000 to 0x8000. For ROM/ROMRAM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0x00100000, with the bottom 1MB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is entirely reserved for use by the ethernet interface, since there
are problems using external SDRAM for ethernet buffers.

On-chip ROM This is located at address 0x00100000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x71800000.

USB host port The USB host port (UHP) registers are located at address 0x00300000 of the physical
memory space. However the HAL uses the MMU to relocate this to virtual address
0x72800000. Memory accessed at this address is uncached and unbuffered. There is no
cached variant.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

2305

SSV DNP/9200 with DNP/EVA9 Board Support

Off-chip Peripherals eCos uses the SDRAM, parallel NOR flash, ethernet PHY of the DNP/9200 board. eCos
does not currently make any use of any other off-chip peripherals present on this board.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91RM9200, using the facilities
of the AT91RM9200 processor HAL. Consult the documentation in that package for details.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 253.1. dnp_sk23 Real-time characterization

 Startup, main stack : stack used 416 size 3920
 Startup : Interrupt stack used 524 size 4096
 Startup : Idlethread stack used 92 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 13.69 microseconds (6 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 13.99 8.55 19.23 2.40 43% 26% Create thread
 2.10 0.00 4.27 0.13 95% 3% Yield thread [all suspended]
 2.64 2.14 6.41 0.78 78% 78% Suspend [suspended] thread
 2.90 2.14 4.27 0.98 64% 64% Resume thread
 3.71 2.14 10.68 0.98 67% 31% Set priority
 0.93 0.00 2.14 1.05 56% 56% Get priority
 8.11 6.41 19.23 0.96 70% 28% Kill [suspended] thread
 2.10 0.00 4.27 0.13 95% 3% Yield [no other] thread
 4.17 2.14 6.41 0.25 92% 6% Resume [suspended low prio] thread
 2.94 2.14 6.41 1.03 64% 64% Resume [runnable low prio] thread
 3.60 2.14 6.41 0.96 65% 32% Suspend [runnable] thread
 2.14 0.00 4.27 0.07 96% 1% Yield [only low prio] thread
 2.77 2.14 4.27 0.89 70% 70% Suspend [runnable->not runnable]
 7.68 6.41 19.23 1.23 50% 48% Kill [runnable] thread
 6.51 6.41 12.82 0.19 98% 98% Destroy [dead] thread
 10.75 8.55 21.37 0.46 87% 7% Destroy [runnable] thread
 15.19 12.82 25.64 0.57 90% 3% Resume [high priority] thread
 5.57 4.27 10.68 1.06 58% 40% Thread switch

 0.48 0.00 2.14 0.75 77% 77% Scheduler lock
 1.74 0.00 2.14 0.65 81% 18% Scheduler unlock [0 threads]
 1.78 0.00 2.14 0.59 83% 16% Scheduler unlock [1 suspended]
 1.78 0.00 2.14 0.59 83% 16% Scheduler unlock [many suspended]
 1.74 0.00 2.14 0.65 81% 18% Scheduler unlock [many low prio]

 0.80 0.00 2.14 1.00 62% 62% Init mutex

2306

SSV DNP/9200 with DNP/EVA9 Board Support

 2.60 2.14 6.41 0.76 81% 81% Lock [unlocked] mutex
 3.21 2.14 8.55 1.20 96% 56% Unlock [locked] mutex
 2.54 2.14 4.27 0.65 81% 81% Trylock [unlocked] mutex
 2.34 2.14 4.27 0.36 90% 90% Trylock [locked] mutex
 0.47 0.00 2.14 0.73 78% 78% Destroy mutex
 13.09 12.82 19.23 0.50 93% 93% Unlock/Lock mutex

 1.40 0.00 2.14 0.96 65% 34% Create mbox
 0.47 0.00 2.14 0.73 78% 78% Peek [empty] mbox
 3.00 2.14 4.27 1.03 59% 59% Put [first] mbox
 0.67 0.00 2.14 0.92 68% 68% Peek [1 msg] mbox
 3.00 2.14 4.27 1.03 59% 59% Put [second] mbox
 0.80 0.00 2.14 1.00 62% 62% Peek [2 msgs] mbox
 3.07 2.14 4.27 1.05 56% 56% Get [first] mbox
 3.14 2.14 6.41 1.13 56% 56% Get [second] mbox
 2.60 2.14 4.27 0.73 78% 78% Tryput [first] mbox
 2.80 2.14 4.27 0.92 68% 68% Peek item [non-empty] mbox
 3.00 2.14 6.41 1.08 62% 62% Tryget [non-empty] mbox
 2.54 2.14 4.27 0.65 81% 81% Peek item [empty] mbox
 2.47 2.14 4.27 0.56 84% 84% Tryget [empty] mbox
 0.80 0.00 2.14 1.00 62% 62% Waiting to get mbox
 1.00 0.00 2.14 1.06 53% 53% Waiting to put mbox
 3.34 2.14 6.41 1.13 50% 46% Delete mbox
 6.61 6.41 12.82 0.38 96% 96% Put/Get mbox

 0.73 0.00 2.14 0.96 65% 65% Init semaphore
 2.20 0.00 4.27 0.26 90% 3% Post [0] semaphore
 2.40 2.14 4.27 0.47 87% 87% Wait [1] semaphore
 2.20 2.14 4.27 0.13 96% 96% Trywait [0] semaphore
 1.34 0.00 2.14 1.00 62% 37% Trywait [1] semaphore
 0.87 0.00 2.14 1.03 59% 59% Peek semaphore
 0.67 0.00 2.14 0.92 68% 68% Destroy semaphore
 8.75 8.55 14.96 0.38 96% 96% Post/Wait semaphore

 1.20 0.00 2.14 1.05 56% 43% Create counter
 0.40 0.00 2.14 0.65 81% 81% Get counter value
 0.67 0.00 2.14 0.92 68% 68% Set counter value
 2.60 2.14 4.27 0.73 78% 78% Tick counter
 1.00 0.00 2.14 1.06 53% 53% Delete counter

 0.73 0.00 2.14 0.96 65% 65% Init flag
 2.34 2.14 6.41 0.37 93% 93% Destroy flag
 1.87 0.00 2.14 0.47 87% 12% Mask bits in flag
 2.40 2.14 4.27 0.47 87% 87% Set bits in flag [no waiters]
 3.40 2.14 6.41 1.11 53% 43% Wait for flag [AND]
 3.27 2.14 4.27 1.06 53% 46% Wait for flag [OR]
 3.47 2.14 6.41 1.08 56% 40% Wait for flag [AND/CLR]
 3.40 2.14 6.41 1.11 53% 43% Wait for flag [OR/CLR]
 0.47 0.00 2.14 0.73 78% 78% Peek on flag

 1.47 0.00 4.27 1.01 62% 34% Create alarm
 4.41 2.14 8.55 0.38 90% 3% Initialize alarm
 2.27 2.14 4.27 0.25 93% 93% Disable alarm
 4.21 2.14 8.55 0.39 87% 9% Enable alarm
 2.67 2.14 4.27 0.80 75% 75% Delete alarm
 2.74 2.14 4.27 0.86 71% 71% Tick counter [1 alarm]
 14.82 12.82 17.09 0.38 87% 9% Tick counter [many alarms]
 4.87 4.27 6.41 0.86 71% 71% Tick & fire counter [1 alarm]
 86.14 85.47 87.61 0.92 68% 68% Tick & fire counters [>1 together]
 16.89 14.96 19.23 0.48 84% 12% Tick & fire counters [>1 separately]
 10.77 10.68 14.96 0.16 96% 96% Alarm latency [0 threads]
 12.85 12.82 17.09 0.06 99% 99% Alarm latency [2 threads]
 14.06 10.68 17.09 1.21 46% 0% Alarm latency [many threads]
 21.45 21.37 32.05 0.16 99% 99% Alarm -> thread resume latency

 2.20 2.14 6.41 0.00 Clock/interrupt latency

 6.18 4.27 10.68 0.00 Clock DSR latency

 12 0 296 (main stack: 1392) Thread stack used (1360 total)
 All done, main stack : stack used 1392 size 3920
 All done : Interrupt stack used 208 size 4096

2307

SSV DNP/9200 with DNP/EVA9 Board Support

 All done : Idlethread stack used 276 size 2048

Timing complete - 30200 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The DNP/9200 with DNP/EVA9 platform HAL does not affect the implementation of other parts of the eCos HAL specification.
The AT91RM9200 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted
for further details.

2308

Chapter 254. KwikByte KB920x Board
Family Support

2309

KwikByte KB920x Board Family Support

Name
eCos Support for the KB920x Board Family — Overview

Description
This document covers the KwikByte KB920x family of single board computers based on the Atmel AT91RM9200. The
KB9200 contains the AT91RM9200 processor, 32Mb of SDRAM, 2MB of flash memory, an Intel LXT971 PHY and external
connections for one serial channel, ethernet and the various other peripherals supported by the AT91RM9200. The KB9201 is
similar but with an additional SPI dataflash. The KB9202 uses a different flash memory device and increases the flash memory
capacity to 16MB. The KB9202B extends SDRAM to 64MB, and the KB9202C replaces the NOR flash with Dataflash.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot into this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
On the KB9200 and KB9201, the flash memory consists of 32 blocks of 64k bytes each. On the KB9202, the flash memory
consists of 128 blocks of 128k bytes each. In a typical setup, the first two flash blocks are used for the ROMRAM RedBoot
image. The topmost block is used to manage the flash and hold RedBoot fconfig values. The remaining blocks can be used by
application code. For the KB9200/KB9201 these are 29 blocks between 0x60020000 and 0x601EFFFF; for the KB9202 these
are 125 blocks between 0x60020000 and 0x60FDFFFF.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
These devices can be used by RedBoot for communication with the host. If either of these devices is needed by the application,
either directly or via the serial driver, then it cannot also be used for RedBoot communication. Another communication channel
such as ethernet should be used instead. The serial driver package is loaded automatically when configuring for the KB9200,
KB9201 or KB9202 targets.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91RM9200 for the on-chip ethernet device. A second package
CYGPKG_DEVS_ETH_ARM_KB9200 is responsible for configuring this generic driver to the KB920x hardware. These drivers
are also loaded automatically when configuring for the KB9200, KB9201 or KB9202 targets.

eCos manages the on-chip interrupt controller. Timer counter 0 is used to implement the eCos system clock and the microsecond
delay function. Other on-chip devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run.
Other devices (RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded.

Tools
The KB920x port is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.3.3, arm-elf-gdb version 6.1, and binutils version 2.14, and subsequently retested with arm-elf-gcc
version 3.4.3, arm-elf-gdb version 6.3 and binutils version 2.16.

2310

KwikByte KB920x Board Family Support

Name
Setup — Preparing the KB920x boards for eCos Development

Overview
In a typical development environment, the KB920x boards boot from serial EEPROM into the KwikByte bootloader, which
then boots the RedBoot ROM monitor from flash. eCos applications are configured for RAM startup and then downloaded
and run on the board via the debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable
RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector.

redboot_ROMRAM.ecm redboot_ROMRAM.bin

SRAM RedBoot running from RAM,
loaded by bootloader.

redboot_SRAM.ecm redboot_SRAM.bin

UBOOT RedBoot running from RAM,
loaded from flash by U-Boot.

redboot_UBOOT.ecm redboot_UBOOT.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Generally only the ROMRAM version of RedBoot is used. The SRAM version is suitable only for RedBoot development and
should not normally be used. On the KB9202C the UBOOT version is used.

Initial Installation -- KB9201, KB9202, KB9202B
The KB920x boards are shipped from KwikByte with the EEPROM bootloader installed and a version of Linux installed in
the flash. The KB9202C board has a different installation method, described in the next section.

Installing RedBoot is a matter of downloading a new binary image and overwriting the existing Linux image. This is a two
stage process, you must first download the KwikByte RAM Monitor, which is then used to download a RedBoot image and
program it into the flash. To achieve this you will need a copy of the ramMonitor.bin image and, for Linux hosts, a copy
of the KwikByte download tool. Both of these can be found on the CD-ROM that comes with the board. Note that the prebuilt
version of the download tool is hardcoded to use /dev/ttyS0 for downloads.

Connect a straight-through serial cable between the KB920x board serial port and a serial port of the host computer and start
a terminal emulator such as minicom or HyperTerminal. Set the communication parameters to 115200 baud, 8 data bits, no
parity bit and 1 stop bit. Press the Reset button on the board and when the bootloader starts you should see something similar
to this if using the KB9200 or KB9201:

KB9200(www.kwikbyte.com)
 Default system configuration complete

Checking for input

>

When you see the "Checking for input" line, hit the Return key to put the bootloader into its command interpreter, otherwise
it will proceed to boot Linux.

For the KB9202 there is less output, and the delay shorter, and so you will need to press the Return key several times immediately
after pressing the Reset button before the bootloader banner is displayed:

KB9202(www.kwikbyte.com)

2311

KwikByte KB920x Board Family Support

Auto boot..

>

The next step is to install a new startup command in the command table:

>s 1 e 0x10000000

>w

>

It is now necessary to download the Kwikbyte RAM Monitor. Start the download by giving the following command to the
bootloader:

>x 0x20002000
C

You may get a sequence of C characters, which indicate that the bootloader is waiting for the download to start. If using
HyperTerminal, you should now send the ramMonitor.bin file from the KwikByte CD-ROM using the Xmodem protocol.
If using minicom, exit minicom and download the RAM Monitor using the following command:

$ download ramMonitor.bin

The download command produces a lot of output. When the transfer is finished, restart minicom.

Having downloaded the RAM monitor, issue the following command to start it:

>e 0x20002000

Entry: RAM Monitor

>

It is now necessary to prepare the flash for the RedBoot image by erasing the first 128K bytes. The RedBoot ROM image
can then be downloaded:

>f e 0x10000000 0x1001ffff
Verifying sector erase
Flash sector erase at: 0x10000000 PASS
Verifying sector erase
Flash sector erase at: 0x10010000 PASS

>x 0x20100000
C

If using HyperTerminal, you should now send the redboot_ROMRAM.bin file using the Xmodem protocol. If using mini-
com, exit minicom and use the download command to send the file redboot_ROMRAM.bin. When the transfer is finished,
restart minicom.

Having downloaded the RedBoot image, use the following command to write it to flash:

>f p 0x10000000 0x20100000 0x20000
..
Flash program status: PASS

>

The KB920x board may now be reset. It should then display the following startup sequence. Run the fis init and fconfig -i
commands to initialize the flash, as shown. Note that KB9202 users will see output similar but not identical to that below.

KB9200(www.kwikbyte.com)
 Default system configuration complete

Checking for input
0x00 : [E]

2312

KwikByte KB920x Board Family Support

0x01 : e 0x10000000[E]
0x02 : c 0x20210000 0x10100000 0x100000[E]
0x03 : m 0 0 0 0 0 0[E]
0x04 : t 0x20000100 console=ttyS0,115200 root=/dev/ram rw initrd=0x20210000,654]
0x05 : e 0x10000000[E]
0x06 : [E]
0x07 : [E]
0x08 : [E]
0x09 : [E]

>

>e 0x10000000
+... Read from 0x601f0000-0x601fffff to 0x01ff0000:
... Read from 0x601ff000-0x601fffff to 0x01fef000:
Warning FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
PHY: Intel LXT971
AT91RM9200 ETH: Waiting for link to come up.
AT91RM9200 ETH: 100Mb
... waiting for BOOTP information
Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 10.0.0.207/255.255.255.0, Gateway: 10.0.0.3
Default server: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 12:01:32, Dec 13 2004

Platform: KwikByte KB9200 (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x02000000, [0x0002ddf8-0x01fed000] available
FLASH: 0x60000000 - 0x601fffff 32 x 0x10000 blocks
RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x601f0000-0x601fffff: .
... Program from 0x01ff0000-0x02000000 to 0x601f0000: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.0.0.201
Network hardware address [MAC]: 0x00:0x23:0x31:0x37:0x00:0x1C
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: at91rm9200_eth
Update RedBoot non-volatile configuration - continue (y/n)? y
... Read from 0x601f0000-0x601fefff to 0x01ff0000:
... Erase from 0x601f0000-0x601fffff: .
... Program from 0x01ff0000-0x02000000 to 0x601f0000: .
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Initial Installation -- KB9202C
The KB9202C is not equipped with NOR flash, only Dataflash, so the installation method described above will not work. This
board boots, via a second-stage loader into U-Boot. By default U-Boot then boots a Linux image that is also stored in Dataflash.
The approach described here is to cause U-Boot to boot RedBoot instead of Linux. The following directions give basic instruc-
tions for installing RedBoot, for more details of how to configure U-Boot, please refer to the U-Boot documentation.

Connect a straight-through serial cable between the KB920C board serial port and a serial port of the host computer and start
a terminal emulator such as minicom or HyperTerminal. Set the communication parameters to 115200 baud, 8 data bits, no
parity bit and 1 stop bit. Power the board up and you should see the KwikByte loader and U-Boot startup messages. When it

2313

KwikByte KB920x Board Family Support

gets to the "Hit any key to stop autoboot" line, type any key. There is only a 1 second timeout here, so you need to be quick,
or you can type ahead during the delay after the "NAND:" line. The final output should look like this:

KwikByte KB9202x Copy Loader v0.9
Loading boot loader. . . done

U-Boot 1.2.0 (Sep 26 2007 - 17:32:22)

DRAM: 64 MB
NAND: NAND device: Manufacturer ID: 0x2c, Chip ID: 0xda (Micron NAND 256MiB 3,3V 8-bit)
256 MiB
DataFlash:AT45DB642
Nb pages: 8192
Page Size: 1056
Size= 8650752 bytes
Logical address: 0xC0000000
Area 0: C0000000 to C00020FF Copy Loader (8kB)
Area 1: C0002100 to C00041FF Environment (8kB)
Area 2: C0004200 to C003665F U-Boot (195kB)
Area 3: C0036660 to C0041FFF Secondary Boot (45kB)
Area 4: C0042000 to C0461FFF OS (4MB)
Area 5: C0462000 to C083FFFF DF_SPARE
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0
KB920x >

Now we need to set up U-Boot to download the RedBoot image and program it into the DataFlash. First it is necessary to
change U-Boot's environment to allow the image to be downloaded. In this example we will be downloading via tftp, so we
need to set the ethernet and IP addresses for this board:

KB920x >setenv ethaddr 00:D0:93:00:05:B5
KB920x >setenv ipaddr 10.0.3.1
KB920x >setenv serverip 10.0.1.2
KB920x >saveenv
KB920x >printenv
bootargs=console=ttyS0,115200 noinitrd root=/dev/mtdblock0 rootfstype=jffs2 mem=
64M
bootdelay=1
baudrate=115200
hostname=KB9202C
kernel-size=31c8d0
bootcmd=cp.b c0042000 23000000 31c8d0; bootm 23000000
ethaddr=00:D0:93:00:05:B5
ipaddr=10.0.3.1
serverip=10.0.1.2
stdin=serial
stdout=serial
stderr=serial

Environment size: 307/8444 bytes
KB920x >

In the above example the ipaddr and serverip variables are set to example values. They should be set to the address of
this board and the address of the TFTP server in your own network. The redboot_UBOOT.bin should be copied to the tftp
server's root directory. It may now be downloaded:

KB920x >tftp 0x20100000 redboot_UBOOT.bin
TFTP from server 10.0.1.2; our IP address is 10.0.3.1
Filename 'redboot_UBOOT.bin'.
Load address: 0x20100000
Loading: T ###################
done
Bytes transferred = 94236 (1701c hex)
KB920x >

Now program the loaded binary into flash. In the following example, the new binary is installed into dataflash at offset
0x500000. This avoids overwriting the Linux image at offset 0x42000. If the Linux image is not required, RedBoot can be
programmed in its place and the addresses in the following commands adjusted to match.

2314

KwikByte KB920x Board Family Support

KB920x >cp.b 0x20100000 0xc0500000 0x20000
Copy to DataFlash... done
KB920x >

Finally, change the default boot command to load and execute RedBoot rather than Linux. Make sure to include the backslash
before the semicolon.

KB920x >setenv bootcmd cp.b 0xc0500000 0x20100000 0x20000\; go 0x20100000
KB920x >saveenv
Saving Environment to dataflash...

Press the reset button on the board and the full boot sequence should be seen:

KwikByte KB9202x Copy Loader v0.9
Loading boot loader. . . done

U-Boot 1.2.0 (Sep 26 2007 - 17:32:22)

DRAM: 64 MB
NAND: NAND device: Manufacturer ID: 0x2c, Chip ID: 0xda (Micron NAND 256MiB 3,3V 8-bit)
256 MiB
DataFlash:AT45DB642
Nb pages: 8192
Page Size: 1056
Size= 8650752 bytes
Logical address: 0xC0000000
Area 0: C0000000 to C00020FF Copy Loader (8kB)
Area 1: C0002100 to C00041FF Environment (8kB)
Area 2: C0004200 to C003665F U-Boot (195kB)
Area 3: C0036660 to C0041FFF Secondary Boot (45kB)
Area 4: C0042000 to C0461FFF OS (4MB)
Area 5: C0462000 to C083FFFF DF_SPARE
In: serial
Out: serial
Err: serial
Hit any key to stop autoboot: 0
.O+AT91RM9200_ETH - Warning! ESA unknown.
AT91RM9200 ETH: Waiting for link to come up.
AT91RM9200 ETH: 100Mb
Ethernet eth0: MAC address 00:23:31:37:00:1c
IP: 10.0.2.6/255.0.0.0, Gateway: 10.0.0.3
Default server: 0.0.0.0, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [UBOOT]
Non-certified release, version UNKNOWN - built 17:30:00, Jan 11 2008

Platform: KwikByte KB9202C (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007 eCosCentric Limited

RAM: 0x00000000-0x04000000, [0x00120840-0x04000000] available
RedBoot>

If it is necessary to reinstall RedBoot, the above steps for downloading and programming the new image should be repeated.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROMRAM version of RedBoot for the KB9200 are:

$ mkdir redboot_kb9200_romram
$ cd redboot_kb9200_romram
$ ecosconfig new kb9200 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/kb9200/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The steps needed to rebuild the the ROMRAM version of RedBoot for the KB9202 are:

2315

KwikByte KB920x Board Family Support

$ mkdir redboot_kb9202_romram
$ cd redboot_kb9202_romram
$ ecosconfig new kb9202 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/kb9200/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The steps needed to rebuild the the UBOOT version of RedBoot for the KB9202C are:

$ mkdir redboot_kb9202c_uboot
$ cd redboot_kb9202c_uboot
$ ecosconfig new kb9202c redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/kb9200/current/misc/redboot_UBOOT.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

2316

KwikByte KB920x Board Family Support

Name
Configuration — Platform-specific Configuration Options

Overview
The KB920x platform HAL package is loaded automatically when eCos is configured for a kb9200 or kb9202 targets.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The KB920x platform HAL package supports four separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into
memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the
application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diag-
nostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x10000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x10000000. However, when it starts up the application will first copy itself to RAM at 0x00000000 and then run
from there. RAM is generally faster than flash memory, so the program will run more quickly than a ROM-startup
application. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

SRAM This startup type is used for applications that are downloaded via the KwikByte bootloader directly to RAM. The
application is loaded into SDRAM at location 0x20000000 and started by executing from that address. The applica-
tion will be self-contained with no dependencies on services provided by other software. eCos startup code will per-
form limited hardware initialization since it is assumed that the machine has been set up already by the bootloader.

This configuration is primarily present as a result of the development process. It has some limitations with regard
to functionality since the MMU is not enabled and no exception vectors are installed at location zero, hence no
interrupts can be handled.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The KB9200 and KB9201 boards contain a 2Mb AMD Am29LV017D flash device. The CYGPKG_DE-
VS_FLASH_AMD_AM29XXXXX package contains all the code necessary to support this part and the CYGPKG_DE-
VS_FLASH_KB9200 package contains definitions that customize the driver to the KB9200 board.

2317

KwikByte KB920x Board Family Support

The KB9202 board contains a 16Mb Intel StrataFLASH 28F128J3 flash device. The CYGPKG_DEVS_FLASH_STRATA_V2
package contains all the code necessary to support this part and the platform HAL contains definitions that customize the driver
to the KB9202 board.

Ethernet Driver
The KB920x boards use the AT91RM9200's internal EMAC ethernet device attached to an external Intel LXT971 PHY. The
CYGPKG_DEVS_ETH_ARM_AT91RM9200 package contains all the code necessary to support this device and the CYGP-
KG_DEVS_ETH_ARM_KB9200 package contains definitions that customize the driver to the KB920x boards.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is just one flag
specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM920T CPU in the AT91RM9200.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used.

2318

KwikByte KB920x Board Family Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the KB920x hardware, and should be
read in conjunction with that specification. The KB920x platform HAL package complements the ARM architectural HAL
and the ARM9 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_plat-
form_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x10000000 of the physical memory space. The HAL uses the
MMU to locate it at virtual address 0x60000000 after initialization. It remains accessible
at address 0x1000000 but accesses to this address range are uncached.

SDRAM This is located at address 0x20000000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x00000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x20000000 for use by devices.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM/ROMRAM startup, all remaining SDRAM is available. For RAM startup, avail-
able RAM starts at virtual location 0x00040000, with the bottom 256kB reserved for
use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is entirely reserved for use by the ethernet interface, since there
are problems using external SDRAM for ethernet buffers.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals Apart from the SDRAM, flash and ethernet PHY, eCos does not currently make any use
of the off-chip peripherals present on the KB920x boards.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in Thumb mode, which provided better performance than ARM mode.

Example 254.1. kb9200 Real-time characterization

 Startup, main stack : stack used 336 size 3920
 Startup : Interrupt stack used 492 size 4096

2319

KwikByte KB920x Board Family Support

 Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 15.40 microseconds (7 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 16.70 10.67 23.47 3.01 51% 28% Create thread
 2.50 2.13 8.53 0.63 85% 85% Yield thread [all suspended]
 2.67 2.13 6.40 0.82 76% 76% Suspend [suspended] thread
 3.00 2.13 6.40 1.06 60% 60% Resume thread
 4.10 2.13 10.67 0.49 85% 12% Set priority
 1.23 0.00 2.13 1.04 57% 42% Get priority
 8.30 6.40 21.34 0.77 78% 20% Kill [suspended] thread
 2.73 2.13 8.53 0.90 75% 75% Yield [no other] thread
 4.50 4.27 8.53 0.42 90% 90% Resume [suspended low prio] thread
 2.70 2.13 6.40 0.85 75% 75% Resume [runnable low prio] thread
 4.33 2.13 8.53 0.32 89% 4% Suspend [runnable] thread
 2.70 2.13 4.27 0.83 73% 73% Yield [only low prio] thread
 2.77 2.13 4.27 0.89 70% 70% Suspend [runnable->not runnable]
 8.20 6.40 21.34 0.90 73% 25% Kill [runnable] thread
 7.40 6.40 14.93 1.15 98% 57% Destroy [dead] thread
 11.73 10.67 25.60 1.27 98% 59% Destroy [runnable] thread
 14.67 12.80 25.60 0.87 73% 23% Resume [high priority] thread
 6.72 6.40 10.67 0.54 85% 85% Thread switch

 0.55 0.00 2.13 0.82 74% 74% Scheduler lock
 1.80 0.00 2.13 0.56 84% 15% Scheduler unlock [0 threads]
 1.82 0.00 2.13 0.54 85% 14% Scheduler unlock [1 suspended]
 1.82 0.00 4.27 0.57 83% 15% Scheduler unlock [many suspended]
 1.82 0.00 4.27 0.57 83% 15% Scheduler unlock [many low prio]

 0.87 0.00 2.13 1.03 59% 59% Init mutex
 3.13 2.13 6.40 1.12 56% 56% Lock [unlocked] mutex
 3.53 2.13 6.40 1.05 59% 37% Unlock [locked] mutex
 3.13 2.13 6.40 1.12 56% 56% Trylock [unlocked] mutex
 2.60 2.13 6.40 0.76 81% 81% Trylock [locked] mutex
 0.87 0.00 2.13 1.03 59% 59% Destroy mutex
 15.13 14.93 21.34 0.38 96% 96% Unlock/Lock mutex

 1.27 0.00 4.27 1.11 53% 43% Create mbox
 0.93 0.00 2.13 1.05 56% 56% Peek [empty] mbox
 3.40 2.13 6.40 1.11 53% 43% Put [first] mbox
 0.87 0.00 2.13 1.03 59% 59% Peek [1 msg] mbox
 3.27 2.13 6.40 1.13 96% 50% Put [second] mbox
 1.07 0.00 2.13 1.07 100% 50% Peek [2 msgs] mbox
 3.40 2.13 6.40 1.11 53% 43% Get [first] mbox
 3.73 2.13 6.40 0.90 68% 28% Get [second] mbox
 3.53 2.13 6.40 1.05 59% 37% Tryput [first] mbox
 3.53 2.13 8.53 1.14 56% 40% Peek item [non-empty] mbox
 3.53 2.13 6.40 1.05 59% 37% Tryget [non-empty] mbox
 3.33 2.13 6.40 1.12 50% 46% Peek item [empty] mbox
 3.33 2.13 6.40 1.12 50% 46% Tryget [empty] mbox
 1.20 0.00 2.13 1.05 56% 43% Waiting to get mbox

2320

KwikByte KB920x Board Family Support

 1.20 0.00 4.27 1.12 50% 46% Waiting to put mbox
 3.53 2.13 8.53 1.14 56% 40% Delete mbox
 7.60 6.40 17.07 1.42 93% 59% Put/Get mbox

 0.87 0.00 2.13 1.03 59% 59% Init semaphore
 2.33 2.13 4.27 0.36 90% 90% Post [0] semaphore
 2.87 2.13 6.40 1.01 68% 68% Wait [1] semaphore
 2.60 2.13 6.40 0.76 81% 81% Trywait [0] semaphore
 2.27 2.13 4.27 0.25 93% 93% Trywait [1] semaphore
 0.73 0.00 2.13 0.96 65% 65% Peek semaphore
 1.00 0.00 4.27 1.12 56% 56% Destroy semaphore
 9.07 8.53 17.07 0.90 84% 84% Post/Wait semaphore

 1.20 0.00 4.27 1.12 50% 46% Create counter
 0.87 0.00 2.13 1.03 59% 59% Get counter value
 0.60 0.00 2.13 0.86 71% 71% Set counter value
 3.33 2.13 6.40 1.12 50% 46% Tick counter
 1.27 0.00 2.13 1.03 59% 40% Delete counter

 0.73 0.00 2.13 0.96 65% 65% Init flag
 2.60 2.13 6.40 0.76 81% 81% Destroy flag
 2.47 2.13 4.27 0.56 84% 84% Mask bits in flag
 2.80 2.13 6.40 0.96 71% 71% Set bits in flag [no waiters]
 4.00 2.13 8.53 0.70 78% 18% Wait for flag [AND]
 3.67 2.13 8.53 1.05 62% 34% Wait for flag [OR]
 3.67 2.13 8.53 1.05 62% 34% Wait for flag [AND/CLR]
 3.67 2.13 8.53 1.05 62% 34% Wait for flag [OR/CLR]
 0.40 0.00 2.13 0.65 81% 81% Peek on flag

 0.67 0.00 4.27 0.96 71% 71% Create alarm
 4.67 4.27 10.67 0.70 87% 87% Initialize alarm
 2.73 2.13 6.40 0.90 75% 75% Disable alarm
 4.60 4.27 10.67 0.60 90% 90% Enable alarm
 3.13 2.13 6.40 1.12 56% 56% Delete alarm
 3.07 2.13 4.27 1.05 56% 56% Tick counter [1 alarm]
 16.60 14.93 17.07 0.73 78% 21% Tick counter [many alarms]
 5.07 4.27 8.53 1.05 65% 65% Tick & fire counter [1 alarm]
 87.67 87.48 89.61 0.36 90% 90% Tick & fire counters [>1 together]
 18.80 17.07 21.34 0.76 75% 21% Tick & fire counters [>1 separately]
 12.97 12.80 32.00 0.33 98% 98% Alarm latency [0 threads]
 15.03 12.80 36.27 0.97 65% 18% Alarm latency [2 threads]
 15.28 12.80 40.54 1.64 39% 27% Alarm latency [many threads]
 24.09 23.47 98.14 1.20 97% 97% Alarm -> thread resume latency

 2.27 2.13 10.67 0.00 Clock/interrupt latency

 5.40 4.27 12.80 0.00 Clock DSR latency

 10 0 764 (main stack: 1328) Thread stack used (1360 total)
 All done, main stack : stack used 1328 size 3920
 All done : Interrupt stack used 136 size 4096
 All done : Idlethread stack used 212 size 2048

Timing complete - 29880 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The KB920x platform HAL does not affect the implementation of other parts of the eCos HAL specification. The ARM9
variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2321

Chapter 255. Motorola MX1ADS/A Board
Support

2322

Motorola MX1ADS/A Board Support

Name
eCos Support for the MX1ADS/A Board — Overview

Description
This document covers the Motorola MX1ADS/A single board computer based on the Motorola MC9328MX1. This platform is
both hardware and software compatible with the MXLADS/A, which contains a MC9328MXL; all references to the MX1ADS/
A and MC9328MX1 should also be taken to refer to the MXLADS/A and MC9328MXL except where explicitly stated.

The MX1ADS/A contains the MC9328MX1 processor, 64Mb of SDRAM, 32MB of flash memory, a CS8900A ethernet MAC,
connections for two serial channels and the various other peripherals supported by the MC9328MX1. The MX1ADS/A is
identical to the MXLADS/A except that in addition to the devices supported by the MXLADS/A, it contains support for
Bluetooth, analogue signal processing and SIM cards. However, since eCos does not use these devices, there is no difference
in the support available.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of two Am29PDL127H devices in parallel, giving 256 blocks of 128k bytes each. In a typical
setup, the first flash block is used for the ROMRAM RedBoot image. The topmost block is used to manage the flash and hold
RedBoot fconfig values. The remaining 254 blocks between 0x10020000 and 0x11FDFFFF can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_MC9328MXL which supports the two UART serial devices on the
MC9328MX1. This is configured for the MX1ADS/A by the CYGPKG_IO_SERIAL_ARM_MX1ADS_A package. These de-
vices can be used by RedBoot for communication with the host. If either of these devices is needed by the application, either di-
rectly or via the serial driver, then it cannot also be used for RedBoot communication. Another communication channel such as
ethernet should be used instead. The serial driver package is loaded automatically when configuring for the MX1ADS/A target.

There is an ethernet driver CYGPKG_DEVS_ETH_CL_CS8900A for the Cirrus Logic CS8900A ethernet device. A second
package CYGPKG_DEVS_ETH_ARM_MX1ADS_A is responsible for configuring this generic driver to the MX1ADS/A hard-
ware. These drivers are also loaded automatically when configuring for the MX1ADS/A target.

eCos manages the on-chip interrupt controller. General Purpose Timer 1 is used to implement the eCos system clock and the
microsecond delay function. The Watchdog Timer is also supported. Other on-chip devices (Caches, GPIO, UARTs, memory
and interrupt controllers) are initialized only as far as is necessary for eCos to run. Other devices (SPI, I²C, RTC etc.) are
not touched.

Tools
The MX1ADS/A port is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.3.3, arm-elf-gdb version 6.1, and binutils version 2.14.

2323

Motorola MX1ADS/A Board Support

Name
Setup — Preparing the MX1ADS/A board for eCos Development

Overview
In a typical development environment, the MX1ADS/A board boots from flash into the RedBoot ROM monitor. eCos appli-
cations are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing
the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

SRAM RedBoot running from RAM,
but loaded via the JTAG in-
terface

redboot_SRAM.ecm redboot_SRAM.bin

RAM RedBoot running from RAM,
usually loaded by another
version of RedBoot

redboot_RAM.ecm redboot_RAM.bin

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector

redboot_ROMRAM.ecm redboot_ROMRAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. RedBoot also supports ethernet
communication and flash management.

Initial Installation
Installing RedBoot is a matter of downloading a new binary image and overwriting the existing Boot monitor ROM image.

There are two possible mechanisms for doing this, both via the JTAG interface. The first uses the ability of some JTAG
debuggers to write directly to FLASH. The second merely uses the JTAG debugger to load a version of RedBoot and to then
use that to program the FLASH.

Direct FLASH Programming

The following instructions describe how to install RedBoot by programming the FLASH directly from the JTAG debugger.
At present this has only been tried using an Abatron BDI2000 debugger and these instruction apply to that device. However,
it should be possible to adapt these instructions to any other device.

The BDI2000 configuration file needs to be set up to initialize the SDRAM and to tell it what type of FLASH device is present.
The resulting config file is shown below:

; bdiGDB configuration for Motorola M9328MX1ADS board
; ---
;
[INIT]
;Init SDRAM 16Mx16x2 IAM0 CS2 CL2
;
WM32 0x00221000 0x92120200 ;Set Precharge Command
WM32 0x08200000 0x00000000 ;Issue Precharge all Command
WM32 0x00221000 0xa2120200 ;Set AutoRefresh Command
WM32 0x08000000 0x00000000 ;Issue AutoRefresh Command
WM32 0x08000000 0x00000000
WM32 0x08000000 0x00000000
WM32 0x08000000 0x00000000
WM32 0x08000000 0x00000000
WM32 0x08000000 0x00000000

2324

Motorola MX1ADS/A Board Support

WM32 0x08000000 0x00000000
WM32 0x08000000 0x00000000
WM32 0x00221000 0xb2120200 ;Set Mode Register
WM32 0x08111800 0x00000000 ;Issue Mode Register Command, Burst Length = 8
WM32 0x00221000 0x82124200 ;Set to Normal Mode
;

[TARGET]
CPUTYPE ARM920T
CLOCK 1 ;JTAG clock (0=Adaptive, 1=8MHz, 2=4MHz, 3=2MHz)
WAKEUP 3000 ;because of slow rising reset line
RESET HARD 1000 ;because of heavy capacitive load on reset line
ENDIAN LITTLE ;memory model (LITTLE | BIG)
BREAKMODE HARD
VECTOR CATCH 0x1f ;catch D_Abort, P_Abort, SWI, Undef and Reset

[HOST]

[FLASH]
; Program RedBoot with:
; Core#0> erase
; Core#0> prog 0x10000000 MX1 BIN
WORKSPACE 0x08000000
CHIPTYPE AM29DX32
CHIPSIZE 0x01000000
BUSWIDTH 32
ERASE 0x10000000
ERASE 0x10004000
ERASE 0x10008000
ERASE 0x1000c000
ERASE 0x10010000
ERASE 0x10014000
ERASE 0x10018000
ERASE 0x1001c000
ERASE 0x10020000

[REGS]
FILE regMX1.def

The BDI2000 needs to be rebooted to cause it to reload this configuration file. Once this is done connect to the BDI2000 via
its telnet port and issue a reset command:

Core#0>reset
- TARGET: processing reset request
- TARGET: BDI asserts TRST and RESET
- TARGET: BDI removes TRST
- TARGET: Bypass check 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x1092001D
- TARGET: All ICEBreaker access checks passed
- TARGET: BDI removes RESET
- TARGET: BDI waits for RESET inactive
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
Core#0>

Now ensure that the FLASH is erased. The following command uses the ERASE entries in the configuration file to erase the
first 9 blocks in the FLASH.

Core#0>erase
Erasing flash at 0x10000000
Erasing flash at 0x10004000
Erasing flash at 0x10008000
Erasing flash at 0x1000c000
Erasing flash at 0x10010000
Erasing flash at 0x10014000
Erasing flash at 0x10018000
Erasing flash at 0x1001c000
Erasing flash at 0x10020000
Erasing flash passed

2325

Motorola MX1ADS/A Board Support

Core#0>

Copy redboot_ROMRAM.bin to the root directory of the same TFTP server used to fetch the configuration file and execute
the following command:

Core#0>prog 0x10000000 redboot_ROMRAM.bin bin
Programming redboot_ROMRAM.bin , please wait
Programming flash passed
Core#0>

If this completes successfully then the FLASH has been programmed. You can start RedBoot by issuing the go command, or
by detaching the BDI2000 and cycling the power switch of the board. You should see the RedBoot startup screen:

+... waiting for BOOTP information
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.0.207/255.255.255.0, Gateway: 10.0.0.3
Default server: 10.0.0.1, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 15:51:18, Jul 19 2004

Platform: Motorola MX1ADS/A (ARM9)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x02000000, [0x0002f778-0x01fdd000] available
FLASH: 0x10000000 - 0x12000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

Download RedBoot

The following instructions describe how to install RedBoot via the JTAG interface by downloading a version of RedBoot to
program the FLASH. This is a two stage process, you must first download a RAM-resident version of RedBoot and then use
that to download the ROM image to be programmed into the flash memory. The following directions are necessarily somewhat
general since the specifics depend on the exact JTAG device available, and the software used to drive it.

Connect the JTAG device to the JTAG connector on the MX1ADS/A board and check that the device is functioning correctly.
Using 32 bit memory writes, initialize the static memory controller so that the SDRAM and flash are accessible. The following
assignments should be made:

*(long *)0x00221000 = 0x92120200; // Set Precharge Command
*(long *)0x08200000 = 0x00000000; // Issue Precharge all Command
*(long *)0x00221000 = 0xa2120200; // Set AutoRefresh Command
*(long *)0x08000000 = 0x00000000; // Issue AutoRefresh Command
*(long *)0x08000000 = 0x00000000;
*(long *)0x08000000 = 0x00000000;
*(long *)0x08000000 = 0x00000000;
*(long *)0x08000000 = 0x00000000;
*(long *)0x08000000 = 0x00000000;
*(long *)0x08000000 = 0x00000000;
*(long *)0x08000000 = 0x00000000;
*(long *)0x00221000 = 0xb2120200; // Set Mode Register
*(long *)0x08111800 = 0x00000000; // Issue Mode Register Command, Burst Length = 8
*(long *)0x00221000 = 0x82124200; // Set to Normal Mode

Now load the SRAM redboot binary image from the file redboot_SRAM.bin into SDRAM at 0x08040000. Exactly how
you do this depends on the JTAG driver software. Note that it may be easier to load the ELF or SREC files, if supported, since
these contain the correct load addresses.

Connect the serial port of a host machine to UART 1 on the MX1ADS/A board and start a terminal emulator (for example
HyperTerminal on Windows, minicom on Linux) set up to communicate at 38400 baud, 8 bits, one stop bit, no parity. Start
RedBoot by executing from location 0x08040000, which should result in RedBoot starting up and emitting this message on
the serial channel:

+... waiting for BOOTP information
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.0.207/255.255.255.0, Gateway: 10.0.0.3
Default server: 10.0.0.1, DNS server IP: 10.0.0.1

2326

Motorola MX1ADS/A Board Support

RedBoot(tm) bootstrap and debug environment [SRAM]
Non-certified release, version UNKNOWN - built 15:50:10, Jul 19 2004

Platform: Motorola MX1ADS/A (ARM9)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x08000000-0x0c000000, [0x08065ea0-0x0bfdd000] available
FLASH: 0x10000000 - 0x12000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

Now the ROM image can be downloaded using the following RedBoot command:

RedBoot> load -r -b %{FREEMEMLO} -m ymodem

Use the terminal emulator's Ymodem support to send the file redboot_ROMRAM.bin. This should result in something like
the following output:

Raw file loaded 0x08066000-0x080b900d, assumed entry at 0x08066000
xyzModem - CRC mode, 2659(SOH)/0(STX)/0(CAN) packets, 5 retries
RedBoot>

Once the file has been uploaded, you can check that it has been transferred correctly using the cksum command. On the host
(Linux or Cygwin) run the cksum program on the binary file:

$ cksum redboot_ROMRAM.bin
3848755608 118224 redboot_ROMRAM.bin

In RedBoot, run the cksum command on the data that has just been loaded:

RedBoot> cksum -b %{FREEMEMLO} -l 118224
POSIX cksum = 3848755608 118224 (0xe5675998 0x0001cdd0)

The second number in the output of the host cksum program is the file size, which should be used as the argument to the -l
option in the RedBoot cksum command. The first numbers in each instance are the checksums, which should be equal.

If the program has downloaded successfully, then it can be programmed into the flash using the following commands:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)?y
*** Initialize FLASH Image System
... Erase from 0x11fe0000-0x12000000: .
... Program from 0x0bfe0000-0x0c000000 at 0x11fe0000: .
RedBoot> fis create -b %{FREEMEMLO} RedBoot
An image named 'RedBoot' exists - continue (y/n)?y
... Erase from 0x10000000-0x10020000: .
... Program from 0x08066000-0x08086000 at 0x10000000: .
... Erase from 0x11fe0000-0x12000000: .
... Program from 0x0bfe0000-0x0c000000 at 0x11fe0000: .
RedBoot>

The MX1ADS/A board may now be disconnected from the JTAG device and reset by cycling the power. It should then display
the startup screen for the ROMRAM version of RedBoot:

+... waiting for BOOTP information
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.0.207/255.255.255.0, Gateway: 10.0.0.3
Default server: 10.0.0.1, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 15:51:18, Jul 19 2004

Platform: Motorola MX1ADS/A (ARM9)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x02000000, [0x0002f778-0x01fdd000] available
FLASH: 0x10000000 - 0x12000000, 256 blocks of 0x00020000 bytes each.
RedBoot>

2327

Motorola MX1ADS/A Board Support

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROMRAM version of RedBoot for the MX1ADS/A are:

$ mkdir redboot_mx1ads_a_romram
$ cd redboot_mx1ads_a_romram
$ ecosconfig new mx1ads_a redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/mx1ads_a/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

To rebuild the SRAM version of RedBoot:

$ mkdir redboot_mx1ads_a_sram
$ cd redboot_mx1ads_a_sram
$ ecosconfig new mx1ads_a redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/mx1ads_a/current/misc/redboot_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This is the case for both
the above builds, take care not to mix the two files up, since programming the SRAM RedBoot into the ROM will render
the board unbootable.

2328

Motorola MX1ADS/A Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The MX1ADS/A platform HAL package is loaded automatically when eCos is configured for a mx1ads_a or mxlads_a
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

The MC9328MX1 SoC is supported by a separate HAL, CYGPKG_HAL_ARM_ARM9_MC9328MXL, which supports all the
devices on the MC9328MX1/L that eCos uses.

Startup
The MX1ADS/A platform HAL package supports four separate startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot programmed into
flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and debug
it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use the eCos
virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM

This startup type can be used for finished applications which will be programmed into flash at physical address
0x10000000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization.

ROMRAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x10000000. However, when it starts up the application will first copy itself to RAM at 0x00000000 and then run from
there. RAM is generally faster than flash memory, so the program will run more quickly than a ROM-startup application.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

SRAM

This startup type is used for applications that are downloaded via the JTAG interface. The application is loaded into SRAM
at location 0x08040000 and started by executing from that address. The application will be self-contained with no depen-
dencies on services provided by other software. eCos startup code will perform all necessary hardware initialization. How-
ever, it is assumed that the machine has been set up from the JTAG interface as described earlier for installing RedBoot.

This configuration is primarily present to provide support for installing RedBoot in the FLASH. It has some limitations
with regard to functionality since the MMU is not enabled and no exception vectors are installed at location zero, hence
no interrupts can be handled.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

2329

Motorola MX1ADS/A Board Support

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The MX1ADS/A board contains two 16 bit AMD Am29PDL127H flash devices arranged in parallel to form a 32 bit wide
interface. The CYGPKG_DEVS_FLASH_AMD_AM29XXXXX package contains all the code necessary to support these parts
and the CYGPKG_DEVS_FLASH_ARM_MX1ADS_A package contains definitions that customize the driver to the MX1ADS/
A board.

Ethernet Driver
The MX1ADS/A board contains a Cirrus Logic CS8900A ethernet MAC. The CYGPKG_DEVS_ETH_CL_CS8900A package
contains all the code necessary to support this device and the CYGPKG_DEVS_ETH_ARM_MX1ADS_A package contains de-
finitions that customize the driver to the MX1ADS/A board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is just one flag
specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM920T CPU in the MC9328MXL.

2330

Motorola MX1ADS/A Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the MX1ADS/A hardware, and should
be read in conjunction with that specification. The MX1ADS/A platform HAL package complements the ARM architectural
HAL and the ARM9 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the on-chip peripherals that it uses. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_plat-
form_setup.h.

For SRAM startup, minimal initialization is performed, and it is assumed that the JTAG device has initialized the hardware
as described earlier.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x08000000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x00000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x04000000 for use by devices.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM/ROMRAM startup, all remaining SDRAM is available. For RAM startup, avail-
able RAM starts at virtual location 0x00040000, with the bottom 256kB reserved for
use by RedBoot.

In the SRAM startup configuration, the SDRAM remains at its physical address of
0x08000000, since the MMU is not enabled.

Flash This is located at address 0x10000000 of the physical memory space. It is mapped by
the HAL using the MMU to the same virtual address with caching and the write buffer
enabled.

On-chip Peripheral Registers These are located at address 0x00200000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping for these at 0xA0000000
in the virtual address space.

All hardware addresses in mc9328mxl.h give the physical address. To use these, the
macro CYGARC_VIRTUAL_ADDRESS() should be applied to these. This will yield
the correct address depending on the startup type.

Ethernet MAC The Cirrus Logic CS8900A is addressed by Chip Select 4, and is located at physical
address 0x15000000. It is mapped uncached and unbuffered to the same virtual address
when the MMU is enabled.

Other Issues
The MX1ADS/A platform HAL does not affect the implementation of other parts of the eCos HAL specification. The ARM9
variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2331

Chapter 256. Texas Instruments OMAP
L1xx Processor Support

2332

Texas Instruments OMAP L1xx Processor Support

Name
Support for the TI OMAP L1xx Processor — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the TI OMAP L1xx processor
family. It is expected to be read in conjunction with platform HAL-specific documentation, as well as the eCos HAL specifi-
cation. This processor HAL package complements the ARM architectural HAL, ARM9 variant HAL and the platform HAL.
It provides functionality common to all OMAP L1xx-based board implementations.

This support is found in the eCos package located at packages/hal/arm/arm9/omap-l1xx within the eCos source
repository.

The OMAP L1xx processor HAL package is loaded automatically when eCos is configured for an OMAP-based platform.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Supported Hardware
Supported features of the TI OMAP processor within this processor HAL package include:

• OMAP L1xx-specific hardware definitions

• Interrupt controller

• Timers

• Serial UARTs

• MultiMedia Card Interface (MMC/SD)

• I²C two wire interface

• Pin Configuration and GPIO Support

• Peripheral Power Control

• DMA Support

Support for the on-chip SPI device, SPI NOR flash, interrupt-driven serial, watchdog and wallclock (RTC) features of the
OMAP L1xx are also present and can be found in separate packages, outside of this processor HAL.

2333

Texas Instruments OMAP L1xx Processor Support

Name
OMAP L1xx Hardware Definitions — Details on obtaining hardware definitions for OMAP

Register definitions
The file <cyg/hal/omap_l1xx.h> can be included from application and eCos package sources to provide definitions
related to OMAP subsystems. These include register definitions for the interrupt controller, power management controller, PLL
clocks, memory controller, external bus interface, GPIO, USART, MMC/SD, Ethernet, timers RTC, and SPI subsystems. This
file will normally be included automatically if <cyg/hal/hal_io.h> is included, which is the preferred way of getting
these definitions.

Initialization Helper Macros
The file <cyg/hal/omap_l1xx_init.inc> contains definitions of helper macros which may be used by OMAP L1xx
platform HALs in order to initialise common subsystems without excessive duplication between the platform HALs. Typically
this file will be included by the hal_platform_setup.h header in the platform HAL, in turn included from the architec-
tural HAL file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary. NOTE: At present, the only extant OMAP L1xx port relies
on either the TI-supplied User Boot Loader, or the JTAG initialization script, to initialize the PLLs and memory controller, so
these macros currently largely contain ARM9-generic setup only.

2334

Texas Instruments OMAP L1xx Processor Support

Name
OMAP L1xx Interrupt Controller — Advanced Interrupt Controller Definitions And usage

Interrupt controller definitions
The file <cyg/hal/var_ints.h> (located at hal/arm/arm9/omap/VERSION/include/var_ints.h in the
eCos source repository) contains interrupt vector number definitions for use with the eCos kernel and driver interrupt APIs.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt Controller Functions
The source file src/omap_l1xx_misc.c within this package provides most of the support functions to manipulate the
interrupt controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions
hal_interrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function. Only GPIO interrupts are configurable, and at
present we do not support full decoding of these, so this function is empty.

The hal_interrupt_acknowledge function acknowledges an interrupt.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the Advanced Interrupt
Controller. This is supported by assigning each vector to one of the 30 channels that map to the IRQ vector. The FIQ vector
channels are currently ignored. The level value may range from 0 to 29, with 0 being the highest priority. This range is shifted
into the 2..31 range, and any attempt to set a priority value greater than 29 is clamped to 29.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

2335

Texas Instruments OMAP L1xx Processor Support

Name
Timers — Use of on-chip timers

System Clock
The eCos kernel system clock is implemented using the 3:4 half of the 64-bit TimerPlus 0. By default, the system
clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the configuration option
CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings are recalculated
automatically if the denominator is changed. If the desired frequency cannot be expressed accurately solely with changes to
CYGNUM_HAL_RTC_DENOMINATOR, then the configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjust-
ed, and again clock-related settings will automatically be recalculated.

The same Timer is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some device
drivers, and in non-kernel configurations such as with RedBoot where this timer is needed for loading program images via X/
Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

Timer-based profiling support
Timer-based profiling support is implemented using the 1:2 half of TimerPlus 0. If the gprof package, CYGPKG_PROFILE_G-
PROF, is included in the configuration, then TimerPlus0 1:2 is reserved for use by the profiler.

2336

Texas Instruments OMAP L1xx Processor Support

Name
Serial UARTs — Configuration and Implementation Details of Serial UART Support

Overview
Support is included in this processor HAL package for the OMAP's on-chip debug unit UART and up to four serial USART
serial devices.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 115200,8,N,1 with no flow control.

HAL Diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the OMAP
processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel
to use as the console at startup time. This will be the channel that receives output from, for example, diag_printf().
The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven Serial Driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent ctrl-c operation when debugging.

The main part of this driver is contained in the generic CYGPKG_IO_SERIAL_GENERIC_16X5X package. The package
CYGPKG_IO_SERIAL_ARM_OMAP_L1XX contains definitions that configure the generic driver for the OMAP L1xx. That
driver package should also be consulted for documentation and configuration options. The driver is not active until the CYG-
PKG_IO_SERIAL_DEVICES configuration option within the generic serial driver support package CYGPKG_IO_SERIAL
is enabled in the configuration.

Support for hardware flow control and modem control lines is present in the driver, but will only be enabled if these control
signals are brought out to the physical serial port.

2337

Texas Instruments OMAP L1xx Processor Support

Name
Multimedia Card Interface (MMC/SD) Driver — Using MMC/SD cards with block drivers and filesystems

Overview
The MultiMedia Card Interface (MMC/SD) driver in the OMAP processor HAL allows use of MultiMedia Cards (MMC cards)
and Secure Digital (SD) flash storage cards within eCos, exported as block devices. This makes them suitable for use as the
underlying devices for filesystems such as FAT.

Configuration
This driver provides the necessary support for the generic MMC bus layer within the CYGPKG_DEVS_DISK_MMC package
to export a disk block device. The disk block device is only available if the generic disk I/O layer found in the package
CYGPKG_IO_DISK is included in the configuration.

The block device may then be used as the device layer for a filesystem such as FAT. Example devices are "/dev/mmcsd0/1"
to refer to the first partition on the card, or "/dev/mmcsd0/0" to address the whole device including potentially the partition
table at the start.

The driver may be forcibly disabled within this processor HAL package with the configuration option CYGPKG_HAL_AR-
M_ARM9_OMAP_L1XX_MMC.

If the driver is enabled, the following options are available to control it:

CYGPKG_HAL_ARM_AR-
M9_OMAP_L1XX_MMC_DEVICE

The OMAP_L1XX has two MMC/SD devices. At present the generic MMC/SD code
can only handle one device. This option selects which device that is.

CYGIMP_HAL_ARM_AR-
M9_OMAP_L1XX_MMC_INTMODE

This indicates that the driver should operate in interrupt-driven mode if possible. This is
enabled by default if the eCos kernel is enabled. Note though that if the driver finds that
global interrupts are off when running, then it will fall back to polled mode even if this
option is enabled. This allows for use of the MMC/SD driver in an initialisation context.

CYGNUM_HAL_ARM_AR-
M9_OMAP_L1XX_MMC_INT_PRI

This is the MMC/SD bus interrupt priority. It may range from 1 to 29.

Usage Notes
The driver will detect the appropriate card sizes. Hotswapping of cards is supported by the driver, and in the case of eCosPro,
the FAT filesystem. Although any cards removed before explicit unmounting or a sync() call to flush filesystem buffers will
likely result in a corrupted filesystem on the removed card.

The MMC/SD bus layer will parse partition tables, although it can be configured to allow handling of cards with no partition
table.

This driver implements multi-sector I/O operations. If you are using the FAT filesystem, see the generic MMC/SD driver
documentation which describes how to exploit this feature when using FAT.

2338

Texas Instruments OMAP L1xx Processor Support

Name
I2C Two Wire Interface — Using I²C devices

Overview
The I²C driver in the OMAP processor HAL supports the use of I²C devices within eCos. Access to the driver will be via the
standard I²C interface subsystem.

This driver provides support for both I²C busses available on the OMAP L1XX.

Configuration
The HAL contains the following configuration options for the two I²C busses:

CYGINT_HAL_ARM_ARM9_OMAP_L1XX_I2C_BUSX

This interface controls the inclusion of support for I²C bus X. This will normally be implemented by the platform HAL
to indicate that there are I²C devices attached to the given bus, or that the SCL and SDA lines are routed to an external
connector.

CYGNUM_HAL_ARM_ARM9_OMAP_L1XX_I2C_BUSX_CLOCK

This is the I²C bus X clock speed in Hz. Usually frequencies of either 100kHz or 400kHz are chosen, the latter sometimes
known as fast mode.

CYGNUM_HAL_ARM_ARM9_OMAP_L1XX_I2C_BUSX_INTR_PRI

This is the I²C bus X interrupt priority. It may range from 1 to 29; the default of 15 places it in the centre of the priority range.

Additionally the HAL contains the following configuration option which applies to both I²C buses:

CYGNUM_HAL_ARM_ARM9_OMAP_L1XX_I2C_ALIGNED_RXBUF_SIZE

When using DMA, transferred received data buffers must be aligned to the data cache line size, and its size must be a
multiple of the cache line size. If the user does not pass in a suitable buffer, a bounce buffer must be used for the entire
transfer. This option provides the size of that buffer. You should set this buffer to the maximum amount of data you can
receive in a single transfer. If you can guarantee that all uses of this I²C driver use appropriately aligned receive buffers,
then you can disable this option entirely in order to remove the buffer. It defaults to 1024 bytes per I²C bus.

Usage Notes
The design of the OMAP L1XX I²C device does not make it possible to start a new bus transfer without also sending a START
condition on the bus. This means that divided transactions are not possible. A divided transaction would look like this:

 cyg_i2c_transaction_begin(&cyg_aardvark_at24c02);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 1, tx_buf1, 1, 0);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 0, tx_buf2, 2, 0);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 0, tx_buf3, 6, 1);
 cyg_i2c_transaction_end(&cyg_aardvark_at24c02);

In this transaction a START and one byte are sent from tx_buf1, then 2 bytes of data from tx_buf2, finishing with 6 bytes
from tx_buf3 followed by a STOP. The OMAP L1XX will not allow the tx_buf2 and tx_buf3 transfers to happen without also
sending a START. The only solution to this is to combine the data into a single buffer and perform a single transfer:

 memcpy(tx_buf, tx_buf1, 1);
 memcpy(tx_buf+1, tx_buf2, 2);
 memcpy(tx_buf+3, tx_buf3, 6);
 cyg_i2c_tx(&cyg_aardvark_at24c02, tx_buf, 9);

2339

Texas Instruments OMAP L1xx Processor Support

Name
Pin Configuration and GPIO Support — Use of pin configuration and GPIO

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_L1XX_PINMUX(reg, field, func);

CYGHWR_HAL_L1XX_PINMUX_SET (pin);

pin = CYGHWR_HAL_L1XX_GPIO(bank, bit, mode);

CYGHWR_HAL_L1XX_GPIO_SET (pin);

CYGHWR_HAL_L1XX_GPIO_OUT (pin, val);

CYGHWR_HAL_L1XX_GPIO_IN (pin, val);

CYGHWR_HAL_L1XX_GPIO_INTCFG (pin, mode);

CYGHWR_HAL_L1XX_GPIO_INTSTAT (pin, stat);

Description
The OMAP L1XX HAL provides a number of macros to support the encoding of pin multiplexing information and GPIO pin
modes into 32 bit descriptors. This is useful to drivers and other packages that need to configure and use different lines for
different devices. Because there is not a simple correspondence between pin multiplexing information and GPIO bank and pin
identities, these two things are treated separately.

Pin Multiplexing
A pin multiplexing descriptor is created with CYGHWR_HAL_L1XX_PINMUX(reg, field, func) which takes the
following arguments:

reg This identifies the PINMUX register which controls this pin. This is a value between
0 and 19.

field This gives the bit offset within the PINMUX register of the field that controls this pin.
Fields are 4 bits wide, so this may only be 0, 4, 8, 12, 16, 20, 24 or 28.

func This defines the function code to program into the PINMUX field. There is no consis-
tency between functions and function codes, and the same function for a pin may be
represented by different codes in different PINMUX registers. You should refer to the
OMAP L1xx documentation for the correct value to be used here.

The following examples show how this macro may be used:

// UART0 TX line is in PINMUX3, bits 20:23, function 2 = UART0_TXD
#define CYGHWR_HAL_L1XX_UART0_TX CYGHWR_HAL_L1XX_PINMUX(3, 20, 2)

// MMCSS0 clock line is in PINMUX10, bits 0:3, function 2 = MMCSD0_CLK
#define CYGHWR_HAL_OMAP_MMCSD0_CLK CYGHWR_HAL_L1XX_PINMUX(10, 0, 2)

The macro CYGHWR_HAL_L1XX_PINMUX_SET(pin) sets the pin multiplexing setting according to the descriptor passed
in.

GPIO Support
A GPIO descriptor is created with CYGHWR_HAL_L1XX_GPIO(bank, bit, mode) which takes the following argu-
ments:

2340

Texas Instruments OMAP L1xx Processor Support

bank This identifies the GPIO bank to which the pin is attached. This is a value between 0
and 7.

bit This gives the bit offset within the bank of the GPIO pin. This is a value between 0
and 15.

mode This defines whether this is an input or an output pin, and may take the values INPUT
or OUTPUT respectively.

Additionally, the macro CYGHWR_HAL_L1XX_GPIO_NONE may be used in place of a pin descriptor and has a value that no
valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used.

The following examples show how this macro may be used:

// MMCSD0 card detect is attached to GP4[0] and is an input
#define CYGHWR_HAL_OMAP_MMCSD0_CD_GPIO CYGHWR_HAL_L1XX_GPIO(4, 0, INPUT)

// MMCSD0 write protect is attached to GP4[1] and is an input
#define CYGHWR_HAL_OMAP_MMCSD0_WP_GPIO CYGHWR_HAL_L1XX_GPIO(4, 1, INPUT)

The remaining macros all take a GPIO pin descriptor as an argument. CYGHWR_HAL_L1XX_GPIO_SET configures the pin
according to the descriptor and must be called before any other macros. CYGHWR_HAL_L1XX_GPIO_OUT sets the output to
the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_L1XX_GPIO_IN should be
a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

There is also support for GPIO interrupts. CYGHWR_HAL_L1XX_GPIO_INTCFG(pin, mode) configures the interrupt
mode of the pin. It may be either FALL, RISE or FALLRISE to configure the pin to interrupt on the falling edge, rising edge or
both. The second argument to CYGHWR_HAL_L1XX_GPIO_INTSTAT(pin, stat) must be a pointer to an int, which
will be set to 1 if an interrupt has be received on the given pin, and 0 otherwise. GPIO interrupts are currently not decoded into
per-pin interrupt vectors, only the shared per-bank vectors are available. If an application needs to get interrupts from more
than one pin on a bank, it needs to install a shared ISR and decode the specific pins itself.

2341

Texas Instruments OMAP L1xx Processor Support

Name
Peripheral Power Control — Description

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_L1XX_POWER(device);

CYGHWR_HAL_L1XX_POWER_ENABLE (desc);

CYGHWR_HAL_L1XX_POWER_DISABLE (desc);

Description
The OMAP L1XX HAL provides a number of macros to support the management of peripheral power. The macro CYGH-
WR_HAL_L1XX_POWER(device) encodes a power control descriptor into a 32 bit value. The argument is the name
of the device to be described.

The remaining functions all take a peripheral power descriptor as an argument. CYGHWR_HAL_L1XX_POWER_EN-
ABLE(desc) transitions the given device to enabled state in its PSC controller. Likewise CYGHWR_HAL_L1XX_POW-
ER_DISABLE(desc) transitions the device to disabled state.

2342

Texas Instruments OMAP L1xx Processor Support

Name
DMA Support — Description

Synopsis
 typedef struct hal_edma_channel hal_edma_channel;

 typedef void hal_edma_callback(hal_edma_channel *edma_chan, cyg_uint32 event, CYG_ADDRWORD data);

#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_L1XX_EDMA_CHANNEL(controller, event);

void hal_edma_channel_init (hal_edma_channel *edma_chan, cyg_uint32 channel, hal_ed-
ma_callback *callback, CYG_ADDRWORD data);

void hal_edma_channel_delete (hal_edma_channel *edma_chan);

void hal_edma_channel_source (hal_edma_channel *edma_chan, void *src, cyg_int16 bidx,
cyg_int16 cidx);

void hal_edma_channel_dest (hal_edma_channel *edma_chan, void *dest, cyg_int16 bidx,
cyg_int16 cidx);

void hal_edma_channel_burstsize (hal_edma_channel *edma_chan, cyg_uint16 aburstsize,
cyg_uint16 bburstsize);

void hal_edma_channel_size (hal_edma_channel *edma_chan, cyg_uint32 size);

void hal_edma_channel_start (hal_edma_channel *edma_chan, cyg_uint32 opt);

void hal_edma_channel_stop (hal_edma_channel *edma_chan);

void hal_edma_poll (void);

Description
The HAL provides support for access to the EDMA3 DMA controllers. This support is not intended to expose the full func-
tionality of these devices and is strictly limited to supporting peripheral DMA, in particular SPI and MMC/SD.

The user is referred to the TI EDMA3 documentation for a full description of the EDMA3 devices, and to the sources of the
MMC and SPI drivers for examples of the use of this API. This documentation only gives a brief description of the functions
available.

Each device transfer direction is described by a controller number (0 or 1) and an event numbers (0 to 31). These values are
usually defined by the peripheral being accessed. The macro CYGHWR_HAL_L1XX_EDMA_CHANNEL(controller,
event) combines these into a descriptor that may be used to initialize the channel. A channel is controlled by a hal_ed-
ma_channel object that must be allocated by the client. To initialize a channel, hal_edma_channel_init() is called,
passing the channel object, the descriptor and an optional callback function and user-defined value. After use the channel can
be deleted with hal_edma_channel_delete().

Before starting a transfer, the channel must be initialized with the source, destination and size of the transfer to be done.
hal_edma_channel_source() and hal_edma_channel_dest() describe the source and destination buffers. A
memory buffer is described by its address plus the increments, or indexes, to step the read or write pointer through it. The
sizes of these indexes depend on the size of the transfers that the peripheral is programmed to make, and its synchronisation
mode. One of the source or destination will be the peripheral itself; the address should be the address of the peripheral's input
or output data register, and the indexes should be zero to prevent the pointer incrementing.

hal_edma_channel_size() supplies the total transfer size in bytes. hal_edma_channel_burstsize() describes
the A and B burst sizes for AB synchronized transfers and must be called before hal_edma_channel_size(). If

2343

Texas Instruments OMAP L1xx Processor Support

hal_edma_channel_burstsize() is not called then A synchronization is assumed. The values set by hal_ed-
ma_channel_burstsize() remain set in the channel, and another call to this function is needed to reset them.

A transfer is started by calling hal_edma_channel_start(). The opt argument contains bits that will be merged with
the PaRAM options field. When a transfer is complete, then hal_edma_channel_stop() should be called. This function
may also be called to abort a transfer.

If a callback was passed to hal_edma_channel_init() then when the transfer finishes or encounters and error, the
callback will be called from DSR context. The callback will be passed a pointer to the channel object, an event code and
the user-defined value that was passed to hal_edma_channel_init(). There are two possible event codes: CYGH-
WR_HAL_L1XX_EDMA_COMPLETE indicates that the transfer finished successfully, and CYGHWR_HAL_L1XX_EDMA_ER-
ROR indicates that an error condition was encountered.

In kernel configurations the DMA system will use interrupts to detect transfer completion or errors. In non-kernel configura-
tions it will use polling. For the polling to happen, client code must call hal_edma_poll() on a regular basis. On DMA
completion the callback function will be called, as before.

2344

Chapter 257. Atmel SAM9 Processor
Support

2345

Atmel SAM9 Processor Support

Name
Support for the Atmel SAM9 Processor — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Atmel AT91SAM9XXX
processor family. It is expected to be read in conjunction with platform HAL-specific documentation, as well as the eCos HAL
specification. This processor HAL package complements the ARM architectural HAL, ARM9 variant HAL and the platform
HAL. It provides functionality common to all SAM9-based board implementations.

This support is found in the eCos package located at packages/hal/arm/arm9/sam9 within the eCos source repository.

The SAM9 processor HAL package is loaded automatically when eCos is configured for an SAM9-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Supported Hardware
Supported features of the Atmel SAM9 processor within this processor HAL package include:

• SAM9-specific hardware definitions

• Interrupt controller

• Timer counters

• Serial UARTs

• Two-Wire Interface (TWI)

• Power saving

Support for the on-chip ethernet(AT91SAM9260 only), interrupt-driven serial, SPI, watchdog and wallclock (RTTC) features
of the SAM9 are also present and can be found in separate packages, outside of this processor HAL.

2346

Atmel SAM9 Processor Support

Name
SAM9 hardware definitions — Details on obtaining hardware definitions for SAM9

Register definitions
The file <cyg/hal/sam9.h> can be included from application and eCos package sources to provide definitions related to
SAM9 subsystems. These include register definitions for the interrupt controller, power management controller, clock gener-
ator, memory controller, external bus interface, GPIO, USART, MCI, TWI (I²C®), Ethernet, timer counter, RTTC, and SPI
subsystems.

Initialization helper macros
The file <cyg/hal/sam9_init.inc> contains definitions of helper macros which may be used by SAM9 platform HALs
in order to initialise common SAM9 subsystems without excessive duplication between the platform HALs. Typically this
file will be included by the hal_platform_setup.h header in the platform HAL, in turn included from the architectural
HAL file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary.

2347

Atmel SAM9 Processor Support

Name
SAM9 interrupt controller — Advanced Interrupt Controller definitions and usage

Interrupt controller definitions
The file <cyg/hal/var_ints.h> (located at hal/arm/arm9/sam9/VERSION/include/var_ints.h in the
eCos source repository) contains interrupt vector number definitions for use with the eCos kernel and driver interrupt APIs:

// The following are common to all SAM9 devices. Per-variant
// variations are supplied later.

#define CYGNUM_HAL_INTERRUPT_FIQ 0 // Advanced Interrupt Controller (FIQ)
#define CYGNUM_HAL_INTERRUPT_SYSTEM 1 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_INTERRUPT_PIOA 2 // Parallel IO Controller A
#define CYGNUM_HAL_INTERRUPT_PIOB 3 // Parallel IO Controller B
#define CYGNUM_HAL_INTERRUPT_PIOC 4 // Parallel IO Controller C
 // Vector 5 variant specific
#define CYGNUM_HAL_INTERRUPT_US0 6 // USART 0
#define CYGNUM_HAL_INTERRUPT_US1 7 // USART 1
#define CYGNUM_HAL_INTERRUPT_US2 8 // USART 2
#define CYGNUM_HAL_INTERRUPT_MCI 9 // Multimedia Card Interface
#define CYGNUM_HAL_INTERRUPT_UDP 10 // USB Device Port
#define CYGNUM_HAL_INTERRUPT_TWI 11 // Two-Wire Interface
#define CYGNUM_HAL_INTERRUPT_SPI 12 // Serial Peripheral Interface 0
#define CYGNUM_HAL_INTERRUPT_SPI1 13 // Serial Peripheral Interface 1
#define CYGNUM_HAL_INTERRUPT_SSC0 14 // Serial Synchronous Controller 0
 // Vector 15 variant specific
 // Vector 16 variant specific
#define CYGNUM_HAL_INTERRUPT_TC0 17 // Timer Counter 0
#define CYGNUM_HAL_INTERRUPT_TC1 18 // Timer Counter 1
#define CYGNUM_HAL_INTERRUPT_TC2 19 // Timer Counter 2
#define CYGNUM_HAL_INTERRUPT_UHP 20 // USB Host port
 // Vectors 21..28 variant specific
#define CYGNUM_HAL_INTERRUPT_IRQ0 29 // Advanced Interrupt Controller (IRQ0)
#define CYGNUM_HAL_INTERRUPT_IRQ1 30 // Advanced Interrupt Controller (IRQ1)
#define CYGNUM_HAL_INTERRUPT_IRQ2 31 // Advanced Interrupt Controller (IRQ2)

// Variant specific vectors

#if defined(CYGHWR_HAL_ARM_ARM9_SAM9_SAM9260)

#define CYGNUM_HAL_INTERRUPT_ADC 5 // Analog to Digital Converter
 // Vector 15 unused
 // Vector 16 unused
#define CYGNUM_HAL_INTERRUPT_EMAC 21 // Ethernet MAC
#define CYGNUM_HAL_INTERRUPT_ISI 22 // Image Sensor Interface
#define CYGNUM_HAL_INTERRUPT_US3 23 // USART 3
#define CYGNUM_HAL_INTERRUPT_US4 24 // USART 4
#define CYGNUM_HAL_INTERRUPT_US5 25 // USART 5
#define CYGNUM_HAL_INTERRUPT_TC3 26 // Timer Counter 3
#define CYGNUM_HAL_INTERRUPT_TC4 27 // Timer Counter 4
#define CYGNUM_HAL_INTERRUPT_TC5 28 // Timer Counter 5

#elif defined(CYGHWR_HAL_ARM_ARM9_SAM9_SAM9261)

 // Vector 5 unused
#define CYGNUM_HAL_INTERRUPT_SSC1 15 // Serial Synchronous Controller 1
#define CYGNUM_HAL_INTERRUPT_SSC2 16 // Serial Synchronous Controller 2
#define CYGNUM_HAL_INTERRUPT_LCD 21 // LCD controller
 // Vectors 22..28 unused

#else
#error Unknown SAM9 variant
#endif

// The following interrupts are derived from the SYSTEM interrupt
#define CYGNUM_HAL_INTERRUPT_PITC 32 // System Timer Period Interval Timer
#define CYGNUM_HAL_INTERRUPT_DEBUG 33 // Debug unit
#define CYGNUM_HAL_INTERRUPT_WDTC 34 // Watchdog
#define CYGNUM_HAL_INTERRUPT_RTTC 35 // Real Time Clock

2348

Atmel SAM9 Processor Support

#define CYGNUM_HAL_INTERRUPT_PMC 36 // Power Management Controller
#define CYGNUM_HAL_INTERRUPT_RSTC 37 // Reset Controller

As indicated above, further decoding is performed on the SYSTEM interrupt to identify the cause more specifically. Note that
as a result, placing an interrupt handler on the SYSTEM interrupt will not work as expected. Conversely, masking a decoded
derivative of the SYSTEM interrupt will not work as this would mask other SYSTEM interrupts, but masking the SYSTEM
interrupt itself will work. On the other hand, unmasking a decoded SYSTEM interrupt will unmask the SYSTEM interrupt as
a whole, thus unmasking interrupts for the other units on this shared interrupt.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt controller functions
The source file src/sam9_misc.c within this package provides most of the support functions to manipulate the interrupt
controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions hal_in-
terrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function, where the level and up arguments are inter-
preted as follows:

level up interrupt on

0 0 Falling Edge

0 1 Rising Edge

1 0 Low Level

1 1 High Level

To fit into the eCos interrupt model, interrupts essentially must be acknowledged immediately once decoded, and as a result,
the hal_interrupt_acknowledge function is empty.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the Advanced Interrupt
Controller.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

Using the Advanced Interrupt Controller for VSRs
The SAM9 HAL has been designed to exploit benefits of the on-chip Advanced Interrupt Controller (AIC) on the SAM9.
Support has been included for exploiting its ability to provide hardware vectoring for VSR interrupt handlers.

This support is dependent on definitions that may only be provided by the platform HAL and therefore is only enabled if
the platform HAL package implements the CYGINT_HAL_SAM9_AIC_VSR CDL interface. The necessary definitions are
available to all platform HALs which use the facilities of the sam9_init.inc header file.

The interrupt decoding path has been optimised by allowing the AIC to be interrogated for the interrupt handler VSR to use.
These vectored interrupts are by default still configured to point to the default ARM architecture HAL IRQ and FIQ VSRs.
However applications may set their own VSRs to override this default behaviour to allow optimised interrupt handling.

The VSR vector numbers to use when overriding are defined as follows:

// FIQ is already defined as vector 7 in the architecture hal_intr.h
#define CYGNUM_HAL_VECTOR_SYSTEM 8 // System Peripheral (debug unit, system timer)
#define CYGNUM_HAL_VECTOR_PIOA 9 // Parallel IO Controller A
#define CYGNUM_HAL_VECTOR_PIOB 10 // Parallel IO Controller B
#define CYGNUM_HAL_VECTOR_PIOC 11 // Parallel IO Controller C
 // VSR 12 variant specific
#define CYGNUM_HAL_VECTOR_US0 13 // USART 0
#define CYGNUM_HAL_VECTOR_US1 14 // USART 1
#define CYGNUM_HAL_VECTOR_US2 15 // USART 2

2349

Atmel SAM9 Processor Support

#define CYGNUM_HAL_VECTOR_MCI 16 // Multimedia Card Interface
#define CYGNUM_HAL_VECTOR_UDP 17 // USB Device Port
#define CYGNUM_HAL_VECTOR_TWI 18 // Two-Wire Interface
#define CYGNUM_HAL_VECTOR_SPI 19 // Serial Peripheral Interface
#define CYGNUM_HAL_VECTOR_SPI1 20 // Serial Peripheral Interface
#define CYGNUM_HAL_VECTOR_SSC0 21 // Serial Synchronous Controller 0
 // VSR 22 variant specific
 // VSR 23 variant specific
#define CYGNUM_HAL_VECTOR_TC0 24 // Timer Counter 0
#define CYGNUM_HAL_VECTOR_TC1 25 // Timer Counter 1
#define CYGNUM_HAL_VECTOR_TC2 26 // Timer Counter 2
#define CYGNUM_HAL_VECTOR_UHP 27 // USB Host port
 // VSRs 28..35 variant specific
#define CYGNUM_HAL_VECTOR_IRQ0 36 // Advanced Interrupt Controller (IRQ0)
#define CYGNUM_HAL_VECTOR_IRQ1 37 // Advanced Interrupt Controller (IRQ1)
#define CYGNUM_HAL_VECTOR_IRQ2 38 // Advanced Interrupt Controller (IRQ2)

// Variant specific vectors

#if defined(CYGHWR_HAL_ARM_ARM9_SAM9_SAM9260)

#define CYGNUM_HAL_VECTOR_ADC 12 // Analog to Digital Converter
 // Vector 22 unused
 // Vector 23 unused
#define CYGNUM_HAL_VECTOR_EMAC 28 // Ethernet MAC
#define CYGNUM_HAL_VECTOR_ISI 29 // Image Sensor Interface
#define CYGNUM_HAL_VECTOR_US3 30 // USART 3
#define CYGNUM_HAL_VECTOR_US4 31 // USART 4
#define CYGNUM_HAL_VECTOR_US5 32 // USART 5
#define CYGNUM_HAL_VECTOR_TC3 33 // Timer Counter 3
#define CYGNUM_HAL_VECTOR_TC4 34 // Timer Counter 4
#define CYGNUM_HAL_VECTOR_TC5 35 // Timer Counter 5

#elif defined(CYGHWR_HAL_ARM_ARM9_SAM9_SAM9261)

 // Vector 12 unused
#define CYGNUM_HAL_VECTOR_SSC1 22 // Serial Synchronous Controller 1
#define CYGNUM_HAL_VECTOR_SSC2 23 // Serial Synchronous Controller 2
#define CYGNUM_HAL_VECTOR_LCD 28 // LCD controller
 // Vectors 29..35 unused

#else

#error Unknown SAM9 variant

#endif

Consult the kernel and generic HAL documentation for more information on VSRs and how to set them.

Interrupt handling withing standalone applications
For non-eCos standalone applications running under RedBoot, it is possible to install an interrupt handler into the interrupt
vector table manually. Memory mappings are platform-dependent and so the platform documentation should be consulted, but
in general the address of the interrupt table can be determined by analyzing RedBoot's symbol table, and searching for the
address of the symbol name hal_interrupt_handlers. Table slots correspond to the interrupt numbers above. Pointers
inserted in this table should be pointers to a C/C++ function with the following prototype:

extern unsigned int isr(unsigned int vector, unsigned int data);

For non-eCos applications run from RedBoot, the return value can be ignored. The vector argument will also be the interrupt
vector number. The data argument is extracted from a corresponding table named hal_interrupt_data which imme-
diately follows the interrupt vector table. It is still the responsibility of the application to enable and configure the interrupt
source appropriately if needed.

2350

Atmel SAM9 Processor Support

Name
Timers — Use of on-chip timers

Periodic Interval Timer
The eCos kernel system clock is implemented using the Periodic Interval Timer (PIT). By default, the system clock
interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the configuration option
CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings are recalculated
automatically if the denominator is changed. If the desired frequency cannot be expressed accurately solely with changes to
CYGNUM_HAL_RTC_DENOMINATOR, then the configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjust-
ed, and again clock-related settings will automatically be recalculated.

The PIT is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some device
drivers, and in non-kernel configurations such as with RedBoot where this timer is needed for loading program images via X/
Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

Timer-based profiling support
Timer-based profiling support is implemented using timer counter 1 (TC1). If the gprof package, CYGPKG_PROFILE_GPROF,
is included in the configuration, then TC1 is reserved for use by the profiler.

2351

Atmel SAM9 Processor Support

Name
Serial UARTs — Configuration and implementation details of serial UART support

Overview
Support is included in this processor HAL package for the SAM9's on-chip debug unit UART and up to four serial USART
serial devices.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 115200,8,N,1 with no flow control.

HAL diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the SAM9
processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel
to use as the console at startup time. This will be the channel that receives output from, for example, diag_printf().
The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven serial driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent ctrl-c operation when debugging.

This driver is contained in the CYGPKG_IO_SERIAL_ARM_AT91 package. That driver package should also be consulted for
documentation and configuration options. The driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration
option within the generic serial driver support package CYGPKG_IO_SERIAL is enabled in the configuration.

Note that unlike the USART devices, the serial debug port does not support modem control signals such as those used for
hardware signals. In addition, USART devices for a particular platform may also not have these control signals brought out
to the physical serial port.

2352

Atmel SAM9 Processor Support

Name
Two-Wire Interface (TWI) driver — Configuration and implementation details of TWI (I²C®) driver

Overview
The SAM9 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the SAM9. This type of bus is
also known as I²C®. The API for this may be found within the CYGPKG_IO_I2C package.

I²C/TWI driver configuration
The I²C® driver uses the SAM9's internal Two-Wire Interface (TWI) support. This is controlled within the SAM9 processor
HAL (CYGPKG_HAL_SAM9). The CYGPKG_HAL_SAM9_TWI CDL component controls whether the TWI driver is enabled.
Within that component, there are two sub-options:

• CYGNUM_HAL_SAM9_TWI_CLOCK sets the speed of the TWI bus clock in Hz. This is usually 100kHz, but can be set up
to 400kHz if the devices on the bus support this speed, also known as fast mode. However other values below 400kHz can
also be chosen, subject to the accuracy of the clock waveform generation parameters.

• The second option within the CYGPKG_HAL_SAM9_TWI component is CYGNUM_HAL_SAM9_TWI_CKDIV. This is the
clock divider used when configuring the TWI_CWGR register. Consult the SAM9 datasheet description of the TWI_CWGR
register for the formula used to determine the clock frequency. Increasing the divider will decrease the accuracy in practice
of the generated I²C bus clock compared to CYGNUM_HAL_SAM9_TWI_CLOCK. But the divider must also be sufficiently
low that the relevant factors do not overflow valid values for CHDIV/CLDIV in TWI_CWGR. Note that when the SAM9 is
using a 60MHz MCK, then for 100kHz operation, a value for this option of 1 is most appropriate. For 400kHz, a value for
this option of 0 is most appropriate. The default value of this CDL is an appropriate value for CKDIV assuming a 60MHz
MCK and a TWI clock between 29kHz and 400kHz.

To be specific, the CLDIV/CHDIV fields of the TWI_CWGR are considered equal. The value of, for example, CLDIV,
can be expressed as:

To use the I²C/TWI driver, the generic I²C driver package CYGPKG_IO_I2C must be used. Documentation for its API may
be found elsewhere.

Usage notes
Due to the characteristics of the SAM9's operation, it is not possible to provide support for repeated starts with the I²C package
API. Similarly indicating a NACK when performing a receive is equivalent to also sending a STOP.

A test application for use with the AT24C512 serial EEPROM fitted to the AT91SAM9260EK board is provided within the
tests subdirectory of the CYGPKG_HAL_SAM9 package. This test communicates with the I²C EEPROM on the board to
perform read and write operations using I²C. This test is not built by default. It may be built by enabling the configuration
option CYGBLD_HAL_ARM_ARM9_SAM9_TEST_TWI_AT24C512 within the SAM9 processor HAL.

2353

Atmel SAM9 Processor Support

Name
Power saving support — Extensions for saving power

Overview
There is support in the SAM9 processor HAL for a simple power saving mechanism. This is provided by two functions:

#include <cyg/hal/hal_intr.h>

__externC void cyg_hal_sam9_powersave_init(cyg_uint32 ip_addr);

__externC void cyg_hal_sam9_powerdown(void);

The powersaving system is initialized by calling cyg_hal_sam9_powersave_init(). The argument should be the IP
address of this machine in network order. This can usually be fetched from the bootp data for an interface after completion of
the call to init_all_network_interfaces(). e.g. eth0_bootp_data.bp_ciaddr.s_addr.

A call to cyg_hal_sam9_powerdown() will put the machine into a low power mode. This will involve switching to a
slower system clock speed, disabling all peripherals except those that are defined to cause the system to wake up and return
from this function.

Configuration
The exact behaviour of the power saving system is controlled by the following configuration options:

CYGPKG_HAL_ARM_ARM9_SAM9_POWERSAVE

This option controls the overall inclusion of the power saving system.

Default value: on

CYGSEM_HAL_ARM_ARM9_SAM9_POWERSAVE_POLL_ETHERNET

This option enables polling of the ethernet interface for relevant ARP packets and unicast IP packets. It is necessary for
the CPU to run at a higher CPU speed for this option to work.

Default value: off

CYGSEM_HAL_ARM_ARM9_SAM9_POWERSAVE_IDLE

If this option is set, the CPU will go into idle mode, which will cause it to halt until an interrupt is delivered.

Default value: off

CYGVAR_HAL_ARM_ARM9_SAM9_POWERSAVE_ACTIVE_DEVICES

This option defines the devices that are to be kept running during power down mode. An interrupt from one of these devices
is usually the only way of bringing the system out of idle mode. The value of this option is a bit mask with bits set for each
device that is to be kept active. The bits correspond to the peripheral identifiers described in the SAM9 documentation.

Default value: 0x00000000

CYGSEM_HAL_ARM_ARM9_SAM9_POWERSAVE_POLL_GPIO

This option control whether the power saving system will poll GPIO pins during power saving. For this to work the CPU
cannot be put into idle mode.

Default value: on

CYGVAR_HAL_ARM_ARM9_SAM9_POWERSAVE_PIO_HI

This is an array of bitmasks of the bits in the PIO PDSR registers. Within the array, index 0 corresponds to PIOA, index 1
to PIOB and so on. For each set bit in these masks, if the value is seen to be 1, then the low power mode will be terminated.

2354

Atmel SAM9 Processor Support

Default value: 0, 0, 0, 0

CYGVAR_HAL_ARM_ARM9_SAM9_POWERSAVE_PIO_LO

This is an array of bitmasks of the bits in the PIO PDSR registers. Within the array, index 0 corresponds to PIOA, index 1
to PIOB and so on. For each set bit in these masks, if the value is seen to be 0, then the low power mode will be terminated.

Default value: 0, 0, 0, 0

CYGVAR_HAL_ARM_ARM9_SAM9_POWERSAVE_PIO_CHANGE

This is an array of bitmasks of the bits in the PIO PDSR registers. Within the array, index 0 corresponds to PIOA, index
1 to PIOB and so on. For each set bit in these masks, if the value is seen to change between successive polls, then the
low power mode will be terminated.

Default value: 0, 0, 0, 0

CYGBLD_HAL_ARM_ARM9_SAM9_TEST_POWERSAVE

This option controls whether a simple test is built to exercise power saving support. The test is not built by default as an
external means is required to wake the processor up by one of the above configured mechanisms.

Default value: 0

2355

Chapter 258. Atmel AT91SAM9260
Evaluation Kit Board Support

2356

Atmel AT91SAM9260 Evaluation Kit Board Support

Name
eCos Support for the Atmel AT91SAM9260 Evaluation Kit — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91SAM9260 Evaluation Kit. The
AT91SAM9260 Evaluation Kit contains the AT91SAM9260 microprocessor, 64Mbytes of SDRAM, 256Mbytes of NAND
flash memory, an Atmel Dataflash, an Atmel serial EEPROM, a Davicom DM9161A PHY, a SD/MMC/DataFlash socket, a
DAC, external connections for three serial channels (one debug, one full modem, one flow controlled), ethernet, USB host/
device, and the various other peripherals supported by the AT91SAM9260. eCos support for the many devices and peripherals
on the boards and the AT91SAM9260 is described below.

For typical eCos development, a RedBoot image is programmed into the dataflash memory, and the board will load this image
from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos appli-
cations via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the SAM9 processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The Dataflash consists of 8192 blocks of 1056 bytes each. In a typical setup, the first 33792 bytes are reserved for the sec-
ond-level bootstrap, AT91Bootstrap. The following 164736 bytes are reserved for the use of the ROM RedBoot image (The
odd size aligns the end of the RedBoot area to a 1056 block boundary). The topmost block is used to manage the flash and the
next block down holds RedBoot fconfig values. The remaining blocks can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J17 and DTE port at J20 (connected to USART channel 0) and flow controlled port at J18 (connected
to USART channel 1) can be used by RedBoot for communication with the host. If any of these devices is needed by the
application, either directly or via the serial driver, then it cannot also be used for RedBoot communication. Another commu-
nication channel such as ethernet should be used instead. The serial driver package is loaded automatically when configuring
for the AT91SAM9260-EK target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91 for the on-chip ethernet device. The platform HAL package
is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when configuring
for the AT91SAM9260-EK board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the board.

There is a driver for the on-chip real-time timer controller (RTTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91RTTC.
This driver is also loaded automatically when configuring for the target.

The SAM9 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91SAM9260. This type
of bus is also known as I²C®. Further documentation may be found in the SAM9 processor HAL documentation.

There is a driver for the MultiMedia Card Interface (MCI) at CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI. This driver is
loaded automatically when configuring for the AT91SAM9260-EK target and allows use of MMC and Secure Digital (SD)
flash storage cards within eCos, exported as block devices. Further documentation may be found within that package.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the more
general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides the underlying implementation for the
SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

Furthermore, the platform HAL package contains support for SPI dataflash cards. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_ATMEL_DATAFLASH package as well as the above SPI packages. That package is automatically loaded
when configuring for the target. Dataflash media is then accessed as a Flash device, using the Flash I/O API within the CYG-
PKG_IO_FLASH package, if that package is loaded in the configuration.

2357

Atmel AT91SAM9260 Evaluation Kit Board Support

It is also possible to configure the HAL to access MMC cards in SPI mode, instead of using the MCI interface.

In general, devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run. Other devices
(RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot
sequence will set up the appropriate PIO configuration.

Tools
The AT91SAM9260-EK support is intended to work with GNU tools configured for an arm-eabi target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2358

Atmel AT91SAM9260 Evaluation Kit Board Support

Name
Setup — Preparing the AT91SAM9260-EK board for eCos Development

Overview
In a typical development environment, the AT91SAM9260-EK board boots from the DataFlash and runs the RedBoot ROM
monitor from SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board via the
debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash
memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from
Dataflash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from Dataflash by the second-level bootstrap. The use of ROM for this configuration is
intended to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which
assumes that this has already been done.

Initial Installation
The on-chip boot program on the AT91SAM9260 is only capable of loading programs from Dataflash or NAND flash in-
to 4Kbytes of on-chip SRAM and is therefore quite restrictive. Consequently RedBoot cannot be booted directly and a sec-
ond-level bootstrap must be used. Such a second-level bootstrap is supplied by Atmel in the form of AT91Bootstrap. This
is therefore programmed into the start of Dataflash and is then responsible for initializing the SDRAM and loading RedBoot
from Dataflash and executing it.

Caution

There is a size limit on the size of applications which the AT91Bootstrap second level bootstrap will load.
Images larger than 320Kbytes will require the AT91Bootstrap application to be rebuilt with a larger IMG_SIZE
definition in AT91Bootstrap/board/at91sam9260ek/dataflash/at91sam9260ek.h within the
sam9260ek HAL package in the eCos source repository (packages/hal/arm/arm9/sam9260ek/
current/).

There are basically two ways to write the second-level bootstrap and RedBoot to the Dataflash. The first is to use the At-
mel-supplied SAM-BA program that interacts with the on-chip boot program. The second is to use a JTAG debugger that
understands the microcontroller and can write to the dataflash (for example the Ronetix PEEDI). Since the availability of the
latter cannot be guaranteed, only the first method will be described here.

Programming RedBoot into DataFlash using SAM-BA

The following gives the steps needed to program the second-level bootstrap and RedBoot into the DataFlash using SAM-BA.
The user should refer to the SAM-BA documentation for full details of how to run the program.

1. Download the AT91 In-system Programmer software package from the Atmel website and install it. SAM9 series CPU's
require the 2.1.x series version of SAM-BA. Atmel provide both Linux and Windows versions of SAM-BA so ensure you
select the version appropriate to your host operating system. The remainder of this document describes the process according
to a Windows installation. The steps for the Linux version of SAM-BA are similar and can easily be determined from the
Windows process.

2. From the root directory of your eCosPro installation, copy the file dataflash_at91sam9260ek.bin
from the sub-directory packages/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/

2359

Atmel AT91SAM9260 Evaluation Kit Board Support

at91sam9260ek and the file redboot_ROM.bin from the sub-directory loaders/sam9260ek to a suitable
location on the Windows PC.

3. Connect a null-modem serial cable between the DEBUG serial port of the board and a serial port on a convenient host
(which need not be the PC running SAM-BA). Run a terminal emulator (Hyperterm or minicom) at 115200 baud. Connect
a USB cable between the PC and the AT91SAM9260-EK board.

4. Power up or reset the board and Windows should recognize the USB device. If it does not, hold down switch BP4 while
powering up or resetting the board. This will erase any previous bootloader from the dataflash. Reset the board again and
it should be recognized now. Windows may ask you to install a new driver, in which case follow the instructions. If the
USB device does not appear, check the USB cable.

Note

Under Linux this device may appear as /dev/ACM0 or /dev/ttyUSB0. SAM-BA currently only recognises
the latter so you may have to create a symbolic link from /dev/ACM0 to /dev/ttyUSB0.

5. Start SAM-BA. Select "\usb\ARM0" for the communication interface, and "AT91SAM9260-EK" for the board. If the USB
option does not appear, look in the Windows Device Manager for the new USB COM device. If all is well, click on "Con-
nect".

6. In the SAM-BA main window, select the "DataFlash AT45DB/DBC" tab and in the "Scripts" dropdown menu select "Enable
Dataflash (SPIO CS1)", to program the on-board Dataflash device. Click Execute and SAM-BA should emit the following
in the message area:

(AT91-ISP v1.13) 1 % DATAFLASH::Init 1
-I- DATAFLASH::Init 1 (trace level : 4)
-I- Loading applet isp-dataflash-at91sam9260.bin at address 0x20000000
-I- Memory Size : 0x840000 bytes
-I- Buffer address : 0x20002A70
-I- Buffer size: 0x80E80 bytes
-I- Applet initialization done

The actual options and output of SAM-BA may vary according to the version you are using. The behaviour documented
here is that of SAM-BA 2.9.

7. Now select the DataFlash tab again, "Send BootFile" from the "Scripts" menu and "Execute" it. When the file open dialog
appears, select the dataflash_at91sam9260ek.bin file and click "Open". The following output should be seen:

(AT91-ISP v1.13) 1 % GENERIC::SendBootFileGUI
GENERIC::SendFile dataflash_at91sam9260ek.bin at address 0x0
-I- File size : 0xF82 byte(s)
-I- Writing: 0xF82 bytes at 0x0 (buffer addr : 0x20002A70)
-I- 0xF82 bytes written by applet

8. The second-level bootstrap has now been written to DataFlash, we must now write RedBoot.

9. In the "Send File Name" box type in the path name to the redboot_ROM.bin file, or use the Open Folder button and
browse to it.

10.In the Address field set the value to 0x8400.

11.Click the "Send File" button. SAM-BA will put up a dialog box while it is writing the file to the DataFlash, and will output
something similar to the following in the message area:

(AT91-ISP v1.13) 1 % send_file {DataFlash AT45DB/DCB} "redboot_ROM.bin" 0x8400 0
-I- Send File //bert/Shared/Releng/sam9260ek/redboot_ROM.bin at address 0x8400
GENERIC::SendFile //bert/Shared/Releng/sam9260ek/redboot_ROM.bin at address 0x8400
-I- File size : 0x243D0 byte(s)
-I- Writing: 0x243D0 bytes at 0x8400 (buffer addr : 0x20002A70)
-I- 0x243D0 bytes written by applet

12.Shut down SAM-BA and disconnect the USB cable. Press the reset button on the board and something similar to the
following should be output on the DEBUG serial line.

2360

Atmel AT91SAM9260 Evaluation Kit Board Support

RomBOOT
>Start AT91Bootstrap...
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
No space to add 'net_device'
AT91_ETH: Waiting for PHY to reset.
AT91_ETH: Waiting for link to come up..
Ethernet eth0: MAC address 12:34:56:78:9a:bc
No IP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_3 - built 12:50:09, Sep 24 2009

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9260-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20035d08-0x23ffef80 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x4083fbe0-0x4083ffff: .
... Program from 0x23fffbe0-0x24000000 to 0x4083fbe0: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

Remember to substitute the appropriate MAC address for this board at the appropriate step. If a BOOTP/DHCP server is
not available, then IP configuration may be set manually. The default server IP address can be set to a PC that will act as a
TFTP host for future RedBoot load operations, or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.83
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.11
Console baud rate: 115200
DNS domain name: farm.ecoscentric.com
DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x0E:0x00:0x00:0xEA:0x18:0xF0
GDB connection port: 9000
Force console for special debug messages: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x4083f7c0-0x4083fbdf: .
... Program from 0x23fff7c0-0x23fffbe0 to 0x4083f7c0: .
RedBoot>

The RedBoot installation is now complete. This can be tested by powering off the board, and then powering on the board again.
Output similar to the following should be seen on the DEBUG serial port. Verify the IP settings are as expected.

2361

Atmel AT91SAM9260 Evaluation Kit Board Support

Ethernet eth0: MAC address 0e:00:00:ea:18:a2
IP: 192.168.7.83/255.255.255.0, Gateway: 192.168.7.11
Default server: 192.168.7.11
DNS server IP: 192.168.7.11, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_3 - built 12:50:09, Sep 24 2009

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9260-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20035d08-0x23ffef80 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the AT91SAM9260-EK are:

$ mkdir redboot_at91sam9260ek_rom
$ cd redboot_at91sam9260ek_rom
$ ecosconfig new at91sam9260ek redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/sam9260ek/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding AT91Bootstrap
The sources of AT91Bootstrap are found in the AT91Bootstrap directory of the sam9260ek package. This is a copy of the
software as supplied by Atmel with some slight modifications to permit it to be built with the same tools as eCos.

To rebuild the second-level bootstrap for the AT91SAM9260-EK execute the following commands:

$ cd $ECOS_REPOSITORY/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/at91sam9260ek/dataflash
$ make

This should result in the creation of a number of files, including dataflash_at91sam9260ek.bin which can be copied
out.

2362

Atmel AT91SAM9260 Evaluation Kit Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The AT91SAM9260-EK platform HAL package is loaded automatically when eCos is configured for the sam9260ek target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into DataFlash. The application will
be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization.

JTAG This is the startup type which can be used during application development via a JTAG device such as the PEEDI. arm-
eabi-gdb is used to load a JTAG startup application into memory and debug it. Hardware setup is divided between the
initialization section of the PEEDI configuration file and software in the loaded application.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The AT91SAM9260-EK board contains an 8Mbyte Atmel AT45DB DataFlash device. The CYGPKG_DEVS_FLASH_AT-
MEL_DATAFLASH package contains all the code necessary to support this part and the platform HAL package contains def-
initions that customize the driver to the AT91SAM9260-EK board. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Ethernet Driver

The AT91SAM9260-EK board uses the AT91SAM9260's internal EMAC ethernet device attached to an external Davicom
DM9161A PHY. The CYGPKG_DEVS_ETH_ARM_AT91 package contains all the code necessary to support this device and
the platform HAL package contains definitions that customize the driver to the AT91SAM9260-EK board. This driver is not
active until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2363

Atmel AT91SAM9260 Evaluation Kit Board Support

RTC Driver
The AT91SAM9260-EK board uses the AT91SAM9260's internal RTTC support. The CYGPKG_DEVICES_WALL-
CLOCK_ARM_AT91RTTC package contains all the code necessary to support this device. This driver is not active until the
generic wallclock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

I²C Driver

Warning

While the I²C® driver uses the SAM9's internal Two-Wire Interface (TWI) support (see Two-Wire Interface
(TWI) driver), you may experience problems using the I²C device on the AT91SAM9260-EK board. This is
because the Ethernet MII interface and I²C bus 0 share GPIO lines PA23 and PA24. By default the Ethernet MAC
uses the RMII interface and these shared lines are not, in theory, used. However, these lines are connected to the
PHY and interference from the PHY has been observed, which prevents I²C functioning correctly.

The solution is to unsolder resistors R121 and R122 to isolate the PHY from the I²C lines.

Watchdog Driver
The AT91SAM9260-EK board uses the AT91SAM9260's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Warning

The ATSAM926x processor will boot with watchdog support enabled, and the watchdog configuration is write-
once. That is, if it is disabled, it cannot be re-enabled. Due to its nature, RedBoot disables the watchdog when it
starts so any eCos applications with watchdog support enabled that are run by RedBoot will not function correctly.

USART Serial Driver
The AT91SAM9260-EK board uses the AT91SAM9260's internal USART serial support as described in the SAM9 processor
HAL documentation. Three serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the
HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver; USART 0 which is mapped to virtual vector channel 1
and "/dev/ser0"; and USART 1 which is mapped to virtual vector channel 2 and "/dev/ser1". Only USART 0 supports
full modem control signals but USART 1 supports RTS/CTS.

MCI Driver
As the SAM MCI driver is included in the hardware-specific configuration for this target, nothing is required to load it. Simi-
larly the MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific
configuration for this target. All that is required to enable the support is to include the generic disk I/O infrastructure package
(CYGPKG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its
package dependencies (including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

If the generic disk I/O infrastructure is needed for some other reason, and you do not wish to also include the MCI driver,
then the configuration option within this platform HAL CYGPKG_HAL_ARM_ARM9_SAM9260EK_MMCSD can be used to
forcibly disable it.

Various options can be used to control specifics of the SAM MCI driver. Consult the SAM MCI driver documentation for
information on its configuration.

On this target, it is not possible to detect from the MMC/SD socket whether cards have been inserted or removed. Thus the
disk I/O layer's removeable media support will not detect when cards have been inserted or removed, and therefore the only
way to detect if a card has been inserted is to attempt mounts.

2364

Atmel AT91SAM9260 Evaluation Kit Board Support

The MMC/SD socket also does not permit detection of the write-protect (or "lock") switch present on SD cards. "Locked"
cards will therefore not be detected which means that despite the switch position, it is still possible to write to them since the
lock switch does not physically enforce write protection.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926EJ CPU in the AT91SAM9260.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Samsung K9F2G08U08 NAND flash memory chip.
To enable the driver, activate the CDL option CYGPKG_HAL_SAM9260EK_NAND and ensure that the CYGPKG_DE-
VS_NAND_SAMSUNG_K9 package is present in your eCos configuration.

CYGHWR_HAL_SAM9260EK_NAND_USE_STATUS_LINE
If set, this option configures the driver to wait for NAND operations to complete by waiting for the chip to deassert its
Busy line. This is the default behaviour and is recommended, but may be disabled if you need to use the line (PIO C13)
for some other purpose. (If disabled, the memory controller is configured to stall NAND accesses until they complete,
which will interfere with multi-threading.)

CYGNUM_HAL_SAM9260EK_NAND_POLL_INTERVAL
The number of microseconds delay in the polling loops which wait for NAND operations to complete.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DE-
VS_NAND_SAM9260EK_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will au-
tomatically be set up for you when the device is initialised. By default, the manual config CDL script sets up a single partition
(number 0) encompassing the entire device.

It is possible to configure the partitions in some other way, should it be appropriate for your setup, for example to read a
Linux-style partition table from the chip. To do so you will have to add appropriate code to sam9260ek_nand.c.

2365

Atmel AT91SAM9260 Evaluation Kit Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only JTAG configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam9260ek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the SDRAM controller.

The peedi.at91sam9260ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.at91sam9260ek.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is
repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. If a second-level bootstrap and ROM RedBoot is resident in DataFlash, it will be run.

An issue occurs when the AT91 Ethernet driver is included in your configuration. In order to work around a board hardware
design issue, the CPU generates an external reset in order to reset the Ethernet PHY. However this can be interpreted by the
PEEDI as an indication that the CPU itself has reset, and if the PEEDI configuration file option CORE0_STARTUP_MODE is
set to RESET then the CPU will be halted at this point. To avoid this issue, the CORE0_STARTUP_MODE can be set to RUN.

Consult the PEEDI documentation for information on other features.

Running JTAG applications

Applications configured for JTAG startup can be run directly under a JTAG debugger. Once loaded and running via JTAG,
HAL diagnostic output will appear by default on the serial debug port. USARTs 0 or 1 can be chosen instead by setting the
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform HAL to channel 1 or 2.

2366

Atmel AT91SAM9260 Evaluation Kit Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM9260-EK hardware, and
should be read in conjunction with that specification. The AT91SAM9260-EK platform HAL package complements the ARM
architectural HAL, the ARM9 variant HAL and the SAM9 processor HAL. It provides functionality which is specific to the
target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to
assign hardware exception vectors vectors at address 0x00000000, the HAL also uses
the MMU to create a clone of this memory at virtual address 0x00000000. The same
memory is also accessible uncached and unbuffered at virtual location 0x30000000 for
use by devices. The first 32 bytes are used for hardware exception vectors. The next 32
bytes are used for the VSR table and the next 256 bytes are normally used for the eCos
virtual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0x20040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is unused by eCos and is available for application use.

On-chip ROM This is located at address 0x00100000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x71800000.

USB host port The USB host port (UHP) registers are located at address 0x00300000 of the physical
memory space. However the HAL uses the MMU to relocate this to virtual address
0x72800000. Memory accessed at this address is uncached and unbuffered. There is no
cached variant.

SPI dataflash SPI Dataflash media can only be accessed with the Flash API. For the purposes of
this API a placeholder address range has been allocated as if the Flash is present at
this address. The base of this address range is 0x40000000 for the on-board flash and
0x50000000 for the dataflash slot, the extent will clearly depend on the Dataflash ca-
pacity. This reserved range is not real memory and any attempt to access it directly by
the processor other than via the Flash API will result in a memory address exception.

2367

Atmel AT91SAM9260 Evaluation Kit Board Support

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, ethernet PHY, MCI, and SPI dataflash facilities on the
AT91SAM9260-EK board. eCos does not currently make any use of any other off-chip
peripherals present on this board.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91SAM9260, using the facilities
of the SAM9 processor HAL. Consult the documentation in that package for details.

SPI Dataflash
eCos supports SPI access to Dataflash on the AT91SAM9260-EK. An on-board device and an external card slot are provided
on the board. The on-chip device is typically used to contain RedBoot and flash configuration data. The external slot is available
for application use.

Accesses to Dataflash are performed via the Flash API, using 0x40000000 or 0x50000000 as the nominal address of the device,
although it does not truly exist in the processor address space. For the external card slot, on driver initialisation, eCos and
RedBoot can detect the presence of a card in the socket. In particular, on reset RedBoot will indicate the presence of Flash at
the 0x40000000 address range in its startup banner if it has been successfully detected. Hot swapping is not possible.

Since Dataflash is not directly addressable, access from RedBoot is only possible using fis command operations.

The MCI driver cannot be enabled simultaneously with the SPI driver, as the drivers need differing pin configurations for the
same pins on this board due to the shared socket.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 258.1. sam9260ek Real-time characterization

 Startup, main stack : stack used 420 size 3920
 Startup : Interrupt stack used 528 size 4096
 Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.28 microseconds (38 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 5.07 3.38 8.70 0.87 46% 29% Create thread
 0.86 0.81 2.26 0.08 81% 81% Yield thread [all suspended]

2368

Atmel AT91SAM9260 Evaluation Kit Board Support

 1.06 0.97 2.58 0.11 95% 56% Suspend [suspended] thread
 1.05 0.97 2.26 0.11 92% 67% Resume thread
 1.47 1.29 3.87 0.12 62% 25% Set priority
 0.41 0.16 0.81 0.10 92% 1% Get priority
 3.18 2.90 9.02 0.25 64% 62% Kill [suspended] thread
 0.85 0.81 1.93 0.08 79% 79% Yield [no other] thread
 1.65 1.45 3.54 0.13 73% 23% Resume [suspended low prio] thread
 1.06 0.97 2.42 0.11 95% 60% Resume [runnable low prio] thread
 1.45 1.29 3.70 0.09 64% 28% Suspend [runnable] thread
 0.87 0.81 2.09 0.09 73% 73% Yield [only low prio] thread
 1.06 0.97 2.42 0.11 92% 60% Suspend [runnable->not runnable]
 3.09 2.74 9.18 0.26 84% 54% Kill [runnable] thread
 2.42 2.09 5.80 0.15 39% 1% Destroy [dead] thread
 4.27 3.87 10.47 0.29 84% 42% Destroy [runnable] thread
 6.09 5.48 11.44 0.35 75% 45% Resume [high priority] thread
 2.00 1.93 4.51 0.09 73% 73% Thread switch

 0.16 0.16 0.64 0.01 99% 99% Scheduler lock
 0.68 0.64 0.97 0.05 80% 80% Scheduler unlock [0 threads]
 0.68 0.64 0.97 0.05 80% 80% Scheduler unlock [1 suspended]
 0.68 0.64 1.13 0.05 80% 80% Scheduler unlock [many suspended]
 0.68 0.64 0.97 0.05 80% 80% Scheduler unlock [many low prio]

 0.29 0.16 1.13 0.09 62% 34% Init mutex
 1.05 0.81 2.09 0.13 84% 9% Lock [unlocked] mutex
 1.20 0.97 2.90 0.15 81% 15% Unlock [locked] mutex
 1.00 0.81 2.42 0.12 62% 21% Trylock [unlocked] mutex
 0.93 0.81 1.93 0.11 53% 43% Trylock [locked] mutex
 0.20 0.16 0.64 0.07 81% 81% Destroy mutex
 5.72 5.32 7.73 0.21 68% 21% Unlock/Lock mutex

 0.43 0.32 1.61 0.12 96% 53% Create mbox
 0.33 0.16 0.64 0.07 65% 18% Peek [empty] mbox
 1.26 1.13 2.42 0.16 81% 81% Put [first] mbox
 0.32 0.16 0.64 0.06 65% 18% Peek [1 msg] mbox
 1.27 1.13 2.74 0.13 43% 46% Put [second] mbox
 0.32 0.16 0.64 0.07 65% 21% Peek [2 msgs] mbox
 1.32 1.13 3.22 0.16 62% 34% Get [first] mbox
 1.33 1.13 3.22 0.15 75% 21% Get [second] mbox
 1.11 0.97 2.09 0.12 43% 40% Tryput [first] mbox
 1.12 0.97 2.09 0.13 37% 43% Peek item [non-empty] mbox
 1.21 0.97 2.42 0.14 84% 6% Tryget [non-empty] mbox
 0.99 0.81 1.77 0.08 71% 12% Peek item [empty] mbox
 1.04 0.97 2.26 0.11 96% 75% Tryget [empty] mbox
 0.33 0.16 0.81 0.10 56% 25% Waiting to get mbox
 0.35 0.16 0.64 0.07 71% 9% Waiting to put mbox
 0.60 0.48 1.93 0.13 93% 56% Delete mbox
 4.33 3.87 8.70 0.37 84% 71% Put/Get mbox

 0.31 0.16 1.29 0.08 68% 28% Init semaphore
 0.87 0.81 2.09 0.10 96% 84% Post [0] semaphore
 0.95 0.81 2.09 0.11 56% 37% Wait [1] semaphore
 0.85 0.64 2.09 0.10 78% 9% Trywait [0] semaphore
 0.82 0.64 1.29 0.03 93% 3% Trywait [1] semaphore
 0.31 0.16 0.97 0.08 65% 25% Peek semaphore
 0.22 0.16 0.81 0.09 75% 75% Destroy semaphore
 3.43 3.06 5.96 0.22 87% 37% Post/Wait semaphore

 0.42 0.32 1.61 0.12 96% 62% Create counter
 0.29 0.16 0.97 0.09 62% 34% Get counter value
 0.24 0.16 0.81 0.11 90% 65% Set counter value
 1.06 0.81 2.09 0.13 84% 9% Tick counter
 0.30 0.16 1.45 0.11 56% 37% Delete counter

 0.28 0.16 1.29 0.11 50% 46% Init flag
 0.96 0.81 2.74 0.13 50% 43% Destroy flag
 0.82 0.64 1.93 0.12 53% 28% Mask bits in flag
 0.97 0.81 2.09 0.10 56% 31% Set bits in flag [no waiters]
 1.28 1.13 2.74 0.10 62% 34% Wait for flag [AND]
 1.28 1.13 2.90 0.11 62% 34% Wait for flag [OR]
 1.28 1.13 2.90 0.12 56% 37% Wait for flag [AND/CLR]
 1.26 1.13 2.90 0.13 96% 50% Wait for flag [OR/CLR]

2369

Atmel AT91SAM9260 Evaluation Kit Board Support

 0.17 0.16 0.32 0.01 96% 96% Peek on flag

 0.60 0.48 1.93 0.13 93% 53% Create alarm
 1.70 1.45 4.35 0.20 75% 71% Initialize alarm
 0.98 0.81 2.42 0.10 68% 25% Disable alarm
 1.65 1.45 4.99 0.22 96% 90% Enable alarm
 1.16 0.97 2.74 0.13 71% 21% Delete alarm
 1.07 0.97 1.45 0.09 56% 40% Tick counter [1 alarm]
 4.89 4.83 5.96 0.10 81% 81% Tick counter [many alarms]
 1.89 1.77 3.06 0.13 93% 56% Tick & fire counter [1 alarm]
 29.89 29.80 30.93 0.11 96% 62% Tick & fire counters [>1 together]
 5.70 5.64 7.25 0.11 96% 87% Tick & fire counters [>1 separately]
 5.66 5.64 7.73 0.04 97% 97% Alarm latency [0 threads]
 6.43 5.80 8.54 0.37 54% 37% Alarm latency [2 threads]
 14.05 12.56 15.79 0.81 46% 33% Alarm latency [many threads]
 8.96 8.86 15.14 0.15 96% 78% Alarm -> thread resume latency

 2.26 1.45 6.12 0.00 Clock/interrupt latency

 2.69 1.77 6.93 0.00 Clock DSR latency

 33 0 292 (main stack: 1388) Thread stack used (8016 total)
 All done, main stack : stack used 1388 size 3920
 All done : Interrupt stack used 208 size 4096
 All done : Idlethread stack used 268 size 2048

Timing complete - 30140 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM9260-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
SAM9 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further
details.

2370

Chapter 259. Atmel AT91SAM9261
Evaluation Kit Board Support

2371

Atmel AT91SAM9261 Evaluation Kit Board Support

Name
eCos Support for the Atmel AT91SAM9261 Evaluation Kit — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91SAM9261 Evaluation Kit. The
AT91SAM9261 Evaluation Kit contains the AT91SAM9261 microprocessor, 64Mbytes of SDRAM, 256Mbytes of NAND
flash memory, an Atmel Dataflash, a Davicom DM9000 MAC+PHY, a SD/MMC/DataFlash socket, a DAC, an LCD display,
external connections for a DEBUG serial channel, ethernet, USB host/device, and the various other peripherals supported by the
AT91SAM9261. eCos support for the many devices and peripherals on the boards and the AT91SAM9261 is described below.

For typical eCos development, a RedBoot image is programmed into the on-board dataflash memory, and the board will load
this image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and
eCos applications via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the SAM9 processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The on-board Dataflash consists of 8192 blocks of 1056 bytes each. In a typical setup, the first 32K bytes are reserved for the
second-level bootstrap, AT91Bootstrap. The following 164736 bytes are reserved for the use of the ROM RedBoot image (The
odd size aligns the end of the RedBoot area to a 1056 block boundary). The topmost block is used to manage the flash and the
next block down holds RedBoot fconfig values. The remaining blocks can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J15 can be used by RedBoot for communication with the host. If this device is needed by the applica-
tion, either directly or via the serial driver, then it cannot also be used for RedBoot communication. Another communication
channel such as ethernet should be used instead. The serial driver package is loaded automatically when configuring for the
AT91SAM9261EK target.

There is an ethernet driver CYGPKG_DEVS_ETH_DAVICOM_DM9000 for the DM9000 ethernet device. The platform HAL
package is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when
configuring for the AT91SAM9261EK board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the board.

There is a driver for the on-chip real-time timer controller (RTTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91RTTC.
This driver is also loaded automatically when configuring for the target.

The SAM9 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91SAM9261. This type
of bus is also known as I²C®. Further documentation may be found in the SAM9 processor HAL documentation.

There is a driver for the MultiMedia Card Interface (MCI) at CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI. This driver is
loaded automatically when configuring for the SAM9261-EK target and allows use of MMC and Secure Digital (SD) flash
storage cards within eCos, exported as block devices. Further documentation may be found within that package.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the more
general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides the underlying implementation for the
SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board..

Furthermore, the platform HAL package contains support for SPI dataflash cards. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_ATMEL_DATAFLASH package as well as the above SPI packages. That package is automatically loaded
when configuring for the target. Dataflash media is then accessed as a Flash device, using the Flash I/O API within the CYG-
PKG_IO_FLASH package, if that package is loaded in the configuration.

It is also possible to configure the HAL to access MMC cards in SPI mode, instead of using the MCI interface.

2372

Atmel AT91SAM9261 Evaluation Kit Board Support

In general, devices (Caches, PIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (RTC, I²C,
SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will
set up the appropriate PIO configuration.

Tools
The AT91SAM9261-EK support is intended to work with GNU tools configured for an arm-eabi target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2373

Atmel AT91SAM9261 Evaluation Kit Board Support

Name
Setup — Preparing the AT91SAM9261-EK board for eCos Development

Overview
In a typical development environment, the AT91SAM9261-EK board boots from the DataFlash and run the RedBoot ROM
monitor from SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board via the
debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash
memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from
Dataflash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is an historical accident. RedBoot actually runs from
SDRAM after being loaded there from Dataflash by the second-level bootstrap. The use of ROM for this configuration is
intended to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which
assumes that this has already been done.

Initial Installation
The on-chip boot program on the AT91SAM9261 is only capable of loading programs from Dataflash or NAND flash into on-
chip SRAM and is therefore quite restrictive. Consequently RedBoot cannot be booted directly and a second-level bootstrap
must be used. Such a second-level bootstrap is supplied by Atmel in the form of AT91Bootstrap. This is therefore programmed
into the start of Dataflash and is then responsible for initializing the SDRAM and loading RedBoot from Dataflash and executing
it.

Caution

There is a size limit on the size of applications which the AT91Bootstrap second level bootstrap will load.
Images larger than 320Kbytes will require the AT91Bootstrap application to be rebuilt with a larger IMG_SIZE
definition in AT91Bootstrap/board/at91sam9261ek/dataflash/at91sam9261ek.h within the
sam9260ek HAL package in the eCos source repository (packages/hal/arm/arm9/sam9260ek/
current/).

There are basically two ways to write the second-level bootstrap and RedBoot to the Dataflash. The first is to use the At-
mel-supplied SAM-BA program that interacts with the on-chip boot program. The second is to use a JTAG debugger that
understands the microcontroller and can write to the dataflash (for example the Ronetix PEEDI). Since the availability of the
latter cannot be guaranteed, only the first method will be described here.

Programming RedBoot into DataFlash using SAM-BA

The following gives the steps needed to program the second-level bootstrap and RedBoot into the DataFlash using SAM-BA.
The user should refer to the SAM-BA documentation for full details of how to run the program.

1. Download the AT91 In-system Programmer software package from the Atmel website. SAM9 series CPU's require the 2.1.x
series version of SAM-BA. Install it on a suitable PC running Windows.

2. From the root directory of your eCosPro installation, copy the file dataflash_at91sam9261ek.bin
from the sub-directory packages/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/
at91sam9261ek and redboot_ROM.bin from the sub-directory loaders/sam9261ek to a suitable location on
the Windows PC.

2374

Atmel AT91SAM9261 Evaluation Kit Board Support

3. Connect a null-modem serial cable between the DEBUG serial port of the board and a serial port on a convenient host
(which need not be the PC running SAM-BA). Run a terminal emulator (Hyperterm or minicom) at 115200 baud. Connect
a USB cable between the PC and the AT91SAM9261-EK board.

4. Power up or reset the board and Windows should recognize the USB device. If it does not, then move J21 to the 2-3 position
and reset the board, it should be recognized now. Windows may ask you to install a new driver, in which case follow the
instructions.

5. Start SAM-BA. Select "\usb\ARM0" for the communication interface, and "AT91SAM9261-EK" for the board. If the USB
option does not appear, check the cable and look in the Windows Device Manager for the new USB COM device. If all
is well, click on "Connect".

6. If you moved J21 to 2-3, move it back to the default 1-2 position.

7. In the SAM-BA main window, select the "DataFlash AT45DB/DBC" tab and in the "Scripts" dropdown menu select "Enable
Dataflash (SPI0 CS0)", to program the on-board Dataflash device. Click Execute and SAM-BA should emit the following
in the message area:

(AT91-ISP v1.13) 1 % DATAFLASH::Init 0
-I- DATAFLASH::Init 0 (trace level : 4)
-I- Loading applet isp-dataflash-at91sam9261.bin at address 0x20000000
-I- Memory Size : 0x840000 bytes
-I- Buffer address : 0x20002A40
-I- Buffer size: 0x80E80 bytes
-I- Applet initialization done

8. Select "Send BootFile" from the "Scripts" menu and "Execute" it. When the file open dialog appears, select the
dataflash_at91sam9261ek.bin file and click "Open". The following output should be seen:

(AT91-ISP v1.13) 1 % GENERIC::SendBootFileGUI
GENERIC::SendFile dataflash_at91sam9261ek.bin at address 0x0
-I- File size : 0x10A2 byte(s)
-I- Writing: 0x10A2 bytes at 0x0 (buffer addr : 0x20002A40)
-I- 0x10A2 bytes written by applet

9. The second-level bootstrap has now been written to DataFlash, we must now write RedBoot.

10.In the "Send File Name" box type in the path name to the redboot_ROM.bin file, or use the Open Folder button and
browse to it.

11.In the Address field set the value to 0x8400.

12.Click the "Send File" button. SAM-BA will put up a dialog box while it is writing the file to the DataFlash, and will output
something similar to the following in the message area:

(AT91-ISP v1.13) 1 % send_file {DataFlash AT45DB/DCB} "redboot_ROM.bin" 0x8400 0
-I- Send File //bert/Shared/Releng/sam9261ek/redboot_ROM.bin at address 0x8400
GENERIC::SendFile //bert/Shared/Releng/sam9261ek/redboot_ROM.bin at address 0x8400
-I- File size : 0x1F928 byte(s)
-I- Writing: 0x1F928 bytes at 0x8400 (buffer addr : 0x20002A40)
-I- 0x1F928 bytes written by applet

13.Shut down SAM-BA and disconnect the USB cable. Press the reset button on the board and something similar to the
following should be output on the DEBUG serial line.

RomBOOT
>Start AT91Bootstrap...
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
>Start AT91Bootstrap...
No network interfaces found

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_3 - built 12:53:09, Sep 24 2009

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.

2375

Atmel AT91SAM9261 Evaluation Kit Board Support

Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: SAM9261-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20031230-0x23ffef80 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x4083fbe0-0x4083ffff: .
... Program from 0x23fffbe0-0x24000000 to 0x4083fbe0: .
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
(reserved) 0x40000000 0x40000000 0x00008000 0x00000000
RedBoot 0x40008000 0x40008000 0x00028380 0x00000000
RedBoot config 0x4083F7C0 0x4083F7C0 0x00000420 0x00000000
FIS directory 0x4083FBE0 0x4083FBE0 0x00000420 0x00000000
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

Remember to substitute the appropriate MAC address for this board at the appropriate step. If a BOOTP/DHCP server is
not available, then IP configuration may be set manually. The default server IP address can be set to a PC that will act as a
TFTP host for future RedBoot load operations, or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.222
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.9
Console baud rate: 115200
DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x00:0x23:0x31:0x37:0x00:0x4e
GDB connection port: 9000
Force console for special debug messages: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x4083f7c0-0x4083fbdf: .
... Program from 0x23fff7c0-0x23fffbe0 to 0x4083f7c0: .
RedBoot>

The RedBoot installation is now complete. This can be tested by powering off the board, and then powering on the board again.
Output similar to the following should be seen on the DEBUG serial port. Verify the IP settings are as expected.

RomBOOT
>Start AT91Bootstrap...
+Ethernet eth0: MAC address 00:03:47:df:32:a8
IP: 192.168.7.85/255.255.255.0, Gateway: 192.168.7.11
Default server: 192.168.7.11
DNS server IP: 192.168.7.11, DNS domain name: <null%gt;

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_3 - built 12:53:09, Sep 24 2009

2376

Atmel AT91SAM9261 Evaluation Kit Board Support

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: SAM9261-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20031230-0x23ffef80 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the AT91SAM9261-EK are:

$ mkdir redboot_at91sam9261ek_rom
$ cd redboot_at91sam9261ek_rom
$ ecosconfig new at91sam9261ek redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/sam9261ek/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding AT91Bootstrap
The sources of AT91Bootstrap are found in the AT91Bootstrap directory of the sam9260ek package. This is a copy of the
software as supplied by Atmel with some slight modifications to permit it to be built with the same tools as eCos.

To rebuild the second-level bootstrap for the AT91SAM9261EK execute the following commands:

$ cd $ECOS_REPOSITORY/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/at91sam9261ek/dataflash
$ make

This should result in the creation of a number of files, including dataflash_at91sam9261ek.bin which can be copied
out.

2377

Atmel AT91SAM9261 Evaluation Kit Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The AT91SAM9261-EK platform HAL package is loaded automatically when eCos is configured for the sam9261ek target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into DataFlash. The application will
be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization.

JTAG This is the startup type which can be used during application development via a JTAG device such as the PEEDI. arm-
eabi-gdb is used to load a JTAG startup application into memory and debug it. Hardware setup is divided between the
initialization section of the PEEDI configuration file and software in the loaded application.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The AT91SAM9261-EK board contains an 8Mbyte Atmel AT45DB DataFlash device. The CYGPKG_DEVS_FLASH_AT-
MEL_DATAFLASH package contains all the code necessary to support this part and the platform HAL package contains def-
initions that customize the driver to the AT91SAM9261-EK board. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Ethernet Driver

The AT91SAM9261-EK board uses a Davicom DM9000 ethernet MAC and PHY chip for ethernet connectivity. The CYGP-
KG_DEVS_ETH_DAVICOM_DM9000 package contains all the code necessary to support this device and the platform HAL
package contains definitions that customize the driver to the AT91SAM9261-EK board. This driver is not active until the
generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2378

Atmel AT91SAM9261 Evaluation Kit Board Support

RTC Driver
The AT91SAM9261-EK board uses the AT91SAM9261's internal RTTC support. The CYGPKG_DEVICES_WALL-
CLOCK_ARM_AT91RTTC package contains all the code necessary to support this device. This driver is not active until the
generic wallclock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The AT91SAM9261-EK board uses the AT91SAM9261's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Warning

The ATSAM926x processor will boot with watchdog support enabled, and the watchdog configuration is write-
once. That is, if it is disabled, it cannot be re-enabled. Due to its nature, RedBoot disables the watchdog when it
starts so any eCos applications with watchdog support enabled that are run by RedBoot will not function correctly.

USART Serial Driver
The AT91SAM9261-EK board uses the AT91SAM9261's internal USART serial support as described in the SAM9 processor
HAL documentation. Just one serial port is available: the serial debug port which is mapped to virtual vector channel 0 in the
HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver. This serial port only provides basic TX and RX lines,
with no modem control or flow control lines. RTS/CTS.

MCI Driver
As the SAM MCI driver is included in the hardware-specific configuration for this target, nothing is required to load it. Simi-
larly the MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific
configuration for this target. All that is required to enable the support is to include the generic disk I/O infrastructure package
(CYGPKG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its
package dependencies (including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

If the generic disk I/O infrastructure is needed for some other reason, and you do not wish to also include the MCI driver,
then the configuration option within this platform HAL CYGPKG_HAL_ARM_ARM9_SAM9261EK_MMCSD can be used to
forcibly disable it.

Various options can be used to control specifics of the SAM MCI driver. Consult the SAM MCI driver documentation for
information on its configuration.

On this target, it is not possible to detect from the MMC/SD socket whether cards have been inserted or removed. Thus the
disk I/O layer's removeable media support will not detect when cards have been inserted or removed, and therefore the only
way to detect if a card has been inserted is to attempt mounts.

The MMC/SD socket also does not permit detection of the write-protect (or "lock") switch present on SD cards. "Locked"
cards will therefore not be detected which means that despite the switch position, it is still possible to write to them since the
lock switch does not physically enforce write protection.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

2379

Atmel AT91SAM9261 Evaluation Kit Board Support

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926EJ CPU in the AT91SAM9261.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Samsung K9F1208U08 NAND flash memory chip.
To enable the driver, activate the CDL option CYGPKG_HAL_SAM9261EK_NAND and ensure that the CYGPKG_DE-
VS_NAND_SAMSUNG_K9 package is present in your eCos configuration.

CYGHWR_HAL_SAM9261EK_NAND_USE_STATUS_LINE
If set, this option configures the driver to wait for NAND operations to complete by waiting for the chip to deassert its
Busy line. This is the default behaviour and is recommended, but may be disabled if you need to use the line (PIO C13)
for some other purpose. (If disabled, the memory controller is configured to stall NAND accesses until they complete,
which will interfere with multi-threading.)

CYGNUM_HAL_SAM9261EK_NAND_POLL_INTERVAL
The number of microseconds delay in the polling loops which wait for NAND operations to complete.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DE-
VS_NAND_SAM9261EK_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will au-
tomatically be set up for you when the device is initialised. By default, the manual config CDL script sets up a single partition
(number 0) encompassing the entire device.

It is possible to configure the partitions in some other way, should it be appropriate for your setup, for example to read a
Linux-style partition table from the chip. To do so you will have to add appropriate code to sam9261ek_nand.c.

2380

Atmel AT91SAM9261 Evaluation Kit Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only JTAG configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam9261ek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the SDRAM controller.

The peedi.at91sam9261ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.at91sam9261ek.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is
repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. If a second-level bootstrap and ROM RedBoot is resident in DataFlash, it will be run.

Consult the PEEDI documentation for information on other features.

Running JTAG applications

Applications configured for JTAG startup can be run directly under a JTAG debugger. Once loaded and running via JTAG,
HAL diagnostic output will appear by default on the serial debug port.

2381

Atmel AT91SAM9261 Evaluation Kit Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM9261-EK hardware, and
should be read in conjunction with that specification. The AT91SAM9261-EK platform HAL package complements the ARM
architectural HAL, the ARM9 variant HAL and the SAM9 processor HAL. It provides functionality which is specific to the
target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to
assign hardware exception vectors at address 0x00000000, the HAL also uses the MMU
to create a clone of this memory at virtual address 0x00000000. The same memory is
also accessible uncached and unbuffered at virtual location 0x30000000 for use by de-
vices. The first 32 bytes are used for hardware exception vectors. The next 32 bytes
are used for the VSR table and the next 256 bytes are normally used for the eCos vir-
tual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0x20040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is unused by eCos and is available for application use.

On-chip ROM This is located at address 0x00100000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x71800000.

USB host port The USB host port (UHP) registers are located at address 0x00300000 of the physical
memory space. However the HAL uses the MMU to relocate this to virtual address
0x72800000. Memory accessed at this address is uncached and unbuffered. There is no
cached variant.

SPI dataflash SPI Dataflash media can only be accessed with the Flash API. For the purposes of
this API a placeholder address range has been allocated as if the Flash is present at
this address. The base of this address range is 0x40000000 for the on-board flash and
0x50000000 for the dataflash slot, the extent will clearly depend on the Dataflash ca-
pacity. This reserved range is not real memory and any attempt to access it directly by
the processor other than via the Flash API will result in a memory address exception.

2382

Atmel AT91SAM9261 Evaluation Kit Board Support

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

DM9000 Ethernet Device This is located on chip select 2 of the static memory controller and is visible at physical
address 0x30000000. The HAL uses the MMU to relocate this to 0x80000000 in the
virtual memory space.

Off-chip Peripherals eCos uses the SDRAM, MCI, and SPI dataflash facilities on the AT91SAM9261-EK
board. eCos does not currently make any use of any other off-chip peripherals present
on this board.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91SAM9261, using the facilities
of the SAM9 processor HAL. Consult the documentation in that package for details.

SPI Dataflash
eCos supports SPI access to Dataflash on the AT91SAM9261. An on-board device and an external card slot are provided on
the board. The on-chip device is typically used to contain RedBoot and flash configuration data. The external slot is available
for application use.

Accesses to Dataflash are performed via the Flash API, using 0x40000000 or 0x50000000 as the nominal address of the device,
although it does not truly exist in the processor address space. For the external card slot, on driver initialisation, eCos and
RedBoot can detect the presence of a card in the socket. In particular, on reset RedBoot will indicate the presence of Flash at
the 0x40000000 address range in its startup banner if it has been successfully detected. Hot swapping is not possible.

Since Dataflash is not directly addressable, access from RedBoot is only possible using fis command operations.

RedBoot or applications can also be booted from the Dataflash card socket, as well as from the on-board Dataflash device.
Booting from the Dataflash card socket can be performed by switching jumper J21 from pins 1-2 closed, to pins 2-3 closed.
When booting RedBoot or applications in this way, you must enable the SAM9261-EK platform HAL configuration option
"SPI chip select #0 is socket" (CYGHWR_HAL_ARM_ARM9_SAM9261EK_DATAFLASH_NPCS0_SOCKET) found within the
"External Atmel AT49xxxx DataFlash memory support" component. Failure to do so will not just render the Dataflash card
inaccessible after booting, but is likely to cause permanent damage to the AT91SAM9261.

Once an appropriately configured "ROM" startup image has been built, it can be converted to raw binary format using arm-
eabi-objcopy. You must then copy an AT91Bootstrap second stage boot loader binary image to the beginning (offset 0) of the
card, and then the RedBoot/application image at offset 0x8000 on the card.

Programming on the card can be performed with SAM-BA, an external programmer, or with a standard build of RedBoot
booted from the on-board Dataflash. An example of using an installed RedBoot loaded from on-board Dataflash to program
the card would be as follows. Note the two Flash memories detected by RedBoot, as shown in the version output. The first is
the on-board Dataflash part, the second is the Dataflash located in the card socket.

RedBoot> version

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 15:10:18, Nov 2 2007

Platform: SAM9261-EK (ARM9)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007 eCosCentric Limited

RAM: 0x20000000-0x24000000, [0x200305d0-0x23ffef80] available
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
FLASH: 0x50000000-0x5083ffff, 8192 x 0x420 blocks
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
(reserved) 0x40000000 0x40000000 0x00008000 0x00000000
RedBoot 0x40008000 0x20030800 0x00028380 0x20030800
RedBoot config 0x4083F7C0 0x4083F7C0 0x00000420 0x00000000
FIS directory 0x4083FBE0 0x4083FBE0 0x00000420 0x00000000

2383

Atmel AT91SAM9261 Evaluation Kit Board Support

RedBoot> fis load -b %{freememlo} (reserved)
RedBoot> fis write -b %{freememlo} -f 0x50000000 -l 0x8000
* CAUTION * about to program FLASH
 at 0x50000000..0x500083ff from 0x20030800 - continue (y/n)? y
... Erase from 0x50000000-0x500083ff:
... Program from 0x20030800-0x20038c00 to 0x50000000:
RedBoot> load -r -m tftp -b %{freememlo} /sam9261ek/redboot.bin
Raw file loaded 0x20030800-0x2004f3a3, assumed entry at 0x20030800
RedBoot> fis write -b %{freememlo} -f 0x50008000 -l 0x28380
* CAUTION * about to program FLASH
 at 0x50008000..0x5003037f from 0x20030800 - continue (y/n)? y
... Erase from 0x50007fe0-0x5003037f: ..
... Program from 0x20030800-0x20058b80 to 0x50008000: ..
RedBoot>

After this, the board can be powered off, jumper J21 switched to pins 2-3, and the board powered up again. The application
or RedBoot will then boot from the Dataflash card.

The MCI driver cannot be enabled simultaneously with the SPI driver, as the drivers need differing pin configurations for the
same pins on this board due to the shared socket.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 259.1. sam9261ek Real-time characterization

 Startup, main stack : stack used 420 size 3920
 Startup : Interrupt stack used 536 size 4096
 Startup : Idlethread stack used 80 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.37 microseconds (39 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 4.95 3.38 6.44 0.81 48% 26% Create thread
 0.84 0.81 1.93 0.06 85% 85% Yield thread [all suspended]
 1.04 0.97 2.26 0.10 98% 64% Suspend [suspended] thread
 0.95 0.81 1.61 0.07 65% 23% Resume thread
 1.35 1.13 3.87 0.12 92% 6% Set priority
 0.26 0.16 0.64 0.10 92% 50% Get priority
 2.98 2.58 8.05 0.24 87% 39% Kill [suspended] thread
 0.85 0.81 1.61 0.07 79% 79% Yield [no other] thread
 1.48 1.29 2.42 0.09 64% 12% Resume [suspended low prio] thread
 0.93 0.81 1.13 0.07 65% 29% Resume [runnable low prio] thread
 1.17 0.97 1.93 0.09 62% 10% Suspend [runnable] thread
 0.84 0.81 1.61 0.05 87% 87% Yield [only low prio] thread
 0.88 0.81 1.29 0.09 93% 59% Suspend [runnable->not runnable]
 2.85 2.58 6.60 0.18 81% 68% Kill [runnable] thread
 2.16 1.93 4.67 0.15 75% 17% Destroy [dead] thread

2384

Atmel AT91SAM9261 Evaluation Kit Board Support

 3.92 3.70 6.77 0.16 68% 70% Destroy [runnable] thread
 5.76 5.32 10.15 0.29 81% 32% Resume [high priority] thread
 2.02 1.93 4.19 0.10 98% 54% Thread switch

 0.21 0.16 0.64 0.07 74% 74% Scheduler lock
 0.69 0.64 1.29 0.07 75% 75% Scheduler unlock [0 threads]
 0.69 0.64 0.97 0.06 74% 74% Scheduler unlock [1 suspended]
 0.65 0.64 0.81 0.00 99% 99% Scheduler unlock [many suspended]
 0.68 0.64 0.97 0.05 79% 79% Scheduler unlock [many low prio]

 0.31 0.16 1.29 0.08 71% 25% Init mutex
 1.03 0.81 2.58 0.14 84% 12% Lock [unlocked] mutex
 1.13 0.97 2.58 0.09 68% 28% Unlock [locked] mutex
 0.92 0.81 1.93 0.11 50% 46% Trylock [unlocked] mutex
 0.82 0.81 0.97 0.02 93% 93% Trylock [locked] mutex
 0.20 0.16 0.64 0.07 81% 81% Destroy mutex
 5.06 4.99 6.44 0.12 93% 90% Unlock/Lock mutex

 0.42 0.32 1.61 0.12 96% 62% Create mbox
 0.33 0.16 1.13 0.11 50% 28% Peek [empty] mbox
 1.08 0.97 2.26 0.12 93% 53% Put [first] mbox
 0.19 0.16 0.64 0.05 90% 90% Peek [1 msg] mbox
 1.03 0.97 1.93 0.10 96% 75% Put [second] mbox
 0.18 0.16 0.32 0.04 87% 87% Peek [2 msgs] mbox
 1.08 0.97 2.26 0.12 93% 56% Get [first] mbox
 1.03 0.97 1.45 0.09 65% 65% Get [second] mbox
 0.89 0.81 1.61 0.10 96% 59% Tryput [first] mbox
 0.88 0.81 1.93 0.11 96% 71% Peek item [non-empty] mbox
 0.97 0.81 1.77 0.06 78% 15% Tryget [non-empty] mbox
 0.85 0.81 1.13 0.07 75% 75% Peek item [empty] mbox
 0.91 0.81 1.77 0.11 96% 53% Tryget [empty] mbox
 0.19 0.16 0.32 0.04 84% 84% Waiting to get mbox
 0.19 0.16 0.48 0.05 84% 84% Waiting to put mbox
 0.41 0.32 1.29 0.11 96% 62% Delete mbox
 3.59 3.38 6.60 0.19 65% 96% Put/Get mbox

 0.26 0.16 0.81 0.09 50% 46% Init semaphore
 0.84 0.64 1.77 0.07 84% 6% Post [0] semaphore
 0.92 0.81 1.93 0.11 50% 46% Wait [1] semaphore
 0.82 0.64 1.45 0.05 87% 6% Trywait [0] semaphore
 0.82 0.81 1.29 0.03 96% 96% Trywait [1] semaphore
 0.28 0.16 0.81 0.09 59% 37% Peek semaphore
 0.20 0.16 0.48 0.06 78% 78% Destroy semaphore
 3.29 3.06 5.15 0.13 90% 3% Post/Wait semaphore

 0.43 0.32 1.61 0.12 96% 53% Create counter
 0.29 0.16 0.64 0.11 40% 43% Get counter value
 0.20 0.16 0.64 0.07 81% 81% Set counter value
 0.97 0.81 1.61 0.05 81% 12% Tick counter
 0.20 0.16 0.48 0.06 81% 81% Delete counter

 0.26 0.16 0.97 0.10 96% 50% Init flag
 0.91 0.81 2.09 0.12 96% 59% Destroy flag
 0.76 0.64 1.29 0.09 59% 37% Mask bits in flag
 0.91 0.81 1.45 0.10 46% 46% Set bits in flag [no waiters]
 1.28 1.13 2.58 0.09 65% 31% Wait for flag [AND]
 1.23 1.13 1.61 0.09 46% 46% Wait for flag [OR]
 1.26 1.13 1.77 0.08 65% 28% Wait for flag [AND/CLR]
 1.24 1.13 1.77 0.09 56% 40% Wait for flag [OR/CLR]
 0.17 0.16 0.32 0.02 93% 93% Peek on flag

 0.60 0.48 2.09 0.13 96% 53% Create alarm
 1.67 1.45 3.87 0.25 84% 65% Initialize alarm
 0.87 0.81 1.93 0.10 81% 81% Disable alarm
 1.41 1.29 3.22 0.15 93% 59% Enable alarm
 0.97 0.81 1.93 0.07 75% 18% Delete alarm
 1.09 0.97 1.61 0.08 62% 34% Tick counter [1 alarm]
 4.89 4.83 5.32 0.08 71% 71% Tick counter [many alarms]
 1.87 1.77 3.06 0.12 96% 62% Tick & fire counter [1 alarm]
 29.72 29.64 30.44 0.10 96% 59% Tick & fire counters [>1 together]
 5.67 5.64 6.28 0.05 90% 90% Tick & fire counters [>1 separately]
 5.81 5.80 7.25 0.02 98% 98% Alarm latency [0 threads]

2385

Atmel AT91SAM9261 Evaluation Kit Board Support

 5.87 5.80 7.89 0.13 91% 88% Alarm latency [2 threads]
 9.28 8.22 11.28 0.58 49% 30% Alarm latency [many threads]
 8.91 8.86 13.05 0.09 96% 96% Alarm -> thread resume latency

 1.66 1.45 3.54 0.00 Clock/interrupt latency

 2.40 1.93 5.15 0.00 Clock DSR latency

 33 0 312 (main stack: 1416) Thread stack used (8016 total)
 All done, main stack : stack used 1416 size 3920
 All done : Interrupt stack used 208 size 4096
 All done : Idlethread stack used 804 size 2048

Timing complete - 30040 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM9261-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
SAM9 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further
details.

2386

Chapter 260. Atmel AT91SAM9263
Evaluation Kit Board Support

2387

Atmel AT91SAM9263 Evaluation Kit Board Support

Name
eCos Support for the Atmel AT91SAM9263 Evaluation Kit — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91SAM9263 Evaluation Kit. The
AT91SAM9263 Evaluation Kit contains the AT91SAM9263 microprocessor, 64Mbytes of SDRAM, 4MBytes of PSRAM,
256Mbytes of NAND flash memory, an Atmel serial EEPROM, a Davicom DM9161A PHY, one SD/MMC/DataFlash socket
and a SD/MMC socket, a DAC, external connections for two serial channels (one debug channel and one flow controlled),
ethernet, USB host/device, and the various other peripherals supported by the AT91SAM9263. eCos support for the many
devices and peripherals on the boards and the AT91SAM9263 is described below.

For typical eCos development, a RedBoot image is programmed onto a dataflash card in the SD/MMC/DataFlash socket, and
the board will load this image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug
stand-alone and eCos applications via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the SAM9 processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
Booting is from a DataFlash card in the SD/MMC/DataFlash socket. In a typical setup, the first 32K bytes are reserved for
the second-level bootstrap, AT91Bootstrap. The following 164736 bytes are reserved for the use of the ROM RedBoot image
(The odd size aligns the end of the RedBoot area to a block boundary). The topmost block is used to manage the flash and the
next block down holds RedBoot fconfig values. The remaining blocks can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J14 and flow controlled port at J18 (connected to USART channel 0) can be used by RedBoot for
communication with the host. If any of these devices is needed by the application, either directly or via the serial driver, then
it cannot also be used for RedBoot communication. Another communication channel such as ethernet should be used instead.
The serial driver package is loaded automatically when configuring for the AT91SAM9263EK target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91 for the on-chip ethernet device. The platform HAL package
is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when configuring
for the AT91SAM9263EK board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the board.

There is a driver for the on-chip real-time timer controller (RTTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91RTTC.
This driver is also loaded automatically when configuring for the target.

The SAM9 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91SAM9263. This type
of bus is also known as I²C®. Further documentation may be found in the SAM9 processor HAL documentation.

There is a driver for the MultiMedia Card Interface (MCI) at CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI. This driver is
loaded automatically when configuring for the SAM9263-EK target and allows use of MMC and Secure Digital (SD) flash
storage cards within eCos, exported as block devices. Further documentation may be found within that package. The driver
can be configured to use either the SD/MMC/DataFlash socket at J19 or the SD/MMC socket at J10. By default it uses J10,
leaving J9 for the bootstrap Dataflash.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the more
general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides the underlying implementation for the
SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

Furthermore, the platform HAL package contains support for SPI dataflash cards. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_ATMEL_DATAFLASH package as well as the above SPI packages. That package is automatically loaded
when configuring for the target. Dataflash media is then accessed as a Flash device, using the Flash I/O API within the CYG-
PKG_IO_FLASH package, if that package is loaded in the configuration.

2388

Atmel AT91SAM9263 Evaluation Kit Board Support

It is also possible to configure the HAL to access MMC cards in SPI mode, instead of using the MCI interface.

The on-board NAND interface is supported. At the time of writing, this has been tested with the Micron MT29F2G08 part
fitted to kit BOM revision 007 and later.

Note

Revision 007 of this board has a known issue with accessing the NAND flash device. Refer to section 1.5, "NAND
Flash Access Issue", of the Rev.B User Guide (Atmel document no. 6341) for more details. During testing with
a rev 007 board, eCosCentric found it necessary to tie the CS line as per that document in order to ensure reliable
access to the device.

In general, devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run. Other devices
(RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot
sequence will set up the appropriate PIO configuration.

Tools
The AT91SAM9263-EK support is intended to work with GNU tools configured for an arm-eabi target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2389

Atmel AT91SAM9263 Evaluation Kit Board Support

Name
Setup — Preparing the AT91SAM9263-EK board for eCos Development

Overview
In a typical development environment, the AT91SAM9263-EK board boots from a 4MiB DataFlash card and run the RedBoot
ROM monitor from SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board
via the debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into
flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from 4MiB
Dataflash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is an historical accident. RedBoot actually runs from
SDRAM after being loaded there from Dataflash by the second-level bootstrap. The use of ROM for this configuration is
intended to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which
assumes that this has already been done.

Initial Installation
The on-chip boot program on the AT91SAM9263 is only capable of loading programs from DataFlash, SD card or NAND
flash into on-chip SRAM and is therefore quite restrictive. Consequently RedBoot cannot be booted directly and a second-level
bootstrap must be used. Such a second-level bootstrap is supplied by Atmel in the form of AT91Bootstrap. This is therefore
programmed into the start of Dataflash and is then responsible for initializing the SDRAM and loading RedBoot from Dataflash
and executing it.

Caution

There is a size limit on the size of applications which the AT91Bootstrap second level bootstrap will load.
Images larger than 320Kbytes will require the AT91Bootstrap application to be rebuilt with a larger IMG_SIZE
definition in AT91Bootstrap/board/at91sam9263ek/dataflash/at91sam9263ek.h within the
sam9260ek HAL package in the eCos source repository (packages/hal/arm/arm9/sam9260ek/
current/).

There are basically two ways to write the second-level bootstrap and RedBoot to the Dataflash. The first is to use the At-
mel-supplied SAM-BA program that interacts with the on-chip boot program. The second is to use a JTAG debugger that
understands the microcontroller and can write to the dataflash (for example the Ronetix PEEDI). Since the availability of the
latter cannot be guaranteed, only the first method will be described here.

Programming RedBoot into DataFlash using SAM-BA

The following gives the steps needed to program the second-level bootstrap and RedBoot into the DataFlash card using SAM-
BA. The user should refer to the SAM-BA documentation for full details of how to run the program.

1. Download the AT91 In-system Programmer software package from the Atmel website. SAM9 series CPU's require the 2.1.x
series version of SAM-BA. Install it on a suitable PC running Windows.

2. From the root directory of your eCosPro installation, copy the file dataflash_at91sam9263ek.bin
from the sub-directory packages/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/
at91sam9263ek and redboot_ROM.bin from the sub-directory loaders/sam9263ek to a suitable location on
the Windows PC.

2390

Atmel AT91SAM9263 Evaluation Kit Board Support

3. Connect a null-modem serial cable between the DEBUG serial port of the board and a serial port on a convenient host
(which need not be the PC running SAM-BA). Run a terminal emulator (Hyperterm or minicom) at 115200 baud. Connect
a USB cable between the PC and the AT91SAM9263-EK board. Windows may ask you to install a new driver, in which
case follow the instructions.

4. Power up the board without the DataFlash card inserted. This will force the bootstrap to enter ISP mode.

5. Start SAM-BA. Select "\usb\ARM0" for the communication interface, and "AT91SAM9263-EK" for the board. If the USB
option does not appear, check the cable and look in the Windows Device Manager for the new USB COM device. If all
is well, click on "Connect".

6. In the SAM-BA main window, select the "SDRAM" tab, select the "Enable SDRAM 100MHz" script from the dropdown
menu and click Execute. SAM-BA should emit the following messages:

(AT91-ISP v1.10) 34 % SDRAM::initSDRAM_100
-I- Configure PIOD as peripheral (D16/D31)
-I- Init MATRIX to support EBI0 CS1 for SDRAM
-I- Init SDRAM
-I- 1. A minimum pause of 200us is provided to precede any signal toggle
-I- 2. A Precharge All command is issued to the SDRAM
-I- *pSDRAM = 0;
-I- 3. Eight Auto-refresh are provided
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- *pSDRAM = 0;
-I- 4. A mode register cycle is issued to program the SDRAM parameters
-I- *(pSDRAM+0x20) = 0;
-I- 5. Write refresh rate into SDRAMC refresh timer COUNT register
-I- 6. A Normal Mode Command is provided, 3 clocks after tMRD is set
-I- *pSDRAM = 0;
-I- End of Init_SDRAM_100
(AT91-ISP v1.10) 34 %

7. Now insert the DataFlash card into the socket at J9. In the SAM-BA main window, select the "DataFlash AT45DB/DBC"
tab and in the "Scripts" dropdown menu select "Enable Dataflash (SPI0 CS0)", to program the Dataflash card. Click Execute
and SAM-BA should emit the following in the message area:

(AT91-ISP v1.13) 1 % DATAFLASH::Init 0
-I- DATAFLASH::Init 0 (trace level : 4)
-I- Loading applet isp-dataflash-at91sam9263.bin at address 0x20000000
-I- Memory Size : 0x840000 bytes
-I- Buffer address : 0x20002A40
-I- Buffer size: 0x80E80 bytes
-I- Applet initialization done

The actual options and output of SAM-BA may vary according to the version you are using. The behaviour documented
here is that of SAM-BA 2.9.

8. Select "Send BootFile" from the "Scripts" menu and "Execute" it. When the file open dialog appears, select the
dataflash_at91sam9263ek.bin file and click "Open". The following output should be seen:

(AT91-ISP v1.13) 1 % GENERIC::SendBootFileGUI
GENERIC::SendFile dataflash_at91sam9263ek.bin at address 0x0
-I- File size : 0x106E byte(s)
-I- Writing: 0x106E bytes at 0x0 (buffer addr : 0x20002A40)
-I- 0x106E bytes written by applet

9. The second-level bootstrap has now been written to DataFlash, we must now write RedBoot.

10.In the "Send File Name" box type in the path name to the redboot_ROM.bin file, or use the Open Folder button and
browse to it.

11.In the Address field set the value to 0x8400.

2391

Atmel AT91SAM9263 Evaluation Kit Board Support

12.Click the "Send File" button. SAM-BA will put up a dialog box while it is writing the file to the DataFlash, and will output
something similar to the following in the message area:

(AT91-ISP v1.13) 1 % send_file {DataFlash AT45DB/DCB} "redboot_ROM.bin" 0x8400 0
-I- Send File //bert/Shared/Releng/sam9263ek/redboot_ROM.bin at address 0x8400
GENERIC::SendFile //bert/Shared/Releng/sam9263ek/redboot_ROM.bin at address 0x8400
-I- File size : 0x24290 byte(s)
-I- Writing: 0x24290 bytes at 0x8400 (buffer addr : 0x20002A40)
-I- 0x24290 bytes written by applet

13.Shut down SAM-BA and disconnect the USB cable. Press the reset button on the board and something similar to the
following should be output on the DEBUG serial line.

RomBOOT
>Start AT91Bootstrap...
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
No space to add 'net_device'
AT91_ETH: Waiting for PHY to reset.
AT91_ETH: Waiting for link to come up..
No network interfaces found

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_3 - built 12:56:09, Sep 24 2009

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9263-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20035ba8-0x23fff5b0 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x4083fbe0-0x4083ffff: .
... Program from 0x23fffbe0-0x24000000 to 0x4083fbe0: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

Remember to substitute the appropriate MAC address for this board at the appropriate step. If a BOOTP/DHCP server is
not available, then IP configuration may be set manually. The default server IP address can be set to a PC that will act as a
TFTP host for future RedBoot load operations, or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.222
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.9
Console baud rate: 115200
DNS domain name: ecoscentric.com

2392

Atmel AT91SAM9263 Evaluation Kit Board Support

DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x00:0x23:0x31:0x37:0x00:0x4e
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x4083f7c0-0x4083fbdf: .
... Program from 0x23fff7c0-0x23fffbe0 to 0x4083f7c0: .
RedBoot>

The RedBoot installation is now complete. This can be tested by powering off the board, and then powering on the board again.
Output similar to the following should be seen on the DEBUG serial port. Verify the IP settings are as expected.

RomBOOT
>Start AT91Bootstrap...
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 192.168.7.222/255.255.255.0, Gateway: 192.168.7.11
Default server: 192.168.7.11
DNS server IP: 192.168.7.11, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_3 - built 12:56:09, Sep 24 2009

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9263-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20035ba8-0x23fff5b0 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the AT91SAM9263-EK are:

$ mkdir redboot_at91sam9263ek_rom
$ cd redboot_at91sam9263ek_rom
$ ecosconfig new at91sam9263ek redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/sam9263ek/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding AT91Bootstrap
The sources of AT91Bootstrap are found in the AT91Bootstrap directory of the sam9260ek package. This is a copy of the
software as supplied by Atmel with some slight modifications to permit it to be built with the same tools as eCos.

To rebuild the second-level bootstrap for the AT91SAM9263EK execute the following commands:

$ cd $ECOS_REPOSITORY/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/at91sam9263ek/dataflash
$ make

This should result in the creation of a number of files, including dataflash_at91sam9263ek.bin which can be copied
out.

2393

Atmel AT91SAM9263 Evaluation Kit Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The AT91SAM9263-EK platform HAL package is loaded automatically when eCos is configured for the sam9263ek target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into DataFlash. The application will
be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization.

JTAG This is the startup type which can be used during application development via a JTAG device such as the PEEDI. arm-
eabi-gdb is used to load a JTAG startup application into memory and debug it. Hardware setup is divided between the
initialization section of the PEEDI configuration file and software in the loaded application.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The board has an SD/MMC/DataFlash socket into which a dataflash card may be inserted. The CYGPKG_DEVS_FLASH_AT-
MEL_DATAFLASH package contains all the code necessary to support this part and the platform HAL package contains def-
initions that customize the driver to the AT91SAM9263-EK board. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Ethernet Driver

The AT91SAM9263-EK board uses the AT91SAM9263's internal EMAC ethernet device attached to an external Davicom
DM9161A PHY. The CYGPKG_DEVS_ETH_ARM_AT91 package contains all the code necessary to support this device and
the platform HAL package contains definitions that customize the driver to the AT91SAM9263-EK board. This driver is not
active until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2394

Atmel AT91SAM9263 Evaluation Kit Board Support

RTC Driver
The AT91SAM9263-EK board uses the AT91SAM9263's internal RTTC support. The CYGPKG_DEVICES_WALL-
CLOCK_ARM_AT91RTTC package contains all the code necessary to support this device. This driver is not active until the
generic wallclock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The AT91SAM9263-EK board uses the AT91SAM9263's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Warning

The ATSAM926x processor will boot with watchdog support enabled, and the watchdog configuration is write-
once. That is, if it is disabled, it cannot be re-enabled. Due to its nature, RedBoot disables the watchdog when it
starts so any eCos applications with watchdog support enabled that are run by RedBoot will not function correctly.

USART Serial Driver
The AT91SAM9263-EK board uses the AT91SAM9263's internal USART serial support as described in the SAM9 processor
HAL documentation. Two serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the
HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver; and USART 0 which is mapped to virtual vector channel
1 and "/dev/ser0". The debug port is two wires only. but USART 0 supports RTS/CTS.

MCI Driver
As the SAM MCI driver is included in the hardware-specific configuration for this target, nothing is required to load it. Simi-
larly the MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific
configuration for this target. All that is required to enable the support is to include the generic disk I/O infrastructure package
(CYGPKG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its
package dependencies (including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

If the generic disk I/O infrastructure is needed for some other reason, and you do not wish to also include the MCI driver,
then the configuration option within this platform HAL CYGPKG_HAL_ARM_ARM9_SAM9263EK_MMCSD can be used to
forcibly disable it.

Various options can be used to control specifics of the SAM MCI driver. Consult the SAM MCI driver documentation for
information on its configuration. The option CYGHWR_DEVS_MMCSD_ATMEL_SAM_MCI_DEVICE controls which of the
two MCI interfaces will be used by the driver.

The MMC/SD socket does not permit detection of the write-protect (or "lock") switch present on SD cards. "Locked" cards
will therefore not be detected which means that despite the switch position, it is still possible to write to them since the lock
switch does not physically enforce write protection.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926EJ CPU in the AT91SAM9263.

2395

Atmel AT91SAM9263 Evaluation Kit Board Support

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Micron MT29F2G08 NAND flash memory chip found on
revision B of the board. To enable the driver, add the CYGPKG_IO_NAND package to your eCos configuration.

CYGHWR_HAL_SAM9263EK_NAND_USE_STATUS_LINE
If set, this option configures the driver to wait for NAND operations to complete by waiting for the chip to deassert its
Busy line. This is the default behaviour and is recommended, but may be disabled if you need to use the line for some
other purpose or on derived hardware. (If disabled, the driver falls back to a combination of delay loops and polling the
chip's Read Status function.)

CYGNUM_HAL_SAM9263EK_NAND_POLL_INTERVAL
The number of microseconds delay in the polling loops which wait for NAND operations to complete.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DE-
VS_NAND_SAM9263EK_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will au-
tomatically be set up for you when the device is initialised. By default, the manual config CDL script sets up a single partition
(number 0) encompassing the entire device.

It is possible to configure the partitions in some other way, should it be appropriate for your setup, for example to read a
Linux-style partition table from the chip. To do so you will have to add appropriate code to sam9263ek_nand.c.

2396

Atmel AT91SAM9263 Evaluation Kit Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only JTAG configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam9263ek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the SDRAM controller.

The peedi.at91sam9263ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.at91sam9263ek.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is
repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. If a second-level bootstrap and ROM RedBoot is resident in DataFlash, it will be run.

An issue occurs when the AT91 Ethernet driver is included in your configuration. In order to work around a board hardware
design issue, the CPU generates an external reset in order to reset the Ethernet PHY. However this can be interpreted by the
PEEDI as an indication that the CPU itself has reset, and if the PEEDI configuration file option CORE0_STARTUP_MODE is
set to RESET then the CPU will be halted at this point. To avoid this issue, the CORE0_STARTUP_MODE can be set to RUN.

Consult the PEEDI documentation for information on other features.

Running JTAG applications

Applications configured for JTAG startup can be run directly under a JTAG debugger. Once loaded and running via JTAG,
HAL diagnostic output will appear by default on the serial debug port. USARTs 0 or 1 can be chosen instead by setting the
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform HAL to channel 1 or 2.

2397

Atmel AT91SAM9263 Evaluation Kit Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM9263-EK hardware, and
should be read in conjunction with that specification. The AT91SAM9263-EK platform HAL package complements the ARM
architectural HAL, the ARM9 variant HAL and the SAM9 processor HAL. It provides functionality which is specific to the
target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to
assign hardware exception vectors vectors at address 0x00000000, the HAL also uses
the MMU to create a clone of this memory at virtual address 0x00000000. The same
memory is also accessible uncached and unbuffered at virtual location 0x30000000 for
use by devices. The first 32 bytes are used for hardware exception vectors. The next 32
bytes are used for the VSR table and the next 256 bytes are normally used for the eCos
virtual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0x20040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is unused by eCos and is available for application use.

On-chip ROM This is located at address 0x00100000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x71800000.

USB host port The USB host port (UHP) registers are located at address 0x00300000 of the physical
memory space. However the HAL uses the MMU to relocate this to virtual address
0x72800000. Memory accessed at this address is uncached and unbuffered. There is no
cached variant.

SPI dataflash SPI Dataflash media can only be accessed with the Flash API. For the purposes of this
API a placeholder address range has been allocated as if the Flash is present at this
address. The base of this address range is 0x40000000 for the dataflash slot, the extent
will clearly depend on the Dataflash capacity. This reserved range is not real memory
and any attempt to access it directly by the processor other than via the Flash API will
result in a memory address exception.

2398

Atmel AT91SAM9263 Evaluation Kit Board Support

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, ethernet PHY, MCI, and SPI dataflash facilities on the
AT91SAM9263-EK board. eCos does not currently make any use of any other off-chip
peripherals present on this board.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91SAM9263, using the facilities
of the SAM9 processor HAL. Consult the documentation in that package for details.

SPI Dataflash
eCos supports SPI access to Dataflash on the AT91SAM9263. An external card slot are provided on the board which is typically
used to contain RedBoot and flash configuration data.

Accesses to Dataflash are performed via the Flash API, using 0x40000000 as the nominal address of the device, although it
does not truly exist in the processor address space. For the external card slot, on driver initialisation, eCos and RedBoot can
detect the presence of a card in the socket. In particular, on reset RedBoot will indicate the presence of Flash at the 0x40000000
address range in its startup banner if it has been successfully detected. Hot swapping is not possible.

Since Dataflash is not directly addressable, access from RedBoot is only possible using fis command operations.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 260.1. sam9263ek Real-time characterization

 Startup, main stack : stack used 420 size 3920
 Startup : Interrupt stack used 528 size 4096
 Startup : Idlethread stack used 96 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 5.95 microseconds (37 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 4.89 3.20 7.84 0.85 48% 25% Create thread
 0.73 0.64 1.92 0.10 98% 54% Yield thread [all suspended]
 0.93 0.80 2.08 0.11 46% 42% Suspend [suspended] thread
 0.91 0.80 1.92 0.10 45% 46% Resume thread
 1.32 1.12 3.36 0.11 67% 14% Set priority
 0.27 0.16 0.64 0.10 42% 43% Get priority

2399

Atmel AT91SAM9263 Evaluation Kit Board Support

 2.97 2.72 7.20 0.19 71% 65% Kill [suspended] thread
 0.71 0.64 0.96 0.08 56% 56% Yield [no other] thread
 1.51 1.28 3.20 0.12 87% 7% Resume [suspended low prio] thread
 0.89 0.80 1.44 0.09 95% 53% Resume [runnable low prio] thread
 1.27 1.12 2.24 0.08 60% 28% Suspend [runnable] thread
 0.72 0.64 1.44 0.09 98% 56% Yield [only low prio] thread
 0.93 0.80 1.60 0.09 57% 34% Suspend [runnable->not runnable]
 2.83 2.56 6.08 0.15 90% 4% Kill [runnable] thread
 2.27 2.08 5.44 0.14 70% 28% Destroy [dead] thread
 3.92 3.52 6.72 0.16 79% 15% Destroy [runnable] thread
 5.79 5.44 9.44 0.24 81% 48% Resume [high priority] thread
 1.88 1.76 3.68 0.09 61% 36% Thread switch

 0.08 0.00 0.32 0.08 50% 49% Scheduler lock
 0.56 0.48 1.12 0.08 99% 50% Scheduler unlock [0 threads]
 0.57 0.48 1.12 0.08 50% 49% Scheduler unlock [1 suspended]
 0.56 0.48 1.12 0.08 98% 55% Scheduler unlock [many suspended]
 0.57 0.48 1.28 0.08 99% 50% Scheduler unlock [many low prio]

 0.19 0.00 1.12 0.07 87% 6% Init mutex
 0.96 0.80 2.72 0.12 59% 37% Lock [unlocked] mutex
 1.08 0.80 2.88 0.15 87% 9% Unlock [locked] mutex
 0.86 0.64 1.92 0.12 84% 12% Trylock [unlocked] mutex
 0.76 0.64 1.28 0.08 62% 34% Trylock [locked] mutex
 0.08 0.00 0.32 0.08 96% 50% Destroy mutex
 4.95 4.80 7.68 0.23 90% 90% Unlock/Lock mutex

 0.28 0.16 1.28 0.11 53% 43% Create mbox
 0.19 0.00 0.48 0.07 71% 6% Peek [empty] mbox
 1.12 0.96 2.40 0.09 65% 28% Put [first] mbox
 0.19 0.00 0.48 0.05 81% 3% Peek [1 msg] mbox
 1.10 0.96 1.44 0.07 68% 25% Put [second] mbox
 0.21 0.00 0.64 0.08 68% 3% Peek [2 msgs] mbox
 1.17 0.96 2.56 0.12 81% 15% Get [first] mbox
 1.16 0.96 1.44 0.07 68% 6% Get [second] mbox
 0.97 0.80 1.92 0.08 71% 18% Tryput [first] mbox
 1.00 0.80 1.92 0.09 78% 6% Peek item [non-empty] mbox
 1.08 0.96 2.40 0.12 96% 50% Tryget [non-empty] mbox
 0.88 0.80 2.08 0.11 96% 71% Peek item [empty] mbox
 0.90 0.80 1.60 0.10 96% 53% Tryget [empty] mbox
 0.21 0.16 0.48 0.07 75% 75% Waiting to get mbox
 0.21 0.16 0.48 0.07 78% 78% Waiting to put mbox
 0.45 0.32 1.44 0.10 59% 37% Delete mbox
 3.50 3.36 6.56 0.20 96% 96% Put/Get mbox

 0.19 0.16 1.12 0.06 96% 96% Init semaphore
 0.73 0.64 1.76 0.12 93% 65% Post [0] semaphore
 0.81 0.64 1.76 0.08 71% 18% Wait [1] semaphore
 0.72 0.64 1.76 0.11 96% 71% Trywait [0] semaphore
 0.70 0.64 1.28 0.09 71% 71% Trywait [1] semaphore
 0.17 0.00 0.64 0.06 75% 12% Peek semaphore
 0.11 0.00 0.96 0.11 46% 46% Destroy semaphore
 3.15 3.04 5.60 0.18 93% 93% Post/Wait semaphore

 0.30 0.16 1.60 0.13 40% 46% Create counter
 0.16 0.00 0.80 0.10 46% 31% Get counter value
 0.11 0.00 0.80 0.09 56% 40% Set counter value
 0.91 0.80 1.76 0.10 50% 46% Tick counter
 0.15 0.00 0.96 0.11 46% 34% Delete counter

 0.20 0.16 1.28 0.07 93% 93% Init flag
 0.82 0.64 2.08 0.11 62% 25% Destroy flag
 0.68 0.48 1.44 0.09 68% 9% Mask bits in flag
 0.81 0.64 1.92 0.10 59% 28% Set bits in flag [no waiters]
 1.15 0.96 2.56 0.09 87% 9% Wait for flag [AND]
 1.15 1.12 1.92 0.05 96% 96% Wait for flag [OR]
 1.14 1.12 1.60 0.03 96% 96% Wait for flag [AND/CLR]
 1.14 0.96 1.76 0.06 81% 9% Wait for flag [OR/CLR]
 0.07 0.00 0.16 0.08 53% 53% Peek on flag

 0.50 0.32 1.92 0.11 65% 25% Create alarm
 1.60 1.44 4.32 0.21 96% 84% Initialize alarm

2400

Atmel AT91SAM9263 Evaluation Kit Board Support

 0.85 0.64 1.92 0.11 84% 9% Disable alarm
 1.47 1.28 3.36 0.17 56% 81% Enable alarm
 1.05 0.80 2.56 0.14 87% 6% Delete alarm
 0.98 0.80 1.92 0.07 84% 9% Tick counter [1 alarm]
 4.74 4.64 5.28 0.09 96% 50% Tick counter [many alarms]
 1.74 1.60 3.04 0.11 59% 37% Tick & fire counter [1 alarm]
 29.67 29.61 30.09 0.08 71% 71% Tick & fire counters [>1 together]
 5.52 5.44 5.92 0.09 96% 59% Tick & fire counters [>1 separately]
 5.13 5.12 6.08 0.01 99% 99% Alarm latency [0 threads]
 5.64 5.12 6.24 0.36 46% 53% Alarm latency [2 threads]
 8.07 6.88 9.76 0.68 43% 37% Alarm latency [many threads]
 8.20 8.16 12.49 0.07 98% 98% Alarm -> thread resume latency

 1.45 1.28 4.00 0.00 Clock/interrupt latency

 2.13 1.60 5.28 0.00 Clock DSR latency

 6 0 312 (main stack: 1388) Thread stack used (1360 total)
 All done, main stack : stack used 1388 size 3920
 All done : Interrupt stack used 204 size 4096
 All done : Idlethread stack used 796 size 2048

Timing complete - 29980 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM9263-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
SAM9 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further
details.

2401

Chapter 261. Atmel AT91SAM9G20
Evaluation Kit Board Support

2402

Atmel AT91SAM9G20 Evaluation Kit Board Support

Name
eCos Support for the Atmel AT91SAM9G20 Evaluation Kit — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91SAM9G20 Evaluation Kit. The
AT91SAM9G20 Evaluation Kit contains the AT91SAM9G20 microprocessor, 64Mbytes of SDRAM, 256Mbytes of NAND
flash memory, an Atmel Dataflash, an Atmel serial EEPROM, a Davicom DM9161A PHY, a SD/MMC/DataFlash socket, a
DAC, external connections for three serial channels (one debug, one full modem, one flow controlled), ethernet, USB host/
device, and the various other peripherals supported by the AT91SAM9G20. eCos support for the many devices and peripherals
on the boards and the AT91SAM9G20 is described below.

For typical eCos development, a RedBoot image is programmed into the dataflash memory, and the board will load this image
from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos appli-
cations via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the SAM9 processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The Dataflash consists of 8192 blocks of 1056 bytes each. In a typical setup, the first 33792 bytes are reserved for the sec-
ond-level bootstrap, AT91Bootstrap. The following 164736 bytes are reserved for the use of the ROM RedBoot image (The
odd size aligns the end of the RedBoot area to a 1056 block boundary). The topmost block is used to manage the flash and the
next block down holds RedBoot fconfig values. The remaining blocks can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J17 and DTE port at J20 (connected to USART channel 0) and flow controlled port at J18 (connected
to USART channel 1) can be used by RedBoot for communication with the host. If any of these devices is needed by the
application, either directly or via the serial driver, then it cannot also be used for RedBoot communication. Another commu-
nication channel such as ethernet should be used instead. The serial driver package is loaded automatically when configuring
for the AT91SAM9G20-EK target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91 for the on-chip ethernet device. The platform HAL package
is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when configuring
for the AT91SAM9G20-EK board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the board.

There is a driver for the on-chip real-time timer controller (RTTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91RTTC.
This driver is also loaded automatically when configuring for the target.

The SAM9 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91SAM9G20. This type
of bus is also known as I²C®. Further documentation may be found in the SAM9 processor HAL documentation.

There is a driver for the MultiMedia Card Interface (MCI) at CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI. This driver is
loaded automatically when configuring for the AT91SAM9G20-EK target and allows use of MMC and Secure Digital (SD)
flash storage cards within eCos, exported as block devices. Further documentation may be found within that package.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the more
general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides the underlying implementation for the
SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

Furthermore, the platform HAL package contains support for SPI dataflash cards. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_ATMEL_DATAFLASH package as well as the above SPI packages. That package is automatically loaded
when configuring for the target. Dataflash media is then accessed as a Flash device, using the Flash I/O API within the CYG-
PKG_IO_FLASH package, if that package is loaded in the configuration.

2403

Atmel AT91SAM9G20 Evaluation Kit Board Support

It is also possible to configure the HAL to access MMC cards in SPI mode, instead of using the MCI interface.

In general, devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run. Other devices
(RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot
sequence will set up the appropriate PIO configuration.

Tools
The AT91SAM9G20-EK support is intended to work with GNU tools configured for an arm-eabi target. The original port was
undertaken using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2404

Atmel AT91SAM9G20 Evaluation Kit Board Support

Name
Setup — Preparing the AT91SAM9G20-EK board for eCos Development

Overview
In a typical development environment, the AT91SAM9G20-EK board boots from the DataFlash and runs the RedBoot ROM
monitor from SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board via the
debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash
memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from
Dataflash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from Dataflash by the second-level bootstrap. The use of ROM for this configuration is
intended to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which
assumes that this has already been done.

Initial Installation
The on-chip boot program on the AT91SAM9G20 is only capable of loading programs from Dataflash or NAND flash in-
to 4Kbytes of on-chip SRAM and is therefore quite restrictive. Consequently RedBoot cannot be booted directly and a sec-
ond-level bootstrap must be used. Such a second-level bootstrap is supplied by Atmel in the form of AT91Bootstrap. This
is therefore programmed into the start of Dataflash and is then responsible for initializing the SDRAM and loading RedBoot
from Dataflash and executing it.

Caution

There is a size limit on the size of applications which the AT91Bootstrap second level bootstrap will load.
Images larger than 320Kbytes will require the AT91Bootstrap application to be rebuilt with a larger IMG_SIZE
definition in AT91Bootstrap/board/at91sam9g20ek/dataflash/at91sam9g20ek.h within the
sam9g20ek HAL package in the eCos source repository (packages/hal/arm/arm9/sam9260ek/
current/).

There are basically two ways to write the second-level bootstrap and RedBoot to the Dataflash. The first is to use the At-
mel-supplied SAM-BA program that interacts with the on-chip boot program. The second is to use a JTAG debugger that
understands the microcontroller and can write to the dataflash (for example the Ronetix PEEDI). Since the availability of the
latter cannot be guaranteed, only the first method will be described here.

Programming RedBoot into DataFlash using SAM-BA

The following gives the steps needed to program the second-level bootstrap and RedBoot into the DataFlash using SAM-BA.
The user should refer to the SAM-BA documentation for full details of how to run the program.

1. Download the corresponding AT91 In-system Programmer software package from the Atmel website according to your
host operating system and install it on your PC (SAM9 series CPU's require the 2.1.x series version of SAM-BA).

2. From the root directory of your eCosPro installation, copy the file dataflash_at91sam9g20ek.bin from the sub-
directory packages/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/at91sam9g20ek/
dataflash and redboot_ROM.bin from the sub-directory loaders/sam9g20ek to a suitable location on the
Windows PC.

2405

Atmel AT91SAM9G20 Evaluation Kit Board Support

3. Connect a null-modem serial cable between the DEBUG serial port of the board and a serial port on a convenient host
(which need not be the PC running SAM-BA). Run a terminal emulator (Hyperterm or minicom) at 115200 baud. Connect
a USB cable between the PC and the AT91SAM9G20-EK board. Windows may ask you to install a new driver, in which
case follow the instructions.

4. Remove Jumper J33 from the board and press the reset button. You should see the following output on the serial line:

RomBoot
>

Now reinsert the jumper.

5. Start SAM-BA. Select the appropriate COM port for the communication interface (on Windows hosts this will be of the
form "COMx" and on Linux hosts this will be of the form "/dev/ttyUSBx"), and "AT91SAM9G20-EK" for the board. Click
on "Connect".

6. In the SAM-BA main window, select the "DataFlash AT45DB/DBC" tab and in the "Scripts" dropdown menu select "Enable
Dataflash (SPIO CS1)", to program the on-board Dataflash device. Click Execute and SAM-BA should emit the following
in the message area:

sam-ba_cdc_linux) 1 % DATAFLASH::Init 1
-I- DATAFLASH::Init 1 (trace level : 4)
-I- Loading applet isp-dataflash-at91sam9g20.bin at address 0x200000
-I- Memory Size : 0x840000 bytes
-I- Buffer address : 0x202D38
-I- Buffer size: 0xC60 bytes
-I- Applet initialization done

The actual options and output of SAM-BA may vary according to the version you are using. The behaviour documented
here is that of SAM-BA CDC 2.10 on Linux.

7. Now select "Send BootFile" from the "Scripts" menu and "Execute" it. When the file open dialog appears, select the
dataflash_at91sam9g20ek.bin file and click "Open". The following output should be seen:

(sam-ba_cdc_linux) 1 % GENERIC::SendBootFileGUI
GENERIC::SendFile /tmp/dataflash_at91sam9g20ek.bin at address 0x0
-I- File size : 0xE7C byte(s)
-I- Writing: 0xC60 bytes at 0x0 (buffer addr : 0x202D38)
-I- 0xC60 bytes written by applet
-I- Writing: 0x21C bytes at 0xC60 (buffer addr : 0x202D38)
-I- 0x21C bytes written by applet

8. The second-level bootstrap has now been written to DataFlash, we must now write RedBoot.

9. In the "Send File Name" box type in the path name to the redboot_ROM.bin file, or use the Open Folder button and
browse to it.

10.In the Address field set the value to 0x8400.

11.Click the "Send File" button. SAM-BA will put up a dialog box while it is writing the file to the DataFlash, and will output
something similar to the following in the message area:

(sam-ba_cdc_linux) 1 % send_file {DataFlash AT45DB/DCB} "/tmp/redboot_ROM.bin" 0x8400 0
-I- Send File /tmp/redboot_ROM.bin at address 0x8400
GENERIC::SendFile /tmp/redboot_ROM.bin at address 0x8400
-I- File size : 0x248D8 byte(s)
-I- Writing: 0xC60 bytes at 0x8400 (buffer addr : 0x202D38)
-I- 0xC60 bytes written by applet
-I- Writing: 0xC60 bytes at 0x9060 (buffer addr : 0x202D38)
-I- 0xC60 bytes written by applet
...
-I- Writing: 0xC60 bytes at 0x2BD40 (buffer addr : 0x202D38)
-I- 0xC60 bytes written by applet
-I- Writing: 0x338 bytes at 0x2C9A0 (buffer addr : 0x202D38)
-I- 0x338 bytes written by applet

12.Shut down SAM-BA and disconnect the USB cable. Press the reset button on the board and something similar to the
following should be output on the DEBUG serial line.

2406

Atmel AT91SAM9G20 Evaluation Kit Board Support

RomBOOT
>Start AT91Bootstrap...
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
No space to add 'net_device'
AT91_ETH: Waiting for PHY to reset.
AT91_ETH: Waiting for link to come up..
Ethernet eth0: MAC address 12:34:56:78:9a:bc
No IP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_22 - built 14:12:12, Sep 7 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9G20-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x200362e8-0x23ffef80 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x4083fbe0-0x4083ffff: .
... Program from 0x23fffbe0-0x24000000 to 0x4083fbe0: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

Remember to substitute the appropriate MAC address for this board at the appropriate step. If a BOOTP/DHCP server is
not available, then IP configuration may be set manually. The default server IP address can be set to a PC that will act as a
TFTP host for future RedBoot load operations, or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.83
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.11
Console baud rate: 115200
DNS domain name: farm.ecoscentric.com
DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x0E:0x00:0x00:0xEA:0x18:0xF0
GDB connection port: 9000
Force console for special debug messages: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x4083f7c0-0x4083fbdf: .
... Program from 0x23fff7c0-0x23fffbe0 to 0x4083f7c0: .
RedBoot>

The RedBoot installation is now complete. This can be tested by powering off the board, and then powering on the board again.
Output similar to the following should be seen on the DEBUG serial port. Verify the IP settings are as expected.

2407

Atmel AT91SAM9G20 Evaluation Kit Board Support

Ethernet eth0: MAC address 0e:00:00:ea:18:e3
IP: 192.168.7.222/255.255.255.0, Gateway: 192.168.7.11
Default server: 192.168.7.11
DNS server IP: 192.168.7.11, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_0_22 - built 14:12:12, Sep 7 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9G20-EK (ARM9)
RAM: 0x20000000-0x24000000 [0x20036218-0x23ffef80 available]
FLASH: 0x40000000-0x4083ffff, 8192 x 0x420 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the AT91SAM9G20-EK are:

$ mkdir redboot_at91sam9g20ek_rom
$ cd redboot_at91sam9g20ek_rom
$ ecosconfig new at91sam9g20ek redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/sam9g20ek/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding AT91Bootstrap
The sources of AT91Bootstrap are found in the AT91Bootstrap directory of the sam9260ek package. This is a copy of the
software as supplied by Atmel with some slight modifications to permit it to be built with the same tools as eCos.

To rebuild the second-level bootstrap for the AT91SAM9G20-EK execute the following commands:

$ cd $ECOS_REPOSITORY/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/at91sam9g20ek/dataflash
$ make

This should result in the creation of a number of files, including dataflash_at91sam9g20ek.bin which can be copied
out.

2408

Atmel AT91SAM9G20 Evaluation Kit Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The AT91SAM9G20-EK platform HAL package is loaded automatically when eCos is configured for the sam9g20ek target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into DataFlash. The application will
be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization.

JTAG This is the startup type which can be used during application development via a JTAG device such as the PEEDI. arm-
eabi-gdb is used to load a JTAG startup application into memory and debug it. Hardware setup is divided between the
initialization section of the PEEDI configuration file and software in the loaded application.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The AT91SAM9G20-EK board contains an 8Mbyte Atmel AT45DB DataFlash device. The CYGPKG_DEVS_FLASH_AT-
MEL_DATAFLASH package contains all the code necessary to support this part and the platform HAL package contains def-
initions that customize the driver to the AT91SAM9G20-EK board. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Ethernet Driver

The AT91SAM9G20-EK board uses the AT91SAM9G20's internal EMAC ethernet device attached to an external Davicom
DM9161A PHY. The CYGPKG_DEVS_ETH_ARM_AT91 package contains all the code necessary to support this device and
the platform HAL package contains definitions that customize the driver to the AT91SAM9G20-EK board. This driver is not
active until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2409

Atmel AT91SAM9G20 Evaluation Kit Board Support

RTC Driver
The AT91SAM9G20-EK board uses the AT91SAM9G20's internal RTTC support. The CYGPKG_DEVICES_WALL-
CLOCK_ARM_AT91RTTC package contains all the code necessary to support this device. This driver is not active until the
generic wallclock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The AT91SAM9G20-EK board uses the AT91SAM9G20's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Warning

The ATSAM926x processor will boot with watchdog support enabled, and the watchdog configuration is write-
once. That is, if it is disabled, it cannot be re-enabled. Due to its nature, RedBoot disables the watchdog when it
starts so any eCos applications with watchdog support enabled that are run by RedBoot will not function correctly.

USART Serial Driver
The AT91SAM9G20-EK board uses the AT91SAM9G20's internal USART serial support as described in the SAM9 processor
HAL documentation. Three serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the
HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver; USART 0 which is mapped to virtual vector channel 1
and "/dev/ser0"; and USART 1 which is mapped to virtual vector channel 2 and "/dev/ser1". Only USART 0 supports
full modem control signals but USART 1 supports RTS/CTS.

MCI Driver
As the SAM MCI driver is included in the hardware-specific configuration for this target, nothing is required to load it. Simi-
larly the MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific
configuration for this target. All that is required to enable the support is to include the generic disk I/O infrastructure package
(CYGPKG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its
package dependencies (including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

If the generic disk I/O infrastructure is needed for some other reason, and you do not wish to also include the MCI driver,
then the configuration option within this platform HAL CYGPKG_HAL_ARM_ARM9_SAM9G20EK_MMCSD can be used to
forcibly disable it.

Various options can be used to control specifics of the SAM MCI driver. Consult the SAM MCI driver documentation for
information on its configuration.

On this target, it is not possible to detect from the MMC/SD socket whether cards have been inserted or removed. Thus the
disk I/O layer's removeable media support will not detect when cards have been inserted or removed, and therefore the only
way to detect if a card has been inserted is to attempt mounts.

The MMC/SD socket also does not permit detection of the write-protect (or "lock") switch present on SD cards. "Locked"
cards will therefore not be detected which means that despite the switch position, it is still possible to write to them since the
lock switch does not physically enforce write protection.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

2410

Atmel AT91SAM9G20 Evaluation Kit Board Support

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926EJ CPU in the AT91SAM9G20.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Samsung K9F2G08U08 NAND flash memory chip.
To enable the driver, activate the CDL option CYGPKG_HAL_SAM9G20EK_NAND and ensure that the CYGPKG_DE-
VS_NAND_SAMSUNG_K9 package is present in your eCos configuration.

CYGHWR_HAL_SAM9G20EK_NAND_USE_STATUS_LINE
If set, this option configures the driver to wait for NAND operations to complete by waiting for the chip to deassert its
Busy line. This is the default behaviour and is recommended, but may be disabled if you need to use the line (PIO C13)
for some other purpose. (If disabled, the memory controller is configured to stall NAND accesses until they complete,
which will interfere with multi-threading.)

CYGNUM_HAL_SAM9G20EK_NAND_POLL_INTERVAL
The number of microseconds delay in the polling loops which wait for NAND operations to complete.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DE-
VS_NAND_SAM9G20EK_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will au-
tomatically be set up for you when the device is initialised. By default, the manual config CDL script sets up a single partition
(number 0) encompassing the entire device.

It is possible to configure the partitions in some other way, should it be appropriate for your setup, for example to read a
Linux-style partition table from the chip. To do so you will have to add appropriate code to sam9g20ek_nand.c.

2411

Atmel AT91SAM9G20 Evaluation Kit Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only JTAG configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam9g20ek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the SDRAM controller.

The peedi.at91sam9g20ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.at91sam9g20ek.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is
repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. If a second-level bootstrap and ROM RedBoot is resident in DataFlash, it will be run.

An issue occurs when the AT91 Ethernet driver is included in your configuration. In order to work around a board hardware
design issue, the CPU generates an external reset in order to reset the Ethernet PHY. However this can be interpreted by the
PEEDI as an indication that the CPU itself has reset, and if the PEEDI configuration file option CORE0_STARTUP_MODE is
set to RESET then the CPU will be halted at this point. To avoid this issue, the CORE0_STARTUP_MODE can be set to RUN.

Consult the PEEDI documentation for information on other features.

Running JTAG applications

Applications configured for JTAG startup can be run directly under a JTAG debugger. Once loaded and running via JTAG,
HAL diagnostic output will appear by default on the serial debug port. USARTs 0 or 1 can be chosen instead by setting the
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform HAL to channel 1 or 2.

2412

Atmel AT91SAM9G20 Evaluation Kit Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM9G20-EK hardware, and
should be read in conjunction with that specification. The AT91SAM9G20-EK platform HAL package complements the ARM
architectural HAL, the ARM9 variant HAL and the SAM9 processor HAL. It provides functionality which is specific to the
target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to
assign hardware exception vectors vectors at address 0x00000000, the HAL also uses
the MMU to create a clone of this memory at virtual address 0x00000000. The same
memory is also accessible uncached and unbuffered at virtual location 0x30000000 for
use by devices. The first 32 bytes are used for hardware exception vectors. The next 32
bytes are used for the VSR table and the next 256 bytes are normally used for the eCos
virtual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0x20040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00200000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is unused by eCos and is available for application use.

On-chip ROM This is located at address 0x00100000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x71800000.

USB host port The USB host port (UHP) registers are located at address 0x00300000 of the physical
memory space. However the HAL uses the MMU to relocate this to virtual address
0x72800000. Memory accessed at this address is uncached and unbuffered. There is no
cached variant.

SPI dataflash SPI Dataflash media can only be accessed with the Flash API. For the purposes of
this API a placeholder address range has been allocated as if the Flash is present at
this address. The base of this address range is 0x40000000 for the on-board flash and
0x50000000 for the dataflash slot, the extent will clearly depend on the Dataflash ca-
pacity. This reserved range is not real memory and any attempt to access it directly by
the processor other than via the Flash API will result in a memory address exception.

2413

Atmel AT91SAM9G20 Evaluation Kit Board Support

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, ethernet PHY, MCI, and SPI dataflash facilities on the
AT91SAM9G20-EK board. eCos does not currently make any use of any other off-chip
peripherals present on this board.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91SAM9G20, using the facilities
of the SAM9 processor HAL. Consult the documentation in that package for details.

SPI Dataflash
eCos supports SPI access to Dataflash on the AT91SAM9G20-EK. An on-board device and an external card slot are provided
on the board. The on-chip device is typically used to contain RedBoot and flash configuration data. The external slot is available
for application use.

Accesses to Dataflash are performed via the Flash API, using 0x40000000 or 0x50000000 as the nominal address of the device,
although it does not truly exist in the processor address space. For the external card slot, on driver initialisation, eCos and
RedBoot can detect the presence of a card in the socket. In particular, on reset RedBoot will indicate the presence of Flash at
the 0x40000000 address range in its startup banner if it has been successfully detected. Hot swapping is not possible.

Since Dataflash is not directly addressable, access from RedBoot is only possible using fis command operations.

The MCI driver cannot be enabled simultaneously with the SPI driver, as the drivers need differing pin configurations for the
same pins on this board due to the shared socket.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 261.1. sam9g20ek Real-time characterization

INFO:<code from 0x20040040 -> 0x2004bad4, CRC eb0a>
 Startup, main stack : stack used 388 size 3920
 Startup : Interrupt stack used 524 size 4096
 Startup : Idlethread stack used 96 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 2.93 microseconds (24 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 2.60 1.82 4.84 0.40 46% 28% Create thread

2414

Atmel AT91SAM9G20 Evaluation Kit Board Support

 0.32 0.24 1.33 0.08 98% 50% Yield thread [all suspended]
 0.48 0.36 1.09 0.07 56% 28% Suspend [suspended] thread
 0.43 0.36 0.85 0.09 85% 68% Resume thread
 0.66 0.48 1.70 0.08 95% 1% Set priority
 0.21 0.00 0.48 0.09 79% 1% Get priority
 1.37 1.21 3.88 0.14 54% 78% Kill [suspended] thread
 0.32 0.24 0.73 0.06 54% 43% Yield [no other] thread
 0.67 0.48 1.33 0.10 79% 7% Resume [suspended low prio] thread
 0.43 0.36 0.73 0.09 85% 68% Resume [runnable low prio] thread
 0.71 0.61 1.21 0.07 54% 31% Suspend [runnable] thread
 0.31 0.24 0.85 0.07 50% 48% Yield [only low prio] thread
 0.48 0.36 0.97 0.07 53% 28% Suspend [runnable->not runnable]
 1.23 1.09 2.54 0.09 60% 20% Kill [runnable] thread
 1.25 0.97 3.39 0.14 54% 34% Destroy [dead] thread
 1.90 1.70 3.15 0.11 81% 4% Destroy [runnable] thread
 2.88 2.54 5.21 0.21 64% 29% Resume [high priority] thread
 0.90 0.85 1.94 0.07 98% 61% Thread switch

 0.02 0.00 0.61 0.03 86% 86% Scheduler lock
 0.25 0.24 0.73 0.01 98% 98% Scheduler unlock [0 threads]
 0.25 0.24 0.48 0.01 98% 98% Scheduler unlock [1 suspended]
 0.25 0.24 0.48 0.02 92% 92% Scheduler unlock [many suspended]
 0.25 0.24 0.48 0.02 92% 92% Scheduler unlock [many low prio]

 0.11 0.00 0.97 0.06 68% 28% Init mutex
 0.51 0.36 1.45 0.10 71% 25% Lock [unlocked] mutex
 0.54 0.36 1.94 0.13 75% 68% Unlock [locked] mutex
 0.44 0.36 1.21 0.09 96% 56% Trylock [unlocked] mutex
 0.39 0.24 0.61 0.07 53% 15% Trylock [locked] mutex
 0.03 0.00 0.24 0.04 81% 81% Destroy mutex
 2.08 2.06 2.66 0.04 96% 96% Unlock/Lock mutex

 0.19 0.12 1.09 0.09 96% 65% Create mbox
 0.16 0.12 0.61 0.06 75% 75% Peek [empty] mbox
 0.60 0.48 1.57 0.10 43% 40% Put [first] mbox
 0.16 0.12 0.48 0.06 81% 81% Peek [1 msg] mbox
 0.59 0.48 0.97 0.08 40% 40% Put [second] mbox
 0.15 0.00 0.36 0.08 62% 12% Peek [2 msgs] mbox
 0.63 0.48 1.70 0.10 68% 25% Get [first] mbox
 0.60 0.48 0.97 0.07 50% 31% Get [second] mbox
 0.51 0.36 1.33 0.10 65% 21% Tryput [first] mbox
 0.56 0.36 1.33 0.10 84% 6% Peek item [non-empty] mbox
 0.59 0.48 1.45 0.09 43% 43% Tryget [non-empty] mbox
 0.46 0.36 0.73 0.07 56% 34% Peek item [empty] mbox
 0.45 0.36 0.97 0.08 46% 43% Tryget [empty] mbox
 0.14 0.00 0.36 0.07 65% 15% Waiting to get mbox
 0.15 0.12 0.48 0.04 84% 84% Waiting to put mbox
 0.22 0.12 0.73 0.08 46% 40% Delete mbox
 1.48 1.45 2.30 0.05 96% 96% Put/Get mbox

 0.02 0.00 0.24 0.03 87% 87% Init semaphore
 0.31 0.24 0.85 0.08 96% 59% Post [0] semaphore
 0.42 0.36 1.09 0.08 96% 71% Wait [1] semaphore
 0.32 0.24 0.85 0.08 96% 50% Trywait [0] semaphore
 0.29 0.24 0.48 0.06 62% 62% Trywait [1] semaphore
 0.08 0.00 0.48 0.09 87% 53% Peek semaphore
 0.05 0.00 0.85 0.07 81% 81% Destroy semaphore
 1.37 1.33 2.18 0.07 93% 93% Post/Wait semaphore

 0.22 0.12 1.45 0.10 50% 46% Create counter
 0.13 0.00 0.48 0.04 75% 12% Get counter value
 0.07 0.00 0.36 0.08 90% 56% Set counter value
 0.48 0.36 0.73 0.07 46% 28% Tick counter
 0.14 0.00 0.61 0.08 59% 21% Delete counter

 0.06 0.00 0.48 0.08 93% 59% Init flag
 0.40 0.24 1.33 0.07 81% 6% Destroy flag
 0.33 0.24 1.09 0.10 87% 59% Mask bits in flag
 0.39 0.24 0.97 0.07 62% 15% Set bits in flag [no waiters]
 0.53 0.48 1.82 0.09 96% 90% Wait for flag [AND]
 0.47 0.36 0.97 0.05 75% 21% Wait for flag [OR]
 0.50 0.48 0.85 0.03 90% 90% Wait for flag [AND/CLR]

2415

Atmel AT91SAM9G20 Evaluation Kit Board Support

 0.47 0.36 0.85 0.05 71% 25% Wait for flag [OR/CLR]
 0.00 0.00 0.12 0.01 96% 96% Peek on flag

 0.34 0.24 1.21 0.08 53% 43% Create alarm
 0.77 0.61 2.42 0.12 75% 18% Initialize alarm
 0.42 0.36 1.09 0.08 93% 68% Disable alarm
 0.75 0.61 2.18 0.10 71% 25% Enable alarm
 0.51 0.36 1.21 0.07 65% 15% Delete alarm
 0.44 0.36 0.97 0.07 50% 46% Tick counter [1 alarm]
 2.67 2.66 2.91 0.01 96% 96% Tick counter [many alarms]
 0.82 0.73 1.33 0.07 59% 37% Tick & fire counter [1 alarm]
 14.87 14.78 15.14 0.06 65% 31% Tick & fire counters [>1 together]
 3.06 3.03 3.39 0.05 81% 81% Tick & fire counters [>1 separately]
 2.43 2.42 3.51 0.02 99% 99% Alarm latency [0 threads]
 2.56 2.42 2.91 0.07 60% 17% Alarm latency [2 threads]
 3.64 3.15 4.36 0.26 67% 39% Alarm latency [many threads]
 3.83 3.75 6.30 0.08 98% 50% Alarm -> thread resume latency

 0.81 0.73 1.94 0.00 Clock/interrupt latency

 0.87 0.61 2.18 0.00 Clock DSR latency

 4 0 260 (main stack: 1356) Thread stack used (1360 total)
 All done, main stack : stack used 1356 size 3920
 All done : Interrupt stack used 664 size 4096
 All done : Idlethread stack used 240 size 2048

Timing complete - 29880 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM9G20-EK platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
SAM9 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further
details.

2416

Chapter 262. Atmel AT91SAM9G45-EKES
Evaluation Kit Board Support

2417

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Name
eCos Support for the Atmel AT91SAM9G45-EKES Evaluation Kit — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel AT91SAM9G45-EKES Evaluation Kit.
The AT91SAM9G45-EKES contains the AT91SAM9G45 microprocessor, 128Mbytes of SDRAM, 256Mbytes of NAND flash
memory, an Atmel Dataflash, an Atmel serial EEPROM, a Davicom DM9161A PHY, two SD/MMC sockets, a DAC, external
connections for two serial channels (one debug, one flow controlled), ethernet, USB host/device, and the various other periph-
erals supported by the AT91SAM9G45. eCos support for the devices and peripherals on the boards and the AT91SAM9G45
is described below.

For typical eCos development, a RedBoot image is programmed into the start of NAND, and the board will load this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the SAM9 processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The NAND flash contains the second level bootstrap, AT91Bootstrap, in the first block. This initializes the system clocks and
the SDRAM. It then loads a 320KiB program image from offset 0x20000 in the NAND into SDRAM at 0x20008000 and then
jumps into it. Typically this image will be a ROM version of RedBoot.

The Dataflash consists of 8192 blocks of 528 bytes each. The topmost block is used to manage the flash and the next four block
holds RedBoot fconfig values. The remaining blocks can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_AT91 which supports both the Debug Unit and USART serial devices.
The debug serial port at J10 and flow controlled port at J11 (connected to USART channel 1) can be used by RedBoot for
communication with the host. If any of these devices is needed by the application, either directly or via the serial driver, then
it cannot also be used for RedBoot communication. Another communication channel such as ethernet should be used instead.
The serial driver package is loaded automatically when configuring for the AT91SAM9G45-EKES target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_AT91 for the on-chip ethernet device. The platform HAL package
is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when configuring
for the AT91SAM9G45-EK board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_AT91WDTC. This driver is also loaded automatically
when configuring for the board.

There is a driver for the on-chip real-time timer controller (RTTC) at CYGPKG_DEVICES_WALLCLOCK_ARM_AT91RTC.
This driver is also loaded automatically when configuring for the target.

The SAM9 processor HAL contains a driver for the Two-Wire Interface (TWI) controller on the AT91SAM9G45. This type
of bus is also known as I²C®. Further documentation may be found in the SAM9 processor HAL documentation. Note that the
implementation of the TWI device on this part appears to have changed from earlier parts. This device does not now appear
to be able to handle a repeat start sequence.

There is a driver for the MultiMedia Card Interface (MCI) at CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI. This driver is
loaded automatically when configuring for the AT91SAM9G45-EKES target and allows use of MMC and Secure Digital (SD)
flash storage cards within eCos, exported as block devices. Further documentation may be found within that package.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the general
AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides the underlying implementation for the SPI API
layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

Furthermore, the platform HAL package contains support for SPI dataflash cards. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_ATMEL_DATAFLASH package as well as the above SPI packages. That package is automatically loaded

2418

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

when configuring for the target. Dataflash media is then accessed as a Flash device, using the Flash I/O API within the CYG-
PKG_IO_FLASH package, if that package is loaded in the configuration.

In general, devices (Caches, PIO, UARTs, EMAC) are initialized only as far as is necessary for eCos to run. Other devices
(RTC, I²C, SPI, MCI etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot
sequence will set up the appropriate PIO configuration.

Tools
The AT91SAM9G45-EKES support is intended to work with GNU tools configured for an arm-eabi target. The original port
was undertaken using arm-elf-gcc version 4.3.2, arm-elf-gdb version 6.8, and binutils version 2.18.

2419

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Name
Setup — Preparing the AT91SAM9G45-EKES board for eCos Development

Overview
In a typical development environment, the AT91SAM9G45-EKES board boots from the NAND flash and runs the RedBoot
ROM monitor from SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board
via the debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into
flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from NAND
to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from NAND by the second-level bootstrap. The use of ROM for this configuration is intended
to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which assumes
that this has already been done.

Initial Installation
The on-chip boot program on the AT91SAM9G45 is only capable of loading programs from Dataflash or NAND flash into on-
chip SRAM and is therefore quite restrictive. Consequently RedBoot cannot be booted directly and a second-level bootstrap
must be used. Such a second-level bootstrap is supplied by Atmel in the form of AT91Bootstrap. This is therefore programmed
into the start of NAND and is then responsible for initializing the SDRAM and loading RedBoot from NAND and executing it.

Caution

There is a size limit on the size of applications which the AT91Bootstrap second level
bootstrap will load. Images larger than 320Kbytes will require the AT91Bootstrap application to
be rebuilt with a larger IMG_SIZE definition in AT91Bootstrap/board/at91sam9g45ek/
nandflash/at91sam9g45ek.h within the SAM9260 HAL package in the eCos source
repository (packages/hal/arm/arm9/sam9260ek/current/). A pre-built AT91SAM9G45 specific
AT91Bootstrap binary can be found here: AT91Bootstrap/board/at91sam9g45ekes/nandflash/
nandflash_at91sam9g45ekes.bin. This will required during the SAM-BA based board setup process
described below.

There are basically two ways to write the second-level bootstrap and RedBoot to the NAND. The first is to use the Atmel-sup-
plied SAM-BA program that interacts with the on-chip boot program. The second is to use a JTAG debugger that understands
the microcontroller and can write to the NAND flash (for example the Ronetix PEEDI). Since the availability of the latter
cannot be guaranteed, only the first method will be described here.

Programming RedBoot into NAND Flash using SAM-BA

The following gives the steps needed to program the second-level bootstrap and RedBoot into the NAND Flash using SAM-BA.
The user should refer to the SAM-BA documentation for full details of how to run the program. SAM-BA can communicate
with the boot program via either USB or serial. The steps are essentially similar for both since USB operates through a driver
that simulates a serial port.

1. Download the AT91 SAM-BA software package from the Atmel website and install it. SAM9 series CPU's require the 2.1.x
series version of SAM-BA. Atmel provide both Linux and Windows versions of SAM-BA so ensure you select the version
appropriate to your host operating system. The remainder of this document describes the process according to a Windows
installation. The steps for the Linux version of SAM-BA are similar and can easily be determined from the Windows process.

2420

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

2. From the root directory of your eCosPro installation, copy the file nandflash_at91sam9g45ekes.bin
from the sub-directory packages/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/
at91sam9g45ekes/nandflash and redboot_ROM.bin from the sub-directory loaders/sam9g45ekes to a
suitable location on the Windows PC.

3. Connect a null-modem serial cable between the J10 DEBUG serial port of the board and a serial port on the host running
SAM-BA. If using USB download also connect a USB cable between the host and the J14 HOST/DEV socket.

4. Unplug the power supply from the board and remove JP10(NANDCS) and JP12(NPCS0). Reapply power to the board. If
USB is being used follow the instructions in the SAM-BA documentation to set up the Windows device driver for the first
time if you are running a Microsoft Windows-based operating system.

5. Start SAM-BA. Select the appropriate COM port for the communication interface (on Windows hosts this will be of the
form "COMx" and on Linux hosts this will be of the form "/dev/ttyUSBx"), and "at91sam9g45-ekes" for the board. Click
on "Connect".

6. Re-insert JP10 and JP12.

7. In the SAM-BA main window, select the "NandFlash" tab and in the "Scripts" dropdown menu select "Enable NandFlash",
to program the on-board NandFlash device. Click Execute and SAM-BA should emit the following in the message area:

(SAM-BA v2.10) 1 % NANDFLASH::Init
-I- NANDFLASH::Init (trace level : 0)
-I- Loading applet isp-nandflash-at91sam9g45.bin at address 0x70000000
-I- Memory Size : 0x10000000 bytes
-I- Buffer address : 0x70003E34
-I- Buffer size: 0x20000 bytes
-I- Applet initialization done
(SAM-BA v2.10) 1 %

The actual options and output of SAM-BA may vary according to the version you are using. The behaviour documented
here is that of SAM-BA 2.10.

8. Now select "Send BootFile" from the "Scripts" menu and "Execute" it. When the file open dialog appears, select the nand-
flash_at91sam9g45ekes.bin file and click "Open". The following output should be seen:

(SAM-BA v2.10) 1 % GENERIC::SendBootFileGUI
GENERIC::SendFile Z:/eCos/SAM-BA/nandflash_at91sam9g45ekes.bin at address 0x0
-I- File size : 0x1334 byte(s)
-I- Writing: 0x1334 bytes at 0x0 (buffer addr : 0x70003E34)
-I- 0x1334 bytes written by applet
(SAM-BA v2.10) 1 %

9. The second-level bootstrap has now been written to NAND Flash, we must now write RedBoot.

10.In the "Send File Name" box type in the path name to the redboot_ROM.bin file, or use the Open Folder button and
browse to it.

11.In the Address field set the value to 0x020000.

12.Click the "Send File" button. SAM-BA will put up a dialog box while it is writing the file to the NAND Flash, and will
output something similar to the following in the message area:

(SAM-BA v2.10) 1 % send_file {NandFlash} "Z:/eCos/SAM-BA/redboot_ROM.bin" 0x020000 0
-I- Send File Z:/eCos/SAM-BA/redboot_ROM.bin at address 0x020000
GENERIC::SendFile Z:/eCos/SAM-BA/redboot_ROM.bin at address 0x20000
-I- File size : 0x24658 byte(s)
-I- Writing: 0x20000 bytes at 0x20000 (buffer addr : 0x70003E34)
-I- 0x20000 bytes written by applet
-I- Writing: 0x4658 bytes at 0x40000 (buffer addr : 0x70003E34)
-I- 0x4658 bytes written by applet
(SAM-BA v2.10) 1 %

13.Shut down SAM-BA and start up Hyperterm or similar on the real COM port, not the USB port, configured for 115200
baud 8-N-1 with no flow control. Attach an ethernet cable between the board and a switch on your network. Press the reset
button on the board and something similar to the following should be output on the DEBUG serial line.

2421

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Start AT91Bootstrap...
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.2.1/255.0.0.0, Gateway: 10.0.0.3
Default server: 0.0.0.0
DNS server IP: 10.0.0.1, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 14:54:15, Aug 20 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9G45-EK (ARM9)
RAM: 0x20000000-0x28000000 [0x20035f78-0x27ffe530 available]
FLASH: 0x50000000-0x5041ffff, 8192 x 0x210 blocks
RedBoot>

The board is now running and the flash can be configured.

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x5041fdf0-0x5041ffff: .
... Program from 0x27fffdf0-0x28000000 to 0x5041fdf0: .
RedBoot>

2. Now configure RedBoot's Flash configuration with the fconfig command. Remember to substitute the appropriate MAC
address for this board at the appropriate step. If a BOOTP/DHCP server is not available, then IP configuration may be set
manually. The default server IP address can be set to a PC that will act as a TFTP host for future RedBoot load operations,
or may be left unset. The following gives an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.83
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.11
Console baud rate: 115200
DNS domain name: farm.ecoscentric.com
DNS server IP address: 192.168.7.11
Network hardware address [MAC]: 0x0E:0x00:0x00:0xEA:0x18:0xF0
GDB connection port: 9000
Force console for special debug messages: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x5041ef80-0x5041f7bf:
... Program from 0x27fff5b0-0x27fffdf0 to 0x5041ef80:
RedBoot>

The RedBoot installation is now complete. This can be tested by power cycling the board. Output similar to the following
should be seen on the DEBUG serial port. Verify the IP settings are as expected.

Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 192.168.7.83/255.255.255.0, Gateway: 192.168.7.11

2422

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Default server: 192.168.7.11
DNS server IP: 192.168.7.11, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 14:54:15, Aug 20 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: AT91SAM9G45-EK (ARM9)
RAM: 0x20000000-0x28000000 [0x20035f78-0x27ffe530 available]
FLASH: 0x50000000-0x5041ffff, 8192 x 0x210 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the AT91SAM9G45-EKES are:

$ mkdir redboot_at91sam9g45ek_rom
$ cd redboot_at91sam9g45ek_rom
$ ecosconfig new at91sam9g45ekes redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/sam9g45ek/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding AT91Bootstrap
The sources of AT91Bootstrap are found in the AT91Bootstrap directory of the sam9260ek package. This is a copy of the
software as supplied by Atmel with some slight modifications to permit it to be built with the same tools as eCos.

To rebuild the second-level bootstrap for the AT91SAM9G45-EKES execute the following commands:

 $ cd $ECOS_REPOSITORY/hal/arm/arm9/sam9260ek/current/AT91Bootstrap/board/at91sam9g45ekes/nandflash
 $ make

This should result in the creation of a number of files, including nandflash_at91sam9g45ekes.bin which can be
copied out.

2423

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The AT91SAM9G45-EKES platform HAL package is loaded automatically when eCos is configured for the sam9g45ek
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into NAND Flash. The application
will be self-contained with no dependencies on services provided by other software. eCos startup code will perform
all necessary hardware initialization.

JTAG This is the startup type which can be used during application development via a JTAG device such as the PEEDI. arm-
eabi-gdb is used to load a JTAG startup application into memory and debug it. Hardware setup is divided between the
initialization section of the PEEDI configuration file and software in the loaded application.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The AT91SAM9G45-EKES board contains a 4Mbyte Atmel AT45 DataFlash device. The CYGPKG_DEVS_FLASH_AT-
MEL_DATAFLASH package contains all the code necessary to support this part and the platform HAL package contains defi-
nitions that customize the driver to the AT91SAM9G45-EKES board. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

Ethernet Driver

The AT91SAM9G45-EKES board uses the AT91SAM9G45's internal EMAC ethernet device attached to an external Davicom
DM9161A PHY. The CYGPKG_DEVS_ETH_ARM_AT91 package contains all the code necessary to support this device and
the platform HAL package contains definitions that customize the driver to the AT91SAM9G45-EKES board. This driver is
not active until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2424

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

RTC Driver
The AT91SAM9G45-EKES board uses the AT91SAM9G45's internal RTC support. The CYGPKG_DEVICES_WALL-
CLOCK_ARM_AT91RTC package contains all the code necessary to support this device. This driver is not active until the
generic wallclock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The AT91SAM9G45-EKES board uses the AT91SAM9G45's internal watchdog support. The CYGPKG_DEVICES_WATCH-
DOG_ARM_AT91WDTC package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_AT91WDTC_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

Warning

The ATSAM926x processor will boot with watchdog support enabled, and the watchdog configuration is write-
once. That is, if it is disabled, it cannot be re-enabled. Due to its nature, RedBoot disables the watchdog when it
starts so any eCos applications with watchdog support enabled that are run by RedBoot will not function correctly.

USART Serial Driver
The AT91SAM9G45-EKES board uses the AT91SAM9G45's internal USART serial support as described in the SAM9 proces-
sor HAL documentation. Two serial ports are available: the serial debug port which is mapped to virtual vector channel 0 in the
HAL diagnostic driver or "/dev/dbg" in the interrupt-driven driver and USART 1 which is mapped to virtual vector channel
1 and "/dev/ser1". The debug port has no additional signals, but USART 1 supports RTS/CTS.

MCI Driver
As the SAM MCI driver is included in the hardware-specific configuration for this target, nothing is required to load it. Simi-
larly the MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific
configuration for this target. All that is required to enable the support is to include the generic disk I/O infrastructure package
(CYGPKG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its
package dependencies (including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

If the generic disk I/O infrastructure is needed for some other reason, and you do not wish to also include the MCI driver,
then the configuration option within this platform HAL CYGPKG_HAL_ARM_ARM9_SAM9G45EK_MMCSD can be used to
forcibly disable it.

Various options can be used to control specifics of the SAM MCI driver. Consult the SAM MCI driver documentation for
information on its configuration.

The MCI driver at present can only handle a single MCI interface, the configuration option CYGHWR_DEVS_MMCSD_AT-
MEL_SAM_MCI_DEVICE selects between them.

Only MMC/SD socket 1 permits detection of the write-protect (or "lock") switch present on SD cards. "Locked" cards will
therefore not be detected on socket 0 which means that despite the switch position, it is still possible to write to them since
the lock switch does not physically enforce write protection.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926EJ CPU in the AT91SAM9G45.

2425

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Micron MT29F2G08ABD NAND flash memory chip.
To enable the driver, activate the CDL option CYGPKG_HAL_SAM9G45EK_NAND and ensure that the CYGPKG_DE-
VS_NAND_MICRON_MT29F package is present in your eCos configuration.

CYGHWR_HAL_SAM9G45EK_NAND_USE_STATUS_LINE
If set, this option configures the driver to wait for NAND operations to complete by waiting for the chip to deassert its
Busy line. This is the default behaviour and is recommended, but may be disabled if you need to use the line (PIO C8)
for some other purpose. (If disabled, the memory controller is configured to stall NAND accesses until they complete,
which will interfere with multi-threading.)

CYGNUM_HAL_SAM9G45EK_NAND_POLL_INTERVAL
The number of microseconds delay in the polling loops which wait for NAND operations to complete.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DE-
VS_NAND_SAM9G45EK_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will au-
tomatically be set up for you when the device is initialised. By default, the manual config CDL script sets up a single partition
(number 0) encompassing almost the entire device. The first block of the device contains AT91Bootstrap and the second and
subsequent blocks contain RedBoot, or a ROM application. The first partition should therefore start above this. The default is
set to block 8, leaving 1MiB at the base of NAND for bootstrapping.

It is possible to configure the partitions in some other way, should it be appropriate for your setup, for example to read a
Linux-style partition table from the chip. To do so you will have to add appropriate code to sam9g45ek_nand.c.

2426

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only JTAG configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot and ROM applications reset the CPU
clock, which may cause the debugger to disconnect.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.at91sam9g45ek.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the SDRAM controller.

The peedi.at91sam9g45ek.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.at91sam9g45ek.cfg file (which configures the SDRAM among other things), and halts the target. This behavior is
repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. If a second-level bootstrap and ROM RedBoot is resident in NANDFlash, it will be run.

Consult the PEEDI documentation for information on other features.

Running JTAG applications

Applications configured for JTAG startup can be run directly under JTAG. Once loaded and running via JTAG, HAL diagnostic
output will appear by default on the serial debug port. USART 1 can be chosen instead by setting the CYGNUM_HAL_VIR-
TUAL_VECTOR_CONSOLE_CHANNEL configuration option in the platform HAL to channel 1.

2427

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the AT91SAM9G45-EKES hardware,
and should be read in conjunction with that specification. The AT91SAM9G45-EK platform HAL package complements the
ARM architectural HAL, the ARM9 variant HAL and the SAM9 processor HAL. It provides functionality which is specific
to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x20000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0x20000000, but in order to
assign hardware exception vectors vectors at address 0x00000000, the HAL also uses
the MMU to create a clone of this memory at virtual address 0x00000000. The same
memory is also accessible uncached and unbuffered at virtual location 0x30000000 for
use by devices. The first 32 bytes are used for hardware exception vectors. The next 32
bytes are used for the VSR table and the next 256 bytes are normally used for the eCos
virtual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0x20040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM This is located at address 0x00300000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x70000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70100000 for use by devices.
At present this memory is unused by eCos and is available for application use.

On-chip ROM This is located at address 0x00400000 of the physical memory space. However the HAL
uses the MMU to relocate this to virtual address 0x71000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70300000.

NAND This is located at address 0x40000000 of the physical memory space. The HAL maps
this uncached and unbuffered to 0x40000000 in the virtual address space. This mapping
is only enabled if the NAND driver is enabled, otherwise it will generate an address fault.

USB The USB device registers are located at addresses 0x00600000. 0x00700000,
0x00800000 of the physical memory space. However the HAL uses the MMU to relo-
cate this to virtual addresses 0x71000000, 0x71100000 and 0x71200000 respectively.
Memory accessed at these addresses is uncached and unbuffered. There is no cached
variant.

SPI dataflash SPI Dataflash media can only be accessed with the Flash API. For the purposes of this
API a placeholder address range has been allocated as if the Flash is present at this
address. The base of this address range is 0x50000000 This reserved range is not real

2428

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

memory and any attempt to access it directly by the processor other than via the Flash
API will result in a memory address exception.

RedBoot manages the SPI dataflash using its FIS subsystem and stores system config-
uration data in the top 5 blocks of the device.

On-chip Peripheral Registers These are located at address 0xFF000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, ethernet PHY, MCI, NAND flash and SPI dataflash facilities on
the AT91SAM9G45-EKES board. eCos does not currently make any use of any other
off-chip peripherals present on this board.

Advanced Interrupt Controller
This port has been designed to exploit benefits of the Advanced Interrupt Controller of the AT91SAM9G45, using the facilities
of the SAM9 processor HAL. Consult the documentation in that package for details.

SPI Dataflash
eCos supports SPI access to Dataflash on the AT91SAM9G45-EKES board. The device is typically used to contain flash
configuration data.

Accesses to Dataflash are performed via the Flash API, using 0x50000000 as the nominal address of the device, although it
does not truly exist in the processor address space.

Since Dataflash is not directly addressable, access from RedBoot is only possible using fis command operations.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provided better performance than Thumb mode.

Example 262.1. sam9g45ek Real-time characterization

INFO:<code from 0x20040040 -> 0x2004bad4, CRC eb0a>
 Startup, main stack : stack used 387 size 3920
 Startup : Interrupt stack used 524 size 4096
 Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 2.95 microseconds (24 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 3.26 2.40 5.16 0.38 64% 18% Create thread

2429

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

 0.44 0.36 1.56 0.08 98% 50% Yield thread [all suspended]
 0.62 0.48 1.32 0.08 59% 21% Suspend [suspended] thread
 0.60 0.48 1.20 0.09 42% 35% Resume thread
 0.85 0.72 2.40 0.08 60% 25% Set priority
 0.36 0.24 0.60 0.04 73% 12% Get priority
 1.55 1.32 4.08 0.16 81% 59% Kill [suspended] thread
 0.42 0.36 0.72 0.06 98% 50% Yield [no other] thread
 0.86 0.72 1.56 0.08 48% 25% Resume [suspended low prio] thread
 0.59 0.48 0.84 0.08 42% 35% Resume [runnable low prio] thread
 0.85 0.72 1.68 0.08 51% 28% Suspend [runnable] thread
 0.43 0.36 0.84 0.07 50% 48% Yield [only low prio] thread
 0.60 0.48 1.08 0.08 48% 32% Suspend [runnable->not runnable]
 1.37 1.20 2.40 0.08 89% 3% Kill [runnable] thread
 1.44 1.20 3.36 0.13 90% 48% Destroy [dead] thread
 2.00 1.80 3.00 0.09 84% 4% Destroy [runnable] thread
 2.97 2.64 5.76 0.24 79% 68% Resume [high priority] thread
 0.99 0.96 2.04 0.04 85% 85% Thread switch

 0.14 0.12 0.60 0.03 85% 85% Scheduler lock
 0.36 0.36 0.60 0.00 99% 99% Scheduler unlock [0 threads]
 0.36 0.36 0.48 0.00 99% 99% Scheduler unlock [1 suspended]
 0.37 0.36 0.84 0.02 94% 94% Scheduler unlock [many suspended]
 0.36 0.36 0.60 0.00 99% 99% Scheduler unlock [many low prio]

 0.27 0.24 1.20 0.06 96% 96% Init mutex
 0.63 0.48 1.68 0.10 75% 21% Lock [unlocked] mutex
 0.67 0.48 2.16 0.14 65% 56% Unlock [locked] mutex
 0.57 0.36 1.68 0.11 87% 6% Trylock [unlocked] mutex
 0.50 0.36 0.84 0.07 53% 18% Trylock [locked] mutex
 0.19 0.12 0.48 0.07 96% 50% Destroy mutex
 2.21 2.16 3.12 0.08 96% 78% Unlock/Lock mutex

 0.36 0.24 1.08 0.07 59% 28% Create mbox
 0.30 0.24 0.60 0.08 90% 62% Peek [empty] mbox
 0.74 0.60 2.04 0.09 65% 25% Put [first] mbox
 0.31 0.24 0.60 0.08 84% 62% Peek [1 msg] mbox
 0.72 0.60 1.08 0.05 68% 21% Put [second] mbox
 0.30 0.24 0.60 0.08 87% 68% Peek [2 msgs] mbox
 0.74 0.60 1.80 0.10 50% 31% Get [first] mbox
 0.74 0.60 1.20 0.08 50% 21% Get [second] mbox
 0.67 0.48 1.68 0.10 87% 6% Tryput [first] mbox
 0.69 0.60 1.32 0.08 53% 40% Peek item [non-empty] mbox
 0.72 0.60 1.44 0.06 65% 25% Tryget [non-empty] mbox
 0.58 0.48 0.96 0.08 43% 40% Peek item [empty] mbox
 0.57 0.48 1.08 0.10 81% 56% Tryget [empty] mbox
 0.30 0.24 0.60 0.08 84% 68% Waiting to get mbox
 0.28 0.24 0.48 0.06 75% 75% Waiting to put mbox
 0.40 0.24 1.08 0.08 87% 9% Delete mbox
 1.56 1.44 2.16 0.04 78% 18% Put/Get mbox

 0.16 0.12 0.48 0.06 78% 78% Init semaphore
 0.44 0.36 0.96 0.08 96% 50% Post [0] semaphore
 0.51 0.48 0.96 0.05 81% 81% Wait [1] semaphore
 0.43 0.36 0.96 0.08 96% 56% Trywait [0] semaphore
 0.41 0.36 0.60 0.06 62% 62% Trywait [1] semaphore
 0.20 0.12 0.48 0.08 87% 53% Peek semaphore
 0.17 0.12 0.60 0.07 96% 65% Destroy semaphore
 1.48 1.44 2.40 0.07 87% 87% Post/Wait semaphore

 0.37 0.24 1.44 0.09 59% 28% Create counter
 0.28 0.12 0.60 0.10 65% 21% Get counter value
 0.22 0.12 0.48 0.07 53% 34% Set counter value
 0.60 0.48 0.96 0.06 56% 25% Tick counter
 0.28 0.12 0.72 0.08 65% 9% Delete counter

 0.21 0.12 0.72 0.08 43% 46% Init flag
 0.51 0.36 1.44 0.09 75% 18% Destroy flag
 0.45 0.36 1.32 0.09 90% 50% Mask bits in flag
 0.50 0.36 1.20 0.06 71% 15% Set bits in flag [no waiters]
 0.62 0.48 1.68 0.07 87% 9% Wait for flag [AND]
 0.59 0.48 1.08 0.05 71% 25% Wait for flag [OR]
 0.61 0.48 0.96 0.02 93% 3% Wait for flag [AND/CLR]

2430

Atmel AT91SAM9G45-EKES Evaluation Kit Board Support

 0.57 0.48 0.96 0.06 59% 37% Wait for flag [OR/CLR]
 0.12 0.00 0.12 0.01 96% 3% Peek on flag

 0.57 0.48 1.56 0.11 87% 56% Create alarm
 0.97 0.72 3.00 0.20 68% 50% Initialize alarm
 0.53 0.48 0.84 0.07 71% 71% Disable alarm
 0.87 0.72 2.04 0.12 62% 78% Enable alarm
 0.61 0.48 1.32 0.08 53% 28% Delete alarm
 0.57 0.48 1.44 0.08 53% 43% Tick counter [1 alarm]
 2.77 2.76 3.12 0.02 96% 96% Tick counter [many alarms]
 0.92 0.84 1.44 0.08 96% 50% Tick & fire counter [1 alarm]
 14.77 14.76 15.12 0.02 96% 96% Tick & fire counters [>1 together]
 3.16 3.12 3.72 0.06 78% 78% Tick & fire counters [>1 separately]
 2.53 2.52 3.48 0.02 96% 96% Alarm latency [0 threads]
 2.84 2.52 3.84 0.20 61% 34% Alarm latency [2 threads]
 4.02 3.36 5.04 0.31 65% 16% Alarm latency [many threads]
 3.87 3.84 6.36 0.05 97% 97% Alarm -> thread resume latency

 0.80 0.72 1.56 0.00 Clock/interrupt latency

 0.93 0.60 2.28 0.00 Clock DSR latency

 2 0 260 (main stack: 1364) Thread stack used (1360 total)
 All done, main stack : stack used 1364 size 3920
 All done : Interrupt stack used 664 size 4096
 All done : Idlethread stack used 232 size 2048

Timing complete - 30000 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The AT91SAM9G45-EKES platform HAL does not affect the implementation of other parts of the eCos HAL specification.
The SAM9 processor HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for
further details.

2431

Chapter 263. ARM Versatile 926EJ-S
Board Support

2432

ARM Versatile 926EJ-S Board Support

Name
eCos Support for the Versatile 926EJ-S Board — Overview

Description
This document covers the ARM Versatile Platform Baseboard for the ARM926EJ-S development chip, hereafter referred to
as the VPB926EJS. The VPB926EJS contains the ARM926EJ-S processor, 128Mb of SDRAM, 64MB of Intel Strataflash
memory, 2Mb of static RAM, a SMSC LAN91C111 Ethernet MAC, and external connections for the three on-chip and one
off-chip serial channels, ethernet and the various other peripherals supported by the ARM926EJ-S.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of 256 blocks of 256k bytes each. In a typical setup, the first flash block is used for the ROMRAM
RedBoot image. The topmost block is used to manage the flash and hold RedBoot fconfig values. The remaining 254 blocks
between 0x34040000 and 0x37FBFFFF can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_ARM_PL011 which supports the ARM PL011 PrimeCell UARTs used by
the VPB926EJS. The CYGPKG_IO_SERIAL_ARM_VPB926EJS package provides customization of this generic driver to
the VPB926EJS hardware. These devices can be used by RedBoot for communication with the host. If any of these devices
is needed by the application, either directly or via the serial driver, then it cannot also be used for RedBoot communication.
Another communication channel such as ethernet should be used instead. The serial driver packages are loaded automatically
when configuring for the VPB926EJS target.

There is an ethernet driver CYGPKG_DEVS_ETH_SMSC_LAN91CXX for the SMSC LAN91C111 ethernet device. A second
package CYGPKG_DEVS_ETH_ARM_VPB926EJS is responsible for configuring this generic driver to the VPB926EJS hard-
ware. These drivers are also loaded automatically when configuring for the VPB926EJS target.

eCos manages the on-chip interrupt controller. Timer 0 is used to implement the eCos system clock and the microsecond delay
function. Other on-chip devices (Caches, UARTs, MPMC, SSMC, I²C etc.) are initialized only as far as is necessary for eCos
to run. Other devices (PCI, SSP, SCI, GPIO etc.) are not touched.

Tools
The VPB926EJS port is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.2.1, arm-elf-gdb version 5.3, and binutils version 2.13.1.

2433

ARM Versatile 926EJ-S Board Support

Name
Setup — Preparing the VPB926EJS board for eCos Development

Overview
In a typical development environment, the VPB926EJS board boots from flash into the RedBoot ROM monitor. eCos appli-
cations are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing
the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.bin

ROM RedBoot running from flash
ROM

redboot_ROM.ecm redboot_ROM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector

redboot_ROMRAM.ecm redboot_ROMRAM.bin

SRAM RedBoot running from static
RAM

redboot_SRAM.ecm redboot_SRAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. RedBoot also supports ethernet
communication and flash management.

Initial Installation

Flash Installation

Installing RedBoot is a matter of downloading a new binary image and overwriting the existing Boot monitor ROM image.
This is a two stage process, you must first download an SRAM-resident version of RedBoot and then use that to download the
ROM image to be programmed into the flash memory.

The VPB926EJS boards are shipped from ARM with a version of ARM's boot monitor installed. Unfortunately this boot
monitor only works in conjunction with ARM's tools, which are not supplied with the board. Hence the only viable approach
is to install RedBoot via the JTAG interface. The following directions are necessarily somewhat general since the specifics
depend on the exact JTAG device available, and the software used to drive it.

Connect the JTAG device to the JTAG connector on the Versatile board and check that the device is functioning correctly.
Using 32 bit memory writes, initialize the static memory controller so that the SRAM and flash are accessible. The following
assignments should be made:

*(long *)0x10100034 = 0x00303021;
*(long *)0x10100054 = 0x00303021;
*(long *)0x10100074 = 0x00303021;
*(long *)0x10100094 = 0x00303021;

Now load the SRAM redboot binary image from the file redboot_SRAM.bin into the base of SRAM at 0x38000000.
Exactly how you do this depends on the JTAG driver software.

Start RedBoot by executing from location 0x38000040, which should result in RedBoot starting up.

+... waiting for BOOTP information
Ethernet eth0: MAC address 00:02:f7:00:0b:34
IP: 10.0.0.208/255.255.255.0, Gateway: 10.0.0.1
Default server: 10.0.0.201

RedBoot(tm) bootstrap and debug environment [SRAM]
Non-certified release, version UNKNOWN - built 16:03:09, May 5 2004

2434

ARM Versatile 926EJ-S Board Support

Platform: ARM Versatile VPB926EJS (ARM9)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x02000000, [0x00013b20-0x01fbd000] available
FLASH: 0x34000000 - 0x38000000, 256 blocks of 0x00040000 bytes each.
RedBoot>

Now the ROM image can be downloaded using the following RedBoot command:

RedBoot> load -r -b %{FREEMEMLO} -m ymodem

Use HyperTerminal's Ymodem support to send the file redboot_ROMRAM.bin. This should result in something like the
following output:

Raw file loaded 0x0002f800-0x0004be6b, assumed entry at 0x0002f800
xyzModem - CRC mode, 911(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

Once the file has been uploaded, you can check that it has been transferred correctly using the cksum command. On the host
(Linux or Cygwin) run the cksum program on the binary file:

$ cksum redboot_ROMRAM.bin
140216855 116332 redboot_ROMRAM.bin

In RedBoot, run the cksum command on the data that has just been loaded:

RedBoot> cksum -b %{FREEMEMLO} -l 116332
POSIX cksum = 140216855 116332 (0x085b8a17 0x0001c66c)

The second number in the output of the host cksum program is the file size, which should be used as the argument to the -l
option in the RedBoot cksum command. The first numbers in each instance are the checksums, which should be equal.

If the program has downloaded successfully, then it can be programmed into the flash using the following commands:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)?y
*** Initialize FLASH Image System
... Unlock from 0x37fc0000-0x38000000: .
... Erase from 0x37fc0000-0x38000000: .
... Program from 0x03fc0000-0x04000000 at 0x37fc0000: .
... Lock from 0x37fc0000-0x38000000: .
RedBoot> fis create -b %{FREEMEMLO} RedBoot
An image named 'RedBoot' exists - continue (y/n)?y
... Unlock from 0x34000000-0x34040000: .
... Erase from 0x34000000-0x34040000: .
... Program from 0x0002f800-0x0006f800 at 0x34000000: .
... Lock from 0x34000000-0x34040000: .
... Unlock from 0x37fc0000-0x38000000: .
... Erase from 0x37fc0000-0x38000000: .
... Program from 0x03fc0000-0x04000000 at 0x37fc0000: .
... Lock from 0x37fc0000-0x38000000: .
RedBoot>

The VPB926EJS board may now be reset either by cycling the power, pressing the reset switch, or with the reset command.
It should then display the startup screen for the ROMRAM version of RedBoot.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROMRAM version of RedBoot for the VPB926EJS are:

$ mkdir redboot_vpb926ejs_romram
$ cd redboot_vpb926ejs_romram
$ ecosconfig new vpb926ejs redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/vpb926ejs/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

2435

ARM Versatile 926EJ-S Board Support

To rebuild the SRAM version of RedBoot:

$ mkdir redboot_vpb926ejs_sram
$ cd redboot_vpb926ejs_sram
$ ecosconfig new vpb926ejs redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/vpb926ejs/current/misc/redboot_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This is the case for both
the above builds, take care not to mix the two files up, since programming the SRAM RedBoot into the ROM will render
the board unbootable.

2436

ARM Versatile 926EJ-S Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The VPB926EJS platform HAL package is loaded automatically when eCos is configured for a vpb926ejs target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The VPB926EJS platform HAL package supports four separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into
memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the
application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diag-
nostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x34000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x34000000. However, when it starts up, the application will first copy itself to RAM at 0x00000000 and then run
from there. RAM is generally faster than flash memory, so the program will run more quickly than a ROM-startup
application. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

SRAM This startup type exists only to support the installation of RedBoot via the JTAG interface. Functionally, it is
equivalent to the ROM startup type except that the executable image is loaded into the static RAM at 0x38000000
rather than the flash ROM. It is of little use for other applications.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is required to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for RAM startup, disabled otherwise. It can be manually disabled for RAM startup, making the application self-contained, as
a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The VPB926EJS board contains two 32Mb 28F256K3 Intel StrataFlash flash devices, giving 64MB of flash in total. The
CYGPKG_DEVS_FLASH_STRATA_V2 package contains all the code necessary to support these parts and the VPB926EJS
platform HAL package contains definitions that customize the driver to the VPB926EJS board.

Ethernet Driver
The VPB926EJS board contains a SMSC LAN91C111 ethernet controller. The CYGPKG_DEVS_ETH_SMSC_LAN91CXX
package contains all the code necessary to support this device and the CYGPKG_DEVS_ETH_ARM_VPB926EJS package
contains definitions that customize the driver to the VPB926EJS board.

2437

ARM Versatile 926EJ-S Board Support

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is just one flag
specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926E CPU.

2438

ARM Versatile 926EJ-S Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the VPB926EJS hardware, and should
be read in conjunction with that specification. The VPB926EJS platform HAL package complements the ARM architectural
HAL and the ARM9 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the on-chip peripherals that are used by eCos. There is an
exception for RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMRAM or SRAM startup, the HAL will perform additional initialization, setting up the external SDRAM and
programming the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file
hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x34000000 of the physical memory space. The HAL uses the
MMU to map it cached and buffered at the same address.

SDRAM There are two blocks of SDRAM in the system. One block of 64Mb is present at phys-
ical address 0x00000000 and is echoed at 0x04000000. The second block is present at
physical address 0x08000000. The HAL uses the MMU to map the first block to virtual
address 0x00000000 and the second to virtual address 0x04000000, forming a single
contiguous 128Mb block of SDRAM starting at 0x00000000. The same memory is also
accessible uncached and unbuffered at virtual location 0x70000000 for use by devices.
The first 32 bytes are used for hardware exception vectors. The next 32 bytes are used
for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. For
ROM/ROMRAM startup, all remaining SDRAM is available. For RAM startup, avail-
able RAM starts at virtual location 0x00040000, with the bottom 256kB reserved for
use by RedBoot.

On-chip SRAM This is located at address 0x38000000 of the physical memory space. The HAL uses
the MMU to map this to the same virtual address, but cached and buffered. The same
memory is also accessible uncached and unbuffered at virtual location 0x78000000 for
use by devices. This memory is not used by eCos for any purpose except in the SRAM
startup mode, when it contains the system image.

On-chip Peripheral Registers These are located at address 0x10000000 in the physical memory space. When the MMU
is enabled, it sets up a direct, uncached, unbuffered mapping so that these registers re-
main accessible at their physical locations.

Off-chip Peripherals All off-chip peripherals are also visible in the 0x10000000 address space.

Other Issues
The VPB926EJS platform HAL does not affect the implementation of other parts of the eCos HAL specification. The ARM9
variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2439

Chapter 264. Spectrum Digital OMAP-L137
Board Support

2440

Spectrum Digital OMAP-L137 Board Support

Name
eCos Support for the Spectrum Digital OMAP-L137 Evaluation Module — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Spectrum Digital OMAP-L137 Evaluation
Module. This board is fitted with an OMAP L137 processor, 64 MBytes of SDRAM, four megabytes of serial NOR flash
attached to the SPI0 bus, 32K of EEPROM attached to the I2C0 bus, a DB9 serial connector for UART2, a KSZ8893MQL
ethernet switch/phy, a jtag connector, and a number of other peripherals and expansion sockets. eCos support for the devices
and peripherals on the board is described below.

For typical eCos development, a RedBoot image is programmed into the SPI NOR flash memory, and the board will load this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the OMAP L1xx processor HAL documentation and further
device support and subsystems are described and documented there.

Supported Hardware
Bootstrap on the OMAP-L137 is complicated. The chip has two processors, a DSP and an ARM. The chip powers up with the
DSP running a primary bootloader from on-chip memory, and with the ARM powered down. The primary bootloader checks
the state of a number of GPIO pins to determine how to proceed. In a typical setup it will proceed to read in an AIS script from
the serial NOR flash on the SPI0 bus and execute the script's instructions. The AIS script will load a secondary bootloader into
on-chip memory and transfer control to that. The secondary bootloader will load a tertiary bootloader elsewhere in on-chip
memory, activate the ARM processor, and put the DSP to sleep. The tertiary bootloader will initialize more of the hardware,
in particular the external SDRAM, load RedBoot or another ROM startup eCos application, and transfer control. RedBoot can
then be used to download and debug a RAM startup application, or in production systems it can load such an application from
flash or other storage and start it.

There are 4 MBytes of SPI NOR flash, arranged in 64 64K blocks. In a typical setup the first four blocks are used to hold a boot
image containing the AIS script for the primary bootloader, the secondary and tertiary bootloaders, and RedBoot. The topmost
block is used to manage the flash and also holds RedBoot fconfig values. The remaining blocks can be used by application code.

On this board only uart2 is connected, and this is normally used by RedBoot for communication with the host. If the device
is needed by the application, either directly or via the serial driver, then it cannot also be used for RedBoot communication
and another communication channel such as ethernet should be used instead. The port also includes support for the ethernet,
watchdog, and real-time clock devices and for the SPI and I²C buses. Details of this support can be found below.

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (RTC,
SPI, I²C, etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will set
up the appropriate power control and pin multiplexing configuration.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 4.4.5, arm-eabi-gdb version 7.2, and binutils version 2.20.

2441

Spectrum Digital OMAP-L137 Board Support

Name
Setup — Preparing the SD-L137 board for eCos Development

Overview
In a typical development environment, the SD-L137 board boots from the SPI NOR and runs the RedBoot ROM monitor from
SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-
eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from SPI
NOR flash to SDRAM

redboot_ROM.ecm redboot_ROM.img

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from NOR flash by the first three bootloaders. The use of ROM for this configuration is
intended to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which
assumes that this has already been done.

Initial Installation
Installation involves writing an image to the start of the serial flash. This image contains the AIS script interpreted by the
primary bootloader, the secondary and tertiary bootloaders, and a RedBoot executable. A suitable image redboot.img is
provided with the release or can be rebuilt using the instructions below.

There are two ways of writing the image. The first is to use a dedicated utility such as TI's Serial Boot and Flash Loading Utility
for OMAP-L137. The second is to set up a JTAG emulator. This can then be used to run a RAM-resident RedBoot which
will allow the flash to be programmed. The recommended JTAG emulator is the Ronetix PEEDI, but other JTAG emulators
will involve a similar setup.

Caution

The L137 powers up with the ARM processor disabled, and the ARM does not start up until the primary bootloader
has executed the AIS script and the secondary bootloader has run to completion. Until that time it will not be
possible to attach a PEEDI or other ARM JTAG emulator. If a bogus image is programmed into the flash such
that the AIS script or secondary bootloader are missing or corrupt, it will not be possible to recover the board via
JTAG. Recovery should still be possible by using the TI utilities and uart2.

Programming RedBoot into SPI NOR flash using the TI Flash Utility

The following gives the steps needed to program RedBoot into the SPI NOR Flash using TI's Serial Boot and Flash Load-
ing Utility for OMAP-L137. This tool and it's associated documentation can be found on the TI wiki http://processors.wik-
i.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L137 page.

A RedBoot image file has been provided that combines the required L137 AIS script, DSP and ARM bootloaders, along
with RedBoot itself. The redboot_ROM.img file can be found in the loaders/sd_l137 subdirectory of your eCosPro
installation. The basic bootloader installation process is to set the board into a bootstrap update mode, use the TI utility to
download and write the provided image to the flash, and then restore the board to normal operational mode.

1. Install the TI tools on your workstation.

2. Make a note of the boards current SW2 BOOT switch pin configuration and then configure SW2 to enable bootstrap update
mode. The required pin configuration for your specific board revision can be found in the TI documentation. For example,
on revision "C" and later boards: pin 7 ON, pin 2 OFF, pin 1 ON, pin 0 OFF, pin 3 OFF.

2442

http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L137
http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L137

Spectrum Digital OMAP-L137 Board Support

3. Connect a serial cable between the board's DB9 serial connector and the host PC. Run a serial terminal emulator (Putty,
Hyperterm or minicom) on the host, connecting at 115200 baud 8N1 with no flow control. When the board is reset you
should see "BOOTME" output on the serial line.

4. Use the TI sfh_OMAP-L137 utility to install the redboot_ROM.img on the board. You will need to modify the example
command sfh_OMAP-L137 -p com2 -flash_noubl redboot_ROM.img used in the example output below, substituting
"com2" with the serial port corresponding to your setup, and by adding appropriate path prefixes to sfh_OMAP-L137 and
redboot_ROM.img corresponding to their installed location on your workstation.

Once the flash utility starts running you will need to reset the board almost immediately as directed by the utility. Until you
do this the benign message "(Serial Port): Read error! (The operation has timed out.)" will be output continously.

You will also need to be patient as the initial "Loading section..." phase can take many minutes to complete with no obvious
output or other signs of life.

C:>sfh_OMAP-L137 -p com2 -flash_noubl redboot_ROM.img

 TI Serial Flasher Host Program for OMAP-L137
 (C) 2010, Texas Instruments, Inc.
 Ver. 1.67

 [TYPE] Single boot image
[BOOT IMAGE] redboot_ROM.img
 [TARGET] OMAPL137_v2
 [DEVICE] SPI_MEM

Attempting to connect to device com4...
Press any key to end this program at any time.

(AIS Parse): Read magic word 0x41504954.
(AIS Parse): Waiting for BOOTME... (power on or reset target now)
(Serial Port): Read error! (The operation has timed out.)
(AIS Parse): BOOTME received!
(AIS Parse): Performing Start-Word Sync...
(AIS Parse): Performing Ping Opcode Sync...
(AIS Parse): Processing command 0: 0x58535901.
(AIS Parse): Performing Opcode Sync...
(AIS Parse): Loading section...
(AIS Parse): Loaded 14912-Byte section to address 0x80000000.
(AIS Parse): Processing command 1: 0x58535901.
(AIS Parse): Performing Opcode Sync...
(AIS Parse): Loading section...
(AIS Parse): Loaded 784-Byte section to address 0x80004240.
(AIS Parse): Processing command 2: 0x58535901.
(AIS Parse): Performing Opcode Sync...
(AIS Parse): Loading section...
(AIS Parse): Loaded 32-Byte section to address 0x80004550.
(AIS Parse): Processing command 3: 0x58535901.
(AIS Parse): Performing Opcode Sync...
(AIS Parse): Loading section...
(AIS Parse): Loaded 20-Byte section to address 0x80004590.
(AIS Parse): Processing command 4: 0x58535906.
(AIS Parse): Performing Opcode Sync...
(AIS Parse): Performing jump and close...
(AIS Parse): AIS complete. Jump to address 0x800034C0.
(AIS Parse): Waiting for DONE...
(AIS Parse): Boot completed successfully.

Waiting for SFT on the OMAP-L137...

Flashing application redboot_ROM.img (206288 bytes)

 100% [¦¦]
 Image data transmitted over UART.

 100% [¦¦]
 Application programming complete

2443

Spectrum Digital OMAP-L137 Board Support

Operation completed successfully.

5. Power off the board and restore the SW2 BOOT switch to it's normal "RUN" configuration. Power on the board again and
you should see the following output on the serial port from RedBoot.

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 00:0e:99:03:13:ee
IP: 10.1.1.147/255.255.255.0, Gateway: 10.1.1.241
Default server: 0.0.0.0

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_1_10 - built 11:59:59, Jun 23 2011

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2011 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Spectrum Digital OMAP-L137 Evaluation Module (ARM9)
RAM: 0xc0000000-0xc4000000 [0xc003be80-0xc3fed000 available]
FLASH: 0x70000000-0x703fffff, 64 x 0x10000 blocks

RedBoot>

The flash configuration warning is expected. The ethernet MAC address will have come from the serial EEPROM on the
I2C0 bus. The IP and gateway addresses will have been provided by a BOOTP (DHCP) server.

6. Run the following command to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x703f0000-0x703fffff: .
... Program from 0xc3ff0000-0xc4000000 to 0x703f0000: .
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x70000000 0x70000000 0x00040000 0x00000000
FIS directory 0x703F0000 0x703F0000 0x0000F000 0x00000000
RedBoot config 0x703FF000 0x703FF000 0x00001000 0x00000000
RedBoot>

If desired the fconfig settings can be initialized at this time using the fconfig -i command. Most of the settings relate to
ethernet, for example the IP address that RedBoot should use.

7. The RedBoot installation is now complete. The board is now ready for development using arm-eabi-gdb, RedBoot's gdb
stubs, and eCos applications configured for RAM startup.

Programming RedBoot into NOR flash using the PEEDI

The following gives the steps needed to program RedBoot into the SPI NOR Flash using the PEEDI. The basic process is to
load and run a copy of RedBoot, then use that to initialize the flash, download the full image including the AIS script and
bootloaders, and write this image to the flash.

1. Set up the PEEDI as described in the Ronetix documentation. The peedi.sd_l137.cfg file in the platform HAL's
misc subdirectory contains the required hardware initialization support. Other parts of this file will need to be edited, for
example the license key details.

2. Connect a serial cable between the boards DB9 serial connector and the host PC. Run a serial terminal emulator (Hyperterm
or minicom) on the host, connecting at 115200 baud 8N1 with no flow control.

3. Use arm-eabi-gdb to run the redboot.elf executable from the loaders/sd_l137 subdirectory of your eCosPro
installation. Substitute the appropriate TCP/IP address and port number corresponding to your PEEDI setup.

2444

Spectrum Digital OMAP-L137 Board Support

$ arm-eabi-gdb --quiet <path>/redboot.elf
(gdb) target remote peedi:9000
Remote debugging using peedi:9000
0xffff0000 in ?? ()
(gdb) load
Loading section .rom_vectors, size 0x40 lma 0xc0008000
Loading section .text, size 0x1a078 lma 0xc0008040
Loading section .rodata, size 0x3fac lma 0xc00220b8
Loading section .data, size 0xd2b4 lma 0xc0026064
Start address 0xc0008040, load size 176920
Transfer rate: 34 KB/sec, 13609 bytes/write.
(gdb) continue
Continuing.

Address 0xffff0000 corresponds to the ARM reset vector. At this point the primary and secondary bootloaders have run
and the processor would be about to start the tertiary bootloaders, but the PEEDI will have halted the processor and run its
hardware initialization macro instead. RedBoot will start running after the continue command, and the following should
be sent out of the serial line.

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 00:0e:99:03:13:ee
IP: 10.1.1.147/255.255.255.0, Gateway: 10.1.1.241
Default server: 0.0.0.0

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_1_10 - built 11:59:59, Jun 23 2011

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2011 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Spectrum Digital OMAP-L137 Evaluation Module (ARM9)
RAM: 0xc0000000-0xc4000000 [0xc003cbd8-0xc3fed000 available]
FLASH: 0x70000000-0x703fffff, 64 x 0x10000 blocks
RedBoot>

The flash configuration warning is expected at this stage. The ethernet MAC address will have come from the serial EEP-
ROM on the I2C0 bus. The IP and gateway addresses will have been provided by a BOOTP server.

4. Run the following command to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x703f0000-0x703fffff: .
... Program from 0xc3ff0000-0xc4000000 to 0x703f0000: .
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x70000000 0x70000000 0x00040000 0x00000000
FIS directory 0x703F0000 0x703F0000 0x0000F000 0x00000000
RedBoot config 0x703FF000 0x703FF000 0x00001000 0x00000000
RedBoot>

If desired the fconfig settings can be initialized at this time using the fconfig -i command. Most of the settings relate to
ethernet, for example the IP address that RedBoot should use.

5. Next the full RedBoot image should be loaded into RAM.

 RedBoot> load -r -m y -b %{freememlo}
 C

From the terminal emulator upload the redboot.img file from the loaders/sd_l137 directory using Y-Modem
protocol. When the upload is complete you should see something similar to the following output.

2445

Spectrum Digital OMAP-L137 Board Support

CRaw file loaded 0xc003cc00-0xc006ff27, assumed entry at 0xc003cc00
xyzModem - CRC mode, 1641(SOH)/0(STX)/0(CAN) packets, 3 retries
RedBoot>

6. Now program the image to flash:

RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x70000000-0x7003ffff:
... Program from 0xc003cc00-0xc006ff27 to 0x70000000:
... Erase from 0x703f0000-0x703fffff: .
... Program from 0xc39f0000-0xc3a00000 to 0x703f0000: .
RedBoot>

7. The RedBoot installation is now complete. Terminate the arm-eabi-gdb session by hitting ctrl-C and then running the quit
command. Detach the PEEDI and power cycle the board. RedBoot should now start running after the primary, secondary
and tertiary bootloaders and output a banner similar to the one above. The board is now ready for development using arm-
eabi-gdb, RedBoot's gdb stubs, and eCos applications configured for RAM startup.

If it proves necessary to re-install RedBoot, this may be achieved by repeating the serial download and fis create parts of
the above process. It is not necessary to reinitialize the FIS and fconfig.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for this board are:

$ mkdir redboot_sdl137_rom
$ cd redboot_sdl137_rom
$ ecosconfig new sd_l137 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/sd_l137/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the files redboot.elf and redboot.img. red-
boot.elf can be executed on the board using arm-eabi-gdb and a JTAG emulator. redboot.img is an image containing
the AIS script for the primary bootloader, the secondary and tertiary bootloaders, and RedBoot. It is this image which should
be programmed into flash to install or update RedBoot.

2446

Spectrum Digital OMAP-L137 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The SD-L137 platform HAL package is loaded automatically when eCos is configured for the sd_l137 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for applications which will be programmed into flash, or which will be loaded and debugged
via JTAG. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization.

Application binaries cannot just be programmed into flash. Instead it is necessary to incorporate them into a larger image
file containing the AIS boot script for the primary bootloader as well as the secondary and tertiary bootloaders. The
platform HAL's misc subdirectory contains a script gensdl137aisimg.tcl which can be used. Given an ELF
executable test produced by the linker, the steps required are:

$ arm-eabi-objcopy -O binary test test.bin
$ tclsh <path>/misc/gensdl137aisimg.tcl test.bin test.img

The resulting image file can be programmed into flash instead of RedBoot. The build process for RedBoot will invoke
these commands automatically to generate the redboot.img file.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The board contains a 4 Mbyte serial NOR flash device. The CYGPKG_DEVS_FLASH_SPI_M25PXX package contains all the
code necessary to support this part and the platform HAL package contains definitions that customize the driver to the board.
This driver is not active until the generic Flash support package, CYGPKG_IO_FLASH, is included in the configuration. The
driver only supports 64K block erase operations, not the smaller 4K sector erase operations.

This driver is capable of supporting the JFFS2 filesystem. However, note that the SPI interface means that this file system has
reduced bandwidth and increased latency compared with other implementations. All that is required to enable the support is
to include the filesystem (CYGPKG_FS_JFFS2) and any of its package dependencies (including CYGPKG_IO_FILEIO and
CYGPKG_LINUX_COMPAT) together with the flash infrastructure (CYGPKG_IO_FLASH).

2447

Spectrum Digital OMAP-L137 Board Support

Ethernet Driver
The board uses the OMAP L137's internal EMAC ethernet device attached to an external Micrel KSZ8893 PHY. The CYGP-
KG_DEVS_ETH_ARM_OMAP package contains all the code necessary to support this device and the platform HAL package
contains definitions that customize the driver to the board. This driver is not active until the generic Ethernet support package,
CYGPKG_IO_ETH_DRIVERS, is included in the configuration. The ethernet MAC address is held in the last 256-byte page
of the serial EEPROM attached to the I2C0 bus.

RTC Driver
The board uses the OMAP L137's internal RTC support. The CYGPKG_DEVICES_WALLCLOCK_ARM_OMAP_L1XX package
contains all the code necessary to support this device. This driver is not active until the generic wallclock device support
package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The board uses the OMAP L137's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_ARM_OMAP_L1XX
package contains all the code necessary to support this device. Within that package the CYGNUM_DEVS_WATCHDOG_AR-
M_OMAP_L1XX_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by default will force
a reset of the board upon timeout. This driver is not active until the generic watchdog device support package, CYGP-
KG_IO_WATCHDOG, is included in the configuration.

UART Serial Driver
The board uses the OMAP L137's internal UART serial support as described in the OMAP L1xx processor HAL documentation.
Only uart2 has a connector and only the tx and rx lines are connected, so hardware flow control and modem support signals are
not available. The uart is normally used by RedBoot for communication with the host. If the device is needed by the application,
either directly or via the serial driver, then it cannot be used for RedBoot communication and another channel such as ethernet
should be used instead.

Device driver support is through the CYGPKG_IO_SERIAL_GENERIC_16X5X generic driver package which is modified by
the CYGPKG_IO_SERIAL_ARM_OMAP_L1XX driver package for the OMAP L1xx. The packages are loaded automatically
when configuring for the sd-l137 target but the option CYGPKG_IO_SERIAL_DEVICES has to be enabled to instantiate the
device. The default device name is /dev/ser2.

I2C Bus Driver
The OMAP L1XX processor HAL contains a driver for the I²C two wire interface. This driver is loaded automatically when con-
figuring for this target. The platform HAL enables bus 0 by default but leaves bus 1 disabled since there are no attached devices.
This can be changed in the configuration if devices are attached via an expansion socket using option CYGHWR_HAL_AR-
M_SD_L137_I2C1. The bus names are hal_omap_l1xx_i2c_bus0 and hal_omap_l1xx_i2c_bus1.

The platform HAL also instantiates three I²C device objects: hal_i2c_eeprom for the serial EEPROM; hal_i2c_codec
for the audio codec; and hal_i2c_eth_switch for the ethernet switch/phy. These devices can be accessed via the generic
I²C API. The last 256-byte page of the eeprom is used to hold the ethernet MAC address but the remaining pages are available
for use by the application. The ethernet switch is accessed only during ethernet driver initialization. The codec is not used
by any eCos code.

The bus and device objects do not have to be enabled explicitly. If they are not used by the application, directly or indirectly,
then they will be removed by link-time garbage collection.

SPI Bus Driver
The SPI buses are supported via the OMAP SPI driver CYGPKG_DEVS_SPI_ARM_OMAP. On this board only bus 0 is en-
abled by default since bus 1 does not ordinarily have any attached devices, but this can be changed via the configuration op-
tion CYGHWR_HAL_ARM_SD_L137_SPI1. Additionally, if CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD is set, that will
ensure the appropriate bus it is configured to use is enabled (see below). The bus names are cyg_spi_omap_bus0 and

2448

Spectrum Digital OMAP-L137 Board Support

cyg_spi_omap_bus1 respectively. The platform HAL also provides an SPI device object cyg_m25pxx_spi_device
for the serial flash. Normally this device is used only the flash device driver, not directly by the application.

The bus and device objects do not have to be enabled explicitly. If they are not used by the application, directly or indirectly,
then they will be removed by link-time garbage collection.

MMC/SD cards over SPI

The HAL can be configured to support an MMC/SD card socket connected by SPI. Ensure CYGHWR_HAL_AR-
M_SD_L137_SPI_MMCSD is enabled to include this support, which it is by default if the disk driver package (CYGP-
KG_IO_DISK) is added to the eCos configuration.

An MMC/SD socket via SPI is not a standard feature of the Spectrum Digital OMAP-L137 platform, however it is possible to
add one using a daughterboard connected via an expansion bus. As a result of this there are a number of associated configuration
options as it could be connected in a variety of ways:

CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD_BUS

This option selects which SPI bus number is connected to the socket. It has been observed that some MMC/SD cards do
not behave correctly if a second SPI device is present on the same SPI bus, so it is not recommended to share the MMC/
SD socket's SPI bus with any other device. Given the dataflash on the SPI0 bus, that would only leave SPI1, which is
the default.

CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD_CS

This component allows configuration of the chip select line used for communicating with the SPI-connected card. With
this component enabled, this chip select line will be managed using GPIO. Alternatively, with this component disabled,
the default chip select 0 will be used.

CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD_CS_PINMUX_REG

This option configures the PINMUX register used for the chip select line used to communicate with the card. The SPI1
chip select 0 is multiplexed with a UART2 line, and since that is the UART used for HAL diagnostic output the default is
instead to use GPIO3[10] (shared with the unused UART1_TXD). Its PINMUX function is set within PINMUX register
11, which is the default for this option. Consult the OMAP-L137 documentation for values for alternative pins.

CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD_CS_PINMUX_FIELD

This option configures the field within the PINMUX register used for the chip select line used to communicate with the
card. The value of this field is the amount of left bitshifting required in the register to correspond to the correct pin. SPI1
chip select 0 is multiplexed with a UART2 line, and since that is the UART used for HAL diagnostic output the default is
instead to use GPIO3[10] (shared with the unused UART1_TXD). Its PINMUX function is set within PINMUX register
11 at bit position 12, which is the default for this option. Consult the OMAP-L137 documentation for values for alternative
pins.

CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD_CS_GPIO_BANK

This option configures the GPIO bank used for the chip select line used to communicate with the card. The SPI1 chip select
0 is multiplexed with a UART2 line, and since that is the UART used for HAL diagnostic output the default is instead
to use GPIO3[10] (shared with the unused UART1_TXD), so bank 3 is the default for this option. Consult the OMAP-
L137 documentation for values for alternative pins.

CYGHWR_HAL_ARM_SD_L137_SPI_MMCSD_CS_GPIO_BIT

This option configures the GPIO bit used for the chip select line used to communicate with the card. The SPI1 chip select
0 is multiplexed with a UART2 line, and since that is the UART used for HAL diagnostic output the default is instead to
use GPIO3[10] (shared with the unused UART1_TXD), so bit 10 is the default for this option. Consult the OMAP-L137
documentation for values for alternative pins.

If using the default chip select via GPIO3[10], then you must ensure the SEL_EXP2_UART1 pin is set high. If you are using
the Spectrum Digital prototype daughterboard, you can do this on SW2 by setting switch 4 to the ON position.

2449

Spectrum Digital OMAP-L137 Board Support

Similarly, if using the SPI1 bus, and expansion connector 2, then you must ensure the SEL_SPI1_EXP2_B pin is set high. If you
are using the Spectrum Digital prototype daughterboard and have connected your card socket to J4, you can set SEL_SPI1_EX-
P2_B high by setting switch 3 of SW2 to the ON position.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm9 is the correct option for the ARM926EJ CPU in the OMAP L1xx.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2450

Spectrum Digital OMAP-L137 Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only ROM configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.sd_l137.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs. This includes setting up the PLLs and SDRAM controller.

The peedi.sd_l137.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use hardware
break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 9000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:9000

The target will always run the primary and secondary bootloaders because the ARM is not powered up until the secondary
bootloader has activated the ARM and put the DSP to sleep. The PEEDI will then run the initialization section of the peed-
i.sd_l137.cfg file, and halt the target. This behaviour is repeated whenever the board is powercycled. If the PEEDI is
given a 'go' command then the board will continue booting as normal.

Consult the PEEDI documentation for information on other features.

Running ROM applications

Applications configured for ROM startup can be run directly under JTAG. Once loaded and running via JTAG, HAL diagnostic
output will appear by default on the serial debug port.

2451

Spectrum Digital OMAP-L137 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the hardware, and should be read in
conjunction with that specification. The platform HAL package complements the ARM architectural HAL, the ARM9 variant
HAL and the OMAP L1xx processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0xC0000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0xC0000000, but in order to
assign hardware exception vectors at address 0x00000000, the HAL also uses the MMU
to create a clone of this memory at virtual address 0x00000000. The same memory is
also accessible uncached and unbuffered at virtual location 0xD0000000 for use by de-
vices. The first 32 bytes are used for hardware exception vectors. The next 32 bytes
are used for the VSR table and the next 256 bytes are normally used for the eCos vir-
tual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0xC0040000, with the bottom 256kB reserved for use by RedBoot.

On-chip SRAM There are a number of on-chip SRAM areas. These are identity mapped unbuffered and
uncached with their physical addresses. eCos does not use any of these areas so they are
all available to the application.

SPI NOR Flash SPI NOR flash media can only be accessed with the Flash API. For the purposes of
this API a placeholder address range has been allocated as if the Flash is present at this
address. The base of this address range is 0x70000000. This reserved range is not real
memory and any attempt to access it directly by the processor other than via the Flash
API will result in a memory address exception.

On-chip Peripheral Registers These are located at various addresses in the physical memory space. When the MMU is
enabled, it sets up a direct, uncached, unbuffered mapping so that these registers remain
accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, ethernet PHY, SPI flash, and I²C EEPROM facilities on the
board. eCos does not currently make any use of any other off-chip peripherals present
on this board.

SPI NOR Flash
eCos supports SPI access to the NOR flash on the board. The device is typically used to contain RedBoot and flash configuration
data.

2452

Spectrum Digital OMAP-L137 Board Support

Accesses to SPI flash are performed via the Flash API, using 0x70000000 or as the nominal address of the device, although
it does not truly exist in the processor address space.

Since SPI flash is not directly addressable, access from RedBoot is only possible using fis command operations.

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The OMAP L1xx processor
HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2453

Chapter 265. Logic Zoom Board Support

2454

Logic Zoom Board Support

Name
eCos Support for the Logic Zoom Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Logic Zoom eXperimenter board. The board
comes in two versions, one fitted with an TI OMAP L138 processor and the other with a TI Sitara AM1808 processor. The
boards and processors are functionally identical as far as eCos and this documentation are concerned. To simplify the text below
the board is generally referred to as the Zoom and where the text doesn't differentiate between the two processors, all references
to the OMAP-L138 should be taken to refer to either processor. In addition, all OMAP-L138 specific processor configuration
and target names referred to below the should also be used for the Sitara AM1808 prcoessor. The Zoom board consists of a
base board and a CPU module. The CPU module containing either the OMAP L138 or Sitara AM1808 processors. The base
board contains the CPU module, 64Mbytes of SDRAM, 8Mbytes of serial NOR flash memory on SPI0, a LAN87810A PHY,
a MMC/SD socket, external connections for one serial channel, ethernet, USB host/device, and the various other peripherals
supported by the CPUs. eCos support for the devices and peripherals on the board and the CPU is described below.

For typical eCos development, a RedBoot image is programmed into the SPI NOR flash memory, and the board will load this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over ethernet.

This documentation is expected to be read in conjunction with the OMAP L1xx processor HAL documentation and further
device support and subsystems are described and documented there.

Supported Hardware
The SPI NOR flash consists of 128 blocks of 64Ki bytes each. In a typical setup, the first block is reserved for the second-level
bootstrap, the User Boot Loader. The following two blocks are reserved for the use of the ROM RedBoot image. The topmost
block is used to manage the flash and the next block down holds RedBoot fconfig values. The remaining blocks can be used
by application code.

Serial support is through the CYGPKG_IO_SERIAL_GENERIC_16X5X generic driver package which is modified by the
CYGPKG_IO_SERIAL_ARM_OMAP_L1XX driver package for the OMAP L1xx. These packages can support all the serial
devices on the OMAP L138. However, this board only has UART2 connected to an external connector which this HAL indicates
by implementing the CYGINT_HAL_L1XX_UART2 interface. This serial channel is used by RedBoot for communication
with the host. If this device is needed by the application, either directly or via the serial driver, then it cannot also be used for
RedBoot communication. Another communication channel such as ethernet should be used instead. The serial driver package
is loaded automatically when configuring for the Zoom-L138 target.

There is an ethernet driver CYGPKG_DEVS_ETH_ARM_OMAP for the on-chip ethernet device. The platform HAL package
is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when configuring
for the Zoom-l138 board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_OMAP_L1XX. This driver is also loaded automatically
when configuring for the board.

There is a driver for the on-chip real-time clock (RTC) at CYGPKG_DEVS_WALLCLOCK_ARM_OMAP_L1XX. This driver is
also loaded automatically when configuring for the target.

The OMAP L1XX processor HAL contains a driver for the MultiMedia Card Interface (MMC/SD). This driver is loaded
automatically when configuring for this target and allows use of MMC and Secure Digital (SD) flash storage cards within
eCos, exported as block devices. Further documentation on the driver may be found in the OMAP L1XX processor HAL
documentation.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the more
general OMAP SPI driver (CYGPKG_DEVS_SPI_ARM_OMAP) which in turn provides the underlying implementation for the
SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

Furthermore, the platform HAL package contains support for the SPI NOR flash. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_SPI_M25PXX package as well as the above SPI packages. That package is automatically loaded when
configuring for the target. This driver is capable of supporting the JFFS2 filesystem.

2455

Logic Zoom Board Support

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (RTC,
SPI, MMC/SD etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence
will set up the appropriate power control and pin multiplexing configuration.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 4.3.2, arm-eabi-gdb version 6.8, and binutils version 2.18.

2456

Logic Zoom Board Support

Name
Setup — Preparing the Zoom board for eCos Development

Overview
In a typical development environment, the Zoom board boots from the SPI NOR and runs the RedBoot ROM monitor from
SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-
eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from SPI
NOR flash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from NOR flash by the User Boot Loader. The use of ROM for this configuration is intended
to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which assumes
that this has already been done.

Initial Installation
The Zoom board comes with U-Boot installed by default. The booting mechanism is that the on-chip firmware loads a small
User Boot Loader from the start of NOR flash which then loads U-Boot from later in the flash. Our strategy is to leave the
User Boot Loader in place and replace U-Boot with RedBoot.

To write RedBoot to the SPI NOR flash, there are two possibilities: either run a RAM-resident RedBoot using a JTAG emulator
and use that to program RedBoot into the SPI NOR flash; or use a Serial Boot and Flash Utility for OMAP-L138.

The following section describes this process using the Ronetix PEEDI; other JTAG emulators will have similar steps.

Programming RedBoot into NOR flash using the PEEDI

The following gives the steps needed to program RedBoot into the SPI NOR Flash using the PEEDI. The basic process is to
load and run a copy of RedBoot, then use that to initialize the flash, download a new copy of RedBoot and write that to the flash.

1. Set up the PEEDI as described in the Ronetix documentation. The peedi.zoom.cfg file should be used to setup and
configure the hardware.

2. Connect a null-modem serial cable between the serial port of the board and a serial port on a convenient host. Run a terminal
emulator (Hyperterm or minicom) at 115200 baud.

3. Copy redboot_ROM.srec to to a TFTP server that the PEEDI can access. Copy redboot_ROM.img to the machine
running the terminal emulator.

4. Connect a telnet session to the PEEDI and issue the following command, substituting your own TFTP server address:

 zoom>> mem load tftp://10.0.1.1/redboot.srec srec
 ++ info: Loading image file: tftp://10.0.1.1/redboot.srec
 ++ info: At absolute address: 0xC0008000
 loading at 0xC0008000
 loading at 0xC000C000
 loading at 0xC0010000
 loading at 0xC0014000
 loading at 0xC0018000
 loading at 0xC001C000

2457

Logic Zoom Board Support

 Successfully loaded 88KB (90336 bytes) in 20.4s
 zoom>

5. Now issue the go command:

 zoom> go 0xC0008000

You should see the following output on the Zoom board serial line:

+M25PXX : Init device with JEDEC ID 0x202017.
Warning FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:27:53, Jan 26 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Logic Zoom OMAP L138 eXperimenter (ARM9)
RAM: 0xc0000000-0xc4000000 [0xc0022128-0xc3fed000 available]
FLASH: 0x70000000-0x707fffff, 128 x 0x10000 blocks
RedBoot>

6. Run the following command to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x707f0000-0x707fffff: .
... Program from 0xc3ff0000-0xc4000000 to 0x707f0000: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Console baud rate: 115200
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x707e0000-0x707e0fff: .
... Program from 0xc3fef000-0xc3ff0000 to 0x707e0000: .
RedBoot>

7. We now need to download a copy of RedBoot and program it into the flash. Give the following command to RedBoot:

 RedBoot> load -r -m y -b %{freememlo}
 C

From the terminal emulator upload the redboot_ROM.img file using Y-Modem protocol. When the upload is complete
you should see something similar to the following output.

RedBoot> load -r -m y -b %{freememlo}
CRaw file loaded 0xc0022400-0xc00384ef, assumed entry at 0xc0022400
xyzModem - CRC mode, 708(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

8. Now program the RedBoot image to flash:

RedBoot> fis cre RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x70010000-0x7002ffff: ..
... Program from 0xc0022400-0xc00384f0 to 0x70010000: ..
... Erase from 0x707f0000-0x707fffff: .
... Program from 0xc3ff0000-0xc4000000 to 0x707f0000: .
RedBoot>

The RedBoot installation is now complete. This can be tested by issuing the reset run command to the PEEDI, or by detaching
the PEEDI and power cycling the board. Output similar to the following should be seen on the serial port.

2458

Logic Zoom Board Support

+M25PXX : Init device with JEDEC ID 0x202017.
RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 10:27:53, Jan 26 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Logic Zoom OMAP L138 eXperimenter (ARM9)
RAM: 0xc0000000-0xc4000000 [0xc0022128-0xc3fed000 available]
FLASH: 0x70000000-0x707fffff, 128 x 0x10000 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the serial download and fis create parts of the
above process. It is not necessary to reinitialize the FIS and fconfig.

Note

If the board has been supplied with a TI User Boot Loader (UBL) version prior to 1.65, then on startup the board
may output a string on the serial port saying "No magic number found". Earlier Zoom boards were known to
be supplied with version 1.30. In this situation you will need to locate the script flashimg.tcl in the misc
subdirectory of the Zoom platform HAL (i.e. packages/hal/arm/arm9/zoom_l138/VERSION/misc/
flashimg.tcl) along with the redboot_ROM.bin file in the loaders subdirectory of your eCosPro
installation, and run the following command at a command prompt:

flashimg.tcl -oldubl redboot_ROM.bin redboot-oldubl.img

You can then follow the above instructions for installing RedBoot, but use redboot-oldubl.img in place
of uses of redboot_ROM.img.

You will also need to perform this step on any ROM startup user applications to be programmed into Flash using
a JTAG device and booted by UBL.

Programming RedBoot into NOR flash using the TI Serial Boot and Flash
utility

Texas Instruments have made available a command-line Serial Boot and Flash Loading Utility for OMAP-L138. More infor-
mation including download and usage instructions is available here on their website.

With this utility, you can program a ROM startup version of RedBoot in raw binary format (a prebuilt version of which may
be found at loaders/zoom_l138/redboot_ROM.bin within your eCos installation). On Windows, we advise running
the utility from a Command Prompt, rather than from a Cygwin bash shell.

Before running the utility, first you need to connect your PC to the board's serial port using a null-modem RS232 serial cable.
Secondly, (with the board powered off) you must set DIP switch bank S7 so that switches 7, and 8 are set to the ON position
and the rest are set to the OFF position. If you wish to confirm the board is configured correctly, then you can start a terminal
emulator application (such as Hyperterminal on some versions of Windows) and connect to the serial port at 115200 baud, 8-
N-1 with no hardware flow control, then you should see a "BOOTME" prompt when you power on the board.

To program the redboot_ROM.bin image, change directory to the directory containing the UBL binary file (which is
included with the Serial Boot and Flash utility download), copy the redboot_ROM.bin into that directory, and then run
the utility as follows:

sfh_OMAP-L138.exe -flash ubl_OMAPL138_SPI_MEM.bin redboot_ROM.bin -APPStartAddr 0xC0008040 -APPLoadAddr 0xC0008000

After successful completion, RedBoot will be resident in SPI NOR Flash. To return to the normal boot mode, you must reset
the SW7 DIP switches to their default position allowing booting from SPI NOR Flash. To do so, set all S7 switches to their
OFF positions.

2459

http://processors.wiki.ti.com/index.php/Serial_Boot_and_Flash_Loading_Utility_for_OMAP-L138

Logic Zoom Board Support

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the Zoom L138 are:

$ mkdir redboot_zoom_l138_rom
$ cd redboot_zoom_l138_rom
$ ecosconfig new zoom_l138 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/zoom_l138/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the files redboot.srec and redboot.img.
redboot.img is a binary file that includes a 16 byte header needed by the User Boot Loader to load RedBoot successfully.

2460

Logic Zoom Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The Zoom L138 platform HAL package is loaded automatically when eCos is configured for the zoom-l138 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into Flash. The application will be self-
contained with no dependencies on services provided by other software. eCos startup code will perform all necessary
hardware initialization. This startup type can also be used for applications loaded via JTAG.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The Zoom board contains an 8Mbyte Numonyx M25P64 SPI serial NOR flash device. The CYGPKG_DE-
VS_FLASH_SPI_M25PXX package contains all the code necessary to support this part and the platform HAL package con-
tains definitions that customize the driver to the Zoom L138 board. This driver is not active until the generic Flash support
package, CYGPKG_IO_FLASH, is included in the configuration.

This driver is capable of supporting the JFFS2 filesystem. However, note that the SPI interface means that this file system has
reduced bandwidth and increased latency compared with other implementations. All that is required to enable the support is
to include the filesystem (CYGPKG_FS_JFFS2) and any of its package dependencies (including CYGPKG_IO_FILEIO and
CYGPKG_LINUX_COMPAT) together with the flash infrastructure (CYGPKG_IO_FLASH).

Ethernet Driver

The Zoom L138 board uses the OMAP L138's internal EMAC ethernet device attached to an external SMSC LAN8710A PHY.
The CYGPKG_DEVS_ETH_ARM_OMAP package contains all the code necessary to support this device and the platform HAL
package contains definitions that customize the driver to the ZOOM L138 board. This driver is not active until the generic
Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

2461

Logic Zoom Board Support

RTC Driver
The ZOOM L138 board uses the OMAP L138's internal RTC support. The CYGPKG_DEVICES_WALLCLOCK_AR-
M_OMAP_L1XX package contains all the code necessary to support this device. This driver is not active until the generic wall-
clock device support package, CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The Zoom L138 board uses the OMAP L138's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_AR-
M_OMAP_L1XX package contains all the code necessary to support this device. Within that package the CYGNUM_DE-
VS_WATCHDOG_ARM_OMAP_L1XX_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by
default will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package,
CYGPKG_IO_WATCHDOG, is included in the configuration.

UART Serial Driver
The Zoom L138 board uses the OMAP L138's internal UART serial support as described in the OMAP L1xx processor HAL
documentation. Only one serial connector is available on the board, which is connected to UART2. This connector has the
RTS/CTS hardware flow control lines connected in addition to the data lines.

MMC/SD Driver
As the OMAP L1xx MMC/SD driver is part of the OMAP L1xx HAL, nothing is required to load it. Similarly the MMC/SD bus
driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific configuration for this
target. All that is required to enable the support is to include the generic disk I/O infrastructure package (CYGPKG_IO_DISK),
along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its package dependencies
(including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

Various options can be used to control specifics of the MMC/SD driver. Consult the OMAP L1xx HAL documentation for
information on its configuration.

This board has the MMC/SD socket's card detect and write protect lines connected to GPIO lines. The card detect line is
additionally monitored by an interrupt handler. Thus the disk I/O layer's removeable media support will detect when cards have
been inserted or removed, and the FILEIO layer's automounter can be used.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm926ej-s The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm926ej-s is the correct option for the ARM926EJ-S CPU in the OMAP
L1xx.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2462

Logic Zoom Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only ROM configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.zoom.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs. This includes setting up the PLLs and SDRAM controller.

The peedi.zoom.cfg file also contains an option to define whether hardware or software breakpoints are used by default,
using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use hardware break
points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.zoom.cfg file,
and halts the target. This behaviour is repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. If a second-level bootstrap and ROM RedBoot is resident in flash, it will be run.

Consult the PEEDI documentation for information on other features.

Running ROM applications

Applications configured for ROM startup can be run directly under JTAG. Once loaded and running via JTAG, HAL diagnostic
output will appear by default on the serial debug port.

Installing user applications into Flash with JTAG

If you wish to install a ROM startup application into Flash to be automatically booted, you can follow a similar procedure to
installing RedBoot into Flash. However before you can do so, you must first prepend a header to your application image in
order for the TI User Boot Loader (UBL) to recognise it as a valid application.

You will need to locate the script flashimg.tcl in the misc subdirectory of the Zoom platform HAL (i.e. packages/hal/
arm/arm9/zoom_l138/VERSION/misc/flashimg.tcl) and generate a binary image of your program using the
arm-eabi-objcopy command. The following gives an example simplified command sequence which can be run at a command
shell prompt:

arm-eabi-objcopy -O binary myapp myapp.bin
flashimg.tcl myapp.bin myapp.img

You will need to subsitute your own paths and filenames where applicable. Additionally, if your board is installed with a UBL
version earlier than 1.65, you are likely to need to use the extra option -oldubl to flashimg.tcl, otherwise you may receive
errors about missing magic numbers from UBL at boot time.

Once you have the .img file, you can follow the same process as installing RedBoot via JTAG.

2463

Logic Zoom Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Zoom L138 hardware, and should be
read in conjunction with that specification. The platform HAL package complements the ARM architectural HAL, the ARM9
variant HAL and the OMAP L1xx processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0xC0000000 of the physical memory space. The HAL con-
figures the MMU to retain the SDRAM at virtual address 0xC0000000, but in order to
assign hardware exception vectors vectors at address 0x00000000, the HAL also uses
the MMU to create a clone of this memory at virtual address 0x00000000. The same
memory is also accessible uncached and unbuffered at virtual location 0xD0000000 for
use by devices. The first 32 bytes are used for hardware exception vectors. The next 32
bytes are used for the VSR table and the next 256 bytes are normally used for the eCos
virtual vectors, allowing RAM-based applications to use services provided by the ROM
monitor. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x4000 to 0x8000. For ROM startup,
all remaining SDRAM is available. For RAM startup, available RAM starts at virtual
location 0xC0040000, with the bottom 256kB reserved for use by RedBoot. ROM appli-
cations are loaded starting at 0xC0008000, which leaves space for the User Boot Loader.

On-chip SRAM There are a number of on-chip SRAM areas. These are identity mapped unbuffered and
uncached with their physical addresses.

SPI NOR Flash SPI NOR flash media can only be accessed with the Flash API. For the purposes of
this API a placeholder address range has been allocated as if the Flash is present at this
address. The base of this address range is 0x70000000. This reserved range is not real
memory and any attempt to access it directly by the processor other than via the Flash
API will result in a memory address exception.

On-chip Peripheral Registers These are located at various addresses in the physical memory space. When the MMU is
enabled, it sets up a direct, uncached, unbuffered mapping so that these registers remain
accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, ethernet PHY, MMC/SD, and SPI flash facilities on the Zoom
L138 board. eCos does not currently make any use of any other off-chip peripherals
present on this board.

SPI NOR Flash
eCos supports SPI access to the NOR flash on the board. The device is typically used to contain RedBoot and flash configuration
data.

2464

Logic Zoom Board Support

Accesses to SPI flash are performed via the Flash API, using 0x70000000 or as the nominal address of the device, although
it does not truly exist in the processor address space.

Since SPI flash is not directly addressable, access from RedBoot is only possible using fis command operations.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provides better performance than Thumb mode.

Example 265.1. zoom_l138 Real-time characterization

 Startup, main stack : stack used 392 size 3920
 Startup : Interrupt stack used 504 size 4096
 Startup : Idlethread stack used 88 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 4.52 microseconds (9 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 3.21 2.00 8.50 0.53 60% 25% Create thread
 0.80 0.50 2.50 0.27 54% 43% Yield thread [all suspended]
 1.08 0.50 3.00 0.15 85% 1% Suspend [suspended] thread
 1.07 0.50 2.50 0.18 76% 6% Resume thread
 1.51 1.00 5.00 0.19 73% 17% Set priority
 0.90 0.50 1.50 0.22 64% 28% Get priority
 2.42 2.00 10.50 0.36 54% 42% Kill [suspended] thread
 0.79 0.50 2.00 0.26 53% 45% Yield [no other] thread
 1.45 1.00 4.00 0.22 67% 25% Resume [suspended low prio] thread
 1.05 0.50 2.50 0.14 81% 6% Resume [runnable low prio] thread
 1.50 1.00 4.00 0.17 71% 17% Suspend [runnable] thread
 0.80 0.50 2.50 0.27 53% 45% Yield [only low prio] thread
 1.08 0.50 2.50 0.16 81% 3% Suspend [runnable->not runnable]
 2.14 1.50 7.50 0.28 78% 4% Kill [runnable] thread
 2.33 2.00 6.00 0.31 50% 46% Destroy [dead] thread
 2.96 2.50 7.00 0.26 62% 28% Destroy [runnable] thread
 4.34 3.50 9.50 0.43 82% 6% Resume [high priority] thread
 1.48 1.00 4.00 0.08 90% 7% Thread switch

 0.43 0.00 1.00 0.13 84% 14% Scheduler lock
 0.70 0.50 1.00 0.24 60% 60% Scheduler unlock [0 threads]
 0.69 0.50 1.00 0.24 61% 61% Scheduler unlock [1 suspended]
 0.70 0.50 1.50 0.24 60% 60% Scheduler unlock [many suspended]
 0.70 0.50 1.00 0.24 60% 60% Scheduler unlock [many low prio]

 0.45 0.00 2.00 0.17 78% 18% Init mutex
 1.02 0.50 2.50 0.12 84% 9% Lock [unlocked] mutex
 1.13 0.50 3.50 0.29 68% 9% Unlock [locked] mutex
 0.98 0.50 2.50 0.12 84% 12% Trylock [unlocked] mutex
 0.88 0.50 1.50 0.21 68% 28% Trylock [locked] mutex

2465

Logic Zoom Board Support

 0.50 0.00 1.50 0.06 90% 6% Destroy mutex
 3.14 3.00 6.50 0.25 90% 90% Unlock/Lock mutex

 0.52 0.50 1.00 0.03 96% 96% Create mbox
 0.53 0.50 1.00 0.06 93% 93% Peek [empty] mbox
 1.17 1.00 3.00 0.26 75% 75% Put [first] mbox
 0.73 0.50 1.00 0.25 53% 53% Peek [1 msg] mbox
 1.17 1.00 3.00 0.26 75% 75% Put [second] mbox
 0.55 0.50 1.00 0.08 90% 90% Peek [2 msgs] mbox
 1.20 1.00 3.00 0.28 68% 68% Get [first] mbox
 1.30 1.00 2.00 0.26 53% 43% Get [second] mbox
 1.09 1.00 2.50 0.16 87% 87% Tryput [first] mbox
 1.11 1.00 2.50 0.18 84% 84% Peek item [non-empty] mbox
 1.16 1.00 2.50 0.23 75% 75% Tryget [non-empty] mbox
 1.06 0.50 2.50 0.14 87% 3% Peek item [empty] mbox
 0.98 0.50 2.50 0.12 84% 12% Tryget [empty] mbox
 0.75 0.50 1.00 0.25 100% 50% Waiting to get mbox
 0.55 0.50 1.00 0.08 90% 90% Waiting to put mbox
 0.81 0.50 2.50 0.31 93% 50% Delete mbox
 2.42 2.00 7.00 0.42 93% 50% Put/Get mbox

 0.44 0.00 0.50 0.11 87% 12% Init semaphore
 0.88 0.50 2.00 0.26 59% 34% Post [0] semaphore
 0.88 0.50 2.00 0.23 65% 31% Wait [1] semaphore
 0.84 0.50 2.00 0.26 59% 37% Trywait [0] semaphore
 0.77 0.50 1.00 0.25 53% 46% Trywait [1] semaphore
 0.55 0.00 1.50 0.17 75% 9% Peek semaphore
 0.53 0.00 1.50 0.12 84% 6% Destroy semaphore
 2.13 2.00 5.00 0.23 90% 90% Post/Wait semaphore

 0.55 0.50 2.00 0.09 96% 96% Create counter
 0.67 0.00 1.50 0.26 62% 3% Get counter value
 0.50 0.00 1.00 0.06 87% 6% Set counter value
 1.03 0.50 2.00 0.12 84% 6% Tick counter
 0.64 0.00 1.50 0.23 68% 3% Delete counter

 0.42 0.00 0.50 0.13 84% 15% Init flag
 0.91 0.50 2.50 0.23 68% 28% Destroy flag
 0.81 0.50 2.00 0.27 53% 43% Mask bits in flag
 0.91 0.50 2.00 0.20 71% 25% Set bits in flag [no waiters]
 1.08 1.00 3.50 0.15 96% 96% Wait for flag [AND]
 0.98 0.50 2.00 0.09 87% 9% Wait for flag [OR]
 1.03 1.00 2.00 0.06 96% 96% Wait for flag [AND/CLR]
 0.98 0.50 2.00 0.09 87% 9% Wait for flag [OR/CLR]
 0.41 0.00 0.50 0.15 81% 18% Peek on flag

 0.58 0.50 3.00 0.15 96% 96% Create alarm
 1.67 1.00 5.50 0.36 87% 9% Initialize alarm
 1.00 0.50 2.00 0.06 90% 6% Disable alarm
 1.55 1.00 4.50 0.30 62% 21% Enable alarm
 1.06 1.00 2.50 0.12 93% 93% Delete alarm
 0.94 0.50 1.50 0.14 81% 15% Tick counter [1 alarm]
 3.67 3.50 4.00 0.23 65% 65% Tick counter [many alarms]
 1.39 1.00 2.50 0.22 68% 28% Tick & fire counter [1 alarm]
 17.56 17.50 18.00 0.11 87% 87% Tick & fire counters [>1 together]
 4.09 4.00 4.50 0.15 81% 81% Tick & fire counters [>1 separately]
 4.01 4.00 5.00 0.02 99% 99% Alarm latency [0 threads]
 4.47 4.00 5.50 0.21 63% 21% Alarm latency [2 threads]
 8.21 6.50 10.00 0.64 47% 11% Alarm latency [many threads]
 6.04 6.00 11.00 0.08 98% 98% Alarm -> thread resume latency

 1.01 0.50 4.00 0.00 Clock/interrupt latency

 1.85 1.00 5.50 0.00 Clock DSR latency

 5 0 272 (main stack: 1328) Thread stack used (1360 total)
 All done, main stack : stack used 1328 size 3920
 All done : Interrupt stack used 140 size 4096
 All done : Idlethread stack used 232 size 2048

Timing complete - 29920 ms total

2466

Logic Zoom Board Support

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The OMAP L1xx processor
HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2467

Chapter 266. Freescale i.MXxx Processor
Support

2468

Freescale i.MXxx Processor Support

Name
Support for the Freescale i.MXxx Processor — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Freescale i.MXxx proces-
sor family. It is expected to be read in conjunction with platform HAL-specific documentation, as well as the eCos HAL spec-
ification. This processor HAL package complements the ARM architectural HAL, ARM9 variant HAL and the platform HAL.
It provides functionality common to all i.MXxx-based board implementations.

This support is found in the eCos package located at packages/hal/arm/arm9/imx within the eCos source repository.

The i.MXxx processor HAL package is loaded automatically when eCos is configured for an i.MXxx-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Supported Hardware
Supported features of the i.MXxx processor within this processor HAL package include:

• i.MXxx-specific hardware definitions

• Interrupt controller

• Timers

• Serial UARTs

• Pin Configuration and GPIO Support

• Peripheral Clock Control

Support for the on-chip SPI device, SPI NOR flash, I²C, interrupt-driven serial, Ethernet and watchdog features of the i.MXxx
are also present and can be found in separate packages, outside of this processor HAL.

2469

Freescale i.MXxx Processor Support

Name
i.Mxx Hardware Definitions — Details on obtaining hardware definitions for i.MXxx

Register definitions
The file <cyg/hal/imx.h> can be included from application and eCos package sources to provide definitions related to
IMX subsystems. These include register definitions for the interrupt controller, clock management controller, pin multiplexing,
GPIO, UART, timers and watchdog subsystems. Register definitions for some devices are to be found in the appropriate
driver packages and only base addresses and configuration definitions are provided here. This file will normally be included
automatically if <cyg/hal/hal_io.h> is included, which is the preferred way of getting these definitions.

Initialization Helper Macros
The file <cyg/hal/imx_init.inc> contains definitions of helper macros which may be used by i.MXxx platform HALs
in order to initialize common subsystems without excessive duplication between the platform HALs. Typically this file will
be included by the hal_platform_setup.h header in the platform HAL, in turn included from the architectural HAL
file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary. NOTE: At present, the only extant i.MXxx port relies on
either the on-chip boot loader, or the JTAG initialization script, to initialize the PLLs and memory controller, so these macros
currently largely contain ARM9-generic setup only.

2470

Freescale i.MXxx Processor Support

Name
i.MXxx Interrupt Controller — Advanced Interrupt Controller Definitions And Usage

Interrupt controller definitions
The file <cyg/hal/var_ints.h> (located at hal/arm/arm9/imx/VERSION/include/var_ints.h in the eCos
source repository) contains interrupt vector number definitions for use with the eCos kernel and driver interrupt APIs.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt Controller Functions
The source file src/imx_misc.c within this package provides most of the support functions to manipulate the interrupt
controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions hal_in-
terrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function. Only GPIO interrupts are configurable, and at
present we do not support full decoding of these, so this function is empty.

The hal_interrupt_acknowledge function acknowledges an interrupt. Since there is no action needed to acknowledge
an interrupt, this function is empty.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the interrupt controller.
The level value may range from 0 to 15, with 0 being the highest priority.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

2471

Freescale i.MXxx Processor Support

Name
Timers — Use of on-chip timers

System Clock
The eCos kernel system clock is implemented using EPIT1 By default, the system clock interrupts once every 10ms, corre-
sponding to a 100Hz clock. This can be changed by the configuration option CYGNUM_HAL_RTC_DENOMINATOR which
corresponds to the clock frequency. Other clock-related settings are recalculated automatically if the denominator is changed.
If the desired frequency cannot be expressed accurately solely with changes to CYGNUM_HAL_RTC_DENOMINATOR, then the
configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjusted and the value of CYGNUM_HAL_RTC_PERIOD
adjusted to match.

The same timer is used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some device
drivers, and in non-kernel configurations such as with RedBoot where this timer is needed for loading program images via X/
Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

Timer-based profiling support
Timer-based profiling support is implemented using EPIT2 If the gprof package, CYGPKG_PROFILE_GPROF, is included in
the configuration, then EPIT2 reserved for use by the profiler.

2472

Freescale i.MXxx Processor Support

Name
Serial UARTs — Configuration and Implementation Details of Serial UART Support

Overview
Support is included in this processor HAL package for up to five of the i.MXxx's on-chip serial UART devices. Interfaces
CYGINT_HAL_IMX_UART1 to CYGINT_HAL_IMX_UART5 indicate for each UART whether it is connected to an external
port and should be implemented as appropriate by the platform HAL CDL.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 115200,8,N,1 with no flow control.

HAL Diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the IMX
processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel
to use as the console at startup time. This will be the channel that receives output from, for example, diag_printf().
The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven Serial Driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent ctrl-c operation when debugging.

The main part of this driver is contained in the generic CYGPKG_IO_SERIAL_ARM_IMX package. A platform specific pack-
age, for example CYGPKG_IO_SERIAL_ARM_MCIMX25, contains definitions that configure the generic driver for the plat-
form. That driver package should also be consulted for documentation and configuration options. The driver is not active
until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver support package CYGP-
KG_IO_SERIAL is enabled in the configuration.

Support for hardware flow control and modem control lines is present in the driver, but will only be enabled if these control
signals are brought out to the physical serial port.

2473

Freescale i.MXxx Processor Support

Name
Pin Configuration and GPIO Support — Use of pin configuration and GPIO

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_IMX_PINMUX(padctl_off, padctl, muxctl_off, muxmode, selinput_off,
selinput);

CYGHWR_HAL_IMX_PINMUX_SET (pin);

pin = CYGHWR_HAL_IMX_GPIO(bank, bit, mode);

CYGHWR_HAL_IMX_GPIO_SET (pin);

CYGHWR_HAL_IMX_GPIO_OUT (pin, val);

CYGHWR_HAL_IMX_GPIO_IN (pin, val);

CYGHWR_HAL_IMX_GPIO_INTCFG (pin, mode);

CYGHWR_HAL_IMX_GPIO_INTSTAT (pin, stat);

CYGHWR_HAL_IMX_GPIO_INTMASK (pin, enable);

CYGHWR_HAL_IMX_GPIO_INTCLR (pin);

Description
The i.MXxx HAL provides a number of macros to support the encoding of pin multiplexing information and GPIO pin modes
into descriptors. This is useful to drivers and other packages that need to configure and use different lines for different devices.
Because there is not a simple correspondence between pin multiplexing information and GPIO bank and pin identities, these
two things are treated separately.

Pin Multiplexing
There is no systematic relationship between the various registers that control the properties of a single io pin. So all the infor-
mation needed to identify and configure a pin is encoded into a 64 bit descriptor. To define a new pin descriptor it is necessary
to consult the appropriate processor reference manual for the register offsets and valid settings. A pin multiplexing descriptor
is represented by the hal_imx_pin and is created with CYGHWR_HAL_IMX_PINMUX() which takes the following arguments:

padctl_off The offset of the pad control register in the IO multiplexor. If this is zero, no pad control
configuration is performed.

padctl Pad control settings. This is just the last part of the name of a CYGH-
WR_HAL_IMX_PINMUX_PADCTL_* macro. Macros are defined to correspond to the
fields of this register, and combination macros are defined to set several fields. The user
can also define their own macros if the default set do not contain the required values.

muxctl_off The offset of the multiplexing control register in the IO multiplexor. If this is zero, no
multiplexing is performed.

muxmode This sets the multiplexing mode for the pin. It may be either MUX(x) or MUX_SION(x)
where x is the multiplexing mode to attach this pin to the selected device.

selinput_off Some device inputs can be attached to more than one pin. In this case this parameter
contains the offset of the input select register that controls this. If this value is zero, no
input selection is made.

selinput This is the input selection value. It may either be NONE or SEL(x), where x is the
selection value.

2474

Freescale i.MXxx Processor Support

The following examples show how this macro may be used:

// UART1 RX line, with 100K Ohm pull down, mux 0
#define CYGHWR_HAL_IMX_UART1_RX \
 CYGHWR_HAL_IMX_PINMUX(0x368, PUS_100KD, 0x170, MUX_SION(0), 0, NONE)

// UART4 RX line, 100K Ohm pull down, mux 1, input selection 1
#define CYGHWR_HAL_IMX_UART4_RX \
 CYGHWR_HAL_IMX_PINMUX(0x3B0, PUS_100KD, 0x1B8, MUX_SION(1), 0x570, SEL(1))

// GPIO line, floating, mix 5
#define CYGHWR_HAL_IMX_FEC_RESET \
 CYGHWR_HAL_IMX_PINMUX(0x238, FLOAT, 0x01C, MUX(5), 0, NONE)

The macro CYGHWR_HAL_IMX_PINMUX_SET(pin) sets the pin multiplexing setting according to the descriptor passed
in.

GPIO Support
A GPIO descriptor is created with CYGHWR_HAL_IMX_GPIO(bank, bit, mode) which takes the following arguments:

bank This identifies the GPIO bank to which the pin is attached. This is a value between 1
and 4.

bit This gives the bit offset within the bank of the GPIO pin. This is a value between 0
and 31.

mode This defines whether this is an input or an output pin, and may take the values INPUT
or OUTPUT respectively.

Additionally, the macro CYGHWR_HAL_IMX_GPIO_NONE may be used in place of a pin descriptor and has a value that no
valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used.

The following examples show how this macro may be used:

// PHY Reset pin on GPIO4, pin 8, output
#define CYGHWR_HAL_IMX_FEC_RESET_GPIO CYGHWR_HAL_IMX_GPIO(4, 8, OUTPUT)

// CSPI 1, chip select 0 on GPIO1, pin 16, output
#define CYGHWR_HAL_IMX_CSPI1_SS0_GPIO CYGHWR_HAL_IMX_GPIO(1, 16, OUTPUT)

The remaining macros all take a GPIO pin descriptor as an argument. CYGHWR_HAL_IMX_GPIO_SET configures the pin
according to the descriptor and must be called before any other macros. CYGHWR_HAL_IMX_GPIO_OUT sets the output to
the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_IMX_GPIO_IN should be a
pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

There is also support for GPIO interrupts. CYGHWR_HAL_IMX_GPIO_INTCFG(pin, mode) configures the interrupt
mode of the pin. It may be either LOW_LEVEL, HIGH_LEVEL, RISING_EDGE, FALLING_EDGE or EITHER_EDGE to
configure the pin, respectively, to interrupt on active-low, active-high, rising edge, falling edge or both rising and falling edges.
For example:

// PHY interrupt on GPIO3 pin 19
#define CYGHWR_HAL_IMX_FEC_INTERRUPT_GPIO CYGHWR_HAL_IMX_GPIO(3, 19, INPUT)

// Configure active-LOW interrupt
CYGHWR_HAL_IMX_GPIO_INTCFG(CYGHWR_HAL_IMX_FEC_INTERRUPT_GPIO, LOW_LEVEL);

The second argument to CYGHWR_HAL_IMX_GPIO_INTSTAT(pin, stat) must be a pointer to an int, which will be
set to 1 if an interrupt has be received on the given pin, and 0 otherwise.

Note

GPIO interrupts are currently not decoded into per-pin interrupt vectors, only the shared per-bank vectors are
available. If an application needs to get interrupts from more than one pin on a bank, it needs to install a shared
ISR and decode the specific pins itself.

2475

Freescale i.MXxx Processor Support

The second argument to CYGHWR_HAL_IMX_GPIO_INTMASK(pin, enable) when set to 1 will enable the rele-
vant GPIO interrupt source for the configured pin, with 0 disabling the source. If required, CYGHWR_HAL_IMX_GPIO_INT-
CLR(pin) can be used to explicitly clear the interrupt status for a specific GPIO pin.

2476

Freescale i.MXxx Processor Support

Name
Peripheral Clock Control — Description

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_IMX_CLOCK(cgcr, device);

CYGHWR_HAL_IMX_CLOCK_ENABLE (desc);

CYGHWR_HAL_IMX_CLOCK_DISABLE (desc);

Description
The i.MXxx HAL provides a number of macros to support the management of peripheral clocks. The macro CYGH-
WR_HAL_IMX_CLOCK(cgcr, device) encodes a clock control descriptor into a 32 bit value. The arguments are the
clock group register name, and the name of the clock to be controlled.

The remaining functions all take a peripheral clock descriptor as an argument. CYGHWR_HAL_IMX_CLOCK_ENABLE(de-
sc) enables the given clock. Likewise CYGHWR_HAL_IMX_CLOCK_DISABLE(desc) disables the clock.

The following examples show how a clock descriptor may be defined.

// EPIT input clock and EPIT1 device clock
#define CYGHWR_HAL_IMX_EPIT_PER_CLOCK CYGHWR_HAL_IMX_CLOCK(CGCR0, PER_EPIT)
#define CYGHWR_HAL_IMX_EPIT1_CLOCK CYGHWR_HAL_IMX_CLOCK(CGCR1, IPG_EPIT1)

// UART1 clock
#define CYGHWR_HAL_IMX_UART1_CLOCK CYGHWR_HAL_IMX_CLOCK(CGCR2, IPG_UART1)

2477

Chapter 267. Freescale MCIMX25WPDK
Board Support

2478

Freescale MCIMX25WPDK Board Support

Name
eCos Support for the Freescale MCIMX25WPDK Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Freescale MCIMX25WPDK board. The board
consists of a base board, a CPU module and a debug board. The CPU module contains the i.MX25 processor, RAM, NAND
flash and a connector carrying most on-chip peripherals to the Personality board. The Personality board contains the CPU
module, 2Mbytes of serial NOR flash memory on CSPI1, a DP83640 PHY, external connections for Ethernet, and the various
other peripherals supported by the CPUs. The Debug board connects to the Personality boards and carries power, RS232 serial,
and JTAG connectors; it also contains a second Ethernet device which is not used. An LCD is connected to the Personality
board, and is supported by a frame buffer driver. eCos support for the devices and peripherals on the board and the CPU is
described below.

For typical eCos development, a RedBoot image is programmed into the SPI NOR flash memory, and the board will load this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either the serial line or over Ethernet.

This documentation is expected to be read in conjunction with the i.MXxx processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The SPI NOR flash consists of 32 blocks of 64Ki bytes each. In a typical setup, the first four blocks are reserved for the ROM
RedBoot image. The topmost block is used to manage the flash and also holds RedBoot fconfig values. The remaining blocks
can be used by application code.

Serial support is through the CYGPKG_IO_SERIAL_ARM_IMX driver package which is modified by the CYGP-
KG_IO_SERIAL_ARM_MCIMX25 driver package for the MCIMX25WPDK. These packages can support all the serial de-
vices on the i.MX25. However, this board only has UART1 connected to an external connector which this HAL indicates by
implementing the CYGINT_HAL_IMX_UART1 interface. This serial channel is used by RedBoot for communication with the
host. If this device is needed by the application, either directly or via the serial driver, then it cannot also be used for RedBoot
communication. Another communication channel such as Ethernet should be used instead. The serial driver package is loaded
automatically when configuring for the mcimx25x target.

There is an Ethernet driver CYGPKG_DEVS_ETH_FREESCALE_ENET for the on-chip FEC Ethernet device. The platform
HAL package is responsible for configuring this generic driver to the hardware. This driver is also loaded automatically when
configuring for the mcimx25x board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_ARM_IMX. This driver is also loaded automatically when con-
figuring for the board.

The platform HAL provides definitions to allow access to devices on the SPI bus. The HAL provides information to the more
general CSPI driver (CYGPKG_DEVS_SPI_ARM_CSPI) which in turn provides the underlying implementation for the SPI
API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

Furthermore, the platform HAL package contains support for the SPI NOR flash. The HAL support integrates with the CYG-
PKG_DEVS_FLASH_SPI_M25PXX package as well as the above SPI packages. That package is automatically loaded when
configuring for the target. This driver is capable of supporting the JFFS2 filesystem.

I²C support is provided by the CYGPKG_DEVS_I2C_FREESCALE_I2C package. Only I²C bus 1 is directly supported, to
which are attached an EEPROM and power management chips. There is a test program to test access to the former and the
latter are accessed to enable the Ethernet PHY during initialization.

ADC support is provided by the CYGPKG_DEVS_ADC_ARM_TSC package. Only ADC inputs INAUX0, INAUX1 and
INAUX2 are supported at present.

LCD support is provided by the CYGPKG_DEVS_FRAMEBUF_ARM_IMX package. This supports a fixed 640x480 16 bits per
pixel display mode.

2479

Freescale MCIMX25WPDK Board Support

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (SPI,
Watchdog etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence will
set up the appropriate power control and pin multiplexing configuration. Devices not used by eCos (MMC/SD, Audio, CAN
etc.) are not touched at all.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 4.7.3, arm-eabi-gdb version 7.2, and binutils version 2.23.2.

2480

Freescale MCIMX25WPDK Board Support

Name
Setup — Preparing the board for eCos Development

Overview
In a typical development environment, the board boots from the SPI NOR and runs the RedBoot ROM monitor from SDRAM.
eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.
Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from SPI
NOR flash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports Ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from NOR flash by the on-chip boot loader. The use of ROM for this configuration is intended
to indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which assumes
that this has already been done.

Initial Installation
The board comes with Windows CE installed by default. The booting mechanism is that the on-chip boot loader examines a set
of switches and based on their settings, reads a header, initialization data and an application from the selected external device.
It then executes the application at a given address. Possible boot devices include NAND flash, SPI NOR flash and an MMC/
SD card. For eCos we use the SPI NOR flash.

To write RedBoot to the SPI NOR flash we need to run RedBoot and then use that to download and program an image to
SPI flash. There are two ways to do this: use a JTAG debugger to load and run RedBoot under GDB, or use an MMC/SD
card to load it.

Note

The RedBoot image files referred to in the setup instructions below can be found in the loaders/mcimx25w-
pdk directory, and the PEEDI JTAG debugger configuration file and ECM files for rebuilding RedBoot can be
found in the packages/hal/arm/arm9/mcimx25x/<version>/misc directory of the eCosPro instal-
lation. On a Linux host eCosPro is typically installed in the /opt/ecospro/ecospro-<version> sub-
directory. On a Windows host eCosPro will typically be installed in the C:\eCosPro\ecos-<version>
sub-directory.

The following section describes this process using the Ronetix PEEDI; other JTAG emulators will have similar steps. The next
section describes how to do this using an MMC/SD card. A third common section then describes how to use that RedBoot to
initialize the SPI NOR flash and program RedBoot into it.

Programming RedBoot into NOR flash using the PEEDI

The following gives the steps needed load RedBoot using the PEEDI.

1. Set up the PEEDI as described in the Ronetix documentation. The peedi.mcimx25x.cfg file should be used to setup
and configure the hardware.

2. Connect a null-modem serial cable between the serial port of the Debug board and a serial port on a convenient host. Run
a terminal emulator (TeraTerm or minicom) at 115200 baud.

2481

Freescale MCIMX25WPDK Board Support

3. Attach an Ethernet cable to the Personality board FEC socket, not the Debug board Ethernet socket. Make sure this is on
the same network as the PEEDI and host.

4. Copy redboot_ROM.img to to a TFTP server on the same network as the PEEDI and MCIMX25WPDK board.

5. Apply power to the PEEDI.

6. Connect a telnet session to the PEEDI and power up the MCIMX25WPDK board. You should see something similar to
the following output:

++ info: RESET and TRST asserted
++ info: TRST released
++ info: BYPASS check passed, 4 TAP controller(s) detected
++ info: TAP 0 : invalid IDCODE = 0x0
++ info: TAP 1 : invalid IDCODE = 0x0
++ info: TAP 2 : IDCODE = 0x07926041, ARM926E -> CORE0
++ info: TAP 3 : IDCODE = 0x1B900F0F, ARM ETB
++ info: RESET released
++ info: core 0: initialized

mx25>

7. Issue the following command, substituting your own TFTP server address:

mx25>> mem load tftp://10.0.1.1/redboot_ROM.img bin 0x80000000
++ info: Loading image file: tftp://10.0.1.1/redboot_ROM.img
++ info: At absolute address: 0x80000000
loading at 0x80000000
loading at 0x80008000
loading at 0x80010000
loading at 0x80018000
loading at 0x80020000

++ info: successfully loaded 149.00 KB in 0.59 sec
mx25>

8. Now set the CPSR to disable thumb mode (which the on-chip boot loader uses) and issue the go command:

 mx25> set cpsr 0xd3
 mx25> go 0x80008000

You should see output similar to the following on the board serial line:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.2.4/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 16:55:09, Apr 14 2014

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2014 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Freescale MCIMX25WPDK (ARM9)
RAM: 0x80000000-0x84000000 [0x800318f8-0x83fed000 available]
FLASH: 0x70000000-0x701fffff, 32 x 0x10000 blocks
RedBoot>

Now go to this section to complete the installation.

Programming RedBoot into NOR flash using an MMC/SD card

The following gives the steps needed to load RedBoot using an MMC/SD card.

2482

Freescale MCIMX25WPDK Board Support

1. Connect a null-modem serial cable between the serial port of the Debug board and a serial port on a convenient host. Run
a terminal emulator (for example, TeraTerm or minicom) at 115200 baud.

2. Attach an Ethernet cable to the Personality board FEC socket, not the Debug board Ethernet socket. Make sure this is on
the same network as your TFTP server.

3. Copy redboot_ROM.img to the TFTP server.

4. Locate an SD card whose existing content can be lost.

5. Using a suitable tool such as dd on Linux or an equivalent on Windows (e.g. dd for windows or win32 diskimager), write
redboot_ROM.img into the first sectors of the SD card. For example, on Linux:

 $ sudo dd if=/path/to/redboot_ROM.img of=/dev/sdX

6. Set the Personality board switches as follows: SW21 all off except switches 1 and 2; SW22 all off. On the Debug board
SW5..SW10 should all be off and SW4 all off except 1 and 8 (these are the default settings).

7. Insert the SD card into the SD card socket on the Personality board and apply power to the board. You should see output
similar to the following on the board serial line:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 0e:00:00:ea:18:f0
IP: 10.0.2.4/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 16:55:09, Apr 14 2014

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2014 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Freescale MCIMX25WPDK (ARM9)
RAM: 0x80000000-0x84000000 [0x800318f8-0x83fed000 available]
FLASH: 0x70000000-0x701fffff, 32 x 0x10000 blocks
RedBoot>

Now follow the instructions in the following section to complete the RedBoot installation.

Initialize and Install RedBoot

With a RedBoot now running on the board, the following steps are common between the two methods.

1. Run the following command to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x701f0000-0x701fffff: .
... Program from 0x83ff0000-0x84000000 to 0x701f0000: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.0.1.1
Console baud rate: 115200
DNS domain name: example.com
DNS server IP address: 10.0.0.5
Network hardware address [MAC] for eth0: 0xec:0x05:0x00:0x00:0x02:0x24
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false

2483

http://www.chrysocome.net/dd
http://sourceforge.net/projects/win32diskimager/

Freescale MCIMX25WPDK Board Support

Default network device: enet0_eth
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x701f0000-0x701fffff: .
... Program from 0x83ff0000-0x84000000 to 0x701f0000: .
RedBoot>

Substitute your own IP addresses and domain name in place of those above. If multiple boards are to be run on the same
network, also ensure that they have unique MAC addresses.

2. We now need to download a copy of RedBoot and program it into the flash. Give the following command to RedBoot,
substituting in your tftp server's IP address:

RedBoot> load -h 10.0.1.1 -r -b %{freememlo} redboot_ROM.img
Using default protocol (TFTP)
Raw file loaded 0x80031c00-0x80056fff, assumed entry at 0x80031c00
RedBoot>

3. Now program the RedBoot image to flash:

RedBoot> fis create RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x70000000-0x7003ffff:
... Program from 0x80031c00-0x80057000 to 0x70000000: ...
... Erase from 0x701f0000-0x701fffff: .
... Program from 0x83ff0000-0x84000000 to 0x701f0000: .
RedBoot>

4. RedBoot installation is now complete. It is now necessary to set the board switches to select SPI NOR flash boot. Set the
Personality board switches as follows: SW21 all off except switches 1, 2, 3, 4 and 7; SW22 all off. On the Debug board
SW5..SW10 should all be off and SW4 all off except 1 and 8 (these are the default settings). If you have already booted via
the MMC/SD card, you just need to move SW21 switches 3, 4 and 7 to on.

5. Disconnect the PEEDI or pop the SD card from the socket and power cycle the board. You should see output similar to
the following on the serial line:

+Ethernet eth0: MAC address ec:05:00:00:02:24
IP: 10.0.2.9/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 16:55:09, Apr 14 2014

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2014 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Freescale MCIMX25WPDK (ARM9)
RAM: 0x80000000-0x84000000 [0x800318f8-0x83fed000 available]
FLASH: 0x70000000-0x701fffff, 32 x 0x10000 blocks
RedBoot>

If it proves necessary to re-install RedBoot, this may be achieved by repeating the load and fis create parts of the above process.
It is not necessary to use a PEEDI, or an SD card, or to reinitialize the FIS and fconfig.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the MCIMX25WPDK are:

$ mkdir redboot_mcimx25x_rom
$ cd redboot_mcimx25x_rom
$ ecosconfig new mcimx25x redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/mcimx25x/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve

2484

Freescale MCIMX25WPDK Board Support

$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the files redboot.img. redboot.img is a binary
file that includes the headers needed by the on-chip boot loader to load RedBoot successfully.

Note

The flashimg_imx host executable provided within your eCosPro installation is required on the build host
to wrap the RedBoot binary image into an image that can be loaded by the on-chip boot loader. This executable
must be on your path when you build RedBoot and will normally be copied into the ecospro/ecoshost-
tools/bin sub-directory by the eCosPro installer from the ecospro/ecos-<version>/host/bin-
<hostos> sub-directory of your eCosPro installation. The ecospro/ecoshosttools/bin sub-directory
will be on your path if you use the eCos GUI configuration tool or the eCos CLI Shell environment provided
by ecosprofileenv.

2485

Freescale MCIMX25WPDK Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The MCIMX25X platform HAL package is loaded automatically when eCos is configured for the mcimx25x target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory
and debug it. RAM applications can also be downloaded to the board, programmed into flash and then run from the
RedBoot prompt. It is assumed that the hardware has already been initialized by RedBoot. By default the application
will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into Flash. The application will
be self-contained with no dependencies on services provided by other software. An initialization table in the image
header and eCos startup code will perform all necessary hardware initialization.

JTAG This startup type can be used for finished applications which will be loaded via JTAG. The application will be self-
contained with no dependencies on services provided by other software. The JTAG init file plus eCos startup code
will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The board contains an 2Mbyte Macronix MX25L1605D SPI serial NOR flash device. The CYGPKG_DE-
VS_FLASH_SPI_M25PXX package contains all the code necessary to support this part and the platform HAL package con-
tains definitions that customize the driver to the board. This driver is not active until the generic Flash support package, CYG-
PKG_IO_FLASH, is included in the configuration.

This driver is capable of supporting the JFFS2 filesystem. However, note that the SPI interface means that this file system has
reduced bandwidth and increased latency compared with other implementations. All that is required to enable the support is
to include the filesystem (CYGPKG_FS_JFFS2) and any of its package dependencies (including CYGPKG_IO_FILEIO and
CYGPKG_LINUX_COMPAT) together with the flash infrastructure (CYGPKG_IO_FLASH).

Ethernet Driver
The board uses the internal FEC Ethernet device attached to an external Texas Instruments DP83640 PHY. The CYGPKG_DE-
VS_ETH_FREESCALE_ENET package contains all the code necessary to support this device and the platform HAL package

2486

Freescale MCIMX25WPDK Board Support

contains definitions that customize the driver to the board. This driver is not active until the generic Ethernet support package,
CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

Watchdog Driver
The board uses the i.MXxx internal watchdog. The CYGPKG_DEVICES_WATCHDOG_ARM_IMX package contains all the
code necessary to support this device. Within that package the CYGNUM_DEVS_WATCHDOG_ARM_IMX_DESIRED_TIME-
OUT_MS configuration option controls the watchdog timeout, and by default will force a reset of the board upon timeout.
This driver is not active until the generic watchdog device support package, CYGPKG_IO_WATCHDOG, is included in the
configuration.

UART Serial Driver
The board uses the i.MXxx internal UART serial support as described in the i.MXxx processor HAL documentation. Only
one serial connector is available on the board, which is connected to UART1. This connector has the RTS/CTS hardware flow
control lines connected in addition to the data lines.

ADC Driver
ADC support is provided by the CYGPKG_DEVS_ADC_ARM_TSC package. Only ADC inputs INAUX0, INAUX1 and
INAUX2 are supported at present. In addition to the TSC ADC device, this driver uses GPT1 to provide the sample rate clock.
Application code should avoid using this timer if the ADC is to be used. This driver is only active if the generic ADC support
package, CYGPKG_IO_ADC, is included in the configuration.

LCD Driver
LCD support is provided by the CYGPKG_DEVS_FRAMEBUF_ARM_IMX package. It supports a single frame buffer format,
640 by 480 pixels, 16 bits per pixel true colour. The frame buffer is placed at a fixed address in memory at 0x83F00000. This
driver is only active if the generic framebuffer support package, CYGPKG_IO_FRAMEBUF, is included in the configuration.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just three
flags specific to this port:

-mcpu=arm926ej-s The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=arm926ej-s is the correct option for the ARM926EJ-S CPU in the i.MX25.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2487

Freescale MCIMX25WPDK Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only JTAG and ROM configuration
applications should be debugged using JTAG, RAM applications assume the presence of RedBoot.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.mcimx25x.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs. This includes setting up the PLLs and SDRAM controller.

The peedi.mcimx25x.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [PLATFORM_ARM] section. Edit this file if you wish to use hardware
break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.mcimx25x.cfg
file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal.

Consult the PEEDI documentation for information on other features.

Running JTAG applications

Applications configured for either JTAG or ROM startup can be run directly under JTAG. Once loaded and running via JTAG,
HAL diagnostic output will appear by default on the serial debug port. There is in fact minimal difference between ROM and
JTAG applications and these can mostly be used interchangeably.

Installing user applications into Flash with JTAG

If you wish to install a ROM startup application into Flash to be automatically booted, you can follow a similar procedure to
installing RedBoot into Flash. However before you can do so, you must first prepend a header to your application image in
order for the on-chip boot loader to recognize it as a valid application.

You will need to locate the program flashimg_imx supplied with the eCosPro installation and generate a binary image of your
program using the arm-eabi-objcopy command. The following gives an example simplified command sequence which can
be run at a command shell prompt:

arm-eabi-objcopy -O binary myapp myapp.bin
flashimg_imx myapp.bin myapp.img

You will need to substitute your own paths and filenames where applicable.

Once you have the .img file, you can follow the same process as installing RedBoot via JTAG. Alternatively, you can write
it to an SD card and boot it directly after changing the board switches.

2488

Freescale MCIMX25WPDK Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the board hardware, and should be read in
conjunction with that specification. The platform HAL package complements the ARM architectural HAL, the ARM9 variant
HAL and the i.MXxx processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x80000000 of the physical memory space and is 64MiB
in size. The HAL configures the MMU to retain the SDRAM at virtual address
0x80000000, but in order to assign hardware exception vectors vectors at address
0x00000000, the HAL also uses the MMU to create an uncached clone of this memory at
virtual address 0x00000000. The first 32 bytes are used for hardware exception vectors.
The next 32 bytes are used for the VSR table and the next 256 bytes are normally used
for the eCos virtual vectors, allowing RAM-based applications to use services provided
by the ROM monitor. Memory is required for the MMU tables, and must be aligned on
a 16Kbyte boundary. These therefore occupy memory from 0x4000 to 0x8000. 1MiB
at 0x83f00000 is reserved for the LCD display frame buffer and is identity mapped un-
cached. For ROM startup, all remaining SDRAM is available. For RAM startup, avail-
able RAM starts at virtual location 0x80100000, with the bottom 1MB reserved for use
by RedBoot. ROM applications are relocated starting at 0x80008000.

On-chip SRAM There is 128KiB of SRAM which is identity mapped uncached at 0x78000000. eCos
makes no current use of this memory, so it is available for application use.

SPI NOR Flash SPI NOR flash media can only be accessed with the Flash API. For the purposes of
this API a placeholder address range has been allocated as if the Flash is present at this
address. The base of this address range is 0x70000000. This reserved range is not real
memory and any attempt to access it directly by the processor other than via the Flash
API will result in a memory address exception.

On-chip Peripheral Registers These are located at various addresses in the physical memory space. When the MMU is
enabled, it sets up a direct, uncached, unbuffered mapping so that these registers remain
accessible at their physical locations.

Off-chip Peripherals eCos uses the SDRAM, Ethernet PHY, and SPI flash and I²C power controllers on the
board. eCos does not currently make any use of any other off-chip peripherals present
on this board.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM mode, which provides better performance than Thumb mode.

2489

Freescale MCIMX25WPDK Board Support

Example 267.1. mcimx25x Real-time characterization

 Startup, main thrd : stack used 380 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 96 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 3.09 microseconds (3 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 4.05 3.00 8.00 0.42 65% 17% Create thread
 0.47 0.00 2.00 0.51 54% 54% Yield thread [all suspended]
 0.72 0.00 2.00 0.43 68% 29% Suspend [suspended] thread
 0.47 0.00 1.00 0.50 53% 53% Resume thread
 0.75 0.00 2.00 0.40 71% 26% Set priority
 0.23 0.00 1.00 0.36 76% 76% Get priority
 1.52 1.00 6.00 0.56 98% 54% Kill [suspended] thread
 0.47 0.00 1.00 0.50 53% 53% Yield [no other] thread
 0.83 0.00 2.00 0.34 76% 20% Resume [suspended low prio] thread
 0.53 0.00 2.00 0.51 50% 48% Resume [runnable low prio] thread
 0.58 0.00 1.00 0.49 57% 42% Suspend [runnable] thread
 0.47 0.00 2.00 0.51 54% 54% Yield [only low prio] thread
 0.45 0.00 1.00 0.50 54% 54% Suspend [runnable->not runnable]
 1.34 1.00 3.00 0.46 67% 67% Kill [runnable] thread
 1.22 1.00 4.00 0.36 81% 81% Destroy [dead] thread
 2.03 1.00 4.00 0.21 82% 7% Destroy [runnable] thread
 3.03 2.00 7.00 0.46 60% 20% Resume [high priority] thread
 0.75 0.00 4.00 0.41 71% 27% Thread switch

 0.16 0.00 1.00 0.26 84% 84% Scheduler lock
 0.39 0.00 1.00 0.48 60% 60% Scheduler unlock [0 threads]
 0.40 0.00 1.00 0.48 60% 60% Scheduler unlock [1 suspended]
 0.40 0.00 1.00 0.48 60% 60% Scheduler unlock [many suspended]
 0.39 0.00 1.00 0.48 60% 60% Scheduler unlock [many low prio]

 0.28 0.00 1.00 0.40 71% 71% Init mutex
 0.63 0.00 2.00 0.51 56% 40% Lock [unlocked] mutex
 0.69 0.00 4.00 0.56 56% 40% Unlock [locked] mutex
 0.50 0.00 1.00 0.50 100% 50% Trylock [unlocked] mutex
 0.41 0.00 1.00 0.48 59% 59% Trylock [locked] mutex
 0.22 0.00 1.00 0.34 78% 78% Destroy mutex
 2.94 2.00 6.00 0.29 81% 15% Unlock/Lock mutex

 0.47 0.00 1.00 0.50 53% 53% Create mbox
 0.47 0.00 1.00 0.50 53% 53% Peek [empty] mbox
 0.63 0.00 2.00 0.51 56% 40% Put [first] mbox
 0.13 0.00 1.00 0.22 87% 87% Peek [1 msg] mbox
 0.53 0.00 2.00 0.53 96% 50% Put [second] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek [2 msgs] mbox
 0.63 0.00 2.00 0.51 56% 40% Get [first] mbox
 0.66 0.00 1.00 0.45 65% 34% Get [second] mbox
 0.50 0.00 2.00 0.53 96% 53% Tryput [first] mbox

2490

Freescale MCIMX25WPDK Board Support

 0.47 0.00 1.00 0.50 53% 53% Peek item [non-empty] mbox
 0.53 0.00 2.00 0.53 96% 50% Tryget [non-empty] mbox
 0.50 0.00 1.00 0.50 100% 50% Peek item [empty] mbox
 0.47 0.00 1.00 0.50 53% 53% Tryget [empty] mbox
 0.19 0.00 1.00 0.30 81% 81% Waiting to get mbox
 0.16 0.00 1.00 0.26 84% 84% Waiting to put mbox
 0.25 0.00 1.00 0.38 75% 75% Delete mbox
 1.19 1.00 5.00 0.34 90% 90% Put/Get mbox

 0.19 0.00 1.00 0.30 81% 81% Init semaphore
 0.47 0.00 1.00 0.50 53% 53% Post [0] semaphore
 0.47 0.00 1.00 0.50 53% 53% Wait [1] semaphore
 0.47 0.00 2.00 0.53 56% 56% Trywait [0] semaphore
 0.47 0.00 1.00 0.50 53% 53% Trywait [1] semaphore
 0.19 0.00 1.00 0.30 81% 81% Peek semaphore
 0.16 0.00 1.00 0.26 84% 84% Destroy semaphore
 1.06 1.00 3.00 0.12 96% 96% Post/Wait semaphore

 0.53 0.00 1.00 0.50 53% 46% Create counter
 0.44 0.00 1.00 0.49 56% 56% Get counter value
 0.25 0.00 1.00 0.38 75% 75% Set counter value
 0.56 0.00 1.00 0.49 56% 43% Tick counter
 0.22 0.00 1.00 0.34 78% 78% Delete counter

 0.22 0.00 1.00 0.34 78% 78% Init flag
 0.56 0.00 3.00 0.56 96% 50% Destroy flag
 0.44 0.00 1.00 0.49 56% 56% Mask bits in flag
 0.50 0.00 2.00 0.53 96% 53% Set bits in flag [no waiters]
 0.59 0.00 3.00 0.56 50% 46% Wait for flag [AND]
 0.63 0.00 1.00 0.47 62% 37% Wait for flag [OR]
 0.53 0.00 1.00 0.50 53% 46% Wait for flag [AND/CLR]
 0.56 0.00 1.00 0.49 56% 43% Wait for flag [OR/CLR]
 0.09 0.00 1.00 0.17 90% 90% Peek on flag

 0.66 0.00 2.00 0.49 59% 37% Create alarm
 0.88 0.00 3.00 0.33 78% 18% Initialize alarm
 0.50 0.00 2.00 0.53 96% 53% Disable alarm
 0.72 0.00 2.00 0.45 65% 31% Enable alarm
 0.50 0.00 1.00 0.50 100% 50% Delete alarm
 0.56 0.00 1.00 0.49 56% 43% Tick counter [1 alarm]
 2.25 2.00 3.00 0.38 75% 75% Tick counter [many alarms]
 0.88 0.00 2.00 0.27 81% 15% Tick & fire counter [1 alarm]
 11.78 11.00 12.00 0.34 78% 21% Tick & fire counters [>1 together]
 2.53 2.00 3.00 0.50 53% 46% Tick & fire counters [>1 separately]
 2.03 2.00 3.00 0.06 96% 96% Alarm latency [0 threads]
 2.74 2.00 3.00 0.38 74% 25% Alarm latency [2 threads]
 6.89 6.00 9.00 0.47 59% 26% Alarm latency [many threads]
 4.05 4.00 9.00 0.11 98% 98% Alarm -> thread resume latency

 1.30 1.00 4.00 0.00 Clock/interrupt latency

 1.24 1.00 5.00 0.00 Clock DSR latency

 242 172 272 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 956 size 1792
 All done : Interrupt stack used 156 size 4096
 All done : Idlethread stack used 408 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues

The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The i.MXxx processor
HAL, ARM9 variant HAL, and the ARM architectural HAL documentation should be consulted for further details.

2491

Freescale MCIMX25WPDK Board Support

Bonjour Conformance Test
This section just provides information regarding the specific MCIMX25WPDK platform Bonjour test. For more detail regard-
ing Bonjour testing please reference the Bonjour Conformance Test section of the mDNS package documentation.

For the mDNS Responder package testing the following equipment was used.

• Unit-Under-Test (UUT)

The mcimx25wpdk target platform being tested, executing a suitable eCosPro mDNS configuration.

• Mac Mini (OS: 10.9.3)

Executing the BonjourConformanceTest v1.3.0 in a Terminal shell window, and the Safari v7.0.4 web-browser.

• Billion BiPAC 7800N

10base-T (wired) Ethernet connections to the UUT and the Mac Mini.

The result for an actual BCT run using the mdns_example application, executing on the MCIMX25WPDK platform, is
available in the doc/bct_mcimx25wpdk_result.txt file. This file is the original, as produced by the BCT application.
For reference, the doc/bct_mcimx25wpdk_terminal.txt contains the execution output captured from the MacOS
Terminal window. Both of these files can be found in the mcimx25x HAL documentation directory: packages/hal/arm/
arm9/mcimx25x/<version>/doc

The following is a listing of the doc/bct_mcimx25wpdk_result.txt file.

Bonjour Conformance Test Version 1.3.0
Started Mon Jun 9 09:57:26 2014
Completed Mon Jun 9 13:19:23 2014

Link-Local Address Allocation

 PASSED: INITIAL PROBING
 PASSED: PROBING: RATE LIMITING
 PASSED: PROBING: CONFLICTING SIMULTANEOUS PROBES
 PASSED: PROBING: PROBE DENIALS
 PASSED: PROBING COMPLETION
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT
 WARNING: SUBSEQUENT CONFLICTS: RE-PROBE AFTER FIRST CONFLICT

 PASSED: SUBSEQUENT CONFLICTS
 PASSED: HOT-PLUG: USE OF PREVIOUS ADDRESS AS FIRST PROBE CANDIDATE
 PASSED: CABLE CHANGE HANDLING
 PASSED: PREMATURE MDNS PROBING
PASSED with 9 warning(s).

Multicast DNS

 PASSED: INITIAL PROBING
 PASSED: PROBING: SIMULTANEOUS PROBE CONFLICT
 PASSED: PROBING: RATE LIMITING
 PASSED: PROBING: PROBE DENIALS
 PASSED: WINNING SIMULTANEOUS PROBES - ANNOUNCEMENTS
 PASSED: WINNING SIMULTANEOUS PROBES: WINNING SIMULTANEOUS PROBES
 PASSED: SRV PROBING/ANNOUNCEMENTS
 PASSED: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: SUBSEQUENT CONFLICT - A
 PASSED: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: SUBSEQUENT CONFLICT - SRV

2492

Freescale MCIMX25WPDK Board Support

 PASSED: SIMPLE REPLY VERIFICATION
 PASSED: SHARED REPLY TIMING - UNIFORM RANDOM REPLY TIME DISTRIBUTION
 PASSED: SHARED REPLY TIMING
 PASSED: MULTIPLE QUESTIONS - SHARED REPLY TIMING - UNIFORM RANDOM REPLY TIME DISTRIBUTION
 PASSED: MULTIPLE QUESTIONS - SHARED REPLY TIMING
 PASSED: REPLY AGGREGATION
 PASSED: MANUAL NAME CHANGE - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: INITIAL PROBING
 PASSED: HOT-PLUGGING: PROBING: SIMULTANEOUS PROBE CONFLICT
 PASSED: HOT-PLUGGING: PROBING: RATE LIMITING
 PASSED: HOT-PLUGGING: PROBING: PROBE DENIALS
 PASSED: HOT-PLUGGING: WINNING SIMULTANEOUS PROBES - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: WINNING SIMULTANEOUS PROBES: WINNING SIMULTANEOUS PROBES
 PASSED: HOT-PLUGGING: SRV PROBING/ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - A
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - ANNOUNCEMENTS
 PASSED: HOT-PLUGGING: SUBSEQUENT CONFLICT - SRV
 PASSED: HOT-PLUGGING
 PASSED: NO DUPLICATE RECORDS IN PACKETS
 PASSED: REQUIRED ADDITIONAL RECORDS IN ANSWERS
 PASSED: LEGAL CHARACTERS IN ADDRESS RECORD NAMES
 PASSED: CACHE FLUSH BIT SET IN NON-SHARED RESPONSES
 PASSED: CACHE FLUSH BIT NOT SET IN PROPOSED ANSWER OF PROBES
PASSED with 0 warning(s).

Mixed-Network Interoperability

 PASSED: LINK-LOCAL TO ROUTABLE COMMUNICATION
 PASSED: ROUTABLE TO LINK-LOCAL COMMUNICATION
 PASSED: CACHE FLUSH BIT NOT SET IN UNICAST RESPONSE
 PASSED: UNICAST INTEROPERABILITY
 PASSED: CHATTINESS
 PASSED: mDNS IP TTL CHECK
 PASSED: DUPLICATE RECORDS CHECK
 PASSED: ADDITIONAL RECORDS IN ANSWER CHECK
PASSED with 0 warning(s).

**
 CONGRATULATIONS: You successfully passed the Bonjour Conformance test
**

2493

Chapter 268. Intel IQ80321 Board Support

2494

Intel IQ80321 Board Support

Name
eCos Support for the Intel IQ80321 Board — Overview

Description
This document covers the Intel IQ80321 development board for the IOP321 XScale device. The IQ80321 contains the IOP321
processor, 128MB of SDRAM, 8MB of Intel Strataflash memory, an Intel i82544 Ethernet MAC and a TL16C550C UART.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of 64 blocks of 128k bytes each. In a typical setup, the first two flash blocks are used for the ROM
RedBoot image. The topmost block is used to manage the flash and hold RedBoot fconfig values. The remaining 62 blocks
between 0xF0040000 and 0xF07DFFFF can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_GENERIC_16X5X which supports the 16C550 UART. The CYGP-
KG_IO_SERIAL_ARM_IQ80321 package provides customization of this generic driver to the IQ80321 hardware. This de-
vice can be used by RedBoot for communication with the host. If this device is needed by the application, either directly or via
the serial driver, then it cannot also be used for RedBoot communication. Another communication channel such as ethernet
should be used instead. The serial driver packages are loaded automatically when configuring for the IQ80321 target.

There is an ethernet driver CYGPKG_DEVS_ETH_INTEL_I82544 for the Intel i82544 ethernet device. A second package
CYGPKG_DEVS_ETH_ARM_IQ80321 is responsible for configuring this generic driver to the IQ80321 hardware. These
drivers are also loaded automatically when configuring for the IQ80321 target.

eCos manages the on-chip interrupt controller. Timer 0 is used to implement the eCos system clock and the microsecond delay
function. Other on-chip devices (Caches, MEMC, INTC, PCI bridge, ATU, MMU, I²C) are initialized only as far as is necessary
for eCos to run. Other devices are not touched.

Tools
The IQ80321 port is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.2.1, arm-elf-gdb version 5.3, and binutils version 2.13.1.

2495

Intel IQ80321 Board Support

Name
Setup — Preparing the IQ80321 board for eCos Development

Overview
In a typical development environment, the IQ80321 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the
board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from flash
ROM boot sector

redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from RAM
with RedBoot in the flash
boot sector

redboot_RAM.ecm redboot_RAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. RedBoot also supports ethernet
communication and flash management.

Hardware Setup
The 80321 board is highly configurable through a number of switches and jumpers. RedBoot and eCos make some assumptions
about board configuration and attention must be paid to these assumptions for reliable operation:

• The onboard ethernet and the secondary slot may be placed in a private space so that they are not seen by a PC BIOS. If
the board is to be used in a PC with BIOS, then the ethernet should be placed in this private space so that RedBoot/eCos
and the BIOS do not conflict.

• RedBoot assumes that the board is plugged into a PC with BIOS. This requires RedBoot to detect when the BIOS has
configured the PCI-X secondary bus. If the board is placed in a backplane, RedBoot will never see the BIOS configure the
secondary bus. To prevent this wait, set switch S7E1-3 to ON when using the board in a backplane.

• For the remaining switch settings, the following is a known good configuration:

S1D1 All OFF

S7E1 7 is ON, all others OFF

S8E1 2,3,5,6 are ON, all others OFF

S8E2 2,3 are ON, all others OFF

S9E1 3 is ON, all others OFF

S4D1 1,3 are ON, all others OFF

J9E1 2,3 jumpered

J9F1 2,3 jumpered

J3F1 Nothing jumpered

J3G1 2,3 jumpered

J1G2 2,3 jumpered

Initial Installation

Flash Installation

The IQ80321 is supplied with a version of RedBoot in flash. It is recommended that this version of RedBoot be replaced with
one that is built from the same set of sources as the eCos system to be run on it. There are several ways of doing this.

2496

Intel IQ80321 Board Support

The board manufacturer provides a DOS application which is capable of programming the flash over the PCI bus, and this
is required for initial installations of RedBoot. Please see the board manual for information on using this utility. In general,
the process involves programming the ROM mode RedBoot image to flash. RedBoot should be programmed to flash address
0x00000000 using the DOS utility.

If a JTAG debugger is available (such as the Abatron BDI2000) that supports programming the flash, then this may be used to
install the new RedBoot. See the documentation for the JTAG device to find out how to initialize the board and program the
flash. RedBoot needs to be programmed to flash address 0x00000000.

Finally, RedBoot may be installed by using the resident RedBoot. Installing RedBoot is a matter of downloading a new binary
image and overwriting the existing Boot monitor ROM image. This is a two stage process, you must first download a RAM-
resident version of RedBoot and then use that to download the ROM image to be programmed into the flash memory.

Connect to RedBoot as described in the IQ80321 documentation using a terminal emulator (for example HyperTerminal on
Windows, minicom on Linux). You should see the RedBoot startup banner, similar to the following:

RedBoot(tm) bootstrap and debug environment [ROM]

Platform: IQ80321 (XScale)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x08000000, [0x0001b068-0x07fd1000] available
FLASH: 0xf0000000 - 0xf0800000, 64 blocks of 0x00020000 bytes each.
RedBoot>

The RAM image can be downloaded using the following RedBoot command:

RedBoot> load -m ymodem

Use the terminal emulator's Ymodem support to send the file redboot_RAM.srec. This should result in something like
the following output:

Entry point: 0x00020040, address range: 0x00020000-0x000479f8
xyzModem - CRC mode, 2(SOH)/456(STX)/0(CAN) packets, 5 retries
RedBoot>

Now start the RAM version of RedBoot:

RedBoot> go
+No network interfaces found

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version v2_0_24a1 - built 12:57:43, Sep 14 2004

Platform: IQ80321 (XScale)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x08000000, [0x00059668-0x07dd1000] available
FLASH: 0xf0000000 - 0xf0800000, 64 blocks of 0x00020000 bytes each.
RedBoot>

Now, the ROM image can be downloaded using the following RedBoot command:

RedBoot> load -r -b %{FREEMEMLO} -m ymodem

Use the terminal emulator's Ymodem support to send the file redboot_ROM.bin. This should result in something like the
following output:

Raw file loaded 0x0005a000-0x000819f8, assumed entry at 0x0005a000
xyzModem - CRC mode, 911(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

Once the file has been uploaded, you can check that it has been transferred correctly using the cksum command. On the host
(Linux or Cygwin) run the cksum program on the binary file:

$ cksum redboot_ROM.bin
140216855 116332 redboot_ROM.bin

In RedBoot, run the cksum command on the data that has just been loaded:

2497

Intel IQ80321 Board Support

RedBoot> cksum -b %{FREEMEMLO} -l 116332
POSIX cksum = 140216855 116332 (0x085b8a17 0x0001c66c)

The second number in the output of the host cksum program is the file size, which should be used as the argument to the -l
option in the RedBoot cksum command. The first numbers in each instance are the checksums, which should be equal.

If the program has downloaded successfully, then it can be programmed into the flash using the following commands:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)?y
*** Initialize FLASH Image System
... Unlock from 0xf07e0000-0xf0800000: .
... Erase from 0xf07e0000-0xf0800000: .
... Program from 0x07cc0000-0x07d00000 at 0xf07e0000: .
... Lock from 0xf07e0000-0xf0800000: .
RedBoot> fis create -b %{FREEMEMLO} RedBoot
An image named 'RedBoot' exists - continue (y/n)?y
... Unlock from 0xf0000000-0xf0040000: ..
... Erase from 0xf0000000-0xf0040000: ..
... Program from 0x0001c000-0x0005c000 at 0xf0000000: .
... Lock from 0xf0000000-0xf0040000: .
... Unlock from 0xf07e0000-0xf0800000: .
... Erase from 0xf07e0000-0xf0800000: .
... Program from 0x07cc0000-0x07d00000 at 0xf07e0000: .
... Lock from 0xf07e0000-0xf0800000: .
RedBoot>

The IQ80321 board may now be reset either by cycling the power, or with the reset command. It should then display the startup
screen for the ROM version of RedBoot:

+No network interfaces found

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version v2_0_24a1 - built 12:59:55, Sep 14 2004

Platform: IQ80321 (XScale)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x08000000, [0x0001b068-0x07fd1000] available
FLASH: 0xf0000000 - 0xf0800000, 64 blocks of 0x00020000 bytes each.
RedBoot>

LED Codes
RedBoot uses the two digit LED display to indicate status during board initialization. Possible codes are:

LED Actions

 Power-On/Reset
88
 Set the CPSR
 Enable coprocessor access
 Drain write and fill buffer
 Setup PBIU chip selects
A1
 Enable the Icache
A2
 Move FLASH chip select from 0x0 to 0xF0000000
 Jump to new FLASH location
A3
 Setup and enable the MMU
A4
 I²C interface initialization
90
 Wait for I²C initialization to complete

2498

Intel IQ80321 Board Support

91
 Send address (via I²C) to the DIMM
92
 Wait for transmit complete
93
 Read SDRAM PD data from DIMM
94
 Read remainder of EEPROM data.
 An error will result in one of the following
 error codes on the LEDs:
 77 BAD EEPROM checksum
 55 I²C protocol error
 FF bank size error
A5
 Setup DDR memory interface
A6
 Enable branch target buffer
 Drain the write & fill buffers
 Flush Icache, Dcache and BTB
 Flush instruction and data TLBs
 Drain the write & fill buffers
SL
 ECC Scrub Loop
SE
A7
 Clean, drain, flush the main Dcache
A8
 Clean, drain, flush the mini Dcache
 Flush Dcache
 Drain the write & fill buffers
A9
 Enable ECC
AA
 Save SDRAM size
 Move MMU tables into RAM
AB
 Clean, drain, flush the main Dcache
 Clean, drain, flush the mini Dcache
 Drain the write & fill buffers
AC
 Set the TTB register to DRAM mmu_table
AD
 Set mode to IRQ mode
A7
 Move SWI & Undefined "vectors" to RAM (at 0x0)
A6
 Switch to supervisor mode
A5
 Move remaining "vectors" to RAM (at 0x0)
A4
 Copy DATA to RAM
 Initialize interrupt exception environment
 Initialize stack
 Clear BSS section
A3
 Call platform specific hardware initialization
A2
 Run through static constructors

2499

Intel IQ80321 Board Support

A1
 Start up the eCos kernel or RedBoot

Special RedBoot Commands
A special RedBoot command, diag, is used to access a set of hardware diagnostics. To access the diagnostic menu, enter diag
at the RedBoot prompt:

RedBoot> diag
Entering Hardware Diagnostics - Disabling Data Cache!

 IQ80321 Hardware Tests

 1 - Memory Tests
 2 - Repeating Memory Tests
 3 - Repeat-On-Fail Memory Tests
 4 - Rotary Switch S1 Test
 5 - 7 Segment LED Tests
 6 - i82544 Ethernet Configuration
 7 - Battery Status Test
 8 - Battery Backup SDRAM Memory Test
 9 - Timer Test
10 - PCI Bus test
11 - CPU Cache Loop (No Return)
 0 - quit
Enter the menu item number (0 to quit):

Tests for various hardware subsystems are provided, and some tests require special hardware in order to execute normally. The
Ethernet Configuration item may be used to set the board ethernet address.

Memory Tests

This test is used to test installed DDR SDRAM memory. Five different tests are run over the given address ranges. If errors
are encountered, the test is aborted and information about the failure is printed. When selected, the user will be prompted to
enter the base address of the test range and its size. The numbers must be in hex with no leading “0x”

Enter the menu item number (0 to quit): 1

Base address of memory to test (in hex): 100000

Size of memory to test (in hex): 200000

Testing memory from 0x00100000 to 0x002fffff.

Walking 1's test:
0000000100000002000000040000000800000010000000200000004000000080
0000010000000200000004000000080000001000000020000000400000008000
0001000000020000000400000008000000100000002000000040000000800000
0100000002000000040000000800000010000000200000004000000080000000
passed
32-bit address test: passed
32-bit address bar test: passed
8-bit address test: passed
Byte address bar test: passed
Memory test done.

Repeating Memory Tests

The repeating memory tests are exactly the same as the above memory tests, except that the tests are automatically rerun after
completion. The only way out of this test is to reset the board.

Repeat-On-Fail Memory Tests

This is similar to the repeating memory tests except that when an error is found, the failing test continuously retries on the
failing address.

2500

Intel IQ80321 Board Support

Rotary Switch S1 Test

This tests the operation of the sixteen position rotary switch. When run, this test will display the current position of the rotary
switch on the LED display. Slowly dial through each position and confirm reading on LED.

7 Segment LED Tests

This tests the operation of the seven segment displays. When run, each LED cycles through 0 through F and a decimal point.

i82544 Ethernet Configuration

This test initializes the ethernet controller‚s serial EEPROM if the current contents are invalid. In any case, this test will also
allow the user to enter a six byte ethernet MAC address into the serial EEPROM.

Enter the menu item number (0 to quit): 6

Current MAC address: 00:80:4d:46:00:02
Enter desired MAC address: 00:80:4d:46:00:01
Writing to the Serial EEPROM... Done

******** Reset The Board To Have Changes Take Effect ********

Battery Status Test

This tests the current status of the battery. First, the test checks to see if the battery is installed and reports that finding. If the
battery is installed, the test further determines whether the battery status is one or more of the following:

• Battery is charging.

• Battery is fully discharged.

• Battery voltage measures within normal operating range.

Battery Backup SDRAM Memory Test

This tests the battery backup of SDRAM memory. This test is a three step process:

1. Select Battery backup test from main diag menu, then write data to SDRAM.

2. Turn off power for 60 seconds, then repower the board.

3. Select Battery backup test from main diag menu, then check data that was written in step 1.

Timer Test

This tests the internal timer by printing a number of dots at one second intervals.

PCI Bus Test

This tests the secondary PCI-X bus and socket. This test requires that an IQ80310 board be plugged into the secondary slot of
the IOP80321 board. The test assumes at least 32MB of installed memory on the IQ80310. That memory is mapped into the
IOP80321 address space and the memory tests are run on that memory.

CPU Cache Loop

This test puts the CPU into a tight loop run entirely from the ICache. This should prevent all external bus accesses.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot for the IQ80321 are:

2501

Intel IQ80321 Board Support

$ mkdir redboot_iq80321_rom
$ cd redboot_iq80321_rom
$ ecosconfig new iq80321 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/iq80321/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

To rebuild the RAM RedBoot:

$ mkdir redboot_iq80321_ram
$ cd redboot_iq80321_ram
$ ecosconfig new iq80321 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/arm9/iq80321/current/misc/redboot_RAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This is the case for both
the above builds, take care not to mix the two files up, since programming the RAM RedBoot into the ROM will render the
board unbootable.

2502

Intel IQ80321 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The IQ80321 platform HAL package is loaded automatically when eCos is configured for a iq80321 target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup
The IQ80321 platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default, the application will use
the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0xF0000000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is required to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for RAM startup, disabled otherwise. It can be manually disabled for RAM startup, making the application self-contained, as
a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The IQ80321 board contains an 8MB Intel StrataFlash flash device. The CYGPKG_DEVS_FLASH_STRATA package contains
all the code necessary to support these parts and the CYGPKG_DEVS_FLASH_IQ80321 package contains definitions that
customize the driver to the IQ80321 board.

Ethernet Driver
The IQ80321 board contains an Intel i82544 ethernet controller. The CYGPKG_DEVS_ETH_INTEL_I82544 package con-
tains all the code necessary to support this device and the CYGPKG_DEVS_ETH_ARM_IQ80321 package contains definitions
that customize the driver to the IQ80321 board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is just one flag
specific to this port:

2503

Intel IQ80321 Board Support

-mcpu=xscale The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=xscale is the correct option for the XScale CPU on the IOP321.

2504

Intel IQ80321 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the IQ80321 hardware, and should be
read in conjunction with that specification. The IQ80321 platform HAL package complements the ARM architectural HAL,
the XScale core HAL and the IOP321 (VERDE) variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the on-chip peripherals that are used by eCos. There is an
exception for RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external SDRAM and programming the various
internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_platform_set-
up.h.

Memory Maps
The RAM based page table is located at RAM start + 0x4000.

NOTE

The virtual memory map in this section uses a C, B, and X column to indicate the caching policy for the region.

X C B Description
- - - ---
0 0 0 Uncached/Unbuffered
0 0 1 Uncached/Buffered
0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
1 0 0 Invalid -- not used
1 0 1 Uncached/Buffered No write buffer coalescing
1 1 0 Mini DCache - Policy set by Aux Ctl Register
1 1 1 Cached/Buffered Write Back, Read/Write Allocate

Physical Address Range Description
----------------------- ----------------------------------
0x00000000 - 0x7fffffff ATU Outbound Direct Window
0x80000000 - 0x900fffff ATU Outbound Translate Windows
0xa0000000 - 0xbfffffff SDRAM
0xf0000000 - 0xf0800000 FLASH (PBIU CS0)
0xfe800000 - 0xfe800fff UART (PBIU CS1)
0xfe840000 - 0xfe840fff Left 7-segment LED (PBIU CS3)
0xfe850000 - 0xfe850fff Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff Rotary Switch (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff Battery Status (PBIU CS5)
0xfff00000 - 0xffffffff Verde Memory mapped Registers

Default Virtual Map X C B Description
----------------------- - - - ----------------------------------
0x00000000 - 0x1fffffff 1 1 1 SDRAM
0x20000000 - 0x9fffffff 0 0 0 ATU Outbound Direct Window
0xa0000000 - 0xb00fffff 0 0 0 ATU Outbound Translate Windows
0xc0000000 - 0xdfffffff 0 0 0 Uncached alias for SDRAM
0xe0000000 - 0xe00fffff 1 1 1 Cache flush region (no phys mem)
0xf0000000 - 0xf0800000 0 1 0 FLASH (PBIU CS0)
0xfe800000 - 0xfe800fff 0 0 0 UART (PBIU CS1)
0xfe840000 - 0xfe840fff 0 0 0 Left 7-segment LED (PBIU CS3)
0xfe850000 - 0xfe850fff 0 0 0 Right 7-segment LED (PBIU CS2)
0xfe8d0000 - 0xfe8d0fff 0 0 0 Rotary Switch (PBIU CS4)
0xfe8f0000 - 0xfe8f0fff 0 0 0 Battery Status (PBIU CS5)

2505

Intel IQ80321 Board Support

0xfff00000 - 0xffffffff 0 0 0 Verde Memory mapped Registers

Other Issues
The IQ80321 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The XScale core
HAL, the IOP321 (VERDE) variant HAL, and the ARM architectural HAL documentation should be consulted for further
details.

2506

Chapter 269. Intel XScale IXP4xx Network
Processor Support

2507

Intel XScale IXP4xx Network Processor Support

Name
Support for Intel XScale IXP4xx Network Processors — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Intel XScale IXP4xx
Network Processor series, including the IXP425 and IXP465. It is expected to be read in conjunction with platform HAL-spe-
cific documentation, as well as the eCos HAL specification. This processor HAL package complements the ARM architectural
HAL, XScale variant HAL and the platform HAL. It provides functionality common to IXP4xx-based board implementations.

This support is found in the eCos package located at packages/hal/arm/xscale/ixp425 within the eCos source
repository.

For historical reasons many of the definitions, filenames and configuration options in this package refer to the IXP425 specif-
ically. In fact, unless otherwise noted, these definitions, filenames and configuration options apply equally to all members of
the IXP4xx family.

The IXP4xx processor HAL package is loaded automatically when eCos is configured for an IXP4xx-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Supported Hardware
Supported features of the Intel XScale IXP4xx processors within this processor HAL package include:

• IXP4xx-specific hardware definitions

• Interrupt controller

• General-purpose timers

• Watchdog timer

• Serial UARTs

• PCI bus controller

• PCI bus IDE controllers

• CompactFlash cards in TrueIDE mode

• General Purpose I/O (GPIO)

For licensing-related reasons, support for the Network Processing Engines (NPEs) at this time is only available with an add-
on EPK package from Intel. eCosCentric is unable to provide support for this add-on package.

2508

Intel XScale IXP4xx Network Processor Support

Name
IXP4xx hardware definitions — Details on obtaining hardware definitions for IXP4xx

Register definitions
The file <cyg/hal/hal_ixp425.h> can be included from application and eCos package sources to provide definitions
related to IXP4xx subsystems. These include register definitions for the PCI bus controller, SDRAM controller, DDR con-
troller for IXP46x, expansion bus controller, I²C® controller for IXP46x, General purpose I/O (GPIO), interrupt controller,
general-purpose timers and watchdog timer.

I/O Definitions
The file <cyg/hal/var_io.h> contains definitions used by the PCI support, as well as memory mapping details and
macros to read and write the I/O space (including the PCI I/O space) at a variety of widths. If PCI IDE support has been enabled,
it also provides the relevant support macros.

2509

Intel XScale IXP4xx Network Processor Support

Name
IXP4xx interrupt controller — Interrupt controller definitions and usage

Interrupt controller definitions
The file <cyg/hal/hal_var_ints.h> (located at hal/arm/xscale/ixp425/VERSION/in-
clude/hal_var_ints.h in the eCos source repository) contains interrupt vector number definitions for use with the eCos
kernel and driver interrupt APIs:

#define CYGNUM_HAL_INTERRUPT_NONE -1
#define CYGNUM_HAL_INTERRUPT_NPEA 0
#define CYGNUM_HAL_INTERRUPT_NPEB 1
#define CYGNUM_HAL_INTERRUPT_NPEC 2
#define CYGNUM_HAL_INTERRUPT_QM1 3
#define CYGNUM_HAL_INTERRUPT_QM2 4
#define CYGNUM_HAL_INTERRUPT_TIMER0 5
#define CYGNUM_HAL_INTERRUPT_GPIO0 6
#define CYGNUM_HAL_INTERRUPT_GPIO1 7
#define CYGNUM_HAL_INTERRUPT_PCI_INT 8
#define CYGNUM_HAL_INTERRUPT_PCI_DMA1 9
#define CYGNUM_HAL_INTERRUPT_PCI_DMA2 10
#define CYGNUM_HAL_INTERRUPT_TIMER1 11
#define CYGNUM_HAL_INTERRUPT_USB 12
#define CYGNUM_HAL_INTERRUPT_UART2 13
#define CYGNUM_HAL_INTERRUPT_TIMESTAMP 14
#define CYGNUM_HAL_INTERRUPT_UART1 15
#define CYGNUM_HAL_INTERRUPT_WDOG 16
#define CYGNUM_HAL_INTERRUPT_AHB_PMU 17
#define CYGNUM_HAL_INTERRUPT_XSCALE_PMU 18
#define CYGNUM_HAL_INTERRUPT_GPIO2 19
#define CYGNUM_HAL_INTERRUPT_GPIO3 20
#define CYGNUM_HAL_INTERRUPT_GPIO4 21
#define CYGNUM_HAL_INTERRUPT_GPIO5 22
#define CYGNUM_HAL_INTERRUPT_GPIO6 23
#define CYGNUM_HAL_INTERRUPT_GPIO7 24
#define CYGNUM_HAL_INTERRUPT_GPIO8 25
#define CYGNUM_HAL_INTERRUPT_GPIO9 26
#define CYGNUM_HAL_INTERRUPT_GPIO10 27
#define CYGNUM_HAL_INTERRUPT_GPIO11 28
#define CYGNUM_HAL_INTERRUPT_GPIO12 29
#define CYGNUM_HAL_INTERRUPT_SW_INT1 30
#define CYGNUM_HAL_INTERRUPT_SW_INT2 31

#ifdef CYGHWR_HAL_ARM_XSCALE_CPU_IXP46x
#define CYGNUM_HAL_INTERRUPT_USB_HOST 32
#define CYGNUM_HAL_INTERRUPT_I2C 33
#define CYGNUM_HAL_INTERRUPT_SPI 34
#define CYGNUM_HAL_INTERRUPT_TIMESYNC 35
#define CYGNUM_HAL_INTERRUPT_EAU_DONE 36
#define CYGNUM_HAL_INTERRUPT_SHA_DONE 37
#define CYGNUM_HAL_INTERRUPT_SWCP_PERR 58
#define CYGNUM_HAL_INTERRUPT_QMGR_PERR 60
#define CYGNUM_HAL_INTERRUPT_MCU_ERR 61
#define CYGNUM_HAL_INTERRUPT_EXP_PERR 62
#endif

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt controller functions
The source file src/ixp425_misc.c within this package provides most of the support functions to manipulate the interrupt
controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions hal_in-
terrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

GPIO interrupts are configured in the hal_interrupt_configure function, where the level and up arguments are
interpreted as follows:

2510

Intel XScale IXP4xx Network Processor Support

level up interrupt on

0 0 Falling Edge

0 1 Rising Edge

0 -1 Either Edge

1 0 Low Level

1 1 High Level

Some interrupts are acknowledged in the hal_interrupt_acknowledge function, although for many of the IXP4xx
on-chip peripherals, the means to stop the interrupt from triggering again is to remove the cause of the interrupt in a device
dependent way. This function does however clear GPIO interrupts.

Macros of the following forms may be defined by the platform HAL via the header file defined by its CYGBLD_HAL_PLAT-
FORM_H macro definition in order to extend support to further vectors:

HAL_PLF_INTERRUPT_MASK(vector)
HAL_PLF_INTERRUPT_UNMASK(vector)
HAL_PLF_INTERRUPT_ACKNOWLEDGE(vector)
HAL_PLF_INTERRUPT_CONFIGURE(vector)

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

Interrupt handling withing standalone applications
For non-eCos standalone applications running under RedBoot, it is possible to install an interrupt handler into the interrupt
vector table manually. Memory mappings are platform-dependent and so the platform documentation should be consulted, but
in general the address of the interrupt table can be determined by analyzing RedBoot's symbol table, and searching for the
address of the symbol name hal_interrupt_handlers. Table slots correspond to the interrupt numbers above. Pointers
inserted in this table should be pointers to a C/C++ function with the following prototype:

extern unsigned int isr(unsigned int vector, unsigned int data);

For non-eCos applications run from RedBoot, the return value can be ignored. The vector argument will also be the interrupt
vector number. The data argument is extracted from a corresponding table named hal_interrupt_data which imme-
diately follows the interrupt vector table. It is still the responsibility of the application to enable and configure the interrupt
source appropriately if needed.

IXP46x
Support exists for the IXP46x in order to query and manipulate the extended interrupt controller registers handling interrupt
numbers of 32 and above. Also on the IXP46x an interrupt handler is attached to handle ECC errors from the MCU.

2511

Intel XScale IXP4xx Network Processor Support

Name
General-purpose timers — Use of IXP4xx general-purpose timers

General-purpose timer 0
The IXP4xx processor HAL provides general-purpose timer 0 (OST_TIM0) to the eCos kernel for use as a real-time clock.
This timer is also used for implementing the HAL_DELAY_US functionality, which is used by some device drivers, and in non-
kernel configurations such as with RedBoot where this timer is needed for loading program images via X/Y-modem protocols
and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging, should avoid use of
this timer.

Available timers
General-purpose timer 1 and the timestamp timer are available for application use.

System clock configuration
By default for eCos applications, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can
be changed by the configuration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency.
Other clock-related settings are recalculated automatically if the denominator is changed. If the desired frequency can-
not be expressed accurately solely with changes to CYGNUM_HAL_RTC_DENOMINATOR, then the configuration option
CYGNUM_HAL_RTC_NUMERATOR may also be adjusted, and again clock-related settings will automatically be recalculated.

2512

Intel XScale IXP4xx Network Processor Support

Name
Watchdog — Describes use of the hardware watchdog

Description
This HAL package includes the hardware driver required to support the generic watchdog support defined in the CYGP-
KG_IO_WATCHDOG package. The functionality allows the watchdog either to cause the IXP4xx to reset, or to cause a callback
function to be triggered as defined in the generic watchdog API.

The watchdog is also used to perform platform resets, such as with the reset command in the RedBoot CLI. Note that there
is an IXP425 erratum affecting use of the watchdog on IXP425s with stepping level of A0. Stepping levels of B0 and above
no longer have this issue.

Configuration
It is not possible to enable support for the IXP4xx on-chip watchdog unless the CYGPKG_IO_WATCHDOG package is included
in the eCos configuration. Once included, the configuration options for this hardware support can then be found in the watchdog
part of the eCos configuration tree under the CDL component name CYGPKG_HAL_IXP4XX_WATCHDOG, rather than in the
HAL.

The option CYGNUM_HAL_IXP4XX_WATCHDOG_DESIRED_TIMEOUT_US allows the watchdog timeout interval to be set.
An application must ensure that the watchdog is reset more frequently than this period. The units are microseconds, and
depending on the selected period, values may be rounded up to the next clock tick..

If the option CYGSEM_HAL_IXP4XX_WATCHDOG_RESET is enabled, watchdog expiration will cause the IXP4xx to perform
a soft reset. If this option is instead disabled, a callback function can be registered with the generic watchdog API, which will
be called by an interrupt handler associated with the watchdog.

2513

Intel XScale IXP4xx Network Processor Support

Name
Serial UARTs — Configuration and implementation details of serial UART support

Overview
There are two forms of support for the built-in high-speed and console serial UARTs. In all cases the default serial port settings
are 115200,8,N,1 with no flow control.

HAL diagnostic I/O

One form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations are
usually performed with global interrupts disabled, and thus is not usually suitable for deployed systems. This can operate on
either port, according to the configuration settings.

Several configuration options within the IXP4xx processor HAL affect HAL diagnostic operation. The CDL option
CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel to use as the console at startup
time. Channel 0 is the debug serial port, channel 1 is the high-speed serial port. This will be the channel that receives out-
put from, for example, diag_printf(). The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL se-
lects the serial port channel to use for GDB communication by default. Note that when using RedBoot, these options are
usually inactive as it is RedBoot that decides which channels are used. Applications may override RedBoot's selections by
enabling the CYGSEM_HAL_VIRTUAL_VECTOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel
are set with the CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VEC-
TOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven serial driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on either port. Note that if this form of serial driver is enabled on
a port, it will prevent ctrl-c operation when debugging.

This driver uses the eCos generic 16x5x UART driver found in CYGPKG_IO_SERIAL_GENERIC_16X5X to provide most
of the support. That driver package should also be consulted for documentation and configuration options.

Note that a standard 16550A compatible UART has receive FIFO trigger levels that can be set with the CYGP-
KG_IO_SERIAL_GENERIC_16X5X_FIFO_RX_THRESHOLD to 1, 4, 7, 8 or 14 bytes. However the IXP4xx family
has a larger 64-byte FIFO, and so these values should be mapped to 1, 8, 16 or 32. In other words setting the CYGP-
KG_IO_SERIAL_GENERIC_16X5X_FIFO_RX_THRESHOLD option to 8 bytes would in fact cause the receive FIFO to
trigger at 16 bytes and so forth.

The maximum baud rate supported by the generic eCos infrastructure is 230,400 and so at this time the higher baud rates of
460,800 and 921,600 baud are not supported.

2514

Intel XScale IXP4xx Network Processor Support

Name
PCI bus controller — PCI bus controller support implementation details

Implementation details
The PCI bus controller is supported with the files <cyg/hal/var_io.h> and the source file src/ixp425_pci.c. These
files provide almost all the required underlying support for use with the generic PCI package CYGPKG_IO_PCI.

Platform HALs are still required to provide any extra initialisation steps such as pin routing, involving GPIO, particularly for
the interrupt pins. Accordingly any such interrupt pins will also require treatment with an implementation of the following
function:

extern void cyg_hal_plf_pci_translate_interrupt(cyg_uint32 bus, cyg_uint32 devfn,
 CYG_ADDRWORD *vec, cyg_bool *valid);

2515

Intel XScale IXP4xx Network Processor Support

Name
PCI bus IDE controllers — Configuring and using IDE controllers on the PCI bus

Overview
Support is included for IDE bus controllers connected via the PCI bus. This includes support for generic PCI IDE controllers
as well as Promise 20275 or 20269 IDE controllers.

Configuration
This support can be enabled with the CYGFUN_HAL_IXP4XX_PCI_IDE_SUPPORT configuration option and is mutually
exclusive with support for TrueIDE mode disks connected via a CompactFlash interface.

Use with RedBoot
Enabling this option allows RedBoot to be used to load program images off an IDE disk connected via a PCI IDE controller,
for example a Linux kernel from an EXT2 partition of an IDE disk using the "disk" load method.

Files
The file src/ixp_pci_ide.c within this package is used to provide the necessary underlying support.

2516

Intel XScale IXP4xx Network Processor Support

Name
CompactFlash cards in TrueIDE mode — Using CompactFlash cards in TrueIDE mode on the IXP4xx expansion bus

Overview
The IXP4xx processor HAL includes support for CompactFlash IDE devices accessed in True IDE mode directly on the IXP4xx
expansion bus.

The hardware configuration for attaching the CF IDE devices must follow the specification described in Intel Application Note
30245603: “Intel IXP42X Product Line of Network Processors and IXC1100 Control Plane Processor: Using CompactFlash”.
This describes use of the EXP_CS_N_1 (CS1) and EXP_CS_N_2 (CS2) signals to control the CF IDE device.

Configuration
Support for CF True IDE devices is contained within the IXP4xx variant HAL and is controlled with the CYGFUN_HAL_IX-
P4XX_CF_TRUE_IDE_SUPPORT configuration option. It is not possible to include PCI IDE support within the same con-
figuration - eCos only allows one ID controller driver at the present time.

The driver requires the presence of the generic disk layer (CYGPKG_IO_DISK), as well as the IDE disk driver (CYGPKG_DE-
VS_DISK_IDE).

The block device name used to identify the disk is configured with the option CYGDAT_HAL_IX-
P4XX_CF_TRUE_IDE_DISK_NAME and defaults to /dev/hd0/. An MBR is expected to be present on the CF card, and
individual partitions can be accessed as e.g. /dev/hd0/1, /dev/hd0/2, etc. or the whole device as /dev/hd0/0.

With this support it is possible to access filesystems on the CF IDE card with the further inclusion of the generic file I/O layer
package (CYGPKG_IO_FILEIO) along with a standard eCos filesystem implementation such as FAT (CYGPKG_FS_FAT).

Use from RedBoot
Similarly, it is possible for RedBoot to load images from a filesystem using the "file" load method. For example:

RedBoot> fs mount -d /dev/hd0/1 -t fatfs
RedBoot> fs list
 2 -rwxrwxrwx 1 size 3961588 VMLINUX
1937 -rwxrwxrwx 1 size 1588984 ZIMAGE
RedBoot> load -m file -r -b %{freememlo} /ZIMAGE
Raw file loaded 0x00079800-0x001fd6f7, assumed entry at 0x00079800
RedBoot> exec
Using base address 0x00079800 and length 0x00183ef8
Uncompressing Linux... done, booting the kernel.
Linux version 2.6.12 (root@andy) (gcc version 3.4.4) #43 Tue Nov 15 16:40:04 GMT 2005
CPU: XScale-IXP42x Family [690541c1] revision 1 (ARMv5TE)
CPU0: D VIVT undefined 5 cache
CPU0: I cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets
CPU0: D cache: 32768 bytes, associativity 32, 32 byte lines, 32 sets
Machine: Intel IXDP425 Development Platform
[etc.]

Implementation details
The implementation assumes that the platform HAL will map memory accesses at 0x51000000 to expansion bus accesses with
CS1 enabled, and similarly 0x52000000 to expansion bus accesses with CS2 enabled.

This driver operates in polled mode (PIO) only with no interrupt-driven operation nor DMA, and uses conservative bus con-
figuration timings to allow for maximum compatibility with CF IDE cards. Note that some CF cards are not fully compliant
with the CompactFlash standard and do not fully or correctly implement True IDE mode.

2517

http://www.intel.com/design/network/applnots/302456.htm

Intel XScale IXP4xx Network Processor Support

Name
GPIO — General purpose I/O

GPIO functions
As well as hardware definitions, the file <cyg/hal/hal_ixp425.h> provides a set of macros to assist GPIO manipulation:

HAL_GPIO_OUTPUT_ENABLE(line)
HAL_GPIO_OUTPUT_DISABLE(line)
HAL_GPIO_OUTPUT_SET(line)
HAL_GPIO_OUTPUT_CLEAR(line)

As described earlier, HAL support already exists for handling GPIO lines configured as interrupts.

2518

Chapter 270. Intel XScale IXDP425
Network Processor Evaluation Board
Support

2519

Intel XScale IXDP425 Network Processor Evaluation Board Support

Name
eCos and RedBoot Support for the Intel XScale IXDP425 Network Processor Evaluation Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Intel XScale IXDP425 Network Processor
Evaluation Board. The IXDP425 board contains the Intel XScale IXP425 processor, 256Mbytes of SDRAM, 16MByte of
parallel NOR flash memory, an I²C EEPROM, hexadecimal debug display, LEDs, and external connections for two serial
channels, two NPE ethernet daughterboards and an expansion bus based on the Utopia-2 interface standard. eCos and RedBoot
support for the devices and peripherals on this board is described below.

In normal operation, a RedBoot image is programmed into the flash memory, and the board will boot into this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone applications via the
gdb debugger. RedBoot can also load and execute Linux kernels. This can happen over either a serial line or over ethernet.

This document should be read in conjunction with the Intel XScale IXP4xx Network Processor Support processor HAL docu-
mentation in the eCos documentation set, as well as the generic HAL documentation.

Supported Hardware
The parallel NOR flash memory supplied by default with the IXDP425 - a single Intel StrataFlash 28F128J3 - consists of 128
blocks of 128Kbytes each. In a typical setup, the first four blocks, 512 Kbytes, are reserved for the use of the RedBoot ROM
image. The topmost block is used to manage the flash and hold RedBoot fconfig values. The remaining blocks can be used by
application code. There are 123 blocks available between 0x50080000 and 0x50FE0000.

RedBoot supports the built-in high-speed and console UARTs. The default serial port settings are 115200,8,N,1.

There is an ethernet driver CYGPKG_DEVS_ETH_INTEL_I82559 intended for use with a PCI I82559-based ethernet device
to allow communication and downloads. A separate package, CYGPKG_DEVS_ETH_ARM_IXDP425_I82559, is responsi-
ble for configuring this generic driver to the IXDP425 hardware. This driver is also loaded automatically when configuring
for the IXDP425 target.

IDE support is available to support most PCI IDE controllers. Separate support is also available to support CompactFlash
cards fitted to an optional daughterboard, in True IDE mode. These features are described in the IXP4xx processor HAL
documentation.

Tools
The IXDP425 support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-elf-gcc version 3.4.4, arm-elf-gdb version 6.3, and binutils version 2.15.

2520

Intel XScale IXDP425 Network Processor Evaluation Board Support

Name
Setup — Setting up the IXDP425 board

Overview

In a typical development environment, the IXDP425 board boots from the parallel NOR Flash and runs the RedBoot ROM
monitor directly. Applications are then downloaded into RAM and run directly on the board using the command line inter-
face, or for standalone applications, via the debugger arm-eabi-gdb. Alternatively applications can be stored in Flash to be
subsequently loaded into RAM for execution. Preparing the board therefore usually involves programming a suitable RedBoot
image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from RAM redboot_RAM.ecm redboot_RAM.bin

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector

redboot_ROMRAM.ecm redboot_ROMRAM.bin

ROM_CFIDE Same as ROM, but with addi-
tional CompactFlash IDE and
FAT FS support

red-
boot_ROM_CFIDE.ecm

red-
boot_ROM_CFIDE.bin

ROMRAM_CFIDE Same as ROMRAM, but with
additional CompactFlash IDE
and FAT FS support

redboot_ROM-
RAM_CFIDE.ecm

redboot_ROM-
RAM_CFIDE.bin

ROMLE RedBoot running from ROM
configured for little-endian
operation

redboot_ROMLE.ecm redboot_ROMLE.bin

RAMLE RedBoot running from RAM
configured for little-endian
operation

redboot_RAMLE.ecm redboot_RAMLE.bin

ROMRAMLE RedBoot running from RAM
and configured for little-endi-
an operation, but contained in
the board's flash boot sector

redboot_ROMRAMLE.ecm redboot_ROMRAMLE.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports ethernet
communication and flash management.

If the ROM version is to be chosen, then the RAM version is provided to allow for updating the resident RedBoot image in
Flash. The ample provision of RAM memory on the board allows the ROMRAM version of RedBoot to be used instead of the
standard ROM version which executes directly from Flash.

Initial Installation

Installation with a Flash programmer

This approach to initial installation may be used if a Flash device programmer is available. The IXDP425 Flash is socketed at
U22. Although the supplied Flash part is an Intel StrataFlash 28F128J3, any 28FxxxJ3 part may be substituted - RedBoot will
use the Common Flash Interface (CFI) to determine the Flash device geometry.

In this mode, the ROM mode RedBoot is programmed into the boot flash at offset 0x00000000.

2521

Intel XScale IXDP425 Network Processor Evaluation Board Support

Installation via JTAG

A JTAG device may also be used to perform initial programming. Some JTAG devices have in-built capabilities that permit
programming of the Flash part. Other JTAG devices are able to load a RAM RedBoot image into SDRAM, from where a ROM
RedBoot image can then in turn be loaded and then programmed.

If using a JTAG device that supports direct programming of the Flash part, the Flash is usually located at 0x50000000 in
the CPU memory map, assuming the JTAG device initialisation has not remapped it elsewhere. It will usually need to first
unlocked and then erased before programming.

For other JTAG devices, to load a RAM RedBoot image into SDRAM it will first be required to initialise the memory inter-
face, and in particular configure the SDRAM controller. Consult your JTAG device documentation on how to access IXP425
registers.

One example of a JTAG device capable of direct programming of Flash is the Abatron BDI2000, and in the following sections
are the steps required to program RedBoot using it.

Preparing the Abatron BDI2000 JTAG debugger

The BDI2000 must first be configured to allow communication with your local network, and configured with the parameters
for interfacing with the target board. The following steps should be followed:

1. Prepare a PC to act as a host PC and start a TFTP server on it.

2. Connect the Abatron BDI2000 JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial
cable supplied with the BDI2000.

3. Install the Abatron BDI2000 bdiGDB support software on the host PC.

4. Confirm that the XScale firmware is resident in the BDI2000. For example, using the bdisetup utility:

$ bdisetup -v -s
BDI Type : BDI2000 Rev.C (SN: xxxxxxxx)
Loader : V1.05
Firmware : V1.08 bdiGDB for XScale
Logic : V1.03 XScale
MAC : 00-0c-01-96-64-92
IP Addr : 192.168.7.220
Subnet : 255.255.255.0
Gateway : 192.168.7.1
Host IP : 192.168.7.9
Config : /ixdp425.cfg

To upload firmware if needed, follow the procedures in the BDI2000 manual, for example using the bdisetup utility:

$ bdisetup -u -p/dev/ttyS0 -b57 -aGDB -tXSCALE
Connecting to BDI loader
Erasing CPLD
Programming firmware with ./b20xscgd.108
Erasing firmware flash
Erasing firmware flash passed
Programming firmware flash
Programming firmware flash passed
Programming CPLD with ./xscjed21.103

5. Locate the file ixdp425.cfg within the BDI2000 software installation.

6. Locate the file regIXP425.def within the installation of the BDI2000 bdiGDB support software.

7. Place the ixdp425.cfg file in a location on the PC accessible to the TFTP server. Later you will configure the BDI2000
to load this file via TFTP as its configuration file.

8. Similarly place the file regIXP425.def in a location accessible to the TFTP server.

2522

Intel XScale IXDP425 Network Processor Evaluation Board Support

9. Open ixdp425.cfg in an editor such as emacs or notepad and if necessary adjust the path of the regIXP425.def file
in the [REGS] section to match its location relative to the TFTP server root. Also comment out with a ';' the IP line in the
[HOST] section, or update it to refer to the development PC.

10.Install and configure the Abatron BDI2000 in line with the bdiGDB instruction manual. Configure the BDI2000 to use the
ixdp425.cfg configuration file at the appropriate point of this process. For example, using the bdisetup utility:

$ bdisetup -c -p/dev/ttyS0 -b57 -i192.168.7.220 -h192.168.7.9 -m255.255.255.0 -g192.168.7.1 -f/ixdp425.cfg
Connecting to BDI loader
Writing network configuration
Configuration passed

The above command uses the first serial port at 57,600 baud to set the BDI2000's IP address to 192.168.7.220, its default
TFTP host to 192.168.7.9, the network mask to 255.255.255.0, the default gateway to 192.168.7.1, and the configuration
file to load to /ixdp425.cfg.

Preparing the IXDP425 board for programming

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. First you must connect a straight through DB9 serial cable between the high speed serial port labelled UART0 on the board
and a serial port on the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom or HyperTerminal. Set the communication para-
meters to 115200 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. If using a PCI ethernet card, connect the board to your host PC's LAN with an Ethernet cable.

4. If using a PCI ethernet card, you may need to designate the ethernet interface with a new Ethernet MAC address. The
RedBoot binary image contains a default address, but each board requires its own unique address. It is advisable to mark
each board with its programmed MAC address for future identification.

5. Connect the board to the BDI2000 using a 20-pin ARM/Xscale cable from the JTAG/ICE interface connector (J12) to the
Target A port on the BDI2000.

6. Power up the IXDP425 board. You should see the hex display and various LEDs illuminate.

7. Connect to the BDI2000's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see usage information followed by the prompt:

Core#0>

8. Confirm correct connection with the BDI2000 with the reset halt command as follows:

Core#0> reset halt
- TARGET: processing reset request
- TARGET: BDI asserts RESET and TRST
- TARGET: BDI removed TRST
- TARGET: Bypass check: 0x000000001 => 0x00000001
- TARGET: JTAG exists check passed
- Core#0: ID code is 0x19274013
- Core#0: BDI sets hold_rst and halt mode
- TARGET: BDI removes RESET
- Core#0: BDI sets hold_rst and halt mode again
- Core#0: BDI loads debug handler to mini IC
- Core#0: BDI clears hold_rst
- TARGET: resetting target passed
- TARGET: processing target startup
- TARGET: processing target startup passed
Core#0>

9. Locate the redboot_ROM.bin image within the loaders subdirectory of the base of the eCos installation.

10.Copy the redboot_ROM.bin file into a location on the host computer accessible to its TFTP server.

2523

Intel XScale IXDP425 Network Processor Evaluation Board Support

Using the BDI2000 to directly program RedBoot into Flash

As previously mentioned, there are two methods of programming a RedBoot image into the parallel NOR Flash via JTAG,
depending on the capabilities of the JTAG device. The BDI2000 supports direct programming of the Flash device and so that
is the approach described here.

This is a three stage process. The relevant Flash blocks must first be unlocked, then erased, and finally programmed. This can
be accomplished with the following steps:

1. Connect to the BDI2000 telnet port as before.

2. Use the following commands in the BDI2000 telnet session to unlock and then erase the relevant Flash blocks that will
contain RedBoot.

Core#0>unlock 0x50000000 0x20000 4
Unlocking flash at 0x50000000
Unlocking flash at 0x50020000
Unlocking flash at 0x50040000
Unlocking flash at 0x50060000
Unlocking flash passed
Core#0>erase 0x50000000 0x20000 4
Erasing flash at 0x50000000
Erasing flash at 0x50020000
Erasing flash at 0x50040000
Erasing flash at 0x50060000
Erasing flash passed

3. Program the RedBoot image into Flash with the following command, replacing /RBPATH with the location of the red-
boot_ROM.bin file relative to the TFTP server root directory:

Core#0>prog 0x50000000 /RBPATH/redboot_ROM.bin bin
Programming /RBPATH/redboot_ROM.bin , please wait
Programming flash passed
Core#0>

This operation can take some time.

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. The RedBoot banner should be visible on the serial port.

flash configuration checksum error or invalid key

This message does not indicate a problem at this stage of installation. It just means that RedBoot Flash configuration has yet
to be performed, as described below.

If it proves necessary to re-install RedBoot, this may be achieved by repeating the above process. Alternatively, a new image
may be downloaded and programmed into flash more directly using RedBoot's own commands. See the RedBoot documentation
for details.

RedBoot Flash configuration

The following steps describe how to initialize RedBoot's Flash configuration. This must be performed when using a RAM
RedBoot to program Flash, but is also applicable to initial configuration of a ROM or ROMRAM RedBoot loaded using JTAG
or with a Flash device programmer.

1. Use the following command to initialize RedBoot's Flash Information System (FIS):

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x50080000-0x50fdffff: ...
... Unlocking from 0x50fe0000-0x50ffffff: .
... Erase from 0x50fe0000-0x50ffffff: .
... Program from 0x0ffd0000-0x0fff0000 to 0x50fe0000: .
... Locking from 0x50fe0000-0x50ffffff: .
RedBoot>

2524

Intel XScale IXDP425 Network Processor Evaluation Board Support

2. Now configure RedBoot's Flash configuration with the command:

RedBoot> fconfig -i

If a BOOTP/DHCP server is not available, then IP configuration may be set manually. The default server IP address can
be set to a PC that will act as a TFTP host for future RedBoot load operations, or may be left unset. The following gives
an example configuration:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.7.11
Local IP address: 192.168.7.222
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.7.9
Console baud rate: 115200
DNS server IP address: 192.168.7.11
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x50fe0000-0x50ffffff: .
... Erase from 0x50fe0000-0x50ffffff: .
... Program from 0x0ffd0000-0x0fff0000 to 0x50fe0000: .
... Locking from 0x50fe0000-0x50ffffff: .
RedBoot>

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot for the IXDP425 are:

$ mkdir redboot_ixdp425_romram
$ cd redboot_ixdp425_romram
$ ecosconfig new ixdp425 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/xscale/ixdp425/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

The other versions of RedBoot - RAM, ROMRAM or the little-endian variants - may be similarly built by choosing the ap-
propriate alternative .ecm file.

2525

Intel XScale IXDP425 Network Processor Evaluation Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The IXDP425 platform HAL package is loaded automatically when eCos is configured for the ixdp425 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Configuring for the ixdp425 target also causes the IXP4xx processor HAL to be included. Many configuration options in
relation to the peripheral IXP425 devices including serial UARTs, clocks, etc. are described in the IXP4xx processor HAL
documentation, which should be referred to.

Startup

The platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into
memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default a stand-
alone application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including
diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at physical address
0x50000000. The application will be self-contained with no dependencies on services provided by other software.
eCos startup code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at physical location
0x50000000. However, when it starts up, the application will first copy itself to RAM at virtual address 0x00000000
and then run from there. RAM is generally faster than flash memory, so the program will run more quickly than
a ROM-startup application. The application will be self-contained with no dependencies on services provided by
other software. eCos startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The IXDP425 is supplied by default with a 16Mbyte Intel StrataFlash 28F128J3 parallel Flash device.

The CYGPKG_DEVS_FLASH_STRATA_V2 package contains all the code necessary to support this part and the platform HAL
package contains definitions that customize the driver to the IXDP425 board. This driver is not active until the generic Flash
support package, CYGPKG_IO_FLASH, is included in the configuration.

The device is located in a socket on a board labelled both U22 and "BOOT ROM", and can be replaced with compatible Intel
StrataFlash 28FxxxJ3 parts. RedBoot will use the Common Flash Interface (CFI) to determine the Flash device geometry.

2526

Intel XScale IXDP425 Network Processor Evaluation Board Support

Ethernet Driver
The IXDP425 development kit includes an Intel i82559-based PCI Ethernet NIC. The CYGPKG_DEVS_ETH_IN-
TEL_I82559 package contains all the code necessary to support this device and the CYGPKG_DEVS_ETH_ARM_IXD-
P425_I82559 package contains definitions that customize the driver to the IXDP425 board. This driver is not active until
the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

The IXDP425 is also supplied with Network Processing Engine (NPE) modules, however these are not supported in this release.

CompactFlash True IDE Driver
The IXP425 variant HAL includes support for CompactFlash IDE devices accessed in True IDE mode directly on the IXP425
expansion bus. This is described further in the IXP4xx processor HAL documentation.

However note that the use of CS2 conflicts with use of the hex display, which also operates from the CS2 chip select, and so
the use of the hex display by eCos/RedBoot will be disabled if CF IDE support is enabled. In addition it is expected that the
hex display will show random unpredictable values during CF IDE accesses.

Other IXP425 peripherals
Details in relation to on-chip IXP425 peripherals such as PCI IDE driver, watchdog support, serial support, clocks, interrupts
and so forth are described further in the IXP4xx processor HAL documentation.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are just two flags
specific to this port:

-mcpu=xscale The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=xscale is the correct option for the XScale IXP425 CPU.

-mbig-endian The arm-eabi-gcc compiler will compile all code into big endian (most significant byte
first) format. This is the default endianness for this port. Without this flag, arm-eabi-
gcc generates little endian code. You must ensure your application is built for the same
endianness as RedBoot.

Although RedBoot endianness can be controlled by enabling or disabling the configu-
ration option CYGHWR_HAL_ARM_BIGENDIAN, it is more convenient to use the min-
imal configuration files (.ecm files) as described earlier.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb instruction set
when this option is used. The best way to build eCos in Thumb mode is to enable the
configuration option CYGHWR_THUMB.

-mthumb-interwork This option allows programs to be created that mix ARM and Thumb instruction sets.
Without this option, some memory can be saved. This option should be used if -mthumb
is used. The best way to build eCos with Thumb interworking is to enable the configu-
ration option CYGBLD_ARM_ENABLE_THUMB_INTERWORK.

2527

Intel XScale IXDP425 Network Processor Evaluation Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded RAM applications, or even applications resident in ROM, including Red-
Boot.

Debugging of ROM applications is only possible if using hardware breakpoints. The XScale only supports four such hardware
breakpoints - two for instruction breakpoints and two for data breakpoints, and so they should be used sparingly. If using a
GDB front-end such as Eclipse, check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of
whether to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

Abatron BDI2000 notes

On the Abatron BDI2000, the ixdp425.cfg file that is included with the BDI2000 software should be used to setup and
configure the hardware to an appropriate state to load programs. This includes setting up the SDRAM controller.

The ixdp425.cfg file also contains an option to define whether hardware or software breakpoints are used by default, using
the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break points, and remember to
use the boot command on the BDI2000 command line interface to make the changes take effect.

On the BDI2000, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the bdiGDB interface.
In the case of the latter, arm-eabi-gdb needs to connect to TCP port 2001 on the BDI2000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI2000 is powered up, the target will always run the initialization section of the ixdp425.cfg file
(which configures the SDRAM among other things), and halts the target. This behavior is repeated with the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot as normal. If a ROMRAM RedBoot is resident in Flash, it will
be run.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

2528

Intel XScale IXDP425 Network Processor Evaluation Board Support

Name
HAL Port — Implementation Details

Overview

This documentation explains how the eCos HAL specification has been mapped onto the IXDP425 hardware, and should be
read in conjunction with that specification. The IXDP425 platform HAL package complements the ARM architectural HAL,
the XScale variant HAL and the IXP425 processor HAL. It provides functionality which is specific to the target board.

Startup

Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the PLATFORM_SETUP1 macro in the assembler header file hal_plat-
form_setup.h.

LED Codes

Unless the Compact Flash IDE configuration option is selected, RedBoot uses the 4 digit LED display to indicate status during
board initialization. Possible codes are:

LED Actions

 Power-On/Reset
 Set the CPSR
 Enable coprocessor access
 Drain write and fill buffer
 Setup expansion bus chip selects
1001
 Enable Icache
1002
 Initialize SDRAM controller
1003
 Switch flash (CS0) from 0x00000000 to 0x50000000
1004
 Copy MMU table to RAM
1005
 Setup TTB and domain permissions
1006
 Enable MMU
1007
 Enable DCache
1008
 Enable branch target buffer
1009
 Drain write and fill buffer
 Flush caches
100A
 Start up the eCos kernel or RedBoot
0001

2529

Intel XScale IXDP425 Network Processor Evaluation Board Support

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x50000000 of the physical memory space. At initialization,
the HAL uses the MMU to retain it at virtual address 0x50000000, while also providing
an uncached mapping at 0xB0000000 and a data coherent mapping at 0xA0000000.

SDRAM This is located at address 0x00000000 of the physical memory space. The HAL uses the
MMU to retain this at virtual address 0x00000000, along with an alias at 0x10000000.
The same memory is also accessible uncached at virtual location 0x20000000 for use
by devices, and at 0x30000000 for data coherent access. The first 32 bytes are used for
hardware exception vectors. The next 32 bytes are used for the VSR table and the next
256 bytes are normally used for the eCos virtual vectors, allowing RAM-based applica-
tions to use services provided by the ROM monitor. Memory is required for the MMU
tables, and must be aligned on a 16Kbyte boundary. These therefore occupy memory
from 0x4000 to 0x8000. For ROM/ROMRAM startup, all remaining SDRAM is avail-
able. For RAM startup, available RAM starts at virtual location 0x00080000, with the
bottom 512 kilobytes reserved for use by RedBoot.

On-chip Peripheral Registers There are several regions in the memory map devoted to on-chip peripherals or on-
chip device controllers. When the MMU is enabled, all these regions are set up with
a direct, uncached and unbuffered mapping so that these registers remain accessible at
their physical locations.

As such, the address space for the AHB Queue Manager (AQM) resides at 0x60000000;
the PCI controller resides at 0xC0000000; the expansion bus controller configuration
registers reside at 0xC4000000; the SDRAM controller configuration registers resides
at 0xCC000000; and all remaining IXP425 on-chip peripherals reside in the block at
0xC8000000. This latter block includes peripheral control for on-chip high-speed and
console UARTs, internal bus performance monitoring unit, interrupt controller, GPIO
controller, timers, WAN/Voice and Ethernet NPEs, Ethernet MACs, and the USB con-
troller.

Off-chip Peripherals RedBoot and eCos access the SDRAM, parallel NOR flash, and hex display on CS2
(mapped to 0x52000000). In addition a CompactFlash True IDE mode disk may be
accessed via the expansion bus on CS1/CS2 (0x51000000/0x52000000), although the
hex display is not usable in that case.

In addition a 64MiB PCI window is mapped to 0x48000000, for communication with
devices on the PCI bus.

RedBoot and eCos do not currently make any use of any other off-chip peripherals
present on the IXDP425 board.

Memory map summary

The virtual memory maps in this section use a C, B, and X column to indicate the caching policy for the region.

X C B Description
- - - ---
0 0 0 Uncached/Unbuffered
0 0 1 Uncached/Buffered
0 1 0 Cached/Buffered Write Through, Read Allocate
0 1 1 Cached/Buffered Write Back, Read Allocate
1 0 0 Invalid - not used
1 0 1 Uncached/Buffered No write buffer coalescing
1 1 0 Mini DCache - Policy set by Aux Ctl Register
1 1 1 Cached/Buffered Write Back, Read/Write Allocate

2530

Intel XScale IXDP425 Network Processor Evaluation Board Support

Virtual Address Physical Address XCB Size (MB) Description
 0x00000000 0x00000000 010 256 SDRAM (cached)
 0x10000000 0x00000000 010 256 SDRAM (alias)
 0x20000000 0x00000000 000 256 SDRAM (uncached)
 0x30000000 0x00000000 010 256 SDRAM (cached, DC)
 0x48000000 0x48000000 000 64 PCI Data
 0x50000000 0x50000000 010 16 Flash (CS0, cached)
 0x51000000 0x51000000 000 16 CF True IDE mode chip select #0 (CS1)
 0x52000000 0x52000000 000 16 Hex display/CF True IDE mode chip select #1 (CS2)
 0x53000000 0x53000000 000 80 CS3 - CS7
 0x60000000 0x60000000 000 64 Queue Manager
 0xA0000000 0x50000000 010 16 Flash (CS0, cached, DC)
 0xB0000000 0x50000000 000 16 Flash (CS0, uncached)
 0xC0000000 0xC0000000 000 1 PCI Controller
 0xC4000000 0xC4000000 000 1 Exp. Bus Config
 0xC8000000 0xC8000000 000 1 Misc IXP425 IO
 0xCC000000 0xCC000000 000 1 SDRAM Config

Other Issues
The IXDP425 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The XScale
variant HAL, the IXP4xx processor HAL documentation and the ARM architectural HAL documentation should be consulted
for further details.

2531

Chapter 271. Altera Hard Processor
System Support

2532

Altera Hard Processor System Support

Name
Support for the Altera HPS — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Hard Processor System
(HPS) present on the Cyclone V and Arria 10 FPGAs. It is expected to be read in conjunction with platform HAL-specific
documentation, as well as the eCos HAL specification. This processor HAL package complements the ARM architectural
HAL, Cortex-A variant HAL and the platform HAL. It provides functionality common to all HPS-based implementations.

This support is found in the eCos package located at packages/hal/arm/cortexa/altera_hps within the eCos
source repository.

The Altera HPS HAL package is loaded automatically when eCos is configured for an HPS-based platform. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Supported Hardware
Supported features of the HPS within this processor HAL package include:

• HPS-specific hardware definitions

• Interrupt controller selection

• Timers

• Serial UART configuration

• I²C two wire interface configuration

• Pin Configuration and GPIO Support

Support for the on-chip QSPI device, SPI NOR flash, interrupt-driven serial, watchdog and wallclock (RTC) features of the
HPS are also present and can be found in separate packages, outside of this processor HAL.

Support for SMP operation of the two Cortex-A9 CPUs in the HPS is available, although debugging support is restricted to
use of an external JTAG debugger. The HAL does not contain support for the Cortex-A's NEON SIMD engine.

2533

Altera Hard Processor System Support

Name
HPS Hardware Definitions — Details on obtaining hardware definitions for HPS

Register definitions
The file <cyg/hal/altera_hps.h> can be included from application and eCos package sources to provide definitions
related to HPS subsystems. These include base addresses for various devices and register definitions for HPS-specific devices
such as the system manager, reset manager, pin multiplexing and GPIO. The registers for various devices, such as QSPI, I²C,
Ethernet, and the UARTs are defined in the drivers for those devices. The interrupt controller and system timer are implemented
in the Cortex-A HAL. This file will normally be included automatically if <cyg/hal/hal_io.h> is included, which is the
preferred way of getting these definitions.

Initialization Helper Macros
The file <cyg/hal/altera_hps_init.inc> contains definitions of helper macros which may be used by HPS platform
HALs in order to initialize common subsystems without excessive duplication between these platform HALs. Typically this
file will be included by the hal_platform_setup.h header in the platform HAL, in turn included from the architectural
HAL file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary. NOTE: At present, the only extant HPS port relies on the Altera
preloader to initialize the PLLs and memory controller, so these macros currently largely contain Cortex-A-generic setup only.

2534

Altera Hard Processor System Support

Name
GIC Interrupt Controller — Advanced Interrupt Controller Definitions And usage

Interrupt controller definitions
The file <cyg/hal/var_ints.h> (located at hal/arm/cortexa/altera_hps/VERSION/in-
clude/var_ints.h in the eCos source repository) contains interrupt vector number definitions for use with the eCos ker-
nel and driver interrupt APIs.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt Controller Functions
The HPS uses a standard ARM Generic Interrupt Controller (GIC), which is implemented in the Cortex-A HAL. The Cortex-A
HAL exports the standard interrupt vector management functions. The hal_IRQ_handler queries the IRQ status register
to determine the interrupt cause. Functions hal_interrupt_mask and hal_interrupt_unmask enable or disable
interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function. Refer to the HPS documentation for any limitations
as to what types of signal can be detected.

The hal_interrupt_eoi function performs End-Of-Interrupt processing and is called automatically by the architecture
HAL. The hal_interrupt_acknowledge function is intended to acknowledge an interrupt, although for the GIC it is a
NUL function since the necessary work it handled by the EOI function.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the GIC. Priorities may
range between 0 and 255, with lower values mapping to higher priority. The GIC in the HPS only implements the top 5 bits
of the priority value, so there are actually 32 distinct priority levels available.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

2535

Altera Hard Processor System Support

Name
Timers — Use of on-chip timers

System Clock
The eCos kernel system clock is implemented using the private timer of CPU0. By default, the system clock interrupts once
every 10ms, corresponding to a 100Hz clock. This can be changed by the configuration option CYGNUM_HAL_RTC_DENOMI-
NATOR which corresponds to the clock frequency. Other clock-related settings are recalculated automatically if the denomi-
nator is changed. If the desired frequency cannot be expressed accurately solely with changes to CYGNUM_HAL_RTC_DE-
NOMINATOR, then the configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjusted. However, if this is done
then CYGNUM_HAL_RTC_PERIOD must be changed to provide the described clock frequency.

The same Timer is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some
device drivers, and in non-kernel configurations, such as RedBoot, where this timer is needed for loading program images via
X/Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

If SMP is enabled, then the HAL switches to using the global timer. This is because it is necessary to read the timer from any
CPU, not just from CPU0.

Timer-based profiling support
If the gprof package, CYGPKG_PROFILE_GPROF, is included in the configuration, then the MPCore global timer is reserved
for use by the profiler.

Profiling is only supported in single-core systems. If SMP is enabled then the profiling timer is disabled. This is because the
SMP scheduler needs to use the global timer rather than the private timers. Additionally, the CYGPKG_PROFILE_GPROF
package is not SMP-aware and the results would, in any case, be invalid.

If profiling is wanted, then it is recommended that a hardware tool like the Lauterbach Trace32 debugger be used.

2536

Altera Hard Processor System Support

Name
Serial UARTs — Configuration and Implementation Details of Serial UART Support

Overview
Support is included in this processor HAL package for the on-chip serial UART devices.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 57600,8,N,1 with no flow control.

HAL Diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the HPS
processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel
to use as the console at startup time. This will be the channel that receives output from, for example, diag_printf().
The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven Serial Driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent Ctrl-C operation when debugging.

The main part of this driver is contained in the generic CYGPKG_IO_SERIAL_GENERIC_16X5X package. The package
CYGPKG_IO_SERIAL_ARM_ALTERA_HPS contains definitions that configure the generic driver for the HPS. That dri-
ver package should also be consulted for documentation and configuration options. The driver is not active until the CYGP-
KG_IO_SERIAL_DEVICES configuration option within the generic serial driver support package CYGPKG_IO_SERIAL
is enabled in the configuration.

Support for hardware flow control and modem control lines is present in the driver, but should only be enabled if these control
signals are brought out to the physical serial port.

2537

Altera Hard Processor System Support

Name
Multimedia Card Interface (MMC/SD) Driver — Using MMC/SD cards with block drivers and filesystems

Overview
The MultiMedia Card Interface (MMC/SD) driver in this processor HAL package allows use of MultiMedia Cards (MMC
cards) and Secure Digital (SD) flash storage cards within eCos, exported as block devices. This makes them suitable for use
as the underlying devices for filesystems such as FAT.

The HPS architecture only has support for one SDMMC controller.

Configuration
This driver provides the necessary support for the generic MMC bus layer within the CYGPKG_DEVS_DISK_MMC package
to export a disk block device. The disk block device is only available if the generic disk I/O layer found in the package
CYGPKG_IO_DISK is included in the configuration.

The block device may then be used as the device layer for a filesystem such as FAT. Example devices are "/dev/mmcsd0/1"
to refer to the first partition on the card, or "/dev/mmcsd0/0" to address the whole device including potentially the partition
table at the start.

The driver may be forcibly disabled within this processor HAL package with the configuration option CYGPKG_HAL_AR-
M_CORTEXA_ALTERA_HPS_MMC.

If the driver is enabled, the following options are available to control it:

CYGPKG_HAL_ARM_CORTEXA_ALTERA_HPS_MMC_DMA_DESCRIPTORS

This option specifies the number of descriptors in the DMA ringbuffer. This value can be tuned if needed to optimise
performance vs the memory footprint.

CYGIMP_HAL_ARM_CORTEXA_ALTERA_HPS_MMC_INTMODE

This indicates that the driver should operate in interrupt-driven mode if possible. This is enabled by default if the eCos
kernel is enabled. Note though that if the driver finds that global interrupts are off when running, then it will fall back to
polled mode even if this option is enabled. This allows for use of the MMC/SD driver in an initialisation context.

CYGNUM_HAL_ARM_CORTEXA_ALTERA_HPS_MMC_INT_PRI

This is the MMC/SD bus interrupt priority. It may range from 0 to 255.

CYGPKG_HAL_SDMMC_DWC_INSTRUMENTATION

When the CYGPKG_KERNEL_INSTRUMENTATION support is configured, this option allows control over whether SD-
MMC device driver instrumentation is generated. Sub-options are provided to control which event code instrumentation
records are generated. Normally this option is only useful when developing/debugging the driver; but it can be used to
monitor performance of the driver in a running system.

Usage Notes
The driver will detect the appropriate card sizes.

The MMC/SD bus layer will parse partition tables, although it can be configured to allow handling of cards with no partition
table.

This driver implements multi-sector I/O operations. If you are using the FAT filesystem, see the generic MMC/SD driver
documentation which describes how to exploit this feature when using FAT.

2538

Altera Hard Processor System Support

Note

Any cards removed from a socket before an explicit unmounting or a sync() call to flush filesystem buffers
will likely result in a corrupted filesystem on the removed card.

2539

Altera Hard Processor System Support

Name
I2C Interface — Using I²C devices

Overview
The I²C driver in the CYGPKG_DEVS_I2C_DWI2C supports the use of I²C devices within eCos. Access to the driver will be
via the standard I²C interface subsystem.

This driver provides support for all four I²C busses available on the HPS. The number of interfaces supported is defined by
the platform HAL.

Configuration
The HAL contains the following configuration options for each the I²C busses:

CYGINT_HAL_ARM_CORTEXA_ALTERA_HPS_I2C_BUSX

This interface controls the inclusion of support for I²C bus X. This will normally be implemented by the platform HAL
to indicate that there are I²C devices attached to the given bus, or that the SCL and SDA lines are routed to an external
connector.

CYGNUM_HAL_ARM_CORTEXA_ALTERA_HPS_I2C_BUSX_CLOCK

This is the I²C bus X clock speed in Hz. Frequencies of either 100kHz or 400kHz can be chosen, the latter sometimes
known as fast mode.

CYGNUM_HAL_ARM_CORTEXA_ALTERA_HPS_I2C_BUSX_INTR_PRI

This is the I²C bus X interrupt priority. It may range from 1 to 255; the default of 128 places it in the centre of the priority
range.

Usage Notes
The design of the I²C device does not make it possible to start a new bus transfer without also sending a START condition on
the bus. This means that divided transactions are not possible. A divided transaction would look like this:

 cyg_i2c_transaction_begin(&cyg_aardvark_at24c02);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 1, tx_buf1, 1, 0);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 0, tx_buf2, 2, 0);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 0, tx_buf3, 6, 1);
 cyg_i2c_transaction_end(&cyg_aardvark_at24c02);

In this transaction a START and one byte are sent from tx_buf1, then 2 bytes of data from tx_buf2, finishing with 6 bytes from
tx_buf3 followed by a STOP. The device will not allow the tx_buf2 and tx_buf3 transfers to happen without also sending a
START. The only solution to this is to combine the data into a single buffer and perform a single transfer:

 memcpy(tx_buf, tx_buf1, 1);
 memcpy(tx_buf+1, tx_buf2, 2);
 memcpy(tx_buf+3, tx_buf3, 6);
 cyg_i2c_tx(&cyg_aardvark_at24c02, tx_buf, 9);

2540

Altera Hard Processor System Support

Name
Pin Configuration and GPIO Support — Use of pin configuration and GPIO

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_HPS_PINMUX(reg, func);

CYGHWR_HAL_HPS_PINMUX_SET (pin);

pin = CYGHWR_HAL_HPS_GPIO(line, mode);

CYGHWR_HAL_HPS_GPIO_SET (pin);

CYGHWR_HAL_HPS_GPIO_OUT (pin, val);

CYGHWR_HAL_HPS_GPIO_IN (pin, val);

Description
The HPS HAL provides a number of macros to support the encoding of pin multiplexing information and GPIO pin modes
into 32 bit descriptors. This is useful to drivers and other packages that need to configure and use different lines for different
devices. Because there is not a simple correspondence between pin multiplexing information and GPIO line numbers, these
two things are treated separately.

Pin Multiplexing
A pin multiplexing descriptor is created with CYGHWR_HAL_HPS_PINMUX(reg, func) which takes the following
arguments:

reg This identifies the PINMUX register which controls this pin. This consists of the name
of a pin group parameterized by the pin within that group.

func This defines the function code to program into the PINMUX register. There is no sys-
tematic consistency between functions and function codes, and the same function for a
pin may be represented by different codes in different PINMUX registers. You should
refer to the HPS documentation for the correct value to be used here.

The following examples show how this macro may be used:

// UART0 RX line is controlled by register GENERALIO(17), function 2 = UART0.RX
#define CYGHWR_HAL_HPS_UART0_RX CYGHWR_HAL_HPS_PINMUX(GENERALIO(17),2)

// GPIO 41 is controlled by register FLASHIO(5), function 0 = GPIO 41
#define CYGHWR_HAL_HPS_LED0 CYGHWR_HAL_HPS_PINMUX(FLASHIO(5),0)

The macro CYGHWR_HAL_HPS_PINMUX_SET(pin) sets the pin multiplexing setting according to the descriptor passed
in.

GPIO Support
A GPIO descriptor is created with CYGHWR_HAL_HPS_GPIO(line, mode) which takes the following arguments:

line This gives the GPIO line number, between 0 and 70.

mode This defines whether this is an input or an output pin, and whether it is de-bounced. It
may take the values IN or OUT, or INDB for de-bounced input. GPIO lines 48 to 70 can
take their input from one of two pins; modes IN_ALT and INDB_ALT cause the GPIO
line to be connected to the alternate input pin.

2541

Altera Hard Processor System Support

Additionally, the macro CYGHWR_HAL_HPS_GPIO_NONE may be used in place of a pin descriptor and has a value that no
valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used.

The following examples show how this macro may be used:

// LED 0 is at GPIO41, bank 1 bit 13, output mode
#define CYGHWR_HAL_HPS_LED0_GPIO CYGHWR_HAL_HPS_GPIO(41, OUT)

The remaining macros all take a GPIO pin descriptor as an argument. CYGHWR_HAL_HPS_GPIO_SET configures the pin
according to the descriptor and must be called before any other macros. CYGHWR_HAL_HPS_GPIO_OUT sets the output to
the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_HPS_GPIO_IN should be a
pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

2542

Chapter 272. Broadcom IProc Support

2543

Broadcom IProc Support

Name
Support for the Broadcom IProc — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the IProc subsystem present
on some Broadcom devices. It is expected to be read in conjunction with platform HAL-specific documentation, as well as the
eCos HAL specification. This processor HAL package complements the ARM architectural HAL, Cortex-A variant HAL and
the platform HAL. It provides functionality common to all IProc-based implementations.

This support is found in the eCos package located at packages/hal/arm/cortexa/broadcom_iproc within the
eCos source repository.

The Broadcom IProc HAL package is loaded automatically when eCos is configured for an IProc-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Supported Hardware
Supported features of the IProc within this processor HAL package include:

• IProc-specific hardware definitions

• Interrupt controller selection

• Timers

• Serial UART configuration

Support for the on-chip QSPI device, SPI NOR flash and interrupt-driven serial are also present and can be found in separate
packages, outside of this processor HAL.

Note that the HAL does not currently contain support for the Cortex-A's NEON SIMD engine.

2544

Broadcom IProc Support

Name
IProc Hardware Definitions — Details on obtaining hardware definitions for IProc

Register definitions
The file <cyg/hal/broadcom_iproc.h> can be included from application and eCos package sources to provide defin-
itions related to IProc subsystems. These include base addresses for various devices and register definitions for IProc-specif-
ic devices such as the Clock Reset Manager and Device Management Unit. The registers for various devices, such as QSPI
and the UARTs, are defined in the drivers for those devices. The interrupt controller and system timer are implemented in
the Cortex-A HAL. This file will normally be included automatically if <cyg/hal/hal_io.h> is included, which is the
preferred way of getting these definitions.

Initialization Helper Macros
The file <cyg/hal/broadcom_iproc_init.inc> contains definitions of helper macros which may be used by IProc
platform HALs in order to initialize common subsystems without excessive duplication between these platform HALs. Typ-
ically this file will be included by the hal_platform_setup.h header in the platform HAL, in turn included from the
architectural HAL file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary.

2545

Broadcom IProc Support

Name
GIC Interrupt Controller — Advanced Interrupt Controller Definitions and Usage

Interrupt Controller Definitions
The file <cyg/hal/var_ints.h> (located at hal/arm/cortexa/broadcom_iproc/VERSION/in-
clude/var_ints.h in the eCos source repository) contains interrupt vector number definitions for use with the eCos ker-
nel and driver interrupt APIs.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt Controller Functions
The IProc uses a standard ARM Generic Interrupt Controller (GIC), which is implemented in the Cortex-A HAL. The Cortex-A
HAL exports the standard interrupt vector management functions. The hal_IRQ_handler queries the IRQ status register
to determine the interrupt cause. Functions hal_interrupt_mask and hal_interrupt_unmask enable or disable
interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function. Refer to the IProc documentation for any limita-
tions as to what types of signal can be detected.

The hal_interrupt_eoi function performs End-Of-Interrupt processing and is called automatically by the architecture
HAL. The hal_interrupt_acknowledge function is intended to acknowledge an interrupt, although for the GIC it is a
NUL function since the necessary work it handled by the EOI function.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the GIC. Priorities may
range between 0 and 255, with lower values mapping to higher priority. The GIC in the IProc only implements the top 5 bits
of the priority value, so there are actually 32 distinct priority levels available.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

2546

Broadcom IProc Support

Name
Timers — Use of on-chip timers

System Clock
The eCos kernel system clock is implemented using the private timer of CPU0. By default, the system clock interrupts once
every 10ms, corresponding to a 100Hz clock. This can be changed by the configuration option CYGNUM_HAL_RTC_DENOMI-
NATOR which corresponds to the clock frequency. Other clock-related settings are recalculated automatically if the denomi-
nator is changed. If the desired frequency cannot be expressed accurately solely with changes to CYGNUM_HAL_RTC_DE-
NOMINATOR, then the configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjusted. However, if this is done
then CYGNUM_HAL_RTC_PERIOD must be changed to provide the described clock frequency.

The same Timer is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some
device drivers, and in non-kernel configurations, such as RedBoot, where this timer is needed for loading program images via
X/Y-modem protocols and debugging. Standalone applications which require RedBoot services, such as debugging, should
avoid use of this timer.

Timer-based profiling support
If the gprof package, CYGPKG_PROFILE_GPROF, is included in the configuration, then the MPCore global timer is reserved
for use by the profiler.

2547

Broadcom IProc Support

Name
Serial UARTs — Configuration and Implementation Details of Serial UART Support

Overview
Support is included in this processor HAL package for the on-chip serial UART devices.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 115200,8,N,1 with no flow control.

HAL Diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems. This
can operate on any port, according to the configuration settings.

There are several configuration options usually found within a platform HAL which affect the use of this support in the IProc
processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the serial port channel
to use as the console at startup time. This will be the channel that receives output from, for example, diag_printf().
The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to use for GDB
communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that decides
which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTUAL_VEC-
TOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven Serial Driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL). This support can be enabled on any port.

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent Ctrl-C operation when debugging.

The main part of this driver is contained in the generic CYGPKG_IO_SERIAL_GENERIC_16X5X package. The package
CYGPKG_IO_SERIAL_ARM_BROADCOM_IPROC contains definitions that configure the generic driver for the IProc. That
driver package should also be consulted for documentation and configuration options. The driver is not active until the CYG-
PKG_IO_SERIAL_DEVICES configuration option within the generic serial driver support package CYGPKG_IO_SERIAL
is enabled in the configuration.

Support for hardware flow control and modem control lines is present in the driver, but should only be enabled if these control
signals are brought out to the physical serial port.

2548

Chapter 273. Broadcom BCM283X
Processor Support

2549

Broadcom BCM283X Processor Support

Name
Support for the Broadcom BCM283X Processor Family — Overview

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Broadcom BCM283X
devices present on the Raspberry Pi boards. It is expected to be read in conjunction with platform HAL-specific documentation,
as well as the eCos HAL specification. This processor HAL package complements the ARM architectural HAL, Cortex-A
variant HAL and the Raspberry Pi platform HAL. It provides functionality common to all BCM283X-based implementations.

This support is found in the eCos package located at packages/hal/arm/cortexa/bcm283x within the eCos source
repository.

The BCM283X HAL package is loaded automatically when eCos is configured for any Raspberry Pi board. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Supported Hardware
Supported features of the BCM283X within this processor HAL package include:

• BCM283X-specific hardware definitions

• Interrupt Controller Support

• Timers

• Serial UART configuration

• I²C two wire interface configuration

• GPIO Support

• DMA Support

Support for I²C, SPI, USB, Ethernet, MMC/SD and interrupt-driven serial features of the BCM283X are also present and can
be found in separate packages, outside of this processor HAL.

Support for SMP operation of the four Cortex-A CPUs in the BCM2836 and BCM2837 is available, although debugging
support is restricted to use of an external JTAG debugger.

2550

Broadcom BCM283X Processor Support

Name
Hardware Definitions — Details on obtaining hardware definitions for BCM283X

Register definitions
The file <cyg/hal/bcm283x.h> can be included from application and eCos package sources to provide definitions related
to BCM283X subsystems. These include base addresses for various devices and register definitions for BCM283X-specific
devices such as the interrupt controller, timers, mailboxes, DMA and GPIO. The registers for various devices, such as I²C, SPI,
MMC/SD, and the UARTs are defined in the drivers for those devices. This file will normally be included automatically if
<cyg/hal/hal_io.h> is included, which is the preferred way of getting these definitions.

Initialization Helper Macros
The file <cyg/hal/bcm283x_init.inc> contains definitions of helper macros which may be used by platform HALs
in order to initialize common subsystems without excessive duplication between these platform HALs. Typically this file will
be included by the hal_platform_setup.h header in the platform HAL, in turn included from the architectural HAL
file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary. NOTE: At present, the only extant BCM283X port relies on
the GPU to initialize the PLLs and memory controller, so these macros currently largely contain Cortex-A-generic setup only.

2551

Broadcom BCM283X Processor Support

Name
Interrupt Controller — Interrupt Controller Definitions and Usage

Interrupt Vector Assignments
The file <cyg/hal/var_ints.h> (located at hal/arm/cortexa/bcm283x/VERSION/include/var_ints.h
in the eCos source repository) contains interrupt vector number definitions for use with the eCos kernel and driver interrupt
APIs.

The BCM283X interrupt controller is somewhat unsystematic and in order to derive some efficiency from it, the eCos interrupt
vector table is large and in some places sparse. Some secondary decoding is also performed to demultiplex some shared vectors.
The following table shows the overall interrupt mapping scheme.

Range Description

0..31 IRQ pending register 1

32..63 IRQ pending register 2

64..84 IRQ basic pending register

85..95 Unused, reserved for expansion

96..111 CPU0, per-CPU vectors

112..127 CPU1, per-CPU vectors

128..143 CPU2, per-CPU vectors

144..159 CPU3, per-CPU vectors

160..162 Auxiliary device vectors -- demultiplexed

163..216 GPIO pin vectors -- demultiplexed

Interrupt Controller Functions
The BCM283X HAL exports the standard interrupt vector management functions which are in turn called by the generic
interrupt management macros.

The hal_IRQ_handler() function queries the IRQ pending registers to determine the interrupt cause. Functions hal_in-
terrupt_mask() and hal_interrupt_unmask() enable or disable interrupts within the interrupt controller.

The BCM283X does not have any provision for prioritizing interrupts, setting their edge/level, per-vector CPU affinity, or
even acknowledge individual vectors. So the functions hal_interrupt_set_level, hal_interrupt_configure,
hal_interrupt_set_cpu, hal_interrupt_get_cpu and hal_interrupt_acknowledge are all empty func-
tions.

The only available mechanism in the BCM283X for redirecting interrupts to different CPUs is to move all device interrupt to
a given CPU. This does not match the model to which eCos has been implemented. So, all device interrupts are directed to
CPU0, which cannot be changed. CPUs 1 to 3 only handle explicitly multi-core interrupts.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

2552

Broadcom BCM283X Processor Support

Name
Timers — Use of on-chip timers

System Clock
The eCos kernel system clock is implemented using the BCM283X System Timer device. By default, the system timer is
programmed to interrupt once every 10ms, corresponding to a 100Hz clock. This can be changed with the configuration option
CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings are recalculated
automatically if the denominator is changed. The system timer is clocked at 1MHz, so there are limits on the accuracy of any
frequency that is not a factor of 1000000.

The same timer is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some device
drivers, and in non-kernel configurations, such as RedBoot, where this timer is needed for loading program images via X/Y-
modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

Timer-based Profiling Support
At present timer based profiling is not supported. This is mainly because the current profiling support is not SMP-aware.

2553

Broadcom BCM283X Processor Support

Name
Serial UARTs — Configuration and Implementation Details of Serial UART Support

Overview
Support is included in this processor HAL package for the auxiliary mini UART device.

There are two forms of support: HAL diagnostic I/O; and a fully interrupt-driven serial driver. Unless otherwise specified in
the platform HAL documentation, for all serial ports the default settings are 115200,8,N,1 with no flow control.

HAL Diagnostic I/O

This first form is polled mode HAL diagnostic output, intended primarily for use during debug and development. Operations
are usually performed with global interrupts disabled, and thus this mode is not usually suitable for deployed systems.

There are several configuration options usually found within a platform HAL which affect the use of this support in the
BCM283X processor HAL. The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL selects the seri-
al port channel to use as the console at startup time. This will be the channel that receives output from, for example, di-
ag_printf(). The CDL option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL selects the serial port channel to
use for GDB communication by default. Note that when using RedBoot, these options are usually inactive as it is RedBoot that
decides which channels are used. Applications may override RedBoot's selections by enabling the CYGSEM_HAL_VIRTU-
AL_VECTOR_CLAIM_COMMS CDL option in the HAL. Baud rates for each channel are set with the CYGNUM_HAL_VIRTU-
AL_VECTOR_CONSOLE_CHANNEL_BAUD and CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD options.

Interrupt-driven Serial Driver

The second form of support is an interrupt-driven serial driver, which is integrated into the eCos standard serial I/O infrastruc-
ture (CYGPKG_IO_SERIAL).

Note that it is not recommended to share this driver when using the HAL diagnostic I/O on the same port. If the driver is shared
with the GDB debugging port, it will prevent Ctrl-C operation when debugging.

The main part of this driver is contained in the generic CYGPKG_IO_SERIAL_GENERIC_16X5X package. The package
CYGPKG_IO_SERIAL_ARM_BCM283X contains definitions that configure the generic driver for the BCM283X. That dri-
ver package should also be consulted for documentation and configuration options. The driver is not active until the CYGP-
KG_IO_SERIAL_DEVICES configuration option within the generic serial driver support package CYGPKG_IO_SERIAL
is enabled in the configuration.

Support for hardware flow control is present in the driver, but should only be enabled if the RTS and CTS control signals are
connected to accessible GPIO lines. The mini UART is also lacking some 16550 functionality, it is only capable of 7 or 8 bit
characters, and only supports one stop bit and no parity; attempts to select other settings will be accepted, but will have no effect.

2554

Broadcom BCM283X Processor Support

Name
I²C Interface — Using I²C devices

Overview
The I²C driver in the CYGPKG_DEVS_I2C_BSC package supports the use of I²C devices within eCos. Access to the driver
will be via the standard I²C interface subsystem.

This driver can provide support for all three I²C busses available on the BCM283X. However, I2C0 is reserved for use by the
GPU and I2C2 is dedicated to the HDMI interface, so in practice only I2C1 is available.

Configuration
The HAL contains the following configuration options for each the I²C busses:

CYGINT_HAL_ARM_CORTEXA_BCM283X_I2C_BUSX

This interface controls the inclusion of support for I²C bus X. This will normally be implemented by the platform HAL
to indicate that there are I²C devices attached to the given bus, or that the SCL and SDA lines are routed to an external
connector.

CYGNUM_HAL_ARM_CORTEXA_BCM283X_I2C_BUSX_CLOCK

This is the I²C bus X clock speed in Hz. Frequencies of either 100kHz or 400kHz can be chosen, the latter sometimes
known as fast mode.

Usage Notes
The design of the I²C device does not make it possible to start a new bus transfer without also sending a START condition on
the bus. This means that divided transactions are not possible. A divided transaction would look like this:

 cyg_i2c_transaction_begin(&cyg_aardvark_at24c02);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 1, tx_buf1, 1, 0);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 0, tx_buf2, 2, 0);
 cyg_i2c_transaction_tx(&cyg_aardvark_at24c02, 0, tx_buf3, 6, 1);
 cyg_i2c_transaction_end(&cyg_aardvark_at24c02);

In this transaction a START and one byte are sent from tx_buf1, then 2 bytes of data from tx_buf2, finishing with 6 bytes from
tx_buf3 followed by a STOP. The device will not allow the tx_buf2 and tx_buf3 transfers to happen without also sending a
START. The only solution to this is to combine the data into a single buffer and perform a single transfer:

 memcpy(tx_buf, tx_buf1, 1);
 memcpy(tx_buf+1, tx_buf2, 2);
 memcpy(tx_buf+3, tx_buf3, 6);
 cyg_i2c_tx(&cyg_aardvark_at24c02, tx_buf, 9);

2555

Broadcom BCM283X Processor Support

Name
GPIO Support — Use of GPIO

Synopsis
#include <cyg/hal/hal_io.h>

desc = CYGHWR_HAL_BCM283X_GPIO(pin, alt, mode);

desc = CYGHWR_HAL_BCM283X_GPIO_VAR(pin, alt, mode);

CYGHWR_HAL_BCM283X_GPIO_SET (desc);

desc = CYGHWR_HAL_BCM283X_GPIO_GET (pin);

CYGHWR_HAL_BCM283X_GPIO_OUT (desc, val);

CYGHWR_HAL_BCM283X_GPIO_IN (desc, val);

Description
The BCM283X HAL provides a number of macros to support the encoding of pin multiplexing and GPIO pin modes into a 32
bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for different devices.
Pin multiplexing is handled in the GPIO controller, so it is handled by the same interface.

A GPIO descriptor is created with CYGHWR_HAL_BCM283X_GPIO(pin, alt, mode) which takes the following
arguments:

pin This gives the GPIO pin number, between 0 and 53.

alt This gives the pin's function. It may be one of GPIO_IN, GPIO_OUT, ALT0, ALT1, ALT2, ALT3, ALT4 or ALT5.
The first two set the pin to be a GPIO input or output respectively, the remainder select one of six alternate functions
for the pin, usually assigning it to a particular device signal. The alternate function mappings can be found in the
BCM2835 documentation, and may also be seen using the RedBoot gpio table command.

mode This defines any additional properties that this pin should have. These either define the signal input condition on which
an interrupt is raised, or the nature of any pull-up or -down to be applied to the pin. The values RISING and FALLING
program the line to interrupt on a rising or falling edge; similarly HIGH and LOW interrupt on high or low levels. The
values PULL_DOWN and PULL_UP apply a pull resistor in the given direction.

The value in this argument is the last element of a macro of the form, CYGHWR_HAL_BCM283X_GPIO_MOD-
E_XXXXX. It is possible to define additional macros than enable combinations of modes. The HAL defines some
such macros: EDGE causes and interrupt on any signal edge; PULL_UP_FALLING applies a pull up on the line and
interrupts on a falling edge, and PULL_DOWN_RISING does the inverse.

Additionally, the macro CYGHWR_HAL_BCM283X_GPIO_NONE may be used in place of a pin descriptor and has a value
that no valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used. It may
be passed to any GPIO macro which takes a descriptor and will be treated as a no-op.

The following examples show how this macro may be used:

// ACT LED is on GPIO16 on some boards
#define CYGHWR_HAL_PI_LED CYGHWR_HAL_BCM283X_GPIO(16, GPIO_OUT, NONE)

// UART TX and TX pins are on GPIO14 and GPIO15
#define CYGHWR_HAL_BCM283X_UART0_TX CYGHWR_HAL_BCM283X_GPIO(14, ALT0, NONE)
#define CYGHWR_HAL_BCM283X_UART0_RX CYGHWR_HAL_BCM283X_GPIO(15, ALT0, NONE)

Most of the remaining macros all take a GPIO descriptor as an argument. CYGHWR_HAL_BCM283X_GPIO_SET config-
ures the pin according to the descriptor and must be called before any the following macros. CYGHWR_HAL_BCM283X_G-

2556

Broadcom BCM283X Processor Support

PIO_OUT sets the pin output to the value of the least significant bit of the val argument. The val argument of CYGH-
WR_HAL_BCM283X_GPIO_IN should be a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

The macro CYGHWR_HAL_BCM283X_GPIO_GET takes a pin number as an argument and returns a descriptor that encodes
the current state of that pin. The CYGHWR_HAL_BCM283X_GPIO_VAR performs the same descriptor encoding as CYGH-
WR_HAL_BCM283X_GPIO except that the arguments are not interpreted as macro name fragments. This is useful for gener-
ating a descriptor at runtime from variable field values.

2557

Broadcom BCM283X Processor Support

Name
DMA Support — Description

Synopsis

#include <cyg/hal/bcm283x_dma.h>

ok = hal_dma_channel_init(hal_dma_channel *chan, cyg_uint8 permap, cyg_bool fast,
hal_dma_callback *callback, CYG_ADDRWORD data);

hal_dma_channel_delete(hal_dma_channel *chan);

hal_dma_channel_set_polled(hal_dma_channel *chan, cyg_bool polled);

hal_dma_poll(void);

hal_dma_cb_init(hal_dma_cb *cb, cyg_uint32 ti, void *source, void *dest, cyg_uint32
size);

hal_dma_add_cb(hal_dma_channel *chan, hal_dma_cb *cb);

hal_dma_channel_start(hal_dma_channel *chan);

hal_dma_channel_stop(hal_dma_channel *chan);

Description
The HAL provides support for access to the DMA channels. This support is not intended to expose the full functionality of
these devices and is mainly limited to supporting peripheral DMA. The API is therefore mainly oriented for use by device
drivers rather than applications. The user is referred to the BCM2835 documentation for full details of the DMA channels, and
to the SDHOST driver for an example of this API in use.

The DMA hardware consist of sixteen independent channels. DMA is initiated by attaching a chain of control blocks to a
channel and starting it running. Each control block contains source and destination addresses, size, transfer direction and a
number of other parameters. Of the sixteen channels available, some are reserved for use by the GPU. Also, the channels are
divided into full function channels and lite channels that lack some functionality and have lower bandwidth. Full details are
available in the BCM2835 documentation.

A DMA channel is represented by a hal_dma_channel object that the client must allocate. Control blocks are similarly repre-
sented by a hal_dma_cb object, which again must be allocated by the client. DMA control blocks must be aligned on a 32 byte
boundary. The type definition in bcm283x_dma.h has an alignment attribute so that static allocations should be correctly
aligned by default; however care should be taken to align dynamic allocations.

A DMA channel is initialized by calling hal_dma_channel_init, the parameters are as follows:

chan A pointer to the channel object to be initialized.

permap Peripheral map value. This is one of the CYGHWR_HAL_BCM283X_DMA_DREQ_XXXX values defined in
bcm238x.h. It specifies the peripheral to or from which the transfer will be made.

fast This specifies whether the DMA channel should be a full featured fast channel or a reduced bandwidth lite
channel. If a lite channel is specified and none are available a fast channel will be allocated. However, if a fast
channel is specified and none are available then this routine will return 0 to indicate an error.

callback A pointer to a function that will be called when the DMA transfer has been completed. This will be called
with a pointer to the channel, an event code, nd a copy of the data parameter. The event code will be ei-
ther CYGHWR_REG_BCM283X_DMA_CS_END to indicate a successful completion of the transfer or CYGH-
WR_REG_BCM283X_DMA_CS_ERROR to indicate an error.

2558

Broadcom BCM283X Processor Support

data An uninterpreted data value that will be passed to the callback. This would typically be a pointer to a client
data structure.

If the initialization is successful the routine will return 1. The current implementation of the DMA API permanently allocates
a physical channel when this routine is called. In the future the allocation of physical channels may be more dynamic, so the
client should not assume that the channel in use is constant.

The hal_dma_channel_delete function deletes the given channel, releasing any resources and making them available
for reuse.

The hal_dma_channel_set_polled function marks a channel for polled operation only. Otherwise the channel will
enable interrupts and wait for an interrupt to complete. If a channel is marked polled then it will only be completed and its
callback called during calls to hal_dma_poll. Note that channels not marked polled may also be completed during this call
if their interrupt has not yet fired.

A transfer control block is initialized by calling hal_dma_cb_init. The parameters are as follows:

cb A pointer to the control block to be initialized.

ti This is an initial value for the TI register field of the control block. This may contain any of the bits and fields
specified for this register except the PERMAP field, which will be set from the value set in the channel. For simplicity
the standard settings for common operations are defined by the DMA API; HAL_DMA_INFO_DEV2MEM initializes
the control block for a single buffer transfer from a device to memory, and HAL_DMA_INFO_MEM2DEV for a
transfer in the reverse direction. If a client needs to perform scatter/gather transfers, then it needs to set this argument
more explicitly. In particular, the INTEN bit should normally only be set on the last control block of a chain.

source The source address for the transfer, either the start of a memory buffer or the data register of the appropriate device.

dest The destination address for the transfer, either the start of a memory buffer or the data register of the appropriate
device.

size Transfer size in bytes.

Once initialized a control block may be added to a channel by calling hal_dma_cb_add. Control blocks will be chained
together on the channel in the order in which they are added. The DMA engines operate on addresses in the GPU address space,
not the physical address space visible the the ARM CPUs or the virtual address space set up by the MMU. During initialization
the source and destination addresses will be translated into GPU addresses, and after it is added, the dma_next field of the
control block will be translated to a GPU address. So, care should be taken when inspecting an active control block and it
should not be changed.

Once a channel had been initialized and any control blocks have been added the transfers may be started by calling hal_d-
ma_channel_start. For channels not marked polled, interrupts will fire and the callback will be called from a DSR when
the control block chain has been completed. For polled channel, it will be necessary to call hal_dma_poll until all channels
have completed.

An ongoing transfer may be halted by calling hal_dma_channel_stop. This function should also be called as a matter
of course when a transfer has completed normally.

2559

Broadcom BCM283X Processor Support

Name
GPU Communication Support — Use of GPU mailbox

Synopsis
#include <cyg/hal/hal_io.h>

void hal_bcm283x_board_model(cyg_uint32 *model);

void hal_bcm283x_board_revision(cyg_uint32 *revision);

void hal_bcm283x_board_serial(cyg_uint64 *serial);

void hal_bcm283x_mac_address(cyg_uint8 *macaddr);

void hal_bcm283x_arm_memory(cyg_uint32 *base, cyg_uint32 *size);

void hal_bcm283x_clock_rate(cyg_uint32 clock, cyg_uint32 *rate);

void hal_bcm283x_clock_rate_max(cyg_uint32 clock, cyg_uint32 *rate);

void hal_bcm283x_clock_rate_min(cyg_uint32 clock, cyg_uint32 *rate);

void hal_bcm283x_clock_rate_set(cyg_uint32 clock, cyg_uint32 rate);

void hal_bcm283x_dma_channels(cyg_uint32 *channels);

void hal_bcm283x_set_gpu_gpio(cyg_uint32 pin, cyg_uint32 val);

void hal_bcm283x_temperature(cyg_uint32 id, cyg_uint32 *temperature);

void hal_bcm283x_temperature_max(cyg_uint32 id, cyg_uint32 *temperature);

void hal_bcm283x_property_exchange(cyg_uint32 channel, void *prop, int size);

Description
The BCM283X GPU provides information about and control over various aspects of the system. A hardware mailbox mech-
anism is used to exchange messages with the GPU to query or control these aspects. The BCM283X HAL provides some
functions to access this interface. The default functions are limited to just those exchanges that are of direct relevance to eCos,
although there is scope for expanding these, or for performing a property exchange directly.

hal_bcm283x_board_model() and hal_bcm283x_board_revision() fetch the board model and revision num-
bers. The model number is usually zero, but the revision number encodes the board properties as described Raspberry Pi Re-
vision codes page. Normally the eCos HAL reads the revision code at startup and decodes it into a set of variables.

hal_bcm283x_board_serial() returns the board's serial number; this is a 64 bit identifier unique to this board. The
function hal_bcm283x_mac_address() returns a MAC address for this board; this consists of the lower 24 bits of the
serial number combined with a vendor ID assigned to the Raspberry Pi Foundation.

hal_bcm283x_arm_memory() returns the base and size of the RAM available to the ARM processor. The base will be
zero and the size will indicate the top of memory after the GPU memory specified in the config.txt file has been allocated.

hal_bcm283x_clock_rate() returns the current rate of the given clock in Hz. Clock identifiers can be found in
bcm238x.h. hal_bcm283x_clock_rate_max() and hal_bcm283x_clock_rate_min() return the maximum
and minimum rates for the clock. hal_bcm283x_clock_rate_set() sets the given clock to the supplied rate.

hal_bcm283x_dma_channels() returns a mask of the available DMA channels.

hal_bcm283x_set_gpu_gpio() sets the value (0 or 1) of a GPIO pin controlled by the GPU through the external GPIO
extender. This is mainly used to control the ACT LED on Pi3B and Pi3A boards.

2560

https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/README.md

Broadcom BCM283X Processor Support

hal_bcm283x_temperature() reads the temperature of the SoC in thousandths of a degree C. hal_bcm283x_tem-
perature_max() returns the maximum SoC temperature, above which overclocking will be disabled. In both cases the
id should be zero.

hal_bcm283x_property_exchange() performs a property exchange with the GPU and may be used to implement
requests that are not covered above. The protocol used is described on the Raspberry Pi Mailbox properties GitHub page. This
function copies the array of property tags pointed to by prop into a properly aligned buffer after the standard buffer header
and terminates it an end tag. It then sends a mailbox message to the GPU and waits for a response. Finally, the updated property
buffer is copied back out to prop. In SMP systems a spinlock is used to control concurrent access from different CPUs.

2561

https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface

Broadcom BCM283X Processor Support

Name
Frequency Control — control ARM and CORE frequencies

Synopsis
#include <cyg/hal/hal_io.h>

void hal_bcm283x_set_freqencies(cyg_uint32 arm, cyg_uint32 core);

Description
The BCM283X GPU has control over the frequencies of the various clocks that feed the hardware. Of these the most impor-
tant are the ARM clock, which feeds the CPUs and the CORE clock which feeds most of the peripherals. On booting, the
HAL reads the current, minimum and maximum values of these clocks and stores them in global variables. The UART and
EMMC clocks are also read and recorded. The ARM and CORE clocks are then set to either the maximum values, or val-
ues set in the HAL configuration (CYGHWR_HAL_ARM_CORTEXA_BCM283X_ARM_FREQ and CYGHWR_HAL_ARM_COR-
TEXA_BCM283X_CORE_FREQ).

eCos does not contain any support for dynamic frequency management in the same way that Linux does. The CPUs run at a
single frequency throughout. Normally this is the maximum frequency permitted without overclocking. A different frequency
may be selected in the configuration, or it may be set at runtime by calling hal_bcm283x_set_freqencies().

The function hal_bcm283x_set_freqencies() updates either or both the ARM or CORE clock frequencies. The fre-
quencies are given in Hz, and if zero are not changed. Values that lie below the minimum frequency for the clock are increased to
the minimum and those above the maximum are reduced to the maximum. Other clock-related values, such as the mini-UART
baud rate divider (which divides the CORE frequency), may also be changed. Finally, the curent values of the main clocks in
the system are read back from the GPU to ensure that the correct values are used.

2562

Chapter 274. Broadcom BCM56150
Reference Board Support

2563

Broadcom BCM56150 Reference Board Support

Name
eCos Support for the Broadcom BCM56150 Reference Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Broadcom BCM956150 SVK reference board.
This board is fitted with a BCM56150 CPU and it is referred to in this document and the configuration system as a BCM56150
Reference, or bcm56150_ref, to differentiate it from other Broadcom boards.

In addition to the BCM56150, the board contains 512MiB SDRAM main memory, a 256Mib (32MiB) SPI NOR Flash, a
connector for CCA UART1, Ethernet sockets for both the IProc and switch Ethernet interfaces, plus a variety of connectors
for other interfaces. The extent of eCos support for the devices and peripherals on the board and the CPU is described below.

For typical eCos development, a RedBoot image is programmed into the SPI NOR flash memory, and the board will load this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug eCos applications via
the gdb debugger using the serial line.

This documentation is expected to be read in conjunction with the Broadcom IProc processor HAL documentation and further
device support and subsystems are described and documented there.

Supported Hardware
The SPI NOR flash consists of 512 blocks of 64KiB each. In a typical setup, the first 13 blocks are reserved for the use of
the ROMRAM RedBoot image. One block is reserved to contain DRAM memory parameters. The topmost block is used to
manage the flash and also holds RedBoot fconfig values. The remaining blocks can be used by application code.

Serial support is through the CYGPKG_IO_SERIAL_GENERIC_16X5X generic driver package which is modified by the
CYGPKG_IO_SERIAL_ARM_BROADCOM_IPROC driver package for the IProc. These packages support both the serial de-
vices on the IProc ChipCommonA device. However, this board only has UART1 connected to an external connector which
this HAL indicates by implementing the CYGINT_HAL_ARM_CORTEXA_BROADCOM_IPROC_UART1 interface. This serial
channel is used by RedBoot for communication with the host. If this device is needed by the application, either directly or via
the serial driver, then it cannot also be used for RedBoot communication. The serial driver package is loaded automatically
when configuring for the bcm56150-ref target.

The platform HAL provides definitions to enable access to flash devices on the SPI bus. The HAL enables the QSPI driver
(CYGPKG_DEVS_FLASH_QSPI_IPROC) which in turn provides the underlying implementation for access to the Micron
N25Q256 SPI NOR flash. The QSPI support integrates with the CYGPKG_DEVS_FLASH_SPI_M25PXX package. These
packages are automatically loaded when configuring for the target. This driver is capable of supporting the JFFS2 filesystem,
although at greatly reduced performance compared with a parallel flash device.

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (RTC,
QSPI, Ethernet etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence
will set up the appropriate power control and pin multiplexing configuration.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 4.7.3, arm-eabi-gdb version 7.2, and binutils version 2.23.2.

2564

Broadcom BCM56150 Reference Board Support

Name
Setup — Preparing the BCM56150 Reference board for eCos Development

Overview
In a typical development environment, the board boots from the SPI NOR Flash and runs the RedBoot bootloader and debug
agent from SDRAM. eCos applications are configured for RAM startup and then downloaded and run on the board via the
debugger arm-eabi-gdb. Preparing the board therefore usually involves programming a suitable RedBoot image into flash
memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROMRAM RedBoot loaded from SPI
NOR flash to SDRAM

redboot_ROMRAM.ecm redboot_ROMRAM.bin

ROM RedBoot executed directly
from SPI NOR flash

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports flash
management.

By default the ROMRAM startup should be used since it relocates itself to RAM after initializing the SDRAM controller. The
ROM startup RedBoot is mainly used for debugging board initialization.

Initial Installation
The BCM56150 Reference board comes with U-Boot and Linux installed by default on the SPI NOR flash. For eCos develop-
ment we need to install RedBoot in the flash. The booting mechanism is that the on-chip firmware interrogates the boot mode
pins and jumps to the start of the memory region corresponding to the device selected. For our purposes, this is the start of
the memory-mapped SPI NOR flash.

RedBoot must be written to the first few blocks of the SPI NOR flash. Thirteen sectors or 832KiB are reserved for this. There
are several ways that this flash may be written. The N25Q256 is removable and may be programmed externally. The SPI CS/
SCLK/MOSI/MISO lines are available on a header and may be used to program the flash from an external device. It may also
be programmed using software running on the board. The following explains how to program RedBoot using a Lauterbach
Power Debug via Trace32.

Programming RedBoot into NOR flash using Trace32

The following gives the steps needed to program RedBoot into the SPI NOR Flash using a Lauterbach Power Debug Interface
and Trace32.

1. Install Trace32 onto your host system. Attach the Power Debug module to the JTAG header (JP1801) and to a USB port on
the host. Attach the serial adaptor cable from J1801 to a host serial port and run a suitable terminal communications program
(e.g. TeraTerm or Putty on Windows, minicom on Linux). The default serial settings are 115200,8,N,1 with no flow control.

2. Locate the boot selection jumper (JP900) and move the jumper from the 5-6 position to 1-2. Power up the board and the
Power Debug.

3. Copy the following files from hal/arm/cortexa/bcm56150_ref/VERSION/misc in the repository to a working
directory: ecospro.cmm, layout.cmm, hr2_prog_sflash_trace32

4. Copy redboot_ROMRAM.bin to the same directory, renaming it app.bin.

5. With the work directory as your current directory, start Trace32.

6. From the File menu, select Run Script and run the ecospro.cmm script.

2565

Broadcom BCM56150 Reference Board Support

7. From the eCosPro menu select the Program APP.BIN to Flash entry. This should proceed to load hr2_prog_s-
flash_trace32 into on-chip SRAM, erase the flash and program the contents of app.bin into flash. This will take
a while to complete.

8. Once the programming is finished, shut down Trace32. Power off the board. Detach the Power Debug from the board.

9. Move the jumper on JP900 back to the 5-6 position.

10.Power up the board. The DRAM initialization code may spend some time optimizing the memory parameters. This may
take several minutes and result in many lines of diagnostic output. This will only need to be done once, in the future these
parameters will be loaded from flash.

11.When the DRAM initialization is finished, output similar to the following will be seen on the serial output:

+**Warning** FLASH configuration checksum error or invalid key
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 18:05:47, Nov 11 2015

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2014 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Broadcom BCM56150 Reference Platform (Cortex-A9)
RAM: 0x60000000-0x80000000 [0x6012c680-0x7ffed000 available]
FLASH: 0x1c000000-0x1dffffff, 512 x 0x10000 blocks
RedBoot>

12.Run the following commands to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x1dff0000-0x1dffffff: .
... Program from 0x7fff0000-0x80000000 to 0x1dff0000: .
RedBoot>
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Console baud rate: 115200
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x1dff0000-0x1dffffff: .
... Program from 0x7fff0000-0x80000000 to 0x1dff0000: .
RedBoot>

The RedBoot installation is now complete. This can be tested by power cycling the board again. Output similar to the following
should be seen on the serial port.

Clocks (MHz): CPU 1000 Periph 500 AXI 400 APB 250
DEV ID = 0xdb56
SKU ID = 0xb150
DDR type: DDR3
MEMC 0 DDR speed = 667MHz
PHY revision version: 0x00024006
ddr_init2: Calling soc_ddr40_set_shmoo_dram_config
ddr_init2: Calling soc_ddr40_phy_calibrate
C01. Check Power Up Reset_Bar
C02. Config and Release PLL from reset
C03. Poll PLL Lock
C04. Calibrate ZQ (ddr40_phy_calib_zq)
C05. DDR PHY VTT On (Virtual VTT setup) DISABLE all Virtual VTT
C06. DDR40_PHY_DDR3_MISC
C07. VDL Calibration
C07.1
C07.2
C07.4
C07.4.1

2566

Broadcom BCM56150 Reference Board Support

C07.4.4
VDL calibration result: 0x30000003 (cal_steps = 0)
C07.4.5
C07.4.6
C07.5
C08. DDR40_PHY_DDR3_MISC : Start DDR40_PHY_RDLY_ODT....
C09. Start ddr40_phy_autoidle_on (MEM_SYS_PARAM_PHY_AUTO_IDLE)
C10. Wait for Phy Ready...Done.
DDR phy calibration passed
Programming controller register
ddr_init2: Wait for MemC ready
ddr_init2: MemC initialization complete
Validate Shmoo parameters stored in flash OK
Restoring Shmoo parameters from flash done
Running simple memory test OK
DeepSleep wakeup: ddr init bypassed 3
DDR Interface Ready
+
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 18:05:47, Nov 11 2015

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2014 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Broadcom BCM56150 Reference Platform (Cortex-A9)
RAM: 0x60000000-0x80000000 [0x6012c680-0x7ffed000 available]
FLASH: 0x1c000000-0x1dffffff, 512 x 0x10000 blocks
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
RedBoot 0x1C000000 0x6012C800 0x000E0000 0x6012C800
Memory Params 0x1C0E0000 0x1C0E0000 0x00010000 0x00000000
FIS directory 0x1DFF0000 0x1DFF0000 0x0000F000 0x00000000
RedBoot config 0x1DFFF000 0x1DFFF000 0x00001000 0x00000000
RedBoot>

If it proves necessary to install a new version of RedBoot, this may be done from RedBoot itself over the serial line. From
RedBoot run the following commands:

RedBoot> load -r -m y -b %{freememlo}
C

From the terminal program, transmit the new RedBoot binary using Y-Modem protocol. When it is finished, you should see
something similar to the following:

CRaw file loaded 0x6012c800-0x60154a07, assumed entry at 0x6012c800
xyzModem - CRC mode, 1287(SOH)/0(STX)/0(CAN) packets, 4 retries

Now write the loaded binary over the current RedBoot in flash:

RedBoot> fis cre RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x1c000000-0x1c0dffff:
... Program from 0x6012c800-0x60154a08 to 0x1c000000: ...
... Erase from 0x1dff0000-0x1dffffff: .
... Program from 0x7fff0000-0x80000000 to 0x1dff0000: .
RedBoot>

The RedBoot image has now been replaced. Power cycle the board to execute it.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROMRAM version of RedBoot for the BCM56150 Reference are:

$ mkdir redboot_bcm56150_ref_romram

2567

Broadcom BCM56150 Reference Board Support

$ cd redboot_bcm56150_ref_romram
$ ecosconfig new bcm56150_ref redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/bcm56150_ref/VERSION/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This is a binary file that can
be programmed directly to the flash.

2568

Broadcom BCM56150 Reference Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The BCM56150 Reference platform HAL package is loaded automatically when eCos is configured for the bcm56150-ref
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup
The platform HAL package supports four separate startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot programmed into
flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory via the serial
line and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will
use the eCos virtual vectors mechanism to obtain services from RedBoot, including diagnostic output.

ROMRAM

This startup type can be used for finished applications which will be programmed into Flash. The application will be self-
contained with no dependencies on services provided by other software. eCos startup code will perform all necessary
hardware initialization. The application starts execution from flash, but relocates itself to RAM during initialization.

ROM

This startup type can be used for finished applications which will be programmed into Flash. The application will be self-
contained with no dependencies on services provided by other software. eCos startup code will perform all necessary
hardware initialization. The application executes from flash. However, since the SPI flash is very slow, it is not recom-
mended for production applications. It is mainly useful for debugging application startup code via a JTAG debugger.

JTAG

This startup type can be used for finished applications that are to be loaded into RAM via a JTAG debugger. Since DRAM
needs to be initialized before loading a JTAG application, it is necessary to allow RedBoot to start and run from flash. After
this the JTAG probe may be connected and the application loaded. Once running the application will be self-contained
with no dependencies on services provided by other software.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The BCM56150 Reference board contains an 32Mbyte Micron N25Q256 SPI serial NOR flash device attached to the QSPI
controller. The CYGPKG_DEVS_FLASH_SPI_M25PXX and CYGPKG_DEVS_FLASH_QSPI_IPROC packages contains all
the code necessary to support this part and the platform HAL package contains definitions that customize the driver to the

2569

Broadcom BCM56150 Reference Board Support

BCM56150 Reference board. This driver is not active until the generic Flash support package, CYGPKG_IO_FLASH, is in-
cluded in the configuration.

This driver is capable of supporting the JFFS2 filesystem. However, note that the SPI interface means that this file system has
reduced bandwidth and increased latency compared with other implementations. All that is required to enable the support is
to include the filesystem (CYGPKG_FS_JFFS2) and any of its package dependencies (including CYGPKG_IO_FILEIO and
CYGPKG_LINUX_COMPAT) together with the flash infrastructure (CYGPKG_IO_FLASH).

UART Serial Driver
The board uses the IProc's internal UART serial support as described in the IProc processor HAL documentation. Only one
serial connector is available on the board, which is connected to UART1 via the J1801 connector. An adaptor cable is needed
to connect to a standard 9-pin serial connector.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. The following flags
are specific to this port:

-mcpu=cortex-a9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=cortex-a9 is the correct option for the CPU in the IProc.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb2 instruction
set when this option is used. The best way to build eCos in Thumb mode is to enable
the configuration option CYGHWR_THUMB.

-mno-unaligned-access The Cortex-A CPU allows unaligned memory accesses and the default for arm-eabi-
gcc is to generate instructions that make unaligned accesses. However, for this port,
alignment exceptions are enabled, so unaligned accesses should not be made. This op-
tion disables unaligned accesses. Note that there is a performance and code size cost
in doing this, since all accesses to unaligned data must now be made using individual
byte accesses.

-fno-jump-tables For ROMRAM startup, some code is executed from flash before code is relocated to
RAM. As a result, any code or constant data references will use the wrong address. To
prevent switch statements using tables at the wrong location, this option is enabled for
ROMRAM startup builds.

2570

Broadcom BCM56150 Reference Board Support

Name
HAL Port — Implementation Details

Overview

This documentation explains how the eCos HAL specification has been mapped onto the BCM56150 Reference hardware, and
should be read in conjunction with that specification. The platform HAL package complements the ARM architectural HAL, the
Cortex-A variant HAL and the Broadcom IProc processor HAL. It provides functionality which is specific to the target board.

Startup

Following a reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for RAM startup
applications which depend on a ROM monitor for certain services.

For ROMRAM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in
the assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps

The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x60000000 of the physical memory space. The HAL configures
the MMU to retain the SDRAM at virtual address 0x60000000 with caching enabled. The
same memory is also accessible uncached at virtual location 0xA0000000 for use by device
drivers. The first 128MiB of SDRAM is also mapped to physical address 0x00000000, which
is identity mapped uncached. The exception vectors and VSR table occupy the bottom 64 bytes
of this region. Memory is required for the MMU tables, and must be aligned on a 16Kbyte
boundary. These therefore occupy memory from 0x60010000 to 0x60014000. For ROMRAM
startup, the application relocates to 0x60100000 and all remaining SDRAM is available. The
virtual vector table is allocated as part of the RedBoot image and occupies 256 bytes from
0x60100050. RAM applications load from 0x60200000, reserving 1MiB for RedBoot. JTAG
applications load at 0x60100000, overwriting any ROMRAM application already present.

On-chip SRAM On-chip SRAM is located at 0x1B000000 and is 16KiB in size. While this memory is used
during DRAM initialization, it is not used by eCos for any other purpose and is available for
application use.

SPI NOR Flash SPI NOR flash is supported by a QSPI device that translates read accesses to memory starting
at 0x1C000000 into SPI read transactions. Writes to the SPI flash go via a different device
which disables this mapping. Because of this, and its poor performance, code should not be
executed from SPI flash except during initialization. The Serial flash area at 0x1C000000 is
identity mapped uncached, although it should normally be accessed only using the flash API.

Peripheral Registers These are located at various addresses in the physical memory space. When the MMU is en-
abled, it contain direct, uncached, identity mappings so that these registers remain accessible
at their physical locations.

SPI NOR Flash

eCos supports QSPI access to the NOR flash on the board. The device is typically used to contain RedBoot and flash config-
uration data.

Accesses to SPI flash are performed via the Flash API, using 0x1C000000 as its base address. Access from RedBoot should
be made using fis command operations.

2571

Broadcom BCM56150 Reference Board Support

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM32 mode.

Example 274.1. bcm56150_ref Real-time characterization

 Startup, main thrd : stack used 388 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 88 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.03 microseconds (1 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 1.42 1.00 2.00 0.49 57% 57% Create thread
 0.33 0.00 1.00 0.44 67% 67% Yield thread [all suspended]
 0.33 0.00 1.00 0.44 67% 67% Suspend [suspended] thread
 0.30 0.00 1.00 0.42 70% 70% Resume thread
 0.44 0.00 1.00 0.49 56% 56% Set priority
 0.16 0.00 1.00 0.26 84% 84% Get priority
 0.73 0.00 2.00 0.41 70% 28% Kill [suspended] thread
 0.33 0.00 1.00 0.44 67% 67% Yield [no other] thread
 0.41 0.00 1.00 0.48 59% 59% Resume [suspended low prio] thread
 0.31 0.00 1.00 0.43 68% 68% Resume [runnable low prio] thread
 0.36 0.00 1.00 0.46 64% 64% Suspend [runnable] thread
 0.33 0.00 1.00 0.44 67% 67% Yield [only low prio] thread
 0.31 0.00 1.00 0.43 68% 68% Suspend [runnable->not runnable]
 0.67 0.00 1.00 0.44 67% 32% Kill [runnable] thread
 0.64 0.00 1.00 0.46 64% 35% Destroy [dead] thread
 1.05 1.00 2.00 0.09 95% 95% Destroy [runnable] thread
 1.05 1.00 2.00 0.09 95% 95% Resume [high priority] thread
 0.42 0.00 1.00 0.49 57% 57% Thread switch

 0.14 0.00 1.00 0.24 85% 85% Scheduler lock
 0.30 0.00 1.00 0.42 70% 70% Scheduler unlock [0 threads]
 0.31 0.00 1.00 0.43 68% 68% Scheduler unlock [1 suspended]
 0.32 0.00 1.00 0.44 67% 67% Scheduler unlock [many suspended]
 0.30 0.00 1.00 0.42 70% 70% Scheduler unlock [many low prio]

 0.19 0.00 1.00 0.30 81% 81% Init mutex
 0.25 0.00 1.00 0.38 75% 75% Lock [unlocked] mutex
 0.41 0.00 1.00 0.48 59% 59% Unlock [locked] mutex
 0.25 0.00 1.00 0.38 75% 75% Trylock [unlocked] mutex
 0.28 0.00 1.00 0.40 71% 71% Trylock [locked] mutex
 0.09 0.00 1.00 0.17 90% 90% Destroy mutex
 1.03 1.00 2.00 0.06 96% 96% Unlock/Lock mutex

 0.25 0.00 1.00 0.38 75% 75% Create mbox

2572

Broadcom BCM56150 Reference Board Support

 0.16 0.00 1.00 0.26 84% 84% Peek [empty] mbox
 0.38 0.00 1.00 0.47 62% 62% Put [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek [1 msg] mbox
 0.41 0.00 1.00 0.48 59% 59% Put [second] mbox
 0.16 0.00 1.00 0.26 84% 84% Peek [2 msgs] mbox
 0.34 0.00 1.00 0.45 65% 65% Get [first] mbox
 0.38 0.00 1.00 0.47 62% 62% Get [second] mbox
 0.31 0.00 1.00 0.43 68% 68% Tryput [first] mbox
 0.28 0.00 1.00 0.40 71% 71% Peek item [non-empty] mbox
 0.28 0.00 1.00 0.40 71% 71% Tryget [non-empty] mbox
 0.28 0.00 1.00 0.40 71% 71% Peek item [empty] mbox
 0.34 0.00 1.00 0.45 65% 65% Tryget [empty] mbox
 0.13 0.00 1.00 0.22 87% 87% Waiting to get mbox
 0.22 0.00 1.00 0.34 78% 78% Waiting to put mbox
 0.19 0.00 1.00 0.30 81% 81% Delete mbox
 0.94 0.00 1.00 0.12 93% 6% Put/Get mbox

 0.22 0.00 1.00 0.34 78% 78% Init semaphore
 0.31 0.00 1.00 0.43 68% 68% Post [0] semaphore
 0.34 0.00 1.00 0.45 65% 65% Wait [1] semaphore
 0.38 0.00 1.00 0.47 62% 62% Trywait [0] semaphore
 0.31 0.00 1.00 0.43 68% 68% Trywait [1] semaphore
 0.31 0.00 1.00 0.43 68% 68% Peek semaphore
 0.19 0.00 1.00 0.30 81% 81% Destroy semaphore
 0.97 0.00 1.00 0.06 96% 3% Post/Wait semaphore

 0.25 0.00 1.00 0.38 75% 75% Create counter
 0.16 0.00 1.00 0.26 84% 84% Get counter value
 0.13 0.00 1.00 0.22 87% 87% Set counter value
 0.31 0.00 1.00 0.43 68% 68% Tick counter
 0.03 0.00 1.00 0.06 96% 96% Delete counter

 0.25 0.00 1.00 0.38 75% 75% Init flag
 0.34 0.00 1.00 0.45 65% 65% Destroy flag
 0.34 0.00 1.00 0.45 65% 65% Mask bits in flag
 0.31 0.00 1.00 0.43 68% 68% Set bits in flag [no waiters]
 0.28 0.00 1.00 0.40 71% 71% Wait for flag [AND]
 0.31 0.00 1.00 0.43 68% 68% Wait for flag [OR]
 0.44 0.00 1.00 0.49 56% 56% Wait for flag [AND/CLR]
 0.34 0.00 1.00 0.45 65% 65% Wait for flag [OR/CLR]
 0.03 0.00 1.00 0.06 96% 96% Peek on flag

 0.28 0.00 1.00 0.40 71% 71% Create alarm
 0.44 0.00 1.00 0.49 56% 56% Initialize alarm
 0.31 0.00 1.00 0.43 68% 68% Disable alarm
 0.41 0.00 1.00 0.48 59% 59% Enable alarm
 0.06 0.00 1.00 0.12 93% 93% Delete alarm
 0.25 0.00 1.00 0.38 75% 75% Tick counter [1 alarm]
 1.28 1.00 2.00 0.40 71% 71% Tick counter [many alarms]
 0.47 0.00 1.00 0.50 53% 53% Tick & fire counter [1 alarm]
 6.50 6.00 7.00 0.50 100% 50% Tick & fire counters [>1 together]
 1.50 1.00 2.00 0.50 100% 50% Tick & fire counters [>1 separately]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [0 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [2 threads]
 1.04 1.00 2.00 0.08 96% 96% Alarm latency [many threads]
 2.00 2.00 2.00 0.00 100% 100% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 1.00 1.00 1.00 0.00 Clock DSR latency

 222 164 272 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 812 size 1792
 All done : Interrupt stack used 156 size 4096
 All done : Idlethread stack used 232 size 1280

Timing complete - 30830 ms total

PASS:<Basic timing OK>
EXIT:<done>

2573

Broadcom BCM56150 Reference Board Support

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The IProc processor HAL
and the ARM architectural HAL documentation should be consulted for further details.

2574

Chapter 275. Altera Cyclone V SX Board
Support

2575

Altera Cyclone V SX Board Support

Name
eCos Support for the Altera Cyclone V SX Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Altera Cyclone V SoC Development kit. This
board is fitted with an SX variant of the Cyclone V family of FPGAs and it therefore referred to in this document and the
configuration system as a Cyclone V SX, or cyclone5_sx, to differentiate it from other Cyclone V SoC development boards.

In addition to the Cyclone V FPGA, the board contains 1GiB SDRAM main memory, a 1Gib (128GiB) SPI NOR flash, a
micro-SD card socket, a USB bridge connected to UART0, Ethernet sockets for both the HPS and FPGA Ethernet interfaces,
plus a variety of connectors for other interfaces plus resources devoted to the FPGA. The extent of eCos support for the devices
and peripherals on the board and the CPU is described below.

For typical eCos development, a RedBoot image is programmed into the SPI NOR flash memory, and the board will load this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over Ethernet.

Support for SMP operation of the two Cortex-A9 CPUs on the Cyclone V SoC is available, although debugging support is
restricted to use of an external JTAG debugger. There is no SMP support in RedBoot.

This documentation is expected to be read in conjunction with the Altera HPS processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The SPI NOR flash consists of 2048 blocks of 64Ki bytes each. In a typical setup, the first 4 blocks are reserved for the
second-level bootstrap, the preloader. The 10 blocks from block 6 are reserved for the use of the ROM RedBoot image. The
topmost block is used to manage the flash and also holds RedBoot fconfig values. The remaining blocks can be used by
application code.

Serial support is through the CYGPKG_IO_SERIAL_GENERIC_16X5X generic driver package which is modified by the
CYGPKG_IO_SERIAL_ARM_ALTERA_HPS driver package for the HPS. These packages can support all the serial devices
on the HPS. However, this board only has UART0 connected to an external connector which this HAL indicates by imple-
menting the CYGINT_HAL_ARM_CORTEXA_ALTERA_HPS_UART0 interface. This serial channel is used by RedBoot for
communication with the host. If this device is needed by the application, either directly or via the serial driver, then it cannot
also be used for RedBoot communication. Another communication channel such as Ethernet should be used instead. The serial
driver package is loaded automatically when configuring for the cyclone5-sx target.

There is an Ethernet driver CYGPKG_DEVS_ETH_DWC_GMAC for the on-chip Ethernet device. A separate package, CYGP-
KG_DEVS_ETH_CYCLONE5_SX configures this generic driver to the hardware. This driver is also loaded automatically when
configuring for the cyclone5-sx board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_DWWDT. This driver is also loaded automatically when config-
uring for the board.

There is a driver for the DS1339C real-time clock (RTC) at CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307, with
which it is compatible. This driver is also loaded automatically when configuring for the target and when I²C support is included.

The HPS processor HAL contains a driver for the MultiMedia Card Interface (MMC/SD). This driver is loaded automatically
when configuring CYGPKG_DEVS_DISK_MMCSD_BUS for this target and allows use of MultiMediaCard (MMC) and Secure
Digital (SD) flash storage cards within eCos, exported as block devices. Further documentation on the driver may be found in
the Altera Hard Processor System Support HAL documentation.

Note

There is no working card-detect (media change) signal available on the Altera Cyclone V SoC Development
board for the J3 MicroSD slot.

2576

Altera Cyclone V SX Board Support

The platform HAL provides definitions to enable access to flash devices on the SPI bus. The HAL enables the QSPI driver
(CYGPKG_DEVS_FLASH_QSPI) which in turn provides the underlying implementation for access to the Micron N25Q00AA
SPI NOR flash. The QSPI support integrates with the CYGPKG_DEVS_FLASH_SPI_M25PXX package. These packages are
automatically loaded when configuring for the target. This driver is capable of supporting the JFFS2 filesystem, although at
reduced performance compared with a parallel flash device.

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (RTC,
SPI, MMC/SD etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence
will set up the appropriate power control and pin multiplexing configuration.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 4.4.5, arm-eabi-gdb version 7.2, and binutils version 2.20.

2577

Altera Cyclone V SX Board Support

Name
Setup — Preparing the Cyclone V SX board for eCos Development

Overview
In a typical development environment, the board boots from the SPI NOR and runs the RedBoot ROM monitor from SDRAM.
eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.
Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from SPI
NOR flash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 57600 baud. RedBoot also supports Ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from NOR flash by the preloader. The use of ROM for this configuration is intended to
indicate that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which assumes that
this has already been done.

Initial Installation
The Cyclone V SX board comes with U-Boot and Linux installed by default on a micro-SD card. For eCos development we
want to install RedBoot in the SPI NOR flash. The booting mechanism is that the on-chip firmware loads a small preloader
from the start of NOR flash which then loads RedBoot from later in the flash.

To write RedBoot to the SPI NOR flash, you must use the command line tools from the Altera QuartusII SoC Embedded
Development System.

Programming RedBoot into NOR flash using Altera Tools

The following gives the steps needed to program RedBoot into the SPI NOR Flash using the Altera EDS tools. This uses the
quartus_hps flash programmer command line utility to do the work.

Note

The examples below are for a Linux host where eCosPro is typically installed in the /opt/ecospro/
ecospro-<version> sub-directory. On a Windows host eCosPro will typically be installed in the C:
\eCosPro\ecos-<version> sub-directory.

1. Install QuartusII and the SoC EDS as described by Altera onto your host system. Start an Embedded Command Shell by
running either <SoC EDS Installation Folder>\embedded\Embedded_Command_Shell.bat in Win-
dows or <SoC EDS Installation Folder>/embedded/embedded_command_shell.sh in Linux.

2. Ensure that the BOOTSEL jumpers are set as follows: BOOTSEL0(J28) 2-3, BOOTSEL1(J29) 1-2, BOOTSEL2(J30) 1-2.

3. Connect USB cables between the mini USB socket at J37 (used by the USB-Blaster), and the mini USB socket at J8 (used
to provide serial device access) and your host. Power up the board and run a terminal emulator on your host, attaching it to
the serial USB channel which should appear on your host, setting the baud rate to 57600.

4. Run the following command on the host to detect the USB-Blaster:

jtagconfig
1) USB-BlasterII [USB 1-1]

2578

Altera Cyclone V SX Board Support

 4BA00477 SOCVHPS
 02D020DD 5CS(EBA6ES|XFC6C6ES)/..

#

It may be necessary to run this a couple of times before the above result is obtained. If the program failure persists then
you should check that your EDS installation is correct.

5. Run the following command to configure the JTAG interface:

jtagconfig --setparam 1 JtagClock 16M
#

This program terminates silently if it is successful.

6. Run the following command to install the preloader, passing it a path to the preloader image from the installed eCos dis-
tribution. This preloader was built with the Altera bsp-editor according to the instructions in the "Altera SoC Embedded
Design Suite User Guide", chapter "HPS Preloader User Guide". The BOOT_FROM_QSPI boot option was used.

quartus_hps -c 1 -o PV /opt/ecospro/ecos-<version>/loaders/cyclone5_sx/preloader-mkpimage.bin
Info: ***
Info: Running Quartus II 32-bit Programmer
 Info: Version 13.0.0 Build 156 04/24/2013 SJ Full Version
 Info: Copyright (C) 1991-2013 Altera Corporation. All rights reserved.
 Info: Your use of Altera Corporation's design tools, logic functions
 Info: and other software and tools, and its AMPP partner logic
 Info: functions, and any output files from any of the foregoing
 Info: (including device programming or simulation files), and any
 Info: associated documentation or information are expressly subject
 Info: to the terms and conditions of the Altera Program License
 Info: Subscription Agreement, Altera MegaCore Function License
 Info: Agreement, or other applicable license agreement, including,
 Info: without limitation, that your use is for the sole purpose of
 Info: programming logic devices manufactured by Altera and sold by
 Info: Altera or its authorized distributors. Please refer to the
 Info: applicable agreement for further details.
 Info: Processing started: Wed Jun 26 12:51:47 2013
Info: Command: quartus_hps -c 1 -o PV /path/to/preloader-mkpimage.bin
Current hardware is: USB-BlasterII [USB 1-1]
Found HPS device at index 0
HPS Device IDCODE: 0x4BA00477
AHB Port is located at port 0
APB Port is located at port 1
Boot Info: 1.8V QSPI Flash
Start HPS Quad SPI flash programming ...
Initialize QSPI peripheral and flash controller ...
Read Silicon ID of Quad SPI flash ...
 Quad SPI Flash silicon ID is 0x1021BA20
 Flash device matched
 Manufacturer: Micron
 Device: QSPI_1024
Enable Four Byte Addressing ...
Sector Erase Quad SPI flash ...
 Sector Erase Info: Start Addr at 0x00000000 for 4 sector(s)
 Sector Erase Quad SPI flash at 0x00000000
 Sector Erase Quad SPI flash at 0x00010000
 Sector Erase Quad SPI flash at 0x00020000
 Sector Erase Quad SPI flash at 0x00030000
Program Quad SPI flash ...
Verify Quad SPI flash ...
Info: Quartus II 32-bit Programmer was successful. 0 errors, 0 warnings
 Info: Peak virtual memory: 46 megabytes
 Info: Processing ended: Wed Jun 26 12:53:55 2013
 Info: Elapsed time: 00:02:08
 Info: Total CPU time (on all processors): 00:00:04
#

7. Now run the following commands to install RedBoot, passing a path to the RedBoot image from the installed eCos distri-
bution. Note that the quartus_hps command can only accept files with a .bin extension, so it is necessary to copy the
generated RedBoot image to a file with the correct extension before running the command. The RedBoot image file will be

2579

Altera Cyclone V SX Board Support

located alongside preloader-mkpimage.bin in the loaders/cyclone5_sx sub-directory of the eCosPro instal-
lation as illustrated above. You may ignore the .bin, .elf and .srec files also located in the same sub-directory. Also
note that the commands provided are for a Linux host so the PATH and copy command will vary.

cp /opt/ecospro/ecos-<version>/loaders/cyclone5_sx/redboot_ROM.img /tmp/redboot.bin
quartus_hps -c 1 -a 0x60000 -o PV /tmp/redboot.bin
Info: ***
Info: Running Quartus II 32-bit Programmer
 Info: Version 13.0.0 Build 156 04/24/2013 SJ Full Version
 Info: Copyright (C) 1991-2013 Altera Corporation. All rights reserved.
 Info: Your use of Altera Corporation's design tools, logic functions
 Info: and other software and tools, and its AMPP partner logic
 Info: functions, and any output files from any of the foregoing
 Info: (including device programming or simulation files), and any
 Info: associated documentation or information are expressly subject
 Info: to the terms and conditions of the Altera Program License
 Info: Subscription Agreement, Altera MegaCore Function License
 Info: Agreement, or other applicable license agreement, including,
 Info: without limitation, that your use is for the sole purpose of
 Info: programming logic devices manufactured by Altera and sold by
 Info: Altera or its authorized distributors. Please refer to the
 Info: applicable agreement for further details.
 Info: Processing started: Wed Jun 26 13:02:07 2013
Info: Command: quartus_hps -c 1 -a 0x60000 -o PV /tmp/redboot.bin
Current hardware is: USB-BlasterII [USB 1-1]
Found HPS device at index 0
HPS Device IDCODE: 0x4BA00477
AHB Port is located at port 0
APB Port is located at port 1
Boot Info: 1.8V QSPI Flash
Start HPS Quad SPI flash programming ...
Initialize QSPI peripheral and flash controller ...
Read Silicon ID of Quad SPI flash ...
 Quad SPI Flash silicon ID is 0x1021BA20
 Flash device matched
 Manufacturer: Micron
 Device: QSPI_1024
Enable Four Byte Addressing ...
Sector Erase Quad SPI flash ...
 Sector Erase Info: Start Addr at 0x00060000 for 2 sector(s)
 Sector Erase Quad SPI flash at 0x00060000
 Sector Erase Quad SPI flash at 0x00070000
Program Quad SPI flash ...
Verify Quad SPI flash ...
Info: Quartus II 32-bit Programmer was successful. 0 errors, 0 warnings
 Info: Peak virtual memory: 46 megabytes
 Info: Processing ended: Wed Jun 26 13:03:10 2013
 Info: Elapsed time: 00:01:03
 Info: Total CPU time (on all processors): 00:00:02
#

8. Detach the USB cable for the USB Blaster from the mini USB socket at J37 and connect an ethernet cable to J2 on the board
(located on the opposite side from the ENET1 and ENET2 dual ethernet interfaces) and an ethernet hub that is connected
to your host's network.

9. Power cycle the board. You should see the following output on the serial line:

+**Warning** FLASH configuration checksum error or invalid key
Ethernet eth0: MAC address 12:34:aa:bb:cc:ee
IP: 10.0.2.4/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 11:45:41, Jun 26 2013

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2012 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.

2580

Altera Cyclone V SX Board Support

Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Altera Cyclone V SX Development Kit (Cortex-A9)
RAM: 0x00000000-0x40000000 [0x00259208-0x3ffed000 available]
FLASH: 0x80000000-0x87ffffff, 2048 x 0x10000 blocks
RedBoot>

Since the serial USB bridge is also power cycled, you may lose the serial device under Windows or one or two lines from
the beginning of this output. If this happens, simply reconnect if necessary and type version to see the full output again.

10.Run the following commands to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x87ff0000-0x87ffffff: .
... Program from 0x3fff0000-0x40000000 to 0x87ff0000: .
RedBoot>
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.0.1.1
Console baud rate: 57600
Network hardware address [MAC] for eth0: 0x12:0x34:0xAA:0xBB:0xCC:0x08
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: dwc_gmac
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x87ff0000-0x87ffffff: .
... Program from 0x3fff0000-0x40000000 to 0x87ff0000: .
RedBoot>

You should substitute your own server IP address for the one shown above. You may also want to change the MAC address
if more than one board is present on the network, or use one of the MAC addresses assigned by Altera to this board. If
you want to use a static IP address, then choose false for the "Use BOOTP" option and enter the gateway, IP address and
netmask that you have assigned.

The RedBoot installation is now complete. This can be tested by power cycling the board again. Output similar to the following
should be seen on the serial port.

+Ethernet eth0: MAC address 12:34:aa:bb:cc:08
IP: 10.0.2.6/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 11:45:41, Jun 26 2013

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2013 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Altera Cyclone V SX Development Kit (Cortex-A9)
RAM: 0x00000000-0x40000000 [0x00259208-0x3ffed000 available]
FLASH: 0x80000000-0x87ffffff, 2048 x 0x10000 blocks
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
(reserved) 0x80000000 0x80000000 0x00060000 0x00000000
RedBoot 0x80060000 0x80060000 0x000A0000 0x00000000
FIS directory 0x87FF0000 0x87FF0000 0x0000F000 0x00000000
RedBoot config 0x87FFF000 0x87FFF000 0x00001000 0x00000000
RedBoot>

If it proves necessary to install a new version of RedBoot, this may be done from RedBoot itself. Place the new image on a
TFTP server on the configured server. From RedBoot run the following commands:

2581

Altera Cyclone V SX Board Support

RedBoot> load -r -b %{freememlo} redboot.img
Using default protocol (TFTP)
Raw file loaded 0x00259400-0x00277c0b, assumed entry at 0x00259400
RedBoot> fis cre RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x80060000-0x800fffff:
... Program from 0x00259400-0x00277c0c to 0x80060000: ..
... Erase from 0x87ff0000-0x87ffffff: .
... Program from 0x3fff0000-0x40000000 to 0x87ff0000: .
RedBoot>

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the Cyclone V SX are:

$ mkdir redboot_cyclone5_sx_rom
$ cd redboot_cyclone5_sx_rom
$ ecosconfig new cyclone5_sx redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/cyclone5_sx/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.img. This is a binary file that
includes a header needed by the preloader to load and run RedBoot successfully.

Note

The flashimg_cv host executable provided within your eCosPro installation is required on the build host to
wrap the RedBoot binary image into an image that can be programmed by the tools from the Altera QuartusII
SoC Embedded Development System. This executable must be on your path when you build RedBoot and will
normally located in the /opt/ecospro/ecos-<version>/host/bin-<hostos> sub-directory of your
eCosPro installation. Shells created by future revisions of the eCos GUI configuration tool or ecosprofileenv
will add this directory to the PATH environment variable.

Installing user applications into Flash
If you wish to install a ROM startup application into Flash to be automatically booted instead of RedBoot, you can follow a
similar procedure to installing RedBoot into Flash. However before you can do so, you must first prepend a header to your
application image in order for the preloader to recognise it as a valid application.

You will need the flashimg_cv command, which should be in the host tools binary directory as described above. You will
also need to generate a binary image of your program using the arm-eabi-objcopy command. The following gives an example
simplified command sequence which can be run at a command shell prompt:

$ arm-eabi-objcopy -O binary myapp myapp.bin
$ flashimg_cv myapp.bin myapp.img

You will need to subsitute your own paths and filenames where applicable.

Once you have the .img file, you can follow the same process as above for installing RedBoot via the USB-BlasterII. Once
the initial setup has been done once, it is only then necessary to re-install the ROM executable. It is not necessary to reinstall
the preloader each time. A typical command sequence might be:

$ arm-eabi-objcopy -O binary myapp myapp.bin0
$ flashimg_cv myapp.bin0 myapp.bin
$ quartus_hps -c 1 -a 0x60000 -o PV myapp.bin

2582

Altera Cyclone V SX Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The Cyclone V SX platform HAL package is loaded automatically when eCos is configured for the cyclone5-sx target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup
The platform HAL package supports four separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into Flash. The application will
be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization. This startup type can also be used for applications loaded via JTAG.

SRAM This startup type can be used for finished applications that are to be loaded into the on-chip SRAM. The application
will be self-contained with no dependencies on services provided by other software. eCos startup code will perform
all necessary hardware initialization. This startup type can also be used for applications loaded via JTAG.

SMP This startup type can be used for finished applications that can be loaded into RAM via RedBoot. The load address
is set to the same as for RAM applications, however, the application will be self-contained with no dependencies on
services provided by other software. eCos startup code will perform all necessary hardware initialization. Once started,
this application takes full control of the system and RedBoot will not be called again. This means that debugging via
RedBoot will not be possible, only JTAG-based hardware debugging is supported. The intent of this startup type is
to allow SMP test programs to be run from RedBoot, most SMP applications should use the ROM startup type. This
startup type can also be used for applications loaded directly via JTAG.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The Cyclone V SX board contains an 128Mbyte Micron N25Q00AA SPI serial NOR flash device attached to the QSPI con-
troller. The CYGPKG_DEVS_FLASH_SPI_M25PXX package contains all the code necessary to support this part and the plat-
form HAL package contains definitions that customize the driver to the Cyclone V SX. This driver is not active until the generic
Flash support package, CYGPKG_IO_FLASH, is included in the configuration.

This driver is capable of supporting the JFFS2 filesystem. However, note that the SPI interface means that this file system has
reduced bandwidth and increased latency compared with other implementations. All that is required to enable the support is
to include the filesystem (CYGPKG_FS_JFFS2) and any of its package dependencies (including CYGPKG_IO_FILEIO and
CYGPKG_LINUX_COMPAT) together with the flash infrastructure (CYGPKG_IO_FLASH).

2583

Altera Cyclone V SX Board Support

Ethernet Driver
The board uses the HPS's internal GMAC Ethernet device attached to an external Micrel KSZ9021 Gigabit PHY. The
CYGPKG_DEVS_ETH_DWC_GMAC package contains all the code necessary to support this device and the CYGPKG_DE-
VS_ETH_CYCLONE5_SX package contains definitions that customize the driver to the board. This driver is not active until
the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

Support for PHY events is made available by default when the Kernel (CYGPKG_KERNEL) is available in a configuration.

RTC Driver
The Cyclone V SX board has a Maxim DS1339C I²C based RTC chip installed. For the functionality used by eCos, this device
is compatible with the DS1307. Therefore, the CYGPKG_DEVICES_WALLCLOCK_DALLAS_DS1307 package contains all
the code necessary to support this device. This driver is not active until the generic wallclock device support package, CYGP-
KG_IO_WALLCLOCK, is included in the configuration and I²C support is enabled.

Watchdog Driver
The board uses the HPS's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_DWWDT package contains all
the code necessary to support this device. Within that package the CYGNUM_DEVS_WATCHDOG_DWWDT_DESIRED_TIME-
OUT_MS configuration option controls the watchdog timeout, and by default will force a reset of the board upon timeout.
This driver is not active until the generic watchdog device support package, CYGPKG_IO_WATCHDOG, is included in the
configuration.

UART Serial Driver
The board uses the HPS's internal UART serial support as described in the HPS processor HAL documentation. Only one serial
connector is available on the board, which is connected to UART0 via a USB bridge. Only the UART data lines are connected
to the bridge, so hardware flow control is not supported.

MMC/SD Driver
As the Cyclone V SX MMC/SD driver is part of the HPS processor HAL, nothing is required to load it. Similarly the MMC/SD
bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific configuration for this
target. All that is required to enable the support is to include the generic disk I/O infrastructure package (CYGPKG_IO_DISK),
along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its package dependencies
(e.g. for FAT also including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT packages).

Various options can be used to control specifics of the MMC/SD driver. Consult the HPS processor HAL documentation for
information on its configuration.

This board does not have a working MMC/SD card detect for MicroSD socket (J3), thus the disk I/O layer's removeable media
support is not available.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. The following flags
are specific to this port:

-mcpu=cortex-a9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=cortex-a9 is the correct option for the CPU in the HPS.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb2 instruction
set when this option is used. The best way to build eCos in Thumb mode is to enable
the configuration option CYGHWR_THUMB.

2584

Altera Cyclone V SX Board Support

-mno-unaligned-access The Cortex-A CPU allows unaligned memory accesses and the default for arm-eabi-
gcc is to generate instructions that make unaligned accesses. However, for this port,
alignment exceptions are enabled, so unaligned accesses should not be made. This op-
tion disables unaligned accesses. Note that there is a performance and code size cost
in doing this, since all accesses to unaligned data must now be made using individual
byte accesses.

2585

Altera Cyclone V SX Board Support

Name
SMP Support — Usage

Overview
Support is available for SMP operation of the two CPUs on this platform. However, debugging support is restricted to using an
external SMP-aware JTAG debugger like ARM's DS-5 or a Lauterbach Power Debug probe. RedBoot does not have support
for multi-core debugging.

A board intended to be used for SMP operation should be initialized in the same way as a single core board by installing the
preloader and RedBoot. If RedBoot is not needed then the preloader must still be installed and a ROM startup application, with
headers added by flashimg_cv, can be written to flash in place of RedBoot.

SMP support is enabled by setting CYGPKG_KERNEL_SMP_SUPPORT to true. SMP applications should only be built using
either ROM or SMP startup types. ROM applications can be loaded by the pre-loader in place of RedBoot. The SMP startup
is identical to a ROM startup except that the load address is set to allow the application to be loaded into a higher location in
RAM from RedBoot. Both application types may also be loaded via a JTAG debugger.

Loading an SMP startup application via RedBoot can be done from the RedBoot command line via serial or Ethernet. It may
also be loaded via a GDB connection on serial or Ethernet. However, once started running the SMP application will take full
control of the system, including redirecting all interrupt sources, exception vectors and virtual vector table entries. This means
that RedBoot will no-longer be active. Any breakpoints planted by GDB will result in an exception to the application, Ctrl-
C will not work, any Ethernet connections will be lost and serial output will come from the application in plain ASCII. Any
GDB connection will be lost and GDB may start reporting packet errors.

JTAG support has been tested using the ARM DS-5 debugger and the Lauterbach Trace32 debugger. Most of our SMP devel-
opment has been done using Trace32.

ARM DS-5 Support

Support for this board is included in the Altera QuartusII SoC EDS. Select the Cyclone V dual core option in the debug
configuration to debug SMP applications. Otherwise follow the EDS, Eclipse and DS-5 documentation to set up and operate
the debugger.

A suitable license file will also be needed.

Trace32 Support

Support for SMP debugging using the Lauterbach Trace32 debugger using a Power Debug probe is available. You need suitable
licenses for the Cortex-A/R families and multicore debugging in order to do this.

The Trace32 debugger needs a startup script to initialize it for the Cyclone V. Some example scripts are present in the Cyclone
V SX platform HAL (i.e. packages/hal/arm/cortexa/cyclone5_sx/VERSION/misc). The ecospromp.cmm
file provides setup for the standard Trace32 application, and ecospromp-qt.cmm is for the QT based variant avaliable on
some host operating systems. These files are identical except for the layout file they load to define the window arrangement
(layoutmp.cmm or layoutmp-qt.cmm). The expectation in these scripts is that all files are present in the same directory,
along with the application being debugged. It is recommended that these files be copied out of the source repository into a
working directory to which the application can also be copied and that Trace32 be started from the command line as follows:

$ cd /path/to/work/directory
$ t32marm-qt -s ecospromp-qt.cmm

The lack of a clean hardware reset on this board means that the safest approach for debugging any application is to power
cycle the board, start Trace32 and then load and run the application. To re-run the application, exit Trace32 before power
cycling the board.

In addition to attaching to the target, these startup files define an additional eCosPro menu in the Trace32 GUI. It contains
the following entries:

2586

Altera Cyclone V SX Board Support

MMU Table List This entry causes a window showing the curent state of the MMU tables for the current
CPU to be displayed. In eCos, all CPUs should be using the same shared table.

Load eCos.t32 This loads the Trace32 eCos RTOS specialization extenstion. This file should be copied
out of the Trace32 installation into the working directory. Note that the eCos RTOS sup-
port is not SMP-aware, so some information it displays in SMP application may be a little
misleading. See the Lauterbach documentation on the RTOS debugger for eCos for more
details of the functionality available.

Display Threads Displays a list of current threads. Note that in SMP systems only the thread running on
CPU 0 will be marked running. Those on other CPUs will be marked ready.

Display Scheduler Displays state of scheduler. Only those parts of the scheduler state common between sin-
gle and multi-core systems will be displayed.

Jump to CPU entrypoint This entry disables the Caches and MMU and sets PC to zero. This may cause the system
to restart once it is started running, however, it may also cause a crash since the hardware
will not be in its initial state. In particular, if the second CPU is running, it is likely to
cause a problem. Under most circumstances the board should be power cycled.

Load APP.ELF This entry disables the caches and MMU, loads the file app.elf from the current di-
rectory, and loads any breakpoints from breakpoints.cmm. This is the menu entry
that should be used to load and run SMP applications for development and testing. The
breakpoints.cmm file allows a set of current breakpoints to be saved using the Store
button on the breakpoint list window and have them reloaded automatically each time the
application is reloaded.

Load APP.ELF Syms+Bkpts This entry loads just the symbol tables and debug information from the application and
also loads breakpoints from breakpoints.cmm. This is useful if the application is al-
ready running when Trace32 is attached. For example if it is a ROM startup application
that has been loaded from flash, or an SMP startup application that was loaded by Red-
Boot.

2587

Altera Cyclone V SX Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Cyclone V SX hardware, and should
be read in conjunction with that specification. The platform HAL package complements the ARM architectural HAL, the
Cortex-A variant HAL and the Altera HPS processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x00000000 of the physical memory space. The HAL configures
the MMU to retain the SDRAM at virtual address 0x00000000 with caching enabled. The
same memory is also accessible uncached and unbuffered at virtual location 0x40000000 for
use by device drivers. The first 1MiB of RAM is left unmapped, allowing NULL pointer
accesses to be trapped. Memory is required for the MMU tables, and must be aligned on a
16Kbyte boundary. These therefore occupy memory from 0x00100000 to 0x00004000. For
ROM startup, all remaining SDRAM is available, although ROM applications actually load
from 0x00200000. The virtual vector table is allocated as part of the RedBoot image and
occupied 256 bytes from 0x00200050. RAM startup applications are loaded from location
0x00300000, reserving 1MiB for RedBoot.

On-chip SRAM On-chip SRAM is located at 0xFFFF0000 and occupied all of the remaining 64KiB to the top
of the address space. It is identity mapped uncached. This port locates the exception vectors to
high memory, at 0xFFFF0000. So, the first 32 bytes of SRAM are used for hardware exception
vectors and the next 32 bytes are used for the VSR table. SRAM from 0xFFFF0040 is available
for application use.

SPI NOR Flash SPI NOR flash media can only be accessed with the Flash API. For the purposes of this API a
placeholder address range has been allocated as if the Flash is present at this address. The base
of this address range is 0x80000000. This reserved range is not real memory and any attempt
to access it directly by the processor other than via the Flash API will result in a memory
address exception.

Peripheral Registers These are located at various addresses in the physical memory space above 0xC0000000.
When the MMU is enabled, it sets up a direct, uncached, unbuffered mapping so that these
registers remain accessible at their physical locations.

SPI NOR Flash
eCos supports QSPI access to the NOR flash on the board. The device is typically used to contain RedBoot and flash config-
uration data.

Accesses to SPI flash are performed via the Flash API, using 0x80000000 or as the nominal address of the device, although
it does not truly exist in the processor address space.

Since SPI flash is not directly addressable, access from RedBoot is only possible using fis command operations.

2588

Altera Cyclone V SX Board Support

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM32 mode.

Example 275.1. cyclone5_sx Real-time characterization

 Startup, main thrd : stack used 380 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 88 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.12 microseconds (22 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 0.75 0.55 1.25 0.13 57% 42% Create thread
 0.07 0.05 0.25 0.03 98% 57% Yield thread [all suspended]
 0.08 0.05 0.30 0.04 78% 67% Suspend [suspended] thread
 0.07 0.05 0.15 0.03 62% 62% Resume thread
 0.13 0.05 0.70 0.06 75% 71% Set priority
 0.01 0.00 0.10 0.02 78% 78% Get priority
 0.30 0.20 1.50 0.08 71% 64% Kill [suspended] thread
 0.08 0.05 0.15 0.02 65% 32% Yield [no other] thread
 0.19 0.15 0.40 0.04 87% 50% Resume [suspended low prio] thread
 0.08 0.05 0.30 0.03 93% 60% Resume [runnable low prio] thread
 0.11 0.10 0.25 0.02 82% 82% Suspend [runnable] thread
 0.07 0.05 0.15 0.03 57% 57% Yield [only low prio] thread
 0.06 0.05 0.20 0.02 84% 84% Suspend [runnable->not runnable]
 0.27 0.20 0.70 0.05 62% 82% Kill [runnable] thread
 0.20 0.15 0.65 0.03 53% 32% Destroy [dead] thread
 0.44 0.35 1.10 0.05 81% 68% Destroy [runnable] thread
 0.78 0.55 1.90 0.14 59% 26% Resume [high priority] thread
 0.26 0.20 0.40 0.04 46% 27% Thread switch

 0.00 0.00 0.15 0.00 99% 99% Scheduler lock
 0.05 0.00 0.10 0.01 89% 9% Scheduler unlock [0 threads]
 0.07 0.05 0.15 0.02 67% 67% Scheduler unlock [1 suspended]
 0.08 0.05 0.20 0.02 60% 36% Scheduler unlock [many suspended]
 0.08 0.05 0.15 0.02 64% 34% Scheduler unlock [many low prio]

 0.03 0.00 0.75 0.05 96% 90% Init mutex
 0.09 0.05 0.30 0.04 46% 43% Lock [unlocked] mutex
 0.11 0.05 0.60 0.04 68% 25% Unlock [locked] mutex
 0.07 0.05 0.40 0.04 93% 75% Trylock [unlocked] mutex
 0.05 0.00 0.15 0.01 87% 3% Trylock [locked] mutex
 0.02 0.00 0.15 0.03 84% 84% Destroy mutex
 0.74 0.65 1.05 0.06 71% 65% Unlock/Lock mutex

 0.02 0.00 0.35 0.03 96% 78% Create mbox
 0.01 0.00 0.10 0.01 93% 93% Peek [empty] mbox

2589

Altera Cyclone V SX Board Support

 0.14 0.10 0.85 0.05 93% 93% Put [first] mbox
 0.00 0.00 0.00 0.00 100% 100% Peek [1 msg] mbox
 0.10 0.05 0.25 0.01 84% 9% Put [second] mbox
 0.00 0.00 0.10 0.01 93% 93% Peek [2 msgs] mbox
 0.12 0.05 0.75 0.05 84% 9% Get [first] mbox
 0.10 0.05 0.25 0.02 87% 6% Get [second] mbox
 0.08 0.05 0.30 0.03 50% 46% Tryput [first] mbox
 0.09 0.05 0.40 0.05 84% 59% Peek item [non-empty] mbox
 0.12 0.05 0.45 0.04 75% 15% Tryget [non-empty] mbox
 0.07 0.05 0.20 0.03 62% 62% Peek item [empty] mbox
 0.10 0.05 0.30 0.02 68% 25% Tryget [empty] mbox
 0.01 0.00 0.15 0.02 84% 84% Waiting to get mbox
 0.01 0.00 0.15 0.01 90% 90% Waiting to put mbox
 0.03 0.00 0.25 0.04 90% 71% Delete mbox
 0.46 0.40 0.90 0.04 68% 25% Put/Get mbox

 0.00 0.00 0.15 0.01 96% 96% Init semaphore
 0.06 0.05 0.15 0.01 87% 87% Post [0] semaphore
 0.10 0.05 0.55 0.04 56% 34% Wait [1] semaphore
 0.07 0.05 0.30 0.03 84% 84% Trywait [0] semaphore
 0.06 0.05 0.15 0.01 90% 90% Trywait [1] semaphore
 0.00 0.00 0.05 0.01 93% 93% Peek semaphore
 0.02 0.00 0.20 0.03 87% 87% Destroy semaphore
 0.40 0.35 0.85 0.05 34% 46% Post/Wait semaphore

 0.02 0.00 0.25 0.03 78% 78% Create counter
 0.02 0.00 0.10 0.02 75% 75% Get counter value
 0.00 0.00 0.05 0.00 96% 96% Set counter value
 0.08 0.05 0.15 0.02 59% 37% Tick counter
 0.02 0.00 0.15 0.03 84% 84% Delete counter

 0.01 0.00 0.20 0.01 96% 96% Init flag
 0.06 0.05 0.40 0.03 90% 90% Destroy flag
 0.09 0.05 0.25 0.03 62% 31% Mask bits in flag
 0.11 0.05 0.45 0.04 62% 25% Set bits in flag [no waiters]
 0.13 0.10 0.65 0.05 93% 84% Wait for flag [AND]
 0.12 0.10 0.35 0.03 71% 71% Wait for flag [OR]
 0.12 0.10 0.45 0.03 90% 90% Wait for flag [AND/CLR]
 0.10 0.05 0.40 0.02 71% 21% Wait for flag [OR/CLR]
 0.00 0.00 0.00 0.00 100% 100% Peek on flag

 0.05 0.00 0.50 0.03 71% 25% Create alarm
 0.12 0.05 0.85 0.06 68% 81% Initialize alarm
 0.07 0.00 0.35 0.04 78% 12% Disable alarm
 0.11 0.05 0.70 0.04 78% 18% Enable alarm
 0.07 0.05 0.20 0.03 71% 71% Delete alarm
 0.10 0.05 0.20 0.01 84% 9% Tick counter [1 alarm]
 0.46 0.40 0.60 0.03 68% 18% Tick counter [many alarms]
 0.16 0.10 0.50 0.03 71% 18% Tick & fire counter [1 alarm]
 2.64 2.60 3.15 0.06 90% 90% Tick & fire counters [>1 together]
 0.56 0.50 1.10 0.05 50% 90% Tick & fire counters [>1 separately]
 0.92 0.90 1.25 0.03 99% 58% Alarm latency [0 threads]
 0.98 0.85 1.35 0.06 58% 26% Alarm latency [2 threads]
 1.20 1.00 1.65 0.09 51% 14% Alarm latency [many threads]
 1.35 1.30 2.15 0.02 79% 18% Alarm -> thread resume latency

 0.35 0.35 0.90 0.00 Clock/interrupt latency

 0.39 0.30 1.10 0.00 Clock DSR latency

 224 172 460 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 1012 size 1792
 All done : Interrupt stack used 156 size 4096
 All done : Idlethread stack used 232 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

2590

Altera Cyclone V SX Board Support

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The HPS processor HAL
and the ARM architectural HAL documentation should be consulted for further details.

2591

Chapter 276. Dream Chip A10 Board
Support

2592

Dream Chip A10 Board Support

Name
eCos Support for the Dream Chip A10 Board — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on the Dream Chip Arria 10 SoM and baseboard
Development kit. This board is fitted with avariant of the Arria 10 family of FPGAs and it therefore referred to in this document
and the configuration system as the Dream Chip A10, to differentiate it from other Arria 10 development boards.

In addition to the Arria 10 FPGA, the board contains 2GiB SDRAM main memory, a 500Mib (64GiB) SPI NOR flash, a
micro-SD card socket, a USB bridge connected to UART1, an Ethernet socket for an HPS Ethernet interface, plus a variety of
connectors for other interfaces plus resources devoted to the FPGA. The extent of eCos support for the devices and peripherals
on the board and the CPU is described below.

For typical eCos development, a RedBoot image is programmed into the SPI NOR flash memory, and the board will load this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger. This can happen over either a serial line or over Ethernet. Alternatively, RedBoot may be
loaded from an SD card.

Support for SMP operation of the two Cortex-A9 CPUs on the SoC is available, although debugging support is restricted to
use of an external JTAG debugger. There is no SMP support in RedBoot.

This documentation is expected to be read in conjunction with the Altera HPS processor HAL documentation and further device
support and subsystems are described and documented there.

Supported Hardware
The SPI NOR flash consists of 1024 blocks of 64Ki bytes each. In a typical setup, the first 16Mib are reserved for the sec-
ond-level bootstrap, in this case a port of U-Boot, plus the FPGA bitstreams. The 10 blocks from 1MiB are reserved for the
ROM RedBoot image. The topmost block is used to manage the flash and also holds RedBoot fconfig values. The remaining
blocks can be used by application code.

Serial support is through the CYGPKG_IO_SERIAL_GENERIC_16X5X generic driver package which is modified by the
CYGPKG_IO_SERIAL_ARM_ALTERA_HPS driver package for the HPS. These packages can support all the serial devices
on the HPS. However, this board only has UART1 connected to an external connector which this HAL indicates by imple-
menting the CYGINT_HAL_ARM_CORTEXA_ALTERA_HPS_UART1 interface. This serial channel is used by RedBoot for
communication with the host. If this device is needed by the application, either directly or via the serial driver, then it cannot
also be used for RedBoot communication. Another communication channel such as Ethernet should be used instead. The serial
driver package is loaded automatically when configuring for the dreamchip-a10 target.

There is an Ethernet driver CYGPKG_DEVS_ETH_DWC_GMAC for the on-chip Ethernet device. A separate package, CYGP-
KG_DEVS_ETH_DREAMCHIP_A10 configures this generic driver to the hardware. This driver is also loaded automatically
when configuring for the dreamchip-a10 board.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_DWWDT. This driver is also loaded automatically when config-
uring for the board.

The HPS processor HAL contains a driver for the MultiMedia Card Interface (MMC/SD). This driver is loaded automatically
when configuring CYGPKG_DEVS_DISK_MMCSD_BUS for this target and allows use of MultiMediaCard (MMC) and Secure
Digital (SD) flash storage cards within eCos, exported as block devices. Further documentation on the driver may be found in
the Altera Hard Processor System Support HAL documentation.

Note

There is no working card-detect (media change) signal available on the board for the J3 MicroSD slot.

The platform HAL provides definitions to enable access to flash devices on the SPI bus. The HAL enables the QSPI driver
(CYGPKG_DEVS_FLASH_QSPI) which in turn provides the underlying implementation for access to the Micron N25Q512A

2593

Dream Chip A10 Board Support

SPI NOR flash. The QSPI support integrates with the CYGPKG_DEVS_FLASH_SPI_M25PXX package. These packages are
automatically loaded when configuring for the target. This driver is capable of supporting the JFFS2 filesystem, although at
reduced performance compared with a parallel flash device.

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (RTC,
SPI, MMC/SD etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence
will set up the appropriate power control and pin multiplexing configuration.

All development and testing was undertaken using the DCT10A22L20G2T4C3ES variant of the Dream Chip Arria 10 SoM
and DCT10ABASE Evaluation Baseboard.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 7.3.0, arm-eabi-gdb version 8.1, and binutils version 2.30.

2594

Dream Chip A10 Board Support

Name
Setup — Preparing the Dream Chip A10 board for eCos Development

Overview
In a typical development environment, the board boots from the SPI NOR and runs the RedBoot ROM monitor from SDRAM.
eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.
Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot loaded from SPI
NOR flash to SDRAM

redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. RedBoot also supports Ethernet
communication and flash management.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from NOR flash by U-Boot. The use of ROM for this configuration is intended to indicate
that it initializes the microprocessor and board peripherals, as opposed to the RAM configuration which assumes that this has
already been done.

Initial Installation
For eCos development we want to install RedBoot in the SPI NOR flash. The booting mechanism is that the on-chip firmware
loads U-Boot from the start of NOR flash which then loads RedBoot from later in the flash.

To write RedBoot to the SPI NOR flash, you must use the command line tools from the Intel Quartus FPGA Development Tools
and the SoC FPGA Embedded Development Suite. Any of the Prime, Standard or Lite versions of these tools may be used.

Programming RedBoot into NOR flash using Altera Tools

The following gives the steps needed to program RedBoot into the SPI NOR Flash using the Altera tools. This uses the
quartus_hps flash programmer command line utility to do the work.

Note

The examples below are for a Linux host where eCosPro is typically installed in the /opt/ecospro/
ecospro-<version> sub-directory. On a Windows host eCosPro will typically be installed in the
C:\eCosPro\ecos-<version> sub-directory.

1. Install Quartus and the SoC EDS as described by Intel onto your host system. Quartus and EDS should be installed
into the same directory if the following script is to work. Start an Embedded Command Shell by running either <SoC
EDS Installation Folder>\embedded\Embedded_Command_Shell.bat in Windows or <SoC EDS
Installation Folder>/embedded/embedded_command_shell.sh in Linux.

2. Ensure that there is no SD card installed.

3. Connect USB cables between the mini USB socket at J14 (used by the USB-Blaster), and the mini USB socket at J13 (used
to provide serial device access) and your host. Power up the board and run a terminal emulator on your host, attaching it
to the serial USB channel which should appear on your host, setting the baud rate to 115200. Attach an Ethernet cable to
the RJ45 connector.

4. Run the following command on the host to detect the USB-Blaster:

jtagconfig
1) DCT10ABASE [1-5]
 02E020DD 10AS022C(3|4)/10AS022E(3|4)
 4BA00477 SOCVHPS

2595

Dream Chip A10 Board Support

#

It may be necessary to run this a couple of times before the above result is obtained. If the program failure persists then
you should check that your EDS installation is correct.

5. If installing the prebuilt RedBoot image provided with the eCosPro release:
change directory to loaders/dreamchip_a10/etc/qspi_boot within the ecos-x.y.z installation sub-
directory.

If installing the RedBoot image you built:
change directory to etc/qspi_boot in the install directory.

6. Run the script qspi_prog. If you are running on a Windows host, you will need to run the script using the bash command.
This will use the quartus_hps to program U-Boot, the FPGA bit streams and RedBoot into the QSPU flash. This script
will produce a lot of output, which is not reproduced here. Monitor the output to ensure each component is written to the
flash correctly.

7. Power cycle the board. Output similar to the following should be seen on the serial line:

U-Boot 2014.10-dirty (Feb 20 2023 - 12:40:11)

CPU : Altera SOCFPGA Arria 10 Platform
BOARD : Dream Chip Arria 10 SoM base
I2C: ready
DRAM: WARNING: Caches not enabled
SF: Read data capture delay calibrated to 3 (0 - 6)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
FPGA: Early Release Succeeded.
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiBDDRCAL: Success
INFO : Skip relocation as SDRAM is non secure memory
Reserving 2048 Bytes for IRQ stack at: ffe386e8
DRAM : 2 GiB
WARNING: Caches not enabled
MMC: SOCFPGA DWMMC: 0
SF: Read data capture delay calibrated to 8 (0 - 15)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
In: serial
Out: serial
Err: serial
Model: Dreamchip Arria10 SoM
Net: dwmac.ff802000
Hit any key to stop autoboot: 0
SF: Read data capture delay calibrated to 3 (0 - 6)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
Full Configuration Succeeded.
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
SF: 655360 bytes @ 0x1000000 Read: OK
Starting application at 0x00100000 ...
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 12:34:aa:bb:cc:ee
IP: 10.0.2.2/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1
DNS server IP: 10.0.0.5, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version 4.7.7 - built 14:58:38, Apr 12 2023

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2023 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Dreamchip Arria 10 SoM Development Kit (Cortex-A9)

2596

Dream Chip A10 Board Support

RAM: 0x00000000-0x40000000 [0x0017be78-0x3fd2d000 available]
 Arena: base 0x3fe00000, size 0x200000, 99% free, maxfree 0x1fffec
FLASH: 0x80000000-0x83ffffff, 1024 x 0x10000 blocks
RedBoot>

8. Run the following commands to initialize RedBoot's flash file system and flash configuration:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x83ff0000-0x83ffffff: .
... Program from 0x3fdf0000-0x3fe00000 to 0x83ff0000: .
RedBoot>
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.0.1.1
Console baud rate: 115200
DNS domain name: calivar.com
DNS server IP address: 10.0.0.5
Network hardware address [MAC] for eth0: 0x12:0x34:0xAA:0xBB:0xCC:0xEE
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: dwc_gmac
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x83ff0000-0x83ffffff: .
... Program from 0x3fdf0000-0x3fe00000 to 0x83ff0000: .
RedBoot>

You should substitute your own server IP address for the one shown above. You may also want to change the MAC address
if more than one board is present on the network. If you want to use a static IP address, then choose false for the "Use
BOOTP" option and enter the gateway, IP address and netmask that you have assigned.

The RedBoot installation is now complete. Power cycling the board should show

U-Boot 2014.10-dirty (Feb 20 2023 - 12:40:11)

CPU : Altera SOCFPGA Arria 10 Platform
BOARD : Dream Chip Arria 10 SoM base
I2C: ready
DRAM: WARNING: Caches not enabled
SF: Read data capture delay calibrated to 3 (0 - 6)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
FPGA: Early Release Succeeded.
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiBDDRCAL: Success
INFO : Skip relocation as SDRAM is non secure memory
Reserving 2048 Bytes for IRQ stack at: ffe386e8
DRAM : 2 GiB
WARNING: Caches not enabled
MMC: SOCFPGA DWMMC: 0
SF: Read data capture delay calibrated to 8 (0 - 15)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
In: serial
Out: serial
Err: serial
Model: Dreamchip Arria10 SoM
Net: dwmac.ff802000
Hit any key to stop autoboot: 0
SF: Read data capture delay calibrated to 3 (0 - 6)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
Full Configuration Succeeded.
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB
SF: 655360 bytes @ 0x1000000 Read: OK
Starting application at 0x00100000 ...
+Ethernet eth0: MAC address 12:34:aa:bb:cc:ee
IP: 10.0.2.2/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1
DNS server IP: 10.0.0.5, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]

2597

Dream Chip A10 Board Support

eCosCentric certified release, version 4.7.7 - built 14:58:38, Apr 12 2023

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2023 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Dreamchip Arria 10 SoM Development Kit (Cortex-A9)
RAM: 0x00000000-0x40000000 [0x0017be78-0x3fd2d000 available]
 Arena: base 0x3fe00000, size 0x200000, 99% free, maxfree 0x1fffec
FLASH: 0x80000000-0x83ffffff, 1024 x 0x10000 blocks
RedBoot>
RedBoot> fis list
Name FLASH addr Mem addr Length Entry point
(reserved) 0x80000000 0x80000000 0x01000000 0x00000000
RedBoot 0x81000000 0x81000000 0x000A0000 0x00000000
FIS directory 0x83FF0000 0x83FF0000 0x0000F000 0x00000000
RedBoot config 0x83FFF000 0x83FFF000 0x00001000 0x00000000
RedBoot>

If it proves necessary to install a new version of RedBoot, this may be done from RedBoot itself. Place the new image on a
TFTP server on the configured server. From RedBoot run the following commands:

RedBoot> load -r -b %{freememlo} redboot.bin
Using default protocol (TFTP)
Raw file loaded 0x001a6800-0x0020e953, assumed entry at 0x001a6800
RedBoot> fis cre RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x81000000-0x8109ffff:
... Program from 0x001a6800-0x0020e954 to 0x81000000:
... Erase from 0x83ff0000-0x83ffffff: .
... Program from 0x3fdf0000-0x3fe00000 to 0x83ff0000: .
RedBoot>

Booting RedBoot from an SD card

The following gives the steps needed to run RedBoot from an SD card. This does not need any tools from Quartus.

Notes:

1. These instructions are only applicable to developers running on a Linux host.

2. eCosPro is typically installed in the /opt/ecospro/ecospro-<version> sub-directory.

1. Insert a blank SD card into an SD card drive on your host machine and identify the device name by either monitoring the
system messages or using lsblk.

2. Connect USB cables between the mini USB socket at J14 (used by the USB-Blaster), and the mini USB socket at J13 (used
to provide serial device access) and your host. Run a terminal emulator on your host, attaching it to the serial USB channel
which should appear on your host, setting the baud rate to 115200. Attach an Ethernet cable to the RJ45 connector.

3. If installing the prebuilt RedBoot image provided with the eCosPro release:
change directory to loaders/dreamchip_a10/etc/sd_boot within the ecos-x.y.z installation sub-directory.

If installing the RedBoot image you built:
change directory to etc/sd_boot in the install directory.

4. Run the script sd_prog as root giving it the name of the SD device as an argument. For example
sudo ./sdcard_build /dev/sdx. This will format the SD card and copy U-Boot, the FPGA bit streams and RedBoot on to
it. flash. The script should produce output similar to the following:

$ sudo ./sdcard_build /dev/sdh

2598

Dream Chip A10 Board Support

1024+0 records in
1024+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.261784 s, 4.0 MB/s
Checking that no-one is using this disk right now ... OK

Disk /dev/sdh: 14.84 GiB, 15931539456 bytes, 31116288 sectors
Disk model: MassStorageClass
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

>>> Script header accepted.
>>> Script header accepted.
>>> Script header accepted.
>>> Script header accepted.
>>> Script header accepted.
>>> Created a new DOS disklabel with disk identifier 0x6d0fd677.
/dev/sdh1: Created a new partition 1 of type 'W95 FAT32 (LBA)' and of size 100 MiB.
Partition #1 contains a vfat signature.
/dev/sdh2: Created a new partition 2 of type 'W95 FAT32 (LBA)' and of size 100 MiB.
Partition #2 contains a vfat signature.
/dev/sdh3: Created a new partition 3 of type 'Unknown' and of size 10 MiB.
/dev/sdh4: Done.

New situation:
Disklabel type: dos
Disk identifier: 0x6d0fd677

Device Boot Start End Sectors Size Id Type
/dev/sdh1 24576 229375 204800 100M c W95 FAT32 (LBA)
/dev/sdh2 229376 434175 204800 100M c W95 FAT32 (LBA)
/dev/sdh3 2048 22528 20481 10M a2 unknown

Partition table entries are not in disk order.

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.
2048+0 records in
2048+0 records out
1048576 bytes (1.0 MB, 1.0 MiB) copied, 0.0472776 s, 22.2 MB/s
8+0 records in
8+0 records out
4096 bytes (4.1 kB, 4.0 KiB) copied, 0.0525689 s, 77.9 kB/s
mkfs.fat 4.1 (2017-01-24)
$

5. Remove the SD card from the host and insert into the SD socket on the board.

6. Power up the board. Output similar to the following should appear on the serial line:

U-Boot 2014.10-dirty (Feb 20 2023 - 12:40:11)

CPU : Altera SOCFPGA Arria 10 Platform
BOARD : Dream Chip Arria 10 SoM base
I2C: ready
DRAM: WARNING: Caches not enabled
SF: Read data capture delay calibrated to 3 (0 - 6)
SF: Detected N25Q512A with page size 256 Bytes, erase size 4 KiB, total 64 MiB

U-Boot 2014.10-dirty (Feb 15 2023 - 11:20:29)

CPU : Altera SOCFPGA Arria 10 Platform
BOARD : Dream Chip Arria 10 SoM base
I2C: ready
DRAM: WARNING: Caches not enabled
SOCFPGA DWMMC: 0
FPGA: writing ghrd_10AS048E4.periph.rbf ...
FPGA: Early Release Succeeded.
DDRCAL: Success
INFO : Skip relocation as SDRAM is non secure memory

2599

Dream Chip A10 Board Support

Reserving 2048 Bytes for IRQ stack at: ffe386e8
DRAM : 2 GiB
WARNING: Caches not enabled
MMC: In: serial
Out: serial
Err: serial
Model: Dreamchip Arria10 SoM
Net: dwmac.ff802000
Hit any key to stop autoboot: 0
FPGA: writing ghrd_10AS048E4.core.rbf ...
Full Configuration Succeeded.
293108 bytes read in 16 ms (17.5 MiB/s)
Starting application at 0x00100000 ...
+Ethernet eth0: MAC address 12:34:aa:bb:cc:ee
IP: 10.0.2.2/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1
DNS server IP: 10.0.0.5, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version 4.7.7 - built 14:58:38, Apr 12 2023

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2023 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Dreamchip Arria 10 SoM Development Kit (Cortex-A9)
RAM: 0x00000000-0x40000000 [0x001865e0-0x3fe00000 available]
 Arena: base 0x3fe00000, size 0x200000, 99% free, maxfree 0x1fffec
RedBoot>

7. Due to the different FPGA bitstreams, The SD card version of RedBoot cannot access the QSPI flash. Consequently any
configuration such as Ethernet MAC address or IP address must be configured in to the RedBoot executable.

If it proves necessary te reinstall RedBoot then rerunning the above script is the simplest approach. Alterntively the first partition
on the SD card can be mounted on the host and the new RedBoot executable copied over.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the Dream Chip A10 are:

$ mkdir redboot_dreamchip_a10_rom
$ cd redboot_dreamchip_a10_rom
$ ecosconfig new dreamchip_a10 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/dreamchip_a10/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This is a binary file that
includes a header needed by the preloader to load and run RedBoot successfully.

These instructions build a RedBoot that can be booted from the QSPI flash. To build a RedBoot to boot from SD, use
redboot_ROM_SD.ecm in the above import command.

2600

Dream Chip A10 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The Dream Chip A10 platform HAL package is loaded automatically when eCos is configured for the dreamchip-a10
target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Startup

The platform HAL package supports three startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash and boots into that initially. arm-eabi-gdb is then used to load a RAM startup application into memory and
debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use
the eCos virtual vectors mechanism to obtain services from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into Flash. The application will be self-
contained with no dependencies on services provided by other software. eCos startup code will perform all necessary
hardware initialization. This startup type can also be used for applications loaded via JTAG.

SMP This startup type can be used for finished applications that can be loaded into RAM via RedBoot. The load address
is set to the same as for RAM applications, however, the application will be self-contained with no dependencies on
services provided by other software. eCos startup code will perform all necessary hardware initialization. Once started,
this application takes full control of the system and RedBoot will not be called again. This means that debugging via
RedBoot will not be possible, only JTAG-based hardware debugging is supported. The intent of this startup type is
to allow SMP test programs to be run from RedBoot, most SMP applications should use the ROM startup type. This
startup type can also be used for applications loaded directly via JTAG.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The Dream Chip A10 board contains a 64Mbyte Micron SPI serial NOR flash device attached to the QSPI controller. The
CYGPKG_DEVS_FLASH_SPI_M25PXX package contains all the code necessary to support this part and the platform HAL
package contains definitions that customize the driver to the Dream Chip A10. This driver is not active until the generic Flash
support package, CYGPKG_IO_FLASH, is included in the configuration.

This driver is capable of supporting the JFFS2 filesystem. However, note that the SPI interface means that this file system has
reduced bandwidth and increased latency compared with other implementations. All that is required to enable the support is
to include the filesystem (CYGPKG_FS_JFFS2) and any of its package dependencies (including CYGPKG_IO_FILEIO and
CYGPKG_LINUX_COMPAT) together with the flash infrastructure (CYGPKG_IO_FLASH).

2601

Dream Chip A10 Board Support

Ethernet Driver
The board uses the HPS's internal GMAC Ethernet device attached to an external Micrel KSZ9021 Gigabit PHY. The
CYGPKG_DEVS_ETH_DWC_GMAC package contains all the code necessary to support this device and the CYGPKG_DE-
VS_ETH_DREAMCHIP_A10 package contains definitions that customize the driver to the board. This driver is not active until
the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

Support for PHY events is made available by default when the Kernel (CYGPKG_KERNEL) is available in a configuration.

Watchdog Driver
The board uses the HPS's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_DWWDT package contains all
the code necessary to support this device. Within that package the CYGNUM_DEVS_WATCHDOG_DWWDT_DESIRED_TIME-
OUT_MS configuration option controls the watchdog timeout, and by default will force a reset of the board upon timeout.
This driver is not active until the generic watchdog device support package, CYGPKG_IO_WATCHDOG, is included in the
configuration.

UART Serial Driver
The board uses the HPS's internal UART serial support as described in the HPS processor HAL documentation. Only one serial
connector is available on the board, which is connected to UART1 via a USB bridge. Only the UART data lines are connected
to the bridge, so hardware flow control is not supported.

MMC/SD Driver
As the Dream Chip A10 MMC/SD driver is part of the HPS processor HAL, nothing is required to load it. Similarly the
MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific configu-
ration for this target. All that is required to enable the support is to include the generic disk I/O infrastructure package (CYGP-
KG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and any of its package
dependencies (e.g. for FAT also including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT packages).

Various options can be used to control specifics of the MMC/SD driver. Consult the HPS processor HAL documentation for
information on its configuration.

This board does not have a working MMC/SD card detect for MicroSD socket (J3), thus the disk I/O layer's removeable media
support is not available.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. The following flags
are specific to this port:

-mcpu=cortex-a9 The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m
option should be used to select the specific variant in use, and with current tools -
mcpu=cortex-a9 is the correct option for the CPU in the HPS.

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb2 instruction
set when this option is used. The best way to build eCos in Thumb mode is to enable
the configuration option CYGHWR_THUMB.

-mno-unaligned-access The Cortex-A CPU allows unaligned memory accesses and the default for arm-eabi-
gcc is to generate instructions that make unaligned accesses. However, for this port,
alignment exceptions are enabled, so unaligned accesses should not be made. This op-
tion disables unaligned accesses. Note that there is a performance and code size cost
in doing this, since all accesses to unaligned data must now be made using individual
byte accesses.

2602

Dream Chip A10 Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, including RedBoot. Only ROM configuration applications
should be debugged using JTAG, RAM applications assume the presence of RedBoot.

OpenOCD notes

OpenOCD support is available for loading and running ROM or SMP startup applications. Single CPU applications can be
debugged via OpenOCD but SMP support is not currently available.

An OpenOCD configuration file, openocd.dreamchip_a10.cfg, is available in the misc subdirectory of the platform
hal subdirectory. This will be installed as etc/openocd.cfg in the install subdirectory when building the eCos libarary
for use by the eCos GUI Configuration Tool or Eclipse when running tests or debugging your application respectively. This
openocd configuration file should be used with a recent release of OpenOCD.

2603

Dream Chip A10 Board Support

Name
SMP Support — Usage

Overview
Support is available for SMP operation of the two CPUs on this platform. However, debugging support is restricted to using an
external SMP-aware JTAG debugger like ARM's DS-5 or a Lauterbach Power Debug probe. RedBoot does not have support
for multi-core debugging.

A board intended to be used for SMP operation should be initialized in the same way as a single core board by installing the
preloader and RedBoot. If RedBoot is not needed then the preloader must still be installed and a ROM startup application, with
headers added by flashimg, can be written to flash in place of RedBoot.

SMP support is enabled by setting CYGPKG_KERNEL_SMP_SUPPORT to true. SMP applications should only be built using
either ROM or SMP startup types. ROM applications can be loaded by U-Boot in place of RedBoot. The SMP startup is
identical to a ROM startup except that the load address is set to allow the application to be loaded into a higher location in
RAM from RedBoot. Both application types may also be loaded via a JTAG debugger.

Loading an SMP startup application via RedBoot can be done from the RedBoot command line via serial or Ethernet. It may
also be loaded via a GDB connection on serial or Ethernet. However, once started running the SMP application will take full
control of the system, including redirecting all interrupt sources, exception vectors and virtual vector table entries. This means
that RedBoot will no-longer be active. Any breakpoints planted by GDB will result in an exception to the application, Ctrl-
C will not work, any Ethernet connections will be lost and serial output will come from the application in plain ASCII. Any
GDB connection will be lost and GDB may start reporting packet errors.

2604

Dream Chip A10 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Dream Chip A10 hardware, and
should be read in conjunction with that specification. The platform HAL package complements the ARM architectural HAL,
the Cortex-A variant HAL and the Altera HPS processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization. This is all done in the PLATFORM_SETUP1 macro in the
assembler header file hal_platform_setup.h.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x00000000 of the physical memory space. The SDRAM is 2GiB
in size, although only the first 1GiB is used by eCos. The HAL configures the MMU to re-
tain the SDRAM at virtual address 0x00000000 with caching enabled. The same memory is
also accessible uncached and unbuffered at virtual location 0x40000000 for use by device
drivers. Memory is required for the MMU tables, and must be aligned on a 16Kbyte bound-
ary. These therefore occupy memory from 0x00010000 to 0x00014000. For ROM startup, all
remaining SDRAM is available, although ROM applications actually load from 0x00100000.
The virtual vector table is allocated as part of the RedBoot image and occupied 256 bytes
from 0x00000050. RAM startup applications are loaded from location 0x00200000, reserving
1MiB for RedBoot.

SPI NOR Flash SPI NOR flash media can only be accessed with the Flash API. For the purposes of this API a
placeholder address range has been allocated as if the Flash is present at this address. The base
of this address range is 0x80000000. This reserved range is not real memory and any attempt
to access it directly by the processor other than via the Flash API will result in a memory
address exception.

Peripheral Registers These are located at various addresses in the physical memory space above 0xC0000000.
When the MMU is enabled, it sets up a direct, uncached, unbuffered mapping so that these
registers remain accessible at their physical locations.

SPI NOR Flash
eCos supports QSPI access to the NOR flash on the board. The device is typically used to contain RedBoot and flash config-
uration data.

Accesses to SPI flash are performed via the Flash API, using 0x80000000 or as the nominal address of the device, although
it does not truly exist in the processor address space.

Since SPI flash is not directly addressable, access from RedBoot is only possible using fis command operations.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM32 mode.

2605

Dream Chip A10 Board Support

Example 276.1. dreamchip_a10 Real-time characterization

 Startup, main thrd : stack used 404 size 2304
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 96 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.00 microseconds (1 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 0.92 0.00 2.00 0.23 82% 12% Create thread
 0.17 0.00 1.00 0.28 82% 82% Yield thread [all suspended]
 0.20 0.00 1.00 0.32 79% 79% Suspend [suspended] thread
 0.16 0.00 1.00 0.26 84% 84% Resume thread
 0.23 0.00 1.00 0.36 76% 76% Set priority
 0.13 0.00 1.00 0.22 87% 87% Get priority
 0.30 0.00 1.00 0.42 70% 70% Kill [suspended] thread
 0.25 0.00 1.00 0.38 75% 75% Yield [no other] thread
 0.23 0.00 1.00 0.36 76% 76% Resume [suspended low prio] thread
 0.16 0.00 1.00 0.26 84% 84% Resume [runnable low prio] thread
 0.22 0.00 1.00 0.34 78% 78% Suspend [runnable] thread
 0.19 0.00 1.00 0.30 81% 81% Yield [only low prio] thread
 0.17 0.00 1.00 0.28 82% 82% Suspend [runnable->not runnable]
 0.33 0.00 1.00 0.44 67% 67% Kill [runnable] thread
 0.34 0.00 1.00 0.45 65% 65% Destroy [dead] thread
 0.50 0.00 1.00 0.50 100% 50% Destroy [runnable] thread
 0.63 0.00 1.00 0.47 62% 37% Resume [high priority] thread
 0.34 0.00 1.00 0.45 66% 66% Thread switch

 0.09 0.00 1.00 0.16 91% 91% Scheduler lock
 0.17 0.00 1.00 0.28 82% 82% Scheduler unlock [0 threads]
 0.17 0.00 1.00 0.28 82% 82% Scheduler unlock [1 suspended]
 0.17 0.00 1.00 0.28 82% 82% Scheduler unlock [many suspended]
 0.15 0.00 1.00 0.25 85% 85% Scheduler unlock [many low prio]

 0.06 0.00 1.00 0.12 93% 93% Init mutex
 0.16 0.00 1.00 0.26 84% 84% Lock [unlocked] mutex
 0.19 0.00 1.00 0.30 81% 81% Unlock [locked] mutex
 0.16 0.00 1.00 0.26 84% 84% Trylock [unlocked] mutex
 0.00 0.00 0.00 0.00 100% 100% Trylock [locked] mutex
 0.06 0.00 1.00 0.12 93% 93% Destroy mutex
 0.03 0.00 1.00 0.06 96% 96% Unlock/Lock mutex

 0.19 0.00 1.00 0.30 81% 81% Create mbox
 0.13 0.00 1.00 0.22 87% 87% Peek [empty] mbox
 0.19 0.00 1.00 0.30 81% 81% Put [first] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [1 msg] mbox
 0.22 0.00 1.00 0.34 78% 78% Put [second] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [2 msgs] mbox
 0.16 0.00 1.00 0.26 84% 84% Get [first] mbox
 0.06 0.00 1.00 0.12 93% 93% Get [second] mbox

2606

Dream Chip A10 Board Support

 0.16 0.00 1.00 0.26 84% 84% Tryput [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek item [non-empty] mbox
 0.16 0.00 1.00 0.26 84% 84% Tryget [non-empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek item [empty] mbox
 0.16 0.00 1.00 0.26 84% 84% Tryget [empty] mbox
 0.09 0.00 1.00 0.17 90% 90% Waiting to get mbox
 0.09 0.00 1.00 0.17 90% 90% Waiting to put mbox
 0.06 0.00 1.00 0.12 93% 93% Delete mbox
 0.00 0.00 0.00 0.00 100% 100% Put/Get mbox

 0.09 0.00 1.00 0.17 90% 90% Init semaphore
 0.19 0.00 1.00 0.30 81% 81% Post [0] semaphore
 0.16 0.00 1.00 0.26 84% 84% Wait [1] semaphore
 0.06 0.00 1.00 0.12 93% 93% Trywait [0] semaphore
 0.16 0.00 1.00 0.26 84% 84% Trywait [1] semaphore
 0.13 0.00 1.00 0.22 87% 87% Peek semaphore
 0.13 0.00 1.00 0.22 87% 87% Destroy semaphore
 0.00 0.00 0.00 0.00 100% 100% Post/Wait semaphore

 0.13 0.00 1.00 0.22 87% 87% Create counter
 0.09 0.00 1.00 0.17 90% 90% Get counter value
 0.06 0.00 1.00 0.12 93% 93% Set counter value
 0.19 0.00 1.00 0.30 81% 81% Tick counter
 0.06 0.00 1.00 0.12 93% 93% Delete counter

 0.09 0.00 1.00 0.17 90% 90% Init flag
 0.19 0.00 1.00 0.30 81% 81% Destroy flag
 0.13 0.00 1.00 0.22 87% 87% Mask bits in flag
 0.19 0.00 1.00 0.30 81% 81% Set bits in flag [no waiters]
 0.22 0.00 1.00 0.34 78% 78% Wait for flag [AND]
 0.19 0.00 1.00 0.30 81% 81% Wait for flag [OR]
 0.16 0.00 1.00 0.26 84% 84% Wait for flag [AND/CLR]
 0.19 0.00 1.00 0.30 81% 81% Wait for flag [OR/CLR]
 0.06 0.00 1.00 0.12 93% 93% Peek on flag

 0.13 0.00 1.00 0.22 87% 87% Create alarm
 0.22 0.00 1.00 0.34 78% 78% Initialize alarm
 0.16 0.00 1.00 0.26 84% 84% Disable alarm
 0.19 0.00 1.00 0.30 81% 81% Enable alarm
 0.09 0.00 1.00 0.17 90% 90% Delete alarm
 0.16 0.00 1.00 0.26 84% 84% Tick counter [1 alarm]
 0.66 0.00 1.00 0.45 65% 34% Tick counter [many alarms]
 0.31 0.00 1.00 0.43 68% 68% Tick & fire counter [1 alarm]
 3.00 3.00 3.00 0.00 100% 100% Tick & fire counters [>1 together]
 0.78 0.00 1.00 0.34 78% 21% Tick & fire counters [>1 separately]
 0.00 0.00 0.00 0.00 100% 100% Alarm latency [0 threads]
 0.43 0.00 1.00 0.49 57% 57% Alarm latency [2 threads]
 0.63 0.00 1.00 0.47 62% 37% Alarm latency [many threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 1.00 1.00 1.00 0.00 Clock DSR latency

 233 172 288 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 1204 size 2304
 All done : Interrupt stack used 420 size 4096
 All done : Idlethread stack used 248 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The HPS processor HAL
and the ARM architectural HAL documentation should be consulted for further details.

2607

Chapter 277. Atmel ATSAMA5D3 Variant
HAL

2608

Atmel ATSAMA5D3 Variant HAL

Name
CYGPKG_HAL_ARM_CORTEXA_SAMA5D3 — eCos Support for the Atmel SAMA5D3 Microprocessor Family

Description
This document covers the configuration and usage of the Hardware Abstraction Layer (HAL) for the Atmel SAMA5D3 series
of Cortex-A5 microcontrollers. It is expected to be read in conjunction with platform HAL-specific documentation, as well as
the eCos HAL specification. This processor package complements the ARM architectural HAL, Cortex-A variant HAL and
the platform HAL. It provides functionality common to all SAMA5D3-based implementations.

This support is found in the eCos package located at packages/hal/arm/cortexa/sama5d3/var within the eCos
source repository.

The SAMA5D3 HAL package is loaded automatically when eCos is configured for a SAMA5D3-based platform. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

The Cortex-A5 CPU uses the common ARM Cortex-A package which provides run-time support for cache, MMU, etc. The
Cortex-A5 has full application compatability with Cortex-A8, Cortex-A9, and Cortex-A15 processors, but in a smaller, lower
power, package.

In addition to the core CPU support, the SAMA5D3 processor variant package provides common functionality and definitions
that SAMA5D3 based platforms may require, as well as definitions useful to application developers.

The platform HAL documentation Setup section gives an overview of hardware debugging support, e.g. PEEDI, J-Link, etc.

2609

Atmel ATSAMA5D3 Variant HAL

Name
SAMA5D3 hardware definitions — Details on obtaining hardware definitions for SAMA5D3

Register definitions
The file <cyg/hal/sama5d3.h> can be included from application and eCos package sources to provide definitions related
to SAMA5D3 subsystems. These include register definitions for the interrupt controller, power management controller, clock
generator, memory controller, external bus interface, GPIO, USART, and other subsystems.

Initialization helper macros
The file <cyg/hal/sama5d3_init.inc> contains definitions of helper macros which may be used by SAMA5D3 plat-
form HALs in order to initialise common subsystems without excessive duplication between the platform HALs. Typically this
file will be included by the hal_platform_setup.h header in the platform HAL, in turn included from the architectural
HAL file vectors.S.

This file is solely intended to be used by platform HALs. At the same time, it is only present to assist initialization, and platform
HALs are not obliged to use it if their startup requirements vary.

2610

Atmel ATSAMA5D3 Variant HAL

Name
Bootstrap — System startup

Overview
The BMS signal to the CPU controls the initial system bootstrap selection. This is used in conjunction with the OTP (FUSE)
on-chip configuration, and reset “input” pin state, to select the boot source for the CPU.

Table 277.1. BMS signal

BMS signal Description

BMS_BIT=0 The embedded (on-chip) RomBOOT first-level bootloader is used. The actual boot source used
will depend on the presence of suitable binaries on the sources scanned by the RomBOOT code.
The first acceptable binary is loaded into SRAM and executed. If no valid non-volatile-memory
(NVM) binary is found then the RomBOOT will enter the Atmel SAM-BA monitor.

BMS_BIT=1 The application installed on the EBI_CS0 device is executed in-situ. The on-chip RomBOOT con-
figures the chip-select for 12MHz RC access prior to executing the code mapped from address
0x00000000.

The “Standard Boot Strategies” section of the SAMA5D3 Series Datasheet provides details about the boot sequence configu-
ration, and should be read in conjunction with this documentation.

The hardware platform documentation should be read in conjunction with this generic SAMA5D3 CPU documentation with
regards to specific jumper settings that may affect the bootstrap code executed.

For some designs directly booting from an EBI_CS0 memory-mapped device is the simplest option. However, making use
of the SAMA5D3 RomBOOT world to load a small second-level boot loader allows the easier possibility of providing support
for in-field upgrades and selection of multiple application images.

Note

When BMS_BIT=1 and code is started from the EBI_CS0 device then the Atmel Secure Boot functionality is
not available.

2611

Atmel ATSAMA5D3 Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support

On-chip Memory

The Atmel SAMA5D3 parts include 128K of on-chip SRAM for general application use. Other SRAM memory exists as part
of specific on-chip I/O controllers and may be available for general purpose use if the corresponding I/O is not being used (e.g.
NFC SRAM), though eCos by default does not provide explicit support for such use.

The SAMA5D3 parts also provide I/O controllers which allow access to various external memory types, which eCos may use
where supported by the relevant platform HAL. Application execution is normally based on such external memory due to the
limited size of the on-chip SRAM available.

Interrupts

The SAMA5D3 HAL provides interrupt support via the on-chip Advanced Interrupt Controller.

Interrupt controller definitions

The file <cyg/hal/sama5d3_ints.h> (located at hal/arm/cortexa/sama5d3/var/VERSION/in-
clude/sama5d3_ints.h in the eCos source repository) contains interrupt vector number definitions for use with the eCos
kernel and driver interrupt APIs.

It should be noted that further decoding is performed on the multiplexed system CYGNUM_HAL_INTERRUPT_SYS inter-
rupt to identify the cause more specifically. Note that as a result, placing an interrupt handler on the CYGNUM_HAL_INTER-
RUPT_SYS interrupt will not work as expected. Conversely, masking a decoded derivative of the CYGNUM_HAL_INTER-
RUPT_SYS interrupt will not work as this would mask other CYGNUM_HAL_INTERRUPT_SYS interrupts, but masking the
CYGNUM_HAL_INTERRUPT_SYS interrupt itself will work. On the other hand, unmasking a decoded CYGNUM_HAL_IN-
TERRUPT_SYS interrupt will unmask the CYGNUM_HAL_INTERRUPT_SYS interrupt as a whole, thus unmasking interrupts
for the other units on this shared interrupt.

If the CDL option CYGHWR_HAL_ARM_CORTEXA_SAMA5D3_PIO_DEMUX is configured then the variant HAL also pro-
vides support for de-multiplexing PIO interrupt sources, allowing the standard eCos interrupt system to be used to control the
use of individual PIO pin interrupt handlers. This support avoids the need for the developer to manually handle multiple active
interrupt PIO pins on a single controller vector ISR function, and as such the feature is normally recommended. However for
very small memory footprint systems the RAM overhead of maintaining a significantly increased set of ISR descriptor vectors
may be deemed inappropriate, and so the developer is free to disable the extension and manually support the base per-controller
CYGNUM_HAL_INTERRUPT_PIO# shared interrupt source as required for their PIO interrupt requirements.

Note

If the variant demultiplexing support is disabled then certain standard drivers may have restricted functionality
on specific platforms if they depend on using the per-pin interrupt support for certain features.

The list of interrupt vectors may be augmented on a per-platform basis. Consult the platform HAL documentation for your
platform for whether this is the case.

Interrupt controller Functions

The source file src/sama5d3_misc.c within this package provides most of the support functions to manipulate the inter-
rupt controller. The hal_IRQ_handler queries the IRQ status register to determine the interrupt cause. Functions hal_in-
terrupt_mask and hal_interrupt_unmask enable or disable interrupts within the interrupt controller.

Interrupts are configured in the hal_interrupt_configure function, where the level and up arguments are inter-
preted as follows:

2612

Atmel ATSAMA5D3 Variant HAL

level up interrupt on

0 0 Falling Edge

0 1 Rising Edge

1 0 Low Level

1 1 High Level

To fit into the eCos interrupt model, interrupts essentially must be acknowledged immediately once decoded. The hal_in-
terrupt_acknowledge function explicitly acknowledges the PIO controller interrupt sources.

The hal_interrupt_set_level is used to set the priority level of the supplied interrupt within the Advanced Interrupt
Controller.

Note that in all the above, it is not recommended to call the described functions directly. Instead either the HAL macros
(HAL_INTERRUPT_MASK et al) or preferably the kernel or driver APIs should be used to control interrupts.

Using the Advanced Interrupt Controller for VSRs

The SAMA5D3 HAL has been designed to exploit benefits of the on-chip Advanced Interrupt Controller (AIC) on the SA-
MA5D3. Support has been included for exploiting its ability to provide hardware vectoring for VSR interrupt handlers.

The interrupt decoding path has been optimised by allowing the AIC to be interrogated for the interrupt handler VSR to use.
These vectored interrupts are by default still configured to point to the default ARM architecture HAL IRQ and FIQ VSRs.
However applications may set their own VSRs to override this default behaviour to allow optimised interrupt handling.

The VSR vector numbers to use when overriding are also defined in the <cyg/hal/sama5d3_ints.h> header. Consult
the kernel and generic HAL documentation for more information on VSRs and how to set them.

Interrupt handling withing standalone applications

For non-eCos standalone applications running under RedBoot, it is possible to install an interrupt handler into the interrupt
vector table manually. Memory mappings are platform-dependent and so the platform documentation should be consulted,
but in general the address of the interrupt table can be determined by analyzing RedBoot's symbol table, and searching for
the address of the symbol name hal_interrupt_handlers. Table slots correspond to the interrupt numbers as detailed
above. Pointers inserted in this table should be pointers to a C/C++ function with the following prototype:

extern unsigned int isr(unsigned int vector, unsigned int data);

For non-eCos applications run from RedBoot, the return value can be ignored. The vector argument will also be the interrupt
vector number. The data argument is extracted from a corresponding table named hal_interrupt_data which imme-
diately follows the interrupt vector table. It is still the responsibility of the application to enable and configure the interrupt
source appropriately if needed.

Periodic Interval Timer

The eCos kernel system clock is implemented using the Periodic Interval Timer (PIT) controller. By default, the sys-
tem clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the configuration option
CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings are recalculated
automatically if the denominator is changed. If the desired frequency cannot be expressed accurately solely with changes to
CYGNUM_HAL_RTC_DENOMINATOR, then the configuration option CYGNUM_HAL_RTC_NUMERATOR may also be adjust-
ed, and again clock-related settings will automatically be recalculated.

The PIT is also used to implement the HAL microsecond delay function, HAL_DELAY_US. This is used by some device
drivers, and in non-kernel configurations such as with RedBoot where this timer is needed for loading program images via X/
Y-modem protocols and debugging via TCP/IP. Standalone applications which require RedBoot services, such as debugging,
should avoid use of this timer.

GPIO

The variant HAL provides support for packaging the configuration of a GPIO line into a single 32-bit descriptor that can then
be used with macros to configure the pin and set and read its value. Details are supplied later.

2613

Atmel ATSAMA5D3 Variant HAL

RTC/Wallclock

eCos includes RTC (known in eCos as a wallclock) device drivers for the on-chip RTC in the SAMA5D3 family. This support
is located in the package CYGPKG_DEVICES_WALLCLOCK_ARM_AT91 (“AT91 wallclock driver”). Normally this package
is included automatically by the relevant platform HAL.

Profiling Support

The SAMA5D3 HAL contains support for gprof-based profiling using a sampling timer. The default timer used is chan-
nel 0 of Timer 0 (CYGHWR_HAL_SAMA5D3_TC0). This timer is only enabled when the gprof profiling package (CYGP-
KG_PROFILE_GPROF) is included and enabled in the eCos configuration, otherwise it remains available for application use.

Not all SAMA5D3 variants have multiple timer blocks. For example, when targetting the SAMA5D31 variant, only TC0 is
available and so profiling support may not be possible if the application requires the use of that timer block.

Serial I/O

The SAMA5D3 variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a
fully interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver consists
of an eCos package: CYGPKG_IO_SERIAL_ARM_AT91 which provides all support for the SAMA5D3 on-chip serial devices.
Using the HAL diagnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication
with GDB. If a device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB
communication using the HAL I/O support. An alternative serial port should be used instead.

The HAL defines CDL interfaces for each of the available UARTs, CYGINT_HAL_ARM_CORTEXA_SAMA5D3_D-
BGU. CYGINT_HAL_ARM_CORTEXA_SAMA5D3_USART0 to CYGINT_HAL_ARM_CORTEXA_SAMA5D3_USART3, and
(if available for the target CPU) CYGINT_HAL_ARM_CORTEXA_SAMA5D3_UART0 and CYGINT_HAL_ARM_CORTEX-
A_SAMA5D3_UART1. The platform HAL CDL should contain an implements directive for each such UART that is available
for use on the board. This will enable use of the UART for diagnostic use.

The SAMA5D3 UARTs provide TX and RX data lines plus hardware flow control using RTS/CTS for those UARTs that have
them available and connected.

SPI

The platform HAL provides definitions to allow access to devices on the SPI buses. The HAL provides information to the
general AT91 SPI driver (CYGPKG_DEVS_SPI_ARM_AT91) which in turn provides the underlying implementation for the
SPI API layer in the CYGPKG_IO_SPI package. All these packages are automatically loaded when configuring for the board.

The SAMA5D3 variant implements the SPI buses as configured for the platform:

• cyg_spi_at91_bus0

• cyg_spi_at91_bus1

The platform specific HAL may implement specific SPI device instances as relevant for the underlying hardware. e.g.
SPI Dataflash devices.

Two-Wire Interface (TWI)

The CYGPKG_DEVS_I2C_ATMEL_TWI package implements a Two-Wire Interface (TWI) driver for the TWI controllers
present on the SAMA5D3 family of devices. This type of bus is also known as I²C®. The generic API for this driver may be
found within the CYGPKG_IO_I2C package, along with the API documentation. The CYGPKG_DEVS_I2C_ATMEL_TWI
hardware package is normally included by default when configuring a SAMA5D3 platfornm, and so does not need to be
manually added to a configuration.

Support for TWI functionality is controlled within the SAMA5D3 variant HAL via the CYGPKG_HAL_ARM_CORTEXA_SA-
MA5D3_I2C CDL component. The component controls, via sub-options, whether TWI driver support is enabled for the dif-
ferent on-chip TWI buses available.

2614

Atmel ATSAMA5D3 Variant HAL

For each individual bus that is available the driver package itself provides the CYGNUM_DEVS_I2C_ATMEL_TWIx_CLOCK
option to configure the TWI bus clock speed, where x is replaced by the relevant bus number.

The driver package implements the necessary I²C bus instances as appropriate:

• hal_atmel_i2c_bus0

• hal_atmel_i2c_bus1

• hal_atmel_i2c_bus2

The platform or application code can then register devices attached tospecific buses as needed.

MCI (MMC/SD card controller)

If a suitable socket or sockets exist, the platform HAL may provide definitions to allow use of MMC or SD cards accessed
using the on-chip Multimedia Card Interface (MCI) peripheral block. The SAMA5D3 processor has support for up to three
independent high speed MCI (HSMCI) controllers; although at present in eCos, only one may be configured for use, fixed
at configuration time.

The device driver itself is found in the separate package CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI, which is loaded auto-
matically when selecting any platform supporting it, and further documentation can be found in that package. Typically, disk
support (CYGPKG_IO_DISK), generic filesystem support (CYGPKG_IO_FILEIO) and a filesystem such as FAT (CYGP-
KG_FS_FAT along with its prerequisite CYGPKG_LINUX_COMPAT) are then added to allow application use.

Features such as card insertion/removal detection, SDIO or write protection detection are hardware and platform specific, and
platform documentation should be consulted for more information on those features.

USB

The platform HAL provides definitions to the general USB controller driver (CYGPKG_DEVS_USB_AT91) which in turn
provides the underlying implementation for the USB API layer (CYGPKG_IO_USB).

The driver layer supports both OHCI host functionality via the CYGPKG_DEVS_USB_OHCI package, allowing peripheral
devices to be attached to an eCos “host”, and for device functionality via the CYGPKG_DEVS_USB_PCD_UDPHS package,
where the eCos application implements the peripheral device support for attaching to an external host.

All the necessary hardware packages are automatically loaded when configuring for the board. However, the top-level CYG-
PKG_IO_USB package needs to be included and configured when USB functionality is required.

OHCI

The CYGPKG_DEVS_USB_OHCI package implements the generic parts of the OHCI (host controller) support, and in con-
junction with the platform specific driver and the CYGPKG_IO_USB package allows eCos to act as a “host” for attached USB
devices.

The eCos USB host stack includes a number of class drivers and the ability for users to write additional ones using the eCos
USB host API. See the USB chapter for further details, including a complete listing of supported classes.

Device

The CYGPKG_DEVS_USB_PCD_UDPHS package implements the generic parts of the Atmel UDPHS (USB High Speed De-
vice Port) peripheral controller support, and in conjunction with the CYGPKG_IO_USB package provides support for imple-
menting USB device/peripheral class drivers.

The USB chapter provides target mode stack details including a list of supported device/peripheral class drivers and information
related to adding new class drivers.

Clock Control
Depending on how an eCos SAMA5D3 application is started will influence the CPU and peripheral clock frequencies
used for application execution. For ROM startup, or SRAM when started by the on-chip RomBOOT, the eCos configura-

2615

Atmel ATSAMA5D3 Variant HAL

tion supplied CYGHWR_HAL_ARM_CORTEXA_SAMA5D3_CLOCK_PLL_DIVA and CYGHWR_HAL_ARM_CORTEXA_SA-
MA5D3_CLOCK_PLL_MULA options, in conjunction with the platform supplied CYGHWR_HAL_ARM_CORTEXA_SA-
MA5D3_OSC_MAIN value, will be used to set the CPU and I/O clock frequencies. For the ROMRAM and RAM startup types the
clock frequenies in effect when the application is loaded (either via another application, debug monitor of hardware debugger)
are used. As such, the SAMA5D3 variant HAL provides access to variables that hold the currently configured clock frequencies:

cyg_uint32 hal_sama5d3_slck; // SLCK
cyg_uint32 hal_sama5d3_mainck; // MAINCK
cyg_uint32 hal_sama5d3_pllack; // PLLA frequency
cyg_uint32 hal_sama5d3_upllck; // UPLL frequency
cyg_uint32 hal_sama5d3_pclk; // Processor clock
cyg_uint32 hal_sama5d3_mclk; // Main peripheral clock

It is not expected that applications will need to interpret or use the values, but the HAL makes use of the values to ensure
valid clock configurations are used.

2616

Atmel ATSAMA5D3 Variant HAL

Name
GPIO Support on SAMA5D3 processors — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_uint32 pin = CYGHWR_HAL_SAMA5D3_PIN(port, bit, mode, md, pupd, if, int, conf);

cyg_uint32 pin = CYGHWR_HAL_SAMA5D3_PIN_OUT(port, bit, md, pupd);

cyg_uint32 pin = CYGHWR_HAL_SAMA5D3_PIN_IN(port, bit, md, pupd, if, int);

CYGHWR_HAL_SAMA5D3_PIN_SET (pin);

CYGHWR_HAL_SAMA5D3_GPIO_OUT (pin, val);

CYGHWR_HAL_SAMA5D3_GPIO_IN (pin, val);

Description
The SAMA5D3 HAL provides a number of macros to support the encoding of the GPIO pin identity and I/O configuration
into a single 32-bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for
different devices.

A descriptor is created with one of the 3 variants depending on how the pin is to be used. The support is imple-
mented by the CYGHWR_HAL_SAMA5D3_PIN macro, with CYGHWR_HAL_SAMA5D3_PIN_IN and CYGHWR_HAL_SA-
MA5D3_PIN_OUT being shorthand helpers when direct control of a pin is required: CYGHWR_HAL_SAMA5D3_PIN_IN
defines the pin as an input whose value can be accessed by the user using the macro CYGHWR_HAL_SAMA5D3_GPIO_IN
(see later), CYGHWR_HAL_SAMA5D3_PIN_OUT defines the pin as an output where the user can set the pin output value with
the macro CYGHWR_HAL_SAMA5D3_GPIO_OUT (see later).

The CYGHWR_HAL_SAMA5D3_PIN macro can be used when defining a pin that will be controlled by an on-chip peripheral.

Note

The HAL supplied header file sama5d3.h provides existing configuration definitions for the majority of the on-
chip peripherals supported by eCos, thus obviating the need for the developer to provide their own pin definitions.

The macro variants take a subset of arguments from the following list:

port This identifies the PIO controller to which the pin is attached. Ports are identified by
letters from A to E.

bit This gives the bit, or pin number, within the controller port. These are numbered from
0 to 31.

mode This parameter indicates whether the pin is controlled by an on-chip peripheral, or is to
be used as a GPIO pin under application control.

Table 277.2. Pin Mode

mode Details

GPIOIN The pin is to be configured as an INPUT, and after configuration the CYGHWR_HAL_SA-
MA5D3_GPIO_IN macro can be used to ascertain the pin state.

GPIOOUT The pin is to be configured as an OUTPUT, and after configuration the CYGHWR_HAL_SA-
MA5D3_GPIO_OUT macro can be used to drive the pin level.

PER_A, PER_B,
PER_C, PER_D

The required peripheral mapping when the pin is to be assigned to an on-chip peripheral. The mul-
tiplexing of peripheral signals is defined by the CPU variant being targetted, and is beyond the

2617

Atmel ATSAMA5D3 Variant HAL

mode Details

scope of this documentation. When creating pin configurations for on-chip peripherals the relevant
Atmel datasheet or technical reference manual should be consulted.

md This setting indicates whether the pin should be driven in open-drain mode (OPEN-
DRAIN). If the pin is not to be configured as OPENDRAIN this value is unused, but for
clarity can be given the setting NA.

pupd If this is an input pin, or an output pin configured in open-drain mode (whether controlled
by GPIO or a peripheral), this setting can be used to indicate whether a weak pull-up
resistor (PU) is used, or a weak pull-down resistor (PD) is used. If neither are to be used,
then a value of NONE can be given.

if For input pins (GPIO or peripheral) a glitch (GLITCH) or debouncing (DEBOUNCE)
filter can be configured for the pin. When no input filtering is required, or when the field
is not relevant due to the other pin configuration fields, the value NONE can be specified.

int This parameter indicates whether the pin should have an interrupt configuration defined.

Table 277.3. Interrupt Type

int Details

EDGE_ANY When an interrupt event should be raised on a pin edge event (rising or falling).

EDGE_RISE An interrupt should only be raised on rising (LOW->HIGH) edge transitions.

EDGE_FALL An interrupt should only be raised on falling (HIGH->LOW) edge transitions.

LEVEL_HIGH Interrupts should be asserted when the pin is at a HIGH level.

LEVEL_LOW Interrupts should be asserted when the pin is at a LOW level.

NA This value can be used when an interrupt configuration is not required, or not applicable due to the
other pin configuration parameters.

conf This parameter provides a simple “extension” mechanism; and is treated as a 32-bit
binary value that is OR-ed into the pin descriptor. Care must be taken to ensure that
existing bit-fields within the binary descriptor are not corrupted.

The following examples show how these macros may be used:

// Define port B pin 28 as being controlled by peripheral multiplex A,
// which for this pin on SAMA5D3 devices is USART1, without any
// pull-ups/pull-downs:
#define CYGHWR_HAL_SAMA5D3_USART1_RXD CYGHWR_HAL_SAMA5D3_PIN(B,28,PER_A,OPENDRAIN,NONE,NONE,NA,(0))

// Define port E pin 24 as a GPIO output with a pull-down, for an
// active-low LED:
#define CYGHWR_HAL_SAMA5D3_LED_RED CYGHWR_HAL_SAMA5D3_PIN_OUT(E,24,NA,PD)

Additionally, the manifest CYGHWR_HAL_SAMA5D3_PIN_NONE may be used in place of a pin descriptor and has a value
that no valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used. This
can be useful when defining pin configurations for a series of instances of a peripheral (e.g. USART ports), but where not all
instances support all the same pins (e.g. hardware flow control lines).

The remaining macros all take a suitably constructed GPIO pin descriptor as an argument. The CYGHWR_HAL_SA-
MA5D3_PIN_SET macro configures the pin according to the descriptor and must be called before any other macros. CYGH-
WR_HAL_SAMA5D3_GPIO_OUT sets the output to the value of the least significant bit of the val argument. The val argu-
ment of CYGHWR_HAL_SAMA5D3_GPIO_IN should be a pointer to an int, which will be set to 0 if the pin input is zero,
and 1 otherwise.

Further helper macros are available, and it is recommended to consult the header file <cyg/hal/sama5d3.h> (also present
in the include subdirectory of the SAMA5D3 variant HAL package within the eCos source repository), for the complete
list if needed.

2618

Atmel ATSAMA5D3 Variant HAL

The Interrupt controller definitions section provides an overview of variant support for demultiplexing PIO interrupts.

2619

Atmel ATSAMA5D3 Variant HAL

Name
Peripheral clock control — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_uint32 CYGHWR_HAL_ATMEL_CLOCK_ENABLE(pid);

CYGHWR_HAL_ATMEL_CLOCK_DISABLE (pid);

Description
The HAL provides macros which may be used to enable or disable peripheral clocks. Effectively this indicates whether the
peripheral is powered on (enabled) or powered down (disabled), and so may be used to ensure unused peripherals are turned
off to save power. The CYGHWR_HAL_ATMEL_CLOCK_ENABLE macro will enforce the maximum frequency limitations
for particular peripheral blocks, and will return the frequency of the clock used for the enabled periperhal. Such frequency
information may be useful to device drivers if clock divider configuration is required.

It is important to remember that before a peripheral can be used, it must be enabled. It is safe to re-enable a peripheral that
is already enabled, although usually a device driver will only do so once in its initialisation. eCos will automatically initialise
some peripheral blocks where it needs to use the associated peripherals (such as memory controllers and some (but usually
not all) PIO banks), and in eCos-supplied device drivers which are included in the eCos configuration. However this should
not be relied on - it is always safest to enable the peripheral clocks anyway just in case. Finally, remember that each PIO bank
must be enabled separately.

Each peripheral has a unique ID defined by the HAL, and these values are used as the pid parameter to the enable and disable
macros.

2620

Atmel ATSAMA5D3 Variant HAL

Name
DMA Support — Details

Description
The package CYGPKG_DEVS_DMA_ATMEL_DMAC implements the DMA support for the eCos run-time, and the documenta-
tion for that package should be referenced as appropriate.

The DMAC package is automatically loaded when eCos is configured for a SAMA5D3-based platform. It should never be
necessary to load this package explicitly.

2621

Atmel ATSAMA5D3 Variant HAL

Name
Configuration — Common SAMA5D3 configuration options

Overview

Startup
The SAMA5D3 variant HAL package supports four separate startup types for application configuration:

ROMRAM

This startup type is for stand-alone applications that are loaded into external DDR2-SDRAM via a second-level boot
loader (e.g. the default SAMA5D3x-CM based AT91BootLoader, or the eCosPro BootUp loader), or via a JTAG/SWD
hardware debugger. The data and BSS areas will be put into suitable memory locations as defined by the relevant platform
HAL linker script. The application will be self-contained with no dependencies on services provided by other software.
The eCos startup code will perform all necessary hardware initialization.

Note

The application is copied from its persistent location by the second-level application bootloader, or is directly
loaded to RAM via a JTAG/SWD hardware debugger. The ROMRAM startup code does not perform the copy
to RAM itself.

SRAM

This startup type is used for stand-alone applications. The application will be loaded from a suitable supported “bootable”
device by the on-chip first-level (RomBOOT) bootloader, or directly via a hardware (JTAG/SWD) debugger. The applica-
tion will be self-contained with no dependencies on services provided by other software. It is not envisaged that the SRAM
startup type will normally be used for full applications, primarily being used for developing RomBOOT loaded second-level
bootloaders. However, it can be useful for small platform verification tests loaded via JTAG.

ROM

This startup type is used for stand-alone applications which will be programmed into bootable memory located in the
EBI_CS0 space from 0x10000000. The data and BSS areas will be put into suitable memory as defined by the relevant
platform HAL linker script. The application will be self-contained with no dependencies on services provided by other
software. The program expects to boot from reset with the EBI_CS0 space mapped from location zero. It will then transfer
control to the 0x10000000 region. The eCos startup code will perform all necessary hardware initialization.

RAM

This startup type is used for RAM based applications that are dependent on a “debug” monitor (e.g. RedBoot or GDB stubs)
for some run-time services. By default the application will use the eCos virtual vectors mechanism to obtain services from
the monitor, including diagnostic output. Normally arm-eabi-gdb is used to load a RAM startup application into memory,
and then to debug it. It is assumed that the hardware has already been initialized by the relevant debug monitor.

This startup type can be useful during development, since it allows debugging applications where a hardware debug so-
lution is not available.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when Building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, and disabled otherwise.

2622

Atmel ATSAMA5D3 Variant HAL

If the application does not rely on a ROM monitor for diagnostic services then, by default, the on-chip DBGU serial port will
be used for HAL diagnostic output.

RedBoot Location

RedBoot can be used in conjunction with the host debugger arm-eabi-gdb to load and debug applications configured for the
RAM startup type. Depending on the product requirements the RedBoot binary can either be executed in-situ from the NOR
flash, or loaded dynamically into the DDR2-SDRAM for execution.

The ROMRAM RedBoot diagram shows the memory layout for a RAM resident RedBoot. The RedBoot binary is loaded into its
final DDR2-SDRAM location either via a second-level boot loader (e.g. BootUp) or directly using a hardware debugger.

Note

The addresses shown in the following diagrams are based on the default linker script values.

Figure 277.1. ROMRAM RedBoot

An illustration of a ROMRAM RedBoot executing from DDR2-SDRAM

Any application can be configured for the ROM startup type, and when stored from offset 0 in the NOR flash (mapped to address
0x10000000) the CPU can be configured (via BMS_BIT=1) to execute the code upon reset. The application does not need
to be a debug monitor, but can be the final application if required.

The ROM RedBoot diagram shows the memory layout for a NOR flash resident RedBoot.

2623

Atmel ATSAMA5D3 Variant HAL

Figure 277.2. ROM RedBoot

An illustration of a ROM RedBoot executing from NOR flash

2624

Atmel ATSAMA5D3 Variant HAL

Name
Test Programs — Details

Test Programs
The SAMA5D3 variant HAL contains a test program which allows various aspects of the microcontroller to be tested.

varinfo
The simple varinfo test provides some output identifying the CPU, and the system configuration. It is designed as a very
basic “Hello World” test to validate an eCos run-time build.

2625

Chapter 278. Atmel SAMA5D3x-MB
(MotherBoard) Platform HAL

2626

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Name
CYGPKG_HAL_ARM_CORTEXA_SAMA5D3X_MB — eCos Support for the SAMA5D3x-MB Board

Description
This document covers the configuration and usage of eCos and RedBoot on the Atmel SAMA53x-MB based evaluation kits.
This motherboard is fitted with a SAMA5D3x-CM CPU module containing a variant of the SAMA5D3 family of microcon-
trollers. The board is referred to in this document using SAMA5D3x-MB. The eCos configuration system uses explicit target
names to identify the available CPU evaluation kits based on this board, e.g. atsama5d31_ek, atsama5d33_ek, etc.

The CPU Module contains the available memories, as well as some I/O functionality to extend the features available on the
base SAMA5D3x-MB motherboard. The CPU Module is connected to the J12 SODIMM 200 connector.

For typical eCos development it is expected that programs will be downloaded and debugged via the on-board J-Link USB
interface (J14), or via a hardware debugger (JTAG/SWD) attached to the standard ARM 20-pin JTAG (J9) connector. Use of
a hardware debugging interface avoids the requirement for a debug monitor application to be present on the platform.

Note

Hardware modification of the board may be required to add support to allow use of the 20-pin J9 connector.

See the CPU Module documentation regarding the use of flash for holding a RedBoot or GDB Stubs image if a debug monitor
is required for development.

Supported Hardware
The SAMA5D3x-MB motherboard is common to different “EK” systems, but depending on the actual CPU installed some
differences exist as to motherboard peripherals/connections that may be useable.

The motherboard provides the 10/100 Ethernet (MII/RMII) KSZ8051RNL PHY providing support via the J24 (labelled
“ETH1”) connector. For CPU Module systems where the Gigabit GMAC interface is available the PHY and support logic is
provided by the CPU Module. The base motherboard provides the J17 GETH connector.

The Multimedia Card Interface (MCI) on the CPU provides support for the two card sockets on the motherboard. The MCI0
peripheral is connected to the full size SD/MMCplus card socket at J7. While the socket supports 8-bit mode, at present in
eCos, only 1- or 4-bit modes are supported. MCI1 is connected to the MicroSD card socket at J6. Both sockets support card
insertion/removal detection, but neither support write protect tab detection. Support for MCI use of these sockets is provided by
definitions in the platform HAL along with the main SAM MCI device driver in CYGPKG_DEVS_MMCSD_ATMEL_SAM_MCI.

The motherboard supports dual CAN bus interfaces CAN0/CAN1, via the RJ12 connectors at J18/J27. Note that the pin as-
signments on these RJ12 sockets differ from some previous Atmel boards, so care needs to be taken to ensure that CAN cables
are wired correctly. Support for the CAN interfaces is provided by the Atmel SAM CAN Driver.

The BMS signal to the CPU controls how the system is booted. The CPU variant bootstrap overview should be read in con-
junction with this documentation. For example, when used with the SAMA5D3x-CM daughterboards the JP9 jumper controls
the CPU bootstrap source:

Table 278.1. JP9 BMS

BMS signal (JP9) Description

JP9 OPEN Embedded (on-chip) RomBOOT first-level bootloader is used. Actual boot source used will depend
on a combination of the CPU Module I/O configuration and the presence of suitable binaries.

JP9 CLOSED Application installed on the EBI_CS0 parallel NOR flash on the CPU Module daughterboard is
executed in-situ.

Note

On the SAMA5D3x-MB the BMS signal is connected to GND through JP9 (shipped “open” by default).

2627

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using
arm-eabi-gcc version 4.7.3e, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2. All development work and testing was
undertaken using SAMA5D3x-MB REV.C hardware.

2628

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Name
Setup — Preparing the SAMA5D3x-MB Board for eCos Development

Overview
In a typical development environment the SAMA5D3x-MB board is programmed via a JTAG/SWD interface. This will either
be by loading smaller applications into the on-chip SRAM, or into suitably initialised DDR2-SDRAM memory. Alternatively
applications may be loaded into bootable memory-mapped devices, e.g. EBI_CS0 NOR flash, or loaded via the on-chip Rom-
BOOT code via a second-level SRAM boot scheme. The following sections initially deal with JTAG/SWD hardware based
debugging approaches.

For debugging applications are loaded and then executed on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE.

The SAMA5D3x-MB motherboard provides a built-in J-Link hardware debug solution, as well as optionally providing the J9
JTAG connector for attaching 3rd-party hardware debuggers (e.g. Ronetix PEEDI).

J-Link
By default the motherboard provides access to both the SAMA5's DBGU (debug UART) and the J-Link adapter through the
J14 USB connector. Output on the DBGU channel is accessible via USB on a connected host as a USB CDC-ACM serial class
device. Additionally, debugging support is accessible through the proprietary J-Link adaptor via the Segger J-Link GDB server.

The motherboard can be modified (by adding and removing resistors) to route DBGU to the J8 USART1 connector. However,
if diagnostics via that connector are desired, it is simpler to re-configure eCos to directly send diagnostics to the J8 port.
This can be achieved by setting the HAL diagnostic console channel (and if using RedBoot, GDB channel) to port 1 (the
default setting of 0 indicates routing to the DBGU). However, if it is necessary after all to modify the hardware and route
DBGU to J8, then support for the SAMA5's USART1 device must be manually disabled by the user as it will no longer
be physically connected (removing the "implements CYGINT_HAL_ARM_CORTEXA_SAMA5D3_USART1" line from
hal_arm_cortexa_sama5d3x_mb.cdl).

JLinkGDBServer

Segger's JLinkGDBServer application provides a network-based GDB server connection to J-Link hardware debuggers, in-
cluding on-board J-Link hardware as used on the SAMA5D3x-MB. The Segger webpage http://www.segger.com/jlink-soft-
ware.html provides a J-Link software package download that incorporates the J-link GDB Server.

Note

When downloading the software you may need to click on a link “I do not have a serial number because I own an
eval board with J-Link on-board. How can I download J-Link software for it?”. This will allow you to download
the J-Link software without prior knowledge of a serial number.

Experience has also shown that a reboot of the PC may be required after installation of the jlink software.

To ensure compatibility between the on-board J-Link firmware and software, agree to any prompt you may en-
counter to update the firmware during the first run of the J-Link software.

A helper script sama5d3xek-ddram.jlink is provided in the misc directory of the sama5d3x_mb package. This should
be specified when executing the JLinkGDBServer application, and implements a set of commands that are executed when
a GDB connection is established to the server. For example, under Linux:

$ JLinkGDBServer -device ATSAMA5D31 -xc $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3x_mb/current/misc/sama5d3xek-ddram.jlink

Under Windows:

C:\eCosPro> "C:\Program Files (x86)\SEGGER\JLink_V612j\JLinkGDBServerCL.exe" -device ATSAMA5D31 -xc $ECOS_REPOSITORY\packages\hal\arm\cortexa\sama5d3\sama5d3x_mb\<vsn>\misc\sama5d3xek-ddram.jlink

Note that in the above examples the -device argument should reference the relevant processor installed on the SAMA5D3x-MB
motherboard. The eCos <vsn> and JLink_Vxxxx version names will change over time; you will need to use the path specific
to the actual versions installed.

2629

http://www.segger.com/jlink-software.html
http://www.segger.com/jlink-software.html

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Other JLinkGDBServer options may be used as required, for example the -silent option reduces the output generated by
the server.

A normal GDB debug session can then be started by connecting to the relevant JLinkGDBServer port (default 2331), for
example:

(gdb) target remote localhost:2331
(gdb) load

A simpler sama5d3xek.jlink script is provided that does NOT initialise the clocks or DDR2-SDRAM, and can be used
if explictly debugging ROM or SRAM startup types where execution of the relevant run-time initialization is desired.

From the GDB command-line when connected to JLinkGDBServer the “monitor regs” command can be used to see all of the
non-VFP register state.

Note

Currently, as-of JLinkGDBServer version V484, there is no support for accessing the Cortex-A5 VFPv4-D16
(VFP) registers when using JLinkGDBServer. e.g. from the GDB “info all-reg” or “info float” commands.

If low-level debugging of floating point operations is required then n alternative debugger should be used. The
PEEDI hardware JTAG debugger provides support for displaying the VFP register state, as does the GDB stubs
present in the software based RedBoot monitor.

OpenOCD

Using the OpenOCD debug server via the J-Link (J14) interface, is not yet possible. For the moment it is recommended to use
the JLinkGDBServer on the host if hardware debug via the J-Link interface is required.

PEEDI
For the Ronetix PEEDI, the sama5d31ek.peedi.cfg file should be used to setup and configure the hardware to an ap-
propriate state to load programs. This includes setting up the PLLs and SDRAM controller. You can also check the Ronetix
website http://download.ronetix.info/peedi/cfg_examples/cortex-a for updated versions.

Note

Use of a PEEDI debugger requires hardware modification of the standard SAMA5D3x-MB board, which will
provide a 20-pin ARM JTAG connector at J9. The required modifications are detailed in the board's user manual.

The sama5d31ek.peedi.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [PLATFORM_CortexA8] section (NOTE: The PEEDI firmware
identifies not just A8 CPUs with the CortexA8 tag). Edit this file if you wish to use hardware break points, and remember
to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the sama5d31ek.peed-
i.cfg file, and halts the target. This behaviour is repeated with the PEEDI reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal. Depending on how the platform jumper state is configured this could run either a second-level bootstrap,
or a ROM RedBoot resident in flash.

By default the arm-eabi-gdb connection to the PEEDI will default to displaying the obsolete FPA registers. To enable access
to the VFP registers a suitable target description file should be configured prior to connecting to the target system. This can
either be done manually every time a GDB session is started, or more sensibly embedded in the users .gdbinit used to
configure GDB.

2630

http://download.ronetix.info/peedi/cfg_examples/cortex-a

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

The sama5d3x-tdesc.xml file can be used to define the target description using the GDB set tdesc filename <file>
command. For example the .gdbinit could contain something similar to:

set tdesc filename $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3x_mb/current/misc/sama5d3x-tdesc.xml

So that it has the relevent target description available prior to the remote debug connection being established. This will allow
access to the VFP registers via the PEEDI, for example via the GDB info all-reg command.

Consult the PEEDI documentation for information on other features.

2631

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The SAMA5D3x-MB motherboard platform HAL package is loaded automatically when eCos is configured for a suitable
target, e.g. atsama5d31_ek. It should never be necessary to load this package explicitly. Unloading the package should
only happen as a side effect of switching target hardware.

2632

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Name
HAL Port — Implementation Details

Overview
The platform consists of the pairing of the MotherBoard and a CPU Module. The only motherboard specific support is the
EMAC PHY. The majority of the port is covered by the CPU Module package.

The CPU Module startup documentation provides an overview of the system startup.

2633

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Name
BootUp Integration — Detail

BootUp

BootUp is a lightweight BootROM package that can support features such as in-field upgrades and in the case of the SAMA5
in particular, a secure boot capability.

The BootUp support for the SAMA5D3 targets is primarily implemented in the sama5d3_mb_misc.c file. The functions
are only included when the CYGPKG_BOOTUP package is being used to construct the actual BootUp loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once an implementation has been defined the binary
will only need to be installed onto a device once. Its only purpose is to allow the startup of the main ROMRAM application.

This platform specific documentation should be read in conjunction with the generic BootUp package documentation.

The BootUp package provides a basic but fully functional implementation for the platform. It is envisaged that the developer
will customize and further extend the platform side support to meet their specific application identification and update require-
ments.

The BootUp binary can be installed on any SAMA5D3x bootable media, and is not restricted to being placed into SPI Dataflash.

Note

The NOR flash mapped to EBI_CS#0 is NOT an acceptable boot source for the on-chip first-level RomBOOT code.

On execution BootUp will copy the ROMRAM configured final application from its Non-Volatile-Memory (NVM) location,
which currently can either be the SPI Dataflash (default) or the memory-mapped NOR flash. The configuration option CYGIM-
P_BOOTUP_SAMA5D3_SOURCE selects whether the second-level BootUp code will look for the final application image in
SPI or NOR.

Warning

When selecting SPI then the relevant CPU Module hardware configuration to allow the on-chip Rom-
BOOT to boot from SPI should be used. This requires that jumper JP1 on the Embest/Flextronics “SA-
MA5D3x-CM_rev.E” be fitted, and for the Ronetix “SAMA5D3x-CM v2.0” daughterboard jumper J2 should
be fitted.

The following diagrams give an overview of the first-level (on-chip RomBOOT) and second-level (SRAM) boot sequence:

2634

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Figure 278.1. On-chip RomBOOT executes

Figure 278.2. On-chip RomBOOT copies second-level boot code from NVM to on-chip SRAM

2635

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Figure 278.3. SRAM loaded second-level boot code is executed

Figure 278.4. Final application ROMRAM is located in SPI or NOR NVM

2636

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Figure 278.5. Second-level boot copies ROMRAM from NVM to DDR2-SDRAM

Figure 278.6. Application is started

Encrypted Application

The BootUp SRAM application can be configured with a built-in AES-256 key which can be used to decrypt the final ROMRAM
application image (as stored on the NVM) prior to execution from its final RAM location. For ease of use during development,
the BootUp binary can load both encrypted and plaintext (unencrypted) application images. This allows testing of the boot
sequence prior to finalising the application key, or the final application build encryption process.

Note

This feature is really only relevant (and useful) as part of a secure boot process. When secure boot is NOT being
used then by itself encrypting the final ROMRAM application provides no security since the SRAM second-level
boot loader can be examined to extract the AES-256 key used to decrypt the application. Using the BootUp
decryption support only makes sense when it is part of a complete reset->application security implementation.

As with the normal SRAM based second-level bootstrap world, the on-chip RomBOOT code loads and executes the second-level
boot code from any suitable boot source. When BootUp is used as the second-level bootstrap it is configured to look at either
the SPI or NOR memories for the encrypted final ROMRAM application image.

2637

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Figure 278.7. Second-level boot code built with AES-256 key

Figure 278.8. Stored key is used to decrypt NVM application into RAM

2638

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

Figure 278.9. Decrypted application is started

Encrypting The “Final” Application

An example host tool to encrypt the final ROMRAM application using a AES-256 key is provided. A pre-built executable
is provided, and available from the installed tools path as for the other build related tools. The source for the tool is avail-
able in the $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3x_mb/current/host/
claes.c file. If required, a Makefile (for GNU make) is provided in the host directory to allow the command to be
built locally.

The AES-256 key used to encrypt the application binary MUST be the same key that is built-into the second-level boot loader
used to copy the application from its NVM location into RAM for execution.

An example key file is provided in $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/
sama5d3x_mb/current/misc/example256.key, but as always for a production environment the developer is re-
sponsible for managing the actual key values used, and for ensuring that embedded keys are not distributed publicly.

Assuming that the application binary is available in the file finalapp.bin, the following example shows how the claes
tool can be used to create the encrypted image.

$ claes -k example256.key finalapp.bin -o encrypted.bin

The encrypted image encrypted.bin would then be stored at the relevant NVM offset using whatever production method-
ology is in use. If required, for example, the default SAMA5D3 RedBoot application provides the necessary network and flash
operations to allow it to be used to initialise the NVM contents from supplied binary images.

The claes command provides a brief description of its options, which can be viewed by requesting --help (or the shorthand
-h) on the command-line:

$ claes --help

Atmel Secure Boot

Details of the Atmel Secure Boot process are beyond the scope of this document, since a customer specific Non-Disclo-
sure-Agreement (NDA) with Atmel needs to be in place. The reader is referred to the Atmel website www.atmel.com with
regards to the “Secure Boot on SAMAD3 Series” (Atmel literature number 11165A) documentation.

Building BootUp

Building a BootUp loader image is most conveniently done at the command line. The steps needed to rebuild the SRAM version
of BootUp are:

2639

http://www.atmel.com

Atmel SAMA5D3x-MB (MotherBoard) Platform HAL

$ mkdir bootup_SRAM
$ cd bootup_SRAM
$ ecosconfig new sama5d31_ek minimal
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3_mb/current/misc/bootup_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The resulting install/bin/bootup.bin binary can then be programmed into a suitable non-volatile memory as sup-
ported by the SAMA5D3 on-chip RomBOOT.

The example bootup_SRAM.ecm is configured to expect to find the ROMRAM application stored in the SPI Dataflash at
offset CYGNUM_BOOTUP_SAMA5D3_SOURCE_OFFSET. It also is configured with application encryption support (CYG-
FUN_BOOTUP_SAMA5D3_SOURCE_SECURE option) to allow decryption of the SPI Dataflash stored application to its final
RAM destination.

Note

The application image to be loaded does not need to be encrypted. The BootUp code checks the embedded ap-
plication binary identity markers to check for a plaintext (unencrypted) image to be started, prior to attempting to
decrypt the data and check for a valid encrypted image at offset CYGNUM_BOOTUP_SAMA5D3_SOURCE_OF-
FSET in the source NVM.

2640

Chapter 279. Atmel SAMA5D3x-CM (CPU
Module) Platform HAL

2641

Atmel SAMA5D3x-CM (CPU Module) Platform HAL

Name
CYGPKG_HAL_ARM_CORTEXA_SAMA5D3X_CM — eCos Support for the SAMA5D3x-CM CPU Module

Description
There are currently two supported variants of CPU Module (CM). The Embest/Flextronics “SAMA5D3x-CM_rev.E” and the
Ronetix “SAMA5D3x-CM v2.0” daughterboards. The boards can be identified by the silk screened names on the respective
PCBs.

The currently supported CM variants are identical in functionality, with the exception of the type of NOR flash installed on
EBI_CS0. However, the eCos port is configured to allow a single binary to execute irrespective of the installed CPU Module.

The common CM features include 512MiB of DDR2-SDRAM, 16MiB NOR flash, routing for the 10/100 EMAC and
10/100/1000 GMAC, and blue and red LEDs. Some common CM features are not yet supported by the eCos port, e.g. NAND.

For typical eCos development it is expected that hardware debugging will be used, as detailed in the SAMA5D3x-MB Moth-
erBoard documentation.

However, RedBoot can be used to provide development support. RedBoot provides gdb stub functionality. so it is then possible
to download and debug stand-alone and eCos applications via the gdb debugger. This can happen over either a serial line or
over Ethernet. The RedBoot image can be a ROM application programmed into the parallel NOR flash, or a ROMRAM application
loaded via the second-level bootloader. See RedBoot Location for an overview.

The bootstrap options for the SAMA5D3x parts are documented in the CPU variant documentation. How the CPU boots
depends on the BMS signal (supplied by the motherboard via the CPU Module main connector pin 184). The CM has a Pull-
Up on the CPU BMS pin so will default to BMS_BIT=0.

Note

The Embest/Flextronics CM is pre-installed with example application software. The software execute depends
on the setting of CM jumper JP1. When JP1 is open then the NAND based AT91Bootstrap second-level
boot loader is loaded into SRAM and used to start a NAND stored application world. When JP1 is closed then
a system “test” application is loaded into SRAM from the SPI Dataflash and executed.

Warning

When JP1 is closed, if the example Atmel code is present and the NOR test (single test 05) is executed then it
will erase the first 384K of the NOR flash (0x10000000..0x1005FFFF). This could erase any ROM application
(e.g. RedBoot) that the user may have installed into the parallel NOR flash.

2642

Atmel SAMA5D3x-CM (CPU Module) Platform HAL

Name
HAL Port — Implementation Details

Overview
The SAMA5D3x-CM daughterboard platform HAL package is loaded automatically when eCos is configured for a suitable
target, e.g. atsama5d31_ek. It should never be necessary to load this package explicitly. Unloading the package should
only happen as a side effect of switching target hardware.

Startup
In the release view of the world (depending on the state of the BMS signal) the SAMA5D3x-CM daughterboard either boots
into the BootUp “application loader” from a suitable on-chip RomBOOT supported memory, or alternatively from the EBI-CS0
parallel NOR flash based ROM startup type application.

When using the second-stage BootUp loader the main (ROMRAM startup type) application is then loaded from the configured
non-volatile storage (e.g. parallel NOR flash) into the DDR2-SDRAM for execution.

The CPU variant bootstrap overview should be read in conjunction with this documentation.

Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services, and so will not attempt to re-initialize the
underlying peripheral.

For ROM, ROMRAM and SRAM startups the HAL will perform additional initialization, programming the various internal registers
including the PLL, peripheral clocks and GPIO pins as required. The details of the early platform hardware startup may be
found in the plf_hardware_init() function within the source file src/sama5d3x_mb_misc.c.

Memory Map
The SAMA5D3X_CM HAL package provides the memory layout information needed to generate the linker script. The key
memory locations are as follows:

External RAM This is located at address 0x20000000 of the memory space, and is 512MiB long. For ROM,
ROMRAM and SRAM applications the initial 32KiB is set aside, primarily for the first level MMU
table and (depending on the startup type) the eCos VSR table. The rest of the RAM is then
available for application use. For RAM startup applications the first 1MiB of RAM is reserved
for the “debug” monitor (e.g. RedBoot), and the top CYGNUM_HAL_COMMON_INTERRUP-
TS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder is then available
for the RAM application.

Internal RAM This is located at address 0x00300000 of the memory space, and is 128KiB in size.

NOR FLASH This is located at address 0x10000000 of the memory space and MAY be mapped to 0x00000000
at reset if the SAMA5D3 is so configured. This region is 16MiB in size. ROM applications are
by default configured to run from this memory. When RedBoot is being used then this memory
is managed by RedBoot's FIS system, otherwise it is the applications responsibility to manage
the NOR flash space.

On-chip Peripherals The I/O is primarily accessible from location 0xF0000000 upwards, though some I/O is mapped
into the initial 10MiB of the address space. Descriptions of the contents can be found in the
Atmel SAMA5D3 Series Datasheet.

Linker Scripts
The platform linker script defines the following symbol:

2643

Atmel SAMA5D3x-CM (CPU Module) Platform HAL

hal_mmu_page_directory_base This symbol defines where the initialization code will place the level-1 table when ini-
tialising the MMU.

Diagnostic LEDs
Two LEDs are fitted onto the CPU Module for diagnostic purposes, one red and one blue.

The platform HAL header file at <cyg/hal/sama5d3x_cm_io.h> defines the following convenience function to allow
the LEDs to be controlled:

extern void hal_sama5d3x_cm_led(cyg_uint32 bitmask);

The low-order 2-bits of the argument bitmask correspond to each of the 2 LEDs. The red LED is logically mapped to bit 0,
with the blue LED mapped to bit 1.

Note

The blue LED on GPIO line PE25 is also used as the 1-wire bus, so accesses to 1-wire devices will cause that
LED to flicker.

SPI Dataflash
The variant HAL SPI support provides the necessary underlying SPI bus definition. The CM platform layer defines the
spi_dataflash_dev0 device instance describing the SPI Dataflash hardware.

The SPI Dataflash media can only be accessed with the Flash API using the flash device m25pxx_flash_device. For the
purposes of this API a placeholder address range has been allocated as if the Flash is present at this address. The base of this
address range is 0xE0000000. This reserved range is not real memory and any attempt to access it directly by the processor
other than via the Flash API will result in a memory address exception.

A test application at25df321 is provided within the tests subdirectory of the CYGPKG_HAL_ARM_CORTEXA_SA-
MA5D3X_CM package. This test communicates with the SPI Dataflash on the CM to perform read and write operations using
the flash API.

Ethernet Driver
Depending on the processor specific SAMA5D3x-CM module used, either or both EMAC and GMAC Ethernet devices are
available to use. The CYGPKG_DEVS_ETH_ARM_AT91 package supports both of these devices. This driver is not active until
the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

Both the standard (BSD and lwIP compatible) and direct (lwIP only) device drivers are supported. The standard driver is enabled
by default; the direct driver can be enabled by setting CYGOPT_IO_ETH_DRIVERS_LWIP_DRIVER_DIRECT option. At
the time of writing, the direct driver only supports the EMAC (ETH1), and not the GMAC (ETH0).

RedBoot Installation

Note

Unless you explicitly need network based debugging, or are interested in other aspects of the RedBoot function-
ality, it is generally the case that development and debugging using a direct hardware JTAG/SWD approach is
generally superior and obviates the need to install RedBoot on the target.

RedBoot, by default, is configured to use the EBI_CS0 NOR flash as storage for its FIS and config information, regardless of
whether it is executing from RAM or in place as a ROM application.

Building RedBoot

RedBoot will normally be a ROMRAM startup, since it will be loaded via the second-level bootloader, or loaded directly using
a hardware JTAG debugger, into the DDR2-SDRAM memory for execution.

2644

Atmel SAMA5D3x-CM (CPU Module) Platform HAL

Note

Pre-built RedBoot binary images are supplied with the eCos release in the loaders sub-directory.

The following example illustrates the command-line steps needed to configure and build a ROMRAM RedBoot:

$ mkdir redboot_ROMRAM
$ cd redboot_ROMRAM
$ ecosconfig new atsama5d31_ek redboot
$ ecosconfig import $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3x_mb/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

However, if required, a ROM based RedBoot can be executed directly from the EBI_CS0 NOR flash when JP9 on the SA-
MA5D3x-MB motherboard is closed.

$ mkdir redboot_ROM
$ cd redboot_ROM
$ ecosconfig new atsama5d31_ek redboot
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3x_mb/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The RedBoot Location section of the generic SAMA5D3 variant documentation provides a graphical representation of both
these ROMRAM and ROM models.

Programming RedBoot

Some hardware debuggers will allow direct programming of the EBI_CS0 NOR flash, but for those that do not provide such
support a JTAG loaded ROMRAM executable can be used to load and write the ROM image to its NOR flash destination. For
example, if the ROMRAM RedBoot as built above is loaded using a hardware debugger and executed, then the following shows
that RAM based RedBoot being used to load a 0x16020 byte long redboot.bin image from a TFTP server and written
to the RedBoot FIS section in the NOR.

RedBoot> load -r -h 192.168.7.39 -b 0x30000000 redboot.bin
Using default protocol (TFTP)
Raw file loaded 0x30000000-0x30016020, assumed entry at 0x30000000
RedBoot> fis unlock RedBoot
... Unlocking from 0x10000000-0x100fffff:
RedBoot> fis write -f 0x10000000 -b 0x30000000 -l 0x16020
* CAUTION * about to program FLASH
 at 0x10000000..0x1001ffff from 0x30000000 - continue (y/n)? y
... Erase from 0x10000000-0x1001ffff: .
... Program from 0x30000000-0x30020000 to 0x10000000: .
RedBoot> mcmp -s 0x30000000 -d 0x10000000 -l 0x16020

With the binary image written to the start of the NOR flash, and the motherboard BMS signal suitably configured, then after
a power-on reset the board will boot using the ROM RedBoot application. Such a RedBoot world allows for GDB debugging
of RAM startup applications loaded via the J8 USART1 serial connection, the 10/100 (EMAC) Ethernet connection, or the
10/10/1000 (GMAC) Ethernet connection. Selection of which Ethernet interface to use is set with the RedBoot fconfig com-
mand and its Default network device: entry. Entering at91_eth0 selects the Gigabit Ethernet (J17/GETH) inter-
face, whereas at91_eth1 selects the 10/100 Ethernet (J24/ETH1) interface.

This method of using a RAM based RedBoot, and loading a binary into RAM (or SRAM) before writing to the NOR flash, can
be used for any ROM application that needs to be executed from startup with a BMS closed configured platform. Alternatively,
Atmel provides tools to work in conjunction with the on-chip SAM-BA monitor that can also be used to program the various
CPU Module memories.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for ROMRAM startup, where both code and data are using
the external DDR2-SDRAM.

2645

Atmel SAMA5D3x-CM (CPU Module) Platform HAL

Example 279.1. sama5d3x_cm Real-time characterization

 Startup, main thrd : stack used 444 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 88 size 1280

 eCos Kernel Timings
 Notes: all times are in microseconds (.000001) unless otherwise stated

 Reading the hardware clock takes 1 'ticks' overhead
 ... this value will be factored out of all other measurements
 Clock interrupt took 2.80 microseconds (23 raw clock ticks)

 Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 1.67 1.09 2.67 0.31 53% 28% Create thread
 0.17 0.12 0.85 0.07 65% 65% Yield thread [all suspended]
 0.20 0.12 1.33 0.10 85% 59% Suspend [suspended] thread
 0.16 0.12 0.61 0.06 71% 71% Resume thread
 0.26 0.12 0.97 0.05 82% 9% Set priority
 0.01 0.00 0.24 0.02 92% 92% Get priority
 0.62 0.48 3.88 0.15 92% 84% Kill [suspended] thread
 0.17 0.12 0.85 0.07 65% 65% Yield [no other] thread
 0.31 0.24 1.09 0.08 90% 64% Resume [suspended low prio] thread
 0.15 0.12 0.36 0.04 78% 78% Resume [runnable low prio] thread
 0.25 0.12 1.09 0.03 85% 9% Suspend [runnable] thread
 0.18 0.12 1.09 0.07 98% 65% Yield [only low prio] thread
 0.16 0.12 0.61 0.05 78% 78% Suspend [runnable->not runnable]
 0.55 0.48 1.94 0.09 89% 73% Kill [runnable] thread
 0.48 0.36 2.30 0.08 59% 31% Destroy [dead] thread
 0.90 0.73 1.94 0.09 84% 7% Destroy [runnable] thread
 1.30 1.09 3.03 0.19 51% 62% Resume [high priority] thread
 0.42 0.36 1.21 0.06 61% 61% Thread switch

 0.02 0.00 0.24 0.03 86% 86% Scheduler lock
 0.12 0.00 0.24 0.01 92% 5% Scheduler unlock [0 threads]
 0.12 0.00 0.24 0.01 92% 5% Scheduler unlock [1 suspended]
 0.12 0.00 0.36 0.02 88% 6% Scheduler unlock [many suspended]
 0.12 0.00 0.61 0.02 89% 5% Scheduler unlock [many low prio]

 0.08 0.00 0.73 0.09 87% 59% Init mutex
 0.22 0.12 1.21 0.09 46% 46% Lock [unlocked] mutex
 0.27 0.12 1.94 0.14 50% 90% Unlock [locked] mutex
 0.20 0.12 1.09 0.10 90% 62% Trylock [unlocked] mutex
 0.16 0.12 0.61 0.06 78% 78% Trylock [locked] mutex
 0.03 0.00 0.48 0.05 84% 84% Destroy mutex
 1.23 1.21 1.82 0.04 96% 96% Unlock/Lock mutex

 0.19 0.00 0.85 0.09 87% 6% Create mbox
 0.01 0.00 0.36 0.02 96% 96% Peek [empty] mbox
 0.30 0.24 1.45 0.11 90% 90% Put [first] mbox
 0.00 0.00 0.00 0.00 100% 100% Peek [1 msg] mbox
 0.28 0.24 0.61 0.06 81% 81% Put [second] mbox
 0.00 0.00 0.12 0.01 96% 96% Peek [2 msgs] mbox
 0.25 0.12 1.33 0.07 78% 18% Get [first] mbox
 0.25 0.12 0.73 0.04 81% 12% Get [second] mbox
 0.28 0.12 1.09 0.09 78% 12% Tryput [first] mbox
 0.21 0.12 0.61 0.07 59% 37% Peek item [non-empty] mbox

2646

Atmel SAMA5D3x-CM (CPU Module) Platform HAL

 0.23 0.12 1.09 0.07 62% 34% Tryget [non-empty] mbox
 0.20 0.12 0.48 0.07 46% 46% Peek item [empty] mbox
 0.19 0.12 0.61 0.07 96% 50% Tryget [empty] mbox
 0.02 0.00 0.12 0.03 87% 87% Waiting to get mbox
 0.01 0.00 0.12 0.01 93% 93% Waiting to put mbox
 0.05 0.00 0.48 0.07 68% 68% Delete mbox
 0.89 0.73 1.94 0.09 90% 6% Put/Get mbox

 0.03 0.00 0.24 0.05 75% 75% Init semaphore
 0.15 0.12 0.48 0.05 81% 81% Post [0] semaphore
 0.19 0.12 0.36 0.06 50% 46% Wait [1] semaphore
 0.15 0.12 0.61 0.05 90% 90% Trywait [0] semaphore
 0.13 0.12 0.24 0.01 93% 93% Trywait [1] semaphore
 0.03 0.00 0.36 0.05 81% 81% Peek semaphore
 0.01 0.00 0.36 0.02 96% 96% Destroy semaphore
 0.81 0.73 1.94 0.10 93% 62% Post/Wait semaphore

 0.15 0.00 0.61 0.11 62% 28% Create counter
 0.05 0.00 0.36 0.07 68% 68% Get counter value
 0.01 0.00 0.12 0.01 93% 93% Set counter value
 0.20 0.12 0.48 0.06 56% 40% Tick counter
 0.02 0.00 0.24 0.03 87% 87% Delete counter

 0.02 0.00 0.36 0.03 90% 90% Init flag
 0.17 0.12 0.97 0.08 96% 75% Destroy flag
 0.14 0.12 0.73 0.04 93% 93% Mask bits in flag
 0.20 0.12 1.09 0.09 93% 62% Set bits in flag [no waiters]
 0.32 0.24 2.06 0.13 93% 93% Wait for flag [AND]
 0.30 0.24 1.21 0.09 96% 75% Wait for flag [OR]
 0.26 0.12 1.09 0.06 81% 12% Wait for flag [AND/CLR]
 0.25 0.12 0.97 0.04 84% 12% Wait for flag [OR/CLR]
 0.00 0.00 0.12 0.01 96% 96% Peek on flag

 0.20 0.00 0.85 0.11 78% 6% Create alarm
 0.26 0.12 1.09 0.06 78% 12% Initialize alarm
 0.14 0.12 0.36 0.03 90% 90% Disable alarm
 0.27 0.12 1.21 0.07 84% 6% Enable alarm
 0.16 0.12 0.36 0.05 71% 71% Delete alarm
 0.24 0.12 0.61 0.03 81% 12% Tick counter [1 alarm]
 1.00 0.97 1.21 0.04 81% 81% Tick counter [many alarms]
 0.37 0.24 1.09 0.04 84% 12% Tick & fire counter [1 alarm]
 5.82 5.70 6.55 0.05 75% 18% Tick & fire counters [>1 together]
 1.17 1.09 1.82 0.09 93% 56% Tick & fire counters [>1 separately]
 2.26 2.18 4.73 0.08 49% 49% Alarm latency [0 threads]
 2.57 2.30 4.24 0.11 67% 10% Alarm latency [2 threads]
 3.08 2.67 4.12 0.21 65% 20% Alarm latency [many threads]
 2.98 2.91 4.97 0.08 97% 60% Alarm -> thread resume latency

 1.07 0.97 2.91 0.00 Clock/interrupt latency

 0.67 0.48 1.70 0.00 Clock DSR latency

 239 172 272 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 988 size 1792
 All done : Interrupt stack used 156 size 4096
 All done : Idlethread stack used 232 size 1280

 Timing complete - 29820 ms total

 PASS:<Basic timing OK>
 EXIT:<done>

2647

Chapter 280. Atmel SAMA5D3 Xplained
Platform HAL

2648

Atmel SAMA5D3 Xplained Platform HAL

Name
CYGPKG_HAL_ARM_CORTEXA_SAMA5D3XPLD — eCos Support for the SAMA5D3 Xplained platform

Description
The SAMA5D3-XPLD board consists of an ATSAMA5D36 Cortex-A5 microcontroller, 128kiB of SRAM, 256MiB of RAM
and 256MiB of NAND flash. It has connectors for Ethernet, LCD, USB and other expansion boards as well as an SD card slot.

For typical eCos development it is expected that ROMRAM startup type applications will be downloaded and debugged via a
hardware debugger (JTAG) attached to connector J24. Use of a hardware debugging interface avoids the requirement for a
debug monitor application to be present on the platform. However, if required, a RedBoot image can be programmed into the
onboard NAND flash to provide an interactive bootloader environment. When using a GDB stubs monitor it is then possible to
download and debug eCos RAM startup applications via the gdb debugger over USB (using the TTL debug channel) or Ethernet.

The bootstrap options for the SAMA5D3x parts are documented in the CPU variant documentation. How the CPU boots
depends on the BMS signal. The SAMA5D3 Xplained has a Pull-Up on the CPU BMS pin so will default to BMS_BIT=0,
resulting in the RomBOOT, on-chip, first-level boot loader being executed.

Note

The Atmel SAMA5D3 Xplained is pre-installed with example application software. The board is supplied with
jumper JP5 (“NAND CS”) closed, which causes the board to boot using its factory-programmed NAND-based
boot loader and then to the sample application image. It is necessary to overwrite these images in order to place
RedBoot or any other application on the NAND flash.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3e, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2.

2649

Atmel SAMA5D3 Xplained Platform HAL

Name
Setup — Preparing the SAMA5D3-XPLD Board for eCos Development

Overview

In a typical development environment, a direct hardware JTAG connection is used to load and execute the eCos application. For
hardware debugging, eCos applications would normally be configured for ROMRAM startup. The same application binary can
be executed via a hardware debugger environment, or programmed into the onboard NAND flash for loading via a second-level
boot loader.

Alternatively, the SAMA5D3-XPLD board can boot from NAND flash into a ROMRAM RedBoot. eCos applications are then
configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.

Note

Unless you explicitly need network based debugging, are interested in other aspects of the RedBoot functionality,
or you lack the requisite hardware support, it is generally the case that development and debugging using a direct
hardware JTAG/SWD approach is generally superior and obviates the need to install RedBoot on the target.

Atmel Secure Boot code and the normal RomBOOT code will disable JTAG over certain startups.

For JTAG debugging the RomBOOT code may need to be started with NO bootable source (e.g. JP5 NAND CS
open and no bootable SD card) to enable JTAG access. After reset, a CDC-ACM tty connection (to the on-chip
ROM provided SAM-BA terminal) via the J6 USB-A interface can be used to enter a # key to enable JTAG.

Bootstrap process

The typical bootstrap process for this board has several steps:

1. RomBOOT (on-chip, cannot be modified).

2. eCosPro BootUp or AT91Bootstrap

3. Your choice of ROMRAM eCos application (such as RedBoot).

For more information about the bootstrap process, refer to the CPU variant bootstrap overview.

RedBoot Installation

The following RedBoot configurations are supported:

Configuration Description Use File

ROMRAM RedBoot running from ex-
ternal RAM. Loaded from
NAND by second-level boot
loader, or directly via JTAG
hardware debugger.

redboot_ROMRAM.ecm redboot_ROMRAM.bin

Note

The DBGU diagnostic (serial) debug channel is only exposed as TTL on J23 pins. A RS232 TTL to USB adapter
can be used to allow serial diagnostic output. The serial terminal connection is not required for normal Ethernet
based GDB debugging, but for initial board bring-up where no valid flash configuration is available it can be
easier to see what network address has been supplied to the board.

2650

Atmel SAMA5D3 Xplained Platform HAL

If the standard serial diagnostic/terminal is not available, then it is worth considering configuring the
local DHCPD to present a known (fixed) IP address. The current fixed RedBoot MAC address is
12:34:56:78:9a:bc. RedBoot defaults to using port 9000.

Programming RedBoot

There are several ways to program the target flash:

1. Some hardware debuggers will allow direct programming of the target NAND flash.

2. If a hardware debugger is available but does not support NAND flash, it is possible to load and run a ROMRAM executable
that does know how to write the image to its flash destination.

3. Atmel provides tools to work in conjunction with the on-chip SAM-BA monitor that can also be used to program the various
memories. Detailed instructions for this process are provided in the Installing binaries with SAM-BA section.

Note

RedBoot is configured by default with both network interfaces active, and waits for both of them to come up
before allowing user interaction. This may take up to a minute if either are not connected to a network. It is
recommended to connect both interfaces.

Initializing RedBoot Flash Configuration

When RedBoot is loaded into the on-chip flash, it maintains a number of persistent settings in the configuration store on the
NAND flash. The flash configuration area needs to be initialized with the following commands.

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address:
DNS domain name:
DNS server IP address:
Network hardware address [MAC] for eth0: 0x0E:0x00:0x00:0xEA:0x18:0xF0
Network hardware address [MAC] for eth1: 0x0E:0x00:0x00:0xEA:0x18:0xF0
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: at91_eth1
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x00000000-0x00000fff: .
... Program from 0x2fdff000-0x2fe00000 to 0x00000000: .
RedBoot>

Rebuilding RedBoot

Note

Pre-built RedBoot binary images are supplied with the eCos release in the loaders sub-directory.

RedBoot will normally be a ROMRAM startup, since it will be loaded via the second-level bootloader, or loaded directly using
a hardware JTAG debugger, into the DDR2-SDRAM memory for execution.

The following example illustrates the command-line steps needed to configure and build a ROMRAM RedBoot:

$ mkdir redboot_ROMRAM
$ cd redboot_ROMRAM
$ ecosconfig new sama5d3xpld redboot
$ ecosconfig import $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3xpld/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The RedBoot Location section of the generic SAMA5D3 variant documentation provides a graphical representation of the
ROMRAM model.

2651

Atmel SAMA5D3 Xplained Platform HAL

Building BootUp

Full details are provided in the BootUp Integration section.

Building AT91Bootstrap

As an alternative to the eCosPro BootUp second-level loader, the Atmel AT91Bootstrap second-level loader can be used to
load a ROMRAM startup type application from the NVM boot memory into RAM for execution.

A version of the AT91Bootstrap source, modified by eCosCentric, is available in the directory $ECOS_REPOSITORY/pack-
ages/hal/arm/cortexa/sama5d3/var/current/misc/at91bootstrap. The original (as of writing) is v3.6.2
obtained by:

git clone https://github.com/linux4sam/at91bootstrap

The modifications provide example configurations to allow RedBoot to be loaded by the SAMA5D3X-EK and SA-
MA5D3 Xplained platforms, and to allow compilation using the eCosCentric cross-compilation tools (e.g. 4.7.3e release).

The AT91Bootstrap binary can be built from the provided source with the following steps:

cd at91bootstrap
make mrproper
make sama5d3_xplainednf_redboot_defconfig
export CROSS_COMPILE=arm-eabi-
make

The result of this process is a second-level boot loader binary binaries/sama5d3_xplained-nandflash-
boot-uboot-3.6.2.bin that can be installed into NAND using SAM-BA as described below.

Installing binaries with SAM-BA

A version of the Atmel SAM-BA tool which supports the at91sama5d3x-xplained target (e.g. v2-12 patch level 7) can
be used to install your choice of BootUp, AT91Bootstrap, RedBoot or any other ROMRAM eCos application.

1. Download and install the SAM-BA tool, plus any required patches, from http://www.atmel.com/tools/atmelsam-bain-sys-
temprogrammer.aspx

2. Disconnect JP5 (NAND CS) and ensure no bootable SD card is installed

3. Connect host to J6 USB-A

4. Launch the SAM-BA application

• Select the relevant COM or /dev/ttyACM port

• Select board type “at91sama5d3x-xplained”

• Hit “Connect”

Figure 280.1. SAM-BA Board Connection

2652

http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx
http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx

Atmel SAMA5D3 Xplained Platform HAL

5. Re-connect (close) JP5 NAND CS

6. Select DDRAM tab

• In “Scripts” select Enable DDRAM and hit Execute

Figure 280.2. Enabling DDRAM

7. Select NandFlash tab

• In “Scripts” select Enable NandFlash and hit Execute

• In “Scripts” select Enable OS PMECC parameters and hit Execute

2653

Atmel SAMA5D3 Xplained Platform HAL

Figure 280.3. Enabling NAND

8. Program your choice of second stage bootstrap (BootUp or AT91Bootstrap):

• Still within the NandFlash tab, in “Scripts” select Send Boot File and hit Execute

• A file selection dialog opens. Find and select the relevant binary (e.g. bootup.bin) and hit Open.

2654

Atmel SAMA5D3 Xplained Platform HAL

Figure 280.4. Programming the Second-Stage bootstrap

9. Program RedBoot (or other application)

•

Still within the NandFlash tab, in the “Download/Upload File” area, select the file selection icon beside the
Send File Name: field.

• A file selection dialog opens. Find and select the binary (e.g. redboot.bin).

Tip

The objcopy tool may be used to convert a built ROMRAM eCos application to the binary format required
for programming.

arm-eabi-objcopy -O binary application.elf application.bin

• In the “Address” field change the address to 0x40000.

Note

If you are using BootUp with a non-default setting of CYGNUM_BOOTUP_SAMA5D3_SOURCE_OFFSET,
use that value instead of 0x40000.

• Hit the Send File button.

2655

Atmel SAMA5D3 Xplained Platform HAL

Figure 280.5. Programming the Application

10.The SAM-BA application can now be quit

11.Reset the board. The new images will be booted.

Note

With RedBoot, the board will typically take several seconds to become ready as it waits for the network
interfaces to initialise. (This may take up to a minute if either or both network interfaces are not connected
to a network.) During this time RedBoot will not respond, either to telnet on the configured gdb port (usually
9000), or to input on the TTL debug channel. However the TTL debug channel will emit diagnostic output
along these lines:

RomBOOT
+NAND: onboard: 1 partition configured
NAND: Read partition geometry from config store
NAND: onboard: 2 partitions configured
Ethernet eth1: MAC address 0e:00:00:ea:18:f0
IP: 172.20.45.204/255.255.255.0, Gateway: 172.20.45.1
Default server: 172.20.45.29
DNS server IP: 172.20.45.29, DNS domain name: null

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 11:43:08, Jan 16 2015

2656

Atmel SAMA5D3 Xplained Platform HAL

Name
Configuration — Platform-specific configuration options

Overview
The SAMA5D3 Xplained platform HAL package is loaded automatically when eCos is configured for a suitable target, e.g.
atsama5d3xpld. It should never be necessary to load this package explicitly. Unloading the package should only happen
as a side effect of switching target hardware.

Startup
The SAMA5D3-XPLD board platform HAL package supports three separate startup types, as documented in the variant Startup
documentation. The ROM startup type is not supported on this platform since the BMS signal configuration does not allow for
EBI_CS#0 memory-mapped execution support.

Note

Normally the board has BootUp or AT91Bootstrap programmed into internal NAND flash within the first two
non-factory-bad blocks. When using RedBoot as the loaded application then a ROMRAM build of RedBoot is
programmed into the next four non-factory-bad blocks. On boot, RedBoot is copied to location 0x20008000 in
external RAM. arm-eabi-gdb is then used to load a RAM startup application into memory from 0x20100000 and
debug it. For such RAM applications it is assumed that the hardware has already been initialized by RedBoot. By
default the application will use the eCos virtual vectors mechanism to obtain services from RedBoot, including
diagnostic output.

Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration op-
tion CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB stub ROM (or
RedBoot).

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

UART Serial Driver
The SAMA5D3-XPLD board provides a two-pin UART within the on-chip debug unit. This UART is configured as virtual
vector communications channel 0 and is typically claimed by RedBoot for use as a console and/or GDB communication.

If this UART is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB commu-
nication using the HAL I/O support.

The UART manifests on the board as the TTL-level TXD and RXD pins on J23. Hardware flow control (RTS/CTS) is not
supported.

SPI Driver
An SPI bus driver is available for the SAMA5D3 in the package "Atmel AT91 SPI device driver" (CYGPKG_DEVS_SPI_AR-
M_AT91).

There are no on-board SPI devices, so no SPI devices are instantiated by default.

2657

Atmel SAMA5D3 Xplained Platform HAL

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the AT91 SPI device driver.

I²C Driver
Support for SAM I²C (TWI) busses is provided by the "Atmel TWI (I2C) device driver" package (CYGPKG_DEVS_I2C_AT-
MEL_TWI). The SAM variant HAL causes the two buses to be instantiated. These have been tested using external I²C devices.

Onboard NAND
The HAL port includes a low-level driver to access the on-board Micron MT29F2G08 NAND flash memory chip. To enable
the driver, add the CYGPKG_IO_NAND package to your eCos configuration.

If using the NAND library direct, see also the NAND port implementation details.

Note

The onboard NAND chip is usually the boot device on this board.

Warning

Before writing to the NAND device from an application, be sure you understand the partition scheme in use and
how it relates to the system bootstrap code. Failure to do so risks overwriting the second stage boot loader and/
or RedBoot, leaving your board unbootable until you reprogram it.

There are several ways to partition the NAND chip. The eCos configuration setting CYGSEM_HAL_SA-
MA5D3_NAND_PARTITION_SCHEME specifies which one to use. The default NAND configuration, which eCosCentric rec-
ommend for development, is "Config_store" which uses the eCos on-NAND partition table.

eCos on-NAND partition table

The eCos native partition scheme ("Config_store") for this board has the following contents:

• The first 6 non-factory-bad blocks (384k) are reserved for the system bootstrap, and normally contain AT91Bootstrap or
BootUp, followed by RedBoot (or an application running in place of it). This number appears in the eCos configuration as
CYGNUM_HAL_SAMA5D3_NAND_RESERVE_BLOCKS_FOR_SYSTEM.

• NAND partition 0 comprises the next 10 blocks. This is used for the NAND configuration store which records the geometry
of the remaining NAND partitions and hosts the RedBoot flash config area. The size of the configuration store may be
reconfigured as CYGNUM_HAL_SAMA5D3_NAND_PARTITION_CONFIG_STORE_SIZE.

• The remainder of the chip, and the remainder of the partition slots, are available for arbitrary partitioning and use by appli-
cations, with their geometry stored dynamically in the configuration store (see below). It is automatically set up as a single
partition, numbered 1; up to three partitions are available in a default configuration, but moremay be provisioned if required
by reconfiguring CYGNUM_NAND_MAX_PARTITIONS.

Warning

If you change CYGNUM_HAL_SAMA5D3_NAND_RESERVE_BLOCKS_FOR_SYSTEM or CYGNUM_HAL_SA-
MA5D3_NAND_PARTITION_CONFIG_STORE_SIZE, you must rebuild all images (including RedBoot) that
use the changed value and reprogram them at the same time. You should consider erasing and reprogramming
the entire NAND array in order to guard against configuration skew situations which are likely to cause data
corruption.

The geometry of the remaining partitions is stored as integer entries in the config store, with config store keys named
nand.partition1.base, nand.partition1.size, nand.partition2.base, nand.partition2.size
and so on.

These may be changed from within RedBoot using the nconfig command. For example:

2658

Atmel SAMA5D3 Xplained Platform HAL

RedBoot> nand info
NAND device `onboard':
 2048 bytes/page, 64 pages/block, capacity 2048 blocks x 128 kB = 256 MB
 Partition Start Blocks
 0 6 10
 1 16 2036
RedBoot> nconfig put nand.partition1.size uint 200
Written OK
RedBoot> nconfig put nand.partition2.base uint 216
Written OK
RedBoot> nconfig put nand.partition2.size uint 1836
Written OK
RedBoot> reset
... Resetting. RomBOOT

. . . full boot-up messages omitted for brevity . . .

+NAND: onboard: 1 partition configured
NAND: Read partition geometry from config store
NAND: onboard: 3 partitions configured

. . . full boot-up messages omitted for brevity . . .

NAND: onboard
RedBoot> nand info
NAND device `onboard':
 2048 bytes/page, 64 pages/block, capacity 2048 blocks x 128 kB = 256 MB
 Partition Start Blocks
 0 6 10
 1 16 200
 2 216 1836
RedBoot>

Applications may change these via the config store call cyg_configstore_write_int; refer to the configuration store
documentation for details.

Note

After changing the partition geometry in the config store, it is necessary to reset the board for the changes to take
effect - hence the reset command above.

Caution

When changing partition geometry, eCos makes no attempt to preserve any data on the affected partition(s); it is
up to you to arrange this if it is important to you. If you do not need to keep the data, consider erasing the affected
partition(s) before editing them. RedBoot provides a nand erase command for just this purpose.

Manual partitioning

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_HAL_SA-
MA5D3_NAND_PARTITION_MANUAL); if you choose to use this, by setting CYGSEM_HAL_SA-
MA5D3_NAND_PARTITION_SCHEME to "Manual", the relevant data structures will automatically be set up for you when
the device is initialised. By default, the manual config CDL script does not set up any partitions.

Note

The configuration store always uses partition 0 on this board. If you wish to use the configuration store (such as
in RedBoot) you must leave a suitable space for it. Do not write any other data to partition 0; it is automatically
managed by the config store and will likely be erased.

Warning

The manual partitioning scheme does NOT take account of the space required for system bootstrap. If you choose
this option, be sure to allow sufficient space for these in your partition layout.

2659

Atmel SAMA5D3 Xplained Platform HAL

Other partitioning schemes

It is possible to configure the partitions in some other way, should it be appropriate for your setup, for example to read a
Linux-style partition table from the chip. To do so you will have to add appropriate code to sama5d3xpld_nand.c, and a
new option to CYGSEM_HAL_SAMA5D3_NAND_PARTITION_SCHEME.

Ethernet Driver
The SAMA5D3-XPLD board uses the SAMA5D3's internal EMAC and GMAC Ethernet devices attached to external Micrel
KSZ8081RNB and KSZ9031RN PHYs respectively. The CYGPKG_DEVS_ETH_ARM_AT91 package contains all the code
necessary to support this device and the platform HAL package contains definitions that customize the driver to the board. This
driver is not active until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

Both the standard and direct (lwIP only) device drivers are supported. The standard driver is enabled by default; the direct
driver can be enabled by setting CYGOPT_IO_ETH_DRIVERS_LWIP_DRIVER_DIRECT option. At the time of writing, the
direct driver only supports the EMAC (ETH1), and not the GMAC (ETH0).

2660

Atmel SAMA5D3 Xplained Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the SAMA5D3-XPLD board hardware,
and should be read in conjunction with that specification. The SAMA5D3-XPLD platform HAL package complements the
ARM architectural HAL and the SAMA5D3 variant HAL. It provides functionality which is specific to the target board.

Startup
In the release view of the world the SAMA5D3 Xplained board boots into the BootUp “application loader” from a suitable
on-chip RomBOOT supported memory.

When using the second-stage BootUp loader the main (ROMRAM startup type) application is then loaded from the configured
non-volatile storage (e.g. NAND, SD card) into the DDR2-SDRAM for execution.

The CPU variant bootstrap overview should be read in conjunction with this documentation.

Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services, and so will not attempt to re-initialize the
underlying peripheral.

For ROM, ROMRAM and SRAM startups the HAL will perform additional initialization, programming the various internal registers
including the PLL, peripheral clocks and GPIO pins as required. The details of the early platform hardware startup may be
found in the plf_hardware_init() function within the source file src/sama5d3xpld_misc.c.

Memory Map
The SAMA5D3 Xplained HAL package provides the memory layout information needed to generate the linker script. The key
memory locations are as follows:

External RAM This is located at address 0x20000000 of the memory space, and is 256MiB long. For ROM,
ROMRAM and SRAM applications the initial 32KiB is set aside, primarily for the first level MMU
table and (depending on the startup type) the eCos VSR table. The rest of the RAM is then
available for application use. For RAM startup applications the first 1MiB of RAM is reserved
for the “debug” monitor (e.g. RedBoot), and the top CYGNUM_HAL_COMMON_INTERRUP-
TS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder is then available
for the RAM application.

Internal RAM This is located at address 0x00300000 of the memory space, and is 128KiB in size.

On-chip Peripherals The I/O is primarily accessible from location 0xF0000000 upwards, though some I/O is mapped
into the initial 10MiB of the address space. Descriptions of the contents can be found in the
Atmel SAMA5D3 Series Datasheet.

Linker Scripts
The platform linker script defines the following symbol:

hal_mmu_page_directory_base This symbol defines where the initialization code will place the level-1 table when ini-
tialising the MMU.

Diagnostic LEDs
Two LEDs are fitted onto the CPU Module for diagnostic purposes, one red and one blue.

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be controlled:

2661

Atmel SAMA5D3 Xplained Platform HAL

extern void hal_sama5d3xpld_led(cyg_uint32 bitmask);

The low-order 2-bits of the argument bitmask correspond to each of the 2 LEDs. The red LED is logically mapped to bit 0,
with the blue LED mapped to bit 1.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for RAM startup, where both code and data are using the
external DDR2-SDRAM.

Example 280.1. sama5d3xpld Real-time characterization

 Startup, main thrd : stack used 388 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 96 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 2.97 microseconds (24 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 1.60 1.09 5.09 0.29 65% 34% Create thread
 0.18 0.12 1.21 0.08 96% 65% Yield thread [all suspended]
 0.21 0.12 1.21 0.09 87% 53% Suspend [suspended] thread
 0.17 0.12 1.33 0.08 95% 75% Resume thread
 0.27 0.12 2.30 0.08 84% 10% Set priority
 0.02 0.00 0.48 0.04 87% 87% Get priority
 0.64 0.48 5.33 0.19 93% 82% Kill [suspended] thread
 0.18 0.12 1.09 0.07 98% 65% Yield [no other] thread
 0.36 0.24 1.82 0.09 48% 39% Resume [suspended low prio] thread
 0.17 0.12 1.33 0.07 96% 75% Resume [runnable low prio] thread
 0.25 0.12 1.82 0.06 75% 18% Suspend [runnable] thread
 0.18 0.12 1.09 0.08 96% 65% Yield [only low prio] thread
 0.15 0.12 0.97 0.05 82% 82% Suspend [runnable->not runnable]
 0.58 0.48 4.36 0.14 93% 93% Kill [runnable] thread
 0.56 0.48 3.15 0.11 95% 78% Destroy [dead] thread
 0.96 0.85 5.21 0.17 93% 89% Destroy [runnable] thread
 1.51 1.09 6.18 0.26 68% 48% Resume [high priority] thread
 0.40 0.36 1.21 0.05 74% 74% Thread switch

 0.02 0.00 0.24 0.03 87% 87% Scheduler lock
 0.11 0.00 0.24 0.01 92% 6% Scheduler unlock [0 threads]
 0.12 0.00 0.36 0.01 92% 6% Scheduler unlock [1 suspended]
 0.12 0.00 0.24 0.02 89% 7% Scheduler unlock [many suspended]
 0.12 0.00 0.36 0.01 92% 5% Scheduler unlock [many low prio]

 0.07 0.00 0.73 0.08 96% 59% Init mutex
 0.24 0.12 1.82 0.11 46% 46% Lock [unlocked] mutex
 0.27 0.12 2.06 0.14 56% 90% Unlock [locked] mutex
 0.22 0.12 1.21 0.12 90% 90% Trylock [unlocked] mutex

2662

Atmel SAMA5D3 Xplained Platform HAL

 0.19 0.12 1.45 0.11 90% 78% Trylock [locked] mutex
 0.03 0.00 0.24 0.04 81% 81% Destroy mutex
 1.25 1.09 2.79 0.10 90% 6% Unlock/Lock mutex

 0.19 0.00 1.09 0.11 78% 12% Create mbox
 0.03 0.00 0.73 0.05 90% 90% Peek [empty] mbox
 0.33 0.24 1.82 0.14 87% 87% Put [first] mbox
 0.02 0.00 0.61 0.04 96% 96% Peek [1 msg] mbox
 0.31 0.24 1.70 0.12 93% 93% Put [second] mbox
 0.02 0.00 0.48 0.03 96% 96% Peek [2 msgs] mbox
 0.29 0.12 1.82 0.12 81% 12% Get [first] mbox
 0.28 0.12 1.58 0.10 84% 12% Get [second] mbox
 0.28 0.12 1.33 0.10 81% 12% Tryput [first] mbox
 0.22 0.12 0.97 0.09 43% 43% Peek item [non-empty] mbox
 0.25 0.12 1.45 0.09 59% 31% Tryget [non-empty] mbox
 0.22 0.12 1.21 0.09 50% 46% Peek item [empty] mbox
 0.21 0.12 1.21 0.09 96% 50% Tryget [empty] mbox
 0.02 0.00 0.36 0.04 90% 90% Waiting to get mbox
 0.02 0.00 0.48 0.04 90% 90% Waiting to put mbox
 0.09 0.00 1.58 0.12 93% 68% Delete mbox
 0.95 0.73 3.15 0.17 90% 78% Put/Get mbox

 0.05 0.00 0.85 0.08 93% 84% Init semaphore
 0.17 0.12 1.09 0.09 93% 81% Post [0] semaphore
 0.23 0.12 1.21 0.10 46% 43% Wait [1] semaphore
 0.16 0.12 0.97 0.06 90% 90% Trywait [0] semaphore
 0.14 0.12 0.48 0.03 93% 93% Trywait [1] semaphore
 0.05 0.00 0.61 0.07 75% 75% Peek semaphore
 0.03 0.00 0.73 0.05 90% 90% Destroy semaphore
 0.87 0.73 2.55 0.11 68% 28% Post/Wait semaphore

 0.14 0.00 0.97 0.08 65% 18% Create counter
 0.04 0.00 0.48 0.06 75% 75% Get counter value
 0.02 0.00 0.24 0.03 90% 90% Set counter value
 0.22 0.12 0.73 0.07 56% 37% Tick counter
 0.03 0.00 0.73 0.06 87% 87% Delete counter

 0.03 0.00 0.61 0.06 84% 84% Init flag
 0.19 0.12 1.45 0.10 96% 78% Destroy flag
 0.15 0.12 0.73 0.05 87% 87% Mask bits in flag
 0.19 0.12 0.97 0.09 93% 62% Set bits in flag [no waiters]
 0.28 0.12 2.18 0.12 75% 93% Wait for flag [AND]
 0.30 0.24 1.70 0.10 96% 84% Wait for flag [OR]
 0.29 0.24 1.70 0.09 96% 96% Wait for flag [AND/CLR]
 0.28 0.12 1.94 0.10 84% 12% Wait for flag [OR/CLR]
 0.00 0.00 0.12 0.01 96% 96% Peek on flag

 0.17 0.00 1.21 0.12 75% 18% Create alarm
 0.31 0.12 2.42 0.15 84% 81% Initialize alarm
 0.16 0.12 0.97 0.06 90% 90% Disable alarm
 0.31 0.12 2.55 0.14 93% 93% Enable alarm
 0.19 0.12 1.09 0.09 93% 71% Delete alarm
 0.24 0.12 0.61 0.03 84% 12% Tick counter [1 alarm]
 1.02 0.97 1.70 0.07 81% 81% Tick counter [many alarms]
 0.40 0.24 1.70 0.09 90% 6% Tick & fire counter [1 alarm]
 5.85 5.70 7.15 0.09 78% 15% Tick & fire counters [>1 together]
 1.19 1.09 2.55 0.12 93% 56% Tick & fire counters [>1 separately]
 2.31 2.30 3.64 0.02 99% 99% Alarm latency [0 threads]
 2.54 2.30 3.27 0.12 50% 18% Alarm latency [2 threads]
 2.82 2.55 3.88 0.16 70% 35% Alarm latency [many threads]
 3.07 3.03 7.39 0.07 97% 97% Alarm -> thread resume latency

 1.02 0.97 2.18 0.00 Clock/interrupt latency

 0.68 0.48 1.45 0.00 Clock DSR latency

 221 136 264 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 988 size 1792
 All done : Interrupt stack used 156 size 4096
 All done : Idlethread stack used 240 size 1280

Timing complete - 29800 ms total

2663

Atmel SAMA5D3 Xplained Platform HAL

PASS:<Basic timing OK>
EXIT:<done>

Data integrity on the on-board NAND
The HAL port only provides ECC protection for the main area of the on-board MT29F2G08 NAND array. (This is achieved
using the SAMA5D3 CPU's internal PMECC unit.)

Applications using the NAND library to store data in the spare area of the array should consider whether they ought to employ
ECC or comparable protection for the data stored there. The recommended correction capacity for this part is 4 bits per quar-
ter-page; refer to the MT29F2G08 datasheet for full details.

Caution

The consequences of insufficient ECC protection are difficult to predict but are likely to include data corruption,
undetected by the driver, at a higher rate than expected.

2664

Atmel SAMA5D3 Xplained Platform HAL

Name
BootUp Integration — Detail

BootUp
The BootUp support for this platform is primarily implemented in the sama5d3xpld_misc.c file. The functions are only
included when the CYGPKG_BOOTUP package is being used to construct the actual BootUp loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once an implementation has been defined the binary
will only need to be installed onto a device once. Its only purpose is to allow the startup of the main ROMRAM application.

This platform specific documentation should be read in conjunction with the generic BootUp package documentation.

The BootUp package provides a basic but fully functional implementation for the platform. It is envisaged that the developer
will customize and further extend the platform side support to meet their specific application identification and update require-
ments.

The BootUp binary can be installed on any SAMA5D3x bootable media, and is not restricted to being placed into NAND flash.

On execution BootUp will copy the ROMRAM configured final application from its Non-Volatile-Memory (NVM) location.
The configuration option CYGIMP_BOOTUP_SAMA5D3_SOURCE selects where the second-level BootUp code will look for
the final application image. At present only NAND Flash is supported.

The SAMA5D3x-MB (MotherBoard) documentation provides more detail about the SAMA5D3 BootUp world, including
secure boot functionality.

Building BootUp

Building a BootUp loader image is most conveniently done at the command line. The steps needed to rebuild the SRAM version
of BootUp are:

$ mkdir bootup_SRAM
$ cd bootup_SRAM
$ ecosconfig new sama5d3xpld minimal
$ ecosconfig import $ECOS_REPOSITORY/packages/hal/arm/cortexa/sama5d3/sama5d3xpld/current/misc/bootup_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The resulting install/bin/bootup.bin binary can then be programmed into a suitable non-volatile memory as sup-
ported by the SAMA5D3 on-chip RomBOOT. e.g. NAND Flash.

The example bootup_SRAM.ecm is configured to expect to find the ROMRAM application stored in the NAND Flash at
offset CYGNUM_BOOTUP_SAMA5D3_SOURCE_OFFSET. It is also configured with application encryption support (CYG-
FUN_BOOTUP_SAMA5D3_SOURCE_SECURE option) to allow decryption of the stored application to its final RAM desti-
nation.

Note

The application image to be loaded does not need to be encrypted. The BootUp code uses binary identity markers
to check for the presence of a plaintext (unencrypted) image; if not present, a check for encrypted markers is made.

Whether or not encryption is in use, the application image must be installed to offset CYGNUM_BOOTUP_SA-
MA5D3_SOURCE_OFFSET in the source NVM.

Installing BootUp

How the second-level BootUp loader is placed into bootable memory in a production environment is beyond the scope of this
document. However, for the sama5d3xpld target platform, several solutions are available.

The simplest may be to use the on-chip SAM-BA support via a USB CDC-ACM host connnection to J6. This procedure is
documented in the Setup section, which may also be used to install your choice of ROMRAM eCos application onto the target
hardware.

2665

Atmel SAMA5D3 Xplained Platform HAL

Alternatively, a suitable hardware debugger (JTAG) configuration could directly update the relevant memories via suitable
host-based debugger software features, or configuration script sequence. At its simplest the JTAG interface could be used to
load a ROMRAM application that performs the necessary update of the boot NVM memory, either from embedding the required
binaries in the application image, or (ideally) loading data from a suitable network location via the Ethernet interfaces J12/J13.

2666

Chapter 281. Raspberry Pi Board Support

2667

Raspberry Pi Board Support

Name
eCos Support for the Raspberry Pi Board Family — Overview

Description
The eCosPro release for the Raspberry Pi family is free to use for non-commercial, educational and evaluation purposes. If
you wish to use it within a commercial product then a license from eCosCentric is required. Please see the eCosPro license
page for details.

This document covers the configuration and usage of eCos and RedBoot on the Raspberry Pi Family of Boards. eCos should be
functional on all current members of the family and has been tested on the following variants: Pi Zero, Pi Zero W, Pi 1 Model
B, Pi 2 Model B, Pi 3 Model B, Pi 3 Model B+, Pi 3 Model A+, Pi Compute Module 1 and Pi Compute Module 3 (standard, lite
and plus versions). These boards are fitted with one of three variants of the Broadcom BCM283X System-on-Chip devices.

In addition to the BCM283X, the board contains 256MiB to 1GiB of SDRAM main memory, an SD card socket, and an optional
LAN951X or LAN7515 USB hub/Ethernet device. Variants of the RPi may have a CYW43438 WiFi/Bluetooth device, and
may have an eMMC device in place of the SD socket. All have a GPIO header giving access to various IO pins, including
GPIO, UART, SPI and I²C. For details of which devices are available on which board variants, see the Raspberry Pi Foundation
website, or the Raspberry Pi Wikipedia page.

eCos applications can be developed either using a JTAG-based hardware debugger or by use of the RedBoot ROM monitor.
eCos applications are deployed booting directly from the Raspberry Pi SD card, or in the case of the compute modules, from
the eMMC.

For RedBoot-based development, the RedBoot image is programmed onto an SD card, or into eMMC, and the board boots
directly into RedBoot from reset. RedBoot incorporates a gdb stub that enables eCos applications to be downloaded and de-
bugged via the host-based gdb debugger. You can connect gdb to the board either via a serial line or over Ethernet. Note that
applications that make use of USB-based peripherals (including Ethernet) are limited to the serial connection as the eCos USB
functionality cannot be shared with RedBoot.

Support for SMP operation of the four CPUs in the RPi2 and RPi3 variants is available, although debugging support is restricted
to use of an external JTAG debugger, such as the Lauterbach TRACE32. There is no SMP debug support in RedBoot.

This documentation is expected to be read in conjunction with the BCM283X variant HAL documentation and further device
support and subsystems are described and documented there.

Note that the Raspberry Pi may be also be referred to using the abbreviation "RPi" within the documentation.

Supported Hardware
The following devices are currently supported by the Raspberry Pi port. These apply to all RPi boards unless stated otherwise.

UART Auxiliary mini UART only, RX and TX lines only connected to GPIO14 and GPIO15 on the GPIO header. Used
by RedBoot for communication with the user and GDB. The PL011 UART1 is not currently supported and is
reserved for future use with Bluetooth on those boards that are so equipped.

SPI SPI0 device only. The auxiliary SPI1 and SPI2 devices are not supported. SPI0 is mapped to GPIO7 to GPIO11
on the GPIO header.

I²C I2C1 using the BSC1 controller only. I2C1 uses the GPIO2 and GPIO3 pins on the GPIO header. BSC0 is
reserved for use by the GPU, and BSC2 is dedicated to the HDMI interface.

PWM Support for simple use of the PWM device is available via the PWM API package. The PWM device ("pwm0")
has two channels. Channel 0 is connected to GPIO pins 12 and 18, pins 12 and 32 on the GPIO header. Channel
1 is connected to GPIO pins 13 and 19, pins 33 and 35 on the GPIO header.

USB USB host support is provided by the USB protocol stack and the Synopsys DWC host controller driver. The
stack also provides support for the hub component of the LAN951X/LAN7515 device. The stack currently only
provides Control and Bulk endpoint support, at High, Fast and Low speeds.

2668

http://www.ecoscentric.com/licensing/ecospro-license.shtml
http://www.ecoscentric.com/licensing/ecospro-license.shtml
https://www.raspberrypi.org
https://www.raspberrypi.org
https://en.wikipedia.org/wiki/Raspberry_Pi

Raspberry Pi Board Support

Ethernet For those boards equipped with a LAN951X/LAN7515, the Ethernet driver provides support for both the BSD
and LWIP protocol stacks.

WiFi For those RPi boards equipped with a suitable 802.11 chipset the hardware specific
CYGPKG_NET_WIFI_BROADCOM_WWD driver package, in conjunction with the generic
CYGPKG_NET_WLAN package, provides support for the LWIP protocol stack.

The wireless network support has been tested against the RPi3B (Raspberry Pi 3 Model B V1.2), RPi3B+
(Raspberry Pi 3 Model B+ 2017) and RPi0W (Raspberry Pi Zero W V1.1) platforms.

The majority of testing involves the standard CYGPKG_NET_NETTEST package network tests using the lwIP
(CYGPKG_NET_LWIP) TCP/IP stack. The eCosPro WLAN (CYGPKG_NET_WLAN) provides the settings for
the default wireless network connection settings used, as well as some wireless specific tests.

MMC/SD A driver for the Broadcom SDHOST MMC/SD controller provides access to either cards in the SD socket or, in
the compute modules, the eMMC device. The FAT filesystem package provides access to files on these devices.

GPIO A set of macros in the BCM283X variant HAL provide support for controlling all GPIO pins, including setting
pin modes and selecting alternate functions. GPIO interrupts are decoded to provide a separate vector for each
pin.

JTAG On booting RedBoot, and ROM startup eCos applications, the HAL sets a group of GPIO pins to their JTAG
alternate functions. This allows an external JTAG debugger to connect and load an application for development.
RedBoot also contains a JTAG command that allows the JTAG pin mappings to be changed at runtime.

In general, devices (Caches, GPIO, UARTs) are initialized only as far as is necessary for eCos to run. Other devices (I²C, SPI,
MMC/SD etc.) are not touched unless the appropriate driver is loaded, although in some cases, the HAL boot sequence may
set up the appropriate pin alternate configuration.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 4.7.3, arm-eabi-gdb version 7.2, and binutils version 2.23.

2669

Raspberry Pi Board Support

Name
Setup — Preparing the Raspberry Pi for eCos Development

Overview
In a typical development environment, the board boots from the SD/eMMC and runs the RedBoot ROM monitor from SDRAM.
eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.
Preparing the board therefore usually involves programming a suitable RedBoot image into an SD card.

Initial Installation
A Raspberry Pi boots initially to the GPU which then reads and executes a second-level GPU bootstrap image from the SD
card. This then reads an ARM executable image from the card into SDRAM and executes it. For eCos development we want
RedBoot to be the ARM image loaded from the SD card.

The SD card used to boot RedBoot is prepared in exactly the same way as a card is prepared to boot Raspian or any other
operating system for the RPi. A complete disk image must be written to the card, typically from a host system running either
Windows or Linux. You will need a 2GB, or larger, SD card for this purpose.

A prebuilt bootable SD card image is supplied as part of the eCosPro release. This image is universal and will boot RedBoot
on all Raspberry Pi variants. The eCosPro_RedBoot_RPi_2Mb.img image is located within your eCosPro installation
in the eCosPro/ecos-VERSION/loaders/rpi directory. This RedBoot uses 2Mb/s as its default serial speed.

A few non-FTDI based USB to serial converters have been found to be incapable of reliably handling the high-speed 2Mb/s de-
fault baud rate used by the standard RedBoot image. For these systems an alternative eCosPro_RedBoot_RPi_115k.img
image has been provided in the same location. This defaults to a baud rate of 115200, but is otherwise identical. This may
also be useful if you encounter any communications issues with slow host machines, or with specific operations such as x/
ymodem transfers. Alternatively you could dynamically change the communications speed used by RedBoot with its baudrate
command.

Installation from Windows to an SD card

The following steps describe how to create a bootable RedBoot SD card for your Raspberry Pi. The best Windows-based tool
for this purpose is the freely available balenaEtcher SD card image burning utility (previously and often still referred to as
Etcher). This is also the recommended utility for writing Raspian and other RPi Linux images.

Visit www.balena.io/etcher to download and install the balenaEtcher SD Burner utility.

1. Insert the SD card to be programmed into the PC's card reader.

2. Start the balenaEtcher utility and click Select image, then browse to and select the RedBoot Raspberry Pi image from
within the loaders/rpi directory.

3. Click Select drive and select your SD card drive. Note that balenaEtcher may have already pre-selected the SD drive. You
can click on Change if this is not the correct drive.

4. Click Flash! to write the image to the SD card. You'll see a progress bar that tells you how much is left to do. Once complete,
the utility will automatically unmount the SD card so it's safe to immediately remove it from the computer.

Installation from Linux to an SD card

Installation on Linux should be done using the dd command.

1. Locate a Linux PC with an SD card reader and insert the SD card to be programmed into the reader.

2. Identify the device name that Linux has assigned to the SD card. This can be done either by monitoring the system log, or
by using lsblk before and after inserting the card. In this example we will use /dev/sdX as a placeholder.

3. Execute the following command in a shell:

2670

https://www.balena.io/etcher/

Raspberry Pi Board Support

$ dd status=progress if=/path/to/eCosPro_RedBoot_RPi_2Mb.img of=/dev/sdX

Depending on permissions and user group membership, it may be necessary to prefix this command with sudo or run it
in a root shell.

4. Execute the sync command. This may not be strictly necessary, but it will ensure that all data is safely written to the card.

5. The card is now ready and may be removed.

Installation from Windows to Compute Module eMMC

Installation to the compute module eMMC requires the installation of a driver and a boot utility tool.

1. Download and run the Windows Installer to install the drivers and boot tool.

2. Follow the instructions on the Raspberry Pi website for installing the driver. Make sure the J4 jumper is in the EN position.

3. Run the RPiBoot.exe tool. The compute module will then appear as a USB mass storage disk drive under Windows.

4. You can now use the balenaEtcher tool to write the RedBoot image to the drive as described above for an SD card.

5. Once complete, the USB cable can be detached. Power off the CMIO board and move J4 back to its original position. On
re-applying power, RedBoot will start.

Installation from Linux to Compute Module eMMC

To program an image from Linux it is necessary to download and compile the rpiboot utility program.

1. The utility program is in a github repository, so ensure that git is installed. The program also needs libusb-1, so ensure that
this is also installed.

2. Clone the git repository into a convenient directory.

$ git clone --depth=1 https://github.com/raspberrypi/usbboot
Cloning into 'usbboot'...
remote: Counting objects: 21, done.
remote: Compressing objects: 100% (19/19), done.
remote: Total 21 (delta 1), reused 14 (delta 0), pack-reused 0
Unpacking objects: 100% (21/21), done.
$

3. Build the tool:

$ cd usbboot
$ make
cc -Wall -Wextra -g -o rpiboot main.c -lusb-1.0
$

4. Move J4 on the compute module IO board to the EN position. Connect a USB cable between the USB SLAVE port and
the host and power up the board.

5. Run the rpiboot just built from the build directory:

$ sudo ./rpiboot
Waiting for BCM2835/6/7
Sending bootcode.bin
Successful read 4 bytes
Waiting for BCM2835/6/7
Second stage boot server
File read: start.elf
Second stage boot server done
$

6. The CM board will now be visible to Linux as a new USB mass storage device. Identify the device name that Linux has
assigned to the SD card. This can be done either by monitoring the system log, or by using lsblk before and after inserting
the card. In this example we will use /dev/sdx as a placeholder.

2671

https://www.raspberrypi.org/documentation/hardware/computemodule/rpiboot_setup.exe
https://www.raspberrypi.org/documentation/hardware/computemodule/cm-emmc-flashing.md

Raspberry Pi Board Support

7. Execute the following command in a shell:

$ dd status=progress if=/path/to/eCosPro_RedBoot_RPi_2Mb.img of=/dev/sdx

Depending on permissions and user group membership, it may be necessary to prefix this command with sudo or run it
in a root shell.

8. Execute the sync command. This may not be strictly necessary, but it will ensure that all data is safely written to the eMMC.

9. Remove power from the compute module, move J4 back to its original position and detach the USB cable from the USB
SLAVE port.

10.Restore power to the compute module and RedBoot should boot.

RedBoot Startup
Once the RedBoot image has been flashed, insert the SD card into your RPi board's SD socket. If the board has an Ethernet
socket insert an Ethernet cable. Connect an RS232 TTL transceiver to the Raspberry Pi's UART pins. On the host run a terminal
emulator and connect to the transceiver's serial port, setting it to 2Mb/s (2000000 baud), 8 data bits, no parity, one stop bit (8N1).

Note

Suitable low cost USB RS232 TTL transceivers include the FTDI Raspberry Pi Cable: TTL-232R-RPI or FTDI
LC234X module. The FTDI cable can be connected directly to the Raspberry Pi, whereas connecting the module
will reqire set of additional jumper cables. These FTDI products are fully supported by drivers on both Windows
and Linux hosts. Whatever transceiver is used, it will need connecting to the Raspberry Pi's GND, GPIO14 TXD
(transceiver RXD) and GPIO15 RXD (transceiver TXD) pins on the GPIO header. For the 40 way expansion
header on standard RPi's these are pins 6, 8 and 10 respectively. We do NOT recommend connecting any other
signals that the transceiver might provide, in particular 3V3 or 5V lines.

Note

There are a wide range of freely available terminal emulation programs to choose from - we can recommend
Minicom on Linux and PuTTY on Windows.

When the above connections have been made, apply power to the board and similar output to the following should be seen
on the terminal:

+USB LOG: HCD register DWC ports 1
USB LOG: hub 01 attach on port 1
USB LOG: hub attach 03
USB LOG: hub 03 attach on port 1
USB LOG: hub attach 04
USB LOG: hub 04 attach on port 1
USB LOG: device attach 05 [ff:00] [0424:7800]
... waiting for BOOTP information
Ethernet eth0: MAC address b8:27:eb:30:d0:7b
IP: 10.0.2.2/255.0.0.0, Gateway: 10.0.0.3
Default server: 0.0.0.0
DNS server IP: 10.0.0.5, DNS domain name: <null>

Mount /dev/mmcsd0/1 on /boot type fatfs:sync=write

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v4_2_0 - built 17:03:10, Jun 12 2018

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2018 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

2672

http://www.ftdichip.com/Products/Cables/RPi.htm
http://www.ftdichip.com/Products/Modules/DevelopmentModules.htm#LC234X
http://www.ftdichip.com/Products/Modules/DevelopmentModules.htm#LC234X
https://help.ubuntu.com/community/Minicom
http://www.putty.org/

Raspberry Pi Board Support

Platform: Raspberry Pi B3 (BCM2837 - Cortex-A53)
RAM: 0x00000000-0x3e000000 [0x0004eeb0-0x3de00000 available]
 Arena: base 0x3de00000, size 0x200000, 95% free, maxfree 0x1eaf3c
== Executing boot script in 1.000 seconds - enter ^C to abort
RedBoot> fs exec /boot/redboot.txt
RedBoot> jtag 22 23 24 25 26 27
PIN FUNC
 22 ARM_TRST
 23 ARM_RTCK
 24 ARM_TDO
 25 ARM_TCK
 26 ARM_TDI
 27 ARM_TMS
RedBoot> fs exec
RedBoot>

Before loading RedBoot, the GPU configures the board according to the contents of the config.txt file in the boot partition.
eCosPro currently makes minimal use of the settings in this file, the default config.txt for eCosPro just sets the GPU
reserved memory to its minimum of 16MiB. No other configuration settings have been tested, so change them at your peril.
Full details of the file contents can be found in the Raspberry Pi Foundation documentation.

Note

If a RPi board supports Ethernet and you do not connect an Ethernet cable, or the network does not provide a
dhcp server, then you will experience a delay before the full RedBoot banner and prompt are displayed.

Resizing the Second SD Partition
The standard eCosPro disk image is sized to fit into a 2GB SD card with two partitions. The first partition is located 4MB from
the beginning of the SD card and contains RedBoot and other system files necessary to boot the Raspberry Pi. The second
partition follows the first and contains an initially empty VFAT filesystem of 1.23GB in size. If you have a larger card, and
wish to utilise all the available storage capacity from eCos, you will need to expand the second partition to incorporate the
unused capacity. As an embedded system eCosPro does not have the ability to repartition the disk itself. This needs to be done
from a host system running either Windows or Linux.

Resizing from Windows

In Windows you need to run the Windows Disk Management tool to remove the second partition and create the new partition
sized as required:

1. To start the tool you can click on the Start Menu and type "disk management", click on the "Create and format hard disk
partitions control panel" entry that appears.

2. Remove the second partition (1.23GB FAT32) by right clicking on second partition and selecting "Delete Volume...". Click
"Yes" to confirm.

3. Create a new volume of the required size (typically the remaining space on the SD) by right clicking on the "Unallocated"
space and selecting "New Simple Volume...".

4. In the New Simple Volume Wizard's initial dialog click "Next >" to move to the "Specify Volume Size" dialog, then choose
the disk size required (default is the remaining space on the SD) and click "Next >" again.

5. In the "Assign Drive Letter or Path" dialog choose the drive letter of your choice, typically the default provided and click
"Next >".

6. In the final "Format Partition" dialog, choose the file system type - this should be the default "FAT32", then select the
allocation size - choose "Default" or 4096 and then enter the "Volume label" of your choice. Leaving the "Perform a quick
format" checkbox ticked, click "Next >". Review the settings and then click "Finish".

Your SD card should now contain two partitions. The first is the original boot partition containing RedBoot (or your own
application, named as kernel*.img) and the second is a new partition expanded to incorporate the remaining SD card capacity.

2673

https://www.raspberrypi.org/documentation/configuration/config-txt/README.md

Raspberry Pi Board Support

Resizing from Linux

There are a variety of Linux tools in different distributions for resizing a partition, many are GUI based and similar to the
Windows tool. The following example uses just command line tools and should work on all Linux distributions.

1. Depending on permissions, it may be best to perform the following actions as root. Either start a root shell, or prefix all
commands with sudo.

2. Insert the SD card into the card reader and identify the device name assigned to it. This can be done either by monitoring the
system log, or by using lsblk before and after inserting the card. In this example we will use /dev/sdX as a placeholder.

3. Run fdisk on the device and type p to print the partition table:

fdisk /dev/sdX

Welcome to fdisk (util-linux 2.28).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): p
Disk /dev/sdX: 14.9 GiB, 15931539456 bytes, 31116288 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xec05ec05

Device Boot Start End Sectors Size Id Type
/dev/sdX1 8192 137215 129024 63M c W95 FAT32 (LBA)
/dev/sdX2 137216 2715647 2578432 1.2G c W95 FAT32 (LBA)

Command (m for help):

Check that things like the disk identifier and the partition parameters match the above to ensure you have the right device.

4. Use the d command to delete partition 2:

Command (m for help): d
Partition number (1,2, default 2): 2

Partition 2 has been deleted.

Command (m for help):

5. Ensuring you set the first sector to 137216, since there is 3MB of free space before the first partition which should NOT
be used, use the n command to create a new partition. Check that the new partition fills the remaining card space with the
p command.

Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (2048-31116287, default 2048): 137216
Last sector, +sectors or +size{K,M,G,T,P} (137216-31116287, default 31116287):

Created a new partition 2 of type 'Linux' and of size 14.8 GiB.

Command (m for help): p
Disk /dev/sdX: 14.9 GiB, 15931539456 bytes, 31116288 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xec05ec05

Device Boot Start End Sectors Size Id Type

2674

Raspberry Pi Board Support

/dev/sdX1 8192 137215 129024 63M c W95 FAT32 (LBA)
/dev/sdX2 137216 31116287 30979072 14.8G 83 Linux

Command (m for help):

6. Fdisk has set the new partition's type to Linux, use the t command to change the type to FAT32:

Command (m for help): t
Partition number (1,2, default 2): 2
Partition type (type L to list all types): c

Changed type of partition 'Linux' to 'W95 FAT32 (LBA)'.

Command (m for help):

7. Finally use the w command to write the partition table back and exit fdisk.

8. The new partition now needs to be formatted with a FAT32 filesystem. This can be done using the mkfs.fat command:

mkfs.fat -v -F 32 /dev/sdX2
mkfs.fat 3.0.26 (2014-03-07)
/dev/sdX2 has 64 heads and 32 sectors per track,
hidden sectors 0x21800;
logical sector size is 512,
using 0xf8 media descriptor, with 30979072 sectors;
drive number 0x80;
filesystem has 2 32-bit FATs and 16 sectors per cluster.
FAT size is 15112 sectors, and provides 1934301 clusters.
There are 32 reserved sectors.
Volume ID is e2a0eca8, no volume label.
#

9. Execute the sync command. This may not be strictly necessary, but it will ensure that all data is safely written to the card.

10.The card is now ready and may be removed.

Installing user applications onto an SD card
If you wish to install a ROM startup application onto an SD to be automatically booted instead of RedBoot, then you can do
this by replacing the appropriate kernel image file in the SD card boot partition.

First prepare an SD card as per the Initial Installation section above. The card should then be remounted and your application
copied over, replacing the relevant kernel image file(s) within the boot partition. Applications are compiled and linked to ELF
format, and need to be converted to binary before copying to the the SD card. This can be done as follows using objcopy:

$ arm-eabi-objcopy -O binary app.elf kernel.img

If you have built the application for the BCM2835 (Pi1/Pi0) based boards, replace kernel.img, and for the BCM2836 (Pi2)
or BCM2837 (Pi3) based boards, replace kernel7.img. Replacing the wrong file may result in the board failing to boot. For
widest compatibility you can replace both kernel.img and kernel7.img with suitably built versions of your application.

Rebuilding RedBoot
Typical users should never need to rebuild RedBoot. If you do intend to modify RedBoot then please note that rebuilding it
is currently only supported from the Linux command line.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM_2Mb RedBoot loaded from SD
card to SDRAM, Standard
version with default baud rate
of 2Mb/s

redboot_ROM_2Mb.ecm redboot_ROM_2Mb.bin

2675

Raspberry Pi Board Support

Configuration Description Use File

ROM_115k RedBoot loaded from SD
card to SDRAM, alternative
version with default baud rate
of 115200

redboot_ROM_115k.ecm redboot_ROM_115k.bin

JTAG RedBoot loaded via a JTAG
debugger, for RedBoot devel-
opers only

redboot_JTAG.ecm redboot_JTAG.bin

The JTAG configuration is only required if you wish to build a version of RedBoot to load and debug over JTAG, before
ultimately creating a final ROM version to be booted from SD.

Note that the use of the term ROM for the initial RedBoot configuration is a historical accident. RedBoot actually runs from
SDRAM after being loaded there from the SD card by the GPU bootstrap. The use of ROM for this configuration is intended
to indicate that it initializes the microprocessor and board peripherals, as opposed to a RAM configuration which assumes that
this has already been done.

The ROM_115k configuration is provided as an alternative to the ROM_2Mb configuration, for compatibility with low per-
formance USB to serial converters. It simply lowers the default baud rate to 115200 and is otherwise identical.

The final stage of the RedBoot build process will create a bootable RedBoot SD image. This is handled within the eCosPro/
ecos-VERSION/packages/hal/arm/cortexa/pi/current/host/buildimg.sh script. In order for the script
to complete successfully, the user must either have sudo privileges to mount and cp, or the user must be able to mount /tmp/
sd_pi on /tmp/sd. For the latter case, the following entry in /etc/fstab is advised:

/tmp/sd_pi /tmp/sd vfat user,noauto,rw,loop,offset=4194304 0 0

The steps needed to rebuild the ROM version of RedBoot are:

$ mkdir redboot_rpi2_rom
$ cd redboot_rpi2_rom
$ ecosconfig new raspberry_pi2 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/pi/VERSION/misc/redboot_ROM_2Mb.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file sd_pi.img. This file is the SD card image
and is suitable at this point for booting Pi2 and Pi3 boards, including the CM3, since it only contains a kernel7.img file.
To make it also capable of booting a Pi1 or Pi0 board repeat the above command sequence with the following changes:

$ mkdir redboot_rpi1b_rom
$ cd redboot_rpi1b_rom
$ ecosconfig new raspberry_pi1b redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/pi/VERSION/misc/redboot_ROM_2Mb.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of this build the install/bin subdirectory will contain a new sd_pi.img file. This should be a copy of the
previous image with the addition of kernel.img. This image should then be written to an SD card as per the above Linux
hosted setup instructions. e.g:

sudo dd status=progress if=install/bin/sd_pi.img of=/dev/sdX

The SD created should now be able to boot all RPi variants.

To build a RedBoot that uses a different default UART baud rate to the standard 2Mb/s, then edit the ecos.ecc file after
each ecosconfig import stage as described above. Set user_value for both cdl_option CYGNUM_HAL_VIRTUAL_VEC-
TOR_DEBUG_CHANNEL_BAUD and cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD to
your desired baud rate. For example:

cdl_option CYGNUM_HAL_VIRTUAL_VECTOR_DEBUG_CHANNEL_BAUD {
 # Flavor: data

2676

Raspberry Pi Board Support

 # No user value, uncomment the following line to provide one.
 user_value 115200
 # value_source default
 # Default value: 2000000
 # Legal values: 9600 19200 38400 57600 115200 230400 460800 500000 576000 921600 1000000 1152000 1500000 2000000 2500000 3000000
};

You will then need to use this baud rate when connecting to the new RedBoot via a terminal or gdb debug session. The highest
attainable reliable baud rate can depend upon the specific model Raspberry Pi, transceiver and/or host PC/OS used. The default
2MB/s has been found to work reliably across the Pi family members, using FTDI transceivers, connected to either Linux or
Windows hosts. Use of other transceivers may require you to reduce the baud rate.

2677

Raspberry Pi Board Support

Name
JTAG-based Debugging — Usage

JTAG Hardware Connection
JTAG-based debugging requires direct wiring of the JTAG probe lines to the external GPIO pins of a Raspberry Pi board. The
eCosCentric TAP-HAT provides a simple way of doing this. The GPIO pins are not enabled for JTAG operation by default
and need to be initialised by RedBoot when the board is booted. See the RedBoot JTAG Command section below for details
of how to select and enable the set of pins to be used.

Lauterbach TRACE32
eCosPro includes support for JTAG-based debugging using the Lauterbach TRACE32 debugger with a Lauterbach Power
Debug probe. This is currently the best solution for debugging of eCos SMP applications on the Raspberry Pi. You will need
suitable licenses for ARM Architecture-v7, Architecture-v8 and multicore debugging in order to debug an SMP application,
or an ARM11 license to debug the single core in an Raspberry Pi0 or Pi1.

The TRACE32 debugger needs a startup script to initialize it for the Raspberry Pi. Some example scripts are present
in the Raspberry Pi platform HAL (i.e. packages/hal/arm/cortexa/pi/VERSION/misc/trace32). The file
ecospropi2-qt.cmm initializes TRACE32 to debug a Raspberry Pi2 using the QT based variant avaliable on some host
operating systems. Similarly the file ecospropi3-qt.cmm initializes TRACE32 to debug a Raspberry Pi3, Pi2 v1.2, or
CM3. Finally, ecospropi1-qt.cmm initializes TRACE32 to debug a Raspberry Pi1, Pi0, or CM1. Each of these files addi-
tionally loads layout1s-qt.cmm to define the initial window layout and ecospromenu.cmm to define an eCosPro menu.

The expectation in these scripts is that all files are present in the same directory, along with the application being debugged.
It is recommended that these files be copied out of the source repository into a working directory to which the application can
also be copied and that TRACE32 be started from the command line as follows:

$ cd /path/to/work/directory
$ t32marm64-qt -s ecospropi3-qt.cmm

Raspberry Pi boards cannot be reset from TRACE32, so the safest approach to debugging is to power cycle the board between
runs. It is not necessary to exit TRACE32, so long as the eCosPro menu entries to re-attach or load a new application are used,
TRACE32 can be re-attach to a reset board.

In addition to attaching to the target, these startup files define an additional eCosPro menu in the TRACE32 GUI. It contains
the following entries:

MMU Table List This entry causes a window showing the current state of the MMU tables for the current
CPU to be displayed. In eCos, all CPUs should be using the same shared table.

Load eCos.t32 This loads the TRACE32 eCos RTOS specialization extension. This file should be
copied out of the TRACE32 installation into the working directory. Note that depending
on the version of TRACE32 in use, the eCos RTOS support may not be fully SMP-
aware, so some information it displays in SMP application may be a little misleading.
See the Lauterbach documentation on the RTOS debugger for eCos for more details of
the functionality available.

Display Threads Displays a list of current threads. In recent versions of TRACE32 the current thread on
each CPU will be marked RUNNING with the CPU number beside it in parentheses.
However, CPU affinity is not currently displayed.

Display Scheduler Displays state of scheduler. Only those parts of the scheduler state common between
single and multi-core systems will be displayed.

Display Thread Stacks Displays a summary of stack usage for all threads. This includes the stack limits, current
SP, and the maximum amount of stack each thread has used.

2678

Raspberry Pi Board Support

Reset Board Reset the board. This requires an attachment between the SRST pin of the JTAG cable
and the RUN pin on the Raspberry Pi board. If you are using an eCosCentric TAP-HAT
adaptor, then the two pin header needs to be soldered in to the RUN-PEN holes on the
Raspberry Pi board and the micro-probe lead connected between the centre SRST pin
and the RUN pin.

(Re-)Attach After the RPi has been reset, this entry will re-attach TRACE32 to the board. Typically
it will be executing in RedBoot.

Disable MMU This will disable the MMU and Caches, which may be useful during development if an
un-mapped view of memory is required. Any halted program cannot be restarted once
this has been done.

Save Breakpoints This entry saves the current set of breakpoints to breakpoints.cmm. The contents of
this file is saved amd reloaded whenever an application file is loaded and allows break-
point settings to be preserved across restarts of TRACE32. This menu entry provides an
alternative way to save the current breakpoints. prior to exiting TRACE32 for example.

Load APP.ELF This entry disables the caches and MMU, loads the file app.elf from the current
directory, and loads any breakpoints from breakpoints.cmm. This is the menu entry
that should be used to load and run SMP applications for development and testing. The
breakpoints.cmm file allows a set of current breakpoints to be saved using the Store
button on the breakpoint list window and have them reloaded automatically each time
the application is reloaded.

Load APP.ELF Syms+Bkpts This entry loads just the symbol tables and debug information from the application and
also loads breakpoints from breakpoints.cmm. This is useful if the application is
already running when TRACE32 is attached. For example if it is a ROM startup appli-
cation that has been loaded from the SD card, or an SMP startup application that was
loaded by RedBoot.

Load REDBOOT.ELF This does exactly the same thing as the Load APP.ELF menu entry except that it loads
redboot.elf. This has been useful in debugging RedBoot.

Load REDBOOT.ELF Syms
+Bkpts

This does exactly the same thing as the Load APP.ELF Syms+Bkpts menu entry except
that it loads symbold from redboot.elf.

2679

Raspberry Pi Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The Raspberry Pi platform HAL package is loaded automatically when eCos is configured for any RPi target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup
The platform HAL package supports four separate startup types:

RAM This startup type is normally used during application development when using the RedBoot ROM monitor. arm-eabi-
gdb is used to load the RAM startup application into memory and debug it. It is assumed that the hardware has already
been initialized by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain services
from RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be booted direct from the SD card. The application
will be self-contained with no dependencies on services provided by other software. eCos startup code will perform
all necessary hardware initialization. This startup type can also be used for applications loaded via JTAG for testing
prior to committing to an SD card.

JTAG This startup type can be used for finished applications that are to be loaded by a JTAG debugger. The application will
be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization. This startup type can also be used for applications loaded via JTAG.

SMP This startup type can be used for finished applications that can be loaded into RAM via RedBoot or via a JTAG
debugger. The load address is set to the same as for RAM applications, however, the application will be self-contained
with no dependencies on services provided by other software. eCos startup code will perform all necessary hardware
initialization. Once started, this application takes full control of the system and RedBoot will not be called again.
This means that debugging via RedBoot will not be possible, only JTAG-based hardware debugging is supported. The
intent of this startup type is to allow SMP test programs to be run from RedBoot, most SMP applications should use
the ROM startup type.

The main difference between ROM, JTAG and SMP startup types is the address at which they are loaded. ROM applications
load at 0x00008000, which is the default address used by the GPU boot loader. JTAG applications load at 0x00100000, leaving
the lower 1MiB free for a ROM RedBoot. This is necessary because in multi-core systems, the secondary cores will be looping
in code in the RedBoot executable, and we don't want to overwrite that, since it may cause these cores to run wild. SMP
applications load at 0x00200000, leaving the lower 2MiB free. This allows either a ROM or JTAG RedBoot to be used to load
it without affecting the secondary cores. For the same reasons, RAM applications also load at the 0x00200000 boundary.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

UART Serial Driver
The auxiliary mini UART is 16550 compatible and is supported by the CYGPKG_IO_SERIAL_GENERIC_16X5X generic
driver package which is modified by the CYGPKG_IO_SERIAL_ARM_BCM283X driver package for the Raspberry Pi family.

2680

Raspberry Pi Board Support

By default the UART used only the TXD0 and RXD0 pins connected to GPIO14 and GPIO15 on the GPIO header. While
RTS and CTS could be made available on GPIO16 and GPIO17, this is not currently supported since these pins are better left
for other purposes. The mini UART is also lacking some 16550 functionality, it is only capable of 7 or 8 bit characters, and
only supports one stop bit and no parity; attempts to select other settings will be accepted, but will have no effect. Since the
TXD0 and RXD0 pins are not at RS232 levels it is necessary to either connect an RS232 transceiver to them or, more usually,
an FTDI USB serial convertor module.

SPI Driver
SPI0 is supported by the CYGPKG_DEVS_SPI_ARM_BCM283X. The auxiliary SPI1 and SPI2 devices are not currently
supported. By default the MISO, MOSI and SCLK signals are connected to GPIO9, GPIO10 and GPIO11 respectively. The
chip select signals are connected to GPIO7 and GPIO8. These pins are managed in GPIO mode, so it is possible to add extra
SPI devices by assigning additional GPIO pins to act as chip select lines.

I²C Driver
I2C1 is supported by the CYGPKG_DEVS_I2C_BSC driver. The SDA1 and SCL1 signals are connected to GPIO2 and GPIO3
pins. I2C0 is used by the GPU to operate the ID_SD and ID_SC pins as well as the GPIO extender in the Compute Modules;
I2C2 is dedicated to the HDMI interface; so neither of these is available for use.

PWM Driver
PWM is supported by the CYGPKG_DEVS_PWM_BCM driver. The PWM device supports two channels connected to four pins
available on the GPIO header. Channel 0 is connected to GPIO12 and GPIO18, pins 12 and 32 on the GPIO header. Channel
1 is connected to GPIO13 and GPIO19, pins 33 and 35 on the GPIO header. Note that some of these may clash with other uses
of the same pins, particularly GPIO19 which is also SPI MISO.

USB Support
USB is supported by the CYGPKG_IO_USB package USB protocol stack together with the CYGPKG_DEVS_USB_DWC host
controller driver. The stack will recognize and support the USB hub component of the LAN951X/LAN7515 when it is available
on the board, together with any hubs that might be plugged in to that. The stack currently only supports CONTROL and BULK
transfer types, INTERRUPT and ISOCHRONOUS transfers are not supported. The host controller driver currently supports
High, Fast and Low speed devices. USB support is currently oriented towards supporting USB mass storage devices, serial
devices including CDC/ACM and FTDI serial adaptors, and the LAN951X/LAN7515 Ethernet component.

Ethernet Driver
Support for the LAN951X/LAN7515 Ethernet component is provided by the CYGPKG_DEVS_ETH_LAN951X driver. This
driver is dependent on the USB stack and can only be configured if the USB stack is also present. This driver is also not active
until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

The option CYGPKG_DEVS_ETH_LAN951X_SHORT_CIRCUIT controls whether the Ethernet driver uses the Raspberry Pi
board type to decide whether the board contains an Ethernet device. If it does not, then initialization of the driver and the entire
network stack is prevented, saving startup time. This option can be misled if, for example, a Compute Module is plugged in
to a carrier board that has a LAN951X/LAN7515 installed. So by default the option is only enabled for RedBoot builds, and
not for eCos builds, where the user is expected to know what they are doing. If the default is not as reqired, it can be changed
in the ConfigTool.

WiFi Driver
Support for the wireless network is provided by the CYGPKG_NET_WIFI_BROADCOM_WWD driver. The majority of the
wireless configuration is fixed based on the RPi platform configured with no user configuration required. It is enabled by
default when the appropriate packages are included in the configuration.

The WiFi chipsets used in the Raspberry Pi platforms require 3rd-party binary firmware images for correct operation. See the
WICED specific Chipset Firmware section for details covering the RPi specific images.

2681

Raspberry Pi Board Support

The option CYGPKG_HAL_ARM_CORTEXA_PI_WICED_DCT controls whether the WICED Device Configuration Tables
(DCT) support is enabled. The enabled functionality can be used by the WICED SDK, and the application world, to hold
persistent WiFi configurations.

MMC/SD Driver
Support for the SD/MMC socket is provided by the CYGPKG_DEVS_MMCSD_SDHOST driver. This uses the Broadcom SD-
HOST controller; the Arasan SDHCI controller is not currently supported, although in future it will be used for the CYW43438
WiFi device on the Pi3 and CM3. On the compute modules, this same driver provides access to the eMMC device.

The MMC/SD bus driver layer (CYGPKG_DEVS_DISK_MMC) is automatically included as part of the hardware-specific con-
figuration for these targets. All that is required to enable MMC/SD support is to include the generic disk I/O infrastructure
package (CYGPKG_IO_DISK), along with the intended filesystem, typically, the FAT filesystem (CYGPKG_FS_FAT) and
any of its package dependencies (including CYGPKG_LIBC_STRING and CYGPKG_LINUX_COMPAT for FAT).

While earlier variants of the Raspberry Pi had a card detect signal from the SD card socket attached to a GPIO line, this has
been dropped in later variants. It also makes no sense for the permanently connected eMMC devices on the compute modules.
Therefore, card detection is not currently supported on any RPi boards, so the disk IO layer's removable media support cannot
detect card insertion or removal, and the FILEIO layer's automounter cannot currently be used.

GPIO Support
GPIO support is provided by the BCM283X variant HAL , and is documented there. The GPIO API is built around descriptors
that encode a GPIO pin number together with its function (IN, OUT or device function) and mode into a single 32 bit value.
The mode includes edge and level interrupt recognition and pull up and down settings. The eCosPro subsystem also decoded
all GPIO interrupts into separate vectors.

Frequency Control
eCos does not contain any support for dynamic frequency management in the same way that Linux does. The CPUs run at a
single frequency throughout. Normally this is the maximum frequency permitted without overclocking. A different frequency
may be selected in the configuration, or it may be set at runtime by calling hal_bcm283x_set_freqencies(). See the
BCM283X HAL for details.

The option CYGHWR_HAL_ARM_CORTEXA_BCM283X_ARM_FREQ defines the frequency in MHz at which the ARM CPU
will run. For RAM startup types, the default value of zero will cause the application to continue using the frequency set up by
RedBoot. For other startup types, a value of zero will cause the HAL to select a default frequency based on the board type. A
non zero value will force the CPU frequency to the given value.

The option CYGHWR_HAL_ARM_CORTEXA_BCM283X_CORE_FREQ defines the frequency in MHz at which the GPU will
run. For RAM startup types, the default value of zero will cause the application to continue using the frequency set up by
RedBoot. For other startup types, a value of zero will cause the HAL to select a default frequency based on the board type. A
non zero value will force the CPU frequency to the given value.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. The following flags
are specific to this port:

-mcpu=arm1176jzf-s The arm-eabi-gcc compiler supports many variants of the ARM architecture. A -m op-
tion should be used to select the specific variant in use. For the BCM2835 variants that
contain a single ARM11 CPU, (Pi0, Pi1, CM1), this option should be selected.

-mcpu=cortex-a7 For the BCM2836, containing 4 Cortex-A7 CPUs and the BCM2837, containing four
Cortex-A53 CPUs, this option should be selected. While the Cortex-A53 is strictly a
ARM64 CPU, we can only use it in ARM32 mode, where it supports the same instruction
set as the Cortex-A7. So, for simplicity we use the same option for both.

2682

Raspberry Pi Board Support

-mthumb The arm-eabi-gcc compiler will compile C and C++ files into the Thumb2 instruction
set when this option is used. The best way to build eCos in Thumb mode is to enable
the configuration option CYGHWR_THUMB.

2683

Raspberry Pi Board Support

Name
SMP Support — Usage

Overview
Support is available for SMP operation of the four CPUs available in the Pi2, Pi3 and CM3 variants. However, debugging
support is restricted to using an external SMP-aware JTAG debugger like ARM's DS-5 or a Lauterbach Power Debug probe.
RedBoot does not have support for multi-core debugging.

A board intended to be used for SMP development should be initialized in the same way as a single core board by installing
the same standard RedBoot SD card image.

SMP support is enabled by setting CYGPKG_KERNEL_SMP_SUPPORT to true. SMP applications should only be built using
either ROM, JTAG or SMP startup types. ROM applications can be loaded from the SD card in place of RedBoot. The SMP
startup is identical to a ROM startup except that the load address is set to allow the application to be loaded into a higher
location in RAM from RedBoot. All application types may also be loaded via a JTAG debugger.

Loading an SMP startup application via RedBoot can be done from the RedBoot command line via serial. It may also be
loaded via a GDB connection on serial. However, once started running the SMP application will take full control of the system,
including redirecting all interrupt sources, exception vectors and virtual vector table entries. This means that RedBoot will no-
longer be active. Any breakpoints planted by GDB will result in an exception to the application, Ctrl-C will not work, any
Ethernet connections will be lost and serial output will come from the application in plain ASCII. Any GDB connection will
be lost and GDB may start reporting packet errors.

It is possible to load an SMP startup program via GDB and have its output displayed on the GDB console. To do this set
CYGSEM_HAL_DIAG_MANGLER to "GDB", and CYGDBG_HAL_DIAG_TO_DEBUG_CHAN to 1. The application will still
not be controllable from GDB, but this does simplify the running of test code; avoiding the need to disconnect GDB and connect
a terminal emulator to capture or view the output.

SMP development has been tested using the Lauterbach TRACE32 debugger. While DS-5 should also work, given appropriate
configuration, this has never been tested. GDB working through a JTAG debugger such as OpenOCD may work, but support
for debugging multiple cores is poor.

2684

Raspberry Pi Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Raspberry Pi hardware, and should
be read in conjunction with that specification. The platform HAL package complements the ARM architectural HAL, the
Cortex-A variant HAL and the BCM283X variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM This is located at address 0x00000000 of the physical memory space. The HAL config-
ures the MMU to retain the SDRAM at virtual address 0x00000000 with caching en-
abled. The same memory is also accessible uncached and unbuffered at virtual location
0x80000000 for use by device drivers. ROM applications are loaded by the GPU start-
ing at 0x000008000. Memory is required for the MMU tables, and must be aligned on a
16Kbyte boundary. These therefore occupy memory from 0x00004000 to 0x00008000,
just below the load address. Interrupt and exception vectors are placed at 0x00000000
and the virtual vectors occupy 256 bytes at 0x00000050. For ROM startup, all remain-
ing SDRAM above 0x00008000 is available. JTAG startup applications are loaded from
0x00100000, leaving the bottom 1MiB unused. RAM and SMP startup applications are
loaded from location 0x00200000, reserving 2MiB.

Boards with 256MiB or 512MiB of SDRAM will only occupy the least significant por-
tion of this region. Accesses beyond the limit of physical memory will raise an excep-
tion. On boards with 1GiB, the peripheral registers overlay the top 16MiB of SDRAM,
so not all the SDRAM is available. In all boards, the GPU must reserve a portion of
SDRAM. Since eCos does not currently make use of the GPU, the minimum possible
16MiB is reserved. So, the smaller boards have a maximum of 240MiB and 496MiB
RAM available, and the 1GiB boards have a maximum of 992MiB available. The GPU
reserved region depends on the contents of config.txt at boot time, so these figures
should not be relied upon. Applications should rely on eCos to manage the quantity of
RAM available, or can use the macro HAL_MEM_REAL_REGION_TOP(0) to discov-
er the actual size of the SDRAM available.

Peripheral Registers These occupy a 16MiB physical address space at either 0x20000000 for the BCM2835
based systems or at 0x3F000000 for BCM2836 and BCM2837 based systems. The
MMU is used to unify these disparate mappings by relocating both, uncached, to
0x50000000.

Multicore Peripheral Registers These are only present in the BCM2836 and BCM2837 based systems and contain
hardware that is only applicable to these multicore devices. This 1MiB area is identity
mapped uncached at 0x40000000.

The virtual address space visible to applications is summarized in the following table. Any address range not mentioned here
should not be accessed and will raise an exception if it is.

Base Size (MiB) Cache Description

0x00000000 1008 Enabled Normal SDRAM access -- to limit of physical RAM, raises an excep-
tion beyond that.

2685

Raspberry Pi Board Support

Base Size (MiB) Cache Description

0x40000000 1 Disabled Multicore registers -- multicore systems only, raises an exception in
single core systems.

0x50000000 16 Disabled Peripheral registers.

0x80000000 1008 Disabled Uncached SDRAM access -- to limit of physical RAM, raises an ex-
ception beyond that.

Real-time Characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM32 mode and run in non-SMP mode on a Raspberry Pi3. The
BCM283X is a high performance processor, but its general purpose timer is only clocked at 1Mhz. This results in microsecond
level resolution which is insufficient precision for the timing of many eCos kernel operations.

Example 281.1. Raspberry Pi3 Real-time characterization

 Startup, main thrd : stack used 388 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 96 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 3.00 microseconds (3 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 1.25 1.00 2.00 0.38 75% 75% Create thread
 0.44 0.00 1.00 0.49 56% 56% Yield thread [all suspended]
 0.53 0.00 1.00 0.50 53% 46% Suspend [suspended] thread
 0.47 0.00 1.00 0.50 53% 53% Resume thread
 0.52 0.00 1.00 0.50 51% 48% Set priority
 0.33 0.00 1.00 0.44 67% 67% Get priority
 0.69 0.00 1.00 0.43 68% 31% Kill [suspended] thread
 0.47 0.00 1.00 0.50 53% 53% Yield [no other] thread
 0.55 0.00 1.00 0.50 54% 45% Resume [suspended low prio] thread
 0.48 0.00 1.00 0.50 51% 51% Resume [runnable low prio] thread
 0.53 0.00 1.00 0.50 53% 46% Suspend [runnable] thread
 0.44 0.00 1.00 0.49 56% 56% Yield [only low prio] thread
 0.45 0.00 1.00 0.50 54% 54% Suspend [runnable->not runnable]
 0.69 0.00 1.00 0.43 68% 31% Kill [runnable] thread
 0.63 0.00 1.00 0.47 62% 37% Destroy [dead] thread
 0.94 0.00 1.00 0.12 93% 6% Destroy [runnable] thread
 1.47 1.00 2.00 0.50 53% 53% Resume [high priority] thread
 0.67 0.00 1.00 0.44 67% 32% Thread switch

 0.34 0.00 1.00 0.45 65% 65% Scheduler lock
 0.41 0.00 1.00 0.48 59% 59% Scheduler unlock [0 threads]

2686

Raspberry Pi Board Support

 0.43 0.00 1.00 0.49 57% 57% Scheduler unlock [1 suspended]
 0.38 0.00 1.00 0.47 61% 61% Scheduler unlock [many suspended]
 0.45 0.00 1.00 0.49 55% 55% Scheduler unlock [many low prio]

 0.34 0.00 1.00 0.45 65% 65% Init mutex
 0.47 0.00 1.00 0.50 53% 53% Lock [unlocked] mutex
 0.47 0.00 1.00 0.50 53% 53% Unlock [locked] mutex
 0.47 0.00 1.00 0.50 53% 53% Trylock [unlocked] mutex
 0.41 0.00 1.00 0.48 59% 59% Trylock [locked] mutex
 0.34 0.00 1.00 0.45 65% 65% Destroy mutex
 1.00 1.00 1.00 0.00 100% 100% Unlock/Lock mutex

 0.38 0.00 1.00 0.47 62% 62% Create mbox
 0.47 0.00 1.00 0.50 53% 53% Peek [empty] mbox
 0.47 0.00 1.00 0.50 53% 53% Put [first] mbox
 0.34 0.00 1.00 0.45 65% 65% Peek [1 msg] mbox
 0.50 0.00 1.00 0.50 100% 50% Put [second] mbox
 0.34 0.00 1.00 0.45 65% 65% Peek [2 msgs] mbox
 0.44 0.00 1.00 0.49 56% 56% Get [first] mbox
 0.50 0.00 1.00 0.50 100% 50% Get [second] mbox
 0.44 0.00 1.00 0.49 56% 56% Tryput [first] mbox
 0.50 0.00 1.00 0.50 100% 50% Peek item [non-empty] mbox
 0.44 0.00 1.00 0.49 56% 56% Tryget [non-empty] mbox
 0.50 0.00 1.00 0.50 100% 50% Peek item [empty] mbox
 0.41 0.00 1.00 0.48 59% 59% Tryget [empty] mbox
 0.34 0.00 1.00 0.45 65% 65% Waiting to get mbox
 0.34 0.00 1.00 0.45 65% 65% Waiting to put mbox
 0.38 0.00 1.00 0.47 62% 62% Delete mbox
 1.00 1.00 1.00 0.00 100% 100% Put/Get mbox

 0.34 0.00 1.00 0.45 65% 65% Init semaphore
 0.53 0.00 1.00 0.50 53% 46% Post [0] semaphore
 0.50 0.00 1.00 0.50 100% 50% Wait [1] semaphore
 0.53 0.00 1.00 0.50 53% 46% Trywait [0] semaphore
 0.44 0.00 1.00 0.49 56% 56% Trywait [1] semaphore
 0.34 0.00 1.00 0.45 65% 65% Peek semaphore
 0.34 0.00 1.00 0.45 65% 65% Destroy semaphore
 0.91 0.00 1.00 0.17 90% 9% Post/Wait semaphore

 0.38 0.00 1.00 0.47 62% 62% Create counter
 0.34 0.00 1.00 0.45 65% 65% Get counter value
 0.34 0.00 1.00 0.45 65% 65% Set counter value
 0.50 0.00 1.00 0.50 100% 50% Tick counter
 0.34 0.00 1.00 0.45 65% 65% Delete counter

 0.34 0.00 1.00 0.45 65% 65% Init flag
 0.47 0.00 1.00 0.50 53% 53% Destroy flag
 0.41 0.00 1.00 0.48 59% 59% Mask bits in flag
 0.44 0.00 1.00 0.49 56% 56% Set bits in flag [no waiters]
 0.50 0.00 1.00 0.50 100% 50% Wait for flag [AND]
 0.41 0.00 1.00 0.48 59% 59% Wait for flag [OR]
 0.53 0.00 1.00 0.50 53% 46% Wait for flag [AND/CLR]
 0.41 0.00 1.00 0.48 59% 59% Wait for flag [OR/CLR]
 0.34 0.00 1.00 0.45 65% 65% Peek on flag

 0.38 0.00 1.00 0.47 62% 62% Create alarm
 0.44 0.00 1.00 0.49 56% 56% Initialize alarm
 0.47 0.00 1.00 0.50 53% 53% Disable alarm
 0.50 0.00 1.00 0.50 100% 50% Enable alarm
 0.53 0.00 1.00 0.50 53% 46% Delete alarm
 0.50 0.00 1.00 0.50 100% 50% Tick counter [1 alarm]
 1.16 1.00 2.00 0.26 84% 84% Tick counter [many alarms]
 0.72 0.00 1.00 0.40 71% 28% Tick & fire counter [1 alarm]
 4.19 4.00 5.00 0.30 81% 81% Tick & fire counters [>1 together]
 1.50 1.00 2.00 0.50 100% 50% Tick & fire counters [>1 separately]
 2.80 2.00 3.00 0.31 80% 19% Alarm latency [0 threads]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [2 threads]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [many threads]
 3.00 3.00 3.00 0.00 100% 100% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

2687

Raspberry Pi Board Support

 1.01 1.00 2.00 0.00 Clock DSR latency

 226 144 272 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 820 size 1792
 All done : Interrupt stack used 156 size 4096
 All done : Idlethread stack used 240 size 1280

Timing complete - 29830 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The BCM283X processor
HAL and the ARM architectural HAL documentation should be consulted for further details.

2688

Raspberry Pi Board Support

Name
RedBoot Extensions — Usage

Overview
The Raspberry Pi version of RedBoot provides a number of extensions to the standard RedBoot behaviour. These include the
execution of a startup script and some extra commands.

Startup Script
Unlike most RedBoot instances, the Raspberry Pi always has access to a storage device containing a file system. It is also useful
for JTAG debugging to be able to have some dynamic hardware initialization. So, on startup RedBoot attempts to mount the
boot partition on the SD card and execute the contents of a script file.

The script file is named redboot.txt and consists of a sequence of RedBoot commands separated by newlines. Blank lines
are ignored. Comments are introduced by the a hash character (#) and extend to the end of the current line.

RedBoot waits 1 second before executing the script, during which time the user may type a Ctrl-C character to abort execution
of the script. This time may be changed by rebuilding RedBoot with a different CYGNUM_REDBOOT_BOOT_SCRIPT_DE-
FAULT_TIMEOUT value.

Other ports of RedBoot are typically flash memory resident and use the flash as a persistant store for RedBoot configuration
information and files. You will find these areas referred to as the fconfig area and flash image system (FIS) within the RedBoot
documentation. As the redboot.txt script file can contain any standard RedBoot command, as well as the additional
Raspberry Pi commands described below, you can use it to configure any settings that would normally be stored in the fconfig
area. For example, you could set a static IP address for the board with the ip_address command:

ip_address -l 192.168.1.100/24

To modify the redboot.txt file simply mount the SD card on a PC. You will find redboot.txt in the root directory
of the boot partition.

INFO Command
The info command provides information about the current Raspberry Pi board. RedBoot, and eCos, discover the type of board
and its properties at runtime. This command reports what has been found out. As an example, the output for a Pi3 would
appear as follows:

RedBoot> info
Board Model = 00000000
Board Revision = 00a02082
 Model = B3
 Version = 1.2
 CPU = BCM2837 - Cortex-A53
 RAM = 1024MiB
 Flags = 07 Ethernet WiFi Bluetooth
Board Serial = 000000009330d07b
MAC Address = b8:27:eb:30:d0:7b
SDRAM Size = 3e600000
DMA Channels = 0 2 4 5 8 9 10 11 12 13 14
Temperatures:
 Current = 49.388 C
 Maximum = 85.000 C
Clocks:
 ARM = 1200 MHz (min/orig/max: 600/600/1200 MHz)
 Core = 400 MHz (min/orig/max: 250/250/400 MHz)
 Timer = 1 MHz
 UART0 = 48 MHz
 EMMC = 200 MHz
RedBoot>

And for a Pi0:

RedBoot> info

2689

Raspberry Pi Board Support

Board Model = 00000000
Board Revision = 00900092
 Model = 0
 Version = 1.2
 CPU = BCM2835 - ARM11
 RAM = 512MiB
 Flags = 00
Board Serial = 00000000e868b4c6
MAC Address = b8:27:eb:68:b4:c6
SDRAM Size = 1f000000
DMA Channels = 0 2 4 5 8 9 10 11 12 13 14
Temperatures:
 Current = 29.324 C
 Maximum = 85.000 C
Clocks:
 ARM = 1000 MHz (min/orig/max: 700/700/1000 MHz)
 Core = 400 MHz (min/orig/max: 250/250/400 MHz)
 Timer = 1 MHz
 UART0 = 48 MHz
 EMMC = 200 MHz
RedBoot>

FREQ Command
The freq command provides information and control over the ARM CPU frequency and the system CORE frequency. The -
a option allows the ARM frequency to be changed and the -c option allows the system CORE frequency to be changed. In
both cases the frequency is expressed in MHz. The command finishes by reporting the clock frequencies in the same format
as the info command. For example on a Pi3:

RedBoot> freq

 Clocks:
 ARM = 1200 MHz (min/orig/max: 600/600/1200 MHz)
 Core = 400 MHz (min/orig/max: 250/250/400 MHz)
 Timer = 1 MHz
 UART0 = 48 MHz
 EMMC = 200 MHz
RedBoot> freq -a 800
Set ARM frequency to 800 MHz
Clocks:
 ARM = 800 MHz (min/orig/max: 600/600/1200 MHz)
 Core = 400 MHz (min/orig/max: 250/250/400 MHz)
 Timer = 1 MHz
 UART0 = 48 MHz
 EMMC = 200 MHz
RedBoot> freq -c 300
Set CORE frequency to 300 MHz
Clocks:
 ARM = 800 MHz (min/orig/max: 600/600/1200 MHz)
 Core = 300 MHz (min/orig/max: 250/250/400 MHz)
 Timer = 1 MHz
 UART0 = 48 MHz
 EMMC = 200 MHz
RedBoot>

GPIO Command
The gpio command provides information and control of the GPIO pins available in the BCM283X. The command supports
a number of sub-commands:

gpio get [pin] Print the state of a given GPIO pin, or if no pin is given, it prints the state of all pins.
The information printed for each pin includes the alternate function value and the name
of the function selected, mode setting bits, and the current input level.

gpio in <pin> Reports the current input level of the pin, 0 or 1.

gpio monitor [-m <msec>] <pin> Monitor a given pin for changes and print the value every second. The -m option allows
the monitoring interval to be changed to the given number of milliseconds.

2690

Raspberry Pi Board Support

gpio out -0|-1 <pin> Set the output of the given pin to 0 (-0) or 1 (-1). The pin may need to be set to output
mode with gpio set before any effect can be seen.

gpio set [-i|-o|-a <alt>] <pin> Set the function of a given pin. It can be set to INPUT with the -i option, OUTPUT
with the -o option or to one of six alternate function with the -a option.

gpio table Print a table of all GPIO pins and the names of the alternate functions they can take. The
current setting of the pin is indicated by an asterisk against the relevant alternate setting.
If no asterisk is present then the pin is in GPIO mode.

gpio toggle [-m <msec>] <pin> Toggle a pin at a 1 second period with a 50% duty cycle. The -m option allows the
toggling to occur with the given period in milliseconds. The pin may need to be set to
output mode with gpio set before any effect can be seen.

JTAG Command
The jtag command provides direct support for setting up the JTAG debug pins and querying their state. The arguments to this
command are a list of pin numbers. Each of these GPIO pins is put into its JTAG function. Only those pins that can be used
for JTAG operation may be entered; at present these are GPIO4 to GPIO6, GPIO12, GPIO13 and GPIO22 to GPIO27. On
completion the command lists the pins that are in JTAG mode. If no pins are given, then the current JTAG pin assignments are
listed. Pins may be disabled by preceeding them with a hyphen; this puts the pin into GPIO input mode.

The selection of JTAG pins to use may depend on the functionality of any HATs or other hardware attached to the GPIO
header. It may be necessary to mix and match pins to get a complete set. In some situations it may not be possible to find a set
of pins that will work, in which case you may need to use serial debugging only.

The following table defines the possible GPIO pin alternatives for the JTAG signals, as well as their mapping on to the 40-
way expansion bus used on standard RPi boards. Each JTAG signal has two alternative mappings, apart from TRST which can
only be set to GPIO pin 22. Note that RTCK is not required or supported by all JTAG debuggers and may not need to be set.

JTAG Signal Alt 4 GPIO pin (Alt 4 40-way pin) Alt 5 GPIO pin (Alt 5 40-way pin)

TDI 26 37 4 7

TRST 22 15 n/a n/a

TDO 24 18 5 29

TCK 25 22 13 33

TMS 27 13 12 32

RTCK 23 16 6 31

For example, the jtag command used in the default redboot.txt file, sets and reports the BCM pins as follows:

RedBoot> jtag 4 22 24 25 27
PIN FUNC
 22 ARM_TRST
 23 ARM_RTCK
 24 ARM_TDO
 25 ARM_TCK
 26 ARM_TDI
 27 ARM_TMS

LED Command
The led command controls the behaviour of the board's ACT LED. By default RedBoot blinks the LED at 1 Hz with a 50%
duty cycle; this serves as an indicator that RedBoot is up and running when the serial line is not connected. It takes one of
three argument values. on disables blinking and switches the LED on. off also disables blinking and switches the LED off.
blink re-enables the 1Hz blinking. Note that these setting only apply when RedBoot is running. Once and application has
been loaded and is running, control of the LED passes to it.

2691

Raspberry Pi Board Support

USB Command
The usb command prints out some information from the USB stack. This includes some gathered statistics and information
on each of the USB devices currently attached to the USB bus.

2692

Chapter 282. Virtual Machine Support

2693

Virtual Machine Support

Name
eCos Support for ARM Virtual Machines — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on ARM Aarch32 Virtual Machines running under
a variety of hypervizors. It supports Virtual Machines using a limited number of real device emulations as well as some
VirtIO based devices. This package contains things that are common to all VM targets. An additional package is needed to
customize support for a specific hypervizor. At present virtual machines running under QEMU and Xvisor are supported by
these packages.

eCos applications are typically developed using the host-based gdb debugger, communicating with a "gdb stub" built-in to
either RedBoot or the hypervisor. For RedBoot-based development, the VM is set up to boot into RedBoot either from a ROM
image or from an image inserted into RAM from the hypervisor. RedBoot incorporates a gdb stub that enables eCos applications
to be downloaded and debugged either via a serial line or over Ethernet. When running under QEMU, such applications may
also be debugged using QEMU's GDB stub interface.

Support for SMP operation is available, although debugging support is limited. There is no SMP debug support in RedBoot.
The emulated virtual GIC supports up to eight CPUs, eCos is therefore limited to a maximum of eight CPUs..

Finished eCos ROM startup applications can be deployed directly by a hypervisor, copying its image into a VM and booting
the VM.

This documentation is expected to be read in conjunction with the ARM architecture HAL documentation and the hypervisor
specific packages.

Supported Hardware
eCos currently runs in single processor or multi-processor modes on an ARM Aarch32 Virtual Machine. The following devices
are currently supported by this and other generic packages.

Generic Interrupt Controller The ARM GIC is used to handle interrupts. The GIC needs to be memory-mapped. The
mapping of interrupt vectors is handled by a hypervisor specific package.

Generic Timer The ARM architecture Generic Timer is used to supply the system timer. eCos used the
virtual counter and timer in order to insulate it from hypervisor scheduling. The timer
is accessed through the CP15 register set.

Emulated UART ARM PL011 UART macrocell. Most ARM hypervisors support an emulation of this
device and drivers are available in RedBoot and eCos to support it.

VirtIO Console Support for the VirtIO console device class is present in both RedBoot and eCos.

VirtIO NET Ethernet access is via a VirtIO NET device. The hypervisor is then responsible for rout-
ing packets to other VMs or an external network connection.

VirtIO RPMSG Support is present for using a VirtIO RPMSG interface. This supports the RPMSG sub-
system library to present a standard RPMSG API to user applications.

In general, devices are initialized only as far as is necessary for eCos to run. Other devices are not touched unless the appropriate
driver is loaded. Further devices may be supported by the hypervisor specific HAL package and additional device drivers.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 7.3.0, arm-eabi-gdb version 8.1, and binutils version 2.30.

2694

Virtual Machine Support

Name
Configuration — Platform-specific Configuration Options

Overview
The Virtual Machine platform HAL package is loaded automatically when eCos is configured for any virtual target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

SMP Support
SMP support is limited to a maximum of eight CPUs by the design of the ARM GIC. The exact number of CPUs that eCos
supports is defined by the CYGNUM_HAL_ARM_CORTEXA_VIRTUAL_CPU_COUNT configuration option. The default value
for this option is four, but each hypervisor package may set this to a value that corresponds to the number of CPUs configured
by the hypervisor. It may also be changed by the user within certain constraints.

eCos does not handle dynamic configuration of CPUs and cannot detect the number of CPUs present at startup. So the value
specified for CYGNUM_HAL_ARM_CORTEXA_VIRTUAL_CPU_COUNT should never exceed the number of CPUs configured
by the hypervisor. It should be possible to run eCos with fewer CPUs than the hypervisor configures, since any extra CPUs
will not be started. However, this is hypervisor dependent, see the documentation on each hypervisor for details.

UART Serial Driver
There are two common serial devices supported for the VM. The ARM PL011 macrocell is supported by a serial driver and as
a command line input for RedBoot. The VirtIO console driver is similarly supported by a driver and as a RedBoot input; it is
dependent on the VIRTIO driver and can only be configured if VIRTIO driver is also present.

Ethernet Driver
Support for the VirtIO NET device is provided by the CYGPKG_DEVS_ETH_VIRTUAL driver. This driver is dependent on
the VIRTIO driver and can only be configured if the VIRTIO driver is also present. This driver is also not active until the
generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

RPMSG Driver
Support for a VirtIO RPMSG interface is present in package CYGPKG_DEVS_RPMSG_VIRTUAL. This driver is dependent
on the VIRTIO driver and can only be configured if the VIRTIO driver is also present.

The RPMSG driver is accessed via the RPMSG API library, details of which may be found here.

VirtIO Driver
Support for generic VirtIO devices is provided by the VIRTIO driver (CYGPKG_DEVS_VIRTIO). This provides the generic
initialization and management of queues common to all VirtIO devices.

2695

Virtual Machine Support

The VirtIO driver is not normally accessed directly from applications, but only from client device drivers. For reference, details
of the VirtIO driver may be found here.

2696

Virtual Machine Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the ARM Aarch32 Virtual Machine, and
should be read in conjunction with that specification. The platform HAL package complements the ARM architectural HAL,
the Cortex-A variant HAL and the VIRTUAL variant HAL. It provides functionality which is specific to the target board.

Startup
Following a reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for RAM startup
applications which depend on a ROM monitor for certain services.

2697

Chapter 283. QEMU Virtual Machine
Support

2698

QEMU Virtual Machine Support

Name
eCos Support for QEMU Virtual Machines — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on ARM Aarch32 Virtual Machines running under
QEMU. While QEMU is capable of emulating a variety of real board and devices, this package specifically supports running
eCos using the generic "virt" target. As such it is similar to a VM running under a hypervisor on a real host and is treated as
such here. It supports Virtual Machines using a limited number of real device emulations as well as some VirtIO based devices.

eCos applications are typically developed using the host-based gdb debugger, communicating with a "gdb stub" built-in to
either RedBoot or QEMU. For RedBoot-based development, the VM is set up to boot into RedBoot either from a ROM image
or from an image inserted into RAM when QEMU was started. RedBoot incorporates a gdb stub that enables eCos applications
to be downloaded and debugged either via a serial line or over Ethernet. Such applications may also be debugged using QEMU's
GDB stub interface.

Support for SMP operation is available, although debugging support is restricted to use of an external debugger connected to
QEMU's GDB debug port. There is no SMP debug support in RedBoot. QEMU supports up to eight CPUs in the ARM virtual
machine, by default eCos is configured to use four CPUs.

Finished eCos ROM startup applications can be deployed directly by replacing the RedBoot binary with the application binary
when QEMU is started.

This documentation is expected to be read in conjunction with the ARM architecture HAL and Virtual Machine Support
documentation; further device support and subsystems are described and documented there.

Supported Hardware
eCos currently runs in single processor mode on an ARM Aarch32 Virtual Machine. The following devices are currently
supported by this port.

Generic Interrupt Controller The ARM GIC is used to handle interrupts. The GIC needs to be memory-mapped.
Interrupt vector mapping is defined in this package.

Generic Timer The ARM architecture Generic Timer is used to supply the system timer. eCos uses the
physical counter and timer. The timer is accessed through the CP15 register set.

Emulated UART ARM PL011 UART macrocell. QEMU supports an emulation of this device and drivers
are available in RedBoot and eCos to support it.

VirtIO Console Support for the VirtIO console device class is present in both RedBoot and eCos.

VirtIO NET Ethernet access is via a VirtIO NET device. QEMU is then responsible for routing pack-
ets to other VMs or the wider network.

VirtIO RPMSG Support is present for using a VirtIO RPMSG interface. This supports the RPMSG sub-
system library to present a standard RPMSG API to user applications.

In general, devices are initialized only as far as is necessary for eCos to run. Other devices are not touched unless the appropriate
driver is loaded.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 7.3.0, arm-eabi-gdb version 8.1, and binutils version 2.30.

2699

QEMU Virtual Machine Support

Name
Setup — Preparing for eCos Development

Overview
In a typical development environment, the VM boots into the RedBoot ROM monitor. eCos applications are configured for
RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the VM therefore usually
involves arranging for a suitable RedBoot image to be executed on startup.

QEMU Installation
This section describes how to run eCos under QEMU. The reader should be familiar with QEMU, how to install it onto their
host and how to invoke it. The examples in this section describe running QEMU under Linux. This has been tested using
QEMU version 4.2.0.

eCos applications can be run under QEMU either directly or by first loading RedBoot and then using that to load and execute
the application. In both cases it is necessary to configure QEMU to emulate a virtual machine that matches the target for which
eCos has been compiled. A typical QEMU invocation is shown below.

qemu-system-arm -M virt -m 32 -nographic -s -smp cpus=8 -kernel app \
 -netdev user,id=mynet,net=10.4.0.0/24,hostfwd=tcp::9000-:9000 \
 -device virtio-net-device,netdev=mynet -device virtio-serial-device \
 -chardev socket,id=vio,host=0.0.0.0,port=4322,server,telnet,nowait \
 -device virtserialport,chardev=vio

This will run an eCos application in an Aarch32 virtual machine with the main serial port routed to standard IO. Breaking that
command line down into its components:

-M virt -m 32 -nographic -s -smp cpus=8

The -M option selects a generic ARMv7 virtual machine emulation. The -m option sets the main RAM size to 32MiB. The
-nographic suppresses use of a graphical interface, confining QEMU to a command line interface. The -s option enables
the GDB server. The -smp cpus=8 option instantiates eight CPUs. Initially only CPU0 is running and will run non-SMP
builds. If eCos is built to use more CPUs, then it will enable the additional CPUs when the scheduler starts. By default eCos
is configured to use four CPUs.

-kernel app

This specifies the application to load. The application may be either an ELF executable or a binary file. Only applications built
using the ROM startup type should be used here. This application executable should be RedBoot if it is intended to run RAM
startup application via GDB.

-netdev user,id=mynet,net=10.4.0.0/24,hostfwd=tcp::9000-:9000
-device virtio-net-device,netdev=mynet

These options set up the networking interface. In this case we are using QEMU's user networking support, which avoids the
need to set up additional interfaces on the host and does not need privileged access. This option runs the virtual machine in a
private subnet, in this case 10.4.0.0/24, which should be chosen so as not to clash with the existing network. The hostfwd
option maps the host's TCP port 9000 to the virtual machine's port 9000; which is RedBoot's telnet/GDB port. Additional port
mappings may be added if necessary.

-device virtio-serial-device
-chardev socket,id=vio,host=0.0.0.0,port=4322,server,telnet,nowait
-device virtserialport,chardev=vio

These options map the virtual machine's second serial port on to a telnet server on local port 4322.

The above command line uses standard IO for the main console. An alternative would be to attach the console to a Telnet
socket. The following additional options will do this:

-serial tcp:0.0.0.0:4321,server,telnet,nowait

2700

QEMU Virtual Machine Support

Use of telnet here provides support for the RedBoot command line interface. However, if the intention is to use GDB to
load and run applications via the console, then the telnet option should be omitted since the telnet protocol does not interact
well with the GDB protocol. The same consideration applies to the arguments for the second serial line given earlier.

For simplicity, a shell script, ecos_qemu, is available in the etc directory of the RedBoot install directory which runs an eCos
application using the options above. It is recommended that this script and the executable to be run are copied out to a working
directory. This script may be edited to adjust the arguments if a different configuration is needed. Running RedBoot using the
script under Linux, will look something like this:

$./ecos_qemu redboot.elf
APP redboot.elf
QEMU-ARGS
QEMU qemu-system-arm
CMD -M virt -m 32 -nographic -s -kernel redboot.elf -netdev user,id=mynet,net=10.4.0.0/24,
hostfwd=tcp::9000-:9000 -device virtio-net-device,netdev=mynet -device virtio-serial-device
-chardev socket,id=vio,host=0.0.0.0,port=4322,server,telnet,nowait -device virtserialport,
chardev=vio

Ctrl-A X to exit
Ctrl-A C for qemu monitor

+Ethernet eth0: MAC address 52:54:00:12:34:56
IP: 10.4.0.15/255.255.255.0, Gateway: 10.4.0.2
Default server: 10.4.0.2
DNS server IP: 10.4.0.3, DNS domain name: <null%gt;

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 14:28:56, May 26 2020

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2019 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Virtual ARM (CORTEX-A)
RAM: 0x40000000-0x42000000 [0x40458000-0x42000000 available]
RedBoot>

Rebuilding RedBoot
Typical users should never need to rebuild RedBoot. If you do intend to modify RedBoot then please note that rebuilding it
is currently only supported from the Linux command line.

The steps needed to rebuild the ROM version of RedBoot are:

$ mkdir redboot_qemu_rom
$ cd redboot_qemu_rom
$ ecosconfig new virtual_qemu redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/virrual/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the files redboot.elf and redboot.bin. Either
of these files can now be used to start RedBoot.

2701

QEMU Virtual Machine Support

Name
Configuration — Platform-specific Configuration Options

Overview

The QEMU platform HAL package is loaded automatically when eCos is configured for a QEMU target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup

The platform HAL package supports three separate startup types:

RAM This startup type is normally used during application development when using the RedBoot ROM monitor. arm-eabi-gdb
is used to load the RAM startup application into memory and debug it. It is assumed that the hardware has already been
initialized by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain services from
RedBoot, including diagnostic output.

This startup type is also used to for applications that are loaded from the RedBoot command line with the load command.

In QEMU VMs RAM applications are loaded at address 0x40500000, leaving the bottom 5MiB free for RedBoot.

ROM This startup type can be used for finished applications which will be booted direct into the VM from the hypervisor.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

In QEMU VMs ROM applications are loaded by QEMU at 0x40010000 in main RAM. The bottom 4MiB are treated
as a read-only area. ROM applications will place exception vectors, DATA and BSS starting from 0x40400000.

SMP This startup type can be used for finished applications that can be loaded into RAM via RedBoot or from the QEMU
command line. The load address is set to the same as for RAM applications, however, the application will be self-
contained with no dependencies on services provided by other software. eCos startup code will perform all necessary
hardware initialization. Once started, this application takes full control of the system and RedBoot will not be called
again. This means that debugging via RedBoot will not be possible, only external debugging via QEMU's debug port
is supported.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

UART Serial Driver

There are two serial devices supported for the VM. The ARM PL011 macrocell is supported by a serial driver and as a command
line input for RedBoot. The VirtIO console driver is similarly supported by a driver and as a RedBoot input; it is dependent
on the VIRTIO driver and can only be configured if VIRTIO driver is also present. In QEMU these serial interfaces may be
routed to a variety of host devices including stdio, TCP streams or pseudo-terminals.

2702

QEMU Virtual Machine Support

Ethernet Driver
Support for the VirtIO NET device is provided by the CYGPKG_DEVS_ETH_VIRTUAL driver. This driver is dependent on
the VIRTIO driver and can only be configured if the VIRTIO driver is also present. This driver is also not active until the
generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

RPMSG Driver
Support for a VirtIO RPMSG interface is present in package CYGPKG_DEVS_RPMSG_VIRTUAL. This driver is dependent
on the VIRTIO driver and can only be configured if the VIRTIO driver is also present.

The RPMSG driver is accessed via the RPMSG API library, details of which may be found here.

VirtIO Driver
Support for generic VirtIO devices is provided by the VIRTIO driver (CYGPKG_DEVS_VIRTIO). This provides the generic
initialization and management of queues common to all VirtIO devices.

The VirtIO driver is not normally accessed directly from application, but only from client device drivers. For reference, details
of the VirtIO driver may be found here.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. The following flags
are specific to this port:

-mcpu=cortex-a15 The QEMU virt target contains a Cortex-A15 CPU emulation.

2703

QEMU Virtual Machine Support

Name
SMP Support — Usage

Overview
Support is available for SMP operation. However, debugging support is restricted to using an external SMP-aware debugger
connected to QEMU's GDB stub port. RedBoot does not have support for multi-core debugging.

SMP support is enabled by setting CYGPKG_KERNEL_SMP_SUPPORT to true. SMP applications should only be built using
either ROM or SMP startup types. ROM applications can be loaded from the QEMU command line in place of RedBoot. The
SMP startup is identical to a ROM startup except that the load address is set to allow the application to be loaded into a higher
location in RAM from RedBoot. SMP startup applications can also be loaded from the command line if the ELF file is used,
a binary file will not work.

By default eCos is configured to use four CPUs. However, QEMU can support up to eight CPUs and the ecos_qemu script
instantiates all eight. CPUs are only enabled when eCos starts, so unused CPUs will not consume host cycles. The number of
CPUs may be changed by setting CYGNUM_HAL_ARM_CORTEXA_VIRTUAL_CPU_COUNT.

Loading an SMP startup application via RedBoot can be done from the RedBoot command line via serial. It may also be
loaded via a GDB connection on serial. However, once started running the SMP application will take full control of the system,
including redirecting all interrupt sources, exception vectors and virtual vector table entries. This means that RedBoot will no
longer be active. Any breakpoints planted by GDB will result in an exception to the application, Ctrl-C will not work, any
Ethernet connections will be lost and serial output will come from the application in plain ASCII. Any GDB connection will
be lost and GDB may start reporting packet errors.

It is possible to load an SMP startup program via GDB and have its output displayed on the GDB console. To do this set
CYGSEM_HAL_DIAG_MANGLER to "GDB", and CYGDBG_HAL_DIAG_TO_DEBUG_CHAN to 1. The application will still
not be controllable from GDB, but this does simplify the running of test code; avoiding the need to disconnect GDB and connect
a terminal emulator to capture or view the output.

SMP applications may be debugged via the QEMU GDB debug port using a standard GDB. In this case the different CPUs
are presented to GDB as separate threads. The command info threads can be used to list the CPUs and the thread command
can be used to switch between them. eCos threads are not visible in this mode.

QEMU runs each virtual CPU in a separate thread. These in turn can be scheduled onto separate CPUs of the host system. As
a result the virtual machine CPUs are subject to the scheduling decisions of the host. If the host is a typically-idle development
workstation then this should not pose a problem. However, if the host is busy, a server or shared system, then the other work-
loads may affect the relative progress of the various virtual CPUs. If the eCos application makes strict use of synchronization
primitives then there should be no problem. However, if it assumes that the CPUs all progress a the same rate, then it may see
some issues. These issues can partly be alleviated by running QEMU at a higher priority, or on reserved CPUs.

2704

QEMU Virtual Machine Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the ARM Aarch32 Virtual Machine,
and should be read in conjunction with that specification. This HAL package complements the ARM architectural HAL, the
Cortex-A variant HAL and the Virtual variant HAL. It provides functionality which is specific to the target emulator.

Startup
On emulator startup or reset the HAL will initialize or reinitialize those peripherals that are to be used. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services.

QEMU VM Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

RAM This is located at address 0x40000000 of the physical memory space and is 32MiB in size.
The HAL configures the MMU to retain the RAM at virtual address 0x40000000 with
caching enabled. The same memory is also accessible uncached and unbuffered at virtual
address 0x50000000 for use by device drivers. ROM applications can use RAM starting at
0x4040000020. Interrupt and exception vectors are placed at 0x40400000 and the virtual vec-
tors occupy 256 bytes at 0x40400050. For ROM startup, all remaining RAM is available.
RAM startup applications are loaded from location 0x40500000, reserving 5MiB.

ROM applications are loaded into the bottom 4MiB of RAM, at 0x40010000, which is treated
like a read-only memory for this purpose. This, for example, allows RedBoot to perform a
reset by jumping to 0x40010000.

Peripheral Registers These occupy regions of memory at 0x08000000, 0x09000000 and 0x0a000000 of varying
sizes. These include the GIC registers, emulated peripherals such as the PL011 UART or
VirtIO devices.

The virtual address space visible to applications is summarized in the following table. Any address range not mentioned here
should not be accessed and will raise an exception if it is.

Base Size (MiB) Cache Description

0x08000000 1 Disabled GIC registers.

0x09000000 16 Disabled Emulated device registers.

0x0A000000 16 Disabled VirtIO device registers.

0x40000000 32 Enabled Normal RAM access.

0x50000000 32 Disabled Uncached access to RAM.

Real-time Characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built in ARM32 mode and run in non-SMP mode under QEMU
4.2.0 running under Linux on a 6 processor Intel i7-8700K CPU running at up to 3.70GHz.

Example 283.1. VM Real-time characterization

 Startup, main thrd : stack used 404 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 96 size 1280

2705

QEMU Virtual Machine Support

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 25 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 128.51 microseconds (8031 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 1.78 0.14 52.40 2.73 95% 93% Create thread
 0.69 0.00 44.16 1.36 98% 98% Yield thread [all suspended]
 0.67 0.00 42.62 1.31 98% 98% Suspend [suspended] thread
 0.65 0.00 41.49 1.28 98% 98% Resume thread
 0.70 0.00 44.24 1.36 98% 98% Set priority
 0.22 0.00 14.30 0.44 98% 98% Get priority
 1.77 0.00 112.58 3.46 98% 98% Kill [suspended] thread
 0.17 0.00 11.10 0.34 98% 98% Yield [no other] thread
 0.75 0.00 31.82 1.39 96% 96% Resume [suspended low prio] thread
 0.17 0.00 10.64 0.33 98% 98% Resume [runnable low prio] thread
 0.41 0.00 25.58 0.79 98% 98% Suspend [runnable] thread
 0.10 0.00 5.92 0.20 96% 96% Yield [only low prio] thread
 0.11 0.00 6.72 0.21 98% 98% Suspend [runnable->not runnable]
 0.14 0.00 8.46 0.27 96% 96% Kill [runnable] thread
 2.28 0.06 136.29 4.23 98% 98% Destroy [dead] thread
 0.59 0.29 17.97 0.55 98% 96% Destroy [runnable] thread
 2.47 1.01 45.74 2.50 96% 95% Resume [high priority] thread
 0.44 0.32 11.33 0.18 98% 93% Thread switch

 0.11 0.00 12.06 0.22 98% 98% Scheduler lock
 0.04 0.00 4.58 0.07 99% 99% Scheduler unlock [0 threads]
 0.04 0.00 4.62 0.07 99% 99% Scheduler unlock [1 suspended]
 0.04 0.00 4.98 0.08 99% 99% Scheduler unlock [many suspended]
 0.04 0.00 5.01 0.08 99% 99% Scheduler unlock [many low prio]

 0.70 0.00 22.56 1.37 96% 96% Init mutex
 1.93 0.00 61.71 3.74 96% 96% Lock [unlocked] mutex
 2.13 0.00 67.95 4.11 96% 96% Unlock [locked] mutex
 2.41 0.00 76.96 4.66 96% 96% Trylock [unlocked] mutex
 0.53 0.00 17.01 1.03 96% 96% Trylock [locked] mutex
 0.55 0.00 17.65 1.07 96% 96% Destroy mutex
 7.45 1.09 101.78 8.16 90% 90% Unlock/Lock mutex

 0.91 0.00 29.14 1.76 96% 96% Create mbox
 0.34 0.00 10.99 0.67 96% 96% Peek [empty] mbox
 2.14 0.00 68.35 4.14 96% 96% Put [first] mbox
 0.21 0.00 6.45 0.40 96% 96% Peek [1 msg] mbox
 0.95 0.00 30.26 1.83 96% 96% Put [second] mbox
 0.19 0.00 6.24 0.38 96% 96% Peek [2 msgs] mbox
 2.72 0.00 86.83 5.26 96% 96% Get [first] mbox
 0.23 0.00 7.50 0.45 96% 96% Get [second] mbox
 2.79 0.00 88.21 5.34 96% 96% Tryput [first] mbox
 1.50 0.00 47.94 2.90 96% 96% Peek item [non-empty] mbox
 2.39 0.00 76.43 4.63 96% 96% Tryget [non-empty] mbox
 0.23 0.00 7.25 0.44 96% 96% Peek item [empty] mbox
 0.36 0.00 11.14 0.67 96% 96% Tryget [empty] mbox
 0.46 0.00 14.77 0.89 96% 96% Waiting to get mbox

2706

QEMU Virtual Machine Support

 0.65 0.00 20.66 1.25 96% 96% Waiting to put mbox
 0.78 0.00 24.88 1.51 96% 96% Delete mbox
 6.27 0.74 47.47 5.41 81% 78% Put/Get mbox

 0.29 0.00 9.34 0.57 96% 96% Init semaphore
 0.46 0.00 14.70 0.89 96% 96% Post [0] semaphore
 0.40 0.00 7.26 0.75 93% 93% Wait [1] semaphore
 1.20 0.00 38.26 2.32 96% 96% Trywait [0] semaphore
 0.19 0.00 6.19 0.37 96% 96% Trywait [1] semaphore
 0.78 0.00 24.96 1.51 96% 96% Peek semaphore
 0.65 0.00 20.86 1.26 96% 96% Destroy semaphore
 3.38 0.67 30.11 2.70 81% 75% Post/Wait semaphore

 1.01 0.00 32.35 1.96 96% 96% Create counter
 0.97 0.00 30.58 1.85 96% 96% Get counter value
 0.51 0.00 16.42 0.99 96% 96% Set counter value
 0.51 0.00 16.30 0.99 96% 96% Tick counter
 0.53 0.00 17.06 1.03 96% 96% Delete counter

 0.44 0.00 14.00 0.85 96% 96% Init flag
 1.41 0.00 44.91 2.72 96% 96% Destroy flag
 1.09 0.00 34.85 2.11 96% 96% Mask bits in flag
 1.49 0.00 47.54 2.88 96% 96% Set bits in flag [no waiters]
 2.56 0.00 81.68 4.95 96% 96% Wait for flag [AND]
 0.54 0.00 9.68 1.02 93% 93% Wait for flag [OR]
 0.74 0.00 23.62 1.43 96% 96% Wait for flag [AND/CLR]
 0.83 0.00 26.51 1.61 96% 96% Wait for flag [OR/CLR]
 0.38 0.00 12.18 0.74 96% 96% Peek on flag

 0.90 0.00 28.90 1.75 96% 96% Create alarm
 1.25 0.00 39.70 2.40 96% 96% Initialize alarm
 0.45 0.00 14.53 0.88 96% 96% Disable alarm
 2.17 0.00 69.17 4.19 96% 96% Enable alarm
 0.32 0.00 10.22 0.62 96% 96% Delete alarm
 0.26 0.00 8.46 0.51 96% 96% Tick counter [1 alarm]
 1.12 0.18 16.27 1.74 93% 93% Tick counter [many alarms]
 0.66 0.00 20.88 1.26 96% 96% Tick & fire counter [1 alarm]
 4.68 2.80 26.10 3.26 90% 90% Tick & fire counters [>1 together]
 0.51 0.27 7.26 0.42 96% 96% Tick & fire counters [>1 separately]
 259.37 101.76 523.44 60.66 58% 14% Alarm latency [0 threads]
 128.64 68.58 359.12 22.85 78% 2% Alarm latency [2 threads]
 124.96 74.43 290.21 23.04 74% 10% Alarm latency [many threads]
 251.84 111.49 415.10 61.60 53% 17% Alarm -> thread resume latency

 161.37 64.29 451.89 0.00 Clock/interrupt latency

 11.23 1.25 159.98 0.00 Clock DSR latency

 172 172 220 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 884 size 1792
 All done : Interrupt stack used 136 size 4096
 All done : Idlethread stack used 248 size 1280

Timing complete - 31030 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The ARM architectural
HAL documentation should be consulted for further details.

2707

Chapter 284. Xvisor Virtual Machine
Support

2708

Xvisor Virtual Machine Support

Name
eCos Support for Xvisor Virtual Machines — Overview

Description
This document covers the configuration and usage of eCos and RedBoot on ARM Aarch32 Virtual Machines running under
the Xvisor hypervisor. Only devices that are emulated by Xvisor, or are accessed through VirtIO interfaces are used, so this
should run under Xvisor on any ARM host.

eCos applications are typically developed using the host-based gdb debugger, communicating with a "gdb stub" built-in to
RedBoot. The VM is set up to boot into RedBoot from a ROM image. RedBoot incorporates a gdb stub that enables eCos
applications to be downloaded and debugged either via a serial line or over Ethernet.

Support for SMP operation is available, although debugging support is restricted to use diagnostic messages. There is no SMP
debug support in RedBoot. The emulated virtual GIC supports up to eight CPUs, by default eCos is configured to use four CPUs.

Finished eCos ROM startup applications can be deployed directly by the hypervisor by replacing RedBoot with the application
binary.

This documentation is expected to be read in conjunction with the ARM architecture HAL and Virtual Machine Support
documentation; further device support and subsystems are described and documented there.

Supported Hardware
eCos currently runs in single processor mode on an ARM Aarch32 Virtual Machine. The following devices are currently
supported by this port.

Generic Interrupt Controller The ARM GIC is used to handle interrupts. The GIC needs to be memory-mapped.
Interrupt vector mapping is defined in this package.

Generic Timer The ARM architecture Generic Timer is used to supply the system timer. eCos used the
virtual counter and timer in order to insulate it from hypervisor scheduling. The timer
is accessed through the CP15 register set.

Emulated UART ARM PL011 UART macrocell. Xvisor supports an emulation of this device and drivers
are available in RedBoot and eCos to support it.

VirtIO Console Support for the VirtIO console device class is present in both RedBoot and eCos.

VirtIO NET Ethernet access is via a VirtIO NET device. The hypervisor is then responsible for rout-
ing packets to other VMs or an external network connection.

VirtIO RPMSG Support is present for using a VirtIO RPMSG interface. This supports the RPMSG sub-
system library to present a standard RPMSG API to user applications.

In general, devices are initialized only as far as is necessary for eCos to run. Other devices are not touched unless the appropriate
driver is loaded.

Tools
The board support is intended to work with GNU tools configured for an arm-eabi target. The original port was undertaken
using arm-eabi-gcc version 7.3.0, arm-eabi-gdb version 8.1, and binutils version 2.30.

2709

Xvisor Virtual Machine Support

Name
Setup — Preparing for eCos Development

Overview

In a typical development environment, the VM boots into the RedBoot ROM monitor. eCos applications are configured for
RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb. Preparing the VM therefore usually
involves arranging for a suitable RedBoot image to be executed on startup.

Xvisor VM Installation

This section describes how to install RedBoot into an Xvisor guest VM and start it running. The reader should be familiar with
Xvisor, how to install it onto a target platform and how, in general, a guest VM is created.

To create an eCos VM under Xvisor, it is necessary to instantiate a virtual machine, populate it with the executable of RedBoot,
and then set it running. To do this a number of files are copied to the etc directory of a RedBoot installation which are used
set up a VM to run eCos. These files are as follows:

evm.dts This is a Linux device tree source file. It needs to be compiled into a device tree binary file using
the dtc device tree compiler. This file is specific to use on Rockchip-based boards such as the Pine
Rockpro64 or M2000.

boot.xscript This is a sample Xvisor boot script that instantiates a Linux guest together with a eCos VM running
RedBoot. It may be used as it is, or used as a template for your own script.

nor_flash.list A list of addresses and file names used to populate the virtual flash in a VM. This defines the software
that will run from reset in the VM. In this case the sole entry installs a binary of RedBoot at the start
of flash.

install A shell script that automates the installation of a RedBoot executable into a Xvisor disk image. It creates
the necessary sub-directory in the disk image, compiles and installs the device tree, RedBoot binary
and flash list. It does not copy the boot.xscript file, which may be copied separately if required.
Following this, a make should be run in the Xvisor build directory to rebuild the disk image. The image
may then be transferred to the target system bootstrap medium.

See the next section, Rebuilding RedBoot, for an example of using the install script to install RedBoot into an Xvisor VM.

Once the files are installed, Xvisor may be started and the eCos VM will be executed. Depending on the default setting for the
initial serial connection, and whether the boot.xscript file has been copied, you may see a startup banner from RedBoot
similar to the following:

XVisor# vserial bind evm1/uart0
[evm1/uart0] +No network interfaces found

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 14:58:47, Jan 30 2020

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2019 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: Virtual ARM (CORTEX-A)
RAM: 0x40000000-0x42000000 [0x40030000-0x42000000 available]
RedBoot>

2710

Xvisor Virtual Machine Support

Rebuilding RedBoot
Typical users should never need to rebuild RedBoot. If you do intend to modify RedBoot then please note that rebuilding it
is currently only supported from the Linux command line.

The steps needed to rebuild the ROM version of RedBoot are:

$ mkdir redboot_virtual_rom
$ cd redboot_virtual_rom
$ ecosconfig new virtual_xvisor redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/arm/cortexa/virtual/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This image can now be
installed into an Xvisor boot disk image using the install script. Assuming the root directory for Xvisor is in $XVISOR the
following commands will do this.

$ cd install
$./etc/install $XVISOR/disk

Install RedBoot in disk image

Done
$

If required, boot.xscript may also be copied into $XVISOR/disk.

For convenience, eCosPro releases include a prebuilt RedBoot image as well as the install subdirectory resulting from the
creation of RedBoot. These are located within the loaders sub-directory of the eCosPro installation, and the install script
may be run from within these subdirectories. For example:

$ cd ecos-4.4.0/loaders/virtual_xvisor/redboot_ROM.install
$./etc/install $XVISOR/disk

Install RedBoot in disk image

Done
$

It is now necessary to rebuild the Xvisor RAM disk. Exactly how this is done can depend on the target host, how it boots and
how that RAM disk is loaded. Usually this involves using genext2fs to make a disk image; usually an Xvisor executable and
a device tree are also created. Refer to the directions for installing Xvisor on the host for details.

2711

Xvisor Virtual Machine Support

Name
Configuration — Platform-specific Configuration Options

Overview

The xvisor platform HAL package is loaded automatically when eCos is configured for the xvisor target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup

The platform HAL package supports two separate startup types:

RAM This startup type is normally used during application development when using the RedBoot ROM monitor. arm-eabi-gdb
is used to load the RAM startup application into memory and debug it. It is assumed that the hardware has already been
initialized by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain services from
RedBoot, including diagnostic output.

This startup type is also used to for applications that are loaded from the RedBoot command line with the load command.

In Xvisor VMs RAM applications are loaded at address 0x40200000, leaving the bottom 2MiB free for RedBoot's use.

ROM This startup type can be used for finished applications which will be booted direct into the VM from the hypervisor.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

In Xvisor VMs ROM application are loaded by the hypervisor at address 0x00000000 in the emulated flash memory.
RedBoot uses RAM starting from 0x40000020. Interrupt and exception vectors are placed at 0x40000000 with the
virtual vectors following.

SMP This startup type can be used for finished applications that can be loaded into RAM via RedBoot. The load address
is set to the same as for RAM applications, however, the application will be self-contained with no dependencies on
services provided by other software. eCos startup code will perform all necessary hardware initialization. Once started,
this application takes full control of the system and RedBoot will not be called again. This means that debugging via
RedBoot will not be possible. The intent of this startup type is to allow SMP test programs to be run from RedBoot.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

UART Serial Driver

There are two serial devices supported for the VM. The ARM PL011 macrocell is supported by a serial driver and as a command
line input for RedBoot. The VirtIO console driver is similarly supported by a driver and as a RedBoot input; it is dependent
on the VIRTIO driver and can only be configured if VIRTIO driver is also present. Both of these will typically be routed by
the hypervisor to either a real external device or a serial interface of another VM.

2712

Xvisor Virtual Machine Support

Ethernet Driver
Support for the VirtIO NET device is provided by the CYGPKG_DEVS_ETH_VIRTUAL driver. This driver is dependent on
the VIRTIO driver and can only be configured if the VIRTIO driver is also present. This driver is also not active until the
generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

RPMSG Driver
Support for a VirtIO RPMSG interface is present in package CYGPKG_DEVS_RPMSG_VIRTUAL. This driver is dependent
on the VIRTIO driver and can only be configured if the VIRTIO driver is also present.

The RPMSG driver is accessed via the RPMSG API library, details of which may be found here.

VirtIO Driver
Support for generic VirtIO devices is provided by the VIRTIO driver (CYGPKG_DEVS_VIRTIO). This provides the generic
initialization and management of queues common to all VirtIO devices.

The VirtIO driver is not normally accessed directly from application, but only from client device drivers. For reference, details
of the VirtIO driver may be found here.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. The following flags
are specific to this port:

-mcpu=cortex-a15 The Xvisor virtual machine configures a generic ARMv7a CPU. This option selects a
suitable Cortex-A CPU variant that will support the execution of Aarch32 code.

2713

Xvisor Virtual Machine Support

Name
SMP Support — Usage

Overview
Support is available for SMP operation. However, debugging support is restricted to using diag_printf() and related
functions. RedBoot does not have support for multi-core debugging and Xvisor has no support for connecting a debugger to
a virtual machine.

A board intended to be used for SMP development should be initialized in the same way as a single core board. RedBoot only
uses a single CPU. The device tree for the VM should be defined with four CPUs. The example device tree files described
in the Setup section show how this is done.

SMP support is enabled by setting CYGPKG_KERNEL_SMP_SUPPORT to true. SMP applications should only be built using
either ROM or SMP startup types. ROM applications can be loaded from Xvisor in place of RedBoot. The SMP startup is
identical to a ROM startup except that the load address is set to allow the application to be loaded into a higher location in
RAM from RedBoot.

By default eCos is configured to use four CPUs. Xvisor can support up to eight CPUs. The example device tree currently only
defines four CPUs. Extra CPUs may be added by editing this file. The number of CPUs supported by eCos may be changed
by setting CYGNUM_HAL_ARM_CORTEXA_VIRTUAL_CPU_COUNT. The number of CPUs supported by eCos should never
exceed the number configured in the device tree.

Loading an SMP startup application via RedBoot can be done from the RedBoot command line via serial. It may also be
loaded via a GDB connection on serial. However, once started running the SMP application will take full control of the system,
including redirecting all interrupt sources, exception vectors and virtual vector table entries. This means that RedBoot will no
longer be active. Any breakpoints planted by GDB will result in an exception to the application, Ctrl-C will not work, any
Ethernet connections will be lost and serial output will come from the application in plain ASCII. Any GDB connection will
be lost and GDB may start reporting packet errors.

It is possible to load an SMP startup application via GDB and have its output displayed on the GDB console. To do this set
CYGSEM_HAL_DIAG_MANGLER to "GDB", and CYGDBG_HAL_DIAG_TO_DEBUG_CHAN to 1. The application will still
not be controllable from GDB, but this does simplify the running of test code; avoiding the need to disconnect GDB and connect
a terminal emulator to capture or view the output.

2714

Xvisor Virtual Machine Support

Name
HAL Port — Implementation Details

Overview

This documentation explains how the eCos HAL specification has been mapped onto the ARM Aarch32 Virtual Machine,
and should be read in conjunction with that specification. This HAL package complements the ARM architectural HAL, the
Cortex-A variant HAL and the Virtual variant HAL. It provides functionality which is specific to the target hypervisor and
the board on which it is running.

Startup

Following a reset, the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for RAM startup
applications which depend on a ROM monitor for certain services.

Xvisor VM Linker Scripts and Memory Maps

The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Virtual Flash This is located at 0x00000000 and is 32MiB in size. The hypervisor is responsible for loading
the initial image, typically RedBoot, in to the start of this region. When the VM is kicked into
life execution starts here.

RAM This is located at address 0x40000000 of the physical memory space and is 32MiB in size.
The HAL configures the MMU to retain the RAM at virtual address 0x40000000 with
caching enabled. The same memory is also accessible uncached and unbuffered at virtual
address 0x50000000 for use by device drivers. ROM applications can use RAM starting at
0x4000000020. Interrupt and exception vectors are placed at 0x40000000 and the virtual vec-
tors occupy 256 bytes at 0x00000050. For ROM startup, all remaining RAM is available.
RAM startup applications are loaded from location 0x40200000, reserving 2MiB.

Shared memory A shared memory region is allocated at address 0x38000000. This area can be mapped to
memory shared between the eCos VM and any other VM. It may be used to load applications
into the VM using the RedBoot load command and may also be used to enable communications
between applications in the eCos VM and the other VM.

Peripheral Registers These occupy regions of memory at 0x08000000, 0x09000000 and 0x0a000000 of varying
sizes. These include the GIC registers, emulated peripherals such as the PL011 UART or
VirtIO devices.

The virtual address space visible to applications is summarized in the following table. Any address range not mentioned here
should not be accessed and will raise an exception if it is.

Base Size (MiB) Cache Description

0x00000000 32 Disabled Virtual flash.

0x08000000 1 Disabled GIC registers.

0x09000000 16 Disabled Emulated device registers.

0x0A000000 16 Disabled VirtIO device registers.

0x38000000 16 Disabled Shared memory.

0x40000000 32 Enabled Normal SDRAM access.

0x50000000 32 Disabled Uncached access to RAM.

2715

Xvisor Virtual Machine Support

Real-time Characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built in ARM32 mode and run in non-SMP mode on a VCPU bound to
host CPU 3 of Xvisor running on a Pine Rockpro64.

Example 284.1. VM Real-time characterization

 Startup, main thrd : stack used 404 size 1792
 Startup : Interrupt stack used 4096 size 4096
 Startup : Idlethread stack used 96 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 5.35 microseconds (102 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 1.01 0.68 1.41 0.17 59% 25% Create thread
 0.20 0.00 0.31 0.15 62% 37% Yield thread [all suspended]
 0.35 0.00 0.68 0.09 81% 4% Suspend [suspended] thread
 0.19 0.00 0.31 0.15 59% 40% Resume thread
 0.24 0.00 0.31 0.11 76% 23% Set priority
 0.09 0.00 0.31 0.13 71% 71% Get priority
 0.46 0.31 1.04 0.18 60% 60% Kill [suspended] thread
 0.20 0.00 0.31 0.15 62% 37% Yield [no other] thread
 0.25 0.00 0.31 0.10 81% 18% Resume [suspended low prio] thread
 0.19 0.00 0.31 0.15 59% 40% Resume [runnable low prio] thread
 0.22 0.00 0.31 0.13 71% 28% Suspend [runnable] thread
 0.20 0.00 0.31 0.15 62% 37% Yield [only low prio] thread
 0.19 0.00 0.31 0.15 59% 40% Suspend [runnable->not runnable]
 0.38 0.31 0.68 0.11 81% 81% Kill [runnable] thread
 0.37 0.31 0.68 0.10 84% 84% Destroy [dead] thread
 0.66 0.31 1.04 0.04 92% 6% Destroy [runnable] thread
 1.16 1.04 1.77 0.16 68% 68% Resume [high priority] thread
 0.34 0.31 0.68 0.05 92% 92% Thread switch

 0.07 0.00 0.31 0.11 77% 77% Scheduler lock
 0.17 0.00 0.31 0.16 53% 46% Scheduler unlock [0 threads]
 0.17 0.00 0.31 0.16 53% 46% Scheduler unlock [1 suspended]
 0.17 0.00 0.31 0.16 53% 46% Scheduler unlock [many suspended]
 0.17 0.00 0.31 0.16 53% 46% Scheduler unlock [many low prio]

 0.19 0.00 0.31 0.15 59% 40% Init mutex
 0.23 0.00 0.68 0.16 59% 34% Lock [unlocked] mutex
 0.23 0.00 0.68 0.14 65% 31% Unlock [locked] mutex
 0.21 0.00 0.31 0.14 65% 34% Trylock [unlocked] mutex
 0.16 0.00 0.31 0.16 100% 50% Trylock [locked] mutex
 0.10 0.00 0.31 0.13 68% 68% Destroy mutex
 1.06 1.04 1.41 0.04 93% 93% Unlock/Lock mutex

2716

Xvisor Virtual Machine Support

 0.20 0.00 0.31 0.15 62% 37% Create mbox
 0.21 0.00 0.31 0.13 68% 31% Peek [empty] mbox
 0.24 0.00 0.68 0.13 68% 28% Put [first] mbox
 0.06 0.00 0.31 0.10 81% 81% Peek [1 msg] mbox
 0.20 0.00 0.31 0.15 62% 37% Put [second] mbox
 0.07 0.00 0.31 0.11 78% 78% Peek [2 msgs] mbox
 0.23 0.00 0.68 0.14 65% 31% Get [first] mbox
 0.21 0.00 0.31 0.13 68% 31% Get [second] mbox
 0.18 0.00 0.31 0.15 56% 43% Tryput [first] mbox
 0.21 0.00 0.31 0.13 68% 31% Peek item [non-empty] mbox
 0.21 0.00 0.68 0.16 59% 37% Tryget [non-empty] mbox
 0.20 0.00 0.31 0.15 62% 37% Peek item [empty] mbox
 0.20 0.00 0.31 0.15 62% 37% Tryget [empty] mbox
 0.08 0.00 0.31 0.12 75% 75% Waiting to get mbox
 0.08 0.00 0.31 0.12 75% 75% Waiting to put mbox
 0.09 0.00 0.31 0.13 71% 71% Delete mbox
 0.69 0.31 1.04 0.04 90% 3% Put/Get mbox

 0.16 0.00 0.31 0.16 100% 50% Init semaphore
 0.19 0.00 0.31 0.15 59% 40% Post [0] semaphore
 0.21 0.00 0.31 0.14 65% 34% Wait [1] semaphore
 0.19 0.00 0.31 0.15 59% 40% Trywait [0] semaphore
 0.19 0.00 0.31 0.15 59% 40% Trywait [1] semaphore
 0.09 0.00 0.31 0.13 71% 71% Peek semaphore
 0.08 0.00 0.31 0.12 75% 75% Destroy semaphore
 0.68 0.31 1.04 0.02 93% 3% Post/Wait semaphore

 0.16 0.00 0.31 0.16 100% 50% Create counter
 0.08 0.00 0.31 0.12 75% 75% Get counter value
 0.06 0.00 0.31 0.10 81% 81% Set counter value
 0.23 0.00 0.31 0.12 75% 25% Tick counter
 0.10 0.00 0.31 0.13 68% 68% Delete counter

 0.11 0.00 0.31 0.14 65% 65% Init flag
 0.21 0.00 0.31 0.14 65% 34% Destroy flag
 0.19 0.00 0.31 0.15 59% 40% Mask bits in flag
 0.20 0.00 0.31 0.15 62% 37% Set bits in flag [no waiters]
 0.22 0.00 0.31 0.13 71% 28% Wait for flag [AND]
 0.20 0.00 0.31 0.15 62% 37% Wait for flag [OR]
 0.21 0.00 0.31 0.13 68% 31% Wait for flag [AND/CLR]
 0.21 0.00 0.31 0.13 68% 31% Wait for flag [OR/CLR]
 0.09 0.00 0.31 0.13 71% 71% Peek on flag

 0.11 0.00 0.31 0.14 65% 65% Create alarm
 0.33 0.00 0.68 0.11 71% 12% Initialize alarm
 0.19 0.00 0.31 0.15 59% 40% Disable alarm
 0.24 0.00 0.31 0.11 78% 21% Enable alarm
 0.19 0.00 0.31 0.15 59% 40% Delete alarm
 0.21 0.00 0.31 0.13 68% 31% Tick counter [1 alarm]
 0.67 0.31 0.68 0.02 96% 3% Tick counter [many alarms]
 0.29 0.00 0.31 0.04 93% 6% Tick & fire counter [1 alarm]
 3.82 3.59 3.96 0.17 62% 37% Tick & fire counters [>1 together]
 0.77 0.68 1.04 0.14 75% 75% Tick & fire counters [>1 separately]
 11.19 10.52 12.45 0.33 59% 22% Alarm latency [0 threads]
 5.24 4.90 5.73 0.11 53% 0% Alarm latency [2 threads]
 5.82 5.42 6.46 0.23 56% 32% Alarm latency [many threads]
 11.70 10.89 12.66 0.35 60% 11% Alarm -> thread resume latency

 6.74 3.65 11.35 0.00 Clock/interrupt latency

 0.60 0.36 1.09 0.00 Clock DSR latency

 244 172 288 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 884 size 1792
 All done : Interrupt stack used 136 size 4096
 All done : Idlethread stack used 248 size 1280

Timing complete - 30920 ms total

PASS:<Basic timing OK>
EXIT:<done>

2717

Xvisor Virtual Machine Support

Other Issues
The platform HAL does not affect the implementation of other parts of the eCos HAL specification. The ARM architectural
HAL documentation should be consulted for further details.

2718

Part LXXVIII. Cortex-M Architecture

Table of Contents
285. Cortex-M Architectural Support .. 2724

Cortex-M Architectural HAL .. 2725
Configuration ... 2726
Floating Point support .. 2728
The HAL Port .. 2730
Cortex-M Hardware Debug ... 2734

286. Kinetis Variant HAL .. 2736
Kinetis Variant HAL ... 2737
On-chip Subsystems and Peripherals .. 2738

287. Freescale TWR-K60N512 and TWR-K60D100M Platform HAL .. 2741
Freescale TWR-K60N512/TWR-K60D100M Platform HAL ... 2742
Setup .. 2743
Configuration ... 2747
Hardware debugging support ... 2749
The HAL Port .. 2752

288. Freescale TWR-K70F120M Platform HAL ... 2756
Freescale TWR-K70F120M Platform HAL .. 2757
Setup .. 2758
Configuration ... 2762
Hardware debugging support ... 2764
The HAL Port .. 2767

289. LM3S Variant HAL ... 2771
LM3S Variant HAL .. 2772
On-chip Subsystems and Peripherals .. 2773
GPIO Support ... 2775

290. LM3S8962-EVAL Platform HAL ... 2776
LM3S8962 EVAL Platform HAL .. 2777
Setup .. 2778
Configuration ... 2779
JTAG debugging support .. 2780
The HAL Port .. 2782

291. LPC1XXX Variant HAL ... 2783
LPC1XXX Variant HAL .. 2784
On-chip Subsystems and Peripherals .. 2785
GPIO Support ... 2787
Peripheral Clock and Power Control .. 2788

292. MCB1700 Platform HAL .. 2789
MCB1700 Platform HAL ... 2790
Setup .. 2791
Configuration ... 2792
JTAG debugging support .. 2793
The HAL Port .. 2795

293. SAM3/4/x70 Variant HAL ... 2796
SAM3/4/X70 Variant HAL ... 2797
On-chip Subsystems and Peripherals .. 2798
GPIO Support on SAM Processors .. 2801
Peripheral clock control ... 2803

294. Atmel SAM4E-EK Platform HAL .. 2804
SAM4E-EK Platform HAL ... 2805
Setup .. 2806
Configuration ... 2807
The HAL Port .. 2810

295. Atmel SAMX70-EK Platform HAL .. 2814
SAMX70-EK Platform HAL ... 2815
Setup .. 2816

2720

Cortex-M Architecture

Configuration ... 2818
The HAL Port .. 2820

296. STM32 Variant HAL .. 2824
STM32 Variant HAL ... 2825
On-chip Subsystems and Peripherals .. 2826
GPIO Support on STM32F processors .. 2831
Peripheral clock control ... 2834
DMA Support ... 2835
Test Programs .. 2838

297. STM3210C-EVAL Platform HAL ... 2839
STM3210C EVAL Platform HAL .. 2840
Setup .. 2841
Configuration ... 2843
JTAG debugging support .. 2845
The HAL Port .. 2847
Test Programs .. 2848

298. STM3210E-EVAL Platform HAL ... 2849
STM3210E EVAL Platform HAL .. 2850
Setup .. 2851
Configuration ... 2854
JTAG debugging support .. 2857
The HAL Port .. 2859
Test Programs .. 2861

299. STM32X0G-EVAL Platform HAL .. 2862
STM32X0G EVAL Platform HAL ... 2863
Setup .. 2865
Configuration ... 2871
JTAG debugging support .. 2874
The HAL Port .. 2876
Test Programs .. 2880

300. STM32F429I-DISCO Platform HAL ... 2881
STM32F429I-DISCO Platform HAL .. 2882
Setup .. 2883
Configuration ... 2885
Hardware debugging support ... 2887
The HAL Port .. 2890
Test Programs .. 2894

301. STM32F746G-DISCO Platform HAL .. 2895
STM32F746G-DISCO Platform HAL ... 2896
Setup .. 2897
Configuration ... 2899
Hardware debugging support ... 2901
The HAL Port .. 2904
Test Programs .. 2908

302. STM32H735-DISCO Platform HAL .. 2909
STM32H735-DISCO Platform HAL ... 2910
Setup .. 2911
Configuration ... 2913
Hardware debugging support ... 2915
The HAL Port .. 2917
Test Programs .. 2921

303. STM32H7 Nucleo-144 Platform HAL ... 2922
STM32H7 Nucleo-144 Platform HAL .. 2923
Setup .. 2924
Configuration ... 2926
Hardware debugging support ... 2928
The HAL Port .. 2930
Test Programs .. 2934

2721

Cortex-M Architecture

304. STM32F4DISCOVERY Platform HAL .. 2935
STM32F4DISCOVERY Platform HAL ... 2936
Setup .. 2937
Configuration ... 2942
JTAG/SWD debugging support ... 2945
The HAL Port .. 2949

305. STM324X9I-EVAL Platform HAL ... 2953
STM324X9I-EVAL Platform HAL .. 2954
Setup .. 2956
Configuration ... 2958
Hardware debugging support ... 2961
The HAL Port .. 2964
Test Programs .. 2969
BootUp Integration .. 2970

306. STM32F7XX-EVAL Platform HAL .. 2976
STM32F7XX-EVAL Platform HAL ... 2977
Setup .. 2978
Configuration ... 2980
Hardware debugging support ... 2984
The HAL Port .. 2987
Test Programs .. 2991
BootUp Integration .. 2992

307. STM32L476-DISCO Platform HAL .. 2998
STM32L476-DISCO Platform HAL ... 2999
Setup .. 3000
Configuration ... 3002
Hardware debugging support ... 3004
The HAL Port .. 3007
Test Programs .. 3011
BootUp Integration .. 3012

308. BCM943362WCD4 Platform HAL .. 3016
BCM943362WCD4 Platform HAL .. 3017
Setup .. 3018
Configuration ... 3020
JTAG debugging support .. 3022
The HAL Port .. 3024
Test Programs .. 3028

309. BCM943364WCD1 Platform HAL .. 3029
BCM943364WCD1 Platform HAL .. 3030
Setup .. 3031
Configuration ... 3033
JTAG debugging support .. 3035
The HAL Port .. 3037
Test Programs .. 3041

310. STM32L4R9-DISCO Platform HAL .. 3043
STM32L4R9-DISCO Platform HAL .. 3044
Setup .. 3045
Configuration ... 3047
Hardware debugging support ... 3049
The HAL Port .. 3050
Test Programs .. 3054
BootUp Integration .. 3055

311. STM32L4R9-EVAL Platform HAL ... 3058
312. NXP i.MX RT10XX Variant HAL .. 3059

NXP i.MX RT10XX Variant HAL ... 3060
On-chip Subsystems and Peripherals .. 3061
Hardware Configuration Support on IMX Processors .. 3064
OCOTP Support on IMX Processors .. 3068

2722

Cortex-M Architecture

BootUp .. 3070
313. NXP MIMXRT1xxx-EVK Platform HAL .. 3075

NXP MIMXRT1xxx-EVK Platform HAL ... 3076
Setup .. 3083
Configuration ... 3091
The HAL Port .. 3095

2723

Chapter 285. Cortex-M Architectural
Support

2724

Cortex-M Architectural Support

Name
CYGPKG_HAL_CORTEXM — eCos Support for the Cortex-M Architecture

Description
The Cortex-M implements a new version of the ARM architecture intended for deeply embedded applications. The processor
runs the Thumb-2 instruction set and implements an exception and interrupt model quite different from that supported by
previous members of the ARM architecture. For this reason the Cortex-M HAL is implemented as an entirely new architecture
within eCos.

In addition to the processor, the Cortex-M architecture also provides definitions of a Nested Vectored Interrupt Controller
(NVIC) and a system tick timer. Both of these are used by eCos. If available on the target platform, and when suitably config-
ured, the eCos Cortex-M HAL can make use of the Instrumentation Trace Macrocell (ITM) for diagnostics and instrumenta-
tion. Other features of the architecture such as the Memory Protection Unit, and the other debug units are not directly used
by eCos at present.

2725

Cortex-M Architectural Support

Name
Options — Configuring the Cortex-M Architectural HAL Package

Description
The Cortex-M architectural HAL is included in all ecos.db entries for Cortex-M targets, so the package will be loaded auto-
matically when creating a configuration. It should never be necessary to load the package explicitly or to unload it.

The Cortex-M architectural HAL contains a number of configuration points. Few of these should be altered by the user, they
are mainly present for the variant and platform HALs to select different architectural features.

CYGINT_HAL_CORTEXM_BIGENDIAN

This interface controls whether the CPU is run in big endian mode. It should be implemented by either the variant or
platform HAL to reflect the setting of the hardware.

CYGHWR_HAL_CORTEXM_BIGENDIAN

This option is active only if CYGINT_HAL_CORTEXM_BIGENDIAN is implemented. It provides the main test point for
HAL, eCos and application code to test for a big endian target.

CYGHWR_HAL_CORTEXM

The Cortex-M architecture has two main variants at present. The M1 is based on the ARMV6 architecture specification and
executes an extended variant of the Thumb instruction set and has some differences in the interrupt controller. The M3 and
M4 are based on the ARMV7 architecture specification and execute the Thumb2 instruction set. The M4 is an extended
M3 family providing hardware FPU and DSP extensions. This option should be set using a requires command in the
variant HAL to indicate which CPU variant is in use.

CYGINT_HAL_CORTEXM_FPU

This interface controls whether the CPU is capable of supporting a hardware FPU (Floating Point Unit). It is the “common”
FPU marker and is implemented whan either the variant or platform HAL in turn implements a supported FPU type.

For example, a Cortex-M4F target may define CYGINT_HAL_FPV4_SP_D16 when it provides the ARMv7 VFPv4-D16
architecture floating point unit.

CYGHWR_HAL_CORTEXM_FPU

On targets which are capable of hardware FPU operation, this option is used to select whether soft or hard floating point
operation is desired. It provides the main test point for HAL, eCos and application code to test for a hard-FP target. It is
inactive if CYGINT_HAL_CORTEXM_FPU is not implemented.

Even though an architecture may provide a hardware FPU, it is not always suitable for all applications. For example, there is
the associated scheduler and RAM cost in preserving FPU contect for multi-threaded applications. If CYGHWR_HAL_AR-
M_FPU is enabled then some further configuration options are made available:

CYGNUM_HAL_CORTEXM_PRIORITY_MAX

Most Cortex-M variants do not implement the full range of priorities defined by the architecture. Instead they only im-
plement a few of the most significant bits of the 8 bit priority range. The option CYGNUM_HAL_CORTEXM_PRIORI-
TY_LEVEL_BITS must be defined by the variant HAL to give this number. This option then uses that value to calculate
the maximum allowable priority for interrupts.

CYGHWR_HAL_CORTEXM_DIAGNOSTICS_INTERFACE

By default the architectural HAL does not implement diagnostic support, with the default Serial support being left to
the variant or platform HAL.

However, if the variant provides the on-chip ITM then selecting ITM for this option will configure the system to use
the generic architectural HAL ITM stimulus port diagnostic output. Accessing ITM diagnostic output will require corre-
sponding support from the SWD host tools being used to connect to the hardware.

2726

Cortex-M Architectural Support

The discard option configures the system so that all diagnostic output is discarded. This can be used when no I/O
channel is available for diagnostics.

CYGPKG_HAL_CORTEXM_SYSTEM_DEBUG_ITM

If the variant includes ITM support then this option can be enabled to allow configuration of the stimulus ports to be used
for HAL diagnostics or instrumentation as required.

Compiler Flags
It is normally the responsibility of the platform HAL to define the default compiler and linker flags for all packages, although
it is possible to override these on a per-package basis. Most of the flags used are the same as for other architectures supported
by eCos. For all Cortex-M3 targets the options "-mcpu=cortex-m3" and "-mthumb" must always be defined.

When hardware floating point support is to be used, additional flags are required, as discussed later.

Linker Scripts
The linker script, supplied by either the variant or platform HALs, must define some symbols that the architecture HAL depends
on:

hal_vsr_table This defines the location of the VSR table. The address must obey the rules for locat-
ing the CPU vector table defined in the Cortex-M architecture specification. Usually it
should be placed at the base of internal SRAM, at 0x20000000. The size of the table
depends on the CPU variant in use.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This table needs to be word aligned. It is usu-
ally placed in internal SRAM just after the VSR table, perhaps aligned to a convenient
boundary.

hal_interrupt_stack This defines the location of the interrupt stack, and is assigned to the CPU's MSP register.
The stack grows down so it should be placed at the top of memory. It is usually placed at
the top of internal SRAM. For RAM applications, which are loaded after initialization
is complete, it can be placed in external RAM.

hal_startup_stack This defines the location of the startup stack and is assiged to the CPU's PSP register.
This value will be installed in slot zero of the initial vector table to be loaded automati-
cally by the CPU on reset. The stack grows down so it should be placed near the top of
memory. It is usually placed near top of internal SRAM, just below the interrupt stack.
The default is to initially place this stack at the halfway point of the space allocated for
the interrupt stack. This avoids allocating a unique space for it, and when the applica-
tion starts it will usually move the PSP to another location, leaving all of the interrupt
stack space available for the interrupts. For RAM applications, which are loaded after
initialization is complete, it can be placed near the top of external RAM.

2727

Cortex-M Architectural Support

Name
Floating Point — Overview of use of floating point

Overview
The Cortex-M architectural HAL provides support for a hardware Floating Point Unit (FPU) if one is present, to provide
accelerated floating point math operations.

Support is currently provided for the FPU designs found on the Cortex-M4 and Cortex-M7 architectural variants. However
even with these variants, the FPU is an optional feature and a more specific classification of, for example, Cortex-M4F indicates
the presence of the FPU.

Furthermore, even if an FPU is present, as indicated by a platform HAL package, it is not required to be used, and the default is
not to use it (therefore defaulting to software FP) so that the developer must take the step of enabling hardware FPU support if
it is desired. Equally the developer is still permitted to keep using software floating point, which may simplify and reduce code
size and stack use (due to the larger register contexts required for FP) in some cases. This software floating point is provided
by the compiler (GCC) runtime, based on the compiler flags in use.

Configuration
As described earlier, in order to enable hardware floating point support in this HAL package you must enable the configuration
option CYGHWR_HAL_CORTEXM_FPU (Use hardware FPU) which can be found within the CYGPKG_HAL_CORTEXM_FPU
(Floating Point Support) CDL component.

Configuration of the FPU support is an important step as the use of the FPU not only affects code generation and requires some
initialization, but also an understanding of whether multiple kernel threads in the application may be using FP operations, in
which case the method of saving/restoring the FPU register bank on context switches must be set appropriately.

Compile and link flags
Both the application and eCos must be built and linked with matching compiler/linker flags appropriate to the configuration
selected for FPU support. It is usually easiest to examine the CYGBLD_GLOBAL_CFLAGS configuration option, or simply the
build output, to see the relevant flags in use. These are the flags to look for, and a brief summary of their purpose:

-mcpu=cortex-m4 No Cortex-M3 core supports FPU operations, so -mcpu=cortex-m4 is required to
allow the correct instructions to be generated. For the moment, use of this option also
applies when using the Cortex-M7 although this will likely change in a future compiler
update.

-mfloat-abi=hard This directs the compiler to generate FPU instructions for floating point operations. If
this option is absent, the default of -mfloat-abi=soft, i.e. software FP is used.

-mfpu=… This option indicates which hardware FPU is present, covering the number of registers,
their sizes, and so on. For the moment, only -mfpu=fpv4-sp-d16, as used on the
Cortex-M4F and M7F, is supported. This corresponds to the VFPv4 specification with
32 single precision registers, also usable as 16 double precision registers.

Threads and context switching with FP
With the hardware FPU support enabled, it is then possible to configure the CYGHWR_HAL_CORTEXM_FPU_SWITCH (FPU
context switch) configuration option in order to control how FPU registers are saved/restored in context switches. There are
three settings: ALL, LAZY, and NONE.

ALL This mode is the most straightforward, and means that on every context switch, all FPU registers are saved and restored
between threads.

This mode makes the most sense if you need determinism and/or most or all of your threads will use FP. However if
few threads use FP, it can result in a lot of overhead due to saves and restores of unchanged registers.

2728

Cortex-M Architectural Support

Enabling the ALL mode also takes advantage of the Cortex-M lazy exception stacking feature in order to reduce
interrupt/exception latency. This means that after an exception or interrupt, the core reserves space for the FPU register
context on the stack, but does not actually save the FPU register contents onto the stack unless needed.

LAZY In this mode, if a thread has not used the FPU, the FPU context will not be saved or restored for it. The HAL installs
exception handlers on the Cortex-M UsageFault and HardFault exceptions in order to detect the first time the FPU is
accessed by that thread. Once the FPU is accessed, the fault handler enables the FPU for that thread, and from then
on, the FPU context will be saved and restored when switching from or to that thread.

In a system where some or many threads do not use the FPU, this can greatly improve context switch time. However if
the system spends most of its time swapping between two or more threads which do both use the FPU, then there may be
additional overhead compared to the ALL mode (due to the need to check if the FPU was enabled for a particular thread
on switch). This means the worst case context switch time is longer than with ALL mode. It also reduces determinism
as there is an unavoidable latency at the point the thread first accesses the FPU, so that the fault handler can execute to
enable the FPU; and determinism is further affected as context switch time depends on whether threads use the FPU.

The LAZY mode does not save on stack usage, as the number of registers which might need to be saved remains the
same.

Unlike the ALL mode, there is not yet support for lazy exception stacking for those threads which have the FPU
enabled, which means if the FPU is enabled at the time of interrupt or exception, much of the FPU register context
(the FPSCR, and half the data registers) will be saved. Please contact eCosCentric if it would be of interest to enhance
eCos by adding adding lazy exception stacking to the LAZY context switching mode.

NONE In this mode, the FPU is enabled, but no floating point context is stored at any point, which naturally means there is
no overhead on context switch. However this means that only one thread or context may use the FPU at a time.

If using this mode, either all FP operations must be constrained to a single thread. Or there must be locking to ensure
that multiple threads do not access the FPU registers simultaneously. But if you rely on locking, great care must be
taken as the compiler has the potential to reorder floating point accesses outside of the critical region if it is still in
the same function. The use of the HAL_REORDER_BARRIER() call from the <cyg/hal/hal_arch.h> HAL
header can be useful to prevent reordering across a particular point in the code.

Floating point specific tests
The kernel package has a number of tests to exercise floating point operations, especially when switching threads. Some of
these tests take particular account of the Cortex-M features in determining what to test. The relevant test names in the kernel
package all have the prefix "fp".

FP in exception contexts
Floating point must not be used in an ISR or from kernel exception handlers. If used, FPU registers will not be restored correctly
on the return from the ISR/exception.

However if the ALL context switch mode is in use, it is permitted to use floating point in DSR routines, including kernel alarm
functions. They may also be used in NONE mode, but as expected, this could only be if no threads are using floating point;
this can be ensured in threads by using the kernel scheduler lock to prevent DSRs from running temporarily, although clearly
that has an impact on real-time behaviour. As mentioned earlier, it would also be advised to combine the lock with use of
HAL_REORDER_BARRIER().

Do not use floating point operations in DSRs when LAZY context switch mode is used. There is no guarantee of which thread
context will be current when the DSR is run, meaning that if the interrupt occured while a thread that does not use FP was
running, the DSR would cause the FPU to enabled for that thread from then on.

2729

Cortex-M Architectural Support

Name
HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto the Cortex-M hardware and should be
read in conjunction with the Architecture Reference Manual and the Technical Reference Manual. It should be noted that the
architectural HAL is usually complemented by a variant HAL and a platform HAL, and those may affect or redefine some
parts of the implementation.

Exports

The architectural HAL provides header files cyg/hal/hal_arch.h, cyg/hal/hal_intr.h and cyg/hal/
hal_io.h. These header files export the functionality provided by all the Cortex-M HALs for a given target, automatically
including headers from the lower-level HALs as appropriate. For example the platform HAL may provide a header cyg/hal/
plf_io.h containing additional I/O functionality, but that header will be automatically included by cyg/hal/hal_io.h
so there is no need to include it directly.

Additionally, the architecture HAL provides the cyg/hal/basetype.h header, which defines the basic properties of the
architecture, including endianness, data type sizes and alignment constraints.

Startup

The conventional bootstrap mechanism involves a table of exception vectors at the base of memory. The first two words of this
table give the initial program counter and stack pointer. For ROM startup only these two words are defined at the beginning
of the ROM image. The rest of the vector table is constructed at runtime in on-chip SRAM.

The architectural HAL provides a default implementation of the low-level startup code which will be appropriate in nearly all
scenarios. For a ROM startup this includes copying initialized data from flash to RAM. For all startup types it will involve
zeroing bss regions and setting up the general C environment. It will also set up the initial exception priorities, switches the
CPU into the correct execution mode, enables the debug monitor and enables error exception handling.

In addition to the setup it does itself, the initialization code calls out to the variant and platform HALs to perform their own
initialization. The first such function is hal_system_init which is called at the very start of initialization. This function is
supplied by the platform HAL and should do minimal initialization to allow the rest of the initialization code to run. Typically it
will set up GPIO lines, enable clocks and access to external RAM. This function runs before the data and bss sections have been
initialized, so it cannot rely on global or static data. Full initialization is handled by hal_variant_init and hal_plat-
form_init. The former should complete clock and GPIO initialization and switch from the startup clocking speed to the
default rate, which may involve enabling PLLs etc. The platform initialization routine will complete any initialization needed
for devices external to the microprocessor.

The architectural HAL also initializes the VSR and virtual vector tables, sets up HAL diagnostics, and invokes C++ static
constructors, prior to calling the first application entry point cyg_start. This code resides in src/hal_misc.c.

The current code assumes that there is no memory management or MPU and hence will not perform any MPU initialization.
Other functional units may be initialized by the variant or platform HALs.

Interrupts and Exceptions

The eCos interrupt and exception architecture is built around a table of pointers to Vector Service Routines that translate
hardware exceptions and interrupts into the function calls expected by eCos. The Cortex-M vector table provides exactly
this functionality, so it is used directly as the eCos VSR table. The HAL_VSR_GET and HAL_VSR_SET macros therefore
manipulate the vector table directly. The hal_intr.h header provides definitions for all the standard Cortex-M exception
vectors.

The vector table is constructed at runtime at the base of internal SRAM, which is always located at address 0x20000000, and
the Vector Table Offset Register set to use it. For ROM and JTAG startup all entries are initialized. For RAM startup only the
interrupt vectors are (re-)initialized to point to the VSR in the loaded code, the exception vectors are left pointing to the VSRs
of the loading software, usually RedBoot or GDB stubs.

2730

Cortex-M Architectural Support

When an exception occurs it is delivered to a shared VSR, hal_default_exception_vsr in vectors.S This saves
the CPU state and calls hal_deliver_exception in hal_misc.c, which passes the exception on to either the kernel
or the GDB stub handler. If it returns then the CPU state is restored and the code continued.

Interrupts are numbered from zero starting at VSR table entry 15, which is the SysTick timer interrupt. The remaining interrupt
numbers are defined by the variant HAL, and possibly the platform HAL. These definitions are used to declare interrupt
handling tables in the architecture HAL.

When an interrupt occurs it is delivered to a shared VSR, hal_default_interrupt_vsr, which saves some state and
calls hal_deliver_interrupt. This function is passed the interrupt number to be delivered, generated by subtracting 15
from the value of the IPSR register. It looks up the ISR in the interrupt tables and calls it. If the return value of the ISR has the
CYG_ISR_CALL_DSR bit set then it calls cyg_interrupt_post_dsr to mark the DSR for execution and also sets the
PENDSVSET bit in the NVIC ICSR register to set the PendSVC exception pending.

Interrupts are delivered onto the main or interrupt stack, which differs from the process stack that threads execute on. The inter-
rupt priority mechanism allows interrupts to nest on the interrupt stack (irrespective of the CDL option CYGSEM_HAL_COM-
MON_INTERRUPTS_ALLOW_NESTING) and only when the last interrupt has been executed will the PendSVC exception be
called. The PendSVC handler arranges for interrupt_end to be called by pushing a new exception frame on the process
stack, preserving its own exception frame, and returning. This causes interrupt_end to be called in thread mode on the
process stack, which will cause any pending DSRs to be called, and a context switch to a new thread if necessary. When
execution resumes on this thread it returns to hal_interrupt_end_done, which uses a SWI to pop its own exception
frame and use the preserved PendSVC frame to resume the interrupted thread where it left off.

The architectural HAL provides default implementations of HAL_DISABLE_INTERRUPTS, HAL_RESTORE_INTERRUP-
TS, HAL_ENABLE_INTERRUPTS and HAL_QUERY_INTERRUPTS. These involve manipulation of the CPU BASEPRI reg-
ister. Similarly there are default implementations of the interrupt controller macros HAL_INTERRUPT_MASK, and HAL_IN-
TERRUPT_UNMASK macros. These manipulate the NVIC interrupt mask registers, and the TICKINT bit of the SYSTICK CSR
register. HAL_INTERRUPT_ACKNOWLEDGE and HAL_INTERRUPT_CONFIGURE are no-ops at the architectural level.

HAL_INTERRUPT_SET_LEVEL manipulates the NVIC interrupt priority registers. The valid range of interrupts supported
depends on the number of interrupt priority bits supported by the CPU variant. Priority level 0 is reserved for exceptions and
the debug monitor. Interrupts are only allowed to start at the first implemented priority below this: 0x10 if the CPU implements
4 priority bits, 0x20 if it implements 3, and 0x01 if it implements all 8. This macro shifts the priority level supplied to start at
the implemented maximum and clamps the higher end to 0xFF. So on a CPU that implements 4 priority bits, level 0 will be
mapped to 0x10, levels above 0xf0 will all be mapped to 0xFF.

For all of these macros, a variant specific version may also be defined: HAL_VAR_INTERRUPT_MASK, HAL_VAR_INTER-
RUPT_UNMASK, HAL_VAR_INTERRUPT_ACKNOWLEDGE, HAL_VAR_INTERRUPT_SET_LEVEL and HAL_VAR_IN-
TERRUPT_CONFIGURE. These are each called by the architecture macros after any architecture defined operations are com-
pleted. These macros allow the variant HAL to modify the architecture HAL support, or implement further interrupts that are
not directly supported by the NVIC. In support of this, the variant HAL must define CYGNUM_HAL_INTERRUPT_NVIC_MAX
which separates interrupts handled by the NVIC from any extended vectors defined by the variant HAL.

Stacks and Stack Sizes

cyg/hal/hal_arch.h defines values for minimal and recommended thread stack sizes, CYGNUM_HAL_S-
TACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPICAL. These values depend on a number of configuration
options.

The Cortex-M architecture HAL always uses a separate stack for startup and interrupt handling. This is usually allocated to
uninitialized memory at the top of the available internal or external RAM, depending on the startup type. Thus the configuration
option CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK has no effect.

Thread Contexts and setjmp/longjmp

cyg/hal/hal_arch.h defines a thread context data structure, the context-related macros, and the setjmp/longjmp
support. The implementations can be found in src/context.S. The context structure is defined as a discriminated union
with different layouts for thread, exception and interrupt saved states. This approach allows the most efficient code and layout
to be used in each context. The only expense is that debug code must be slightly more careful in accessing a saved state.

2731

Cortex-M Architectural Support

Bit Indexing

The architectural HAL provides inline assembler implementations of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX which
use the CPU count-leading-zero instruction.

Idle Thread Processing

The architecture HAL provides a default HAL_IDLE_THREAD_ACTION implementation that executes a WFI, wait for inter-
rupt, instruction. This puts the CPU into a low power mode ready to respond quickly to the next interrupt.

A potential problem can occur with this however, as this instruction is known to cause difficulties when debugging via a
JTAG hardware debugger. A frequent symptom is a report from the debugger that it was unable to stop the target. Therefore
if using a JTAG debugger, it is strongly recommended to disable the use of WFI by enabling the configuration option titled
"Disable HAL-specific idle action" (CYGIMP_KERNEL_THREADS_IDLE_NO_HAL_ACTION) which can be found in the
eCos kernel package, in the "Thread-related options" component. This automatically happens when additional eCos debugging
support is enabled using CYGPKG_INFRA_DEBUG, or if the HAL startup type (CYG_HAL_STARTUP) is set to "JTAG". But
it needs to be set manually for other startup types, notably when debugging an application installed into Flash, which would
have "ROM" startup type.

When using Single Wire Debug (SWD) hardware debuggers this is not an issue. Since the CYG_HAL_STARTUP setting
"JTAG" is used irrespective of the hardware debugger type this would normally disable the use of WFI within the idle thread.
However, when ITM is configured as available, the CYGHWR_HAL_CORTEXM_SYSTEM_DEBUG_ALLOW_IDLE option can
be enabled to override the disabling, allowing the normal WFI idle behaviour.

Clock Support

The architectural HAL provides a default implementation of the various system clock macros such as
HAL_CLOCK_INITIALIZE. These macros use the architecture defined SysTick timer to implement the eCos system clock.
The architecture HAL expects the variant HAL to define and initialize a variable named hal_cortexm_systick_clock,
which should contain the frequency in Hz of the clock supplied to the SysTick timer input. To allow for varying CPU clock
rates, the SysTick timer is always programmed to take a 1MHz input clock, and CYGNUM_HAL_RTC_PERIOD is then ex-
pressed in terms of this.

HAL I/O

The Cortex-M architecture does not have a separate I/O bus. Instead all hardware is assumed to be memory-mapped. Further it
is assumed that all peripherals on the memory bus will switch endianness with the processor and that there is no need for any
byte swapping. Hence the various HAL macros for performing I/O simply involve pointers to volatile memory.

The variant and platform files included by the cyg/hal/hal_io.h header will typically also provide details of some or all
of the peripherals, for example register offsets and the meaning of various bits in those registers.

Cache Handling

The current Cortex-M implementations do not support caches, so no cache handling is currently included in the architecture
port. Instead it is the responsibility of the variant HAL to supply the cyg/hal/hal_cache.h header.

Linker Scripts

The architectural HAL will generate the linker script for eCos applications. This involves the architectural file src/cor-
texm.ld and a .ldi memory layout file, typically provided by the platform HAL. It is the .ldi file which places code and
data in the appropriate places for the startup type, but most of the hard work is done via macros in the cortexm.ld file.

Diagnostic Support

The architectural HAL implements diagnostic support for ITM stimulus port if available, or for discarding all output. However,
by default, the diagnostics output is left to the variant or platform HAL, depending on whether suitable peripherals are available

2732

Cortex-M Architectural Support

on-chip or off-chip. The CYGHWR_HAL_CORTEXM_DIAGNOSTICS_INTERFACE can be configured to direct the diagnostic
output support used.

See Cortex-M Hardware Debug for more detail regarding using the ITM stimulus port.

SMP Support

The Cortex-M architectural HAL does not provide any SMP support.

Debug Support

The architectural HAL provides basic support for gdb stubs using the debug monitor exceptions. Breakpoints are implemented
using a fixed-size list of breakpoints, as per the configuration option CYGNUM_HAL_BREAKPOINT_LIST_SIZE. When a
JTAG device is connected to a Cortex-M device, it will steal breakpoints and other exceptions from the running code. Therefore
debugging from RedBoot or the GDB stubs can only be done after detaching any JTAG debugger and power-cycling the board.

HAL_DELAY_US() Macro

cyg/hal/hal_intr.h provides a simple implementation of the HAL_DELAY_US macro based around reading the SysTick
timer. The timer must therefore be initialized before this macro is used, and HAL_CLOCK_INITIALIZE() is called during
initialization after the variant and platform initialization functions are called, but before constructors are invoked.

Profiling Support

The Cortex-M variant may support the Data Watchpoint and Trace (DWT) feature, and if available then it is possible to use
the DWT to provide non-intrusive PC sampling without any eCos run-time configuration or support being needed. The SWD
hardware debugger being used controls the enabling and processing of PC sample data for subsequent use by profiling tools.

When using local memory based profiling the Cortex-M architectural HAL implements the mcount function, allowing profil-
ing tools like gprof to determine the application's call graph. It does not implement the profiling timer. Instead that functionality
needs to be provided by the variant or platform HAL.

2733

Cortex-M Architectural Support

Name
Cortex-M Hardware Debug — Overview of hardware debug features

Introduction

Some Cortex-M designs may include the Instrumentation Trace Macrocell (ITM) and Data Watchpoint and Trace (DWT)
features. The ITM allows for software generated “instrumentation” to be output via the Single Wire Debug (SWD) hardware
interface in a relatively non-intrusive fashion. The SWD ITM support provides for much higher data rates than can normally
be achieved via a UART, so they can provide for software controlled debug I/O support with a significantly reduced system
overhead, which may be important for some eCos applications.

There is no explicit eCos support for making use of the DWT features, since the hardware debug tools being used can control
the feature use independently of the eCos application. The specific hardware debug tools being used may provide support as
required. For example the Ronetix PEEDI has built-in support for tracking DWT PC sample events for profiling.

Instrumentation Trace Macrocell (ITM)

If the Cortex-M ITM support is enabled in the CDL configuration then HAL diagnostics can be directed to a ITM stimulus
port, and if instrumentation is enabled then event records directed to a different stimulus port. How the output data is processed
or captured is dependent on the hardware tool being used to drive the SWD interface.

The following sections give a brief overview of using the Ronetix PEEDI hardware debugger, and the OpenOCD tool in
conjunction with the STMicroelectronics ST-LINKv2 adapter. This is by no means an exhaustive list since many 3rd-party
hardware tools exist, and any tool capable of handling ITM stimulus port output can normally be configured to accept console
(HAL diagnostic) input or record captured data (instrumentation). More detail of specific variant or target SWD/JTAG setup
and ITM stimulus port support may be found in the relevant eCos platform specific documentation.

Ronetix PEEDI

The documentation supplied with the Ronetix PEEDI provides an overview of using the Cortex-M ITM features. However,
the example PEEDI configuration file BASE_DIR/packages/hal/cortexm/arch/current/misc/peedi.cor-
texm3.swd.cfg provided with eCos has comments on how the PEEDI can be configured to provide access to the data
written to ITM stimulus ports on specific TCP network ports. It also provides an example of using the DWT PC sampling
feature to gather non-intrusive application execution profiling.

The simplest use would be to use the telnet command to connect to the stimulus port connection being used for HAL diagnostics.
When an application configured for ITM diagnostics is executed then the output will appear on the configured network port:

$ telnet peedi-0 2001
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
INFO:<code from 0x20000290 -> 0x2000e254, CRC 2a20>
…

Similarly the Linux nc command could be used to save data from an instrumentation port to a file for post-processing. For
example, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the stimulus
port output can be captured and processed using the example instdump tool provided in the Kernel package.

$ nc peedi-0 2003 > inst.bin
^C
$ instdump -r inst.bin elfapp
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 …

2734

Cortex-M Architectural Support

OpenOCD

The OpenOCD ITM support is limited to using the ST-LINKv2 hardware interface to the target board. For example, as built-in
to the STM32F4DISCOVERY and STM32x0G-EVAL platforms. The ST-LINKv2 firmware on the boards should be at least
JTAG v17, so older boards may need to have their ST-LINK firmware updated via the relevant STMicroelectronics tool prior
to being used for ITM stimulus port support.

The BASE_DIR/packages/hal/cortexm/stm32/stm32f4dis/current/misc/
openocd.stm32f4dis.cfg file provides an example OpenOCD configuration file that captures ITM stimulus port
data and directs it to a file named tpiu.out in the current directory at the time openocd was invoked. This file can
then be interpreted by a program parseitm which can be found in this package in the directory packages/hal/cor-
texm/arch/VERSION/host relative to the root of your eCos installation. It can be compiled simply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, and it will echo all ITM
stimulus for that port, continuing to read from the file until interrupted with Ctrl-C for example:

$ parseitm -p 31 -f tpiu.out

Note

Note that limited buffer space in debug hardware such as the ST-LINK can result in some ITM data becoming
lost due to buffer overruns. eCosPro provides a workaround of throttling data within the CYGHWR_HAL_COR-
TEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration component of this package in order to reduce or
avoid lost ITM data.

Two approaches are available: "Chunk" or "Per-Character" throttling. In the case of Chunk throttling, a config-
urable number of characters are output before a delay is applied to allow the buffer to be emptied. However this
can result in a longer delay while waiting for the buffer to empty. Alternatively, Per-Character throttling imposes
a small delay after every character, whether it is needed or not.

More detail on the behaviour of these configuration options can be found in the description of the "ITM Throt-
tling" component (CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE) and its sub-options within
the eCos Configuration Tool.

These are just default examples; it is also possible to configure the eCos kernel to send its instrumentation output via ITM, and
applications may make use of other stimulus ports for application-specific functionality.

2735

Chapter 286. Kinetis Variant HAL

2736

Kinetis Variant HAL

Name
CYGPKG_HAL_CORTEXM_KINETIS — eCos Support for the Kinetis Microprocessor Family

Description
The Freescale Kinetis K series of Cortex-M microcontrollers is supported by eCos with an eCos processor variant HAL and a
number of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-chip flash, serial,
I²C, SPI, Ethernet, RTC/wallclock and watchdog devices. In addition it provides common functionality and definitions that
Kinetis based platform ports may require, as well as definitions useful to application developers.

This documentation covers the Kinetis functionality provided, but should be read in conjunction with the specific HAL docu-
mentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here, and
may also describe differences that override or supersede what the Kinetis variant HAL provides. The areas that are specific to
platfom HALs and not the Kinetis variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

2737

Kinetis Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support

On-chip memory

The Freescale Kinetis parts include on-chip SRAM, and on-chip FLASH. The SRAM and FLASH can vary in size depending
on the model. There is also support in some models for external memory, which eCos may use where available.

Typically, an eCos platform HAL port will expect a GDB stub ROM monitor or RedBoot image to be programmed into the
Kinetis on-chip FLASH memory for development, and the board would boot this image from reset. The stub ROM/RedBoot
provides GDB stub functionality so it is then possible to download and debug stand-alone and eCos applications via the gdb
debugger using serial interfaces or other debug channels. The JTAG interface may also be used for development if a suitable
JTAG device is available. If RedBoot is present it may also be used to manage the on-chip and external flash memory. For
production purposes, applications are programmed into external or on-chip FLASH and will be self-booting.

On-chip FLASH

The package CYGPKG_DEVS_FLASH_KINETIS (“Kinetis FLASH memory support”) provides a driver for the on-chip flash.
This driver conforms to the Version 2 flash driver API, and is automatically enabled if the generic “Flash device drivers” (CYG-
PKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for the size
and parameters of the specific Kinetis variant which has been selected in the eCos configuration.

Cache Handling

The variant HAL supplies the cyg/hal/hal_cache.h header file to describe cache support to the generic eCos code. Some
Kinetis K series parts have access to a Cortex-M4 core cache (the CYGINT_HAL_CACHE will be defined by the platform if
appropriate). If the configured part does not provide a cache then the header will supply null macros for the required functions.

When a cache is available the HAL currently supports a 16KiB cache, split into a 8KiB data cache and a 8KiB instruction cache.

The architecture HAL also defines a macro HAL_MEMORY_BARRIER() which acts to synchronize the pipeline, delaying
execution until all previous operations, including all pending writes, are complete. This will usually be necessary when inter-
acting with devices that access memory directly.

Note

The use of the default Cortex-M architecture HAL_MEMORY_BARRIER macro requires that the CPU core sup-
ports the barrier instructions (ID_ISAR4[19..16] is not 0). This is the case for the Freescale Kinetis family.

Serial I/O

The Kinetis variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a fully
interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver consists of an
eCos package: CYGPKG_IO_SERIAL_FREESCALE_UART which provides all support for the Kinetis on-chip serial devices.
Using the HAL diagnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication
with GDB. If a device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB
communication using the HAL I/O support. An alternative serial port should be used instead.

The HAL defines CDL interfaces, CYGINT_HAL_FREESCALE_UART0 to CYGINT_HAL_FREESCALE_UART5 for each
of the available UARTs. The platform HAL CDL should contain an implements directive for each such UART that is available
for use on the board. This will enable use of the UART for diagnostic use.

The Kinetis UARTs provide TX and RX data lines plus hardware flow control using RTS/CTS for those UARTs that have the
signals available on the platform hardware.

2738

Kinetis Variant HAL

Note

The UART0 and UART1 devices are clocked from the main core clock, with the remaining UARTs clocked from
the bus clock. This can affect baud rate accuracy at higher configured speeds depending on the main CPU clock
configuration, and the physical UART being used.

Interrupts

The Kinetis HAL relies on the architectural HAL to provide support for the interrupts directly routed to the NVIC. The cyg/
hal/var_intr.h header defines the vector mapping for these.

GPIO

The variant HAL provides support for packaging the configuration of a GPIO line into a single 32-bit descriptor that can then
be used with macros to configure the pin and set and read its value. This is useful to drivers and other packages that need to
configure and use different I/O lines for different devices.

A descriptor is created with the CYGHWR_HAL_KINETIS_PIN(port,bit,mux,cnf) macro, where the parameters re-
quired are:

port This identifies the GPIO port to which the pin is attached. Ports are identified by the
letters from A to F.

bit This gives the bit or pin number within the port. These are numbered from 0 to 31.

mux This paramater specifies how the pin should be used, and should be in the range 0 to
7. The value 0 corresponds to the pin being disabled (Analog), with 1 used to specify
GPIO control. The other values 2 to 7 are used to indicate alternative function mappings
as defined by the CPU variant.

cnf This option allows explicit Port Control register configuration settings to be specified.
The bits as held in the cnf value are defined as per the relevant Kinetis Reference
Manual.

The macro CYGHWR_HAL_KINETIS_PIN_NONE may be used in place of a pin descriptor and has a value that no valid
descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used. This can be useful
when defining pin configurations for a series of instances of a peripheral (e.g. UART ports), but where not all instances support
all the same pins (e.g. hardware flow control lines).

The function hal_set_pin_function(pin) configures the pin according to the descriptor and must be called before
other GPIO operations are performed on the pin.

The macros to manipulate GPIO state all take a suitably constructed GPIO pin descriptor as an argument. It is recommended
to consult the header file <cyg/hal/var_io_gpio.h> (also present in the include subdirectory of the Kinetis variant
HAL package within the eCos source repository), for the complete list if needed.

RTC/Wallclock

eCos includes a RTC (known in eCos as a wallclock) device driver for the on-chip RTC in the Kinetis family. This is located
in the package CYGPKG_DEVICES_WALLCLOCK_KINETIS_RTC (“Real-time clock”).

Profiling Support

The Kinetis HAL contains support for gprof-based profiling using a sampling timer. The default timer used is PIT0, which
is one of the basic periodic interrupt timers, leaving the more complex timers for application code. The timer used is selected
by the CYGHWR_HAL_CORTEXM_KINETIS_PROFILE_PIT_CHANNEL configuration option. This timer is only enabled
when the gprof profiling package (CYGPKG_PROFILE_GPROF) is included and enabled in the eCos configuration, otherwise
it remains available for application use.

2739

Kinetis Variant HAL

Clock Control
The CDL section CYGHWR_HAL_CORTEXM_KINETIS_CLOCKING contains many options to configure the various
Kinetis on-chip clocks, based on platform supplied default values. The CDL will calculate the main CYGNUM_HAL_COR-
TEXM_KINETIS_MCGOUT_FREQ frequency value, which in turn is used in conjunction with the configured clock divider
values to set the frequencies of the relevant subsystems.

The actual calculated values of the main clocks, in Hz, are stored in the global variables hal_kinetis_sysclk and
hal_kinetis_busclk. The clock supplied to the Cortex-M SysTick timer, HCLK/8, is also assigned to the global vari-
able hal_cortexm_systick_clock. These variables are used, rather than configuration options, in anticipation of future
support for power management by varying the system clock rate.

Note that when changing or configuring any of these clock settings, you should consult the relevant processor datasheet as
there may be both upper and lower constraints on the frequencies of some clock signals, including intermediate clocks. There
are also some clocks where, while there is no strict constraint, clock stability is improved if values are chosen wisely. Finally,
be aware that increasing clock speeds using this package may have an effect on platform specific properties, such as memory
timings which may have to be adjusted accordingly.

2740

Chapter 287. Freescale TWR-K60N512 and
TWR-K60D100M Platform HAL

2741

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Name
CYGPKG_HAL_CORTEXM_KINETIS_TWR_K60N512 — eCos Support for the Freescale TWR-K60N512 and TWR-
K60D100M boards

Description
The Freescale TWR-K60N512 and TWR-K60D100M boards are almost identical, so the CYGPKG_HAL_COR-
TEXM_KINETIS_TWR_K60N512 package provides support for both variants. The only functional differences are whether a
revision 1 or revision 2 Kinetis K60 sub-family CPU is used, and a different on-board 3-axis accelerometer.

The TWR-K60N512 board has a MK60N512VMD100 revision 1 microcontroller and the TWR-K60D100M board has a
MK60DN512VMD10 revision 2 microcontroller. Both microcontrollers incorporate 512KB of internal flash ROM and 128KB
of internal SRAM.

In either case the stand-alone board may be targetted, but for access to some peripherals it is assumed that a TWR-ELEV
setup, with a TWR-SER daughterboard is being used. For example, with a TWR-SER board present it provides a connector for
Ethernet. The motherboards have limited I/O interfaces, with most of the I/O signals being propogated via multi-pin connectors.

The motherboards also provide an on-board JTAG debug circuit (OSJTAG) with virtual serial port, a 3-axis accelerometer, a
potentiometer, a MicroSD card slot, and some LEDs and buttons.

The TWR-SER daughterboard also provides in addition to the Ethernet connector access to a RS232/484 DB9 connection, a
USB Mini-AB connector and a 3-pin CAN connector.

For these boards, the expected eCos development model is that programs may be downloaded and debugged via the on-board
OSJTAG USB interface, or via a hardware debugger (JTAG/SWD) attached to the JTAG socket. However, if required, it is
possible to build and install RedBoot or a GDB stub image into the internal FLASH so that the CPU boots directly into that
monitor, and that the GDB debugger accesses the monitor via serial or Ethernet.

This documentation describes platform-specific elements of the TWR-K60N512 and TWR-K60D100M board support within
eCos. The Kinetis variant HAL documentation covers various topics including HAL support common to Kinetis variants, and
on-chip device support. This document complements the Kinetis documentation.

Supported Hardware
The K60 parts used have two on-chip memory regions. There is a SRAM region of 128KiB present at 0x1FFF0000 and a
512KiB FLASH region present at 0x00000000.

The Kinetis variant HAL includes support for the six on-chip serial devices which are documented in the variant HAL. For these
boards UART3 is connected to the J8 DB9 connector, with hardware flow control (RTS/CTS) lines available. Additionally
UART5 is connected as a virtual serial through the on-board OSJTAG J13 USB connection, without support for hardware
flow control lines.

Device drivers are provided for the Kinetis on-chip Ethernet MAC, I²C interface and SPI interface. Additionally support is
provided for the on-chip watchdog, RTC (wallclock) and a flash driver exists to permit management of the Kinetis's on-chip
flash.

The Kinetis K60 processor, and the TWR-K60N512/TWR-K60D100M platforms, provide a wide variety of peripherals, but
unless support is specifically indicated it should be assumed that support is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3a, arm-eabi-gdb version 7.6, and binutils version 2.23.2.

2742

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Name
Setup — Preparing the TWR-K60N512/TWR-K60D100M Board for eCos Development

Overview
Since the target motherboard provides a built-in hardware debug solution, it is expected that the most common development
method when targeting the CPU is to use this hardware debug interface (instead of GDB stubs or RedBoot) for development.
This will either be by loading smaller applications into on-chip SRAM, or by programming larger applications directly into
on-chip flash. In the first case, eCos applications should be configured for the variant JTAG startup type, and in the second
case for the variant ROM startup type.

Nevertheless, it is still possible to program RedBoot or a GDB stub ROM image into on-chip flash and download and debug
via a serial UART, if pins for the UART are available. In that case, eCos applications are configured for a variant RAM startup
and then downloaded and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE. For serial communications,
all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This rate can be changed in the eCos configuration used
for building the RedBoot or GDB stub ROM image.

HAL Startup Types

For the twr_k60n512 and twr_k60d100m platforms the Kinetis variant HAL support provides some common startup
types. The following variant HAL provided startup types may be selected for applications:

Configuration Description

ROM Stand-alone programs running from internal FLASH

SRAM Programs loading via hardware debugger into on-chip SRAM, but expecting RedBoot or GDB stub
ROM

RAM Programs loading via RedBoot or GDB stub ROM into on-chip SRAM

JTAG Stand-alone programs running from on-chip SRAM, loaded via hardware debugger

Further details are available later in this manual.

Preparing OSJTAG interface
The support for using the on-chip OSJTAG interface for hardware debugging and diagnostic output requires that the OSJTAG
firmware is at least version v30.21. The firmware for the OSJTAG interface can be checked, and updated if needed, using the
relevant firmware updater tool available for download via the Freescale website. Unfortunately the official firmware updater
is only available for the Windows platform at the moment.

Programming ROM images
To program ROM startup applications into flash, including the GDB stub ROM or RedBoot, a hardware debugger that under-
stands the Kinetis flash may be used. For example, the Ronetix PEEDI provides suitable support.

Warning

Due to a security feature of the Kinetis CPUs care should be taken to avoid completely erasing the flash to ensure
the required FSEC value in the flash configuration field is not lost. For example when using the PEEDI the user
should NOT use the “erase” suffix to the flash program command. The Kinetis aware flash erase chip should
be executed to erase the flash prior to using the flash program command.

Programming ROM images with a Ronetix PEEDI

This section describes how to program ROM images using a Ronetix PEEDI debugger.

The PEEDI must be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. It must then be used to download and program the ROM image into the internal flash. The

2743

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

following steps give a typical outline for doing this. Consult the PEEDI documentation for alternative approaches, such as
using FTP or HTTP instead of TFTP.

Preparing the Ronetix PEEDI JTAG debugger

1. Prepare a PC to act as a host and start a TFTP server on it.

2. Connect the PEEDI JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial cable supplied
with the PEEDI (straight through, not null modem).

3. Verify the PEEDI is using up-to-date firmware, of version 12.3.0 or later. Older PEEDI firmware does not support the
Kinetis family correctly, particularly if wishing to use the PEEDI's own 'flash' commands to modify the on-chip flash. If
the firmware is not recent enough, follow the PEEDI User Manual's instructions which describe how to update the PEEDI
firmware.

4. Locate the PEEDI configuration file peedi_twr_k60n512.cfg within the eCos platform HAL package in the source
repository. This will be in the directory packages/hal/cortexm/kinetis/twr_k60n512/VERSION/misc rel-
ative to the root of your eCos installation.

5. Place the PEEDI configuration file in a location on the PC accessible to the TFTP server. Later you will configure the PEEDI
to load this file via TFTP as its configuration file.

6. Open peedi_twr_k60n512.cfg in an editor such as emacs or notepad and insert your own license information in the
[LICENSE] section.

7. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring PEEDI's
RedBoot with the network information. Configure it to use the peedi_twr_k60n512.cfg target configuration file on
the TFTP server at the appropriate point of the config process, for example with a path such as: tftp://192.168.7.9/
peedi_twr_k60n512.cfg

8. Reset the PEEDI.

9. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet 192.168.7.225
Trying 192.168.7.225...
Connected to 192.168.7.225.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2011 www.ronetix.at - All rights reserved
Hw:1.2, L:JTAG v1.6 Fw:13.3.0, SN: PD-XXXX-XXXX-XXXX
--

twr_k60n512>

Preparing the TWR-K60N512/TWR-K60D100M board for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the PEEDI device.

If programming a RedBoot, GDB stub ROM, or an application, which uses serial output, you should first:

1. If OSJTAG firmware 30.21 or later is installed then the motherboard J13 USB provides a standard CDC-ACM virtual serial
connection to the host computer. The alternative is to connect a null modem cable between the DB9 RS232 connector on
the TWR-SER daughterboard and the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom on Linux or PuTTY on Windows. Set the com-
munication parameters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

For all applications, you must:

2744

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

1. Connect the board to the PEEDI using an appropriate 20-pin cable from the JTAG interface connector to the Target port on
the PEEDI. This will normally be a PEEDI-CORTEX20 adapter.

2. Power up the TWR-K60N512/TWR-K60D100M board.

3. Connect to the PEEDI's telnet CLI on port 23 as before.

4. Confirm correct connection with the PEEDI with the reset reset command as follows:

twr_k60n512> reset reset
++ info: user reset
twr_k60n512>
++ info: RESET and TRST asserted
++ info: TRST released
++ info: TAP : IDCODE = 0x2BA01477, Cortex M3 SWD
++ info: RESET released
++ info: core connected

CORE0 -> CortexM4 - stopped by breakpoint
 PC=0x1FFF0006, xPSR=0x01000000

core #0 stopped
++ info: core 0: initialized

twr_k60n512>

Installation into flash

The following describes the procedure for installing a ROM application into on-chip flash, using the GDB stub ROM image
as an example of such an application.

1. Use arm-eabi-objcopy to convert the linked application, in ELF format, into binary format. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2. Copy the binary file (.bin file) into a location on the host computer accessible to its TFTP server.

3. Connect to the PEEDI's telnet interface, and program the image into flash with the following commands, replacing TFT-
P_SERVER with the address of the TFTP server and /BINPATH with the location of the .bin file relative to the TFTP server
root directory. For example for a RedBoot ROM image:

twr_k60n512> flash erase chip

erasing chip at 0x00000000
done.

++ info: successfully erased 1 byte in 0.33 sec

twr_k60n512> flash program tftp://TFTP_SERVER/BINPATH/redboot.bin bin 0x00000000
++ info: Programming image file: tftp://TFTP_SERVER/redboot.bin
++ info: Programming directly
++ info: At absolute address: 0x00000000
programming at 0x00000000
programming at 0x00001000
programming at 0x00002000
programming at 0x00003000
programming at 0x00004000
programming at 0x00005000
programming at 0x00006000
programming at 0x00007000
programming at 0x00008000
programming at 0x00009000
programming at 0x0000A000
programming at 0x0000B000
programming at 0x0000C000
programming at 0x0000D000
programming at 0x0000E000
programming at 0x0000F000
programming at 0x00010000

2745

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

programming at 0x00011000
programming at 0x00012000
programming at 0x00013000
programming at 0x00014000
programming at 0x00015000

++ info: successfully programmed 88.00 KB in 0.74 sec

twr_k60n512>

The installation into flash is now complete. For applications which print output on startup to the USART3 RS232 serial port,
such as the GDB stub ROM application, this can easily by tested by powering off the board, disconnecting the JTAG, and
then powering on the board again. In the case of the GDB stub ROM image, output similar to the following should be visible
(although specific numbers may differ):

$T050f:72250008;0d:f0ff0120;#8a

RedBoot Installation
Only the ROM_VAR RedBoot configuration is supported. This is for RedBoot running from internal FLASH, using on-chip
SRAM. For serial communications this uses 8 bits, no parity, and 1 stop bit at 38400 baud. This rate can be changed using the
RedBoot baud command, or in the eCos configuration used for building RedBoot.

Rebuilding RedBoot

Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot for the TWR-K60N512 are:

$ mkdir redboot_twr_k60n512_rom
$ cd redboot_twr_k60n512_rom
$ ecosconfig new twr_k60n512 redboot
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/kinetis/twr_k60n512/VERSION/misc/redboot_ROM_VAR.ecm
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This may be programmed to
the board using the above procedure, or by using RedBoot's own flash update mechanisms.

The other versions of RedBoot - RAM, ROM_FPU, ROM_VAR - may be similarly built by choosing the appropriate alter-
native .ecm file.

Initializing RedBoot flash Configuration

RedBoot manages the internal flash for the storage of application programs and configuration data. The flash needs to be
initialized with the following commands:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x0007f800-0x0007ffff: .
... Program from 0x2000e800-0x2000f000 to 0x0007f800: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Console baud rate: 115200
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x0007f800-0x0007ffff: .
... Program from 0x2000e800-0x2000f000 to 0x0007f800: .
RedBoot>

Issue the reset command to RedBoot, and verify the the target board comes up as expected with the correct settings.

You may also need to run the fconfig -i command if you have updated your RedBoot from a previous version with a different
configuration which might not have any new config fields used by the newly programmed RedBoot.

2746

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview

The CYGPKG_HAL_CORTEXM_KINETIS_TWR_K60N512 platform HAL package is loaded automatically when eCos is
configured for either the twr_k60n512 or twr_k60d100m targets. It should never be necessary to load this package ex-
plicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup

The target board platform HAL package supports the standard variant HAL startup types:

ROM This startup type can be used for finished applications which will be programmed into internal flash ROM at location
0x00000000. Data and BSS will be put into on-chip SRAM starting from 0x1FFF0000. The application will be self-
contained with no dependencies on services provided by other software. The program expects to boot from reset with
ROM mapped at location zero. eCos startup code will perform all necessary hardware initialization.

RAM This is the startup type which is used if relying on either a RedBoot or a GDB stub ROM image programmed into
internal flash to download and run applications into on-chip SRAM via arm-eabi-gdb. It is assumed that the hardware
has already been initialized by the ROM monitor. By default the application will use the eCos virtual vectors mecha-
nism to obtain services from the ROM monitor, including diagnostic output.

JTAG This is the startup type used to build applications that are loaded via a hardware debug interface into on-chip SRAM.
The application will be self-contained with no dependencies on services provided by other software. For the variant
JTAG startup type the eCos run-time will perform all necessary hardware initialization.

Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration op-
tion CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB stub ROM (or
RedBoot).

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

UART Serial Driver

The platform HAL uses the Kinetis's internal UART serial support. The HAL diagnostic interface, used for both polled diag-
nostic output and GDB stub communication, can be directed to either UART3 (default) or UART5 as required.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_FREESCALE_UART package which
contains all the code necessary to support interrupt-driven operation with greater functionality. All six UARTs can be supported
by this driver. Note that it is not recommended to use this driver with a port at the same time as using that port for HAL
diagnostic I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option (within the generic serial driver
support package CYGPKG_IO_SERIAL) is enabled in the configuration. By default this will only enable support in the driver
for the UART2 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable support
for other serial ports.

2747

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Ethernet Driver
The TWR-SER daughterboard is fitted with an Ethernet port connected via a KSZ8041NL PHY to the K60 on-chip Ethernet
MAC. This is supported in eCosPro with a driver contained in the package CYGPKG_DEVS_ETH_FREESCALE_ENET.

The driver will be inactive (not built and greyed out in the eCos Configuration Tool) unless the “Common Ethernet sup-
port” (CYGPKG_IO_ETH_DRIVERS) package is included in your configuration. As the Kinetis ethernet driver is likely to be
used in deeply embedded, low footprint, applications it is most appropriate to choose the lwip_eth template as a starting
point when choosing an eCos configuration, which will cause the necessary packages to be automatically included.

SPI Driver
A Kinetis SPI bus driver is available in the package “Freescale DSPI driver” (CYGPKG_DEVS_SPI_FREESCALE_DSPI).

No SPI devices are instantiated by default. Consult the generic SPI driver API documentation in the eCosPro Reference Manual
for further details on SPI support in eCosPro, along with the configuration options in the Freescale DSPI device driver.

I²C Driver
A Kinetis I²C hardware driver is available in the package “Freescale I2C driver” (CYGPKG_DEVS_I2C_FREESCALE_I2C).

Flash Driver
The Kinetis's on-chip flash may be programmed and managed using the flash driver located in the “Kinetis FLASH mem-
ory support” (CYGPKG_DEVS_FLASH_KINETIS) package. This driver is enabled automatically if the generic “Flash de-
vice drivers” (CYGPKG_IO_FLASH) package is included in the eCos configuration.

The driver will configure itself automatically for the size and parameters of the specific Kinetis variant present on the TWR-
K60N512/TWR-K60D100M board.

2748

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Name
JTAG/SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM, including the
GDB stub ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M4 core of the K60-series only
supports six such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. If ITM output is required the architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable
such use. The host hardware debugger configuration may also need to be updated to provide the necessary ITM enable and
capture support.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

Normally a notable disadvantage with JTAG/SWD debugging is that it does not allow thread-aware debugging, such as the
ability to inspect different eCos threads or their stack backtraces, set thread-specific breakpoints, and so on. Fortunately the
Ronetix PEEDI JTAG unit does support thread-aware debugging of eCos applications, however extra configuration steps
are required. Similarly OpenOCD has support for interpreting eCos thread information. Consult the PEEDI or OpenOCD
documentation for more details as usage is beyond the scope of this document.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board OSJTAG interface available via the USB J13 connection.

An example OpenOCD configuration file openocd_twr_k60n512.cfg is provided within the eCos platform
HAL package in the source repository. This will be in the directory packages/hal/cortexm/kinetis/
twr_k60n512/VERSION/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd_twr_k60n512.cfg
Open On-Chip Debugger 0.8.0-dev-hg8c51ca8dbc00-dirty (2013-09-09-17:18)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.sourceforge.net/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'jtag'
srst_only separate srst_gates_jtag srst_open_drain connect_deassert_srst
cortex_m3 reset_config sysresetreq
Info : add flash_bank kinetis k60.pflash
Info : OSBDM has opened
Info : This adapter doesn't support configurable speed
Info : JTAG tap: k60.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
START...

2749

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Info : k60.cpu: hardware has 6 breakpoints, 4 watchpoints
END...
Info : accepting 'gdb' connection from 3333
Halting CPU...
Info : JTAG tap: k60.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
START...
END...

By default openocd provides a telnet console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

To debug the target from the command line, arm-eabi-gdb should be connected to OpenOCD using it's default GDB server
port of 3333. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x1fff0006 in ?? ()
(gdb) monitor reset halt
JTAG tap: k60.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00004e9c msp: 0x2000f800
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then you may need to define a
“preload” gdb macro to emit any necessary commands to OpenOCD prior to loading or executing. See the “Hardware Assist-
ed Debugging” section of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications”
chapter.

If you need to build your own copy of OpenOCD then when configuring the openocd tool build, the configure script can be
given the option --enable-osbdm to provide for OSJTAG support.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi_twr_k60n512.cfg file supplied in the platform HAL package should be used to setup
and configure the hardware to an appropriate state to load programs.

The peedi_twr_k60n512.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to
hardware breakpoints. If the breakpoint type is changed remember to use the reboot command on the PEEDI command line
interface, or press the reset button to make the changes take effect.

The PEEDI provides a telnet console on the standard telnet port (23) for configuration and control, and gdb remote debugging
access via port 9000. For example, to use the command line arm-eabi-gdb to connect to the target via the PEEDI, you would
issue the following gdb command:

(gdb) target remote 111.222.333.444:9000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i_twr_k60n512.cfg file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, and then the 'go' command is given, the board will boot from ROM as normal.
A similar effect can be achieved in GDB by connecting with target remote and immediately typing continue or c.

It is also possible for the target to always run, without initialization, after reset. This mode is selected with the CORE0_START-
UP_MODE directive in the [TARGET] section of the peedi_twr_k60n512.cfg file. This conveniently allows the target
to be connected to the JTAG debugger, and be able to reset and run the resident flash program without being required to always
type 'go' every time. Finally, it is also possible to set a temporary default (unless the PEEDI is reset) by giving an argument to
the reset command, for example reset run. Use the command help reset at the PEEDI command prompt for more options.

Suitably configured applications can be loaded either via GDB, or directly via the telnet CLI into RAM for execution. For
example:

twr_k60n512> memory load tftp://192.168.7.9/test.bin bin 0x20000000

2750

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x20000000
loading at 0x20000000
loading at 0x20004000

Successfully loaded 28KB (29064 bytes) in 0.1s
twr_k60n512> go 0x20000000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

For Eclipse users wishing to debug ROM startup programs resident in flash, it is worth highlighting that it is possible to use
the eCosCentric Eclipse plugin to automatically reprogram flash as the load sequence. To do so, you will need to install and
use a TFTP server so that your application can be accessed from the PEEDI from there. You may then use a GDB command
file, as described in more detail in the “Eclipse/CDT for eCos application development” manual. This file can then contain
contents similar to the following example:

define doload
 shell arm-eabi-objcopy -O binary /path/to/eclipse/workspace/projectname/Debug/myapp /path/to/tftp/server/area/myapp.bin
 monitor flash program tftp://10.1.1.1/myapp.bin bin 0x08000000 erase
 set $pc=0x08000000
end

Obviously you will need to adjust the paths and names for your system and TFTP server requirements.

Configuration of JTAG/SWD applications

In order to configure the application to be downloaded and debugged via a hardware debugger, it is recommended to use
one of the JTAG startup types (JTAG or ROM), which will implicitly cause two important settings to change. Firstly,
CYGSEM_HAL_USE_ROM_MONITOR will be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option will
be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. These configuration changes
could also be made by hand, but use of one of the JTAG startup types will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. By default the K60's
JTAG startup types output diagnostics via the USB CDC/ACM serial port on the J13 USB connector. Alternatively di-
agnostic output can be configured to appear in GDB instead. For this to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. Then, after you load your application but be-
fore running it, you must give GDB the command:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define postload
 set hwdebug on
end

This will be referenced from their Eclipse debug launch configuration. Using GDB command files is described in more detail
in the "Eclipse/CDT for eCos application development" manual.

2751

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Freescale TWR-K60N512
and TWR-K60D100M hardware, and should be read in conjunction with that specification. The CYGPKG_HAL_COR-
TEXM_KINETIS_TWR_K60N512 platform HAL package complements the Cortex-M architectural HAL and the Kinetis
variant HAL. It provides functionality which is specific to the target boards.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services, and for the platform JTAG startup where
the host debugger configuration is responsible for initialising the DDRMC world for the external SDRAM used to hold the
application being loaded.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers including the PLL,
peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/twr_k60n512_misc.c
in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM This is located at address 0x1FFF0000 of the memory space, and is 128KiB in size. The eCos
VSR table occupies the bottom 512-bytes. The virtual vector table starts at 0x1FFF0200 and
extends to 0x20000300. For ROM, and JTAG startups, the top CYGNUM_HAL_COMMON_IN-
TERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of inter-
nal RAM is available for use by applications.

Internal FLASH This is located at address 0x00000000 of the memory space. This region is 1MiB in size. ROM
applications are by default configured to run from this memory.

On-Chip Peripherals These are accessible from locations 0x40000000 and 0xE0000000 upwards. Descriptions of the
contents can be found in the Kinetis User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x1FFF0000 for all startup
types, and space for 128 entries allocated, though the K60 sub-family in use may use
less entries.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000200.

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of internal SRAM, 0x20010000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Diagnostic LEDs
Four LEDs are fitted on the board for diagnostic purposes:

2752

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

Platform HAL manifest Colour Board Label

CYGHWR_IO_KINETIS_PIN_LED1 Orange E1

CYGHWR_IO_KINETIS_PIN_LED2 Yellow E2

CYGHWR_IO_KINETIS_PIN_LED3 Green E3

CYGHWR_IO_KINETIS_PIN_LED4 Blue E4

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

extern void hal_twr_k60n512_led(char c);

The lowest 4-bits of the argument c correspond to each of the 4 LEDs (with LED1 as the least significant bit).

The platform HAL will automatically light all of the LEDs when the platform initialisation is complete, however the LEDs
are free for application use.

Real-time Characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built for the variant ROM startup with optimization flag -O3.

Example 287.1. twr_k60n512 Real-time characterization

INFO:<code from 0x00000410 -> 0x000181dc, CRC 0356>
 Startup, main thrd : stack used 112 size 1536
 Startup : Idlethread stack used 84 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 8.00 microseconds (8 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 6
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 7.17 7.00 8.00 0.28 83% 83% Create thread
 1.33 1.00 2.00 0.44 66% 66% Yield thread [all suspended]
 1.83 1.00 2.00 0.28 83% 16% Suspend [suspended] thread
 2.00 2.00 2.00 0.00 100% 100% Resume thread
 3.33 3.00 4.00 0.44 66% 66% Set priority
 0.33 0.00 1.00 0.44 66% 66% Get priority
 5.50 5.00 6.00 0.50 100% 50% Kill [suspended] thread
 1.33 1.00 2.00 0.44 66% 66% Yield [no other] thread
 3.00 3.00 3.00 0.00 100% 100% Resume [suspended low prio] thread
 2.00 2.00 2.00 0.00 100% 100% Resume [runnable low prio] thread
 2.67 2.00 3.00 0.44 66% 33% Suspend [runnable] thread
 2.00 2.00 2.00 0.00 100% 100% Yield [only low prio] thread
 1.50 1.00 2.00 0.50 100% 50% Suspend [runnable->not runnable]
 5.33 5.00 6.00 0.44 66% 66% Kill [runnable] thread
 4.33 4.00 5.00 0.44 66% 66% Destroy [dead] thread

2753

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

 8.33 8.00 9.00 0.44 66% 66% Destroy [runnable] thread
 10.83 10.00 12.00 0.56 50% 33% Resume [high priority] thread
 3.54 3.00 5.00 0.51 52% 46% Thread switch

 0.47 0.00 1.00 0.50 53% 53% Scheduler lock
 1.30 1.00 2.00 0.42 70% 70% Scheduler unlock [0 threads]
 1.34 1.00 2.00 0.45 66% 66% Scheduler unlock [1 suspended]
 1.28 1.00 2.00 0.40 71% 71% Scheduler unlock [many suspended]
 1.30 1.00 2.00 0.42 70% 70% Scheduler unlock [many low prio]

 0.50 0.00 1.00 0.50 100% 50% Init mutex
 2.34 2.00 3.00 0.45 65% 65% Lock [unlocked] mutex
 2.44 2.00 3.00 0.49 56% 56% Unlock [locked] mutex
 1.88 1.00 2.00 0.22 87% 12% Trylock [unlocked] mutex
 1.69 1.00 2.00 0.43 68% 31% Trylock [locked] mutex
 0.44 0.00 1.00 0.49 56% 56% Destroy mutex
 12.00 12.00 12.00 0.00 100% 100% Unlock/Lock mutex

 0.56 0.00 1.00 0.49 56% 43% Create mbox
 0.28 0.00 1.00 0.40 71% 71% Peek [empty] mbox
 2.53 2.00 3.00 0.50 53% 46% Put [first] mbox
 0.28 0.00 1.00 0.40 71% 71% Peek [1 msg] mbox
 2.69 2.00 3.00 0.43 68% 31% Put [second] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek [2 msgs] mbox
 2.31 2.00 3.00 0.43 68% 68% Get [first] mbox
 2.28 2.00 3.00 0.40 71% 71% Get [second] mbox
 1.88 1.00 2.00 0.22 87% 12% Tryput [first] mbox
 1.72 1.00 2.00 0.40 71% 28% Peek item [non-empty] mbox
 1.69 1.00 2.00 0.43 68% 31% Tryget [non-empty] mbox
 1.53 1.00 2.00 0.50 53% 46% Peek item [empty] mbox
 1.94 1.00 2.00 0.12 93% 6% Tryget [empty] mbox
 0.31 0.00 1.00 0.43 68% 68% Waiting to get mbox
 0.31 0.00 1.00 0.43 68% 68% Waiting to put mbox
 0.44 0.00 1.00 0.49 56% 56% Delete mbox
 8.00 8.00 8.00 0.00 100% 100% Put/Get mbox

 0.28 0.00 1.00 0.40 71% 71% Init semaphore
 1.63 1.00 2.00 0.47 62% 37% Post [0] semaphore
 2.00 2.00 2.00 0.00 100% 100% Wait [1] semaphore
 1.69 1.00 2.00 0.43 68% 31% Trywait [0] semaphore
 2.00 2.00 2.00 0.00 100% 100% Trywait [1] semaphore
 0.44 0.00 1.00 0.49 56% 56% Peek semaphore
 0.38 0.00 1.00 0.47 62% 62% Destroy semaphore
 7.00 7.00 7.00 0.00 100% 100% Post/Wait semaphore

 0.72 0.00 1.00 0.40 71% 28% Create counter
 0.50 0.00 1.00 0.50 100% 50% Get counter value
 0.31 0.00 1.00 0.43 68% 68% Set counter value
 2.50 2.00 3.00 0.50 100% 50% Tick counter
 0.34 0.00 1.00 0.45 65% 65% Delete counter

 0.31 0.00 1.00 0.43 68% 68% Init flag
 2.00 2.00 2.00 0.00 100% 100% Destroy flag
 1.25 1.00 2.00 0.38 75% 75% Mask bits in flag
 2.00 2.00 2.00 0.00 100% 100% Set bits in flag [no waiters]
 3.00 3.00 3.00 0.00 100% 100% Wait for flag [AND]
 2.72 2.00 3.00 0.40 71% 28% Wait for flag [OR]
 2.88 2.00 3.00 0.22 87% 12% Wait for flag [AND/CLR]
 2.47 2.00 3.00 0.50 53% 53% Wait for flag [OR/CLR]
 0.38 0.00 1.00 0.47 62% 62% Peek on flag

 0.94 0.00 1.00 0.12 93% 6% Create alarm
 2.91 2.00 3.00 0.17 90% 9% Initialize alarm
 1.72 1.00 2.00 0.40 71% 28% Disable alarm
 2.78 2.00 3.00 0.34 78% 21% Enable alarm
 1.91 1.00 2.00 0.17 90% 9% Delete alarm
 2.66 2.00 3.00 0.45 65% 34% Tick counter [1 alarm]
 9.50 9.00 10.00 0.50 100% 50% Tick counter [many alarms]
 4.22 4.00 5.00 0.34 78% 78% Tick & fire counter [1 alarm]
 39.09 39.00 40.00 0.17 90% 90% Tick & fire counters [>1 together]
 11.00 11.00 11.00 0.00 100% 100% Tick & fire counters [>1 separately]
 7.00 7.00 7.00 0.00 100% 100% Alarm latency [0 threads]

2754

Freescale TWR-K60N512 and TWR-K60D100M Platform HAL

 5.83 5.00 7.00 0.31 79% 18% Alarm latency [2 threads]
 6.01 5.00 7.00 0.64 36% 31% Alarm latency [many threads]
 12.02 12.00 14.00 0.03 99% 99% Alarm -> thread resume latency

 236 236 236 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 760 size 1536
 All done : Idlethread stack used 188 size 1280

Timing complete - 27870 ms total

PASS:<Basic timing OK>
EXIT:<done>

2755

Chapter 288. Freescale TWR-K70F120M
Platform HAL

2756

Freescale TWR-K70F120M Platform HAL

Name
CYGPKG_HAL_CORTEXM_KINETIS_TWR_K70F120M — eCos Support for the Freescale TWR-K70F120M board

Description
The Freescale TWR-K70F120M board has a MK70FN1M0VMJ12 microcontroller which incorporates 1MB of internal flash
ROM and 128KB of internal SRAM. The stand-alone board may be targetted, but for access to some peripherals it is assumed
that a TWR-ELEV setup, with a TWR-SER daughterboard is being used. For example, with a TWR-SER board present it
provides a connector for Ethernet. The TWR-K70F120M motherboard has limited I/O interfaces, with most of the I/O signals
being propogated via multi-pin connectors.

The TWR-K70F120M motherboard also provides an on-board JTAG debug circuit (OSJTAG) with virtual serial port, 128MB
of DDR2 SDRAM, 256MB of SLC NAND, a MMA8451Q 3-axis accelerometer, a potentiometer, a MicroSD card slot, and
some LEDs and buttons.

The TWR-SER daughterboard also provides in addition to the Ethernet connector access to a RS232/484 DB9 connection, a
USB Mini-AB connector and a 3-pin CAN connector.

On this board, the expected eCos development model is that programs may be downloaded and debugged via the on-board
OSJTAG USB interface, or via a hardware debugger (JTAG/SWD) attached to the JTAG socket. While it is possible to build
and install RedBoot or a GDB stub image into the internal FLASH, this is not currently supported.

This documentation describes platform-specific elements of the TWR-K70F120M board support within eCos. The Kinetis
variant HAL documentation covers various topics including HAL support common to Kinetis variants, and on-chip device
support. This document complements the Kinetis documentation.

Supported Hardware
The MK70FN1M0VMJ12 has two on-chip memory regions. There is a SRAM region of 128KiB present at 0x1FFF0000
and a 1MiB FLASH region present at 0x00000000. The TWR-K70F120M motherboard has 128MiB of SDRAM mapped to
0x08000000.

The Kinetis variant HAL includes support for the six on-chip serial devices which are documented in the variant HAL. For the
TWR-K70F120M UART2 is connected to the J8 DB9 connector and also as a virtual serial through the on-board OSJTAG J13
USB connection. There is no connection for hardware flow control (RTS/CTS) lines on this UART3 connection.

Device drivers are provided for the Kinetis on-chip Ethernet MAC, I²C interface and SPI interface. Additionally support is
provided for the on-chip watchdog, RTC (wallclock) and a flash driver exists to permit management of the Kinetis's on-chip
flash.

Also, whilst the board is fitted with a SLC NAND flash, this is not presently supported by the HAL port. The Kinetis
MK70FN1M0VMJ12 processor, and the TWR-K70F120M platform, provide a wide variety of peripherals, but unless support
is specifically indicated it should be assumed that support is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3a, arm-eabi-gdb version 7.6, and binutils version 2.23.2.

2757

Freescale TWR-K70F120M Platform HAL

Name
Setup — Preparing the TWR-K70F120M Board for eCos Development

Overview
Since the target motherboard provides a built-in hardware debug solution, it is expected that the most common development
method when targeting the CPU is to use this hardware debug interface for development. This will either be by loading smaller
applications into on-chip SRAM, or by programming larger applications directly into on-chip flash. In the first case, eCos
applications should be configured for the variant JTAG startup type, and in the second case for the variant ROM startup
type. Since the TWR-K70F120M motherboard provides 128MB of external SDRAM it is also possible to configure larger
applications for hardware debug using that external memory using the platform JTAG startup type.

Note

When using the platform JTAG startup type to load application programs into the external SDRAM the host
hardware debugger configuration is responsible for initialising the necessary CPU I/O to allow GDB to load the
application into SDRAM.

HAL Startup Types

For the twr_k70f120m platform the Kinetis variant HAL support provides some common startup types, which are extended
by the platform HAL. The following variant HAL provided startup types may be selected for applications:

Configuration Description

ROM Stand-alone programs running from internal FLASH

SRAM Programs loading via hardware debugger into on-chip SRAM, but expecting RedBoot or GDB stub
ROM

RAM Currently not supported: Programs loading via RedBoot or GDB stub ROM into on-chip SRAM

JTAG Stand-alone programs running from on-chip SRAM, loaded via hardware debugger

The following TWR-K70F120M platform specific startup types may also be selected for applications:

Configuration Description

ByVariant The variant defines the startup configuration

ROM Stand-alone programs running from internal FLASH

RAM Currently not supported: Programs loading via RedBoot or GDB stub ROM into off-chip SDRAM

JTAG Stand-alone programs running from off-chip SDRAM, loaded via hardware debugger

Further details are available later in this manual.

Preparing OSJTAG interface
The support for using the on-chip OSJTAG interface for hardware debugging and diagnostic output requires that the OSJTAG
firmware is at least version v30.21. The firmware for the OSJTAG interface can be checked, and updated if needed, using the
relevant firmware updater tool available for download via the Freescale website. Unfortunately the official firmware updater
is only available for the Windows platform at the moment.

Programming ROM images
To program ROM startup applications into flash a hardware debugger that understands the Kinetis flash may be used. For
example, the Ronetix PEEDI provides suitable support.

2758

Freescale TWR-K70F120M Platform HAL

Warning

Due to a security feature of the Kinetis CPUs care should be taken to avoid completely erasing the flash to ensure
the required FSEC value in the flash configuration field is not lost. For example when using the PEEDI the user
should NOT use the “erase” suffix to the flash program command. The Kinetis aware flash erase chip should
be executed to erase the flash prior to using the flash program command.

Programming ROM images with a Ronetix PEEDI

This section describes how to program ROM images using a Ronetix PEEDI debugger.

The PEEDI must be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. It must then be used to download and program the ROM image into the internal flash. The
following steps give a typical outline for doing this. Consult the PEEDI documentation for alternative approaches, such as
using FTP or HTTP instead of TFTP.

Preparing the Ronetix PEEDI JTAG debugger

1. Prepare a PC to act as a host and start a TFTP server on it.

2. Connect the PEEDI JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial cable supplied
with the PEEDI (straight through, not null modem).

3. Verify the PEEDI is using up-to-date firmware, of version 12.3.0 or later. Older PEEDI firmware does not support the
Kinetis family correctly, particularly if wishing to use the PEEDI's own 'flash' commands to modify the on-chip flash. If
the firmware is not recent enough, follow the PEEDI User Manual's instructions which describe how to update the PEEDI
firmware.

4. Locate the PEEDI configuration file peedi_twr_k70f120m.cfg within the eCos platform HAL package in the source
repository. This will be in the directory packages/hal/cortexm/kinetis/twr_k70f120m/VERSION/misc
relative to the root of your eCos installation.

5. Place the PEEDI configuration file in a location on the PC accessible to the TFTP server. Later you will configure the PEEDI
to load this file via TFTP as its configuration file.

6. Open peedi_twr_k70f120m.cfg in an editor such as emacs or notepad and insert your own license information in
the [LICENSE] section.

7. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring PEEDI's
RedBoot with the network information. Configure it to use the peedi_twr_k70f120m.cfg target configuration file on
the TFTP server at the appropriate point of the config process, for example with a path such as: tftp://192.168.7.9/
peedi_twr_k70f120m.cfg

8. Reset the PEEDI.

9. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet 192.168.7.225
Trying 192.168.7.225...
Connected to 192.168.7.225.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2011 www.ronetix.at - All rights reserved
Hw:1.2, L:JTAG v1.6 Fw:13.3.0, SN: PD-XXXX-XXXX-XXXX
--

twr_k70f120m>

Preparing the TWR-K70F120M board for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the PEEDI device.

2759

Freescale TWR-K70F120M Platform HAL

If programming an application which uses serial output, you should first:

1. If OSJTAG firmware 30.21 or later is installed then the motherboard J13 USB provides a standard CDC-ACM virtual serial
connection to the host computer. The alternative is to connect a null modem cable between the DB9 RS232 connector on
the TWR-SER daughterboard and the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom on Linux or PuTTY on Windows. Set the com-
munication parameters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

For all applications, you must:

1. Connect the board to the PEEDI using an appropriate 20-pin cable from the JTAG interface connector to the Target port on
the PEEDI. This will normally be a PEEDI-CORTEX20 adapter.

2. Power up the TWR-K70F120M board.

3. Connect to the PEEDI's telnet CLI on port 23 as before.

4. Confirm correct connection with the PEEDI with the reset reset command as follows:

twr_k70f120m> reset reset
++ info: user reset
twr_k70f120m>
++ info: RESET and TRST asserted
++ info: TRST released
++ info: TAP : IDCODE = 0x2BA01477, Cortex M3 SWD
++ info: RESET released
++ info: core connected

CORE0 -> CortexM4 - stopped by breakpoint
 PC=0x1FFF0006, xPSR=0x01000000

core #0 stopped
++ info: core 0: initialized

twr_k70f120m>

Installation into flash

The following describes the procedure for installing a ROM application into on-chip flash, using the GDB stub ROM image
as an example of such an application.

1. Use arm-eabi-objcopy to convert the linked application, in ELF format, into binary format. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2. Copy the binary file (.bin file) into a location on the host computer accessible to its TFTP server.

3. Connect to the PEEDI's telnet interface, and program the image into flash with the following commands, replacing TFT-
P_SERVER with the address of the TFTP server and /BINPATH with the location of the .bin file relative to the TFTP server
root directory. For example for a RedBoot ROM image:

twr_k70f120m> flash erase chip

erasing chip at 0x00000000
done.

++ info: successfully erased 1 byte in 0.33 sec

twr_k70f120m> flash program tftp://TFTP_SERVER/BINPATH/redboot.bin bin 0x00000000
++ info: Programming image file: tftp://TFTP_SERVER/redboot.bin
++ info: Programming directly
++ info: At absolute address: 0x00000000
programming at 0x00000000
programming at 0x00001000
programming at 0x00002000
programming at 0x00003000

2760

Freescale TWR-K70F120M Platform HAL

programming at 0x00004000
programming at 0x00005000
programming at 0x00006000
programming at 0x00007000
programming at 0x00008000
programming at 0x00009000
programming at 0x0000A000
programming at 0x0000B000
programming at 0x0000C000
programming at 0x0000D000
programming at 0x0000E000
programming at 0x0000F000
programming at 0x00010000
programming at 0x00011000
programming at 0x00012000
programming at 0x00013000
programming at 0x00014000
programming at 0x00015000

++ info: successfully programmed 88.00 KB in 0.74 sec

twr_k70f120m>

The installation into flash is now complete. For applications which print output on startup to the USART3 RS232 serial port,
such as the GDB stub ROM application, this can easily by tested by powering off the board, disconnecting the JTAG, and
then powering on the board again. In the case of the GDB stub ROM image, output similar to the following should be visible
(although specific numbers may differ):

$T050f:72250008;0d:f0ff0120;#8a

RedBoot
RedBoot is currently unsupported.

2761

Freescale TWR-K70F120M Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The Freescale TWR-K70F120M platform HAL package is loaded automatically when eCos is configured for the
twr_k70f120m target. It should never be necessary to load this package explicitly. Unloading the package should only hap-
pen as a side effect of switching target hardware.

Startup
The TWR-K70F120M board platform HAL package supports separate variant and platform startup types:

ROM

This startup type can be used for finished applications which will be programmed into internal flash ROM at location
0x00000000. Data and BSS will be put into internal SRAM starting from 0x1FFF0000. The application will be self-
contained with no dependencies on services provided by other software. The program expects to boot from reset with
ROM mapped at location zero. eCos startup code will perform all necessary hardware initialization.

RAM

Currently unsupported, this is the startup type which is used if relying on either a RedBoot or a GDB stub ROM image
programmed into internal flash to download and run applications into RAM via arm-eabi-gdb. It is assumed that the
hardware has already been initialized by the ROM monitor. By default the application will use the eCos virtual vectors
mechanism to obtain services from the ROM monitor, including diagnostic output.

JTAG

This is the startup type used to build applications that are loaded via a hardware debug interface. The application will
be self-contained with no dependencies on services provided by other software. For the variant JTAG startup type the
eCos run-time will perform all necessary hardware initialization. When using the platform JTAG startup type the hardware
debugger configuration is responsible for initialising the clocks and DDRMC necessary to allow access to the off-chip
SDRAM where applications will be loaded.

Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration op-
tion CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB stub ROM (or
RedBoot).

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

UART Serial Driver
The TWR-K70F120M board uses the Kinetis's internal UART serial support. The HAL diagnostic interface, used for both
polled diagnostic output and GDB stub communication, is only expected to be available to be used on the UART2 port.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_FREESCALE_UART package which
contains all the code necessary to support interrupt-driven operation with greater functionality. All six UARTs can be supported
by this driver. Note that it is not recommended to use this driver with a port at the same time as using that port for HAL
diagnostic I/O.

2762

Freescale TWR-K70F120M Platform HAL

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option (within the generic serial driver
support package CYGPKG_IO_SERIAL) is enabled in the configuration. By default this will only enable support in the driver
for the UART2 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable support
for other serial ports.

Ethernet Driver
The TWR-SER daughterboard is fitted with an Ethernet port connected via a KSZ8041NL PHY to the TWR-K70F120M on-
chip Ethernet MAC. This is supported in eCosPro with a driver contained in the package CYGPKG_DEVS_ETH_FREES-
CALE_ENET.

The driver will be inactive (not built and greyed out in the eCos Configuration Tool) unless the “Common Ethernet sup-
port” (CYGPKG_IO_ETH_DRIVERS) package is included in your configuration. As the Kinetis ethernet driver is likely to be
used in deeply embedded, low footprint, applications it is most appropriate to choose the lwip_eth template as a starting
point when choosing an eCos configuration, which will cause the necessary packages to be automatically included.

SPI Driver
A Kinetis SPI bus driver is available in the package “Freescale DSPI driver” (CYGPKG_DEVS_SPI_FREESCALE_DSPI).

No SPI devices are instantiated by default. Consult the generic SPI driver API documentation in the eCosPro Reference Manual
for further details on SPI support in eCosPro, along with the configuration options in the Freescale DSPI device driver.

I²C Driver
A Kinetis I²C hardware driver is available in the package “Freescale I2C driver” (CYGPKG_DEVS_I2C_FREESCALE_I2C).

Flash Driver
The Kinetis's on-chip flash may be programmed and managed using the flash driver located in the “Kinetis FLASH mem-
ory support” (CYGPKG_DEVS_FLASH_KINETIS) package. This driver is enabled automatically if the generic “Flash de-
vice drivers” (CYGPKG_IO_FLASH) package is included in the eCos configuration.

The driver will configure itself automatically for the size and parameters of the specific Kinetis variant present on the TWR-
K70F120M board.

2763

Freescale TWR-K70F120M Platform HAL

Name
JTAG/SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM, including the
GDB stub ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M4 core of the K70-series only
supports six such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. If ITM output is required the architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable
such use. The host hardware debugger configuration may also need to be updated to provide the necessary ITM enable and
capture support.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

Normally a notable disadvantage with JTAG/SWD debugging is that it does not allow thread-aware debugging, such as the
ability to inspect different eCos threads or their stack backtraces, set thread-specific breakpoints, and so on. Fortunately the
Ronetix PEEDI JTAG unit does support thread-aware debugging of eCos applications, however extra configuration steps
are required. Similarly OpenOCD has support for interpreting eCos thread information. Consult the PEEDI or OpenOCD
documentation for more details as usage is beyond the scope of this document.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board OSJTAG interface available via the USB J13 connection.

An example OpenOCD configuration file openocd_twr_k70f120m.cfg is provided within the eCos platform
HAL package in the source repository. This will be in the directory packages/hal/cortexm/kinetis/
twr_k70f120m/VERSION/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd_twr_k70f120m.cfg
Open On-Chip Debugger 0.8.0-dev-hg8c51ca8dbc00-dirty (2013-09-09-17:18)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.sourceforge.net/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'jtag'
srst_only separate srst_gates_jtag srst_open_drain connect_deassert_srst
cortex_m3 reset_config sysresetreq
Info : add flash_bank kinetis k70.pflash
Info : OSBDM has opened
Info : This adapter doesn't support configurable speed
Info : JTAG tap: k70.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
START...

2764

Freescale TWR-K70F120M Platform HAL

Info : k70.cpu: hardware has 6 breakpoints, 4 watchpoints
END...
Info : accepting 'gdb' connection from 3333
Halting CPU...
Info : JTAG tap: k70.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
START...
END...

By default openocd provides a telnet console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

To debug the target from the command line, arm-eabi-gdb should be connected to OpenOCD using it's default GDB server
port of 3333. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x1fff0006 in ?? ()
(gdb) monitor reset halt
JTAG tap: k70.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x00004e9c msp: 0x2000f800
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then you may need to define a
“preload” gdb macro to emit any necessary commands to OpenOCD prior to loading or executing. See the “Hardware Assist-
ed Debugging” section of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications”
chapter.

If you need to build your own copy of OpenOCD then when configuring the openocd tool build, the configure script can be
given the option --enable-osbdm to provide for OSJTAG support.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi_twr_k70f120m.cfg file supplied in the platform HAL package should be used to
setup and configure the hardware to an appropriate state to load programs.

The peedi_twr_k70f120m.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to
hardware breakpoints. If the breakpoint type is changed remember to use the reboot command on the PEEDI command line
interface, or press the reset button to make the changes take effect.

The PEEDI provides a telnet console on the standard telnet port (23) for configuration and control, and gdb remote debugging
access via port 9000. For example, to use the command line arm-eabi-gdb to connect to the target via the PEEDI, you would
issue the following gdb command:

(gdb) target remote 111.222.333.444:9000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i_twr_k70f120m.cfg file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, and then the 'go' command is given, the board will boot from ROM as normal.
A similar effect can be achieved in GDB by connecting with target remote and immediately typing continue or c.

It is also possible for the target to always run, without initialization, after reset. This mode is selected with the CORE0_START-
UP_MODE directive in the [TARGET] section of the peedi_twr_k70f120m.cfg file. This conveniently allows the target
to be connected to the JTAG debugger, and be able to reset and run the resident flash program without being required to always
type 'go' every time. Finally, it is also possible to set a temporary default (unless the PEEDI is reset) by giving an argument to
the reset command, for example reset run. Use the command help reset at the PEEDI command prompt for more options.

Suitably configured applications can be loaded either via GDB, or directly via the telnet CLI into RAM for execution. For
example:

twr_k70f120m> memory load tftp://192.168.7.9/test.bin bin 0x20000000

2765

Freescale TWR-K70F120M Platform HAL

++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x20000000
loading at 0x20000000
loading at 0x20004000

Successfully loaded 28KB (29064 bytes) in 0.1s
twr_k70f120m> go 0x20000000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

For Eclipse users wishing to debug ROM startup programs resident in flash, it is worth highlighting that it is possible to use
the eCosCentric Eclipse plugin to automatically reprogram flash as the load sequence. To do so, you will need to install and
use a TFTP server so that your application can be accessed from the PEEDI from there. You may then use a GDB command
file, as described in more detail in the “Eclipse/CDT for eCos application development” manual. This file can then contain
contents similar to the following example:

define doload
 shell arm-eabi-objcopy -O binary /path/to/eclipse/workspace/projectname/Debug/myapp /path/to/tftp/server/area/myapp.bin
 monitor flash program tftp://10.1.1.1/myapp.bin bin 0x08000000 erase
 set $pc=0x08000000
end

Obviously you will need to adjust the paths and names for your system and TFTP server requirements.

Configuration of JTAG/SWD applications

In order to configure the application to be downloaded and debugged via a hardware debugger, it is recommended to use
one of the JTAG startup types (JTAG or ROM), which will implicitly cause two important settings to change. Firstly,
CYGSEM_HAL_USE_ROM_MONITOR will be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option will
be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. These configuration changes
could also be made by hand, but use of one of the JTAG startup types will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. By default the K60's
JTAG startup types output diagnostics via the USB CDC/ACM serial port on the J13 USB connector. Alternatively di-
agnostic output can be configured to appear in GDB instead. For this to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. Then, after you load your application but be-
fore running it, you must give GDB the command:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define postload
 set hwdebug on
end

This will be referenced from their Eclipse debug launch configuration. Using GDB command files is described in more detail
in the "Eclipse/CDT for eCos application development" manual.

2766

Freescale TWR-K70F120M Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Freescale TWR-K70F120M hardware,
and should be read in conjunction with that specification. The Freescale TWR-K70F120M platform HAL package complements
the Cortex-M architectural HAL and the Kinetis variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services, and for the platform JTAG startup where
the host debugger configuration is responsible for initialising the DDRMC world for the external SDRAM used to hold the
application being loaded.

For ROM startup, the HAL will perform additional initialization, programming the various internal registers includ-
ing the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
twr_k70f120m_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM This is located at address 0x1FFF0000 of the memory space, and is 128KiB in size. The eCos
VSR table occupies the bottom 512-bytes. The virtual vector table starts at 0x1FFF0200 and
extends to 0x20000300. For ROM, and JTAG startups, the top CYGNUM_HAL_COMMON_IN-
TERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of inter-
nal RAM is available for use by applications.

Internal FLASH This is located at address 0x00000000 of the memory space. This region is 1MiB in size. ROM
applications are by default configured to run from this memory.

On-Chip Peripherals These are accessible from locations 0x40000000 and 0xE0000000 upwards. Descriptions of the
contents can be found in the Kinetis User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x1FFF0000 for all startup types,
and space for 128 entries allocated, though the K70 sub-family only use 121 entries.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000200.

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of internal SRAM, 0x20010000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Diagnostic LEDs
Four LEDs are fitted on the board for diagnostic purposes:

2767

Freescale TWR-K70F120M Platform HAL

Platform HAL manifest Colour Board Label

CYGHWR_IO_TWRK70F120M_PIN_LED1 Orange E1

CYGHWR_IO_TWRK70F120M_PIN_LED2 Yellow E2

CYGHWR_IO_TWRK70F120M_PIN_LED3 Green E3

CYGHWR_IO_TWRK70F120M_PIN_LED4 Blue E4

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

extern void hal_twr_k70f120m_led(char c);

The lowest 4-bits of the argument c correspond to each of the 4 LEDs (with LED1 as the least significant bit).

The platform HAL will automatically light all of the LEDs when the platform initialisation is complete, however the LEDs
are free for application use.

Real-time Characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built for the variant ROM startup with optimization flag -O2.

Example 288.1. twr_k70f120m Real-time characterization

INFO:<code from 0x00000410 -> 0x00009d6c, CRC 3328>
 Startup, main thrd : stack used 240 size 2336
 Startup : Idlethread stack used 216 size 1440

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 4.00 microseconds (4 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 3
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1888

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 6.67 6.00 8.00 0.89 66% 66% Create thread
 1.00 1.00 1.00 0.00 100% 100% Yield thread [all suspended]
 1.00 1.00 1.00 0.00 100% 100% Suspend [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Resume thread
 1.67 1.00 2.00 0.44 66% 33% Set priority
 0.00 0.00 0.00 0.00 100% 100% Get priority
 3.33 3.00 4.00 0.44 66% 66% Kill [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [no other] thread
 2.00 2.00 2.00 0.00 100% 100% Resume [suspended low prio] thread
 1.33 1.00 2.00 0.44 66% 66% Resume [runnable low prio] thread
 1.33 1.00 2.00 0.44 66% 66% Suspend [runnable] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [only low prio] thread
 1.00 1.00 1.00 0.00 100% 100% Suspend [runnable->not runnable]
 3.33 3.00 4.00 0.44 66% 66% Kill [runnable] thread
 2.67 2.00 3.00 0.44 66% 33% Destroy [dead] thread

2768

Freescale TWR-K70F120M Platform HAL

 4.67 4.00 5.00 0.44 66% 33% Destroy [runnable] thread
 6.67 6.00 7.00 0.44 66% 33% Resume [high priority] thread
 2.13 2.00 3.00 0.23 86% 86% Thread switch

 0.24 0.00 1.00 0.37 75% 75% Scheduler lock
 0.81 0.00 1.00 0.31 81% 18% Scheduler unlock [0 threads]
 0.88 0.00 1.00 0.22 87% 12% Scheduler unlock [1 suspended]
 0.82 0.00 1.00 0.30 82% 17% Scheduler unlock [many suspended]
 0.88 0.00 1.00 0.22 87% 12% Scheduler unlock [many low prio]

 0.28 0.00 1.00 0.40 71% 71% Init mutex
 1.22 1.00 2.00 0.34 78% 78% Lock [unlocked] mutex
 1.34 1.00 2.00 0.45 65% 65% Unlock [locked] mutex
 1.09 1.00 2.00 0.17 90% 90% Trylock [unlocked] mutex
 0.97 0.00 1.00 0.06 96% 3% Trylock [locked] mutex
 0.31 0.00 1.00 0.43 68% 68% Destroy mutex
 5.94 5.00 7.00 0.18 87% 9% Unlock/Lock mutex

 0.38 0.00 1.00 0.47 62% 62% Create mbox
 0.25 0.00 1.00 0.38 75% 75% Peek [empty] mbox
 1.25 1.00 2.00 0.38 75% 75% Put [first] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek [1 msg] mbox
 1.19 1.00 2.00 0.30 81% 81% Put [second] mbox
 0.28 0.00 1.00 0.40 71% 71% Peek [2 msgs] mbox
 1.28 1.00 2.00 0.40 71% 71% Get [first] mbox
 1.25 1.00 2.00 0.38 75% 75% Get [second] mbox
 1.13 1.00 2.00 0.22 87% 87% Tryput [first] mbox
 1.09 1.00 2.00 0.17 90% 90% Peek item [non-empty] mbox
 1.13 1.00 2.00 0.22 87% 87% Tryget [non-empty] mbox
 1.03 1.00 2.00 0.06 96% 96% Peek item [empty] mbox
 1.25 1.00 2.00 0.38 75% 75% Tryget [empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Waiting to get mbox
 0.25 0.00 1.00 0.38 75% 75% Waiting to put mbox
 0.47 0.00 1.00 0.50 53% 53% Delete mbox
 4.13 4.00 5.00 0.22 87% 87% Put/Get mbox

 0.22 0.00 1.00 0.34 78% 78% Init semaphore
 1.00 1.00 1.00 0.00 100% 100% Post [0] semaphore
 1.09 1.00 2.00 0.17 90% 90% Wait [1] semaphore
 0.88 0.00 1.00 0.22 87% 12% Trywait [0] semaphore
 1.00 1.00 1.00 0.00 100% 100% Trywait [1] semaphore
 0.44 0.00 1.00 0.49 56% 56% Peek semaphore
 0.25 0.00 1.00 0.38 75% 75% Destroy semaphore
 3.69 3.00 5.00 0.47 62% 34% Post/Wait semaphore

 0.75 0.00 1.00 0.38 75% 25% Create counter
 0.38 0.00 1.00 0.47 62% 62% Get counter value
 0.25 0.00 1.00 0.38 75% 75% Set counter value
 1.25 1.00 2.00 0.38 75% 75% Tick counter
 0.25 0.00 1.00 0.38 75% 75% Delete counter

 0.28 0.00 1.00 0.40 71% 71% Init flag
 1.06 1.00 2.00 0.12 93% 93% Destroy flag
 0.97 0.00 2.00 0.12 90% 6% Mask bits in flag
 1.13 1.00 2.00 0.22 87% 87% Set bits in flag [no waiters]
 1.78 1.00 2.00 0.34 78% 21% Wait for flag [AND]
 1.50 1.00 2.00 0.50 100% 50% Wait for flag [OR]
 1.56 1.00 2.00 0.49 56% 43% Wait for flag [AND/CLR]
 1.59 1.00 2.00 0.48 59% 40% Wait for flag [OR/CLR]
 0.25 0.00 1.00 0.38 75% 75% Peek on flag

 0.81 0.00 1.00 0.31 81% 18% Create alarm
 1.78 1.00 2.00 0.34 78% 21% Initialize alarm
 0.94 0.00 1.00 0.12 93% 6% Disable alarm
 1.63 1.00 2.00 0.47 62% 37% Enable alarm
 1.13 1.00 2.00 0.22 87% 87% Delete alarm
 1.38 1.00 2.00 0.47 62% 62% Tick counter [1 alarm]
 6.63 6.00 7.00 0.47 62% 37% Tick counter [many alarms]
 2.22 2.00 3.00 0.34 78% 78% Tick & fire counter [1 alarm]
 36.91 36.00 37.00 0.17 90% 9% Tick & fire counters [>1 together]
 7.72 7.00 8.00 0.40 71% 28% Tick & fire counters [>1 separately]
 3.01 3.00 4.00 0.01 99% 99% Alarm latency [0 threads]

2769

Freescale TWR-K70F120M Platform HAL

 3.00 3.00 3.00 0.00 100% 100% Alarm latency [2 threads]
 3.05 3.00 4.00 0.10 94% 94% Alarm latency [many threads]
 6.02 6.00 8.00 0.05 98% 98% Alarm -> thread resume latency

 344 344 344 Worker thread stack used (stack size 1888)
 All done, main thrd : stack used 792 size 2336
 All done : Idlethread stack used 304 size 1440

Timing complete - 28960 ms total

PASS:<Basic timing OK>
EXIT:<done>

2770

Chapter 289. LM3S Variant HAL

2771

LM3S Variant HAL

Name
CYGPKG_HAL_CORTEXM_LM3S — eCos Support for the LM3S Microprocessor Family

Description
The Luminary LM3Sxxxx series of Cortex-M microcontrollers is supported by eCos with an eCos processor variant HAL and
a number of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-chip flash,
serial and watchdog devices. In addition it provides common functionality and definitions that LM3S based platform ports may
require, as well as definitions useful to application developers.

This documentation covers the LM3S functionality provided but should be read in conjunction with the specific HAL docu-
mentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here, and
may also describe differences that override or supersede what the LM3S variant HAL provides. The areas that are specific to
platform HALs and not the LM3S variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

2772

LM3S Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support

On-chip memory

The ST LM3S parts include on-chip SRAM, and on-chip FLASH. The RAM consists of up to 64KiB and the FLASH can be
up to 512KiB in size depending on model.

Typically, an eCos platform HAL port will expect a GDB stub ROM monitor to be programmed into the LM3S on-chip ROM
memory for development, and the board would boot this image from reset. The stub ROM provides GDB stub functionality
so it is then possible to download and debug stand-alone and eCos applications via the gdb debugger using serial interfaces
or other debug channels. The JTAG interface may also be used for development if a suitable JTAG device is available. For
production purposes, applications are programmed into external or on-chip FLASH and will be self-booting.

On-Chip FLASH

The package CYGPKG_DEVS_FLASH_LM3S provides a driver for the on-chip flash. This driver conforms to the Version 2
flash driver API. It queries the microcontroller's device capabilities registers to determine the size and layout of the flash at
runtime.

Cache Handling

The LM3S does not contain any caches, however, the variant HAL supplies the cyg/hal/hal_cache.h header to satisfy
generic code. This header describes zero sized caches and provides null macros for the required functions.

Serial I/O

The LM3S variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a
fully interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver con-
sists of an eCos package: CYGPKG_IO_SERIAL_CORTEXM_LM3S which provides configuration for the generic CYGP-
KG_IO_SERIAL_ARM_PL011 driver package. Using the HAL diagnostic I/O support, any of these devices can be used by the
ROM monitor for communication with GDB. If a device is needed by the application, either directly or via the serial driver, then
it cannot also be used for GDB communication using the HAL I/O support. An alternative serial port should be used instead.

The HAL defines CDL interfaces, CYGINT_HAL_LM3S_UART0 to CYGINT_HAL_LM3S_UART4 for each of the possible
UARTs. At present no LM3S device has more that 3 UARTs, so these interfaces contain support for future expansion. The
platform HAL CDL should contain an implements directive for each such UART that is available for use on the board. This
will enable use of the UART for diagnostic use.

The LM3S UARTs provide only TX and RX data lines, although the PL011 macrocell is theoretically capable of RTS/CTS
flow control.

Interrupts

The LM3S HAL relies on the architectural HAL to provide support for the interrupts directly routed to the NVIC. The cyg/
hal/var_intr.h header defines the vector mapping for these.

GPIO

The variant HAL provides support for packaging the configuration of a GPIO line into a single 32-bit descriptor that can then
be used with macros to configure the pin and set and read its value.

Clock Distribution

The variant HAL provides support for packaging the clock control parameters of a device into a single 32-bit descriptor that
can then be used with macros to enable and disable the device's clock.

2773

LM3S Variant HAL

I2C Support

The variant HAL provides a driver for the I²C bus device. There is a configuration option,
CYGNUM_HAL_LM3S_I2C_BUS0_CLOCK, that defines the clock speed at which the bus operates. The platform HAL must
define the set of devices attached to the bus.

SPI Support

The SSI device is based on the ARM PL022 SSP primecell and SPI support is provided via the separate CYGPKG_DE-
VS_SPI_ARM_PL022 driver. The platform HAL must define the bus instances and devices attached to them.

Profiling Support

The LM3S HAL contains support for gprof-base profiling using a sampling timer. The default timer used is Timer 0. The timer
used is selected by a set of #defines in src/lm3s_misc.c which can be changed to refer to a different timer if required.
This timer is only enabled when CYGPKG_PROFILE_GPROF is enabled, otherwise it remains available for application use.

Clock Control
The platform HAL must provide the input clock frequency (CYGARC_HAL_CORTEXM_LM3S_INPUT_CLOCK) in its CDL
file. This is then combined with the following options defined in this package to define the default system clocks:

CYGHWR_HAL_CORTEXM_LM3S_CLOCK_SOURCE

This defines the source of the main system clock. It can take one of six values: INT selects the internal ocillator, INTby4
selects the internal ocillator divided by 4, MAIN selects the main ocillator, PLL selects the PLL, 30K selects the 30KHz
internal clock, 32K selects the 32KHz internal clock. It defaults to PLL.

CYGHWR_HAL_CORTEXM_LM3S_CLOCK_SYSCLK_DIV

This defines the divider applied to the 400MHz PLL output to generate the system clock. This can take values between
1 and 16. The default value is 4, giving a 50MHz system clock.

CYGHWR_HAL_CORTEXM_LM3S_CLOCK_PWM_DIV

This defines the prescaler divider for the Pulse Width Modulator. It may take any power of 2 value between 1 and 64.
The default is 1.

The actual values of the system clock, in Hz, is stored in the global variable hal_lm3s_sysclk. The clock supplied to
the SysTick timer, SYSCLK/4, is also assigned to hal_cortexm_systick_clock. These variables are used, rather than
configuration options, in anticipation of future support for power management by varying the system clock rate.

2774

LM3S Variant HAL

Name
GPIO Support — Details

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_LM3S_GPIO(port, bit, drive, mode);

CYGHWR_HAL_LM3S_GPIO_SET (pin);

CYGHWR_HAL_LM3S_GPIO_OUT (pin, val);

CYGHWR_HAL_LM3S_GPIO_IN (pin, *val);

Description
The LM3S HAL provides a number of macros to support the encoding of GPIO pin identity and configuration into a single 32
bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for different devices.

A descriptor is created with CYGHWR_HAL_LM3S_GPIO(port, bit, mode) which takes the following arguments:

port This identifies the GPIO port to which the pin is attached. Ports are identified by letters
from A to F.

bit This gives the bit or pin number within the port. These are numbered from 0 to 8.

drive This defines the drive level for the external pad. It may be set to 2mA, 4mA or 8mA. It
may also be set to 8mAS to add slew rate control.

mode This defines the mode in which the pin is to be used. The following values are cur-
rently defined: IN_PULLUP defines the pin as a GPIO input with a pull up resistor,
IN_PULLDOWN defines the pin as a GPIO input with a pull down resistor, OUT_OPEN-
DRAIN defines the pin as a GPIO output with an open drain, ALT_DIGITAL defines
the pin as a digital line under the control of a peripheral. ALT_OD defines the pin as
a digital open drain line under the control of a peripheral. ALT_ODPU defines the pin
as a digital open drain line with pull up under the control of a peripheral. ALT_ODPD
defines the pin as a digital open drain line with pull down under the control of a periph-
eral. ALT_PP defines the pin as a digital pushpull line under the control of a peripheral.
ALT_PPPU defines the pin as a digital pushpull line with pull up under the control of a
peripheral. ALT_PPPD defines the pin as a digital pushpull line with pull down under
the control of a peripheral. This set may be extended as further requirements emerge,
so check the sources for new definitions.

The following examples show how this macro may be used:

// Define port A pin 0 as a digital device pin with 2mA drive level
#define CYGHWR_HAL_LM3S_UART0_RX CYGHWR_HAL_LM3S_GPIO(A, 0, 2mA, ALT_DIGITAL)

Additionally, the macro CYGHWR_HAL_LM3S_GPIO_NONE may be used in place of a pin descriptor and has a value that no
valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used.

The remaining macros all take a GPIO pin descriptor as an argument. CYGHWR_HAL_LM3S_GPIO_SET configures the pin
according to the descriptor and must be called before any other macros. CYGHWR_HAL_LM3S_GPIO_OUT sets the output to
the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_LM3S_GPIO_IN should be
a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

2775

Chapter 290. LM3S8962-EVAL Platform
HAL

2776

LM3S8962-EVAL Platform HAL

Name
CYGPKG_HAL_CORTEXM_LM3S_LM3S8962_EVAL — eCos Support for the LM3S8962-EVAL Board

Description
The LM3S8962-EVAL board contains a LM3S8962 microcontroller. It has connectors for one UART, MicroSD, USB, CAN,
JTAG and various other devices.

For typical eCos development, a GDB stub image is programmed into internal FLASH and the CPU boots directly into that. It
is then possible to download and debug stand-alone and eCos applications via the gdb debugger using UART0. Alternatively
test programs may be downloaded and debugged via a JTAG debugger attached to the JTAG socket. Avaliable RAM is limited
to 64KB, so development for larger applications may also consist of programming them to flash and using JTAG to debug
them from there.

This documentation describes platform-specific elements of the LM3S8962-EVAL board support within eCos. The LM3S
variant HAL documentation covers various topics including HAL support common to LM3S variants, and on-chip device
support. This document complements the LM3S documentation.

Supported Hardware
The LM3S has two on-chip memory regions. A RAM region of 64KiB is present at 0x20000000. A FLASH region is present
at 0x00000000.

The LM3S variant HAL includes support for the on-chip serial devices which are documented in the variant HAL. UART0 is
connected to a USB adaptor, which also serves to provide the board with power.

The platform HAL contains configuration and definitions that allow the ARM PL022 primecell device to be used for SPI
devices.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.3.2, arm-eabi-gdb version 6.8, and binutils version 2.18.

2777

LM3S8962-EVAL Platform HAL

Name
Setup — Preparing the LM3S8962-EVAL Board for eCos Development

Overview
In a typical development environment, the LM3S8962-EVAL board boots from internal flash into the GDB Stubrom. eCos
applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.

Stubrom Installation
For serial communications, the Stubrom runs with 8 bits, no parity, and 1 stop bit at 38400 baud. This rate can be changed in
the platform HAL configuration. Under normal circumstances, the Stubrom runs in-place from the internal Flash.

Programming The Stubrom

To program the Stubrom into the internal flash either a JTAG debugger that understands the LM3S flash may be used, such as
a Ronetix PEEDI or an Abatron BDI3000, or the TI LM Flash Programmer may be used. Configuration files for the PEEDI
and BDI3000 are supplied in the LM3S8962-EVAL HAL package, and brief instructions for downloading the Stubrom are
given in there. If no JTAG debugger is available, then the Stubrom must be downloading using the LM Flash Programmer.
The following are brief instructions for doing this. The reader is referred to the documentation that comes with the loader for
full details.

1. Download the LM Flash Programmer and Stellaris FTDI Windows driver either from TI or Luminary Micro websites, or
from the CD supplied with the board and install it on a PC running Windows that has an available USB port.

2. Copy the file stubrom.bin to a suitable location on the Windows PC.

3. Connect the USB cable supplied with the board between the board and the PC. Follow any instructions to install the driver.

4. Start the LM Flash Programmer and in the Configuration tab select the LM3S8962 Ethernet an CAN evaluation board.

5. In the Program tab either type in or browse to the stubrom.bin file. Select "Erase Entire Flash" and "Verify After
Program". Ensure that the "Program Address Offset" is zero.

6. Press "Program" button and the loader should download and verify the binary file. The programming is now complete and
the LM Flash Programmer can now be exited.

Whatever mechanism is used to program the Stubrom, something similar to the following output should be seen on the Windows
USB virtual COM port when the reset button is pressed:

+$T050f:1a220000;0d:f0ff0020;#a7

Rebuilding The Stubrom

Should it prove necessary to rebuild the Stubrom binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of the Stubrom are:

$ mkdir stubs_lm3s8962_rom
$ cd stubs_lm3s8962_rom
$ ecosconfig new lm3s8962 stubs
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file stubrom.bin.

2778

LM3S8962-EVAL Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The LM3S8962-EVAL board platform HAL package is loaded automatically when eCos is configured for an lm3s8962_e-
val target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side
effect of switching target hardware.

Startup
The LM3S8962-EVAL board platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has GDB stubs programmed
into internal Flash at location 0x00000000 and uses internal RAM at location 0x20000000. arm-eabi-gdb is then used
to load a RAM startup application into memory from 0x20001000 and debug it. It is assumed that the hardware has
already been initialized by the stubs. By default the application will use the eCos virtual vectors mechanism to obtain
services from the stubs, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into internal ROM at location
0x00000000. Data and BSS will be put into internal RAM starting from 0x20000400. The application will be self-
contained with no dependencies on services provided by other software. The program expects to boot from reset into
ROM at location zero. eCos startup code will perform all necessary hardware initialization.

JTAG This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-
contained with no dependencies on services provided by other software. The program expects to be loaded from
0x20000400 and entered at that address. eCos startup code will perform all necessary hardware initialization.

Monitors and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the Stubrom.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port 0 will be claimed for HAL diagnostics.

UART Serial Driver
The LM3S8962-EVAL board uses the LM3S's internal UART serial support. As well as the polled HAL diagnostic inter-
face, there is also a CYGPKG_IO_SERIAL_CORTEXM_LM3S package which configures the CYGPKG_IO_SERIAL_AR-
M_PL011 for use in the LM3S series. Both UARTs can be supported by this driver, although only UART0 is actually routed
to an external connector. Note that it is not recommended to enable this driver on the port used for HAL diagnostic I/O. This
driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver support
package CYGPKG_IO_SERIAL is enabled in the configuration.

2779

LM3S8962-EVAL Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including the Stubrom.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the LM3S only supports
two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check it has not
set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software breakpoints by
default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.lm3s8962.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs.

The peedi.lm3s8962.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to soft-
ware breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default
can be changed to hardware breakpoints, and remember to use the reboot command on the PEEDI command line interface,
or press the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.lm3s8962.cfg
file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the CORE0_STARTUP_MODE directive in the [TARGET] section of the peedi.lm3s8962.cfg file. This
conveniently allows the target to be connected to the JTAG debugger, and be able to reset it with the reset button, without
being required to always type 'go' every time.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

lm3s> memory load tftp://192.168.7.9/test.bin bin 0x20000000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x00000000
loading at 0x20000000
loading at 0x20004000

Successfully loaded 28KB (29064 bytes) in 0.1s
lm3s> go 0x20000000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

Abatron BDI3000 notes

On the Abatron BDI3000, the bdi3000.lm3s8962.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs.

2780

LM3S8962-EVAL Platform HAL

The bdi3000.lm3s8962.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can
be changed to hardware breakpoints, and remember to use the boot command on the BDI3000 command line interface.

On the BDI3000, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2001 on the BDI3000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI3000 is powered up, the target will always run the initialization section of the
bdi3000.lm3s8962.cfg file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

LM3S> load 0x20000000 test.bin bin
Loading /test.bin , please wait
Loading program file passed
LM3S> go 0x20000000

Consult the BDI3000 documentation for information on other formats and loading mechanisms.

Configuration of JTAG applications

JTAG applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Both of these settings are
made automatically if the JTAG startup type is selected.

2781

LM3S8962-EVAL Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the LM3S8962-EVAL board hardware,
and should be read in conjunction with that specification. The LM3S8962-EVAL platform HAL package complements the
ARM architectural HAL and the LM3S variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
lm3s8962_eval_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM This is located at address 0x20000000 of the memory space, and is 64KiB in size. The eCos
VSR table occupies the bottom 512 bytes. The virtual vector table starts at 0x00000200 and ex-
tends to 0x00000300. The top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes
are reserved for the interrupt stack. The remainder of internal RAM is available for use by ap-
plications.

Internal FLASH This is located at address 0x00000000 of the memory space. This region is 256KiB in size.
ROM applications are by default configured to run from this memory.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the
contents can be found in the LM3S User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 128 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000200. To permit expansion and possible addition of other tables, the linker scripts
then allocate further sections from 0x20000400.

hal_interrupt_stack This defines the location of the interrupt stack. For all startups, this is allocated to the
top of internal SRAM, 0x20010000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

2782

Chapter 291. LPC1XXX Variant HAL

2783

LPC1XXX Variant HAL

Name
CYGPKG_HAL_CORTEXM_LPC1XXX — eCos Support for the LPC1XXX Microprocessor Family

Description
The NXP LPC1XXX series of Cortex-M microcontrollers is supported by eCos with an eCos processor variant HAL and a
number of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-chip flash, serial,
SPI and I²C devices. In addition it provides common functionality and definitions that LPC1XXX based platform ports may
require, as well as definitions useful to application developers.

This documentation covers the LPC1XXX functionality provided but should be read in conjunction with the specific HAL
documentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here,
and may also describe differences that override or supersede what the LPC1XXX variant HAL provides. The areas that are
specific to platform HALs and not the LPC1XXX variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

2784

LPC1XXX Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support

On-chip memory

The LPC1XXX parts include on-chip SRAM, and on-chip FLASH. The RAM consists of up to 64KiB in one or two disjoint
blocks, and the FLASH can be up to 512KiB in size depending on model.

Typically, an eCos platform HAL port will expect a GDB stub ROM monitor to be programmed into the LPC1XXX on-
chip ROM memory for development, and the board would boot this image from reset. The stub ROM provides GDB stub
functionality so it is then possible to download and debug stand-alone and eCos applications via the gdb debugger using serial
interfaces or other debug channels. The JTAG interface may also be used for development if a suitable JTAG device is available.
For production purposes, applications are programmed into on-chip FLASH and will be self-booting.

On-Chip FLASH

The package CYGPKG_DEVS_FLASH_LPC2XXX provides a driver for the on-chip flash. This driver conforms to the Version
2 flash driver API. It queries the microcontroller's device capabilities registers to determine the size and layout of the flash at
runtime. This driver is shared with the LPC2xxx microcontroller family, and its name reflects that.

Cache Handling

The LPC1XXX does not contain any caches, however, the variant HAL supplies the cyg/hal/hal_cache.h header to
satisfy generic code. This header describes zero sized caches and provides null macros for the required functions.

Serial I/O

The LPC1XXX variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also
a fully interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver con-
sists of an eCos package: CYGPKG_IO_SERIAL_CORTEXM_LPC1XXX which provides configuration for the generic CYG-
PKG_IO_SERIAL_GENERIC_16X5X driver package. Using the HAL diagnostic I/O support, any of these devices can be
used by the ROM monitor for communication with GDB. If a device is needed by the application, either directly or via the
serial driver, then it cannot also be used for GDB communication using the HAL I/O support. An alternative serial port should
be used instead.

The HAL defines CDL interfaces, CYGINT_HAL_LPC1XXX_UART0 to CYGINT_HAL_LPC1XXX_UART3 for each of the
possible UARTs. The platform HAL CDL should contain an implements directive for each such UART that is available for
use on the board. This will enable use of the UART for diagnostic use.

UARTs 0, 2 and 3 only support TX and RX lines, however UART1 supports the full set of modem control lines.

Interrupts

The LPC1XXX HAL relies on the architectural HAL to provide support for the interrupts directly routed to the NVIC. The
cyg/hal/var_intr.h header defines the vector mapping for these.

GPIO

The variant HAL provides support for packaging the configuration of a GPIO line into a single 32-bit descriptor that can then
be used with macros to configure the pin and set and read its value.

Clock Distribution

The variant HAL provides support for packaging the clock control parameters of a device into a single 32-bit descriptor that
can then be used with macros to enable and disable the device's clock.

2785

LPC1XXX Variant HAL

I2C Support

A separate driver, CYGPKG_DEVS_I2C_NXPI2C provides support for I²C devices. The platform HAL must define the set
of devices attached to each bus and must also configure the pins used for each I²C bus.

SPI Support

The SSP device is based on the ARM PL022 SSP primecell and SPI support is provided via the separate CYGPKG_DE-
VS_SPI_ARM_PL022 driver. The platform HAL must define the bus instances and devices attached to them.

Profiling Support

The LPC1XXX HAL contains support for gprof-base profiling using a sampling timer. The default timer used is Timer 0.
The timer used is selected by a set of #defines in src/lpc1xxx_misc.c which can be changed to refer to a different
timer if required. This timer is only enabled when CYGPKG_PROFILE_GPROF is enabled, otherwise it remains available for
application use.

Clock Control
The platform HAL must provide the input clock frequency (CYGHWR_HAL_LPC1XXX_INPUT_CLOCK) in its CDL file. This
is then combined with the following options defined in this package to define the default system clocks:

CYGHWR_HAL_CORTEXM_LPC1XXX_CLOCK_SOURCE

This defines the source of the main system clock. It can take one of three values: IRC selects the internal ocillator, OSC
selects the main ocillator, RTC selects the 32KHz internal clock. It defaults to OSC.

CYGHWR_HAL_CORTEXM_LPC1XXX_CLOCK_SYSCLK_DIV

This defines the divider applied to the 400MHz PLL output to generate the system clock. This can take values between
1 and 16. The default value is 4, giving a 50MHz system clock.

CYGHWR_HAL_CORTEXM_LPC1XXX_PLL0_MUL

This defines the multiplier applied by PLL0 to the selected clock input. It can vary between 6 and 512. The default is 6.

CYGHWR_HAL_CORTEXM_LPC1XXX_PLL0_PREDIV

This defines the pre-divider for PLL0. It may take any value betwen 1 and 32. The default is 1.

CYGHWR_HAL_CORTEXM_LPC1XXX_CCLK_SOURCE

This defines the source of the main CPU clock, CCLK. The options are PLL to select PLL0 and SYSCLK to bypass the
PLL and use the system clock directly. The default is PLL.

CYGHWR_HAL_CORTEXM_LPC1XXX_CCLK_DIV

This defines the divider applied to the selected CCLK. It may range between 3 and 256. The default is 3.

The actual frequency of the system clock, in Hz, is stored in the global variable hal_lpc1xxx_sysclk. Similarly the
frequency of the PLL output clock is stored in hal_lpc1xxx_pllclk and of CCLK in hal_lpc1xxx_cclk. The clock
supplied to the SysTick timer, CCLK, is also assigned to hal_cortexm_systick_clock. These variables are used, rather
than configuration options, in anticipation of future support for power management by varying the system clock rate.

2786

LPC1XXX Variant HAL

Name
GPIO Support — Details

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_LPC1XXX_GPIO(port, bit, mode);

CYGHWR_HAL_LPC1XXX_GPIO_SET (pin);

CYGHWR_HAL_LPC1XXX_GPIO_OUT (pin, val);

CYGHWR_HAL_LPC1XXX_GPIO_IN (pin, *val);

Description
The LPC1XXX HAL provides a number of macros to support the encoding of GPIO pin identity and configuration into a single
32 bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for different devices.

A descriptor is created with CYGHWR_HAL_LPC1XXX_GPIO(port, bit, mode) which takes the following arguments:

port This identifies the GPIO port to which the pin is attached. Ports are identified numeri-
cally between 0 and 4.

bit This gives the bit or pin number within the port. These are numbered from 0 to 31.

mode This defines the mode in which the pin is to be used. The following values are cur-
rently defined: IN_PULLUP defines the pin as a GPIO input with a pull up resistor,
IN_PULLDOWN defines the pin as a GPIO input with a pull down resistor, OUT_OPEN-
DRAIN defines the pin as a GPIO output with an open drain, OUT_PULLUP defines the
pin as a GPIO out with a pull up resistor, OUT_PULLDOWN defines the pin as a GPIO
output with a pull down resistor, ALT1, ALT2, ALT3 define the pin as a line under the
control of a peripheral. This set may be extended as further requirements emerge, so
check the sources for new definitions.

The following examples show how this macro may be used:

// Define port 0 pin 2 as a peripheral pin for alternate peripheral 1
#define CYGHWR_HAL_LPC1XXX_UART0_TX CYGHWR_HAL_LPC1XXX_GPIO(0, 2, ALT1)

// Define port 0 pin 16 as a GPIO output pin with a pull up resistor
#define CYGHWR_HAL_LPC1XXX_SPI_CS0 CYGHWR_HAL_LPC1XXX_GPIO(0, 16, OUT_PULLUP)

Additionally, the macro CYGHWR_HAL_LPC1XXX_GPIO_NONE may be used in place of a pin descriptor and has a value
that no valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used.

The remaining macros all take a GPIO pin descriptor as an argument. CYGHWR_HAL_LPC1XXX_GPIO_SET configures
the pin according to the descriptor and must be called before any other macros. CYGHWR_HAL_LPC1XXX_GPIO_OUT sets
the output to the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_LPC1XXX_G-
PIO_IN should be a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

2787

LPC1XXX Variant HAL

Name
Peripheral Clock and Power Control — Description

Synopsis
#include <cyg/hal/hal_io.h>

pin = CYGHWR_HAL_LPC1XXX_CLOCK(device, divider);

CYGHWR_HAL_LPC1XXX_CLOCK_ENABLE (desc);

CYGHWR_HAL_LPC1XXX_CLOCK_DISABLE (desc);

Description
The LPC1XXX HAL provides a number of macros to support the management of peripheral power supply and clock frequen-
cies. The macro CYGHWR_HAL_LPC1XXX_CLOCK(device, divider) encodes a control descriptor into a 32 bit
value. The first argument is the name of the device to be described. The second argument gives the divider to be applied to
CCLK for the peripheral clock; it can take the values 1, 2, 4 or 8 for most peripherals and 6 (instead of 8) for the CAN device.

The remaining functions all take a peripheral clock/power descriptor as an argument. CYGHWR_HAL_LPC1XXX_CLOCK_EN-
ABLE(desc) turns on the power to the peripheral and sets the clock to the rate given in the descriptor. Likewise CYGH-
WR_HAL_LPC1XXX_CLOCK_DISABLE(desc) disables the power to the device.

2788

Chapter 292. MCB1700 Platform HAL

2789

MCB1700 Platform HAL

Name
CYGPKG_HAL_CORTEXM_LPC1XXX_MCB1700 — eCos Support for the MCB1700 Board

Description
The MCB1700 board contains a LPC1768 microcontroller. It has connectors for two UARTs, MicroSD, USB, CAN, a PHY
connected to the on-chip MAC, JTAG and various other devices.

For typical eCos development, a GDB stub image is programmed into internal FLASH and the CPU boots directly into that. It
is then possible to download and debug stand-alone and eCos applications via the gdb debugger using UART1. Alternatively
test programs may be downloaded and debugged via a JTAG debugger attached to the JTAG socket. Avaliable RAM is limited
to 64KiB, split into two disjoint 32KiB regions, so development for larger applications may also consist of programming them
to flash and using JTAG to debug them from there.

This documentation describes platform-specific elements of the MCB1700 board support within eCos. The LPC1XXX variant
HAL documentation covers various topics including HAL support common to LPC1XXX variants, and on-chip device support.
This document complements the LPC1XXX documentation.

Supported Hardware
The LPC1768 has three on-chip memory regions. A RAM region of 32KiB is present at 0x0x10000000 and another is at
0x2007C000. A FLASH region is present at 0x00000000.

The LPC1XXX variant HAL includes support for the on-chip serial devices which are documented in the variant HAL. UART0
has reset and ISP control lines connected to the DTR and RTS lines. eCos uses UART1 for console and debug traffic, leaving
UART0 free for ISP use.

The platform HAL contains configuration and definitions that allow the SPI and I²C device drivers to be used. This includes
access to microSD cards via the on-board slot.

The on-chip Ethernet MAC and the DP83848 PHY are supported.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.3.2, arm-eabi-gdb version 6.8, and binutils version 2.18.

2790

MCB1700 Platform HAL

Name
Setup — Preparing the MCB1700 Board for eCos Development

Overview
Applications can be developed on the MCB1700 board either by using a hardware JTAG-debugger based approach, or via a
serial connection between the host and a GDB Stubrom installed on the board. In this latter case the board boots from internal
flash into the Stubrom. eCos applications are configured for RAM startup and then downloaded and run on the board via the
debugger arm-eabi-gdb.

Stubrom Installation
For serial communications, the Stubrom runs with 8 bits, no parity, and 1 stop bit at 38400 baud. This rate can be changed in
the platform HAL configuration. Under normal circumstances, the Stubrom runs in-place from the internal Flash.

Programming The Stubrom

This process assumes that a Microsoft Windows host machine with the Embedded Systems Academy Free Flash Magic utility
is available. You can install Flash Magic from http://www.flashmagictool.com. This machine also needs an RS232 serial port,
either native or through a USB adaptor. In addition to bidrectional data transfer, control is also needed over the DTR and
RTS lines. If necessary copy the stubrom.hex file to an easily accessible location. The stubrom file is located within your
eCosPro installation in the \eCosPro\ecos-<ver>loaders\mcb1700\gdbstub\ROM\ directory.

Supply the board with power via the USB DEVICE socket and connect a serial cable between the MCB1700 board COM0
port and the host.

Start Flash Magic and set the Communications section to select the host COM port connected to the board, 38400 baud, device
LPC1768, Interface “None (ISP)” and 12MHz Oscillator Frequency. Test communication with the board by using the “ISP-
>Read Device Signature” menu entry. If communication is not successful, check that the serial cable is connected, and the
correct COM port is being used.

Check “Erase blocks used by Hex File” under “Erase”. In the “Hex File” section, select the stubrom.hex file. Under “Op-
tions”, all boxes should be clear except “Verify after programming”. Now press the “Start” button. The utility should show
the progress of the upload.

When the process completes, the utility should be closed. Verify the programming has been successful by connecting to the
second (COM1) serial port on the board, start a terminal emulation application such as HyperTerminal or minicom on the host
PC and set the serial communication parameters to 38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control
(handshaking). Reset the board and the Stubrom should start. The output should be similar to the following:

$T050f:6e220000;0d:f07f0010;#80

Rebuilding The Stubrom

Should it prove necessary to rebuild the Stubrom binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of the Stubrom are:

$ mkdir stubs_mcb1700_rom
$ cd stubs_mcb1700_rom
$ ecosconfig new mcb1700 stubs
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file stubrom.hex.

2791

http://www.flashmagictool.com

MCB1700 Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The MCB1700 board platform HAL package is loaded automatically when eCos is configured for an mcb1700 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The MCB1700 board platform HAL package supports three separate startup types:

RAM This is the startup type for application development using a GDB stubs based development approach. The Stubsrom
is programmed into internal Flash at location 0x00000000 and uses internal RAM at location 0x10000000. arm-eabi-
gdb is then used to load a RAM startup application into memory and debug it. The application code is loaded from
0x10001000 and its data and heap go into SRAM at 0x2007C000. It is assumed that the hardware has already been
initialized by the stubs. By default the application will use the eCos virtual vectors mechanism to obtain services from
the stubs, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into internal ROM at location
0x00000000. Data and BSS will be put into internal RAM starting from 0x10000400. The remainder of SRAM at
0x10000000 and all of the SRAM at 0x2007C000 will be used for heap. The application will be self-contained with no
dependencies on services provided by other software. The program expects to boot from reset into ROM at location
zero. eCos startup code will perform all necessary hardware initialization. This startup type can also be used with
JTAG debuggers, writing the application image into the flash and then using JTAG to debug the application. This
approach makes the best use of the board's frugal memory resources, but does require the additional step of flashing
the image onto the board each time.

JTAG This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-
contained with no dependencies on services provided by other software. The program code expects to be loaded from
0x20000400 and entered at that address and its data and heap go into SRAM at 0x2007C000. eCos startup code will
perform all necessary hardware initialization.

Monitors and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the Stubrom.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port 1 will be claimed for HAL diagnostics.

UART Serial Driver
The MCB1700 board uses the LPC1XXX's internal UART serial support. As well as the polled HAL diagnostic interface,
there is also a CYGPKG_IO_SERIAL_CORTEXM_LPC1XXX package which configures the CYGPKG_IO_SERIAL_GEN-
ERIC_16X5X driver for use in the LPC1XXX series. Both UARTs can be supported by this driver. Note that it is not
recommended to enable this driver on the port used for HAL diagnostic I/O. This driver is not active until the CYGP-
KG_IO_SERIAL_DEVICES configuration option within the generic serial driver support package CYGPKG_IO_SERIAL
is enabled in the configuration.

2792

MCB1700 Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including the Stubrom.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the LPC1XXX only
supports two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check
it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.mcb1700.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs.

The peedi.mcb1700.cfg file also contains an option to define whether hardware or software breakpoints are used by de-
fault, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can be
changed to hardware breakpoints, and remember to use the reboot command on the PEEDI command line interface, or press
the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.mcb1700.cfg
file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the CORE0_STARTUP_MODE directive in the [TARGET] section of the peedi.mcb1700.cfg file. This
conveniently allows the target to be connected to the JTAG debugger, and be able to reset it with the reset button, without
being required to always type 'go' every time.

Abatron BDI3000 notes

On the Abatron BDI3000, the bdi3000.mcb1700.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs.

The bdi3000.mcb1700.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can
be changed to hardware breakpoints, and remember to use the boot command on the BDI3000 command line interface.

On the BDI3000, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2001 on the BDI3000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI3000 is powered up, the target will always run the initialization section of the bdi3000.m-
cb1700.cfg file, and halts the target. This behaviour is repeated with the reset command.

2793

MCB1700 Platform HAL

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

MCB1700> load test.srec srec
Loading test.srec , please wait
Loading program file passed
MCB1700> go 0x10000420

Consult the BDI3000 documentation for information on other formats and loading mechanisms.

Configuration of JTAG applications

JTAG applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Both of these settings are
made automatically if the JTAG startup type is selected.

2794

MCB1700 Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the MCB1700 board hardware, and should
be read in conjunction with that specification. The MCB1700 platform HAL package complements the ARM architectural
HAL and the LPC1XXX variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
mcb1700_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM This is located at addresses 0x10000000 and 0x2007C000 of the memory space, and is
64KiB in size, divided into two 32KiB blocks. The eCos VSR table occupies 512 bytes at
0x10000000. The virtual vector table starts at 0x10000200 and extends to 0x10000300. The
top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes down from 0x10008000
are reserved for the interrupt stack.

The second 32KiB block is divided into two 16KiB parts, reflecting its organization in the hard-
ware. The lower 16KiB, at 0x2007C000, are available for application use. The upper 16KiB,
at 0x20080000, are used by the ethernet driver for packet buffers. If the ethernet device is not
used, this memory may be used by applications.

Internal FLASH This is located at address 0x00000000 of the memory space. This region is 512KiB in size.
ROM applications are by default configured to run from this memory.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the
contents can be found in the LPC1XXX User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x10000000 for all startup
types, and space for 128 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x10000200. To permit expansion and possible addition of other tables, the linker scripts
then allocate further sections from 0x10000400.

hal_interrupt_stack This defines the location of the interrupt stack. For all startups, this is allocated to the
top of internal SRAM, 0x10008000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

2795

Chapter 293. SAM3/4/x70 Variant HAL

2796

SAM3/4/x70 Variant HAL

Name
CYGPKG_HAL_CORTEXM_SAM — eCos Support for the SAM3/4 Microprocessor Family

Description
The Atmel SAM3, SAM4 and SAMX70 series of Cortex-M microcontrollers is supported by eCos with an eCos processor
variant HAL and a number of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-
chip flash, serial, I²C, SPI, CAN, Ethernet, RTC/wallclock and watchdog devices. In addition it provides common functionality
and definitions that SAM based platform ports may require, as well as definitions useful to application developers. Throughout
this document this processor family will just be referred to as SAM, without any numerical designations.

This documentation covers the SAM functionality provided but should be read in conjunction with the specific HAL docu-
mentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here, and
may also describe differences that override or supersede what the SAM variant HAL provides. The areas that are specific to
platform HALs and not the SAM variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• Pin multiplexing and GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

2797

SAM3/4/x70 Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support
The SAM family contains many on-chip peripherals, many of which are compatible with devices on Atmel SAM3, SAM4,
SAMX70, SAM7, SAM9 and SAMA5 parts. Where possible, the drivers are shared, and in places, package names and termi-
nology show this.

On-chip memory

The Atmel SAM parts include on-chip SRAM, and on-chip FLASH. The RAM can vary in size from as little as 4KiB to
384KiB. The FLASH can be up to 2048KiB in size depending on model. There is also support in some models for external
SRAM and Flash, which eCos may use where available.

Typically, an eCos platform HAL port will expect a GDB stub ROM monitor or RedBoot image to be programmed into the
SAM on-chip ROM memory for development, and the board would boot this image from reset. The stub ROM/RedBoot
provides GDB stub functionality so it is then possible to download and debug stand-alone and eCos applications via the gdb
debugger using serial interfaces or other debug channels. The JTAG interface may also be used for development if a suitable
JTAG adaptor is available. If RedBoot is present it may also be used to manage the on-chip and external flash memory. For
production purposes, applications are programmed into external or on-chip FLASH and will be self-booting.

On-Chip FLASH

The package CYGPKG_DEVS_FLASH_AT91IAP ("FLASH memory support for Atmel AT91 IAP") provides a driver for the
on-chip flash. This driver conforms to the Version 2 flash driver API, and is automatically enabled if the generic "Flash device
drivers" (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically
for the size and parameters of the specific SAM variant by querying the ChipID register.

Cache Handling

The SAM4 contains a small unified cache controller, the variant HAL supplies the cyg/hal/hal_cache.h header to
implement cache control. This header describes the cache size and provides macros for enabling and disabling the cache as well
as syncing and invalidating cache lines. The cache controller has limited functionality, so not all cache operations are supported.

The SAMX70 variants contain an instruction and data cache controller defined as part of the Cortex-M architectural specifi-
cation. Support for this controller is supplied by the architecture HAL.

Serial I/O

The SAM variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a fully
interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver consists of
an eCos package: CYGPKG_IO_SERIAL_ARM_AT91 which provides support for the SAM on-chip serial devices. Using
the HAL diagnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication with
GDB. If a device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB
communication using the HAL I/O support. An alternative serial port should be used instead.

The HAL defines CDL interfaces, CYGINT_HAL_CORTEXM_SAM_UART0, CYGINT_HAL_CORTEXM_SAM_UART1 and
CYGINT_HAL_CORTEXM_SAM_USART0 to CYGINT_HAL_CORTEXM_SAM_USART3 for each of the available UARTs
and USARTs. The platform HAL CDL should contain an implements directive for each such UART that is available for use
on the board. This will enable use of the UART for diagnostic use.

Caution

For historical compatibility with the shared device drivers, hardware UART0 is mapped to the driver DEBUG
UART, hardware USARTs 0 to 3 are mapped to driver UARTs 0 to 3 and hardware UART1 is mapped to driver
UART5.

2798

SAM3/4/x70 Variant HAL

The SAM UARTs provide only TX and RX data lines while the USARTs also implement hardware flow control using RTS/
CTS for those USARTs that have them connected.

Interrupts

The SAM HAL relies on the architectural HAL to provide support for the interrupts directly routed to the NVIC. The cyg/
hal/var_intr.h header defines the vector mapping for these.

GPIO interrupts are currently not fully decoded, so all interrupts originating from a particular GPIO controller are routed to
the single interrupt vector for that controller.

Pin Multiplexing and GPIO

The variant HAL provides support for packaging the configuration of a GPIO line into a single 32-bit descriptor that can then
be used with macros to configure the pin and set and read its value. Details are supplied later.

RTC/Wallclock

eCos includes RTC (known in eCos as a wallclock) device drivers for the on-chip RTC in the SAM family. This is located in
the package CYGPKG_DEVICES_WALLCLOCK_ARM_AT91 ("AT91 wallclock driver").

Profiling Support

The SAM HAL contains support for gprof-base profiling using a sampling timer. The default timer used is Timer Counter 0.
The timer used is selected by a set of #defines in src/sam_misc.c which can be changed to refer to a different timer if
required. This timer is only enabled when the gprof profiling package (CYGPKG_PROFILE_GPROF) is included and enabled
in the eCos configuration, otherwise it remains available for application use.

Clock Control
The platform HAL must provide the input oscillator frequency (CYGHWR_HAL_CORTEXM_SAM_OSC_MAIN) in its CDL file.
This is then combined with the following options defined in this package to define the default system clocks:

CYGHWR_HAL_CORTEXM_SAM_CLOCK_PLL_DIVA

PLL input clock divider.

CYGHWR_HAL_CORTEXM_SAM_CLOCK_PLL_MULA

PLL input clock multiplier. The resulting PLL output clock will be the main oscillator frequency multiplied by this value
and divided by CYGHWR_HAL_CORTEXM_SAM_CLOCK_PLL_DIVA.

CYGHWR_HAL_CORTEXM_SAM_CLOCK_PLLADIV2

This is an additional divide-by-two divider applied to the output from the PLL.

CYGHWR_HAL_CORTEXM_SAM_CLOCK_PRES

Processor clock prescaler. The PLL output clock is divided by this value to give the frequency of the master clock that
is then distributed to the CPU and peripherals.

CYGHWR_HAL_CORTEXM_SAM_CLOCK_MDIV

Master clock prescaler. In the SAMX70 variants, the processor clock is further divided by this prescaler to provide the
master clock sent to the peripherals.

CYGHWR_HAL_CORTEXM_SAM_FLASH_WAIT

This option defines the number of wait states applied to flash memory accesses. This will vary with the main clock fre-
quency. The default is to set this to the maximum value.

2799

SAM3/4/x70 Variant HAL

The actual values of these clocks, in Hz, is stored in global variables hal_sam_mainck, hal_sam_pllack,
hal_sam_mclk and hal_sam_upllck. The clock supplied to the SysTick timer, MCLK/8, is also assigned to hal_cor-
texm_systick_clock. These variables are set by examining the actual hardware register settings, rather than from the
CDL, so they reflect settings made by any bootloader or JTAG adaptor.

Note that when changing or configuring any of these clock settings, you should consult the relevant processor datasheet as
there may be both upper and lower constraints on the frequencies of some clock signals, including intermediate clocks. There
are also some clocks where, while there is no strict constraint, clock stability is improved if values are chosen wisely. Finally,
be aware that increasing clock speeds using this package may have an effect on platform specific properties, such as memory
timings which may have to be adjusted accordingly.

2800

SAM3/4/x70 Variant HAL

Name
GPIO Support on SAM Processors — Details

Synopsis

#include <cyg/hal/hal_io.h>

cyg_uint32 pin = CYGHWR_HAL_SAM_PIN(port, bit, mode, md, pupd, if, int, conf);

cyg_uint32 pin = CYGHWR_HAL_SAM_PIN_OUT(port, bit, md, pupd);

cyg_uint32 pin = CYGHWR_HAL_SAM_PIN_IN(port, bit, md, pupd, if, int);

CYGHWR_HAL_SAM_PIN_SET (pin);

CYGHWR_HAL_SAM_GPIO_OUT (pin, val);

CYGHWR_HAL_SAM_GPIO_IN (pin, val);

Description
The SAM HAL provides a number of macros to support the encoding of the GPIO pin identity and I/O configuration into a
single 32-bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for different
devices.

A descriptor is created with one of the 3 variants depending on how the pin is to be used. The support is implemented by the
CYGHWR_HAL_SAM_PIN macro, with CYGHWR_HAL_SAM_PIN_IN and CYGHWR_HAL_SAM_PIN_OUT being shorthand
helpers when direct GPIO control of a pin is required: CYGHWR_HAL_SAM_PIN_IN defines the pin as an input whose value
can be accessed by the user using the macro CYGHWR_HAL_SAM_GPIO_IN (see later), CYGHWR_HAL_SAM_PIN_OUT
defines the pin as an output where the user can set the pin output value with the macro CYGHWR_HAL_SAM_GPIO_OUT
(see later).

The CYGHWR_HAL_SAM_PIN macro can be used when defining a pin that will be controlled by an on-chip peripheral.

Note

The HAL supplied header file var_io.h provides existing configuration definitions for the majority of the on-
chip peripherals supported by eCos, thus obviating the need for the developer to provide their own pin definitions.

The macro variants take a subset of arguments from the following list:

port This identifies the PIO controller to which the pin is attached. Ports are identified by
letters from A to E.

bit This gives the bit, or pin number, within the controller port. These are numbered from
0 to 31.

mode This parameter indicates whether the pin is controlled by an on-chip peripheral, or is to
be used as a GPIO pin under application control.

Table 293.1. Pin Mode

mode Details

GPIOIN The pin is to be configured as an INPUT, and after configuration the CYGHWR_HAL_SAM_G-
PIO_IN macro can be used to ascertain the pin state.

GPIOOUT The pin is to be configured as an OUTPUT, and after configuration the CYGHWR_HAL_SAM_G-
PIO_OUT macro can be used to drive the pin level.

2801

SAM3/4/x70 Variant HAL

mode Details

PER_A, PER_B,
PER_C, PER_D

The required peripheral mapping when the pin is to be assigned to an on-chip peripheral. The mul-
tiplexing of peripheral signals is defined by the CPU variant being targeted, and is beyond the
scope of this documentation. When creating pin configurations for on-chip peripherals the relevant
Atmel datasheet or technical reference manual should be consulted.

md This setting indicates whether the pin should be driven in open-drain mode (OPEN-
DRAIN). If the pin is not to be configured as OPENDRAIN this value is unused, but for
clarity can be given the setting NA.

pupd If this is an input pin, or an output pin configured in open-drain mode (whether controlled
by GPIO or a peripheral), this setting can be used to indicate whether a weak pull-up
resistor (PU) is used, or a weak pull-down resistor (PD) is used. If neither are to be used,
then a value of NONE can be given.

if For input pins (GPIO or peripheral) a glitch (GLITCH) or debouncing (DEBOUNCE)
filter can be configured for the pin. When no input filtering is required, or when the field
is not relevant due to the other pin configuration fields, the value NONE can be specified.

int This parameter indicates whether the pin should have an interrupt configuration defined.

Table 293.2. Interrupt Type

int Details

EDGE_ANY When an interrupt event should be raised on a pin edge event (rising or falling).

EDGE_RISE An interrupt should only be raised on rising (LOW->HIGH) edge transitions.

EDGE_FALL An interrupt should only be raised on falling (HIGH->LOW) edge transitions.

LEVEL_HIGH Interrupts should be asserted when the pin is at a HIGH level.

LEVEL_LOW Interrupts should be asserted when the pin is at a LOW level.

NA This value can be used when an interrupt configuration is not required, or not applicable due to the
other pin configuration parameters.

conf This parameter provides a simple “extension” mechanism; and is treated as a 32-bit
binary value that is OR-ed into the pin descriptor. Care must be taken to ensure that
existing bit-fields within the binary descriptor are not corrupted.

The following examples show how these macros may be used:

// Define port B pin 28 as being controlled by peripheral multiplex A,
// which for this pin on SAM devices is UART0 RX, without any
// pull-ups/pull-downs:
#define CYGHWR_HAL_SAM_USART1_RXD CYGHWR_HAL_SAM_PIN(A, 9,PER_A,OPENDRAIN,NONE,NONE,NA,(0))

// Define port D pin 20 as a GPIO output with a pull-down, for an
// active-low LED:
#define CYGHWR_HAL_SAM_LED_AMBER CYGHWR_HAL_SAM_PIN_OUT(D,20,NA,PD)

Additionally, the manifest CYGHWR_HAL_SAM_PIN_NONE may be used in place of a pin descriptor and has a value that no
valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used. This can be
useful when defining pin configurations for a series of instances of a peripheral (e.g. USART ports), but where not all instances
support all the same pins (e.g. hardware flow control lines).

The remaining macros all take a suitably constructed GPIO pin descriptor as an argument. The CYGHWR_HAL_SAM_PIN_SET
macro configures the pin according to the descriptor and must be called before any other macros. CYGHWR_HAL_SAM_G-
PIO_OUT sets the output to the value of the least significant bit of the val argument. The val argument of CYGH-
WR_HAL_SAM_GPIO_IN should be a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

Further helper macros are available, and it is recommended to consult the header file <cyg/hal/var_io.h> (also present in
the include subdirectory of the SAM variant HAL package within the eCos source repository), for the complete list if needed.

2802

SAM3/4/x70 Variant HAL

Name
Peripheral clock control — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_uint32 CYGHWR_HAL_ATMEL_CLOCK_ENABLE(pid);

CYGHWR_HAL_ATMEL_CLOCK_DISABLE (pid);

Description
The HAL provides macros which may be used to enable or disable peripheral clocks. Effectively this indicates whether the
peripheral is powered on (enabled) or powered down (disabled), and so may be used to ensure unused peripherals are turned
off to save power. The CYGHWR_HAL_ATMEL_CLOCK_ENABLE macro will enforce the maximum frequency limitations
for particular peripheral blocks, and will return the frequency of the clock used for the enabled peripheral. Such frequency
information may be useful to device drivers if clock divider configuration is required.

It is important to remember that before a peripheral can be used, it must be enabled. It is safe to re-enable a peripheral that
is already enabled, although usually a device driver will only do so once in its initialisation. eCos will automatically initialise
some peripheral blocks where it needs to use the associated peripherals (such as memory controllers and some (but usually
not all) PIO banks), and in eCos-supplied device drivers which are included in the eCos configuration. However this should
not be relied on - it is always safest to enable the peripheral clocks anyway just in case. Finally, remember that each PIO bank
must be enabled separately.

Each peripheral has a unique ID defined by the HAL, and these values are used as the pid parameter to the enable and disable
macros.

2803

Chapter 294. Atmel SAM4E-EK Platform
HAL

2804

Atmel SAM4E-EK Platform HAL

Name
CYGPKG_HAL_CORTEXM_SAM4E_EK — eCos Support for the SAM4E-EK Board

Description
This document covers the configuration and usage of eCos on the Atmel SAM4E-EK evaluation kits. This board is fitted with
a SAM4E16 variant of the SAM4 family of microcontrollers.

For typical eCos development it is expected that programs will be downloaded and debugged via a hardware debugger (JTAG/
SWD) attached to the standard ARM 20-pin JTAG (J8) connector. Use of a hardware debugging interface avoids the require-
ment for a debug monitor application to be present on the platform.

Supported Hardware
The SAM variant HAL includes support for the six on-chip serial devices which are documented in the variant HAL. UART0
is connected to the external connector on the board marked DBGU/J7. There is no support for hardware flow control (RTS/
CTS) lines on UART0. USART1 is connected to J5 but is configured to support RS485 rather than RS232; it needs a GPIO
line to be pulled low and JP11 set to a non-default setting before RS232 is enabled. USART1 supports RTS/CTS flow control.

The SAM instantiates the SPI bus, and an AT25DF321A serial NOR flash is attached to chip select 3. The platform HAL
instantiates this flash driver at the virtual address of 0x70000000.

Device drivers provide support for the two I²C (TWI) interfaces, which are instantiated by the platform HAL. These have been
tested using external I²C devices, the only on-board I²C device, the QTouch controller, is not supported.

A driver is available for the CAN devices present on the chip, which are connected to external RJ12 sockets.

The board provides the 10/100 Ethernet (MII/RMII) Micrel KSZ8051MNL PHY providing support via the J20 (labelled “ETH-
ERNET”) connector.

A driver for the AFE (Analog Front-End) Controller is available. A test program that uses the V1 potentiometer is present
in the platform HAL.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3e, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2.

2805

Atmel SAM4E-EK Platform HAL

Name
Setup — Preparing the SAM4E-EK Board for eCos Development

Overview
In a typical development environment the SAM4E-EK board is programmed via a JTAG/SWD interface. This will either be
by loading applications into the on-chip SRAM, or into on-chip flash memory. The following sections deal with JTAG/SWD
hardware based debugging approaches.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. If you are debugging via SWD this should not be necessary.

For debugging applications are loaded and then executed on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE.
The following describes setting up to use a Ronetix PEEDI debugger for use with GDB.

PEEDI
For the Ronetix PEEDI, the peedi.sam4e_ek.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs. This includes setting up the PLLs and SDRAM controller.

The peedi.sam4e_ek.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [PLATFORM_CortexM3] section (NOTE: The PEEDI firmware
identifies not just M3 CPUs with the CortexM3 tag). Edit this file if you wish to use hardware break points, and remember
to restart the PEEDI to make the changes take effect. However, hardware breakpoints only work below address 0x20000000,
so should only be used for applications stored in flash.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.sam4e_ek.cfg
file, and halts the target. This behaviour is repeated with the PEEDI reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal and run from the contents of the flash.

Both JTAG and ROM startup types default to output of all diagnostics information via UART0 (DBGU). The default commu-
nications parameters are 115200 baud, no parity, 1 stop bit.

It is possible to arrange for diagnostics to be output via the JTAG connection and appear on the gdb console. This requires
the configuration option CYGFUN_HAL_GDB_FILEIO in the common HAL package to be enabled. This has two sub-op-
tions, CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN and CYGSEM_HAL_DIAG_VIA_GDB_FILEIO_IMMEDIATE, that
are enabled by default when CYGFUN_HAL_GDB_FILEIO is enabled and both should remain enabled. In this case, when
arm-eabi-gdb is attached to the PEEDI, the following gdb command must be issued:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define preload
 set hwdebug on
end

This will be referenced from their Eclipse debug launch configuration. Using GDB command files is described in more detail
in the "Eclipse/CDT for eCos application development" manual.

Consult the PEEDI documentation for information on other features.

2806

Atmel SAM4E-EK Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The SAM4E-EK motherboard platform HAL package is loaded automatically when eCos is configured for a suitable target,
e.g. sam4e_ek. It should never be necessary to load this package explicitly. Unloading the package should only happen as
a side effect of switching target hardware.

Startup
The SAM4E_EK board platform HAL package supports three separate startup types:

JTAG

This is the default startup type. It is used to build applications that are loaded via a JTAG interface. The application will
be self-contained with no dependencies on services provided by other software. The program expects to be loaded from
0x20000000 and entered at 0x20000408. eCos startup code will perform all necessary hardware initialization.

ROM

This startup type can be used for finished applications which will be programmed into internal flash at location
0x00400000. Data and BSS will be put into SRAM starting from 0x20000000. The application will be self-contained with
no dependencies on services provided by other software. The program expects to boot from reset with flash mapped at
location zero. It will then transfer control to the 0x00400000 region. eCos startup code will perform all necessary hardware
initialization.

RAM

This startup type can be used when a board has a GDB stub ROM resident in internal flash. It enables eCos application
development without the necessity for a JTAG debugger, providing arm-eabi-gdb connectivity via UART0 (DBGU). The
stub is programmed into the on-chip flash memory at 0x00400000 and uses SRAM at location 0x20000000. arm-eabi-
gdb is then used to load RAM startup applications into memory from 0x20001000 and debug them. It is assumed that
the hardware has already been initialized by the stub ROM. By default the application will use the eCos virtual vectors
mechanism to obtain services from the ROM, including diagnostic output.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building GDB Stubs.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

UART Serial Driver
The SAM4E_EK board uses the SAM's internal UART serial support. The HAL diagnostic interface, used for both polled
diagnostic output and GDB stub communication, is only expected to be available to be used on the UART0 (DBGU) port. This
is because only UART0 is actually routed to an external RS232 connector.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_ARM_AT91 package which contains
all the code necessary to support interrupt-driven operation with greater functionality.

2807

Atmel SAM4E-EK Platform HAL

It is not recommended to use the interrupt-driven serial driver with a port at the same time as using that port for HAL diagnostic
I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver
support package CYGPKG_IO_SERIAL is enabled in the configuration. By default this will only enable support in the driver
for the UART0 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable support
for other serial ports.

USART1 is disabled by default since it requires pins and clocks to be configured and PA23 to be pulled low and a jumper
to be changed to support RS232. The option CYGHWR_HAL_CORTEXM_SAM4E_EK_USART1 enables the hardware to be
configured; the user must change JP11 to the 2-3 position in order to enable access to USART1 via J5.

SPI Driver
An SPI bus driver is available for the SAM in the package "Atmel AT91 SPI device driver" (CYGPKG_DEVS_SPI_AR-
M_AT91).

The only SPI device instantiated by default is for an external AT25DF321A NOR flash.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the AT91 SPI device driver.

I²C Driver
Support for SAM I²C (TWI) busses is provided by the "Atmel TWI (I2C) device driver" package (CYGPKG_DEVS_I2C_AT-
MEL_TWI). The SAM variant HAL causes the two buses to be instantiated. These have been tested using external I²C devices.
The only on-board I²C device, the QTouch controller, is not supported.

Ethernet Driver
The AT91SAM4E-EK board uses the AT91SAM4E's internal EMAC ethernet device attached to an external Micrel
KSZ8051MNL PHY. The CYGPKG_DEVS_ETH_ARM_AT91 package contains all the code necessary to support this device
and the platform HAL package contains definitions that customize the driver to the board. This driver is not active until the
generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

Both the standard and direct (lwIP only) device drivers are supported. The standard driver is enabled by default; the direct
driver can be enabled by setting CYGOPT_IO_ETH_DRIVERS_LWIP_DRIVER_DIRECT option.

CAN Driver
The SAM4E has dual CAN devices for CAN support. Device support is via the Atmel SAM CAN Driver (CYGPKG_DE-
VS_CAN_SAM) package.

The board has two external CAN sockets, J13 and J14, which are RJ12 female sockets.

Consult the generic Chapter 90, CAN Support documentation for further details on use of the CAN API, CAN configuration
and device drivers.

Flash Driver
The SAM4E's on-chip Flash may be programmed and managed using the Flash driver located in the "FLASH memory support
for Atmel AT91 IAP" (CYGPKG_DEVS_FLASH_AT91IAP) package. This driver is enabled automatically if the generic
"Flash device drivers" (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself
automatically for the size and parameters of the specific SAM variant present on the SAM4E-EK board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver and Part XVIII, “NOR Flash Support” documentation for more details.

2808

Atmel SAM4E-EK Platform HAL

ADC Driver
ADC support is provided by the Atmel AFEC ADC Driver (CYGPKG_DEVS_ADC_ATMEL_AFEC) package. By default
AFEC0 AD4 is connected to BNC C2 (jumper JP40 pins 1-2 connected). The jumper JP40 can be changed to select
AFEC1 AD0 as the ADC input channel (NOTE: For JP40 2-3 the link J37-6 *MUST* be open). The CYGPKG_HAL_COR-
TEXM_SAM4E_EK_AFE_CN2_JP40 must be set to reflect the state of the jumper.

2809

Atmel SAM4E-EK Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the SAM4E-EK board hardware, and
should be read in conjunction with that specification. The SAM4E-EK platform HAL package complements the Cortex-M
architectural HAL and the SAM variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and pin multiplexing. The details of the early hardware startup may be found in the src/
sam4e_ek_misc.c in both hal_system_init() and hal_platform_init().

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
areas are as follows:

Internal SRAM

This is located at address 0x20000000 of the memory space, and is 128KiB in size. The eCos VSR table occupies
the bottom 256 bytes, with the virtual vector table starting at 0x20000100 and extending to 0x20000200. The top
CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of in-
ternal RAM is available for use by applications.

Internal FLASH

This is located at address 0x004000000 of the memory space and will be mapped to 0x00000000 at reset. This region is
1024KiB in size. ROM applications are by default configured to run from this memory.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found in the
SAM4E User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 64 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between a
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000100.

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of internal SRAM, 0x20020000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Diagnostic LEDs
Three LEDs are fitted on the board for diagnostic purposes: D2 (blue), D3 (amber) and D4 (green).

2810

Atmel SAM4E-EK Platform HAL

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

 extern void hal_sam_led(int val);

The lowest 3 bits of the argument val correspond to each of the 3 LEDs (with D2 as the least significant bit).

The variant HAL signals progress through clock initialization on the LEDs, leaving them all illuminated if initialization is
successful. Following this, the LEDs are available for application use.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built for JTAG startup.

Example 294.1. sam4e_ek Real-time characterization

 Startup, main thrd : stack used 352 size 1536
 Startup : Idlethread stack used 84 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 9.00 microseconds (9 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 6
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 7.50 7.00 8.00 0.50 100% 50% Create thread
 1.67 1.00 2.00 0.44 66% 33% Yield thread [all suspended]
 1.67 1.00 2.00 0.44 66% 33% Suspend [suspended] thread
 2.00 2.00 2.00 0.00 100% 100% Resume thread
 2.67 2.00 3.00 0.44 66% 33% Set priority
 0.33 0.00 1.00 0.44 66% 66% Get priority
 4.83 4.00 5.00 0.28 83% 16% Kill [suspended] thread
 2.00 2.00 2.00 0.00 100% 100% Yield [no other] thread
 2.33 2.00 3.00 0.44 66% 66% Resume [suspended low prio] thread
 2.00 2.00 2.00 0.00 100% 100% Resume [runnable low prio] thread
 2.33 2.00 3.00 0.44 66% 66% Suspend [runnable] thread
 1.17 1.00 2.00 0.28 83% 83% Yield [only low prio] thread
 2.00 2.00 2.00 0.00 100% 100% Suspend [runnable->not runnable]
 5.00 5.00 5.00 0.00 100% 100% Kill [runnable] thread
 4.00 4.00 4.00 0.00 100% 100% Destroy [dead] thread
 7.67 7.00 8.00 0.44 66% 33% Destroy [runnable] thread
 8.50 8.00 9.00 0.50 100% 50% Resume [high priority] thread
 2.87 2.00 5.00 0.26 84% 14% Thread switch

 0.34 0.00 1.00 0.45 65% 65% Scheduler lock
 1.35 1.00 2.00 0.46 64% 64% Scheduler unlock [0 threads]
 1.48 1.00 2.00 0.50 51% 51% Scheduler unlock [1 suspended]
 1.42 1.00 2.00 0.49 57% 57% Scheduler unlock [many suspended]
 1.18 1.00 2.00 0.29 82% 82% Scheduler unlock [many low prio]

 0.41 0.00 1.00 0.48 59% 59% Init mutex

2811

Atmel SAM4E-EK Platform HAL

 1.94 1.00 2.00 0.12 93% 6% Lock [unlocked] mutex
 2.28 2.00 3.00 0.40 71% 71% Unlock [locked] mutex
 1.81 1.00 2.00 0.31 81% 18% Trylock [unlocked] mutex
 1.00 1.00 1.00 0.00 100% 100% Trylock [locked] mutex
 0.56 0.00 1.00 0.49 56% 43% Destroy mutex
 9.13 9.00 10.00 0.22 87% 87% Unlock/Lock mutex

 0.72 0.00 1.00 0.40 71% 28% Create mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [empty] mbox
 2.16 2.00 3.00 0.26 84% 84% Put [first] mbox
 0.28 0.00 1.00 0.40 71% 71% Peek [1 msg] mbox
 2.06 2.00 3.00 0.12 93% 93% Put [second] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [2 msgs] mbox
 2.03 2.00 3.00 0.06 96% 96% Get [first] mbox
 2.03 2.00 3.00 0.06 96% 96% Get [second] mbox
 1.75 1.00 2.00 0.38 75% 25% Tryput [first] mbox
 1.69 1.00 2.00 0.43 68% 31% Peek item [non-empty] mbox
 1.84 1.00 2.00 0.26 84% 15% Tryget [non-empty] mbox
 2.00 2.00 2.00 0.00 100% 100% Peek item [empty] mbox
 2.00 2.00 2.00 0.00 100% 100% Tryget [empty] mbox
 0.38 0.00 1.00 0.47 62% 62% Waiting to get mbox
 0.38 0.00 1.00 0.47 62% 62% Waiting to put mbox
 0.81 0.00 1.00 0.31 81% 18% Delete mbox
 6.19 6.00 7.00 0.30 81% 81% Put/Get mbox

 0.47 0.00 1.00 0.50 53% 53% Init semaphore
 1.50 1.00 2.00 0.50 100% 50% Post [0] semaphore
 1.78 1.00 2.00 0.34 78% 21% Wait [1] semaphore
 1.53 1.00 2.00 0.50 53% 46% Trywait [0] semaphore
 1.59 1.00 2.00 0.48 59% 40% Trywait [1] semaphore
 0.56 0.00 1.00 0.49 56% 43% Peek semaphore
 0.56 0.00 1.00 0.49 56% 43% Destroy semaphore
 5.41 5.00 6.00 0.48 59% 59% Post/Wait semaphore

 0.81 0.00 1.00 0.31 81% 18% Create counter
 0.56 0.00 1.00 0.49 56% 43% Get counter value
 0.34 0.00 1.00 0.45 65% 65% Set counter value
 2.00 2.00 2.00 0.00 100% 100% Tick counter
 0.47 0.00 1.00 0.50 53% 53% Delete counter

 0.41 0.00 1.00 0.48 59% 59% Init flag
 1.84 1.00 2.00 0.26 84% 15% Destroy flag
 1.63 1.00 2.00 0.47 62% 37% Mask bits in flag
 1.81 1.00 2.00 0.31 81% 18% Set bits in flag [no waiters]
 2.59 2.00 3.00 0.48 59% 40% Wait for flag [AND]
 2.50 2.00 3.00 0.50 100% 50% Wait for flag [OR]
 2.59 2.00 3.00 0.48 59% 40% Wait for flag [AND/CLR]
 2.50 2.00 3.00 0.50 100% 50% Wait for flag [OR/CLR]
 0.31 0.00 1.00 0.43 68% 68% Peek on flag

 1.19 1.00 2.00 0.30 81% 81% Create alarm
 2.56 2.00 3.00 0.49 56% 43% Initialize alarm
 1.56 1.00 2.00 0.49 56% 43% Disable alarm
 3.00 3.00 3.00 0.00 100% 100% Enable alarm
 1.81 1.00 2.00 0.31 81% 18% Delete alarm
 2.22 2.00 3.00 0.34 78% 78% Tick counter [1 alarm]
 11.59 11.00 12.00 0.48 59% 40% Tick counter [many alarms]
 3.94 3.00 4.00 0.12 93% 6% Tick & fire counter [1 alarm]
 65.00 65.00 65.00 0.00 100% 100% Tick & fire counters [>1 together]
 13.31 13.00 14.00 0.43 68% 68% Tick & fire counters [>1 separately]
 8.00 8.00 8.00 0.00 100% 100% Alarm latency [0 threads]
 7.34 7.00 8.00 0.45 65% 65% Alarm latency [2 threads]
 7.57 7.00 8.00 0.49 57% 42% Alarm latency [many threads]
 12.02 12.00 14.00 0.03 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 3.68 3.00 4.00 0.00 Clock DSR latency

 190 180 212 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 804 size 1536
 All done : Idlethread stack used 172 size 1280

2812

Atmel SAM4E-EK Platform HAL

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

2813

Chapter 295. Atmel SAMX70-EK Platform
HAL

2814

Atmel SAMX70-EK Platform HAL

Name
CYGPKG_HAL_CORTEXM_SAMX70_EK — eCos Support for the SAMX70-EK Board

Description
This document covers the configuration and usage of eCos on the Atmel SAMX70 evaluation kits. This includes the SAME70
Xplained and the SAMV71 Xplained Ultra on which this support has been tested. Boards containing other devices in the SAM
E70, S70 and V70 family should be supportable with minimal effort.

For typical eCos development it is expected that programs will be downloaded and debugged via a hardware debugger (JTAG/
SWD) attached to either the standard ARM 20-pin JTAG connector or via the on-board EDBG USB socket. Use of a hardware
debugging interface avoids the requirement for a debug monitor application to be present on the platform.

Supported Hardware
The SAM variant HAL includes support for the on-chip serial devices which are documented in the variant HAL. USART0
is connected to the EXT1 external connector. USART1 is connected to the EXT2 external connector and the EDBG USB
socket where it is available as a CDC/ACM interface. There is no support for hardware flow control in either of these devices.
USART1 is configured as the default diagnostics console.

Device drivers provide support for the two I²C (TWI) interfaces, which are instantiated by the platform HAL. These have been
tested using external I²C devices.

A driver is available for the CAN devices present on the chip, which are available on pins on the various boards.

A driver for the AFE (Analog Front-End) Controller is available. A test program that uses an external potentiometer is present
in the platform HAL.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3e, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2.

2815

Atmel SAMX70-EK Platform HAL

Name
Setup — Preparing the SAMX70-EK Board for eCos Development

Overview
In a typical development environment the SAMX70-EK board is programmed via a JTAG/SWD interface. This will either be
by loading applications into the on-chip SRAM, or into on-chip flash memory. The following sections deal with JTAG/SWD
hardware based debugging approaches.

When debugging via JTAG, you may need to disable the default HAL idle thread action, otherwise there may be issues where
the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural HAL.
If you are debugging via SWD this should not be necessary.

For debugging applications are loaded and then executed on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE.
The following describes setting up to use a Ronetix PEEDI debugger for use with GDB.

PEEDI
For the Ronetix PEEDI, the peedi.same70xpld.cfg or peedi.samv71xult.cfg file should be used to setup and
configure the hardware to an appropriate state to load programs. These files only perform basic initialization by default, leaving
application code to initialize PLLs and other clocks. However, these files also contain an alternate initialization section that
will initialize the clocks and SDRAM from JTAG.

The configuration files also contains an option to define whether hardware or software breakpoints are used by default, using
the CORE0_BREAKMODE directive in the [PLATFORM_CortexM3] section (NOTE: The PEEDI firmware identifies not
just M3 CPUs with the CortexM3 tag). Edit this file if you wish to use hardware break points, and remember to restart the
PEEDI to make the changes take effect. However, hardware breakpoints only work below address 0x20000000, so should only
be used for applications stored in flash.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the configuration file, and
halts the target. This behaviour is repeated with the PEEDI reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal and run from the contents of the flash.

The JTAG, JTAGEXT, ROM and ROMEXT startup types default to output of all diagnostics information via USART1. The
default communications parameters are 115200 baud, no parity, 1 stop bit. It is recommended that USART1 be accessed via
the EDBG port.

It is possible to arrange for diagnostics to be output via the JTAG connection and appear on the gdb console. This requires
the configuration option CYGFUN_HAL_GDB_FILEIO in the common HAL package to be enabled. This has two sub-op-
tions, CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN and CYGSEM_HAL_DIAG_VIA_GDB_FILEIO_IMMEDIATE, that
are enabled by default when CYGFUN_HAL_GDB_FILEIO is enabled and both should remain enabled. In this case, when
arm-eabi-gdb is attached to the PEEDI, the following gdb command must be issued:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define preload
 set hwdebug on
end

This will be referenced from their Eclipse debug launch configuration. Using GDB command files is described in more detail
in the "Eclipse/CDT for eCos application development" manual.

2816

Atmel SAMX70-EK Platform HAL

Consult the PEEDI documentation for information on other features.

2817

Atmel SAMX70-EK Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The SAMX70-EK motherboard platform HAL package is loaded automatically when eCos is configured for a suitable target,
e.g. samv71_ek or same70_ek. It should never be necessary to load this package explicitly. Unloading the package should
only happen as a side effect of switching target hardware.

Startup
The SAMX70_EK board platform HAL package supports four separate startup types:

JTAG

This is the default startup type. It is used to build applications that are loaded via a JTAG interface into the on-chip
SRAM. The application will be self-contained with no dependencies on services provided by other software. The program
expects to be loaded from 0x20400000 and entered at 0x20400408. eCos startup code will perform all necessary hardware
initialization.

JTAGEXT

This startup type is used to build applications that are loaded via a JTAG interface, or a boot loader, into the off-chip
SDRAM. The application will be self-contained with no dependencies on services provided by other software. The program
expects to be loaded from 0x70000000 and entered at 0x70000008. eCos startup code will perform all necessary hardware
initialization other than the SDRAM controller, since that is initialised via the H/W (JTAG/SWD) debugger or a flash
based boot loader.

ROM

This startup type can be used for finished applications which will be programmed into internal flash at location 0x00400000
using the on-chip SRAM as the main application RAM area. Data and BSS will be put into SRAM starting from
0x20400000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization. To make ROM code run from reset, it is necessary to set
the GPNVM1 bit to 1; this can be done via the Atmel SAM-BA utility.

ROMEXT

This startup type can be used for finished applications which will be programmed into internal flash at location 0x00400000
using the off-chip SDRAM as the main application RAM area. Data and BSS will be put into SDRAM starting from
0x70000000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization. To make ROM code run from reset, it is necessary to set
the GPNVM1 bit to 1; this can be done via the Atmel SAM-BA utility.

The naming of the STARTUP types is for backwards compability with earlier releases that did not support the off-chip SDRAM.

UART Serial Driver
The SAMX70_EK board uses the SAM's internal UART serial support. The HAL diagnostic interface, used for both polled
diagnostic output and GDB stub communication, is only expected to be available to be used on the UART0 (DBGU) port. This
is because only UART0 is actually routed to an external RS232 connector.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_ARM_AT91 package which contains
all the code necessary to support interrupt-driven operation with greater functionality.

It is not recommended to use the interrupt-driven serial driver with a port at the same time as using that port for HAL diagnostic
I/O.

2818

Atmel SAMX70-EK Platform HAL

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver
support package CYGPKG_IO_SERIAL is enabled in the configuration. By default this will only enable support in the driver
for the UART0 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable support
for other serial ports.

SPI Driver
An SPI bus driver is available in the package "Atmel AT91 SPI device driver" (CYGPKG_DEVS_SPI_ARM_AT91).

The only SPI device instantiated by default is for an external AT25DF321A NOR flash used for testing.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the AT91 SPI device driver.

I²C Driver
Support for SAM I²C (TWI) busses is provided by the "Atmel TWI (I2C) device driver" package (CYGPKG_DEVS_I2C_AT-
MEL_TWI). The SAM variant HAL causes the two buses to be instantiated. These have been tested using external I²C devices.

CAN Driver
The SAMX70-EK has dual MCAN devices for CAN and CAN-FD support. Device support is via the Atmel MCAN CAN
Driver (CYGPKG_DEVS_CAN_MCAN) package.

The SAMV71XULT board has an on-board CAN transceiver which is connected to MCAN1 and to CANH and CANL pins
on the board. The SAME70XPLD board has no on-board transceiver and the CANTX and CANRX pins for both MCAN0 and
MCAN1 are available on the Arduino connectors.

Consult the generic Chapter 90, CAN Support documentation for further details on use of the CAN API, CAN configuration
and device drivers.

Flash Driver
The on-chip Flash may be programmed and managed using the Flash driver located in the "FLASH memory support for Atmel
AT91 IAP" (CYGPKG_DEVS_FLASH_AT91IAP) package. This driver is enabled automatically if the generic "Flash device
drivers" (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically
for the size and parameters of the specific SAM variant present on the SAMX70-EK board.

Consult the driver and Part XVIII, “NOR Flash Support” documentation for more details.

ADC Driver
ADC support is provided by the Atmel AFEC ADC Driver (CYGPKG_DEVS_ADC_ATMEL_AFEC) package. Some ADC lines
are available on the EXT1 and EXT2 headers.

2819

Atmel SAMX70-EK Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the SAMX70-EK board hardware, and
should be read in conjunction with that specification. The SAMX70-EK platform HAL package complements the Cortex-M
architectural HAL and the SAM variant HAL. It provides functionality which is specific to the target board.

Startup
For ROM and JTAG startup, the HAL will perform initialization, programming the various internal registers including
the PLL, peripheral clocks and pin multiplexing. The details of the early hardware startup may be found in the src/
samx70_ek_misc.c in both hal_system_init() and hal_platform_init().

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
areas are as follows:

Internal SRAM

This is located at address 0x20400000 of the memory space, and is 384KiB in size. The eCos VSR table occupies the
bottom 256 bytes, with the virtual vector table starting at 0x20000200 and extending to 0x20000300. The top of SRAM
is reserved for the MCAN message buffer memory, whose size depends on the MCAN configuration, and below those
CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of
internal RAM is available for use by applications.

Internal FLASH

This is located at address 0x004000000 of the memory space. This region is 2048KiB in size. ROM applications are by
default configured to run from this memory.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found in the
SAMX70 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 128 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between a
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20400200.

hal_mcan_ram1 This defines the location of the message RAM for MCAN1. It is allocated at the top
of SRAM, and its size is specified by the MCAN package if present, or will be zero
if it is not.

hal_mcan_ram0 This defines the location of the message RAM for MCAN0. It is allocated just before
the RAM for MCAN1, and its size is specified by the MCAN package if present, or will
be zero if it is not.

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of internal SRAM just before the MCAN message RAM.

2820

Atmel SAMX70-EK Platform HAL

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built for JTAG startup on a SAMV71-XULT board.

Example 295.1. samv71-XULT Real-time characterization

Configured
Testing parameters:
 Clock samples: 32
 Threads: 19
 Thread switches: 128
 Mutexes: 873
 Mailboxes: 254
 Semaphores: 1528
 Scheduler operations: 128
 Counters: 509
 Flags: 1018
 Alarms: 436
 Stack Size: 1088

 Startup, main thrd : stack used 108 size 1536
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.03 microseconds (1 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 19
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 1.16 1.00 2.00 0.27 84% 84% Create thread
 0.26 0.00 1.00 0.39 73% 73% Yield thread [all suspended]
 0.21 0.00 1.00 0.33 78% 78% Suspend [suspended] thread
 0.32 0.00 1.00 0.43 68% 68% Resume thread
 0.42 0.00 1.00 0.49 57% 57% Set priority
 0.11 0.00 1.00 0.19 89% 89% Get priority
 0.68 0.00 1.00 0.43 68% 31% Kill [suspended] thread
 0.32 0.00 1.00 0.43 68% 68% Yield [no other] thread
 0.42 0.00 1.00 0.49 57% 57% Resume [suspended low prio] thread
 0.32 0.00 1.00 0.43 68% 68% Resume [runnable low prio] thread
 0.42 0.00 1.00 0.49 57% 57% Suspend [runnable] thread
 0.32 0.00 1.00 0.43 68% 68% Yield [only low prio] thread
 0.32 0.00 1.00 0.43 68% 68% Suspend [runnable->not runnable]
 0.68 0.00 1.00 0.43 68% 31% Kill [runnable] thread
 0.63 0.00 1.00 0.47 63% 36% Destroy [dead] thread
 1.37 1.00 2.00 0.47 63% 63% Destroy [runnable] thread
 1.53 1.00 2.00 0.50 52% 47% Resume [high priority] thread
 0.52 0.00 1.00 0.50 51% 48% Thread switch

2821

Atmel SAMX70-EK Platform HAL

 0.06 0.00 1.00 0.12 93% 93% Scheduler lock
 0.20 0.00 1.00 0.32 79% 79% Scheduler unlock [0 threads]
 0.21 0.00 1.00 0.33 78% 78% Scheduler unlock [1 suspended]
 0.20 0.00 1.00 0.32 79% 79% Scheduler unlock [many suspended]
 0.22 0.00 1.00 0.34 78% 78% Scheduler unlock [many low prio]

 0.09 0.00 1.00 0.17 90% 90% Init mutex
 0.28 0.00 1.00 0.40 71% 71% Lock [unlocked] mutex
 0.34 0.00 1.00 0.45 65% 65% Unlock [locked] mutex
 0.28 0.00 1.00 0.40 71% 71% Trylock [unlocked] mutex
 0.28 0.00 1.00 0.40 71% 71% Trylock [locked] mutex
 0.06 0.00 1.00 0.12 93% 93% Destroy mutex
 3.00 3.00 3.00 0.00 100% 100% Unlock/Lock mutex

 0.22 0.00 1.00 0.34 78% 78% Create mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [empty] mbox
 0.25 0.00 1.00 0.38 75% 75% Put [first] mbox
 0.09 0.00 1.00 0.17 90% 90% Peek [1 msg] mbox
 0.38 0.00 1.00 0.47 62% 62% Put [second] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [2 msgs] mbox
 0.38 0.00 1.00 0.47 62% 62% Get [first] mbox
 0.34 0.00 1.00 0.45 65% 65% Get [second] mbox
 0.25 0.00 1.00 0.38 75% 75% Tryput [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek item [non-empty] mbox
 0.31 0.00 1.00 0.43 68% 68% Tryget [non-empty] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek item [empty] mbox
 0.25 0.00 1.00 0.38 75% 75% Tryget [empty] mbox
 0.09 0.00 1.00 0.17 90% 90% Waiting to get mbox
 0.00 0.00 0.00 0.00 100% 100% Waiting to put mbox
 0.16 0.00 1.00 0.26 84% 84% Delete mbox
 1.09 1.00 2.00 0.17 90% 90% Put/Get mbox

 0.06 0.00 1.00 0.12 93% 93% Init semaphore
 0.25 0.00 1.00 0.38 75% 75% Post [0] semaphore
 0.25 0.00 1.00 0.38 75% 75% Wait [1] semaphore
 0.22 0.00 1.00 0.34 78% 78% Trywait [0] semaphore
 0.31 0.00 1.00 0.43 68% 68% Trywait [1] semaphore
 0.03 0.00 1.00 0.06 96% 96% Peek semaphore
 0.09 0.00 1.00 0.17 90% 90% Destroy semaphore
 1.75 1.00 2.00 0.38 75% 25% Post/Wait semaphore

 0.16 0.00 1.00 0.26 84% 84% Create counter
 0.09 0.00 1.00 0.17 90% 90% Get counter value
 0.06 0.00 1.00 0.12 93% 93% Set counter value
 0.25 0.00 1.00 0.38 75% 75% Tick counter
 0.13 0.00 1.00 0.22 87% 87% Delete counter

 0.09 0.00 1.00 0.17 90% 90% Init flag
 0.28 0.00 1.00 0.40 71% 71% Destroy flag
 0.19 0.00 1.00 0.30 81% 81% Mask bits in flag
 0.31 0.00 1.00 0.43 68% 68% Set bits in flag [no waiters]
 0.41 0.00 1.00 0.48 59% 59% Wait for flag [AND]
 0.38 0.00 1.00 0.47 62% 62% Wait for flag [OR]
 0.41 0.00 1.00 0.48 59% 59% Wait for flag [AND/CLR]
 0.47 0.00 1.00 0.50 53% 53% Wait for flag [OR/CLR]
 0.09 0.00 1.00 0.17 90% 90% Peek on flag

 0.31 0.00 1.00 0.43 68% 68% Create alarm
 0.44 0.00 1.00 0.49 56% 56% Initialize alarm
 0.25 0.00 1.00 0.38 75% 75% Disable alarm
 0.47 0.00 1.00 0.50 53% 53% Enable alarm
 0.28 0.00 1.00 0.40 71% 71% Delete alarm
 0.50 0.00 1.00 0.50 100% 50% Tick counter [1 alarm]
 1.38 1.00 2.00 0.47 62% 62% Tick counter [many alarms]
 0.53 0.00 1.00 0.50 53% 46% Tick & fire counter [1 alarm]
 7.81 7.00 8.00 0.31 81% 18% Tick & fire counters [>1 together]
 1.59 1.00 2.00 0.48 59% 40% Tick & fire counters [>1 separately]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [0 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [2 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [many threads]
 2.00 2.00 2.00 0.00 100% 100% Alarm -> thread resume latency

2822

Atmel SAMX70-EK Platform HAL

 192 168 212 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 796 size 1536
 All done : Idlethread stack used 164 size 1280

Timing complete - 27860 ms total

PASS:<Basic timing OK>
EXIT:<done>

2823

Chapter 296. STM32 Variant HAL

2824

STM32 Variant HAL

Name
CYGPKG_HAL_CORTEXM_STM32 — eCos Support for the STM32 Microprocessor Family

Description
The ST STM32Fxxxx series of Cortex-M microcontrollers is supported by eCos with an eCos processor variant HAL and
a number of device drivers supporting most of the on-chip peripherals. These include device drivers for the on-chip flash,
serial, I²C, SPI, MMC/SD, Ethernet, CAN, USB OTG HS and FS, ADC, RTC/wallclock and watchdog devices. In addition
it provides common functionality and definitions that STM32 based platform ports may require, as well as definitions useful
to application developers.

This documentation covers the STM32 functionality provided but should be read in conjunction with the specific HAL docu-
mentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here, and
may also describe differences that override or supersede what the STM32 variant HAL provides. The areas that are specific
to platform HALs and not the STM32 variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

2825

STM32 Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support

On-chip memory

The ST STM32 parts include on-chip SRAM, and on-chip FLASH. The RAM can vary in size from as little as 4KiB to 128KiB.
The FLASH can be up to 1024KiB in size depending on model. There is also support in some models for external SRAM and
Flash, which eCos may use where available.

Typically, an eCos platform HAL port will expect a GDB stub ROM monitor or RedBoot image to be programmed into the
STM32 on-chip ROM memory for development, and the board would boot this image from reset. The stub ROM/RedBoot
provides GDB stub functionality so it is then possible to download and debug stand-alone and eCos applications via the gdb
debugger using serial interfaces or other debug channels. The JTAG interface may also be used for development if a suitable
JTAG device is available. If RedBoot is present it may also be used to manage the on-chip and external flash memory. For
production purposes, applications are programmed into external or on-chip FLASH and will be self-booting.

On-Chip FLASH

The package CYGPKG_DEVS_FLASH_STM32 ("STM32 Flash memory support") provides a driver for the on-chip flash. This
driver conforms to the Version 2 flash driver API, and is automatically enabled if the generic "Flash device drivers" (CYGP-
KG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for the size and
parameters of the specific STM32 variant which has been selected in the eCos configuration.

Cache Handling

The STM32 does not contain any caches, however, the variant HAL supplies the cyg/hal/hal_cache.h header to satisfy
generic code. This header describes zero sized caches and provides null macros for the required functions.

Serial I/O

The STM32 variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a
fully interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices, and where appropriate
for the target platform, DMA can be used to reduce the CPU load. The serial driver consists of an eCos package: CYGP-
KG_IO_SERIAL_CORTEXM_STM32 which provides all support for the STM32 on-chip serial devices. Using the HAL di-
agnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication with GDB. If a
device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB communication
using the HAL I/O support. An alternative serial port should be used instead.

Depending on the STM32Fx series processor configured, the HAL defines CDL interfaces from CYGINT_HAL_ST-
M32_UART0 up to CYGINT_HAL_STM32_UART7 for each of the available UARTs. For F1 series devices the range is 0..4.
For F2 and F4[01] family members the range is 0..5 (4 USARTs and 2 UARTs). For F4[23] and F7 devices the range is
0..7 (4 USARTs and 4 UARTs). The platform HAL CDL should contain an implements directive for each such UART that is
available for use on the board. This will enable use of the UART for diagnostic and application use.

Caution

eCos uses a numbering scheme for UARTs which starts at 0, whereas STM32 documentation uses a numbering
scheme which starts at 1. Be sure to check which numbering scheme is relevant when interpreting UART numbers
in CDL options or eCos interfaces (eCos numbering) or hardware-specific definitions (ST numbering).

The STM32 USARTs provide TX and RX data lines plus hardware flow control using RTS/CTS for those UARTs that have
them connected.

The CYGPKG_IO_SERIAL_CORTEXM_STM32 package provides a number of CDL options that allow the size and location
of buffers to be configured. These settings, in conjunction with platform specific manifests for DMA stream/channel configu-

2826

STM32 Variant HAL

ration, are used to control how data is buffered by the STM32 UART driver. For the options listed below, the relevant UART
controller is specified by replacing x with the logical eCos interface number.

CYGNUM_IO_SERIAL_CORTEXM_STM32_SERIALx_BUFSIZE

This option specifies the size of both the input and output buffers for the common serial I/O driver layer, which sits
above the low-level STM32 specific driver. When using high baud rates, to avoid overrun, the buffer size may need to be
increased to cope with the application serial handler thread switching latency. If the device should only be used in polled
mode then this option can be disabled by setting the value to 0. Typically the device driver will run in interrupt or DMA
mode (as configured by the platform), such that it will perform some buffering of both incoming and outgoing data.

CYGIMP_IO_SERIAL_CORTEXM_STM32_SERIALx_BUFSRAM

By default the common serial I/O buffers of the size specified by the CYGNUM_IO_SERIAL_CORTEXM_ST-
M32_SERIALx_BUFSIZE option are held in the main application data memory as defined by the active CYG_HAL_S-
TARTUP configuration. For the majority of standard serial uses this will be sufficient, and this option can remain dis-
abled. However, this option can be enabled to force the buffers to be placed into on-chip SRAM, which may be required
when using very high communication rates with applications that use off-chip data memory. This option is ignored if the
CYG_HAL_STARTUP configuration already selects the on-chip SRAM for application data.

CYGNUM_IO_SERIAL_CORTEXM_STM32_SERIALx_RXBUFSIZE

This option controls the size of the low-level UART driver RX buffer.

When interrupt transfers are being used then this option specifies the size of the RX buffer used to provide FIFO-alike
operation to minimise the possibility for dropped characters when waiting for the UART DSR to be processed. A minimal
buffer size is enforced since if the processor is using off-chip RAM then it may be too slow to handle higher baud rates.

For DMA enabled RX this buffer is used to reduce the overall STM32 serial driver ISR and DSR system overhead. For
DMA an interrupt will only be generated when 50% of the buffer size has been received, or when the receiver has been
idle for some time. This reduces overall system load at the expense of making the driver slightly less “responsive” for
non-continuous transfers. The DMA suport actually splits the buffer into two equal sized buffers and uses the hardware
double-buffer support to automatically switch between buffers.

Serial overrun mitigation

Ideally it is prudent for UART connections to use hardware flow control where possible, since it provides a mechanism for
both ends of a connection to throttle the data flow to avoid buffer overrun. This is especially true when using very high baud
rates, since many characters could be received within the ISR, DSR and scheduling latencies of a running application.

If H/W flow control is not available then, especially when using higher baud rates, it is critical that the application developer
understands the serial transfer requirements, and that the STM32 UART driver processing method and configured buffering is
tuned to avoid (or at least minimise the possibility of) overrun. When H/W flow control is not being used then it may not be
possible to avoid overrun completely, since the remote end can always transmit more data than the receiver has buffer space
for. The possibility of overrun can be mitigated by ensuring a suitable software “throttling” handshake mechanism between the
transmitted and receiver, or by ensuring that the receiver has sufficient buffer space at both the low-level driver reception lay-
er (CYGNUM_IO_SERIAL_CORTEXM_STM32_SERIALx_RXBUFSIZE) and the higher-level common serial/application
layer (CYGNUM_IO_SERIAL_CORTEXM_STM32_SERIALx_BUFSIZE) to cope with the worst-case scheduling latency of
the application.

Caution

When DMA usage is configured by the specific STM32 platform support (implemented by provision of a suitably
named manifest describing the stream/channel configuration), the UART DSR MUST have copied data out of
the RX buffer into the common serial buffers BEFORE the second DMA buffer has been filled. For example, at
10.5MHz over 1000 8N1 characters can be received in 1-millisecond. The buffer depth should be tuned accord-
ingly to cope with the worst-case UART driver DSR latency to ensure that the automatic hardware switch on
DMA buffer fill does not cause data which has not yet been copied to the higher serial layer to be overwritten.

Further, when using DMA, the RX IDLE support is used to force data to be passed to the common serial layer
in a timely fashion. This avoids the eCos receiver application having to wait for a complete DMA buffer fill

2827

STM32 Variant HAL

for pending data, which is useful for “character” based serial protocols. The downside is that due to the IDLE
implementation having to disable the DMA stream temporarily, if the remote end transmits multiple charac-
ters shortly after IDLE is detected by the STM32 receiver then the DMA ISR latency may affect whether RX
overrun occurs before the handler can re-enable the DMA stream. The CYGNUM_IO_SERIAL_CORTEXM_ST-
M32_SERIALx_RXINTR_PRI configuration option can be tuned to ensure that the DMA interrupt priority is
sufficiently high to minimise the possibility of overrun.

I²C

Note

The I/O controller found on newer STM32 designs (e.g. F7, H7 or L4 families) only supports divided transactions
with repeated START conditions. The hardware is not capable of splitting a transaction without generating a
START.

So all transaction calls between the cyg_i2c_transaction_begin() and cyg_i2c_transac-
tion_end() calls should use true for the send_start parameter.

Interrupts

The STM32 HAL relies on the architectural HAL to provide support for the interrupts directly routed to the NVIC. The cyg/
hal/var_intr.h header defines the vector mapping for these.

In addition support is present for interrupts EXTI5 to EXTI15 that share NVIC vectors. These are decoded by a springboard
ISR routine that decodes the interrupt from the EXTI_PR register and calls hal_deliver_interrupt in the architectural
HAL to deliver it to the real ISR. Variant specific macros are also defined to permit the masking and configuration of these
interrupts.

GPIO

The variant HAL provides support for packaging the configuration of a GPIO line into a single 32-bit descriptor that can then
be used with macros to configure the pin and set and read its value. Details are supplied later.

MMC/SD

The variant HAL provides support for MultiMediaCard (MMC) and Secure Digital (SD) media cards via the CDL component
CYGPKG_HAL_STM32_MMCSD ("On-chip MMC/SD driver"). This makes use of the STM32 SDIO on-chip interface. NOTE:
No support is yet in place for Secure Digital Input Output (I/O) cards.

If enabled this driver allows use of MultiMedia Cards (MMC cards) and Secure Digital (SD) flash storage cards within eCos,
exported as block devices. This makes them suitable for use as the underlying devices for filesystems such as FAT.

This driver provides the necessary support for the generic MMC bus layer within the CYGPKG_DEVS_DISK_MMC package
to export a disk block device. The disk block device is only available if the generic disk I/O layer found in the package
CYGPKG_IO_DISK is included in the configuration.

The block device may then be used as the device layer for a filesystem such as FAT. Example devices are "/dev/mmcsd0/1"
to refer to the first partition on the card, or "/dev/mmcsd0/0" to address the whole device including potentially the partition
table at the start.

If the driver is enabled, the following options are available to configure it:

CYGIMP_HAL_STM32_SDIO_INTMODE

This indicates that the driver should operate in interrupt-driven mode if possible. This is enabled by default if the eCos
kernel is enabled. Note though that if the driver finds that global interrupts are off when running, then it will fall back to
polled mode even if this option is enabled. This allows for use of the MMC/SD driver in an initialisation context.

2828

STM32 Variant HAL

CYGNUM_HAL_STM32_SDIO_POWERSAVE

This option enables the power-saving feature that will disable the SD clock when the device is idle. This feature can
normally be safely enabled on all STM32 platforms.

USB OTG Controllers

The STM32 series supports two different USB OTG controller implementations: OTG1 FS and OTG2 HS. If a specific STM32
microcontroller contains both controllers then configuration support is provided to enable you to select specific operation
modes for each.

If only CYGPKG_IO_USB_HOST host support is enabled then both controllers will operate in host mode. Similarly, if only
CYGPKG_IO_USB_TARGET is enabled then both controllers will operate in peripheral mode.

If both options are enabled then the controllers will default to host mode. To force a specific controller into peripheral mode
then CYGHWR_DEVS_USB_STM32_OTG_FS or CYGHWR_DEVS_USB_STM32_OTG_HS should be set to "TARGET".

If only one controller is in target mode, then CYGHWR_IO_USB_TARGET_PCDI_DEFAULT, and thus CYGH-
WR_IO_USB_TARGET_PCDI, will be set to that controller. If both controllers are in target mode then the FS controller will
be used as the default. If you want to select the other controller then this will need to be set explicitly.

Note

The STM32 HS OTG2 controller support is currently limited to use in FS speed mode only. In addition, dynam-
ically changing controller mode between host and target is not supported at this time.

RTC/Wallclock

eCos includes RTC (known in eCos as a wallclock) device drivers for the on-chip RTC in the STM32 family. For the F1
processor family this is located in the package CYGPKG_DEVS_WALLCLOCK_STM32 ("STM32 RTC wallclock support"),
and for the F2, F4, F7, L4 and H7 processor families this is located in the package CYGPKG_DEVS_WALLCLOCK_STM32F2
("STM32F2 RTC wallclock support").

On the F1 processor family, the wallclock driver can be configured with three different clock sources using the CDL configura-
tion option CYGHWR_DEVS_WALLCLOCK_STM32_RTC_SOURCE ("RTC clock source"): LSE for the low-speed 32.768KHz
external clock, LSI for the low-speed internal clock, or HSE_128 for the high-speed external clock with a fixed divider of
128. The decision of which source to use depends on the desired clock stability and hardware configuration, and power re-
quirements. Consult the STM32 documentation for more details.

The F2, F4, F7, L4 and H7 processor families are similar, except that the LSI clock is at 32KHz clock, and the CDL option
name is CYGHWR_DEVS_WALLCLOCK_STM32F2_RTC_SOURCE.

Profiling Support

The STM32 HAL contains support for gprof-base profiling using a sampling timer. The default timer used is Timer 6, which is
one of the basic timers, leaving the more complex timers for application code. The timer used is selected by a set of #defines
in src/stm32_misc.c which can be changed to refer to a different timer if required. This timer is only enabled when
the gprof profiling package (CYGPKG_PROFILE_GPROF) is included and enabled in the eCos configuration, otherwise it
remains available for application use.

Clock Control
The platform HAL must provide the input clock frequency (CYGARC_HAL_CORTEXM_STM32_INPUT_CLOCK) in its CDL
file. This is then combined with the following options defined in this package to define the default system clocks:

CYGHWR_HAL_CORTEXM_STM32_CLOCK_PLL_SOURCE

This defines the source of the input to the PLL that generates the main system clock. There are two possible sources: the
HSE selects the high speed external oscillator, and the HSI selects the high speed internal oscillator. This option defaults
to the HSE.

2829

STM32 Variant HAL

CYGHWR_HAL_CORTEXM_STM32_CLOCK_NEED_HSE

This indicates whether the HSE clock should be started at all. If the system clock is running solely from the HSI clock,
there may be no need for an HSE clock, and no crystal connected to it. In that scenario, this option can be disabled. This
is usually set by the platform HAL.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_PLL_PREDIV

This option specifies how much the clock from the input source defined by CYGHWR_HAL_CORTEXM_ST-
M32_CLOCK_PLL_SOURCE is divided down by, before being used as an input for the PLL. On non-connectivity parts,
you can only divide by 2 or 1. On other F1 parts, if using HSI as the clock source, then that is automatically divided by
2. If using HSE as the clock source, then this value corresponds to the PREDIV1 field of register RCC_CFGR2. On F2
and F4 parts, this value corresponds to the PLLM field of RCC_PLLCFGR.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_PLL_MUL

This defines the factor by which the PLL will multiply the selected input clock, after being divided by CYGH-
WR_HAL_CORTEXM_STM32_CLOCK_PLL_PREDIV. It ranges from 2 to 16 on F1 parts, and 2 to 432 on F2 and F4
parts, and defaults to 9, which is intended to give a 72MHz system clock on those boards with an 8MHz input. On the F1
it corresponds to the PLLMUL field of RCC_CFGR. On the F2/F4 it corresponds to the PLLN field of RCC_PLLCFGR.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_SYSCLK_DIV

This setting is only applicable to the F2 and F4 family of processors. This defines the divider applied to the PLL output
for use as the SYSCLK. It can only have values 2, 4, 6 or 8 and defaults to 4. This setting corresponds to the PLLP field
of RCC_PLLCFGR.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_HCLK_DIV

This defines the divider applied to the prescaler for all peripheral clocks. The HCLK fed to the AHB bus and other pe-
ripherals is taken directly from this output. Other peripheral clocks are derived by dividing it further. This can take values
between 1 and 512 in powers of 2, the default value is 1.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_PCLK1_DIV

This defines the prescaler divider for the peripheral clock passed to peripherals on the APB1 bus. It can take values between
1 and 16 in powers of 2, the default value is 2.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_PCLK2_DIV

This defines the prescaler divider for the peripheral clock passed to peripherals on the APB2 bus. It can take values between
1 and 16 in powers of 2, the default value is 1.

CYGHWR_HAL_CORTEXM_STM32_CLOCK_PLLQ_DIV

This setting only applies to the F2 and F4 family of processors. It defines the divider used to divide down the PLL output
clock (VCO clock) for use by the USB OTG FS, SDIO and RNG peripherals. USB OTG FS requires a 48MHz clock and
other peripherals require a clock no greater than 48MHz. The allowable values range from 4 to 15 and the default is 10.

The actual values of these clocks, in Hz, is stored in global variables hal_stm32_sysclk, hal_stm32_hclk,
hal_stm32_pclk1, hal_stm32_pclk2 and for the F2/F4/F7 processor families only, hal_stm32_qclk. The clock
supplied to the SysTick timer, HCLK/8, is also assigned to hal_cortexm_systick_clock. These variables are used,
rather than configuration options, in anticipation of future support for power management by varying the system clock rate.

Note that when changing or configuring any of these clock settings, you should consult the relevant processor datasheet as
there may be both upper and lower constraints on the frequencies of some clock signals, including intermediate clocks. There
are also some clocks where, while there is no strict constraint, clock stability is improved if values are chosen wisely. Finally,
be aware that increasing clock speeds using this package may have an effect on platform specific properties, such as memory
timings which may have to be adjusted accordingly.

2830

STM32 Variant HAL

Name
GPIO Support on STM32F processors — Details

Synopsis

#include <cyg/hal/hal_io.h>

cyg_uint32 pin = CYGHWR_HAL_STM32_PIN_OUT(port, bit, ppod, pupd, speed);

cyg_uint32 pin = CYGHWR_HAL_STM32_PIN_ALTFN_OUT(port, bit, af, ppod, pupd, speed);

cyg_uint32 pin = CYGHWR_HAL_STM32_PIN_IN(port, bit, pupd);

cyg_uint32 pin = CYGHWR_HAL_STM32_PIN_ALTFN_IN(port, bit, af, ppod, pupd);

cyg_uint32 pin = CYGHWR_HAL_STM32_PIN_ANALOG(port, bit);

CYGHWR_HAL_STM32_GPIO_SET (pin);

CYGHWR_HAL_STM32_GPIO_OUT (pin, val);

CYGHWR_HAL_STM32_GPIO_IN (pin, val);

Description
The STM32 HAL provides a number of macros to support the encoding of GPIO pin identity and configuration into a single 32
bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for different devices.

A descriptor is created with one of the 5 variants depending on how the pin is to be used: CYGHWR_HAL_STM32_PIN_IN
defines the pin as an input whose value can be accessed by the user using the macro CYGHWR_HAL_STM32_GPIO_IN
(see later) CYGHWR_HAL_STM32_PIN_OUT defines the pin as an output where the user can set the pin output value
with the macro CYGHWR_HAL_STM32_GPIO_OUT (see later); CYGHWR_HAL_STM32_PIN_ALTFN_OUT and CYGH-
WR_HAL_STM32_PIN_ALTFN_IN are used to define a pin that will be controlled by an on-chip peripheral; or CYGH-
WR_HAL_STM32_PIN_ANALOG which means it can be used as an input to the ADC peripheral or an output from the DAC
peripheral.

The distinction between the CYGHWR_HAL_STM32_PIN_ALTFN_OUT and CYGHWR_HAL_STM32_PIN_ALTFN_IN is
purely whether a speed parameter is required, since both macros define a pin that will be controlled by an on-chip peripheral.
This distinction is required to provide simpler F1 family support for its different alternative I/O mapping implementation.

The 5 variants take a subset of arguments from the following list:

port This identifies the GPIO port to which the pin is attached. Ports are identified by letters
from A to I.

bit This gives the bit or pin number within the port. These are numbered from 0 to 15.

af For the ALTFN macros this parameter indicates which on-chip peripheral is used to con-
trol the pin. Consult ST's documentation for the specific processor model to determine
which peripheral number is used to select the peripheral for the required pin mapping.

This field is not-relevant to, and hence ignored by, the F1 family of devices where the
alternative AFIO configuration mechanism is used.

ppod If this is an output pin (either GPIO output or driven by a peripheral), this setting indi-
cates whether it should be driven in push-pull mode (PUSHPULL) or open-drain mode
(OPENDRAIN). If the pin is not an output pin, this value is unused, but for clarity can
be given the setting NA.

2831

STM32 Variant HAL

pupd If this is an input pin, or an output pin configured in open-drain mode (whether controlled
by GPIO or a peripheral), this setting can be used to indicate whether a weak pull-up
resistor (PULLUP) is used, or a weak pull-down resistor (PULLDOWN) is used. If neither
are to be used, then a value of NONE can be given. For F1 family devices the value
FLOATING can be used to identify a floating input, which is synonomous with NONE
for F2/F4 family devices.

speed This setting indicates the output speed for GPIO outputs. At time of writing, the speeds
for F1 parts can be 2MHz, 10MHz or 50MHz and for F2/F4 parts can be 2MHz, 25MHz,
50Mhz, 100MHz with 30pF capacitance or 80MHz with 15pF capacitance. It is possible
to indicate the desired speed by passing in the generic values LOW, MED, FAST, or HIGH.

For F1 family devices these are synonymous with using values of 2MHZ, 25MHZ,
50MHz or 50MHz respectively (FAST and HIGH being synonyms due to the 50MHz
limit on F1 family devices).

For F2/F4 family devices these are synonymous with using values of 2MHZ, 25MHZ, or
50MHz respectively, with no corresponding value for HIGH due to its variable nature.

In order to make these definitions more future-proof and abstract, it is therefore strongly
recommended to use this form of setting instead: AT_LEAST(mhz) to indicate the next
speed rating above the supplied speed (in MHz); and analogously, AT_MOST(mhz) to
indicate that the supplied speed in MHz must not be exceeded.

For non-GPIO output pins, a value of NA can be given.

The following examples show how these macros may be used:

// Define port A pin 10 as being controlled by a peripheral which, for
// this pin on F2/F4 devices, is alternate function 7 (and for this
// pin that means USART1), without any pull-ups/pull-downs.
#define CYGHWR_HAL_STM32_UART1_RX CYGHWR_HAL_STM32_ALTFN_IN(A, 10, 7, NA, NONE)

// Define port B pin 10 as a push-pull output under the control of the
// peripheral which, for this pin on F2/F4 devices, is alternate
// function 7 (and for this pin that means USART3), with an output
// speed of 50MHz or greater.
#define CYGHWR_HAL_STM32_UART3_TX CYGHWR_HAL_STM32_ALTFN_OUT(B, 10, 7, PUSHPULL, NONE, AT_LEAST(50))

// Define port A pin 12 as a push-pull output under GPIO control, with no
// pull-ups/pull-downs, with an output speed of 50MHz or greater.
#define CYGHWR_HAL_STM32_UART1_RTS CYGHWR_HAL_STM32_OUT(A, 12, PUSHPULL, NONE, AT_LEAST(50))

Additionally, the macro CYGHWR_HAL_STM32_GPIO_NONE may be used in place of a pin descriptor and has a value that
no valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used. This can be
useful when defining pin configurations for a series of instances of a peripheral (e.g. UART ports), but where not all instances
support all the same pins (e.g. hardware flow control lines).

The remaining macros all take a suitably constructed GPIO pin descriptor as an argument. CYGHWR_HAL_STM32_GPIO_SET
configures the pin according to the descriptor and must be called before any other macros. CYGHWR_HAL_STM32_GPIO_OUT
sets the output to the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_STM32_G-
PIO_IN should be a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

Further helper macros are available, and it is recommended to consult the header file <cyg/hal/var_io_pins.h> (also
present in the include subdirectory of the STM32 variant HAL package within the eCos source repository), for the complete
list if needed. Ensure you only inspect the relevant sections of this low-level header file when investigating specific F1 and
F2/F4 processor family variants.

EXTI wrapper

If a platform implements CYGINT_HAL_STM32_GPIO_EXTI_VECTOR then support for a simple EXTI interrupt handler
wrapper is provided. This is used to “hide” the eCos interrupt implementation when supporting callback handlers for interrupt
enabled GPIO pins. For almost all STM32 platforms and eCos applications this wrapper functionality is NOT required, and
the CYGIMP_HAL_STM32_GPIO_EXTI_VECTOR option should not be enabled.

2832

STM32 Variant HAL

The interface is exported via manifests that are only defined when the relevant functionality is available. The pin argument
is a standard eCos GPIO pin descriptor as described above.

The CYGHWR_HAL_VAR_GPIO_IRQ_INIT() referenced code should be called at a suitable initialisation point either by
the platform or the eCos application, prior to enabling a specific source.

When enabling a callback for a GPIO EXTI source the trigger parameter encodes whether the handler is called
for rising (CYGHWR_HAL_VAR_IRQ_EDGE_RISE), falling (CYGHWR_HAL_VAR_IRQ_EDGE_FALL), or either (CYGH-
WR_HAL_VAR_IRQ_EDGE_BOTH), edge events. When the configured event occurs the referenced handler function is
called with the supplied arg parameter.

An example use of this functionality is when building eCos WICED applications against an unmodified WICED-SDK source-
tree,

The HAL_VAR_EXTI_EVENT_CONFIGURE() code allows for control of EXTI events. The vector is the corresponding
EXTI interrupt identifier. The up parameter encodes whether the event is triggered from a rising signal (1) or falling signal
(0). The enable parameter defines whether the event is being enabled (1) or disabled (0).

EXTI wrapper API

#include <cyg/hal/hal_io.h>

void CYGHWR_HAL_VAR_GPIO_IRQ_INIT();

cyg_bool enabled = CYGHWR_HAL_VAR_GPIO_IRQ_ENABLE(pin, trigger, handler, arg);

void CYGHWR_HAL_VAR_GPIO_IRQ_DISABLE(pin);

void HAL_VAR_EXTI_EVENT_CONFIGURE(vector, up, enable);

2833

STM32 Variant HAL

Name
Peripheral clock control — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_uint32 clkdesc = CYGHWR_HAL_STM32_CLOCK(clk);

CYGHWR_HAL_STM32_CLOCK_ENABLE (clkdesc);

CYGHWR_HAL_STM32_CLOCK_DISABLE (clkdesc);

Description
The HAL provides macros which may be used to enable or disable peripheral clocks. Effectively this indicates whether the
peripheral is powered on (enabled) or powered down (disabled) and so may be used to ensure unused peripherals are turned
off, to save power.

It is important to remember that before a peripheral can be used, it must be enabled. It is safe to re-enable a peripheral that
is already enabled, although usually a device driver will only do so once in its initialisation. eCos will automatically initialise
some peripheral blocks where it needs to use the associated peripherals (such as memory controllers and some (but usually
not all) GPIO banks), and in eCos-supplied device drivers which are included in the eCos configuration. However this should
not be relied on - it is always safest to enable the peripheral clocks anyway just in case. Finally, remember that each GPIO
bank must be enabled separately.

The CYGHWR_HAL_STM32_CLOCK macro can be used to create a descriptor used to specify the clock. This takes the following
parameter:

clk This parameter selects the specific clock. Definitions for each clock can be found
in the file <cyg/hal/var_io.h> which can also be found as the file in-
clude/var_io.h within the STM32 processor variant HAL package in the eCos
source repository, ensuring you are looking at the correct section for the relevant proces-
sor family.

Once a descriptor has been created, it may be used as the parameter to the CYGHWR_HAL_STM32_CLOCK_ENABLE or
CYGHWR_HAL_STM32_CLOCK_DISABLE macros in order to enable or disable the peripheral clock.

The following example shows how these macros may be used:

#define CYGHWR_HAL_STM32_ETH_MAC_CLOCK CYGHWR_HAL_STM32_CLOCK(ETHMAC)

int init_eth(...)
{
 CYGHWR_HAL_STM32_CLOCK_ENABLE(CYGHWR_HAL_STM32_ETH_MAC_CLOCK);
 ... /* Rest of initialisation */
}

void stop_eth(...)
{
 ... /* Free up resources */
 CYGHWR_HAL_STM32_CLOCK_DISABLE(CYGHWR_HAL_STM32_ETH_MAC_CLOCK);
}

2834

STM32 Variant HAL

Name
DMA Support — Details

Synopsis

#include <cyg/hal/var_dma.h>

pin = CYGHWR_HAL_STM32_DMA(ctlr, stream, chan, mode);

pin = CYGHWR_HAL_STM32_DMA(dmareq_id, dmamux_channel, mode);

hal_stm32_dma_init (hal_stm32_dma_stream *stream, int priority);

hal_stm32_dma_delete (hal_stm32_dma_stream *stream);

hal_stm32_dma_disable (hal_stm32_dma_stream *stream);

hal_stm32_dma_configure (hal_stm32_dma_stream *stream, int tfr_size, cyg_bool
no_minc, cyg_bool polled);

hal_stm32_dma_configure_circular (hal_stm32_dma_stream *stream, cyg_bool enable);

hal_stm32_dma_configure_doublebuffer (hal_stm32_dma_stream *stream, cyg_bool enable,
void *memory1);

hal_stm32_dma_configure_flow (hal_stm32_dma_stream *stream, cyg_bool enable);

hal_stm32_dma_start (hal_stm32_dma_stream *stream, void *memory, CYG_ADDRESS periph-
eral, cyg_uint32 size);

hal_stm32_dma_stop (hal_stm32_dma_stream *stream);

hal_stm32_dma_poll (hal_stm32_dma_stream *stream);

Description
The HAL provides support for access to the DMA controllers. This support is not intended to expose the full functionality of
these devices and is mainly limited to supporting peripheral DMA, currently ADC, SPI, I²C and MMC/SD.

The user is referred to the ST documentation for a full description of the DMA devices, and to the sources of the ADC, I²C, SPI
and MMC/SD drivers for examples of the use of this API. This documentation only gives a brief description of the functions
available.

A DMA stream is defined by a controller number (0 or 1), a stream number (0 to 8), a channel number (0 to 7) and a mode
defining transfer direction. The macro CYGHWR_HAL_STM32_DMA() combines these into a 32-bit descriptor that may be
stored with a device driver and used to initialize the stream.

NOTE: the DMA terminology has changed between F1 and F2/F4 versions of the STM32 family. In F1 devices each DMA
controller has a number of channels, each of which can be driven by a subset of the on-chip devices; there is no way to select
which device drives the channel, and care must be taken to allocate channels so that devices don't trigger the wrong channel.
In F2/F4 devices each DMA controller has a number of streams; each stream can explicitly select one of a number of driving
devices by means of a channel selection field in a control register. F1 channels and F2/F4 streams are essentially the same thing,
and the problems of false triggering in F1 devices is solved in F2/F4 by adding the explicit channel selection. To make things
more complicated, F1 channels are numbered from one while F2/F4 streams are numbered from zero. HAL support for DMA
largely follows the F2/F4 terminology, but the original channel numbering for the F1 is preserved when defining channels.

The following examples show how definitions should be made:

 // F1 definition: controller 1, channel 6, memory-to-peripheral

2835

STM32 Variant HAL

 #define CYGHWR_HAL_STM32_I2C1_DMA_TX CYGHWR_HAL_STM32_DMA(1, 6, 0, M2P)

 // F2/F4 definition: controller 2, stream 0, channel 3, peripheral-to-memory
 #define CYGHWR_HAL_STM32_SPI1_DMA_RX CYGHWR_HAL_STM32_DMA(2, 0, 3, P2M)

The special manifest CYGHWR_HAL_STM32_DMA_NONE can be used when the code does not require DMA support for a
specific stream. For example:

 // I2C2 RX should NOT use DMA
 #define CYGHWR_HAL_STM32_I2C2_DMA_RX CYGHWR_HAL_STM32_DMA_NONE

Note

Not all device drivers support the ability of using CYGHWR_HAL_STM32_DMA_NONE to disable DMA use for
specific stream mappings. For example, the STM32 I²C driver does allow for individual streams to be configured
for interrupt-driven or DMA transfers as required.

Some later variants such as the L4+ or H7 implement a DMA multipexor which routes peripheral DMA requests to DMA
controller channels. This means that the way in which DMA channels are associated with peripherals is somewhat different
and DMA descriptors have a different format. Instead of selecting a DMA controller and channel, a DMAMUX channel is
selected which automatically selects the DMA controller and channel. The following examples show how these descriptors
are initialized:

// L4+
// I2C1 RX uses DMAMUX channel 0, which maps to DMAC 1, channel 0, peripheral-to-memory
#define CYGHWR_HAL_STM32_I2C1_DMA_RX CYGHWR_HAL_STM32_DMA(CYGHWR_HAL_STM32_DMAMUX_I2C1_RX,0,P2M)

// H7
// SPI5 TX uses DMAMUX channel 10, which maps to DMAC 2, channel 3, memory-to-peripheral
#define CYGHWR_HAL_STM32_SPI5_DMA_TX CYGHWR_HAL_STM32_DMA(SPI5_TX,10,M2P)

Before use a DMA stream must be initialized. This is done by calling hal_stm32_dma_init(). The first argument to this is
a hal_stm32_dma_stream structure in which the desc field should have been initialized to a DMA descriptor; the callback
field set to a callback function; and the data field set to any user defined data. The priority argument defines both the
interrupt level assigned to the stream interrupt, and the DMA channel arbitration priority level (defined by the top two bits).
This function initializes the hardware and the stream structure and needs only to be called once during driver initialization.

By default a stream is initialized to perform 8 bit transfers under interrupt control and to advance the memory address pointer.
If a different configuration is required, then the driver should call hal_stm32_dma_configure() which will allow these
options to be varied. The tfr_size argument defines the transfer size and may be 8, 16 or 32 bits. The no_minc argument
disables memory increments if true. The polled argument configures the stream for polled mode if true, otherwise it will be
interrupt driven. This function may either be called once to set up the stream permanently, or on a transfer-by-transfer basis,
or not at all if the defaults are what is required.

If the driver needs circular mode DMA processing then it can call the function hal_stm32_dma_configure_circu-
lar() with enable set to true. This allows circular buffers and continuous data flows (e.g. ADC scan mode as used by the
STM32F ADC driver). Calling the function with enable set to false will disable circular mode.

If a F2/F4 driver wants to use the continuous double-buffer support then it can call the hal_stm32_dma_config-
ure_doublebuffer() with enable set to true. This configures the DMA to automatically switch between buffers at the
end of a transfer. The memory1 is the second buffer to be used in conjunction with the buffer passed as the memory parameter
to the hal_stm32_dma_start() function.

Note

The second buffer must be at least the same size as the (first) buffer subsequently passed to the hal_stm32_d-
ma_start() function.

Calling the function with enable set to false will disable the double buffer mode, with the passed memory1 parameter being
ignored.

2836

STM32 Variant HAL

Warning

The DMA controller hardware when using double buffer mode will automatically switch buffers on a buffer fill
event.

When using double buffer mode the developer should ensure that the buffer size used is large enough to cope
with the processing code associated with a completed transaction being able to complete to avoid overrun. The
size of the buffers will depend on the DMA transfer rate for the peripheral being used and the application DSR
latency, plus the actual callback buffer processing code time.

If a F2/F4 driver needs to use peripheral controlled DMA flow then it can call the function hal_stm32_dma_config-
ure_flow() with enable set to true. This configures the DMA to allow the peripheral to control the flow of DMA trans-
fers, instead of the DMA controller (e.g. the STM32 SDIO device signals the end of data transfers). Calling the function with
enable set to false will disable the peripheral flow control mode.

A transfer is defined and started by calling hal_stm32_dma_start(). The memory argument defines the memory address
to/from which the transfer will be made. The peripheral argument is the address of the data register of the peripheral
involved. The size argument defines the number of data items to be transferred, or in the case of peripheral flow control
configurations the number of items expected, as defined by tfr_size. Once this call completes, the channel is operational
and will transfer data once the peripheral starts triggering transfers.

If the stream is configured for interrupt control then when a transfer completes an interrupt is raised. This will disable the
stream and cause the callback in the stream structure to be called from DSR mode. The prototype of the callback is as follows:

 typedef void hal_stm32_dma_callback(hal_stm32_dma_stream *stream, cyg_uint32 count, CYG_ADDRWORD data);

The stream argument is the stream structure initialized by the user. The count argument is a count of the number of data
items that remain to be transferred, and will be zero for a successful transfer. The data argument is a copy of the data field
from the stream structure.

The configuration option CYGIMP_HAL_STM32_DMA_CALLBACK_ISR can be used to enable the optional support for an
ISR level callback when the DMA TransferComplete (TC) interrupt is triggered. This support is not normally required, but
some STM32 family variants may require some collusion between the DMA system and the peripheral H/W controller to en-
sure correct operation. As such it is not expected that the developer should ever need to manually enable CYGIMP_HAL_ST-
M32_DMA_CALLBACK_ISR since it will be automatically enabled if any of the configured packages require the functionality.
The callback is executed within the ISR of the DMA TC processing and so should not block.

 typedef void hal_stm32_dma_callback_isr(hal_stm32_dma_stream *stream, CYG_ADDRWORD data);

As with the normal DSR callback the stream argument is the stream structure initialized by the user and the data argument
is a copy of the data field from the stream structure.

If the stream is configured for polled mode, then the driver must call hal_stm32_dma_poll() frequently. When the
transfer has completed the callback function will be called from within the poll routine. The driver needs to detect this and
terminate the polling loop.

Most drivers will initialize a DMA stream and keep it enabled throughout the system lifetime. However, if it is necessary to
share a stream, or otherwise disable use of a stream, the driver may call hal_stm32_dma_delete() to return a stream to
unused state. It will be necessary to call hal_stm32_dma_init() before it can be used again.

Alternatively for circular mode configured streams the hal_stm32_dma_disable() can be used to disable the stream
DMA without clearing the state. The function hal_stm32_dma_start() can then be used to re-enable the DMA stream
with the previous configured state.

The hal_stm32_dma_stop() function allows a stream to be disabled without clearing the transfer state. The normal
callback handler is subsequently called with a non-zero count indicating a partial transfer.

Note

The hal_stm32_dma_stop() function will return immediately, however the stream may remain active until
any active “item” transfer has completed (not the full size amount). When appropriate the stream will be disabled
by the DMA controller and the relevant callback handler function called asynchronously.

2837

STM32 Variant HAL

Name
Test Programs — Details

Test Programs
The STM32 variant HAL contains some test programs which allow various aspects of the microcontroller or the architecture
to be tested.

Timers Test
The timers test checks the functionality of the microcontroller timers and in particular the interrupt priority and nesting
mechanisms. The test programs all the available timers to interrupt at a variety of different rates and records various parameters.
The timers are programmed to interrupt at higher rates for lower numbered timers, and higher rate timers are given higher
priority. The test outputs a sequence of tables of the following format:

ISRs max_nesting 6 max_nesting_seen 7
 T Ticks 0 1 2 3 4 5 6 7 8
 1: 937883 468079 0 84264 78541 73773 66846 60741 55480 50159
 2: 337228 186324 0 0 30306 28894 26156 24077 21771 19700
 3: 164018 99600 0 0 0 15444 14024 12693 11667 10590
 4: 120064 80417 0 0 0 0 11341 10349 9408 8549
 5: 82581 60965 0 0 0 0 0 7833 7181 6602
 6: 62154 50107 0 0 0 0 0 0 5953 6094
 7: 59684 53864 0 0 0 0 0 0 0 5820
 8: 51186 51186 0 0 0 0 0 0 0 0
DSRs
 T: 0 1 2 3 4 5 6 7 8
 1: preempt: 465351 1226 525 296 240 152 103 97 89
 count: 0 93768 10 0 0 0 0 0 0
 2: preempt: 185237 606 127 116 75 60 41 27 35
 count: 0 33722 0 0 0 0 0 0 0
 3: preempt: 99002 354 95 7 55 31 23 18 15
 count: 0 16401 0 0 0 0 0 0 0
 4: preempt: 79892 331 83 39 3 23 21 12 13
 count: 0 12006 0 0 0 0 0 0 0
 5: preempt: 60628 184 65 33 27 0 9 13 6
 count: 0 8258 0 0 0 0 0 0 0
 6: preempt: 49798 180 53 22 21 15 0 12 6
 count: 0 6215 0 0 0 0 0 0 0
 7: preempt: 53583 158 48 25 18 11 16 0 5
 count: 0 5968 0 0 0 0 0 0 0
 8: preempt: 50937 140 46 22 18 6 9 8 0
 count: 0 5118 0 0 0 0 0 0 0

The first line shows the depth of ISR nesting seen since the last report, plus the maximum seen throughout the run.

The first table contains a row for each timer. The Ticks column shows the total number of ISRs called for this timer. The 0
column shows how many ISR calls interrupted thread state. The remaining columns show how many ISR calls preempted the
ISR for the given timer. For example, the ISR for timer 1 preempted the ISR for timer 6 60741 times.

The second table contains two rows for each timer. The preempt: row shows how many times the ISR preempted the DSR
for the given timer. The zero column correspond to thread state as before. For example the ISR for timer 2 preempted the
DSR for timer 4 75 times. The count: row shows the range of count values passed to the DSR and indicate the number of
DSR calls not matched exactly to ISR calls. The ISR calls the DSR every 10 ticks, so the total counts should be one tenth
of the ISR Ticks value.

2838

Chapter 297. STM3210C-EVAL Platform
HAL

2839

STM3210C-EVAL Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM3210C_EVAL — eCos Support for the STM3210C-EVAL Board

Description
The STM3210C-EVAL board contains a STM32F107VCT microcontroller. It has connectors for one UART, I²C, MicroSD,
USB, CAN, JTAG and various other devices.

For typical eCos development, a GDB stub image is programmed into internal FLASH and the CPU boots directly into that. It
is then possible to download and debug stand-alone and eCos applications via the gdb debugger using USART1. Alternatively
test programs may be downloaded and debugged via a JTAG debugger attached to the JTAG socket. Available RAM is limited
to 64KB, so development for larger applications may also consist of programming them to flash and using JTAG to debug
them from there.

This documentation describes platform-specific elements of the STM3210C-EVAL board support within eCos. The STM32
variant HAL documentation covers various topics including HAL support common to STM32 variants, and on-chip device
support. This document complements the STM32 documentation.

Supported Hardware
The STM32 has two on-chip memory regions. A RAM region of 64KiB is present at 0x20000000. A FLASH region is present
at 0x08000000 and is aliased to 0x0000000 during normal execution.

The STM32 variant HAL includes support for the five on-chip serial devices which are documented in the variant HAL.
USART1 is connected to an external connector on the board marked "CN6". The UART does not have any RTS/CTS lines,
but the CTS and DSR pins are connected to bootloader reset and select lines. Care must therefore be taken when connecting
this board to a host to ensure that these lines are not pulled in the wrong direction. A three wire cable is recommended.

The STM32 variant HAL also includes support for the I²C bus. A single I²C device is instantiated as part of the platform
port, which is for the M24C64 serial EEPROM connected via I²C. It is exported to <cyg/io/i2c.h> with the name
hal_stm32_i2c_eeprom in the normal way.

Device drivers are provided for the STM32 on-chip ADC interfaces, SPI interface and Ethernet MAC. Additionally, support
is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management of the STM32's on-
chip Flash.

Also, while the board is fitted with a CAN interface, this is not presently supported by the HAL port; nor is the microSD card
(or SDIO interface) at the present time. The STM32F1 processor and the STM3210C-EVAL board provide an extremely wide
variety of peripherals, but unless support is specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.3.2, arm-eabi-gdb version 6.8, and binutils version 2.18.

2840

STM3210C-EVAL Platform HAL

Name
Setup — Preparing the STM3210C-EVAL Board for eCos Development

Overview
In a typical development environment, the STM3210C-EVAL board boots from internal flash into the GDB Stubrom. eCos
applications are configured for RAM startup and then downloaded and run on the board via the debugger arm-eabi-gdb.

Stubrom Installation
For serial communications, the Stubrom runs with 8 bits, no parity, and 1 stop bit at 38400 baud. This rate can be changed in
the platform HAL configuration. Under normal circumstances, the Stubrom runs in-place from the internal Flash.

Programming The Stubrom

To program the Stubrom into the internal flash either a JTAG debugger that understands the STM32 flash may be used, such
as a Ronetix PEEDI or an Abatron BDI3000, or the ST Flash Loader Demonstrator may be used. Configuration files for
the PEEDI and BDI3000 are supplied in the STM3210C-EVAL HAL package, and brief instructions for downloading the
Stubrom are given in there. If no JTAG debugger is available, then the Stubrom must be downloading using the Flash Loader
Demonstrator which can be downloaded from the page for the STM32F101ZE CPU, in the Design Support->Demo SW
section of ST's website at http://www.st.com/internet/mcu/product/164506.jsp

The documentation for this may be found at http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNI-
CAL_LITERATURE/USER_MANUAL/CD00171488.pdf

The following are brief instructions for downloading the Stubrom using the Flash Loader Demonstrator.

1. Download the Flash Loader Demonstrator from the ST website and install it on a PC running Windows that has an
available serial port.

2. Copy the file stubrom.bin from the loaders/stm3210c_eval/gdbstub/ROM sub-directory within your
eCosPro installation to a suitable location on the Windows PC.

3. Connect a null-modem serial cable between the USART1 serial port and a serial port on the Windows machine.

4. Move the BOOT0/SW2 switch to the 1 position, ensure the BOOT1/SW1 switch remains in the 0 position, and press the
reset button.

5. Start the Flash Loader Demonstrator and in the first screen select the COM port connected to the board under Port Name.
Ensure that the baud rate is also set at 115200, with Even parity and Echo disabled. Press Next. If you are succesfully
connected to the board, you should see the message Target is readable. Please press "Next" to proceed . Press Next and you
will be prompted to select a target. Select STM32_Connectivity-line_256K, then Next to go to the Operation choice page. If
any of these steps fail, follow the direction given by the loader to recover.

6. On the operation choice page select "Download to device" and under "Download from file" either type the location of the
stubrom.bin file, or browse to it. Ensure that the "@" field is set to 8000000, the "Global Erase" radio button is selected
and that all other options are clear except "Verify after download".

7. Press "Next" and the loader should download and verify the binary file. The download or verify may fail if the flash has
been previously locked, in which case you should select the "Enable/Disable Flash protection" radio button, "Disable"
and "Write Protection" drop-down items, press "Next" and retry the download. Upon successful download press "Close"
to exit the loader.

8. Move the BOOT0/SW2 switch back to the 0 position and press the reset button.

The behaviour of the Flash Loader Demonstrator documented here is that of version 2.2.0. The actual behaviour of newer
or older versions may vary slightly.

2841

http://www.st.com/internet/mcu/product/164506.jsp
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf

STM3210C-EVAL Platform HAL

Whatever mechanism is used to program the Stubrom, something similar to the following output should be seen on USART1
when the reset button is pressed:

+$T050f:e2230008;0d:f0ff0020;#b5

Rebuilding the Stubrom

Should it prove necessary to rebuild a Stubrom binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of the Stubrom are:

$ mkdir stubrom_stm3210c_rom
$ cd stubrom_stm3210c_rom
$ ecosconfig new stm3210c stubs
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm3210c_eval/VERSION/misc/stubs_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file stubrom.bin.

2842

STM3210C-EVAL Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview

The STM3210C-EVAL board platform HAL package is loaded automatically when eCos is configured for an stm3210c_e-
val target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side
effect of switching target hardware.

Startup

The STM3210C-EVAL board platform HAL package supports three separate startup types:

RAM

This is the startup type which is normally used during application development. The board has GDB stubs programmed
into internal Flash at location 0x08000000 and uses internal RAM at location 0x20000000. arm-eabi-gdb is then used to
load a RAM startup application into memory from 0x20001000 and debug it. It is assumed that the hardware has already
been initialized by the stubs. By default the application will use the eCos virtual vectors mechanism to obtain services
from the stubs, including diagnostic output.

ROM

This startup type can be used for finished applications which will be programmed into internal ROM at location
0x08000000. Data and BSS will be put into internal RAM starting from 0x20000400. The application will be self-con-
tained with no dependencies on services provided by other software. The program expects to boot from reset with ROM
mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform all neces-
sary hardware initialization.

JTAG

This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-contained
with no dependencies on services provided by other software. The program expects to be loaded from 0x20000400 and
entered at that address. eCos startup code will perform all necessary hardware initialization.

Monitors and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the Stubrom.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port 0 will be claimed for HAL diagnostics.

UART Serial Driver

The STM3210C-EVAL board uses the STM32's internal UART serial support. As well as the polled HAL diagnostic inter-
face, there is also a CYGPKG_IO_SERIAL_CORTEXM_STM32 package which contains all the code necessary to support
interrupt-driven operation with greater functionality. All five UARTs can be supported by this driver, although only USART1
is actually routed to an external connector. Note that it is not recommended to enable this driver on the port used for HAL
diagnostic I/O. This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic
serial driver support package CYGPKG_IO_SERIAL is enabled in the configuration.

2843

STM3210C-EVAL Platform HAL

Ethernet Driver
The STM3210C-EVAL board is fitted with an Ethernet port connected via a DP83848 PHY to the STM32's on-chip Ether-
net MAC. This is supported in eCosPro with a driver for the lwIP networking stack, contained in the package CYGPKG_DE-
VS_ETH_CORTEXM_STM32. At the present time it only supports the lwIP networking stack, and cannot be used for either
the BSD networking stack, nor RedBoot.

The driver will be inactive (not built and greyed out in the eCos Configuration Tool) unless the platform HAL option "STM32
Ethernet Support" (CYGPKG_HAL_CORTEXM_STM32_STM3210C_EVAL_ETH0) is enabled. This option in turn is only
active if the "Common Ethernet support" (CYGPKG_IO_ETH_DRIVERS) package is included in your configuration. As the
STM32 ethernet driver is an lwIP-only driver, it is most appropriate to choose the lwip_eth template as a starting point when
choosing an eCos configuration, which will cause the necessary packages to be automatically included.

The STM32 ethernet driver defines a further configuration option "Use MCO as PHY clock" (CYGHWR_DEVS_ETH_COR-
TEXM_STM32_PHY_CLK_MCO) which indicates whether the MCO1 clock signal is used as the 25MHz clock for the Ethernet
PHY. With this option disabled, the on-board 25MHz crystal oscillator located at X1 can be used instead, although in that case
the board jumper JP4 must be changed. You may wish to make this change if you wish to use the MCO1 clock output for
another purpose. Consult the STM32 clock and ethernet documentation for more details.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. But the
platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM3210C_EVAL_I2C. This
ensures that the M24C64 serial EEPROM is instantiated and becomes available for applications from <cyg/io/i2c.h>,
and also ensures the STM32's I²C bus 1 is enabled for it. This option also allows the m24c64.c test is built. In order to allow
writes to the serial EEPROM, you must ensure that the STM3210C-EVAL jumper JP17 is fitted. The m24c64.c test will not
pass otherwise.

SPI Driver
An SPI bus driver is available for the STM32 in the package "ST STM32 SPI driver" (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

The only SPI device instantiated by default is for an external Aardvark SPI test board, connected to SPI bus 3 with the SD card
attached to chip select 0 on PA4 and the Aardvark AT25080 to chip select 1 on PD2 (CN8 pin 24). To disable the Aardvark
device support, the platform HAL contains an option "SPI devices" (CYGPKG_HAL_CORTEXM_STM32_STM3210C_E-
VAL_SPI) which can be disabled. No other SPI devices are instantiated.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM3210C-EVAL platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

2844

STM3210C-EVAL Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including the Stubrom.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the STM32 only
supports two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check
it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.stm32.cfg file should be used to setup and configure the hardware to an appropriate
state to load programs. This includes setting up the clocks, GPIO lines, SRAM and flash memory controller.

The peedi.stm32c.cfg file also contains an option to define whether hardware or software breakpoints are used by default,
using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can be
changed to hardware breakpoints, and remember to use the reboot command on the PEEDI command line interface, or press
the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.stm32c.cfg
file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode
can be selected in two ways. Either with the CORE0_STARTUP_MODE directive in the [TARGET] section of the peed-
i.stm32c.cfg file. Or by using the reset run command. Either approach conveniently allows the target to be connected
to the JTAG debugger, and be able to reset it with the reset button, without being required to always type 'go' every time.
Although using reset run will not be persistent across reboots of the PEEDI itself.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

stm3210c> memory load tftp://192.168.7.9/test.bin bin 0x02000000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x20000400
loading at 0x20000400

Successfully loaded 23KB (24560 bytes) in 0.1s
stm3210c> go

Consult the PEEDI documentation for information on other formats and loading mechanisms.

Abatron BDI3000 notes

On the Abatron BDI3000, the bdi3000.stm32.cfg file should be used to setup and configure the hardware to an appro-
priate state to load programs. This includes setting up the clocks, GPIO lines, SRAM and flash memory controller.

2845

STM3210C-EVAL Platform HAL

The bdi3000.stm32.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can
be changed to hardware breakpoints, and remember to use the boot command on the BDI3000 command line interface.

On the BDI3000, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2001 on the BDI3000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI3000 is powered up, the target will always run the initialization section of the bdi3000.stm32.cfg
file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

STM3210C> load 0x20000400 test.bin bin
Loading /test.bin , please wait
Loading program file passed
STM3210C> go 0x20000400

Consult the BDI3000 documentation for information on other formats and loading mechanisms.

Configuration of JTAG applications

JTAG applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required, and a memory layout
selected which will take advantage of the extra RAM space available. All necessary settings are made automatically if the
JTAG startup type is selected.

2846

STM3210C-EVAL Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM3210C-EVAL board hardware,
and should be read in conjunction with that specification. The STM3210C-EVAL platform HAL package complements the
ARM architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
stm3210c_eval_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM

This is located at address 0x20000000 of the memory space, and is 64KiB in size. The eCos VSR table occupies the bot-
tom 512 bytes. The virtual vector table starts at 0x00000200 and extends to 0x00000300. The top CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of internal RAM is avail-
able for use by applications.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region is
512KiB in size. ROM applications are by default configured to run from this memory.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found in the
STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 128 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000200. To permit expansion and possible addition of other tables, the linker scripts
then allocate further sections from 0x20000400.

hal_interrupt_stack This defines the location of the interrupt stack. For all startups, this is allocated to the
top of internal SRAM, 0x20010000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

2847

STM3210C-EVAL Platform HAL

Name
Test Programs — Details

Test Programs
The STM3210C platform HAL contains some test programs which allow various aspects of the board to be tested.

ADC test
This program tests the ADC driver for the STM32. The only device connected to the ADC on the board is the potentiometer
connected to ADC1 logical channel 14. Therefore this test primarily tests that. However, in addition it also report the values of
the temperature sensor and Vrefint inputs that are sourced on-chip. The option CYGBLD_HAL_CORTEXM_STM3210C_E-
VAL_TEST_ADC must be enabled to run this test since it needs human interaction.

M24C64 I²C serial EEPROM test
This program tests I²C access to the on-board M24C64 serial EEPROM. This test is only built if the CDL configuration option
CYGPKG_HAL_CORTEXM_STM32_STM3210C_EVAL_I2C is enabled. The STM3210C-EVAL board prevents writes to
the EEPROM unless jumper JP17 is closed. Therefore to allow this test to pass, ensure JP17 is fitted with a jumper.

2848

Chapter 298. STM3210E-EVAL Platform
HAL

2849

STM3210E-EVAL Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM3210E_EVAL — eCos Support for the STM3210E-EVAL Board

Description
The STM3210E-EVAL board consists of a STM32F103Z microcontroller, 1MiB of external SRAM, 16MiB NOR flash and
64MiB NAND flash. It has connectors for two UARTs, I²C, MicroSD, USB, CAN, JTAG and various other devices. Early
versions of the board contain STM32F103ZET6 MCUs and later boards from RevD-03 onwards are populated with the ST-
M32F103ZGT6. The former has 512KiB of internal flash and the latter 1MiB.

For typical eCos development, RedBoot or a GDB stub image is programmed into internal FLASH and the CPU boots directly
into that. It is then possible to download and debug stand-alone and eCos applications via the gdb debugger using UART0.
Alternatively test programs may be downloaded and debugged via a JTAG debugger attached to the JTAG socket.

This documentation describes platform-specific elements of the STM3210E-EVAL board support within eCos. The STM32
variant HAL documentation covers various topics including HAL support common to STM32 variants, and on-chip device
support. This document complements the STM32 documentation.

We have found that some revisions of the STM3210E-EVAL board and its attached LCD are unreliable unless the LCD is
removed. If the board suffers from lockups or other reliability issues then we recommend disconnecting the LCD to determine
if that is the cause.

Supported Hardware
The STM32 has two on-chip memory regions. A RAM region of 64KiB is present at 0x20000000. A FLASH region is present
at 0x08000000 and is aliased to 0x0000000 during normal execution. On-board memory consists of 1MiB of SRAM mapped
to 0x68000000 and 16MiB of NOR FLASH mapped to 0x64000000.

The STM32 variant HAL includes support for the five on-chip serial devices which are documented in the variant HAL. UART0
and UART1 are connected to external connectors on the board marked "CN12" and "CN8" respectively. Only UART1 on CN8
is equipped with RTS/CTS lines.

Device drivers are provided for the STM32 on-chip ADC interfaces, I²C interface, and SPI interface. Additionally, support
is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management of the STM32's on-
chip Flash.

Due to a silicon errata with the STM32F103Zx device the I2C1 bus cannot be used if FSMC is enabled. Therefore the I²C test
example for the on-board STLM75 Temperature sensor explicitly disables FSMC prior to accessing I2C1.

Also, while the board is fitted with a CAN interface, this is not presently supported by the HAL port. The STM32F1 processor
and the STM3210E-EVAL board provide an extremely wide variety of peripherals, but unless support is specifically indicated,
it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.3.2, arm-eabi-gdb version 6.8, and binutils version 2.18.

2850

STM3210E-EVAL Platform HAL

Name
Setup — Preparing the STM3210E-EVAL Board for eCos Development

Overview
In a typical development environment, the STM3210E-EVAL board boots from internal flash into either the GDB stubrom
or RedBoot. eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger
arm-eabi-gdb.

RedBoot Installation
The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from inter-
nal FLASH

redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from exter-
nal RAM

redboot_RAM.ecm redboot_RAM.bin

JTAG RedBoot running from exter-
nal RAM, loaded via JTAG

redboot_JTAG.ecm redboot_JTAG.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed
using the RedBoot baud command.

Under normal circumstances, RedBoot runs in-place from the internal Flash. The RAM version is provided to allow for updating
the resident RedBoot image in Flash. The JTAG version is only used if loading RedBoot into RAM via a JTAG debugger. It
is similar to the RAM version, but loads at a lower address within RAM, and so can be used to load eCos applications, as if it
is the normal resident boot monitor. The ELF format image of this JTAG version of RedBoot can also be loaded and executed
from GDB using a JTAG device, to allow it to be debugged.

Programming RedBoot

To program RedBoot into the internal flash either a JTAG debugger that understands the STM32 flash may be used, such as
a Ronetix PEEDI or an Abatron BDI3000, or the ST Flash Loader Demonstrator may be used. Configuration files for the
PEEDI and BDI3000 are supplied in the STM3210E-EVAL HAL package, and brief instructions for downloading RedBoot are
given in there. If no JTAG debugger is available, then RedBoot must be downloading using the Flash Loader Demonstrator
which can be downloaded from the page for the STM32F101ZE CPU, in the Design Support->Demo SW section of ST's
website at http://www.st.com/internet/mcu/product/164506.jsp

The documentation for this may be found at http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNI-
CAL_LITERATURE/USER_MANUAL/CD00171488.pdf

The following are brief instructions for downloading RedBoot using the Flash Loader Demonstrator.

1. Download the Flash Loader Demonstrator from the ST website and install it on a PC running Windows that has an
available serial port.

2. Copy the file redboot_ROM.bin from the loaders/stm3210e_eval sub-directory within your eCosPro installation
to a suitable location on the Windows PC.

3. Connect a null-modem serial cable between the USART1 serial port and a serial port on the Windows machine.

4. Move the BOOT0/SW2 switch to the 1 position, ensure the BOOT1/SW2 switch remains in the 0 position, and press the
reset button.

5. Start the Flash Loader Demonstrator and in the first screen select the COM port connected to the board under Port Name.
Ensure that the baud rate is also set at 115200, with Even parity and Echo disabled. Press Next. If you are succesfully

2851

http://www.st.com/internet/mcu/product/164506.jsp
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf

STM3210E-EVAL Platform HAL

connected to the board, you should see the message Target is readable. Please press "Next" to proceed . It should also
note the size of the internal flash memory. Press Next and you will be prompted to select a target. Depending on the CPU
model on your STM3210E-EVAL board and the size of its internal flash, either select the STM32_High-density_512K or
STM32_XL-density_1024K, then Next to go to the Operation choice page. If any of these steps fail, follow the direction
given by the loader to recover.

6. On the operation choice page select "Download to device" and under "Download from file" either type the location of the
redboot_ROM.bin file, or browse to it. Ensure that the "@" field is set to 8000000, the "Global Erase" radio button is
selected and that all other options are clear except "Verify after download".

7. Press "Next" and the loader should download and verify the binary file. The download or verify may fail if the flash has
been previously locked, in which case you should select the "Enable/Disable Flash protection" radio button, "Disable"
and "Write Protection" drop-down items, press Next and retry the download. Upon successful download press "Close" to
exit the loader.

8. Move the BOOT0/SW2 switch back to the 0 position and press the reset button.

The behaviour of the Flash Loader Demonstrator documented here is that of version 2.5. The actual behaviour of newer or
older versions may vary slightly.

Whatever mechanism is used to program RedBoot, something similar to the following output should be seen on USART1
when the reset button is pressed:

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_1_25 - built 15:36:19, May 8 2012

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2012 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: ST STM3210E EVAL (Cortex-M3)
RAM: 0x68000000-0x68100000 [0x680036d0-0x680dd000 available]
 0x20000000-0x2000f000 [0x20000000-0x2000f000 available]
FLASH: 0x08000000-0x0807ffff, 256 x 0x800 blocks
FLASH: 0x64000000-0x64ffffff, 128 x 0x20000 blocks
RedBoot>

Initializing RedBoot Flash Configuration

While RedBoot is loaded into the on-chip flash, it manages the external flash for the storage of application programs and
configuration data. The flash needs to be initialized with the following commands.

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x64fe0000-0x64ffffff: .
... Program from 0x680e0000-0x68100000 to 0x64fe0000: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Console baud rate: 115200
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x64fe0000-0x64ffffff: .
... Program from 0x680e0000-0x68100000 to 0x64fe0000: .
RedBoot>

Rebuilding RedBoot

Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot are:

$ mkdir redboot_stm3210e_rom

2852

STM3210E-EVAL Platform HAL

$ cd redboot_stm3210e_rom
$ ecosconfig new stm3210e redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm3210e_eval/VERSION/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

The other versions of RedBoot - RAM or JTAG - may be similarly built by choosing the appropriate alternative .ecm file.

2853

STM3210E-EVAL Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM3210E-EVAL board platform HAL package is loaded automatically when eCos is configured for an stm3210e_e-
val target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side
effect of switching target hardware.

Startup
The STM3210E-EVAL board platform HAL package supports five separate startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot programmed into
internal Flash at location 0x08000000 and uses external RAM at location 0x68000000. arm-eabi-gdb is then used to load
a RAM startup application into memory from 0x68008000 and debug it. It is assumed that the hardware has already been
initialized by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain services from
RedBoot, including diagnostic output.

ROM

This startup type can be used for finished applications which will be programmed into internal ROM at location
0x08000000. Data and BSS will be put into external RAM starting from 0x68000000. The application will be self-con-
tained with no dependencies on services provided by other software. The program expects to boot from reset with ROM
mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform all neces-
sary hardware initialization.

ROMINT

This startup type can be used for finished applications which will be programmed into internal ROM at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x20000400. The application will be self-con-
tained with no dependencies on services provided by other software. The program expects to boot from reset with ROM
mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform all neces-
sary hardware initialization.

JTAG

This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-contained
with no dependencies on services provided by other software. The program expects to be loaded from 0x68000000 and
entered at that address. eCos startup code will perform all necessary hardware initialization.

SRAM

This is a variation of the JTAG type that only uses internal memory. The application will be self-contained with no
dependencies on services provided by other software. The program expects to be loaded from 0x20000400 and entered at
that address. eCos startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

2854

STM3210E-EVAL Platform HAL

If the application does not rely on a ROM monitor for diagnostic services then serial port 0 will be claimed for HAL diagnostics.

UART Serial Driver
The STM3210E-EVAL board uses the STM32's internal UART serial support. As well as the polled HAL diagnostic interface,
there is also a CYGPKG_IO_SERIAL_CORTEXM_STM32 package which contains all the code necessary to support inter-
rupt-driven operation with greater functionality. All five UARTs can be supported by this driver, although only UARTs 0 and
1 are actually routed to external connectors. Note that it is not recommended to enable this driver on the port used for HAL
diagnostic I/O. This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic
serial driver support package CYGPKG_IO_SERIAL is enabled in the configuration.

SPI Driver
An SPI bus driver is available for the STM32 in the package "ST STM32 SPI driver" (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

The only SPI device present on the board is the M25PXX device connected to SPI bus 1 using PB2 as the chip-select. To
enable support for this device the platform HAL "External SPI M25PXX flash support" (CYGHWR_HAL_CORTEXM_ST-
M32_FLASH_M25PXX) option should be enabled.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 processor variant HAL provides an I²C driver. The STM3210E-EVAL platform HAL enables the support for bus
1 with the on-board STLM75 temperature sensor instantiated by default. It is exported to <cyg/io/i2c.h> with the name
hal_stm32_i2c_temperature in the normal way.

Consult the generic I²C driver API documentation in the eCosPro Reference Manual for further details on I²C support in
eCosPro, along with the configuration options in the STM32 on-chip I²C driver.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM3210E-EVAL platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

Onboard NAND
The HAL port includes a low-level driver to access the on-board NAND flash memory chip. To enable the driver, ensure that
the CYGPKG_DEVS_NAND_ST_NANDXXXX3A and CYGPKG_IO_NAND packages are present in your eCos configuration.
The driver is capable of operating with the NAND_RB jumper (JP7) in either position.

CYGHWR_HAL_COR-
TEXM_STM3210E_EVAL_R-
B_ON_INT2

Jumper 7 on the board - labelled NAND_RB - controls the wiring of the NAND chip's
Ready/Busy line. You must set this option correspondingly. If the jumper is in position
1-2, this option must be 0; in position 2-3, this option must be 1. This setting changes the
behaviour of the driver when waiting for slow NAND operations to complete. In position
1-2, the memory controller halts accesses until the chip is ready; in 2-3, memory access is
unimpeded but the CPU polls for the chip to signal ready before attempting to read from
it. The latter case may yield an efficiency boost in multi-threaded applications.

Partitioning the NAND chip

The NAND chip must be partitioned before it can become available to applications.

2855

STM3210E-EVAL Platform HAL

A CDL script which allows the chip to be manually partitioned is provided (see CYGSEM_DEVS_NAND_STM3210E_E-
VAL_PARTITION_MANUAL_CONFIG); if you choose to use this, the relevant data structures will automatically be set up for
you when the device is initialised. By default, the manual config CDL script sets up a single partition (number 0) encompassing
the entire device.

It is possible to configure the partitions in some other way, should it be appropriate for your setup. To do so you will have to
add appropriate code to stm3210e_eval_nand.c.

2856

STM3210E-EVAL Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including RedBoot.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the STM32 only
supports two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check
it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software
breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.stm32e.cfg file, supplied in the platform HAL package's misc directory, should be
used to setup and configure the hardware to an appropriate state to load programs. This includes setting up the clocks, GPIO
lines, SRAM and flash memory controller.

The peedi.stm32e.cfg file also contains an option to define whether hardware or software breakpoints are used by default,
using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can be
changed to hardware breakpoints, and remember to use the reboot command on the PEEDI command line interface, or press
the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.stm32e.cfg
file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is selected
with the CORE0_STARTUP_MODE directive in the [TARGET] section of the peedi.stm32e.cfg file. This conveniently
allows the target to be connected to the JTAG debugger, and be able to reset it with the reset button, without being required
to always type 'go' every time.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

stm32> memory load tftp://192.168.7.9/test.bin bin 0x68000000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x68000000
loading at 0x68000000
loading at 0x68004000

Successfully loaded 28KB (29064 bytes) in 0.1s
stm32> go 0x68000000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

Abatron BDI3000 notes

On the Abatron BDI3000, the bdi3000.stm32e.cfg file should be used to setup and configure the hardware to an appro-
priate state to load programs. This includes setting up the clocks, GPIO lines, SRAM and flash memory controller.

2857

STM3210E-EVAL Platform HAL

The bdi3000.stm32e.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to software
breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command. The default can
be changed to hardware breakpoints, and remember to use the boot command on the BDI3000 command line interface.

On the BDI3000, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2001 on the BDI3000's IP address. For example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI3000 is powered up, the target will always run the initialization section of the
bdi3000.stm32e.cfg file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, or by pressing the reset button and the 'go' command is then given, then the board
will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and immediately
typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

STM32> load 0x68000000 test.bin bin
Loading /test.bin , please wait
Loading program file passed
STM32> go 0x68000000

Consult the BDI3000 documentation for information on other formats and loading mechanisms.

Configuration of JTAG applications

JTAG applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be enabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Both of these settings are
made automatically if the JTAG startup type is selected.

2858

STM3210E-EVAL Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM3210E-EVAL board hardware,
and should be read in conjunction with that specification. The STM3210E-EVAL platform HAL package complements the
ARM architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
stm3210e_eval_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External RAM

This is located at address 0x68000000 of the memory space, and is 1MiB long. For ROM applications, all of RAM
is available for use. For RAM startup applications, RAM below 0x68008000 is reserved for RedBoot and the top
CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack, the remainder is avail-
able for the application.

External FLASH

This is located at address 0x64000000 of the memory space and is 4MiB in size. Since RedBoot is normally programmed
into the internal flash this memory is entirely available for application use and may be managed by the FIS flash file system.

Internal RAM

This is located at address 0x20000000 of the memory space, and is 64KiB in size. The eCos VSR table occupies the bottom
512 bytes. The virtual vector table starts at 0x00000100 and extends to 0x00000200. For ROM and JTAG startups, the
top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of
internal RAM is available for use by applications.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region is
512KiB in size. ROM applications are by default configured to run from this memory. This memory is not managed by
RedBoot's FIS system, but it can be written using the fis write command and erased using the fis erase command.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found in the
STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 128 entries is reserved.

2859

STM3210E-EVAL Platform HAL

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000100. To permit expansion and possible addition of other tables, the linker scripts
then allocate further sections from 0x20000400.

hal_interrupt_stack This defines the location of the interrupt stack. For ROM and JTAG startups, this is
allocated to the top of internal SRAM, 0x20010000. For RAM startups, it is allocated
to the top of external SRAM, 0x68100000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

2860

STM3210E-EVAL Platform HAL

Name
Test Programs — Details

Test Programs
The STM3210E platform HAL contains some test programs which allow various aspects of the board to be tested.

ADC Test
This program tests the ADC driver for the STM32. The only device connected to the ADC on the board is the potentiometer
connected to ADC1 logical channel 14. Therefore this test primarily tests that. However, in addition it also report the values of
the temperature sensor and Vrefint inputs that are sourced on-chip. The option CYGBLD_HAL_CORTEXM_STM3210E_E-
VAL_TEST_ADC must be enabled to run this test since it needs human interaction.

SPI flash test
This program tests the MPC25Pxx serial flash connected to SPI bus 1. It erases, programs and reads a number of sectors in
the flash, and should therefore not be run if the flash contains data that should be retained. The CYGPKG_IO_FLASH package
must be present and CYGHWR_HAL_CORTEXM_STM32_FLASH_M25PXX enabled to allow this test to be built.

I²C Test
This program tests the I²C driver for the STM32. The only device connected to I²C on the board is the STLM75 temperature
sensor on I2C1. The option CYGBLD_HAL_CORTEXM_STM3210E_EVAL_TEST_STLM75 must be enabled to run this test.

NAND ECC walk test
This program is an adapted version of the sweccwalk test in the NAND Flash library which tests the hardware ECC support
provided by the on-chip FSMC. It does not affect any data currently stored on the on-board NAND flash chip.

2861

Chapter 299. STM32X0G-EVAL Platform
HAL

2862

STM32X0G-EVAL Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32X0G_EVAL — eCos Support for the STM3220G-EVAL, STM3240G-EVAL and
STM3241G-EVAL Boards

Description
There are currently three variants of ST's STM32 "G" evaluation board, the STM3220G-EVAL. STM3240G-EVAL and ST-
M3241G-EVAL. This documentation uses "STM32X0G-EVAL" to refer generically to these boards. The boards have "STM32
20-21-45-46 G-EVAL" silk screened on the PCB, with the specific board model only identifiable by the CPU markings.

The STM3220G-EVAL board has a STM32F207IG microcontroller that incorporates 1MiB of internal flash and 128KiB of
internal SRAM.

The STM3240G-EVAL board has a STM32F407IG microcontroller that incorporates 1MiB of internal flash and 192KiB of
internal SRAM.

The STM3241G-EVAL board has a STM32F417IG microcontroller that incorporates 1MiB of internal flash and 192KiB of
internal SRAM.

The boards have an additional 2MiB of external SRAM, and connectors for UART, Ethernet, MicroSD, USB, CAN, JTAG
and various other devices.

For typical eCos development, RedBoot or a GDB stub image is programmed into internal FLASH and the CPU boots directly
into that. It is then possible to download and debug stand-alone and eCos applications via the gdb debugger using UART4.
Alternatively test programs may be downloaded and debugged via a JTAG debugger attached to the JTAG socket.

This documentation describes platform-specific elements of the STM32X0G-EVAL board support within eCos. The STM32
variant HAL documentation covers various topics including HAL support common to STM32 variants, and on-chip device
support. This document complements the STM32 documentation.

Supported Hardware
The STM32F207IG has two on-chip memory regions, with the STM32F407IG and STM32F417IG having three on-chip mem-
ory regions. The F2 and F4 devices have a RAM region of 128KiB present at 0x20000000 and a 1MiB FLASH region present
at 0x08000000 which is aliased to 0x00000000 during normal execution. The STM32F407IG and STM32F417IG devices have
another RAM region of 64KiB present at 0x10000000. For all platform variants on-board memory consists of 2MiB of SRAM
mapped to 0x64000000.

The STM32 variant HAL includes support for the six on-chip serial devices which are documented in the variant HAL. UART4
is connected to the external connector on the board marked "CN16". There is no connection for hardware flow control (RTS/
CTS) lines.

The STM32 variant HAL also includes support for the I²C bus. A single I²C device is instantiated as part of the platform
port, which is for the M24C64 serial EEPROM connected via I²C. It is exported to <cyg/io/i2c.h> with the name
hal_stm32_i2c_eeprom in the normal way.

Device drivers are provided for the STM32 on-chip Ethernet MAC, ADC interfaces, I²C interface, SPI interface and SDIO
interface. Additionally, support is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit
management of the STM32's on-chip Flash.

The STM32 variant HAL support for the SDIO interface is currently limited to supporting MMC/SD cards. Due to the GPIO
availability on the platform by default only 1-bit MMC/SD data accesses are enabled, since 4-bit data access would clash with
the UART4 debug channel. If 4-bit mode is required then the platform configuration would need to be changed to avoid the use
of UART3/UART4. For 4-bit mode the use of on-chip SRAM for the transfer buffers is recommended to avoid RX overrun
and TX underrun errors due to the slow external RAM access speed.

A driver is available for the BXCAN devices present on the chip. Note that BXCAN1 is incompatible with the use of off-chip
SRAM. Under normal circumstances ensure jumpers JP3 and JP10 are not fitted so that neither CAN device is enabled, or fitted

2863

STM32X0G-EVAL Platform HAL

to enable CAN2 only. Also that JP1 and JP2 are set with pins 2-3 connected to allow SRAM use. These are the factory-supplied
defaults for these jumpers.

Also, while the board is fitted with OneNAND Flash, this is not presently supported by the HAL port. The STM32F2 processor
and the STM32X0G-EVAL board provide an extremely wide variety of peripherals, but unless support is specifically indicated,
it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.4.5, arm-eabi-gdb version 7.2, and binutils version 2.20.1.

2864

STM32X0G-EVAL Platform HAL

Name
Setup — Preparing the STM32X0G-EVAL Board for eCos Development

Overview
In a typical development environment, the STM32X0G-EVAL board boots from internal flash into either the GDB stubrom
or RedBoot. eCos applications are configured for RAM startup and then downloaded and run on the board via the debugger
arm-eabi-gdb, or via the Eclipse IDE.

RedBoot Installation
The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from inter-
nal FLASH

redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running from exter-
nal RAM

redboot_RAM.ecm redboot_RAM.bin

JTAG RedBoot running from exter-
nal RAM, loaded via JTAG

redboot_JTAG.ecm redboot_JTAG.elf

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed using
the RedBoot baud command, or in the eCos configuration used for building RedBoot.

Under normal circumstances, RedBoot runs in-place from the internal Flash. The RAM version is provided to allow for updating
the resident RedBoot image in Flash. The JTAG version is only used if loading RedBoot into RAM via a JTAG debugger.
It is similar to the RAM version, but loads at a lower address within RAM. The ELF format image of this JTAG version of
RedBoot can also be loaded and executed from GDB using a JTAG device, to allow it to be debugged.

Programming RedBoot with ST Flash Loader Demonstrator

To program RedBoot into the internal flash either a JTAG debugger that understands the STM32 flash may be used, such
as a Ronetix PEEDI , or the ST Flash Loader Demonstrator may be used. Configuration files for the PEEDI have been
supplied in the STM32X0G-EVAL HAL package. If no JTAG debugger is available, then RedBoot must be downloaded
using the Flash Loader Demonstrator which can be downloaded from the page for the STM32F207IG CPU, in the De-
sign Support->Software & Development Tools->Software Demos section of ST's website at http://www.st.com/internet/mcu/
product/245085.jsp#SOFTWARE_AND_DEVELOPMENT_TOOLS. It must be at least version 2.4.0 in order to support the
STM32F2xx devices. At time of writing, a direct link to this version is available at http://www.st.com/internet/com/SOFT-
WARE_RESOURCES/SW_COMPONENT/SW_DEMO/stm32-stm8_flash_loader_demo.zip.

The following are brief instructions for downloading RedBoot using the Flash Loader Demonstrator. For more
complete usage instructions, consult the ST documentation for this tool at http://www.st.com/internet/com/TECHNI-
CAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf

1. Download the Flash Loader Demonstrator from the ST website and install it on a PC running Windows that has an
available RS232 serial port, or with a USB to RS232 adaptor.

2. Copy the file redboot_ROM.bin from the loaders/stm32x0g_eval sub-directory within your eCosPro installation
to a suitable location on the Windows PC.

3. Connect a null-modem serial cable between the USART serial port (CN16) and the RS232 serial port on the Windows
machine.

4. Move the BOOT0/SW2 switch to the 1 position, ensuring the BOOT1/SW1 switch remains in the 0 position, and press the
reset button.

2865

http://www.st.com/internet/mcu/product/245085.jsp#SOFTWARE_AND_DEVELOPMENT_TOOLS
http://www.st.com/internet/mcu/product/245085.jsp#SOFTWARE_AND_DEVELOPMENT_TOOLS
http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/SW_DEMO/stm32-stm8_flash_loader_demo.zip
http://www.st.com/internet/com/SOFTWARE_RESOURCES/SW_COMPONENT/SW_DEMO/stm32-stm8_flash_loader_demo.zip
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf
http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/USER_MANUAL/CD00171488.pdf

STM32X0G-EVAL Platform HAL

5. Start the Flash Loader Demonstrator and in the first screen select the COM port connected to the board under Port Name.
Ensure that the baud rate is also set at 115200, with Even parity, Echo disabled and Flow control off. Press Next. If you are
succesfully connected to the board, you should see the message Target is readable. Please click "Next" to proceed . Press
Next and you will be prompted to select a target. Select STM32F2_1024K, then Next to go to the Operation choice page. If
any of these steps fail, follow the direction given by the loader to recover.

6. On the operation choice page select "Download to device" and under "Download from file" either type the location of the
redboot_ROM.bin file, or browse to it. Ensure that the "@" field is set to 8000000, the "Global Erase" radio button is
selected and that all other options are clear except "Verify after download".

7. Press "Next" and the loader should download and verify the binary file. The download or verify may fail if the flash has
been previously locked, in which case you should select the "Enable/Disable Flash protection" radio button, "Disable"
and "Write Protection" drop-down items, press Next and retry the download. Upon successful download press "Close" to
exit the loader.

8. Move the BOOT0/SW2 switch back to the 0 position and press the reset button.

The behaviour of the Flash Loader Demonstrator documented here is that of version 2.4.0. The actual behaviour of newer
versions may vary slightly.

Whatever mechanism is used to program RedBoot, something similar to the following output should be seen on the RS232
serial port when the reset button is pressed:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_1_X - built 04:32:11, Feb 3 2012

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2012 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: ST STM3220G EVAL (Cortex-M3)
RAM: 0x64000000-0x64200000 [0x64003668-0x641dd000 available]
 0x20000000-0x2001f000 [0x20000000-0x2001f000 available]
FLASH: 0x08000000-0x080fffff, 4 x 0x4000 blocks, 1 x 0x10000 blocks, 7 x 0x20000 blocks
RedBoot>

You should now proceed to the section describing how to initialize RedBoot's flash configuration.

Programming RedBoot with Ronetix PEEDI

This section describes how to install RedBoot using a Ronetix PEEDI JTAG debugger.

The PEEDI must be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. It must then be used to download and program a RedBoot image into the internal flash. The
following steps give a typical outline for doing this. Consult the PEEDI documentation for alternative approaches, such as
using FTP or HTTP instead of TFTP.

Preparing the Ronetix PEEDI JTAG debugger

1. Prepare a PC to act as a host and start a TFTP server on it.

2. Connect the PEEDI JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial cable supplied
with the PEEDI (straight through, not null modem).

3. Verify the PEEDI is using up-to-date firmware, of version 11.10.1 or later. Older PEEDI firmware does not support the
STM32 F2 family correctly, particularly if wishing to use the PEEDI's own 'flash' commands to modify the on-chip Flash.

2866

STM32X0G-EVAL Platform HAL

If the firmware is not recent enough, follow the PEEDI User Manual's instructions which describe how to update the PEEDI
firmware.

4. Locate the appropriate file peedi.stm3220g.cfg (STM3220G-EVAL) or peedi.stm3240g.cfg (ST-
M3240G-EVAL and STM3241G-EVAL) within the eCos platform HAL package in the source repository. This will be
in the directory packages/hal/cortexm/stm32/stm32x0g/VERSION/misc relative to the root of your eCos
installation.

5. Place the respective configuration file in a location on the PC accessible to the TFTP server. Later you will configure the
PEEDI to load this file via TFTP as its configuration file.

6. Open peedi.stm3220g.cfg or peedi.stm3240g.cfg (as appropriate) in an editor such as emacs or notepad and
insert your own license information in the [LICENSE] section.

7. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring
PEEDI's RedBoot with the network information. Configure it to use the appropriate peedi.stm3220g.cfg or peed-
i.stm3240g.cfg target configuration file on the TFTP server at the appropriate point of the config process, for example
with a path such as: tftp://192.168.7.9/peedi.stm3220g.cfg

8. Reset the PEEDI.

9. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet 192.168.7.225
Trying 192.168.7.225...
Connected to 192.168.7.225.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2011 www.ronetix.at - All rights reserved
Hw:1.2, L:JTAG v1.5 Fw:11.10.1, SN: PD-0000-XXXX-XXXX
--

stm3220g>

Preparing the STM32X0G board for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

1. Connect a null modem DB9 RS232 serial cable between the serial port on the board and a serial port on the host computer.

2. Start a suitable terminal emulator on the host computer such as minicom on Linux or PuTTY on Windows. Set the com-
munication parameters to 115200 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

3. Connect the board to the PEEDI using a 20-pin ARM/Xscale cable from the JTAG interface connector to the Target port
on the PEEDI.

4. Power up the STM32X0G board.

5. Connect to the PEEDI's telnet CLI on port 23 as before.

6. Confirm correct connection with the PEEDI with the reset reset command as follows:

stm3220g> reset reset
++ info: RESET and TRST asserted
++ info: TRST released
++ info: BYPASS check passed
++ info: 2 TAP controller(s) detected
++ info: TAP 0 : IDCODE = 0x06411041, unknown ID
++ info: TAP 1 : IDCODE = 0x4BA00477, Cortex M3 JTAG
++ info: RESET released

2867

STM32X0G-EVAL Platform HAL

++ info: core #0 connected
++ info: core 0: initialized

stm3220g>

Installation into Flash

The following describes the procedure for installing the RedBoot ROM monitor into on-chip Flash. It can also be adapted for
installing user applications into Flash.

1. Locate the redboot_ROM.bin image within the loaders subdirectory of the base of the eCos installation. For appli-
cations, use arm-eabi-objcopy -O binary to convert the linked application, in ELF format, into binary format.

2. Copy the redboot_ROM.bin file into a location on the host computer accessible to its TFTP server.

3. Connect to the PEEDI's telnet interface, and program the RedBoot image into Flash with the following command, replacing
TFTP_SERVER with the address of the TFTP server and /RBPATH with the location of the redboot_ROM.bin file relative
to the TFTP server root directory:

stm3220g> flash program tftp://TFTP_SERVER/RBPATH/redboot_ROM.bin bin 0x08000000 erase
++ info: Programming image file: tftp://TFTP_SERVER/RBPATH/redboot_ROM.bin
++ info: Programming using agent, buffer = 4096 bytes
++ info: At absolute address: 0x08000000
erasing at 0x08000000 (sector #0)
programming at 0x08000000
programming at 0x08001000
programming at 0x08002000
programming at 0x08003000
erasing at 0x08004000 (sector #1)
programming at 0x08004000
programming at 0x08005000
programming at 0x08006000
programming at 0x08007000
erasing at 0x08008000 (sector #2)
programming at 0x08008000
programming at 0x08009000
programming at 0x0800A000
programming at 0x0800B000
erasing at 0x0800C000 (sector #3)
programming at 0x0800C000
programming at 0x0800D000
programming at 0x0800E000
programming at 0x0800F000

++ info: successfully programmed 64.00 KB in 2.39 sec

stm3220g>

The RedBoot installation is now complete. This can be tested by powering off the board, disconnecting the JTAG, and then
powering on the board again. The RedBoot banner should be visible on the serial port:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database

RedBoot(tm) bootstrap and debug environment [ROM]
eCosCentric certified release, version v3_1_X - built 04:32:11, Feb 3 2012

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2012 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: ST STM3220G EVAL (Cortex-M3)
RAM: 0x64000000-0x64200000 [0x64003668-0x641dd000 available]
 0x20000000-0x2001f000 [0x20000000-0x2001f000 available]
FLASH: 0x08000000-0x080fffff, 4 x 0x4000 blocks, 1 x 0x10000 blocks, 7 x 0x20000 blocks

2868

STM32X0G-EVAL Platform HAL

RedBoot>

Note

An alternative approach would be to use arm-eabi-gdb to load and run the redboot_JTAG.elf file supplied
as a prebuilt in the release. Once that instance of RedBoot is running, standard RedBoot commands such as 'load'
and 'fis' can be used via the serial RS232 interface to program images to Flash, e.g.:

$ arm-eabi-gdb /path/to/redboot_JTAG.elf
GNU gdb (eCosCentric GNU tools 4.4.5c) 7.2
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=arm-eabi".
For bug reporting instructions, please see:
<http://bugzilla.ecoscentric.com/>...
Reading symbols from /path/to/redboot_JTAG.elf...done.
(gdb) target remote PEEDI-IP-ADDRESS:2000
Remote debugging using PEEDI-IP-ADDRESS:2000
0x080035a0 in ?? ()
(gdb) load
Loading section .rom_vectors, size 0x8 lma 0x64000000
Loading section .text, size 0xb314 lma 0x64000008
Loading section .rodata, size 0x372c lma 0x6400b320
Loading section .data, size 0x754 lma 0x6400ea50
Start address 0x64000009, load size 61852
Transfer rate: 236 KB/sec, 10308 bytes/write.
(gdb) c
Continuing.

Initializing RedBoot Flash Configuration

RedBoot manages the internal flash for the storage of application programs and configuration data. The flash needs to be
initialized with the following commands:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x080e0000-0x080fffff: .
... Program from 0x641e0000-0x64200000 to 0x080e0000: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Console baud rate: 115200
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x080e0000-0x080fffff: .
... Program from 0x641e0000-0x64200000 to 0x080e0000: .
RedBoot>

Issue the reset command to RedBoot, and verify the the target board comes up as expected with the correct settings.

You may also need to run the fconfig -i command if you have updated your RedBoot from a previous version with a different
configuration which might not have any new config fields used by the newly programmed RedBoot.

Rebuilding RedBoot

Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot are:

$ mkdir redboot_stm3220g_rom
$ cd redboot_stm3220g_rom
$ ecosconfig new stm3220g redboot
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm32x0g_eval/VERSION/misc/redboot_ROM.ecm
$ ecosconfig tree
$ make

2869

STM32X0G-EVAL Platform HAL

At the end of the build the install/bin subdirectory should contain the file redboot.bin. This may be programmed to
the board using the above procedure, or by using RedBoot's own flash update mechanisms.

The other versions of RedBoot - RAM or JTAG - may be similarly built by choosing the appropriate alternative .ecm file.

2870

STM32X0G-EVAL Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview

The STM32X0G-EVAL board platform HAL package is loaded automatically when eCos is configured for an stm3220g,
stm3240g or stm3241g target. It should never be necessary to load this package explicitly. Unloading the package should
only happen as a side effect of switching target hardware.

Startup

The STM32X0G-EVAL board platform HAL package supports five separate startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot programmed into
internal Flash at location 0x08000000 and uses external RAM at location 0x64000000. arm-eabi-gdb is then used to load
a RAM startup application into memory from 0x64008000 and debug it. It is assumed that the hardware has already been
initialized by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain services from
RedBoot, including diagnostic output.

ROM

This startup type can be used for finished applications which will be programmed into internal ROM at location
0x08000000. Data and BSS will be put into external RAM starting from 0x64000000. The application will be self-con-
tained with no dependencies on services provided by other software. The program expects to boot from reset with ROM
mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform all neces-
sary hardware initialization.

ROMINT

This startup type can be used for finished applications which will be programmed into internal ROM at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x20000284 (F2) or 0x20000288 (F4). Internal
SRAM below this address is reserved for vector tables. The application will be self-contained with no dependencies on
services provided by other software. The program expects to boot from reset with ROM mapped at location zero. It will
then transfer control to the 0x08000000 region. eCos startup code will perform all necessary hardware initialization.

JTAG

This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-contained
with no dependencies on services provided by other software. The program expects to be loaded from 0x64000000 and
entered at that address. eCos startup code will perform all necessary hardware initialization.

SRAM

This is a variation of the JTAG type that only uses internal memory. The application will be self-contained with no depen-
dencies on services provided by other software. The program expects to be loaded from 0x20000284 (F2) or 0x20000288
(F4) and entered at that address. eCos startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building

2871

STM32X0G-EVAL Platform HAL

for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

UART Serial Driver
The STM32X0G-EVAL board uses the STM32's internal UART serial support. The HAL diagnostic interface, used for both
polled diagnostic output and RedBoot / GDB stub communication, is only expected to be available to be used on the UART 4
port (counting the first UART as UART1). This is because only UART 4 is actually routed to an external connector.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_CORTEXM_STM32 package which
contains all the code necessary to support interrupt-driven operation with greater functionality. All six UARTs can be supported
by this driver Note: while it is possible for USART3 to be configured to use this connector, the only advantage of USART3
would be flow control lines, which are not routed to the connector on the STM32X0G board.

It is not recommended to use the interrupt-driven serial driver with a port at the same time as using that port for HAL diagnostic
I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver sup-
port package CYGPKG_IO_SERIAL is enabled in the configuration. By default this will only enable support in the driver for
the UART4 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable support
for other serial ports. Note that in this package, serial port numbering starts at 0, rather than 1. So for example, to enable
the serial driver for ports USART1 and USART2, enable the configuration options "ST STM32 serial port 0 driver" (CYG-
PKG_IO_SERIAL_CORTEXM_STM32_SERIAL0) and "ST STM32 serial port 1 driver" (CYGPKG_IO_SERIAL_COR-
TEXM_STM32_SERIAL1).

Ethernet Driver
The STM32X0G-EVAL board is fitted with an Ethernet port connected via a DP83847 PHY to the STM32's on-chip Ether-
net MAC. This is supported in eCosPro with a driver for the lwIP networking stack, contained in the package CYGPKG_DE-
VS_ETH_CORTEXM_STM32. At the present time it only supports the lwIP networking stack, and cannot be used for either
the BSD networking stack, nor RedBoot.

The driver will be inactive (not built and greyed out in the eCos Configuration Tool) unless the platform HAL option "STM32
Ethernet Support" (CYGPKG_HAL_CORTEXM_STM32_STM32X0G_EVAL_ETH0) is enabled. This option in turn is only
active if the "Common Ethernet support" (CYGPKG_IO_ETH_DRIVERS) package is included in your configuration. As the
STM32 ethernet driver is an lwIP-only driver, it is most appropriate to choose the lwip_eth template as a starting point when
choosing an eCos configuration, which will cause the necessary packages to be automatically included.

The platform HAL defines a further configuration option "Use MCO as PHY clock" (CYGHWR_HAL_CORTEXM_ST-
M32X0G_ETH_PHY_CLOCK_MCO) which indicates whether the MCO1 clock signal is used as the 25MHz clock for the Eth-
ernet PHY. With this option disabled, the on-board 25MHz crystal oscillator located at X1 can be used instead, although in
that case the board jumper J5 must be changed. You may wish to make this change if you wish to use the MCO1 clock output
for another purpose. Consult the STM32 clock and ethernet documentation for more details.

SPI Driver
An SPI bus driver is available for the STM32 in the package "ST STM32 SPI driver" (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

The only SPI device instantiated by default is for an external Aardvark SPI test board, connected to SPI bus 2 with pin PI0
selected as the chip select. To disable the Aardvark device support, the platform HAL contains an option "SPI devices" (CYG-
PKG_HAL_CORTEXM_STM32_STM32X0G_EVAL_SPI) which can be disabled. No other SPI devices are instantiated.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

2872

STM32X0G-EVAL Platform HAL

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. But the
platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32X0G_EVAL_I2C. This
ensures that the M24C64 serial EEPROM is instantiated and becomes available for applications from <cyg/io/i2c.h>,
and also ensures the STM32's I²C bus 1 is enabled for it. This option also allows the m24c64.c test is built. In order to allow
writes to the serial EEPROM, you must ensure that the STM32X0G-EVAL jumper JP24 is fitted. The m24c64.c test will not
pass otherwise.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32X0G-EVAL platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

CAN Driver
The STM32 has a dual BXCAN device for CAN support. This consists of a master device, BXCAN1, and a slave device,
BXCAN2. If BXCAN2 is to be used, BXCAN1 must be powered and clocked, regardless of whether it is to be used for CAN
traffic. BXCAN1 shares IO pins with the FSMC, which controls the external SRAM. Therefore, BXCAN1 can only be used
in ROMINT startup mode.

The board has a single external CAN socket, to which either BXCAN1 or BXCAN2 can be routed, based on the settings of
JP3 and JP10. By default these jumpers are set to route neither CAN device to the socket, and jumpers must be fitted to route
the desired CAN device as appropriate. See the board reference manual for details.

Consult the generic CAN driver API documentation in the eCosPro Reference Manual for further details on CAN support in
eCosPro, along with the documentation and configuration options in the BXCAN device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the "STM32 Flash memory
support" (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic "Flash device dri-
vers" (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32X0G board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

2873

STM32X0G-EVAL Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including RedBoot.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the STM32 only
supports two such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check it
has not set unnecessary extra breakpoints such as at main(). Some JTAG devices give the option of whether to set hardware
or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Normally, a notable disadvantage with JTAG debugging is that it does not allow thread-aware debugging, such as the ability
to inspect different eCos threads or their stack backtraces, set thread-specific breakpoints, and so on. Fortunately the Ronetix
PEEDI JTAG unit does support thread-aware debugging of eCos applications, however extra configuration steps are required.
Consult the PEEDI documentation for more details as usage is beyond the scope of this document.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.stm3220g.cfg or peedi.stm3240g.cfg file supplied in the platform HAL pack-
age should be used to setup and configure the hardware to an appropriate state to load programs. This includes setting up the
clocks, GPIO lines, and FSMC memory controller for off-chip SRAM.

The peedi.stm3220g.cfg and peedi.stm3240g.cfg files also contain an option to define whether hardware or
software breakpoints are used by default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied
version of the file defaults to software breakpoints. With this default, hardware breakpoints can still be set from GDB using
the hbreak command, or in the eCosPro version of Eclipse by setting the Breakpoint Type - consult the “eCosPro CDT plug-
in user's guide” manual for details. The default can be changed to hardware breakpoints, and remember to use the reboot
command on the PEEDI command line interface, or press the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the relevant peed-
i.stm3220g.cfg or peedi.stm3240g.cfg file, and halts the target. This behaviour is repeated with the reset com-
mand.

If the board is reset either with the 'reset' command, or by pressing the reset button, and then the 'go' command is given,
the board will boot from ROM as normal. A similar effect can be achieved in GDB by connecting with target remote and
immediately typing continue or c.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the CORE0_STARTUP_MODE directive in the [TARGET] section of the appropriate peedi.stm3220g.cfg
or peedi.stm3240g.cfg file. This conveniently allows the target to be connected to the JTAG debugger, and be able to
reset it with the reset button, without being required to always type 'go' every time. Finally, it is also possible to set a temporary
default (unless the PEEDI is reset) by giving an argument to the reset command, for example reset run. Use the command
help reset at the PEEDI command prompt for more options.

Suitably configured applications can be loaded either via GDB, or directly via the telnet CLI into RAM for execution. For
example:

stm3220g> memory load tftp://192.168.7.9/test.bin bin 0x64000000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x64000000

2874

STM32X0G-EVAL Platform HAL

loading at 0x64000000
loading at 0x64004000

Successfully loaded 28KB (29064 bytes) in 0.1s
stm3220g> go 0x64000000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

For Eclipse users wishing to debug ROM startup programs resident in Flash, it is worth highlighting that it is possible to use
the eCosCentric Eclipse plugin to automatically reprogram Flash as the load sequence. To do so, you will need to install and
use a TFTP server so that your application can be accessed from the PEEDI from there. You may then use a GDB command
file, as described in more detail in the “eCosPro CDT plug-in user's guide” manual. This file can then contain contents similar
to the following example:

define doload
 shell arm-eabi-objcopy -O binary /path/to/eclipse/workspace/projectname/Debug/myapp /path/to/tftp/server/area/myapp.bin
 monitor flash program tftp://10.1.1.1/myapp.bin bin 0x08000000 erase
 set $pc=0x08000000
end

Obviously you will need to adjust the paths and names for your system and TFTP server requirements.

Configuration of JTAG applications

JTAG applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the
CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel, usually a serial port. An
eCosCentric extension allows diagnostic output to appear in GDB instead. For this to work, you must enable the configuration
option CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package.

For details of using hardware debug with the Eclipse IDE see the “eCos Hardware Debugging” section of the “eCosPro CDT
plug-in user's guide” manual.

2875

STM32X0G-EVAL Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32X0G-EVAL board hardware,
and should be read in conjunction with that specification. The STM32X0G-EVAL platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
stm32x0g_eval_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External RAM

This is located at address 0x64000000 of the memory space, and is 1MiB long. For ROM applications, all of RAM
is available for use. For RAM startup applications, RAM below 0x64008000 is reserved for RedBoot and the top
CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack, the remainder is avail-
able for the application.

Internal RAM

This is located at address 0x20000000 of the memory space, and is 128KiB in size. On the STM3220G, the eCos VSR
table occupies the bottom 388 bytes, with the virtual vector table starting at 0x20000184 and extending to 0x20000284.
On the STM3240G, the eCos VSR table occupies the bottom 392 bytes on the STM3220G, with the virtual vector ta-
ble starting at 0x20000188 and extending to 0x20000288. For ROM, ROMINT, SRAM and JTAG startups, the top
CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The remainder of in-
ternal RAM is available for use by applications.

The STM32F407IG based systems have a block of (close-coupled) SRAM located at address 0x10000000 of the memory
space, and 64KiB in size.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region is
1024KiB in size. ROM applications are by default configured to run from this memory. This memory is managed by
RedBoot's FIS system.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found in the
STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for either 97 (F2 processors) or 98 (F4 processors) entries is reserved.

2876

STM32X0G-EVAL Platform HAL

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000184 (F2) or 0x20000188 (F4).

hal_interrupt_stack This defines the location of the interrupt stack. For ROM and JTAG startups, this is
allocated to the top of internal SRAM, 0x20020000. For RAM startups, it is allocated
to the top of external SRAM, 0x64200000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Diagnostic LEDs
Four LEDs are fitted on the board for diagnostic purposes: LED1 (green), marked as LD1; LED2 (orange) marked as LD2;
LED3 (red) marked as LD3; and LED4 (blue) marked as LD4.

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

 extern void hal_stm32x0_led(char c);

The lowest 4 bits of the argument c correspond to each of the 4 LEDs (with LED1 as the least significant bit).

The platform HAL will automatically light LED1 when the platform initialisation is complete, however the LEDs are free for
application use.

Flash wait states
The STM32X0G-EVAL platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32 Flash programming manual (PM0059) for
appropriate values for different clock speeds or voltages. The default of 3 reflects a supply voltage of 3.3V and HCLK of
120MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built for ROMINT startup, which provided the best performance as both
code and data could remain on-chip.

Example 299.1. stm32x0g_eval Real-time characterization

 Startup, main stack : stack used 348 size 3920
 Startup : Idlethread stack used 84 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.03 microseconds (6 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 5
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

2877

STM32X0G-EVAL Platform HAL

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 4.20 4.00 5.00 0.32 80% 80% Create thread
 1.20 1.00 2.00 0.32 80% 80% Yield thread [all suspended]
 1.20 1.00 2.00 0.32 80% 80% Suspend [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Resume thread
 1.40 1.00 2.00 0.48 60% 60% Set priority
 0.40 0.00 1.00 0.48 60% 60% Get priority
 3.20 3.00 4.00 0.32 80% 80% Kill [suspended] thread
 1.20 1.00 2.00 0.32 80% 80% Yield [no other] thread
 2.00 2.00 2.00 0.00 100% 100% Resume [suspended low prio] thread
 1.00 1.00 1.00 0.00 100% 100% Resume [runnable low prio] thread
 1.20 1.00 2.00 0.32 80% 80% Suspend [runnable] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [only low prio] thread
 1.00 1.00 1.00 0.00 100% 100% Suspend [runnable->not runnable]
 3.20 3.00 4.00 0.32 80% 80% Kill [runnable] thread
 2.40 2.00 3.00 0.48 60% 60% Destroy [dead] thread
 4.60 4.00 6.00 0.72 80% 60% Destroy [runnable] thread
 5.80 5.00 7.00 0.64 40% 40% Resume [high priority] thread
 2.16 2.00 4.00 0.27 85% 85% Thread switch

 0.40 0.00 1.00 0.48 60% 60% Scheduler lock
 1.00 1.00 1.00 0.00 100% 100% Scheduler unlock [0 threads]
 0.99 0.00 1.00 0.02 99% 0% Scheduler unlock [1 suspended]
 0.98 0.00 1.00 0.03 98% 1% Scheduler unlock [many suspended]
 0.98 0.00 1.00 0.05 97% 2% Scheduler unlock [many low prio]

 0.38 0.00 1.00 0.47 62% 62% Init mutex
 1.38 1.00 2.00 0.47 62% 62% Lock [unlocked] mutex
 1.53 1.00 2.00 0.50 53% 46% Unlock [locked] mutex
 1.28 1.00 2.00 0.40 71% 71% Trylock [unlocked] mutex
 1.13 1.00 2.00 0.22 87% 87% Trylock [locked] mutex
 0.41 0.00 1.00 0.48 59% 59% Destroy mutex
 7.66 7.00 8.00 0.45 65% 34% Unlock/Lock mutex

 0.44 0.00 1.00 0.49 56% 56% Create mbox
 0.22 0.00 1.00 0.34 78% 78% Peek [empty] mbox
 1.38 1.00 2.00 0.47 62% 62% Put [first] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek [1 msg] mbox
 1.34 1.00 2.00 0.45 65% 65% Put [second] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [2 msgs] mbox
 1.44 1.00 2.00 0.49 56% 56% Get [first] mbox
 1.44 1.00 2.00 0.49 56% 56% Get [second] mbox
 1.22 1.00 2.00 0.34 78% 78% Tryput [first] mbox
 1.16 1.00 2.00 0.26 84% 84% Peek item [non-empty] mbox
 1.13 1.00 2.00 0.22 87% 87% Tryget [non-empty] mbox
 1.09 1.00 2.00 0.17 90% 90% Peek item [empty] mbox
 1.13 1.00 2.00 0.22 87% 87% Tryget [empty] mbox
 0.06 0.00 1.00 0.12 93% 93% Waiting to get mbox
 0.19 0.00 1.00 0.30 81% 81% Waiting to put mbox
 0.47 0.00 1.00 0.50 53% 53% Delete mbox
 5.00 5.00 5.00 0.00 100% 100% Put/Get mbox

 0.31 0.00 1.00 0.43 68% 68% Init semaphore
 1.06 1.00 2.00 0.12 93% 93% Post [0] semaphore
 1.31 1.00 2.00 0.43 68% 68% Wait [1] semaphore
 1.13 1.00 2.00 0.22 87% 87% Trywait [0] semaphore
 1.13 1.00 2.00 0.22 87% 87% Trywait [1] semaphore
 0.41 0.00 1.00 0.48 59% 59% Peek semaphore
 0.41 0.00 1.00 0.48 59% 59% Destroy semaphore
 4.22 4.00 5.00 0.34 78% 78% Post/Wait semaphore

 0.44 0.00 1.00 0.49 56% 56% Create counter
 0.31 0.00 1.00 0.43 68% 68% Get counter value
 0.19 0.00 1.00 0.30 81% 81% Set counter value
 1.28 1.00 2.00 0.40 71% 71% Tick counter
 0.28 0.00 1.00 0.40 71% 71% Delete counter

 0.34 0.00 1.00 0.45 65% 65% Init flag
 1.19 1.00 2.00 0.30 81% 81% Destroy flag

2878

STM32X0G-EVAL Platform HAL

 1.06 1.00 2.00 0.12 93% 93% Mask bits in flag
 1.19 1.00 2.00 0.30 81% 81% Set bits in flag [no waiters]
 1.75 1.00 2.00 0.38 75% 25% Wait for flag [AND]
 1.72 1.00 2.00 0.40 71% 28% Wait for flag [OR]
 1.66 1.00 2.00 0.45 65% 34% Wait for flag [AND/CLR]
 2.00 2.00 2.00 0.00 100% 100% Wait for flag [OR/CLR]
 0.28 0.00 1.00 0.40 71% 71% Peek on flag

 0.63 0.00 1.00 0.47 62% 37% Create alarm
 1.78 1.00 2.00 0.34 78% 21% Initialize alarm
 1.03 1.00 2.00 0.06 96% 96% Disable alarm
 1.63 1.00 2.00 0.47 62% 37% Enable alarm
 1.22 1.00 2.00 0.34 78% 78% Delete alarm
 1.44 1.00 2.00 0.49 56% 56% Tick counter [1 alarm]
 8.22 8.00 9.00 0.34 78% 78% Tick counter [many alarms]
 2.38 2.00 3.00 0.47 62% 62% Tick & fire counter [1 alarm]
 40.66 40.00 41.00 0.45 65% 34% Tick & fire counters [>1 together]
 9.16 9.00 10.00 0.26 84% 84% Tick & fire counters [>1 separately]
 6.00 6.00 6.00 0.00 100% 100% Alarm latency [0 threads]
 5.45 5.00 6.00 0.49 55% 55% Alarm latency [2 threads]
 5.39 5.00 6.00 0.48 60% 60% Alarm latency [many threads]
 10.01 10.00 11.00 0.01 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 2.23 1.00 3.00 0.00 Clock DSR latency

 224 224 224 (main stack: 877) Thread stack used (1360 total)
 All done, main stack : stack used 877 size 3920
 All done : Idlethread stack used 172 size 2048

Timing complete - 29800 ms total

PASS:<Basic timing OK>
EXIT:<done>

2879

STM32X0G-EVAL Platform HAL

Name
Test Programs — Details

Test Programs
The STM32X0G platform HAL contains some test programs which allow various aspects of the board to be tested.

ADC Test
This program tests the ADC driver for the STM32. The only device connected to the ADC on the board is the potentiometer
connected to ADC3 logical channel 7. Therefore this test primarily tests that. However, in addition it also report the values of the
temperature sensor, Vrefint and Vbat inputs that are sourced on-chip. The option CYGBLD_HAL_CORTEXM_STM32X0G_E-
VAL_TEST_ADC must be enabled to run this test since it needs human interaction.

2880

Chapter 300. STM32F429I-DISCO Platform
HAL

2881

STM32F429I-DISCO Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32F429I_DISCO — eCos Support for the STM32F429I-DISCO Board

Description
The STM32F429I-DISCO board has a STM32F429ZIT6U microcontroller that incorporates 2MiB of internal flash and 256KiB
of internal SRAM. The board also has an additional 8MiB of external SDRAM, plus an I²C touch-panel peripheral, a SPI
motion sensor peripheral, and a USB connector (CN6 “USB USER”).

Since the board is equipped with an on-board ST-LINK/V2 hardware debugger interface (via the CN1 “USB ST-LINK” con-
nector), and there are no UART or Ethernet connections, for typical eCos development test programs are downloaded and
debugged via the SWD hardware debugger in conjunction with the relevant host-side tools.

This documentation describes platform-specific elements of the STM32F429I-DISCO board support within eCos. The STM32
variant HAL documentation covers various topics including HAL support common to STM32 variants, and on-chip device
support. This document complements the STM32 documentation.

Supported Hardware
The STM32F429ZI has three main on-chip memory regions. The device has a SRAM region of 192KiB present at 0x20000000,
and a 2MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). There is also
has another on-chip RAM region of 64KiB present at 0x10000000 that is only accessible via the CPU core. Also, the ST-
M32F429I-DISCO motherboard has 8MiB of SDRAM memory mapped to address 0x90000000.

The STM32 variant HAL includes support for the eight on-chip serial devices which are documented in the variant HAL.
However, the STM32F429I-DISCO motherboard does not provide a standard UART connector. To make use of serial devices
suitable transceiver hardware and connectors would need to be attached via the relevant motherboard P1 or P2 expansion
connectors.

The STM32 variant HAL also includes support for the I²C buses. A single I²C device is instantiated as part of the platform
port, which is for the STMPE811 touch-panel sensor connected via bus I²C3. It is exported to <cyg/io/i2c.h> with the
name hal_stm32f429i_disco_touchpanel in the normal way.

Similarly the STM32 variant HAL includes support for the SPI buses. A single SPI device is instantiated as part of the platform
port, which is for the L3GD20 MEMS (motion sensor) connected via bus SPI5. It is exported via <cyg/io/spi.h> with
the name cyg_stm32f429i_disco_mems in the normal way.

Device drivers are also provided for the STM32 on-chip Ethernet MAC, ADC, BXCAN and SDIO interfaces, but similarly
suitable hardware support via the motherboard P1 and P2 expansion connectors would be needed to utilise the drivers. Addi-
tionally, support is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management of
the STM32's on-chip Flash.

Note

The STM32 variant HAL support for the SDIO interface is currently limited to supporting MMC/SD cards. If the
multi-bit MMC/SD support is used it is recommended that on-chip SRAM transfer buffers are used to avoid RX
overrun or TX underrun due to the slow external SDRAM access speed.

The STM32F4 processor and the STM32F429I-DISCO board provide a wide variety of peripherals, but unless support is
specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3e, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2.

2882

STM32F429I-DISCO Platform HAL

Name
Setup — Preparing the STM32F429I-DISCO Board for eCos Development

Overview
Typically, since the STM32F429I-DISCO motherboard has a built-in ST-LINK/V2 interface providing hardware debug sup-
port, eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then commu-
nicates with the “GDB server” provided by the relevant host ST-LINK/V2 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from SRAM, or where all of the
SRAM and SDRAM is required for application run-time use.

Since the stand-alone STM32F429I-DISCO motherboard has limited I/O there is no support for either RedBoot or GDB stubs
by default.

Nevertheless, it is still possible to program a GDB stub or RedBoot ROM image into on-chip Flash and download and debug
via a serial UART, if pins for the UART are available. In that case, eCos applications are configured for RAM startup and then
downloaded and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE. By default for serial communications,
all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed in the eCos configuration used
for building the GDB stub ROM image.

Preparing ST-LINK/V2 interface
The support for using the on-chip ITM stimulus ports for diagnostic and instrumentation output requires that the ST-LINK/V2
firmware is at least version V2.J17.SO. The firmware for the ST-LINK/V2 interface can be checked, and updated if needed,
using a tool available from STMicroelectronics. The firmware version is also reported when the openocd command is executed
(using a suitable configuration file). For example, the following OpenOCD output reports JTAG v17:

Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748

Unfortunately the official firmware updater is only available for the Windows platform at the moment. From a Windows
machine:

1. Ensure that the Windows PC and STM32F429I-DISCO board are disconnected.

2. Download the STM32 ST-LINK Utility from ST's website.

The page titled “STSW-LINK004 STM32 ST-LINK utility” provides a free download of the utility http://www.st.com/web/
en/catalog/tools/PF258168

3. Install the ST-LINK Utility software on your Windows PC.

Simply unzip the downloaded file stsw-link004.zip and run the STM32 ST-LINK Utility_v3.0.0.exe that
was contained within it. Follow the on-screen instructions. This will install both the utility application and the ST-LINK/
V2 USB driver.

4. Connect the STM32F429I-DISCO board to the PC.

Connect the STM32F429I-DISCO board to the PC using the ST supplied mini-B USB cable. Windows should correct-
ly identify the USB device and load the device driver. Windows Device Manager should now show “STMicroelectron-
ics STLink dongle” under “Universal Serial Bus controllers”.

5. Run the ST-LINK Utility and ensure the ST-LINK firmware is up to date.

From the Windows “Start” menu run the “STM32 ST-LINK Utility”. Click on the connect icon, or select Tar-
get->Connect from the menu. This should confirm that a successful connection can be made to the board. To update the
on-board ST-LINK/V2 firmware select ST-LINK->Firmware Update from the menu. In the ST-LINK dialog box that

2883

http://www.st.com/web/en/catalog/tools/PF258168
http://www.st.com/web/en/catalog/tools/PF258168

STM32F429I-DISCO Platform HAL

then appears click on the Device Connect button. This will likely result in a message “ST-Link is not in DFU mode.
Please restart it.”. In this case simply disconnect the board from the PC and then reconnect it after a couple of seconds, then
click the OK button on the message. In the original ST-Link dialog box click Device Connect again. The dialog box
should now report the current on-board and available firmware versions, and enable you to upgrade the board by pressing
the Yes >>>> button. We have tested the system with firmware version V2.J17.SO and would recommend this version
as a minimum. Clicking Yes >>>> will cause a progress bar in the dialog to be animated and should eventually result
in a “Update Successful” message. You can then close the various dialogs and exit the ST-LINK Utility. Disconnect and
reconnect the board and it is now ready for use with OpenOCD.

Programming ROM images
Since the STM32F429I-DISCO board has a built-in ST-LINK/V2 SWD interface, if the CN4 jumpers are closed then the micro
USB host connection (CN1) and suitable host software (e.g. The OpenOCD package openocd tool) can be used to program
the flash. Normally a default openocd session provides a comand-line via port 4444. Consult the OpenOCD documentation
for more details if a non-default openocd configuration is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2884

STM32F429I-DISCO Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32F429I-DISCO board platform HAL package is loaded automatically when eCos is configured for the
stm32f429i_disco target. It should never be necessary to load this package explicitly. Unloading the package should only
happen as a side effect of switching target hardware.

Startup
The STM32F429I-DISCO board platform HAL package supports five separate startup types:

ROM

This startup type can be used for finished (stand-alone) applications which will be programmed into internal flash at
location 0x08000000. Data and BSS will be put into external SDRAM starting from 0x90000000. The application will
be self-contained with no dependencies on services provided by other software. The program expects to boot from reset
with ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform
all necessary hardware initialization.

ROMINT

This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x20000288. Internal SRAM below this address
is reserved for vector tables. The application will be self-contained with no dependencies on services provided by other
software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the
0x08000000 region. eCos startup code will perform all necessary hardware initialization.

The off-chip SDRAM memory from 0x90000000 is available, but is not referenced by the eCos run-time so is available
for application use if required.

JTAG

This is the startup type used to build applications that are loaded via the hardware debugger interface. The application will
be self-contained with no dependencies on services provided by other software. The program expects to be loaded from
0x90000000 and entered at that address. eCos startup code will perform all necessary hardware initialization, though since
the application is loaded via the hardware debugger interface the host debug environment is responsible for configuring
the necessary I/O state to initialise the off-chip SDRAM.

This is the startup type normally used during application development, since the large SDRAM memory space allows for
larger debug applications where compiler optimisation may be disable, and run-time assert checking enabled.

Note

Executing code from the SDRAM memory has a performance downside. It is significantly slower than ex-
ecution from on-chip SRAM or flash. If performance is an issue then hardware debugging can be used for
any of the startup types if required.

SRAM

This is a variation of the JTAG type that only uses internal memory. The application will be self-contained with no de-
pendencies on services provided by other software. The program expects to be loaded from 0x20000288 and entered at
that address. eCos startup code will perform all necessary hardware initialization. Unlike the JTAG startup no explicit
hardware debugger configuration is needed, since the application (like the ROM and ROMINT startup types) will initialise
the off-chip SDRAM memory.

RAM

For the ST-LINK/V2 enabled STM32F429I-DISCO platform this startup type is unlikely to be used. It is provided for
completeness.

2885

STM32F429I-DISCO Platform HAL

When the board has RedBoot (or a GDB stub ROM) programmed into internal Flash at location 0x08000000 then the
arm-eabi-gdb debugger can communicate with the relevant UART or Ethernet connection to load and debug applications.
An application is loaded into memory from 0x90008000. It is assumed that the hardware has already been initialized by
RedBoot. By default the application will not be stand-alone, and will use the eCos virtual vectors mechanism to obtain
services from RedBoot, including diagnostic output.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

Note

Though, as previously discussed, since the option of hardware debugging is available as standard on the ST-
M32F429I-DISCO platform it is unlikely that the RAM startup type would be used for development.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

The only SPI device instantiated by default is for an L3GD20 MEMS device connected to SPI bus 5 with pin PC1 selected
as the chip select. To disable the device support, the platform HAL contains an option “SPI devices” (CYGPKG_HAL_COR-
TEXM_STM32_STM32F429I_DISCO_SPI) which can be disabled. No other SPI devices are instantiated.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. But the
platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32F429I_DISCO_I2C.
This ensures that the STMPE811 touch-panel device is instantiated and becomes available for applications from <cyg/io/
i2c.h>, and also ensures the STM32's I²C bus 5 is enabled for it.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32F429I-DISCO platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32F429I-DISCO board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

2886

STM32F429I-DISCO Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M4 core of the STM32F429ZI
only supports six such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V2 interface.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. The architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable such use.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

However, when using the STM32F429I-DISCO board via the ST-LINK/V2 interface then it is recommended that the gdb_h-
wdebug_fileio approach is used to provide access to diagnostics via the GDB debug connection. When ITM support is
used it has been observed that the ST-LINK/V2 firmware can drop data, leading to the possibility of confusing output. How-
ever, with care the ITM system can be tuned to provide diagnostic and instrumentation via the host SWD debugger.

Using the ST-LINK/V2 connection allows for a single cable to provide board power, hardware debug support and diagnostic
output.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board ST-LINK/V2 interface available via the USB CN1 con-
nection, with the CN4 links closed to directly connect to the target STM32F429 CPU. When configuring the openocd tool
build, the configure script can be given the option --enable-stlink to provide for ST-LINK support.

An example OpenOCD configuration file openocd.stm32f429i_disco.cfg is provided within the eCos platform HAL
package in the source repository. This will be in the directory packages/hal/cortexm/stm32/stm32f429i_dis-
co/current/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.stm32f429i_disco.cfg
Open On-Chip Debugger 0.9.0 (2015-09-18-16:19)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
adapter speed: 2000 kHz
adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : clock speed 1800 kHz
Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748
Info : using stlink api v2
Info : Target voltage: 2.886506

2887

STM32F429I-DISCO Platform HAL

Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb) monitor reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x0800422c msp: 0x20000c80
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then you will need to define a
“preload” gdb macro to emit the monitor reset halt command to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

If the HAL diagnostics are configured to use ITM, and stimulus port 31 is configured as the HAL diagnostic destination,
then the configuration example above will direct OpenOCD to direct ITM output (and also DWT and ETM) to a file named
tpiu.out in the current directory of the shell which was used to run the openocd command. A more specific filename can
be used by adjusting the OpenOCD configuration file.

To extract the ITM output, the Cortex-M architecture HAL package provides a helper program parseitm in the directory
packages/hal/cortexm/arch/current/host relative to the root of your eCos installation. It can be compiled sim-
ply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, for example:

$ parseitm -p 31 -f itm.out

It will echo all ITM stimulus for that port, continuing to read from the file until interrupted with Ctrl-C. Note that limited buffer
space in debug hardware such as the ST-LINK can result in occasionally missed ITM data. eCosPro provides a workaround
of throttling data within the CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration component
in order to reduce or avoid lost ITM data. For further details, see the note in OpenOCD ITM support.

Similarly, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the default
stimulus port 24 output can be captured. For example, assuming the application cminfo is the ELF file built from an eCos
configuration with ITM instrumentation enabled, and is loaded and run via openocd, then we could run parseitm to capture
instrumentation whilst the program executes, and then view the gathered data using the example instdump tool provided in
the Kernel package.

$ parseitm -p 24 -f tpiu.out > inst.bin
^C
$ instdump -r inst.bin cminfo
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 2:[SCHED:UNLOCK][THREAD 4095][TSHAL 195][TSTICK 0][ARG1:00000002] { ts 195 microseconds }
 3:[SCHED:LOCK][THREAD 4095][TSHAL 346][TSTICK 0][ARG1:00000002] { ts 346 microseconds }
 4:[SCHED:UNLOCK][THREAD 4095][TSHAL 495][TSTICK 0][ARG1:00000002] { ts 495 microseconds }
 5:[THREAD:RESUME][THREAD 1][TSHAL 647][TSTICK 0][ARG1:200045D0][ARG2:200045D0] { ts 647 microseconds }
 6:[SCHED:LOCK][THREAD 1][TSHAL 795][TSTICK 0][ARG1:00000002] { ts 795 microseconds }
 7:[MLQ:ADD][THREAD 1][TSHAL 945][TSTICK 0][ARG1:200045D0][ARG2:0000001F] { ts 945 microseconds }
 8:[SCHED:UNLOCK][THREAD 1][TSHAL 1096][TSTICK 0][ARG1:00000002] { ts 1096 microseconds }
 9:[INTR:ATTACH][THREAD 1][TSHAL 0][TSTICK 0][ARG1:00000000] { ts 10000 microseconds }
 10:[INTR:UNMASK][THREAD 1][TSHAL 149][TSTICK 0][ARG1:00000000] { ts 10149 microseconds }
 11:[INTR:ATTACH][THREAD 1][TSHAL 305][TSTICK 0][ARG1:00000054] { ts 10305 microseconds }
 12:[INTR:UNMASK][THREAD 1][TSHAL 449][TSTICK 0][ARG1:00000054] { ts 10449 microseconds }

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM or SDRAM without requiring a ROM monitor. Loading can be
done directly through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

2888

STM32F429I-DISCO Platform HAL

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the
CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric ex-
tension allows diagnostic output to appear in GDB, which is normally required for the STM32F429I-DISCO plat-
form since it has no serial ports available. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. Then, after you load your application but be-
fore running it, you must give GDB the command:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define postload
 set hwdebug on
end

They may then reference it from their Eclipse debug launch configuration. Using GDB command files is described in more
detail in the "Eclipse/CDT for eCos application development" manual.

2889

STM32F429I-DISCO Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32F429I-DISCO board hardware,
and should be read in conjunction with that specification. The STM32F429I-DISCO platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMINT, SRAM and JTAG startup types the HAL will perform additional initialization, programming the various
internal registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found
in the src/stm32f429i_disco_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM

This is located at address 0x20000000 of the memory space, and is 192KiB in size. The eCos VSR table occupies the
bottom 392 bytes of memory, with the virtual vector table starting at 0x200001AC and extending to 0x200002AC.
For ROM, ROMINT, SRAM and JTAG startups, the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are
reserved for the interrupt stack. The remainder of internal RAM is available for use by applications.

For all configurations there is also a block of (close-coupled) SRAM located at address 0x10000000 of the memory
space, and 64KiB in size.

External RAM

This is located at address 0x90000000 of the memory space, and is 8MiB long. For ROM applications, all of the SDRAM
is available for use. For JTAG applications the application is loaded from 0x90000000 with the remaining SDRAM
after the code+data available for application use.

For RAM startup applications, SDRAM below 0x90008000 is reserved for RedBoot and the top CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack, the remainder is available for the appli-
cation.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region
is 2048KiB in size. ROM and ROMINT applications are by default configured to run from this memory.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found
in the STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 98 entries is reserved.

2890

STM32F429I-DISCO Platform HAL

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x200001AC.

hal_interrupt_stack This defines the location of the interrupt stack. For ROM, ROMINT, SRAM and JTAG
startups, this is allocated to the top of internal SRAM, 0x20030000. For RAM startups,
it is allocated to the top of external SDRAM, 0x90800000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Diagnostic LEDs
Two LEDs are fitted on the board for diagnostic purposes: LED0 (green), marked as LD3; and LED1 (red) marked as LD4.

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

extern void hal_stm32f429i_disco_led(char c);

The lowest 2-bits of the argument c correspond to each of the 2 LEDs (with LED0 as the least significant bit).

The platform HAL will automatically light LED0 when the platform initialisation is complete, however the LEDs are free for
application use.

Flash wait states
The STM32F429I-DISCO platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32 Flash programming manual (PM0081) for
appropriate values for different clock speeds or voltages. The default of 5 reflects a supply voltage of 3.3V and HCLK of
168MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for SRAM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 300.1. stm32f429i_disco Real-time characterization

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 4.00 microseconds (4 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 8
 Thread switches: 128
 Mutexes: 16
 Mailboxes: 16
 Semaphores: 16
 Scheduler operations: 128
 Counters: 16
 Flags: 16
 Alarms: 16
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========

2891

STM32F429I-DISCO Platform HAL

 4.63 4.00 5.00 0.47 62% 37% Create thread
 1.00 1.00 1.00 0.00 100% 100% Yield thread [all suspended]
 1.00 1.00 1.00 0.00 100% 100% Suspend [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Resume thread
 1.38 1.00 2.00 0.47 62% 62% Set priority
 0.38 0.00 1.00 0.47 62% 62% Get priority
 2.75 2.00 3.00 0.38 75% 25% Kill [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [no other] thread
 1.38 1.00 2.00 0.47 62% 62% Resume [suspended low prio] thread
 0.88 0.00 1.00 0.22 87% 12% Resume [runnable low prio] thread
 1.13 1.00 2.00 0.22 87% 87% Suspend [runnable] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [only low prio] thread
 1.00 1.00 1.00 0.00 100% 100% Suspend [runnable->not runnable]
 2.63 2.00 3.00 0.47 62% 37% Kill [runnable] thread
 2.25 2.00 3.00 0.38 75% 75% Destroy [dead] thread
 4.25 4.00 5.00 0.38 75% 75% Destroy [runnable] thread
 4.75 4.00 5.00 0.38 75% 25% Resume [high priority] thread
 1.61 1.00 3.00 0.49 59% 39% Thread switch

 0.21 0.00 1.00 0.33 78% 78% Scheduler lock
 0.78 0.00 1.00 0.34 78% 21% Scheduler unlock [0 threads]
 0.79 0.00 1.00 0.33 78% 21% Scheduler unlock [1 suspended]
 0.76 0.00 1.00 0.37 75% 24% Scheduler unlock [many suspended]
 0.77 0.00 1.00 0.36 76% 23% Scheduler unlock [many low prio]

 0.31 0.00 1.00 0.43 68% 68% Init mutex
 1.13 1.00 2.00 0.22 87% 87% Lock [unlocked] mutex
 1.13 1.00 2.00 0.22 87% 87% Unlock [locked] mutex
 1.00 1.00 1.00 0.00 100% 100% Trylock [unlocked] mutex
 0.94 0.00 1.00 0.12 93% 6% Trylock [locked] mutex
 0.25 0.00 1.00 0.38 75% 75% Destroy mutex
 5.00 5.00 5.00 0.00 100% 100% Unlock/Lock mutex

 0.44 0.00 1.00 0.49 56% 56% Create mbox
 0.13 0.00 1.00 0.22 87% 87% Peek [empty] mbox
 1.06 1.00 2.00 0.12 93% 93% Put [first] mbox
 0.00 0.00 0.00 0.00 100% 100% Peek [1 msg] mbox
 1.06 1.00 2.00 0.12 93% 93% Put [second] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [2 msgs] mbox
 1.25 1.00 2.00 0.38 75% 75% Get [first] mbox
 1.00 1.00 1.00 0.00 100% 100% Get [second] mbox
 1.00 1.00 1.00 0.00 100% 100% Tryput [first] mbox
 0.88 0.00 1.00 0.22 87% 12% Peek item [non-empty] mbox
 1.00 1.00 1.00 0.00 100% 100% Tryget [non-empty] mbox
 0.94 0.00 1.00 0.12 93% 6% Peek item [empty] mbox
 0.94 0.00 1.00 0.12 93% 6% Tryget [empty] mbox
 0.19 0.00 1.00 0.30 81% 81% Waiting to get mbox
 0.31 0.00 1.00 0.43 68% 68% Waiting to put mbox
 0.38 0.00 1.00 0.47 62% 62% Delete mbox
 3.00 3.00 3.00 0.00 100% 100% Put/Get mbox

 0.19 0.00 1.00 0.30 81% 81% Init semaphore
 0.94 0.00 1.00 0.12 93% 6% Post [0] semaphore
 0.94 0.00 1.00 0.12 93% 6% Wait [1] semaphore
 1.00 1.00 1.00 0.00 100% 100% Trywait [0] semaphore
 0.88 0.00 1.00 0.22 87% 12% Trywait [1] semaphore
 0.25 0.00 1.00 0.38 75% 75% Peek semaphore
 0.25 0.00 1.00 0.38 75% 75% Destroy semaphore
 3.00 3.00 3.00 0.00 100% 100% Post/Wait semaphore

 0.44 0.00 1.00 0.49 56% 56% Create counter
 0.50 0.00 1.00 0.50 100% 50% Get counter value
 0.19 0.00 1.00 0.30 81% 81% Set counter value
 1.13 1.00 2.00 0.22 87% 87% Tick counter
 0.25 0.00 1.00 0.38 75% 75% Delete counter

 0.25 0.00 1.00 0.38 75% 75% Init flag
 1.00 1.00 1.00 0.00 100% 100% Destroy flag
 1.00 1.00 1.00 0.00 100% 100% Mask bits in flag
 1.00 1.00 1.00 0.00 100% 100% Set bits in flag [no waiters]
 1.44 1.00 2.00 0.49 56% 56% Wait for flag [AND]
 1.38 1.00 2.00 0.47 62% 62% Wait for flag [OR]

2892

STM32F429I-DISCO Platform HAL

 1.38 1.00 2.00 0.47 62% 62% Wait for flag [AND/CLR]
 1.31 1.00 2.00 0.43 68% 68% Wait for flag [OR/CLR]
 0.19 0.00 1.00 0.30 81% 81% Peek on flag

 0.63 0.00 1.00 0.47 62% 37% Create alarm
 1.44 1.00 2.00 0.49 56% 56% Initialize alarm
 1.00 1.00 1.00 0.00 100% 100% Disable alarm
 1.69 1.00 2.00 0.43 68% 31% Enable alarm
 1.00 1.00 1.00 0.00 100% 100% Delete alarm
 1.25 1.00 2.00 0.38 75% 75% Tick counter [1 alarm]
 3.63 3.00 4.00 0.47 62% 37% Tick counter [many alarms]
 2.06 2.00 3.00 0.12 93% 93% Tick & fire counter [1 alarm]
 18.38 18.00 19.00 0.47 62% 62% Tick & fire counters [>1 together]
 4.56 4.00 5.00 0.49 56% 43% Tick & fire counters [>1 separately]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [0 threads]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [2 threads]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [many threads]
 6.01 6.00 7.00 0.01 99% 99% Alarm -> thread resume latency

 196 172 204 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 796 size 1536
 All done : Idlethread stack used 164 size 1280

Timing complete - 27280 ms total

PASS:<Basic timing OK>
EXIT:<done>

2893

STM32F429I-DISCO Platform HAL

Name
Test Programs — Details

Test Programs
The STM32F429I-DISCO platform HAL contains some test programs which allow various aspects of the board to be tested.

Manual Test
By default the manual test is not built by default. The configuration option
CYGPKG_HAL_CORTEXM_STM32_STM32F429I_DISCO_TESTS_MANUAL should be enabled to allow the test to be
built.

This program tests various aspects of the basic platform port, e.g. flashing LEDs, checking I²C and SPI device access and that
the push-button GPIO operates.

2894

Chapter 301. STM32F746G-DISCO
Platform HAL

2895

STM32F746G-DISCO Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32F746G_DISCO — eCos Support for the STM32F746G-DISCO Board

Description
This documentation describes the platform-specific elements of the STM32F746G-DISCO board support within eCos. It should
be read in conjunction with the STM32 variant HAL section, which covers the common functionality shared by all STM32
variants, including eCos HAL features and on-chip device support. In addition ST's “Discovery kit for STM32F7 Series with
STM32F746NG MCU” (ST User Manual id: UM1907) should be consulted for hardware setup and settings.

The board is equipped with an on-board ST-LINK/V2-1 hardware debugger interface (via the CN14 “USB ST-LINK” connec-
tor), which is typically used for eCos application development.

Supported Hardware
The STM32F746NG has two main on-chip memory regions. The device has a SRAM region of 320KiB present at 0x20000000,
and a 1MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). Also, the
STM32F746G-DISCO motherboard has 8MiB of SDRAM memory mapped to address 0x60000000.

The STM32 variant HAL includes support for the eight on-chip serial devices which are documented in the variant HAL.
However, the STM32F746G-DISCO motherboard only provides access to a single UART (no flow control signals, no RS-232
transceiver) via the CN4 connector.

The STM32 variant HAL also includes support for the I²C buses. Two I²C devices are instantiated as part of the platform port,
one for the RK043FN48H touch-panel sensor and another for the WM8994 audio codec. Both are connected via bus I²C3. The
descriptors are exported in the normal way via <cyg/io/i2c.h>, with the names hal_stm32f746g_disco_touch-
panel and hal_stm32f746g_disco_audiocodec respectively.

Similarly the STM32 variant HAL includes support for the SPI buses. Though the discovery board does not provide any SPI
devices as standard.

USB host and peripheral modes are supported on both the FS OTG (connector CN13) and HS OTG (connector CN12) con-
trollers available on the evaluation board. Consult the STM32 variant HAL documentation for USB driver details.

Device drivers are also provided for the STM32 on-chip Ethernet MAC, ADC and SDIO interfaces. Additionally, support
is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management of the STM32's on-
chip Flash.

Note

The STM32 variant HAL support for the SDIO interface is currently limited to supporting MMC/SD cards. If the
multi-bit MMC/SD support is used it is recommended that on-chip SRAM transfer buffers are used to avoid RX
overrun or TX underrun due to the slow external SDRAM access speed.

The STM32F7 processor and the STM32F746G-DISCO board provide a wide variety of peripherals, but unless support is
specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3j, arm-eabi-gdb version 7.8.2, and binutils version 2.23.2.

2896

STM32F746G-DISCO Platform HAL

Name
Setup — Preparing the STM32F746G-DISCO Board for eCos Development

Overview
Typically, since the STM32F746G-DISCO motherboard has a built-in ST-LINK/V2-1 interface providing hardware debug
support, eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then
communicates with the “GDB server” provided by the relevant host ST-LINK/V2-1 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM and SDRAM is required for application run-time use.

If off-chip non-volatile memory (NVM) is used to hold the main application then the board can boot from the internal flash using
a suitable boot loader. For example, the eCosPro BootUp ROM loader, where the BootUp code can start the main application
(after an optional update sequence).

If required, it is still possible to program a GDB stub or RedBoot ROM image into on-chip Flash and download and debug
via a serial connection (using the relevant CN4 pins). In that case, eCos applications are configured for RAM startup and then
downloaded and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE as appropriate.

Preparing ST-LINK/V2-1 interface
The support for using the on-chip ITM stimulus ports for diagnostic and instrumentation output requires that the ST-LINK/
V2-1 firmware is at least version V2.J24.S11. The firmware for the ST-LINK/V2-1 interface can be checked, and updated
if needed, using a tool available from STMicroelectronics. The firmware version is also reported when the openocd command
is executed (using a suitable configuration file). For example, the following OpenOCD output reports JTAG v24:

Info : STLINK v2 JTAG v24 API v2 SWIM v11 VID 0x0483 PID 0x374B

The user should refer to the ST “ST-LINK/V2-1 firmware upgrade” (RN0093) Release Note, which provides detail on the host
requirements for upgrading the ST-Link firmware on Linux, Mac OS X and Windows hosts.

Programming ROM images
Since the STM32F746G-DISCO board has a built-in ST-LINK/V2-1 SWD interface, the USB host connection (CN14) and
suitable host software (e.g. The OpenOCD package openocd tool) can be used to program the flash.

The openocd GDB server can directly program flash based applications from the GDB load command.

Note

The openocd command being used should have been configured and built to support the ST-LINK/V2-1 interface.
This is achieved by specifying the --enable-stlink when configuring the OpenOCD build. Additional information
on running openocd may be found in the OpenOCD notes.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the “bootup.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 4.7.3j) 7.8.2
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018
Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8

2897

STM32F746G-DISCO Platform HAL

Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2898

STM32F746G-DISCO Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32F746G-DISCO board platform HAL package CYGPKG_HAL_CORTEXM_STM32_STM32F746G_DISCO is
loaded automatically when eCos is configured for the stm32f746g_disco target. It should never be necessary to load this
package explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The STM32F746G-DISCO board platform HAL package supports five separate startup types:

ROM This startup type can be used for finished (stand-alone) applications which will be programmed into internal flash at
location 0x08000000. Data and BSS will be put into external SDRAM starting from 0x60000000. The application
will be self-contained with no dependencies on services provided by other software. The program expects to boot
from reset with ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup
code will perform all necessary hardware initialization.

ROMINT This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x200002C8. Internal SRAM below
this address is reserved for vector tables. The application will be self-contained with no dependencies on services
provided by other software. The program expects to boot from reset with ROM mapped at location zero. It will then
transfer control to the 0x08000000 region. eCos startup code will perform all necessary hardware initialization.

The off-chip SDRAM memory from 0x60000000 is available, but is not referenced by the eCos run-time so is
available for application use if required.

JTAG This is the startup type used to build applications that are loaded via the hardware debugger interface. The applica-
tion will be self-contained with no dependencies on services provided by other software. The program expects to
be loaded into off-chip SDRAM from 0x60000000 and entered at that address. eCos startup code will perform all
necessary hardware initialization, though since the application is loaded via the hardware debugger interface the
host debug environment is responsible for configuring the necessary I/O state to initialise the off-chip SDRAM.

This is the startup type normally used during application development, since the large SDRAM memory space
allows for larger debug applications where compiler optimisation may be disabled, and run-time assert checking
enabled.

Note

Executing code from the SDRAM memory has a performance downside. It is significantly slower
than execution from on-chip SRAM or flash. If performance is an issue then hardware debugging can
be used for any of the startup types if required.

SRAM This is a variation of the JTAG type that only uses internal memory. The application will be self-contained with
no dependencies on services provided by other software. The program expects to be loaded from 0x200002C8
and entered at that address. eCos startup code will perform all necessary hardware initialization. Unlike the JTAG
startup no explicit hardware debugger configuration is needed, since the application (like the ROM and ROMINT
startup types) will initialise the off-chip SDRAM memory.

RAM For the ST-LINK/V2-1 enabled STM32F746G-DISCO platform this startup type is unlikely to be used. It is pro-
vided for completeness.

When the board has RedBoot (or a GDB stub ROM) programmed into internal Flash at location 0x08000000
then the arm-eabi-gdb debugger can communicate with a suitably configured UART connection to load and debug
applications. An application is loaded into memory from 0x60008000. It is assumed that the hardware has already
been initialized by RedBoot. By default the application will not be stand-alone, and will use the eCos virtual vectors
mechanism to obtain services from RedBoot, including diagnostic output.

2899

STM32F746G-DISCO Platform HAL

Warning

RedBoot can have an adverse affect on the real-time performance of applications.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

Note

Though, as previously discussed, since the option of hardware debugging is available as standard on the ST-
M32F746G-DISCO platform it is unlikely that the RAM startup type would be used for development.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

No SPI devices are instantiated for this platform by default.

Note

An example SPI M25PXX configuration can be enabled for boards suitably modified with an attached compati-
ble flash device. The CDL option CYGPKG_HAL_CORTEXM_STM32_STM32F746G_DISCO_SPI can be en-
abled, and uses SPI bus 2 with the chip-select on PI0.

When configured the m25pxx_flash_device device is exported and can be accessed via the standard flash
API. The device is given a logical base address of 0x00000000 but is not memory-mapped.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. Howev-
er, the platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32F746G_DIS-
CO_I2C. This enables I²C buses 1 and 3. The instantiated devices become available for applications via <cyg/io/i2c.h>.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32F746G-DISCO board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

Ethernet Driver
The Ethernet MAC is connected to a LAN8742A PHY via the RMII interface and thence to a RJ45 connector at CN9. The
external 25MHz crystal is used to supply the clock.

2900

STM32F746G-DISCO Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M7 core of the STM32F746NG
only supports eight such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as
Eclipse, check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of
whether to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V2-1 inter-
face.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. The architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable such use.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

However, when using the STM32F746G-DISCO board via the ST-LINK/V2-1 interface then it is recommended that the
gdb_hwdebug_fileio approach is used to provide access to diagnostics via the GDB debug connection. When ITM sup-
port is used it has been observed that the ST-LINK/V2-1 firmware can drop data, leading to the possibility of confusing output.
However, with care the ITM system can be tuned to provide diagnostic and instrumentation via the host SWD debugger.

Using the ST-LINK/V2-1 connection allows for a single cable to provide power, hardware debug support and diagnostic output.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board ST-LINK/V2-1 interface available via the USB CN14
connection. When configuring the openocd tool build, the configure script can be given the option --enable-stlink to
provide for ST-LINK support.

An example OpenOCD configuration file openocd.stm32f746g_disco.cfg is provided within the eCos platform HAL
package in the source repository. This will be in the directory packages/hal/cortexm/stm32/stm32f746g_dis-
co/current/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.stm32f746g_disco.cfg
Open On-Chip Debugger 0.9.0 (2015-08-26-09:13)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
adapter speed: 2000 kHz
adapter_nsrst_delay: 100
srst_only separate srst_nogate srst_open_drain connect_deassert_srst
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : clock speed 1800 kHz
Info : STLINK v2 JTAG v24 API v2 SWIM v11 VID 0x0483 PID 0x374B
Info : using stlink api v2
Info : Target voltage: 3.220472

2901

STM32F746G-DISCO Platform HAL

Info : stm32f7x.cpu: hardware has 8 breakpoints, 4 watchpoints

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then, if required, you can
define a “preload” gdb macro to emit any necessary commands to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

If the HAL diagnostics are configured to use ITM, and stimulus port 31 is configured as the HAL diagnostic destination,
then the configuration example above will direct OpenOCD to direct ITM output (and also DWT and ETM) to a file named
tpiu.out in the current directory of the shell which was used to run the openocd command. A more specific filename can
be used by adjusting the OpenOCD configuration file.

To extract the ITM output, the Cortex-M architecture HAL package provides a helper program parseitm in the directory
packages/hal/cortexm/arch/current/host relative to the root of your eCos installation. It can be compiled sim-
ply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, for example:

$ parseitm -p 31 -f itm.out

and it will echo all ITM stimulus for that port, continuing to read from the file until interrupted with Ctrl-C. Note that lim-
ited buffer space in debug hardware such as the ST-LINK can result in occasionally missed ITM data. eCosPro provides a
workaround of throttling data within the CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration
component in order to reduce or avoid lost ITM data. For further details, see the note in OpenOCD ITM support.

Similarly, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the default
stimulus port 24 output can be captured. For example, assuming the application cminfo is the ELF file built from an eCos
configuration with ITM instrumentation enabled, and is loaded and run via openocd, then we could run parseitm to capture
instrumentation whilst the program executes, and then view the gathered data using the example instdump tool provided in
the Kernel package.

$ parseitm -p 24 -f tpiu.out > inst.bin
^C
$ instdump -r inst.bin cminfo
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 2:[SCHED:UNLOCK][THREAD 4095][TSHAL 195][TSTICK 0][ARG1:00000002] { ts 195 microseconds }
 3:[SCHED:LOCK][THREAD 4095][TSHAL 346][TSTICK 0][ARG1:00000002] { ts 346 microseconds }
 4:[SCHED:UNLOCK][THREAD 4095][TSHAL 495][TSTICK 0][ARG1:00000002] { ts 495 microseconds }
 5:[THREAD:RESUME][THREAD 1][TSHAL 647][TSTICK 0][ARG1:200045D0][ARG2:200045D0] { ts 647 microseconds }
 6:[SCHED:LOCK][THREAD 1][TSHAL 795][TSTICK 0][ARG1:00000002] { ts 795 microseconds }
 7:[MLQ:ADD][THREAD 1][TSHAL 945][TSTICK 0][ARG1:200045D0][ARG2:0000001F] { ts 945 microseconds }
 8:[SCHED:UNLOCK][THREAD 1][TSHAL 1096][TSTICK 0][ARG1:00000002] { ts 1096 microseconds }
 9:[INTR:ATTACH][THREAD 1][TSHAL 0][TSTICK 0][ARG1:00000000] { ts 10000 microseconds }
 10:[INTR:UNMASK][THREAD 1][TSHAL 149][TSTICK 0][ARG1:00000000] { ts 10149 microseconds }
 11:[INTR:ATTACH][THREAD 1][TSHAL 305][TSTICK 0][ARG1:00000054] { ts 10305 microseconds }
 12:[INTR:UNMASK][THREAD 1][TSHAL 449][TSTICK 0][ARG1:00000054] { ts 10449 microseconds }

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM or SDRAM without requiring a ROM monitor. Loading can be
done directly through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the

2902

STM32F746G-DISCO Platform HAL

CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric exten-
sion allows diagnostic output to appear in GDB. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. If you are using the graphical configuration
tool then you should then accept any suggested solutions to the subsequent configuration conflicts. Older eCos releases also
required the gdb "set hwdebug on" command to be used to enable GDB or Eclipse console output, but this is no longer required
with the latest tools.

2903

STM32F746G-DISCO Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32F746G-DISCO board hard-
ware, and should be read in conjunction with that specification. The STM32F746G-DISCO platform HAL package comple-
ments the Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target
board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMINT, SRAM and JTAG startup types the HAL will perform additional initialization, programming the various
internal registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found
in the src/stm32f746g_disco_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal RAM This is located at address 0x20000000 of the memory space, and is 320KiB in size. The eCos
VSR table occupies the bottom 456-bytes of memory, with the virtual vector table starting at
0x200001C8 and extending to 0x200002C8.

This memory region comprises three contiguous memory blocks, the DTCM (Data Tightly Cou-
pled Memory), SRAM region 1 and SRAM region 2.

External SDRAM This is located at address 0x60000000 of the memory space, and is 8MiB long. For ROM
applications, all of the SDRAM is available for use. For JTAG applications the application
is loaded from 0x60000000 with the remaining SDRAM after the code+data available for
application use.

For RAM startup applications, SDRAM below 0x60008000 is reserved for the debug monitor
(e.g. RedBoot).

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 1024KiB in size. ROM and ROMINT applications are by
default configured to run from this memory.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 114 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x200001C8.

2904

STM32F746G-DISCO Platform HAL

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, 0x20050000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Flash wait states
The STM32F746G-DISCO platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the relevant STM32 datasheets and programming manuals
for the STM32F746G parts for appropriate values for different clock speeds or voltages. The default of 5 reflects a supply
voltage of 3.3V and HCLK of 180MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for SRAM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 301.1. stm32f746g_disco Real-time characterization

 Startup, main thrd : stack used 360 size 1536
 Startup : Idlethread stack used 84 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 3.03 microseconds (3 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 16
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 1.94 1.00 3.00 0.23 81% 12% Create thread
 0.38 0.00 1.00 0.47 62% 62% Yield thread [all suspended]
 0.44 0.00 1.00 0.49 56% 56% Suspend [suspended] thread
 0.31 0.00 1.00 0.43 68% 68% Resume thread
 0.56 0.00 1.00 0.49 56% 43% Set priority
 0.13 0.00 1.00 0.22 87% 87% Get priority
 1.13 1.00 2.00 0.22 87% 87% Kill [suspended] thread
 0.38 0.00 1.00 0.47 62% 62% Yield [no other] thread
 0.69 0.00 2.00 0.52 56% 37% Resume [suspended low prio] thread
 0.44 0.00 1.00 0.49 56% 56% Resume [runnable low prio] thread
 0.56 0.00 1.00 0.49 56% 43% Suspend [runnable] thread
 0.44 0.00 1.00 0.49 56% 56% Yield [only low prio] thread
 0.50 0.00 1.00 0.50 100% 50% Suspend [runnable->not runnable]
 1.19 1.00 2.00 0.30 81% 81% Kill [runnable] thread
 1.06 1.00 2.00 0.12 93% 93% Destroy [dead] thread
 2.06 2.00 3.00 0.12 93% 93% Destroy [runnable] thread
 2.63 2.00 3.00 0.47 62% 37% Resume [high priority] thread

2905

STM32F746G-DISCO Platform HAL

 0.78 0.00 2.00 0.35 76% 22% Thread switch

 0.13 0.00 1.00 0.22 87% 87% Scheduler lock
 0.34 0.00 1.00 0.45 66% 66% Scheduler unlock [0 threads]
 0.30 0.00 1.00 0.42 70% 70% Scheduler unlock [1 suspended]
 0.26 0.00 1.00 0.38 74% 74% Scheduler unlock [many suspended]
 0.29 0.00 1.00 0.41 71% 71% Scheduler unlock [many low prio]

 0.22 0.00 1.00 0.34 78% 78% Init mutex
 0.50 0.00 1.00 0.50 100% 50% Lock [unlocked] mutex
 0.47 0.00 1.00 0.50 53% 53% Unlock [locked] mutex
 0.47 0.00 1.00 0.50 53% 53% Trylock [unlocked] mutex
 0.44 0.00 1.00 0.49 56% 56% Trylock [locked] mutex
 0.25 0.00 1.00 0.38 75% 75% Destroy mutex
 4.00 4.00 4.00 0.00 100% 100% Unlock/Lock mutex

 0.22 0.00 1.00 0.34 78% 78% Create mbox
 0.13 0.00 1.00 0.22 87% 87% Peek [empty] mbox
 0.50 0.00 1.00 0.50 100% 50% Put [first] mbox
 0.09 0.00 1.00 0.17 90% 90% Peek [1 msg] mbox
 0.47 0.00 1.00 0.50 53% 53% Put [second] mbox
 0.16 0.00 1.00 0.26 84% 84% Peek [2 msgs] mbox
 0.56 0.00 1.00 0.49 56% 43% Get [first] mbox
 0.56 0.00 1.00 0.49 56% 43% Get [second] mbox
 0.50 0.00 1.00 0.50 100% 50% Tryput [first] mbox
 0.44 0.00 1.00 0.49 56% 56% Peek item [non-empty] mbox
 0.47 0.00 1.00 0.50 53% 53% Tryget [non-empty] mbox
 0.44 0.00 1.00 0.49 56% 56% Peek item [empty] mbox
 0.41 0.00 1.00 0.48 59% 59% Tryget [empty] mbox
 0.13 0.00 1.00 0.22 87% 87% Waiting to get mbox
 0.13 0.00 1.00 0.22 87% 87% Waiting to put mbox
 0.25 0.00 1.00 0.38 75% 75% Delete mbox
 2.59 2.00 3.00 0.48 59% 40% Put/Get mbox

 0.16 0.00 1.00 0.26 84% 84% Init semaphore
 0.34 0.00 1.00 0.45 65% 65% Post [0] semaphore
 0.44 0.00 1.00 0.49 56% 56% Wait [1] semaphore
 0.31 0.00 1.00 0.43 68% 68% Trywait [0] semaphore
 0.41 0.00 1.00 0.48 59% 59% Trywait [1] semaphore
 0.16 0.00 1.00 0.26 84% 84% Peek semaphore
 0.19 0.00 1.00 0.30 81% 81% Destroy semaphore
 2.31 2.00 3.00 0.43 68% 68% Post/Wait semaphore

 0.25 0.00 1.00 0.38 75% 75% Create counter
 0.19 0.00 1.00 0.30 81% 81% Get counter value
 0.16 0.00 1.00 0.26 84% 84% Set counter value
 0.59 0.00 1.00 0.48 59% 40% Tick counter
 0.13 0.00 1.00 0.22 87% 87% Delete counter

 0.13 0.00 1.00 0.22 87% 87% Init flag
 0.50 0.00 1.00 0.50 100% 50% Destroy flag
 0.34 0.00 1.00 0.45 65% 65% Mask bits in flag
 0.50 0.00 1.00 0.50 100% 50% Set bits in flag [no waiters]
 0.66 0.00 1.00 0.45 65% 34% Wait for flag [AND]
 0.59 0.00 1.00 0.48 59% 40% Wait for flag [OR]
 0.72 0.00 1.00 0.40 71% 28% Wait for flag [AND/CLR]
 0.66 0.00 1.00 0.45 65% 34% Wait for flag [OR/CLR]
 0.13 0.00 1.00 0.22 87% 87% Peek on flag

 0.25 0.00 1.00 0.38 75% 75% Create alarm
 0.69 0.00 1.00 0.43 68% 31% Initialize alarm
 0.38 0.00 1.00 0.47 62% 62% Disable alarm
 0.69 0.00 1.00 0.43 68% 31% Enable alarm
 0.50 0.00 1.00 0.50 100% 50% Delete alarm
 0.53 0.00 1.00 0.50 53% 46% Tick counter [1 alarm]
 2.19 2.00 3.00 0.30 81% 81% Tick counter [many alarms]
 1.00 1.00 1.00 0.00 100% 100% Tick & fire counter [1 alarm]
 13.06 13.00 14.00 0.12 93% 93% Tick & fire counters [>1 together]
 2.56 2.00 3.00 0.49 56% 43% Tick & fire counters [>1 separately]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [0 threads]
 2.05 2.00 3.00 0.10 94% 94% Alarm latency [2 threads]
 2.62 2.00 3.00 0.47 61% 38% Alarm latency [many threads]

2906

STM32F746G-DISCO Platform HAL

 4.01 4.00 5.00 0.01 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 1.83 1.00 2.00 0.00 Clock DSR latency

 200 180 212 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 804 size 1536
 All done : Idlethread stack used 172 size 1280

Timing complete - 29740 ms total

PASS:<Basic timing OK>
EXIT:<done>

2907

STM32F746G-DISCO Platform HAL

Name
Test Programs — Details

Test Programs
The STM32F746G-DISCO platform HAL contains some test programs which allow various aspects of the board to be tested.

Manual Test
The manual test is not built by default. The configuration option
CYGBLD_HAL_CORTEXM_STM32F746G_DISCO_TESTS_MANUAL should be enabled to allow the test to be built.

This program tests various aspects of the basic platform port, e.g. checking I²C device access and that the push-button GPIO
operates.

2908

Chapter 302. STM32H735-DISCO Platform
HAL

2909

STM32H735-DISCO Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32H735_DISCO — eCos Support for the STM32H735-DISCO Board

Description
This documentation describes the platform-specific elements of the STM32H735-DISCO board support within eCos. It should
be read in conjunction with the STM32 variant HAL section, which covers the common functionality shared by all STM32 vari-
ants, including eCos HAL features and on-chip device support. In addition ST's “Discovery kit with STM32H735IG MCU” (ST
User Manual id: UM2679) should be consulted for hardware setup and settings.

The board is equipped with an on-board ST-LINK/V2-1 hardware debugger interface (via the CN15 “USB ST-LINK” connec-
tor), which is typically used for eCos application development.

Supported Hardware
The STM32H735IG has two main on-chip memory regions. The device has a SRAM region of 320KiB present at 0x24000000,
and a 1MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). A 512Mbit
MX25LM51245G Octo SPI flash device is available through the OCTOSPI controller.

The STM32 variant HAL includes support for the eleven on-chip serial devices which are documented in the variant HAL.
However, the STM32H735-DISCO motherboard only provides direct access to a single UART (no flow control signals, no
RS-232 transceiver) via the CN8 connector. Indirect access to another UART is available via the ST-LINK hardware debugger.

The STM32 variant HAL also includes support for the I²C buses. There are no I²C devices on the board that eCos supports.
I²C bus 4 is available on CN4.

Similarly the STM32 variant HAL includes support for the SPI buses. The discovery board does not provide any SPI devices
as standard, but SPI bus 5 is available on CN4.

Device drivers are also provided for the STM32 on-chip Ethernet MAC and ADC controllers. Additionally, support is provided
for the on-chip watchdog, and a Flash driver exists to permit management of the STM32's on-chip Flash.

The STM32H7 processor and the STM32H735-DISCO board provide a wide variety of peripherals, but unless support is
specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 7.3.0d, arm-eabi-gdb version 8.1, and binutils version 2.30.

2910

STM32H735-DISCO Platform HAL

Name
Setup — Preparing the STM32H735-DISCO Board for eCos Development

Overview
Typically, since the STM32H735-DISCO motherboard has a built-in ST-LINK/V2-1 interface providing hardware debug sup-
port, eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then commu-
nicates with the “GDB server” provided by the relevant host ST-LINK/V2-1 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM is required for application run-time use.

If off-chip non-volatile memory (NVM) is used to hold the main application then the board can boot from the internal flash using
a suitable boot loader. For example, the eCosPro BootUp ROM loader, where the BootUp code can start the main application
(after an optional update sequence).

Preparing Board for Use
The STM32H735-DISCO board is distributed with some example firmware already loaded into the flash. This is useful for
checking that the board is functional after unpacking. However, it is recommended that it be replaced before loading eCos
applications for development since it can interfere with the board setup that eCos applications expect.

An executable, stminfo.elf, is provided as part of the release within the prebuilt subdirectory of the eCosPro release
installation and this should be programmed into the ROM before use. Details on how to do this are described in the Programming
ROM images section below.

Preparing ST-LINK/V3E interface
The ST-LINK/V3E firmware delivered with the board should be sufficiently up to date to work with debug servers like
OpenOCD. The firmware for the ST-LINK/V3E interface can be checked, and updated if needed, using a tool available from
STMicroelectronics. The firmware version is also reported when the openocd command is executed (using a suitable config-
uration file):

Info : STLINK V3J7M2 (API v3) VID:PID 0483:374E

The user should refer to the ST “ST-LINK/V3E firmware upgrade” Release Note, which provides detail on the host require-
ments for upgrading the ST-Link firmware on Linux, Mac OS X and Windows hosts.

Programming ROM images
Since the STM32H735-DISCO board has a built-in ST-LINK/V3E SWD interface, the USB host connection (CN15) and
suitable host software (e.g. The OpenOCD package openocd tool) can be used to program the flash.

The openocd GDB server can directly program flash based applications from the GDB load command.

Note

The openocd command provided with the eCosPro Host Tools has been configured and built to support the
ST-LINK/V3E interface. Should you wish to rebuild openocd yourself, you must specify the --enable-stlink
option when configuring the OpenOCD build. Additional information on running openocd may be found in the
OpenOCD notes.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the stminfo.elf application into the on-chip flash:

$ arm-eabi-gdb stminfo.elf

2911

STM32H735-DISCO Platform HAL

GNU gdb (eCosCentric GNU tools 7.3.0d) 8.1
[… GDB output elided …]
(gdb) target extended-remote localhost:3333
Remote debugging using localhost:3333
=> 0x8000d40: push {r3, r4, r5, r6, r7, lr}
0x08000d40 in ?? ()
(gdb) load
Loading section .rom_vectors, size 0x8 lma 0x8000000
Loading section .text, size 0x3be8 lma 0x8000008
Loading section .rodata, size 0x6bc lma 0x8003bf0
Loading section .data, size 0x1c8 lma 0x80042b0
Start address 0x8000008, load size 17524
Transfer rate: 12 KB/sec, 4381 bytes/write.
(gdb) cont

Following the cont command, the following output should appear on the virtual UART:

INFO:<code from 0x08000008 -> 0x08003bf0, CRC 9425>
INFO:<STM32 CPU information>
INFO:<CDL Cortex-M7>
INFO:<MCU ID 10016483 DEV H72x/H73x REV Z>
INFO:<CPU reports flash size 1024K>
INFO:<Unique-ID: 0030001F 31395119 38323331>
INFO:<Variant Unique-ID maximum length 12>
INFO:<CYGARC_HAL_CORTEXM_STM32_INPUT_CLOCK 25000000>
INFO:<SYSCLK 550000000>
INFO:<HCLK 275000000>
INFO:<PCLK1 137500000>
INFO:<PCLK2 137500000>
INFO:<PCLK3 137500000>
INFO:<PCLK4 137500000>
INFO:<QCLK 68750000>
INFO:<Cortex-M systick 68750000>
PASS:<Done>
EXIT:<done>

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image stminfo.bin 0x08000000
Device: STM32H72x/73x
flash size probed value 1024
STM32H7 flash has a single bank
Bank (0) size is 1024 kb, base address is 0x08000000
Padding image section 0 at 0x08004318 with 8 bytes (bank write end alignment)
wrote 17184 bytes from file app.bin in 0.270935s (61.938 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2912

STM32H735-DISCO Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32H735-DISCO board platform HAL package CYGPKG_HAL_CORTEXM_STM32_STM32H735_DISCO is loaded
automatically when eCos is configured for the stm32h735_disco target. It should never be necessary to load this package
explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The STM32H735-DISCO board platform HAL package supports five separate startup types:

ROM This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x240003CC. Internal SRAM below this
address is reserved for vector tables. The application will be self-contained with no dependencies on services provided
by other software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer
control to the 0x08000000 region. eCos startup code will perform all necessary hardware initialization.

This startup type will normally be used for production applications. It may also be used for development but over-
use of flash during debugging may result in flash wear. It is advised to use the JTAG startup type during development
if possible.

JTAG This is the startup type used to build applications that are loaded via the hardware debugger interface. The applica-
tion will be self-contained with no dependencies on services provided by other software. The program expects to be
loaded into on-chip SRAM from 0x24000000 and entered at that address. eCos startup code will perform all necessary
hardware initialization, though since the application is loaded via the hardware debugger interface the host debug
environment may perform some initialization.

This is the startup type normally used during application development, since it avoids wear on the flash memory.
However, SRAM is only 320kiB and not all applications will fit solely into SRAM. In such cases, a ROM startup
application should be used.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

SPI bus 5 is instantiated at CYGPKG_HAL_CORTEXM_STM32_STM32H735_DISCO_SPI and is available on Arduino head-
er CN4. No SPI devices are instantiated for this platform by default.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. Howev-
er, the platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32H735_DIS-
CO_I2C. This enables I²C bus 4 which is available on Arduino header CN4.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32H735-DISCO board.

2913

STM32H735-DISCO Platform HAL

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

OCTOSPI Flash Driver
When OCTOSPI NOR flash support is enabled in the configuration with CYGHWR_HAL_CORTEXM_STM32_FLASH_OC-
TOSPI, then the cyg_stm32_octospi1_device device is exported and can be accessed via the standard flash API.
The device is given a logical base address to match its physical base address of 0x90000000 (corresponding to FMC bank
4) when it is memory mapped (if CYGFUN_DEVS_FLASH_OCTOSPI1_CORTEXM_STM32_MEMMAPPED is enabled in the
OCTOSPI driver, which is not the default). When memory mapping is disabled, using the eCos Flash API will still allow the
device to be read/written at that logical base address.

Ethernet Driver
The Ethernet MAC is connected to a LAN8742A PHY via the RMII interface and thence to a RJ45 connector at CN3. The
external 25MHz crystal is used to supply the clock.

Note

It is highly recommended that the configuration option CYGHWR_HAL_CORTEXM_STM32_SRAM_ALTER-
NATE is ENABLED. Enabling that feature configures the Ethernet driver RX memory buffers to the SRAM2
space in the D2 domain. This is required to avoid an undocumented STM32H735 revZ errata where the Ethernet
MAC would occasionally (rare) corrupt memory if the AXI SRAM was used for the RX buffers. The downside
of the option is that it will mean a smaller number of RX buffers being available than is possible with the larger
(main) AXI SRAM space.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32H735-DISCO platform HAL enables the support for
all three devices and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

2914

STM32H735-DISCO Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M7 core of the STM32H735IG
only supports eight such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as
Eclipse, check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of
whether to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V3E interface.

Using the ST-LINK/V3E USB connection allows for a single cable to provide power, hardware debug support and diagnostic
output. The latter is provided via a virtual UART which instantiates an ACM compatible serial channel in the host which is
connected to USART2 on the STM32H735IG. A separate application may be run alongside the debugger to capture the output
from this UART, such as minicom under Linux or PuTTY under Windows.

OpenOCD notes

OpenOCD version 0.11.0 and above is required to support the STM32H735IG MCU. A prebuilt host openocd executable
which also supports the on-board ST-LINK/V3E interface available via the USB CN15 connection has been provided with the
eCosPro Host Tools version 5.0.0 and above.

Should you wish to rebuild openocd yourself, you must specify the --enable-stlink option when configuring the
OpenOCD build to provide for ST-LINK support.

An example OpenOCD configuration file openocd.stm32h735_disco.cfg is provided within the eCos platform HAL
package in the source repository. This will be in the directory packages/hal/cortexm/stm32/stm32h735_dis-
co/current/misc relative to the root of your eCosPro installation, but for convenience it is copied into the install/etc
subdirectory as openocd.cfg during the make etc build process of the eCosPro library.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.stm32h735_disco.cfg
Open On-Chip Debugger 0.11.0 (eCosCentric)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : clock speed 1800 kHz
Info : STLINK V3J7M2 (API v3) VID:PID 0483:374E
Info : Target voltage: 3.287824
Info : stm32h7x.cpu0: hardware has 8 breakpoints, 4 watchpoints
Info : starting gdb server for stm32h7x.cpu0 on 3333
Info : Listening on port 3333 for gdb connections

By default openocd provides a telnet console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target extended-remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

OpenOCD should report the following on its terminal when a GDB connection is made:

Info : accepting 'gdb' connection on tcp/3333

2915

STM32H735-DISCO Platform HAL

Initialising CPU...
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x08000d40 msp: 0x2404fc00
force hard breakpoints
Note: Breakpoints limited to 8 hardware breakpoints
Invalidate ICACHE
Invalidate DCACHE
Disable Caches

Info : Device: STM32H72x/73x
Info : flash size probed value 1024
Info : STM32H7 flash has a single bank
Info : Bank (0) size is 1024 kb, base address is 0x08000000

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then, if required, you can
define a “preload” gdb macro to emit any necessary commands to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

Note

Incompatibilities between OpenOCD and the STM32H7 cache support mean that at present only hardware break-
points should be used for debugging. The OpenOCD configuration file provided within the eCosPro Developer's
kit enforces this.

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM without requiring a ROM monitor. Loading can be done directly
through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the
CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric exten-
sion allows diagnostic output to appear in GDB. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. If you are using the graphical configuration
tool then you should then accept any suggested solutions to the subsequent configuration conflicts. Older eCos releases also
required the gdb "set hwdebug on" command to be used to enable GDB or Eclipse console output, but this is no longer required
with the latest tools.

2916

STM32H735-DISCO Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32H735-DISCO board hardware,
and should be read in conjunction with that specification. The STM32H735-DISCO platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. For both ROM and JTAG
startup types the HAL will perform all initialization, programming the various internal registers including the PLLs, peripheral
clocks and GPIO pins. The details of the early hardware startup may be found in the src/stm32h735_disco_misc.c
in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal RAM This is located at address 0x24000000 of the memory space, and is 320KiB in size. The eCos
VSR table occupies the bottom 716-bytes of memory, with the virtual vector table starting at
0x240002CC and extending to 0x240003CC.

This memory region comprises two contiguous memory blocks, the 128kiB AXI-SRAM plus
192kiB of shared SRAM in the default configuration where it is assigned to the AXI-SRAM.

SRAM1 This is located at address 0x30000000 of the memory space, and is 16KiB in size. This is used
to contain the Ethernet transmit and receive descriptor rings. It is mapped by an MPU region
that disables caching for accesses.

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 1024KiB in size. ROM applications are by default config-
ured to run from this memory. The 256kiB from offset 0xC0000 is used for flash testing. The
test space is defined in __STM32H735_DISCO_FLASHTEST_ONCHIP in plf_io.h.

OCTOSPI NOR Flash The OCTOSPI NOR flash is accessible through the flash API. The 256kiB from offset
0x100000 is used for flash testing. The test space is defined in __STM32H735_DIS-
CO_FLASHTEST_OCTOSPI in plf_io.h.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 114 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x200001C8.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, 0x20050000.

2917

STM32H735-DISCO Platform HAL

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Flash wait states
The STM32H735-DISCO platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the relevant STM32 datasheets and programming manuals
for the STM32H735 parts for appropriate values for different clock speeds or voltages. The default of 5 reflects the default
HCLK frequency.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for ROM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 302.1. stm32h735_disco Real-time characterization

 Startup, main thrd : stack used 356 size 2048
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.00 microseconds (1 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 15
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 0.80 0.00 2.00 0.43 66% 26% Create thread
 0.27 0.00 1.00 0.39 73% 73% Yield thread [all suspended]
 0.27 0.00 1.00 0.39 73% 73% Suspend [suspended] thread
 0.27 0.00 1.00 0.39 73% 73% Resume thread
 0.27 0.00 1.00 0.39 73% 73% Set priority
 0.07 0.00 1.00 0.12 93% 93% Get priority
 0.53 0.00 1.00 0.50 53% 46% Kill [suspended] thread
 0.27 0.00 1.00 0.39 73% 73% Yield [no other] thread
 0.27 0.00 1.00 0.39 73% 73% Resume [suspended low prio] thread
 0.27 0.00 1.00 0.39 73% 73% Resume [runnable low prio] thread
 0.33 0.00 1.00 0.44 66% 66% Suspend [runnable] thread
 0.20 0.00 1.00 0.32 80% 80% Yield [only low prio] thread
 0.13 0.00 1.00 0.23 86% 86% Suspend [runnable->not runnable]
 0.47 0.00 1.00 0.50 53% 53% Kill [runnable] thread
 0.47 0.00 1.00 0.50 53% 53% Destroy [dead] thread
 1.07 1.00 2.00 0.12 93% 93% Destroy [runnable] thread
 1.20 1.00 2.00 0.32 80% 80% Resume [high priority] thread
 0.40 0.00 1.00 0.48 60% 60% Thread switch

 0.07 0.00 1.00 0.13 92% 92% Scheduler lock

2918

STM32H735-DISCO Platform HAL

 0.20 0.00 1.00 0.31 80% 80% Scheduler unlock [0 threads]
 0.19 0.00 1.00 0.30 81% 81% Scheduler unlock [1 suspended]
 0.17 0.00 1.00 0.28 82% 82% Scheduler unlock [many suspended]
 0.05 0.00 1.00 0.10 94% 94% Scheduler unlock [many low prio]

 0.09 0.00 1.00 0.17 90% 90% Init mutex
 0.25 0.00 1.00 0.38 75% 75% Lock [unlocked] mutex
 0.25 0.00 1.00 0.38 75% 75% Unlock [locked] mutex
 0.25 0.00 1.00 0.38 75% 75% Trylock [unlocked] mutex
 0.22 0.00 1.00 0.34 78% 78% Trylock [locked] mutex
 0.09 0.00 1.00 0.17 90% 90% Destroy mutex
 2.00 2.00 2.00 0.00 100% 100% Unlock/Lock mutex

 0.13 0.00 1.00 0.22 87% 87% Create mbox
 0.09 0.00 1.00 0.17 90% 90% Peek [empty] mbox
 0.25 0.00 1.00 0.38 75% 75% Put [first] mbox
 0.09 0.00 1.00 0.17 90% 90% Peek [1 msg] mbox
 0.25 0.00 1.00 0.38 75% 75% Put [second] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [2 msgs] mbox
 0.28 0.00 1.00 0.40 71% 71% Get [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Get [second] mbox
 0.25 0.00 1.00 0.38 75% 75% Tryput [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek item [non-empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Tryget [non-empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek item [empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Tryget [empty] mbox
 0.06 0.00 1.00 0.12 93% 93% Waiting to get mbox
 0.06 0.00 1.00 0.12 93% 93% Waiting to put mbox
 0.13 0.00 1.00 0.22 87% 87% Delete mbox
 1.16 1.00 2.00 0.26 84% 84% Put/Get mbox

 0.03 0.00 1.00 0.06 96% 96% Init semaphore
 0.16 0.00 1.00 0.26 84% 84% Post [0] semaphore
 0.25 0.00 1.00 0.38 75% 75% Wait [1] semaphore
 0.19 0.00 1.00 0.30 81% 81% Trywait [0] semaphore
 0.25 0.00 1.00 0.38 75% 75% Trywait [1] semaphore
 0.03 0.00 1.00 0.06 96% 96% Peek semaphore
 0.03 0.00 1.00 0.06 96% 96% Destroy semaphore
 1.00 1.00 1.00 0.00 100% 100% Post/Wait semaphore

 0.06 0.00 1.00 0.12 93% 93% Create counter
 0.09 0.00 1.00 0.17 90% 90% Get counter value
 0.09 0.00 1.00 0.17 90% 90% Set counter value
 0.22 0.00 1.00 0.34 78% 78% Tick counter
 0.06 0.00 1.00 0.12 93% 93% Delete counter

 0.09 0.00 1.00 0.17 90% 90% Init flag
 0.22 0.00 1.00 0.34 78% 78% Destroy flag
 0.19 0.00 1.00 0.30 81% 81% Mask bits in flag
 0.22 0.00 1.00 0.34 78% 78% Set bits in flag [no waiters]
 0.25 0.00 1.00 0.38 75% 75% Wait for flag [AND]
 0.22 0.00 1.00 0.34 78% 78% Wait for flag [OR]
 0.31 0.00 1.00 0.43 68% 68% Wait for flag [AND/CLR]
 0.28 0.00 1.00 0.40 71% 71% Wait for flag [OR/CLR]
 0.06 0.00 1.00 0.12 93% 93% Peek on flag

 0.13 0.00 1.00 0.22 87% 87% Create alarm
 0.31 0.00 1.00 0.43 68% 68% Initialize alarm
 0.16 0.00 1.00 0.26 84% 84% Disable alarm
 0.34 0.00 1.00 0.45 65% 65% Enable alarm
 0.13 0.00 1.00 0.22 87% 87% Delete alarm
 0.28 0.00 1.00 0.40 71% 71% Tick counter [1 alarm]
 0.91 0.00 1.00 0.17 90% 9% Tick counter [many alarms]
 0.41 0.00 1.00 0.48 59% 59% Tick & fire counter [1 alarm]
 5.81 5.00 6.00 0.31 81% 18% Tick & fire counters [>1 together]
 1.06 1.00 2.00 0.12 93% 93% Tick & fire counters [>1 separately]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [0 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [2 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [many threads]
 2.00 2.00 2.00 0.00 100% 100% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

2919

STM32H735-DISCO Platform HAL

 1.00 1.00 1.00 0.00 Clock DSR latency

 204 180 220 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 696 size 2048
 All done : Idlethread stack used 172 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

2920

STM32H735-DISCO Platform HAL

Name
Test Programs — Details

Test Programs
The STM32H735-DISCO platform HAL contains some test programs which allow various aspects of the board to be tested.

ADC Test
There are two tests for the ADC, which may be built by enabling
CYGBLD_HAL_CORTEXM_STM32H735_DISCO_TESTS_ADC.

The adc1 test reads the Vrefint ADC reference voltage, Vsense internal temperature, and Vbat battery voltage from
channels 16, 17 and 18 of ADC3. These are printed out whenever any changes by a significant amount.

The adc2 test reads the same sensors as adc1 and in addition reads channel 10 of ADC1, which is connected to the A0 pin
of Arduino connector CN9. A potentiometer attached to this pin allows various tests of the ADC system to be performed as
prompted by the test itself.

2921

Chapter 303. STM32H7 Nucleo-144
Platform HAL

2922

STM32H7 Nucleo-144 Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_NUCLEO144 — eCos Support for the STM32H7 Nucleo-144 Board

Description
This documentation describes the platform-specific elements of the STM32H7 Nucleo-144 (MB1364) board support within
eCos. It should be read in conjunction with the STM32 variant HAL section, which covers the common functionality shared
by all STM32 variants, including eCos HAL features and on-chip device support. In addition ST's “STM32H7 Nucleo-144
boards” (ST User Manual id: UM2407) should be consulted for hardware setup and settings.

The board is equipped with an on-board ST-LINK-V3 hardware debugger interface (via the CN1 “USB ST-LINK” connector),
which is typically used for eCos application development.

Note

The STM32H7 Nucleo-144 design has multiple motherboard variants and CPU combinations. Currently only the
STM32H723ZG variant is supported by eCos using the nucleo144_stm32h723 platform.

Supported Hardware
The STM32H723ZG has three main on-chip memory regions. The device has a SRAM region of 320KiB present at
0x24000000, a 16K SRAM region at 0x30000000 and a 1MiB FLASH region present at 0x08000000 (which is aliased to
0x00000000 during normal execution).

Optionally a QSPI flash device can be connected to the relevant CN10 pins. When eCos is suitably configured access will be
provided through the OCTOSPI1 controller.

The STM32 variant HAL includes support for the eleven on-chip serial devices which are documented in the variant HAL.
However, the STM32H7 Nucleo-144 (MB1364) motherboard only provides direct access to a single UART (no RS-232 trans-
ceiver) via the CN9 connector. Indirect access to another UART is available via the ST-LINK hardware debugger.

The STM32 variant HAL also includes support for the I²C buses. There are no I²C devices on the board that eCos supports.
I²C bus 1 or 4 is available on CN7. I²C bus 2 or 5 is available on CN9.

Similarly the STM32 variant HAL includes support for the SPI buses. The MB1364 board does not provide any SPI devices
as standard, but SPI bus 1 is available on CN7 (MB1364 label SPI_A).

Device drivers are also provided for the STM32 on-chip Ethernet MAC and ADC controllers. Additionally, support is provided
for the on-chip watchdog, and a Flash driver exists to permit management of the STM32's on-chip Flash.

The STM32H7 processor and the STM32H7 Nucleo-144 board provides for a wide variety of connected peripherals, but unless
support is specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 7.3.0d, arm-eabi-gdb version 8.1, and binutils version 2.30.

2923

STM32H7 Nucleo-144 Platform HAL

Name
Setup — Preparing the STM32H7 Nucleo-144 Board for eCos Development

Overview
Typically, since the STM32H7 Nucleo-144 motherboard has a built-in STLINK-V3 interface providing hardware debug sup-
port, eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then commu-
nicates with the “GDB server” provided by the relevant host STLINK-V3 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM is required for application run-time use.

If off-chip non-volatile memory (NVM) is used to hold the main application then the board can boot from the internal flash using
a suitable boot loader. For example, the eCosPro BootUp ROM loader, where the BootUp code can start the main application
(after an optional update sequence).

Preparing Board for Use
The STM32H7 Nucleo-144 board is distributed with some example firmware already loaded into the flash. This is useful for
checking that the board is functional after unpacking. However, it is recommended that it be replaced before loading eCos
applications for development since it can interfere with the board setup that eCos applications expect.

An executable, stminfo.elf, is provided as part of the release within the prebuilt subdirectory of the eCosPro release
installation and this should be programmed into the ROM before use. Details on how to do this are described in the Programming
ROM images section below.

Preparing the ST-LINK/V3E interface
The ST-LINK/V3E firmware delivered with the board should be sufficiently up to date to work with debug servers like
OpenOCD. The firmware for the ST-LINK/V3E interface can be checked, and updated if needed, using a tool available from
STMicroelectronics. The firmware version is also reported when the openocd command is executed (using a suitable config-
uration file):

Info : STLINK V3J8M3 (API v3) VID:PID 0483:374E

The user should refer to the ST “ST-LINK/V3E firmware upgrade” Release Note, which provides detail on the host require-
ments for upgrading the ST-Link firmware on Linux, Mac OS X and Windows hosts.

Programming ROM images
Since the STM32H7 Nucleo-144 board has a built-in ST-LINK/V3E SWD interface, the USB host connection (CN1) and
suitable host software (e.g. The OpenOCD package openocd tool) can be used to program the flash.

The openocd GDB server can directly program flash based applications from the GDB load command.

Note

The openocd command provided with the eCosPro Host Tools has been configured and built to support the
ST-LINK/V3E interface. Should you wish to rebuild openocd yourself, you must specify the --enable-stlink
option when configuring the OpenOCD build. Additional information on running openocd may be found in the
OpenOCD notes.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the stminfo.elf application into the on-chip flash:

$ arm-eabi-gdb stminfo.elf

2924

STM32H7 Nucleo-144 Platform HAL

GNU gdb (eCosCentric GNU tools 7.3.0d) 8.1
[… GDB output elided …]
(gdb) target extended-remote localhost:3333
Remote debugging using localhost:3333
=> 0x8000d40: push {r3, r4, r5, r6, r7, lr}
0x08000d40 in ?? ()
(gdb) load
Loading section .rom_vectors, size 0x8 lma 0x8000000
Loading section .text, size 0x3be8 lma 0x8000008
Loading section .rodata, size 0x6bc lma 0x8003bf0
Loading section .data, size 0x1c8 lma 0x80042b0
Start address 0x8000008, load size 17524
Transfer rate: 12 KB/sec, 4381 bytes/write.
(gdb) cont

Following the cont command, the following output should appear on the virtual UART:

INFO:<code from 0x08000008 -> 0x08003f00, CRC c29f>
INFO:<STM32 CPU information>
INFO:<CDL Cortex-M7>
INFO:<MCU ID 10016483 DEV H72x/H73x REV Z>
INFO:<CPU reports flash size 1024K>
INFO:<Unique-ID: 000E000F 31395118 38323331>
INFO:<Variant Unique-ID maximum length 12>
INFO:<CYGARC_HAL_CORTEXM_STM32_INPUT_CLOCK 8000000>
INFO:<SYSCLK 400000000>
INFO:<HCLK 200000000>
INFO:<PCLK1 100000000>
INFO:<PCLK2 100000000>
INFO:<PCLK3 100000000>
INFO:<PCLK4 100000000>
INFO:<QCLK 50000000>
INFO:<Cortex-M systick 50000000>
INFO:<Dcache enabled>
INFO:<Icache enabled>
PASS:<Done>
EXIT:<done>

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image stminfo.bin 0x08000000
Padding image section 0 at 0x080047c4 with 28 bytes (bank write end alignment)
wrote 18400 bytes from file stminfo.bin in 0.073288s (245.180 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2925

STM32H7 Nucleo-144 Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32H7 Nucleo-144 board platform HAL package CYGPKG_HAL_CORTEXM_STM32_NUCLEO144 is loaded auto-
matically when eCos is configured for the nucleo144_stm32h723 target. It should never be necessary to load this package
explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The STM32H7 Nucleo-144 board platform HAL package supports two startup types:

ROM This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x240003CC. Internal SRAM below this
address is reserved for vector tables. The application will be self-contained with no dependencies on services provided
by other software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer
control to the 0x08000000 region. eCos startup code will perform all necessary hardware initialization.

This startup type will normally be used for production applications. It may also be used for development but over-
use of flash during debugging may result in flash wear. It is advised to use the JTAG startup type during development
if possible.

JTAG This is the startup type used to build applications that are loaded via the hardware debugger interface. The applica-
tion will be self-contained with no dependencies on services provided by other software. The program expects to be
loaded into on-chip SRAM from 0x24000000 and entered at that address. eCos startup code will perform all necessary
hardware initialization, though since the application is loaded via the hardware debugger interface the host debug
environment may perform some initialization.

This is the startup type normally used during application development, since it avoids wear on the flash memory.
However, SRAM is only 320kiB and not all applications will fit solely into SRAM. In such cases, a ROM startup
application should be used.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

SPI bus 1 is instantiated at CYGPKG_HAL_CORTEXM_STM32_NUCLEO144_SPI and is available on Arduino header CN7.
No SPI devices are instantiated for this platform by default.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. However,
the platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_NUCLEO144_I2C. This
enables I²C bus 4 which is available on Arduino header CN7.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32H7 Nucleo-144 board.

2926

STM32H7 Nucleo-144 Platform HAL

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

OCTOSPI Flash Driver
When OCTOSPI NOR flash support is enabled in the configuration with CYGHWR_HAL_CORTEXM_STM32_FLASH_OC-
TOSPI, then the cyg_stm32_octospi1_device device is exported and can be accessed via the standard flash API.
The device is given a logical base address to match its physical base address of 0x90000000 (corresponding to FMC bank
4) when it is memory mapped (if CYGFUN_DEVS_FLASH_OCTOSPI1_CORTEXM_STM32_MEMMAPPED is enabled in the
OCTOSPI driver, which is not the default). When memory mapping is disabled, using the eCos Flash API will still allow the
device to be read/written at that logical base address.

Ethernet Driver
The Ethernet MAC is connected to a LAN8742A PHY via the RMII interface and thence to a RJ45 connector at CN143. The
external 25MHz crystal X4 is used to supply the clock.

Note

It is highly recommended that the configuration option CYGHWR_HAL_CORTEXM_STM32_SRAM_ALTER-
NATE is ENABLED. Enabling that feature configures the Ethernet driver RX memory buffers to the SRAM2
space in the D2 domain. This is required to avoid an undocumented STM32H723 revZ errata where the Ethernet
MAC would occasionally (rare) corrupt memory if the AXI SRAM was used for the RX buffers. The downside
of the option is that it will mean a smaller number of RX buffers being available than is possible with the larger
(main) AXI SRAM space.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32H7 Nucleo-144 platform HAL enables the support
for all three devices and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

2927

STM32H7 Nucleo-144 Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M7 core of the STM32H723ZG
only supports eight such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as
Eclipse, check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of
whether to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V3E interface.

Using the ST-LINK/V3E USB connection allows for a single cable to provide power, hardware debug support and diagnostic
output. The latter is provided via a virtual UART which instantiates an ACM compatible serial channel in the host which is
connected to USART3 on the STM32H723ZG. A separate application may be run alongside the debugger to capture the output
from this UART, such as minicom under Linux or PuTTY under Windows.

OpenOCD notes

OpenOCD version 0.11.0 and above is required to support the STM32H723ZG MCU. A prebuilt host openocd executable
which also supports the on-board ST-LINK/V3E interface available via the USB CN1 connection has been provided with the
eCosPro Host Tools version 5.0.0 and above.

Should you wish to rebuild openocd yourself, you must specify the --enable-stlink option when configuring the
OpenOCD build to provide for ST-LINK support.

An example OpenOCD configuration file openocd.nucleo144.cfg is provided within the eCos platform HAL package
in the source repository. This will be in the directory packages/hal/cortexm/stm32/nucleo144/current/misc
relative to the root of your eCosPro installation, but for convenience it is copied into the install/etc subdirectory as
openocd.cfg during the make etc build process of the eCosPro library.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.nucleo144_disco.cfg
Open On-Chip Debugger 0.11.0 (eCosCentric)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : clock speed 1800 kHz
Info : STLINK V3J8M3 (API v3) VID:PID 0483:374E
Info : Target voltage: 3.287824
Info : stm32h7x.cpu0: hardware has 8 breakpoints, 4 watchpoints
Info : starting gdb server for stm32h7x.cpu0 on 3333
Info : Listening on port 3333 for gdb connections

By default openocd provides a telnet console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target extended-remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

OpenOCD should report the following on its terminal when a GDB connection is made:

Info : accepting 'gdb' connection on tcp/3333

2928

STM32H7 Nucleo-144 Platform HAL

Initialising CPU...
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x08000d40 msp: 0x2404fc00
force hard breakpoints
Note: Breakpoints limited to 8 hardware breakpoints
Invalidate ICACHE
Invalidate DCACHE
Disable Caches

Info : Device: STM32H72x/73x
Info : flash size probed value 1024
Info : STM32H7 flash has a single bank
Info : Bank (0) size is 1024 kb, base address is 0x08000000

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then, if required, you can
define a “preload” gdb macro to emit any necessary commands to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

Note

Incompatibilities between OpenOCD and the STM32H7 cache support mean that at present only hardware break-
points should be used for debugging. The OpenOCD configuration file provided within the eCosPro Developer's
kit enforces this.

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM without requiring a ROM monitor. Loading can be done directly
through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the
CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric exten-
sion allows diagnostic output to appear in GDB. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. If you are using the graphical configuration
tool then you should then accept any suggested solutions to the subsequent configuration conflicts. Older eCos releases also
required the gdb "set hwdebug on" command to be used to enable GDB or Eclipse console output, but this is no longer required
with the latest tools.

2929

STM32H7 Nucleo-144 Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32H7 Nucleo-144 board hard-
ware, and should be read in conjunction with that specification. The NUCLEO-144 Board HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. For both ROM and JTAG
startup types the HAL will perform all initialization, programming the various internal registers including the PLLs, peripheral
clocks and GPIO pins. The details of the early hardware startup may be found in the src/nucleo144_misc.c in both
hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal RAM This is located at address 0x24000000 of the memory space, and is 320KiB in size. The eCos
VSR table occupies the bottom 716-bytes of memory, with the virtual vector table starting at
0x240002CC and extending to 0x240003CC.

This memory region comprises two contiguous memory blocks, the 128kiB AXI-SRAM plus
192kiB of shared SRAM in the default configuration where it is assigned to the AXI-SRAM.

SRAM1 This is located at address 0x30000000 of the memory space, and is 16KiB in size. This is used
to contain the Ethernet transmit and receive descriptor rings. It is mapped by an MPU region
that disables caching for accesses.

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 1024KiB in size. ROM applications are by default config-
ured to run from this memory. The 256kiB from offset 0xC0000 is used for flash testing. The
test space is defined in __NUCLEO144_FLASHTEST_ONCHIP in plf_io.h.

QSPI NOR Flash The QSPI NOR flash is accessible through the flash API. The 256kiB from offset 0x100000 is
used for flash testing. The test space is defined in __NUCLEO144_FLASHTEST_OCTOSPI
in plf_io.h.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 114 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x240002cc.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, 0x24050000.

2930

STM32H7 Nucleo-144 Platform HAL

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Flash wait states
The STM32H7 Nucleo-144 platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the relevant STM32 datasheets and programming manuals
for the STM32H723 parts for appropriate values for different clock speeds or voltages. The default of 5 reflects the default
HCLK frequency.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for ROM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 303.1. nucleo144_stm32h723 Real-time characterization

 Startup, main thrd : stack used 356 size 2048
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.00 microseconds (1 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 15
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 0.80 0.00 2.00 0.43 66% 26% Create thread
 0.27 0.00 1.00 0.39 73% 73% Yield thread [all suspended]
 0.27 0.00 1.00 0.39 73% 73% Suspend [suspended] thread
 0.27 0.00 1.00 0.39 73% 73% Resume thread
 0.27 0.00 1.00 0.39 73% 73% Set priority
 0.07 0.00 1.00 0.12 93% 93% Get priority
 0.53 0.00 1.00 0.50 53% 46% Kill [suspended] thread
 0.27 0.00 1.00 0.39 73% 73% Yield [no other] thread
 0.27 0.00 1.00 0.39 73% 73% Resume [suspended low prio] thread
 0.27 0.00 1.00 0.39 73% 73% Resume [runnable low prio] thread
 0.33 0.00 1.00 0.44 66% 66% Suspend [runnable] thread
 0.20 0.00 1.00 0.32 80% 80% Yield [only low prio] thread
 0.13 0.00 1.00 0.23 86% 86% Suspend [runnable->not runnable]
 0.47 0.00 1.00 0.50 53% 53% Kill [runnable] thread
 0.47 0.00 1.00 0.50 53% 53% Destroy [dead] thread
 1.07 1.00 2.00 0.12 93% 93% Destroy [runnable] thread
 1.20 1.00 2.00 0.32 80% 80% Resume [high priority] thread
 0.40 0.00 1.00 0.48 60% 60% Thread switch

 0.07 0.00 1.00 0.13 92% 92% Scheduler lock

2931

STM32H7 Nucleo-144 Platform HAL

 0.20 0.00 1.00 0.31 80% 80% Scheduler unlock [0 threads]
 0.19 0.00 1.00 0.30 81% 81% Scheduler unlock [1 suspended]
 0.17 0.00 1.00 0.28 82% 82% Scheduler unlock [many suspended]
 0.05 0.00 1.00 0.10 94% 94% Scheduler unlock [many low prio]

 0.09 0.00 1.00 0.17 90% 90% Init mutex
 0.25 0.00 1.00 0.38 75% 75% Lock [unlocked] mutex
 0.25 0.00 1.00 0.38 75% 75% Unlock [locked] mutex
 0.25 0.00 1.00 0.38 75% 75% Trylock [unlocked] mutex
 0.22 0.00 1.00 0.34 78% 78% Trylock [locked] mutex
 0.09 0.00 1.00 0.17 90% 90% Destroy mutex
 2.00 2.00 2.00 0.00 100% 100% Unlock/Lock mutex

 0.13 0.00 1.00 0.22 87% 87% Create mbox
 0.09 0.00 1.00 0.17 90% 90% Peek [empty] mbox
 0.25 0.00 1.00 0.38 75% 75% Put [first] mbox
 0.09 0.00 1.00 0.17 90% 90% Peek [1 msg] mbox
 0.25 0.00 1.00 0.38 75% 75% Put [second] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [2 msgs] mbox
 0.28 0.00 1.00 0.40 71% 71% Get [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Get [second] mbox
 0.25 0.00 1.00 0.38 75% 75% Tryput [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek item [non-empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Tryget [non-empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek item [empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Tryget [empty] mbox
 0.06 0.00 1.00 0.12 93% 93% Waiting to get mbox
 0.06 0.00 1.00 0.12 93% 93% Waiting to put mbox
 0.13 0.00 1.00 0.22 87% 87% Delete mbox
 1.16 1.00 2.00 0.26 84% 84% Put/Get mbox

 0.03 0.00 1.00 0.06 96% 96% Init semaphore
 0.16 0.00 1.00 0.26 84% 84% Post [0] semaphore
 0.25 0.00 1.00 0.38 75% 75% Wait [1] semaphore
 0.19 0.00 1.00 0.30 81% 81% Trywait [0] semaphore
 0.25 0.00 1.00 0.38 75% 75% Trywait [1] semaphore
 0.03 0.00 1.00 0.06 96% 96% Peek semaphore
 0.03 0.00 1.00 0.06 96% 96% Destroy semaphore
 1.00 1.00 1.00 0.00 100% 100% Post/Wait semaphore

 0.06 0.00 1.00 0.12 93% 93% Create counter
 0.09 0.00 1.00 0.17 90% 90% Get counter value
 0.09 0.00 1.00 0.17 90% 90% Set counter value
 0.22 0.00 1.00 0.34 78% 78% Tick counter
 0.06 0.00 1.00 0.12 93% 93% Delete counter

 0.09 0.00 1.00 0.17 90% 90% Init flag
 0.22 0.00 1.00 0.34 78% 78% Destroy flag
 0.19 0.00 1.00 0.30 81% 81% Mask bits in flag
 0.22 0.00 1.00 0.34 78% 78% Set bits in flag [no waiters]
 0.25 0.00 1.00 0.38 75% 75% Wait for flag [AND]
 0.22 0.00 1.00 0.34 78% 78% Wait for flag [OR]
 0.31 0.00 1.00 0.43 68% 68% Wait for flag [AND/CLR]
 0.28 0.00 1.00 0.40 71% 71% Wait for flag [OR/CLR]
 0.06 0.00 1.00 0.12 93% 93% Peek on flag

 0.13 0.00 1.00 0.22 87% 87% Create alarm
 0.31 0.00 1.00 0.43 68% 68% Initialize alarm
 0.16 0.00 1.00 0.26 84% 84% Disable alarm
 0.34 0.00 1.00 0.45 65% 65% Enable alarm
 0.13 0.00 1.00 0.22 87% 87% Delete alarm
 0.28 0.00 1.00 0.40 71% 71% Tick counter [1 alarm]
 0.91 0.00 1.00 0.17 90% 9% Tick counter [many alarms]
 0.41 0.00 1.00 0.48 59% 59% Tick & fire counter [1 alarm]
 5.81 5.00 6.00 0.31 81% 18% Tick & fire counters [>1 together]
 1.06 1.00 2.00 0.12 93% 93% Tick & fire counters [>1 separately]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [0 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [2 threads]
 1.00 1.00 1.00 0.00 100% 100% Alarm latency [many threads]
 2.00 2.00 2.00 0.00 100% 100% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

2932

STM32H7 Nucleo-144 Platform HAL

 1.00 1.00 1.00 0.00 Clock DSR latency

 204 180 220 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 696 size 2048
 All done : Idlethread stack used 172 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

2933

STM32H7 Nucleo-144 Platform HAL

Name
Test Programs — Details

Test Programs
The eCos NUCLEO-144 Board HAL contains a test program which allow various aspects of the board to be tested.

Manual Test
The simple manual test may be built by enabling CYGPKG_HAL_CORTEXM_STM32_NUCLEO144_TESTS_MANUAL.

The manual test will flash the LEDs and allow track use of the user (normally blue) button B1.

2934

Chapter 304. STM32F4DISCOVERY
Platform HAL

2935

STM32F4DISCOVERY Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32F4DIS — eCos Support for the STM32F4DISCOVERY Board

Description
The STMicroelectronics STM32F4DISCOVERY board has a STM32F407VG microcontroller which incorporates 1MiB of
internal Flash ROM and 128KiB of internal SRAM. The microcontroller also has 64KiB of internal “core coupled” SRAM
for CPU use.

The STM32F4DISCOVERY board has limited I/O interfaces, with most of the I/O signals being propogated via multi-pin
connectors. The STM32F4DIS-BB daughterboard has a connector for Ethernet, a standard DB9 serial port, and a MicroSD
interface. On both the main STMF4DISCOVERY motherboard and the STM32F4DIS-BB daughterboard it is possible to access
signals for UARTs, I²C, and SPI, as well as various other devices.

For the STM32F4DISCOVERY board the expected eCos development model is that programs may be downloaded and de-
bugged via a SWD debugger, normally attached via the on-board USB ST-LINK/V2 connector CN1. This differs from the
traditional eCos development model, where RedBoot or a GDB stub image is programmed into internal FLASH and the CPU
boots directly into that. However, due to the small amount of RAM available, the RAM requirements of a ROM monitor would
further limit the size of applications that could be loaded via such a monitor. Nevertheless it is still possible to program a GDB
stub image into Flash and download and debug eCos applications with the GDB debugger via available UART pins.

This documentation describes platform-specific elements of the STM32F4DISCOVERY board support within eCos. The
STM32 variant HAL documentation covers various topics including HAL support common to STM32 variants, and on-chip
device support. This document complements the STM32 documentation.

Supported Hardware
The STM32F407VG has three on-chip memory regions. A RAM region of 128KiB is present at 0x20000000, a 64KiB core cou-
pled RAM region present at 0x1000000, and a 1MiB FLASH region is present at 0x08000000 which is aliased to 0x00000000
during normal execution.

The STM32 variant HAL includes support for the six on-chip serial devices which are documented in the variant HAL, however
it is assumed that only USART6 is available when the STM32F4DIS-BB daughterboard is present. There is no connection for
hardware flow control (RTS/CTS) lines.

The STM32 variant HAL also includes support for the I²C bus. However the STM32F4DISCOVRY mainboard I²C devices
are not supported due to I/O pin clashes with the STM32F4DIS-BB daughterboard. Instead, testing has been performed using
an external Total Phase Aardvark activity board with on-board I²C EEPROM.

Device drivers are also provided for the STM32 on-chip SPI and MMCSD interfaces, plus the Ethernet MAC. Additionally,
support is provided for the on-chip watchdog, RTC (wallclock), and a Flash driver exists to permit management of the STM32's
on-chip Flash.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.4.5, arm-eabi-gdb version 7.2, and binutils version 2.20.1.

2936

STM32F4DISCOVERY Platform HAL

Name
Setup — Preparing the STM32F4DISCOVERY Board for eCos Development

Overview
Given the limited available RAM memory, it is expected that the most common development method is to use JTAG/SWD
for development, either by loading smaller applications into RAM, or by programming larger applications directly into on-
chip Flash. In the first case, eCos applications should be configured for the JTAG startup type, and in the second case for the
ROM startup type.

Nevertheless, it is still possible to program a GDB stub ROM image into on-chip Flash and download and debug via a serial
UART, if pins for the UART are available. In that case, eCos applications are configured for RAM startup and then downloaded
and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE. For serial communications, all versions run
with 8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed in the eCos configuration used for building
the GDB stub ROM image.

HAL startup types

The following startup types may be selected for applications:

Configuration Description

ROM Programs running from internal FLASH

JTAG Programs running from RAM, loaded via JTAG or SWD debug hardware

RAM Programs loading via a GDB stub ROM and serial connection into RAM

Further details are available later in this manual.

Preparing ST-LINK/V2 interface
The support for using the on-chip ITM stimulus ports for diagnostic and instrumentation output requires that the ST-LINK/V2
firmware is at least version V2.J17.SO. The firmware for the ST-LINK/V2 interface can be checked, and updated if needed,
using a tool available from STMicroelectronics. The firmware version is also reported when the openocd command is executed
(using a suitable configuration file). For example, the following OpenOCD output reports JTAG v17:

Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748

Unfortunately the official firmware updater is only available for the Windows platform at the moment. From a Windows
machine:

1. Ensure that the Windows PC and STM32F4DISCOVERY board are disconnected.

2. Download the STM32 ST-LINK Utility from ST's website.

The page titled “STSW-LINK004 STM32 ST-LINK utility” provides a free download of the utility http://www.st.com/web/
en/catalog/tools/PF258168

3. Install the ST-LINK Utility software on your Windows PC.

Simply unzip the downloaded file stsw-link004.zip and run the STM32 ST-LINK Utility_v3.0.0.exe that
was contained within it. Follow the on-screen instructions. This will install both the utility application and the ST-LINK/
V2 USB driver.

4. Connect the STM32F4DISCOVERY board to the PC.

Connect the STM32F4DISCOVERY board to the PC using the ST supplied mini-B USB cable. Windows should correct-
ly identify the USB device and load the device driver. Windows Device Manager should now show “STMicroelectron-
ics STLink dongle” under “Universal Serial Bus controllers”.

2937

http://www.st.com/web/en/catalog/tools/PF258168
http://www.st.com/web/en/catalog/tools/PF258168

STM32F4DISCOVERY Platform HAL

5. Run the ST-LINK Utility and ensure the ST-LINK firmware is up to date.

From the Windows “Start” menu run the “STM32 ST-LINK Utility”. Click on the connect icon, or select Tar-
get->Connect from the menu. This should confirm that a successful connection can be made to the board. To update the
on-board ST-LINK/V2 firmware select ST-LINK->Firmware Update from the menu. In the ST-LINK dialog box that
then appears click on the Device Connect button. This will likely result in a message “ST-Link is not in DFU mode.
Please restart it.”. In this case simply disconnect the board from the PC and then reconnect it after a couple of seconds, then
click the OK button on the message. In the original ST-Link dialog box click Device Connect again. The dialog box
should now report the current on-board and available firmware versions, and enable you to upgrade the board by pressing
the Yes >>>> button. We have tested the system with firmware version V2.J17.SO and would recommend this version
as a minimum. Clicking Yes >>>> will cause a progress bar in the dialog to be animated and should eventually result
in a “Update Successful” message. You can then close the various dialogs and exit the ST-LINK Utility. Disconnect and
reconnect the board and it is now ready for use with OpenOCD.

Programming ROM images
To program ROM startup applications into Flash, including the GDB stub ROM, a JTAG/SWD debugger that understands the
STM32 flash may be used, such as a Ronetix PEEDI.

However, since the STM32F4DISCOVERY board has a built-in ST-LINK/V2 SWD interface, if the CN3 jumpers are closed
then the micro USB host connection and suitable host software (e.g. The OpenOCD package openocd tool) can be used
to program the flash. Normally a default openocd session provides a comand-line via port 4444. Consult the OpenOCD
documentation for more details if a non-default openocd configuration is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

Programming ROM images with a Ronetix PEEDI

This section describes how to program ROM images using a Ronetix PEEDI debugger.

The PEEDI must be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. It must then be used to download and program the ROM image into the internal flash. The
following steps give a typical outline for doing this. Consult the PEEDI documentation for alternative approaches, such as
using FTP or HTTP instead of TFTP.

Preparing the Ronetix PEEDI JTAG debugger

1. Prepare a PC to act as a host and start a TFTP server on it.

2. Connect the PEEDI JTAG debugger via both serial and ethernet to the host PC and power it on. Use the serial cable supplied
with the PEEDI (straight through, not null modem).

3. Verify the PEEDI is using up-to-date firmware, of version 11.10.1 or later. Older PEEDI firmware does not support the
STM32 F4 family correctly, particularly if wishing to use the PEEDI's own 'flash' commands to modify the on-chip Flash.
If the firmware is not recent enough, follow the PEEDI User Manual's instructions which describe how to update the PEEDI
firmware.

4. Locate the PEEDI configuration file peedi.stm32f4dis.cfg within the eCos platform HAL package in the source
repository. This will be in the directory packages/hal/cortexm/stm32/stm32f4dis/current/misc relative
to the root of your eCos installation.

5. Place the PEEDI configuration file in a location on the PC accessible to the TFTP server. Later you will configure the PEEDI
to load this file via TFTP as its configuration file.

2938

STM32F4DISCOVERY Platform HAL

6. Open peedi.stm32f4dis.cfg in an editor such as emacs or notepad and insert your own license information in the
[LICENSE] section.

7. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring PEEDI's
RedBoot with the network information. Configure it to use the peedi.stm32f4dis.cfg target configuration file on
the TFTP server at the appropriate point of the config process, for example with a path such as: tftp://192.168.7.9/
peedi.stm32f4dis.cfg

8. Reset the PEEDI.

9. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet 192.168.7.225
Trying 192.168.7.225...
Connected to 192.168.7.225.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2011 www.ronetix.at - All rights reserved
Hw:1.2, L:JTAG v1.6 Fw:12.6.1, SN: PD-XXXX-XXXX-XXXX
--

stm32f4discovery>

Preparing the STM32F4DISCOVERY board for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the JTAG device.

If programming a GDB stub ROM or an application which uses serial output, you should first:

1. Connect an adaptor from the serial pins on the board to an RS232 DB9 serial connector or cable, then connect from there
to a serial port on the host computer with a null modem DB9 RS232 serial cable.

2. Start a suitable terminal emulator on the host computer such as minicom on Linux or PuTTY on Windows. Set the com-
munication parameters to 115200 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

For all applications, you must:

1. Connect the board to the PEEDI. Since the STM32F4DISCOVERY does not have a standard ARM Cortex-M connector a
custom connection from the Target port on the PEEDI to the STM32F4DISCOVERY needs to be wired.

Note

This is a direct connection from the PEEDI without any PEEDI adapter installed. Also the STM32F4DIS-
COVERY CN3 jumpers should be removed to disconnect the ST-Link from driving the target STM32F4 SWD
interface.

The following table maps the PEEDI TARGET connector pin numbers to the STM32F4DISCOVERY P1 and P2 connector
pins, and assumes a standard PEEDI PLATFORM = CortexM3_SWD configuration.

 PEEDI TARGET STM32F4DISCOVERY

Vdd 1 P1#3 (VDD)

SWCLK 3 P2#39 (PA14)

SWDIO 7 P2#42 (PA13)

SWO 11 P2#28 (PB3)

nRST 20 P1#6 (NRST)

GND 16 P1#49 (GND)

2939

STM32F4DISCOVERY Platform HAL

2. Power up the STMF4DISCOVERY board.

3. Connect to the PEEDI's telnet CLI on port 23 as before.

4. Confirm correct connection with the PEEDI with the reset reset command as follows:

stm32f4discovery> reset reset
++ info: RESET and TRST asserted
++ info: TRST released
++ info: TAP : IDCODE = 0x2BA01477, Cortex M3 SWD
++ info: RESET released
++ info: core connected
++ info: core 0: initialized
stm32f4discovery>

Installation into Flash

The following describes the procedure for installing a ROM application into on-chip Flash, using the GDB stub ROM image
as an example of such an application.

1. Use arm-eabi-objcopy to convert the linked application, in ELF format, into binary format. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

In the case of the GDB stub ROM image, a prebuilt image is available with the name gdb_module.bin within the
loaders subdirectory of the base of the eCos installation.

2. Copy the binary file (.bin file) into a location on the host computer accessible to its TFTP server.

3. Connect to the PEEDI's telnet interface, and program the image into Flash with the following command, replacing TFT-
P_SERVER with the address of the TFTP server and /BINPATH with the location of the .bin file relative to the TFTP server
root directory. For example for the GDB stub ROM:

stm32f4discovery> flash program tftp://TFTP_SERVER/BINPATH/gdb_module.bin bin 0x08000000 erase
++ info: Programming image file: tftp://TFTP_SERVER/BINPATH/gdb_module.bin
++ info: Programming using agent, buffer = 4096 bytes
++ info: At absolute address: 0x08000000
erasing at 0x08000000 (sector #0)
programming at 0x08000000
programming at 0x08001000
programming at 0x08002000
programming at 0x08003000
erasing at 0x08004000 (sector #1)
programming at 0x08004000

++ info: successfully programmed 20.00 KB in 1.11 sec

stm32f4discovery>

The installation into Flash is now complete. For applications which print output on startup to the USART3 RS232 serial port,
such as the GDB stub ROM application, this can easily by tested by powering off the board, disconnecting the JTAG, and
then powering on the board again. In the case of the GDB stub ROM image, output similar to the following should be visible
(although specific numbers may differ):

$T050f:72250008;0d:f0ff0120;#8a

Rebuilding the GDB stub

Should it prove necessary to rebuild the GDB stub ROM binary, this is done most conveniently at the command line. The
steps needed are:

$ mkdir gdbstub_stm32f4dis
$ cd gdbstub_stm32f4dis
$ ecosconfig new stm32f4dis stubs
[… ecosconfig output elided …]
$ ecosconfig tree
$ make

2940

STM32F4DISCOVERY Platform HAL

At the end of the build, the install/bin subdirectory should contain the file gdb_module.bin. This may be programmed
to the board using the above procedure.

2941

STM32F4DISCOVERY Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32F4DISCOVERY board platform HAL package is loaded automatically when eCos is configured for the
stm32f4dis or stm32f4disbb targets. The stm32f4dis target enables the necessary hardware support for the bare
STM32F4DISCOVERY board, whereas the stm32f4disbb target is intended to support the STM32F4DISCOVERY board
stacked with a “STM32F4DISCOVERY Base Board” (STM32F4DIS-BB). The essential difference between the two targets
being that the Base Board target adds Ethernet support. It should never be necessary to load this package explicitly. Unloading
the package should only happen as a side effect of switching target hardware.

Startup
The STM32F4DISCOVERY board platform HAL package supports three separate startup types:

ROM

This startup type can be used for finished applications which will be programmed into internal Flash ROM at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x20000288. The application will be self-
contained with no dependencies on services provided by other software. The program expects to boot from reset with
ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform
all necessary hardware initialization.

RAM

This is the startup type which is used if relying on a GDB stub ROM image programmed into internal Flash to download and
run applications into RAM via arm-eabi-gdb and a serial UART. RAM from 0x20000000 to 0x20001000 is reserved
for the GDB stub, but then the RAM startup application may be loaded into memory from 0x20001000 and debugged
using GDB. It is assumed that the hardware has already been initialized by the GDB stub ROM. By default the application
will use the eCos virtual vectors mechanism to obtain services from the GDB stub ROM, including diagnostic output.

JTAG

This is the startup type used to build applications that are loaded via a JTAG/SWD interface. The application will be
self-contained with no dependencies on services provided by other software. The program expects to be loaded from
0x20000288 and entered at that address. Memory from 0x20000000 to 0x20000288 is set aside for vector tables.
eCos startup code will perform all necessary hardware initialization.

Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration op-
tion CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB stub ROM (or
RedBoot).

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

UART Serial Driver
The STM32F4DISCOVERY board uses the STM32's internal UART serial support. The HAL diagnostic interface, used for
both polled diagnostic output and GDB stub communication, is only expected to be available to be used on the UART6 port

2942

STM32F4DISCOVERY Platform HAL

(counting the first UART as UART1). The bare STM32F4DISCOVERY board only exports the UART6 connection via con-
nector P2, but the STM32F4DIS-BB daughterboard provides UART6 on the COM1 (DB9) connector.

Note

In reality when using a hardware SWD debugger (e.g. the on-board ST-LINK/V2 interface) it is preferable to
use the on-chip ITM support for HAL diagnostic output. The ITM stimulus port HAL diagnostic interface is
significantly faster than using a UART, and provides for a simpler, single cable, debug and diagnostic connection
to the target board. The use of ITM for HAL diagnostics is configurable in the architecture HAL.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_CORTEXM_STM32 package which
contains all the code necessary to support interrupt-driven operation with greater functionality. All six UARTs can be supported
by this driver. Note that it is not recommended to use this driver with a port at the same time as using that port for HAL
diagnostic I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option (within the generic serial driver
support package CYGPKG_IO_SERIAL) is enabled in the configuration. By default this will only enable support in the driver
for the USART6 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable sup-
port for other serial ports. Note that in this package, serial port numbering starts at 0, rather than 1. So, for example, to enable
the serial driver for ports USART1 and USART2, enable the configuration options "ST STM32 serial port 0 driver" (CYG-
PKG_IO_SERIAL_CORTEXM_STM32_SERIAL0) and "ST STM32 serial port 1 driver" (CYGPKG_IO_SERIAL_COR-
TEXM_STM32_SERIAL1).

Ethernet Driver
The STM32F4DIS-BB daughterboard is fitted with an Ethernet port connected via a SMSC LAN8720 PHY to the STM32's
on-chip Ethernet MAC. This is supported in eCosPro with a driver for the lwIP networking stack, contained in the package
CYGPKG_DEVS_ETH_CORTEXM_STM32. At the present time it only supports the lwIP networking stack, and cannot be used
for either the BSD networking stack or RedBoot.

When using a default eCos configuration the driver will be inactive (not built and greyed out in the eCos Configuration
Tool) since that configuration does not include the networking packages. The driver is enabled when the platform HAL option
"STM32 Ethernet Support" (CYGPKG_HAL_CORTEXM_STM32_STM32F4DIS_ETH0) is enabled. This option in turn is
only active if the "Common Ethernet support" (CYGPKG_IO_ETH_DRIVERS) package is included in your configuration. As
the STM32 ethernet driver is an lwIP-only driver, it is most appropriate to choose the lwip_eth template as a starting point
when choosing an eCos configuration, which will cause the necessary packages to be automatically included.

SPI Driver
An SPI bus driver is available for the STM32 in the package "ST STM32 SPI driver" (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

Two SPI device entries have been created for use, and the SPI devices structures are defined in the file stm32f4dis_spi.c.

The first device is configured for accessing the MEMS (LIS302DL motion Sensor) on SPI bus 1, using pin PE3 as the chip
select.

The second SPI device is for use with the Aardvark SPI test board, which has an SPI EEPROM available. This is only intended
for testing. If used, it is present on SPI bus 2 and will use pin PB14 as the SPI chip select pin.

To disable support for both the above SPI devices, the platform HAL contains an option "SPI devices" (CYGPKG_HAL_COR-
TEXM_STM32_STM32F4DIS_SPI) which can be disabled. No other SPI devices are instantiated.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. However,
the platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32F4DIS_I2C. This

2943

STM32F4DISCOVERY Platform HAL

option is present to allow use of the external Aardvark test board which has an I²C EEPROM fitted that is used for testing
purposes. The option also ensures the STM32's I²C bus 1 is enabled as required.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the "STM32 Flash memo-
ry support" (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic "Flash device dri-
vers" (CYGPKG_IO_FLASH) package is included in the eCos configuration.

The driver will configure itself automatically for the size and parameters of the specific STM32 variant present on
the STM32F4DISCOVERY board. However, if necessary the driver contains a configuration option "Flash size over-
ride (kb)" (CYGNUM_DEVS_FLASH_STM32_FLASH_SIZE_OVERRIDE) which allows the detected Flash size to be man-
ually overriden, but this should not normally need to be changed.

A number of other aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism
and programburst size. Consult the driver for more details.

2944

STM32F4DISCOVERY Platform HAL

Name
JTAG/SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM, including the
GDB stub ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M4 core of the STM32F407VG
only supports six such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V2 interface.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. The architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable such use.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

When using the STM32F4DISCOVERY board via the ST-LINK/V2 interface then it is recommended that the ITM stimulus
port approach is used to provide access to diagnostics and instrumentation over the single USB host connection. This avoids
the need for a seperate, and slower, UART connection for provision of the HAL diagnostic output, plus continuous streaming
instrumentation can be output via ITM where only very small local RAM buffers would normally be available for the default
“memory buffer” instrumentation support. This allows a single cable ST-LINK/V2 connection to provide board power, hard-
ware debug support, diagnostic output and instrumentation capture features.

Normally a notable disadvantage with JTAG/SWD debugging is that it does not allow thread-aware debugging, such as the
ability to inspect different eCos threads or their stack backtraces, set thread-specific breakpoints, and so on. Fortunately the
Ronetix PEEDI JTAG unit does support thread-aware debugging of eCos applications, however extra configuration steps are
required. Consult the PEEDI documentation for more details as usage is beyond the scope of this document.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board ST-LINK/V2 interface available via the USB CN1 con-
nection, with the CN3 links closed to directly connect to the target STM32F407 CPU. When configuring the openocd tool
build, the configure script can be given the option --enable-stlink to provide for ST-LINK support.

An example OpenOCD configuration file openocd.stm32f4dis.cfg is provided within the eCos platform HAL pack-
age in the source repository. This will be in the directory packages/hal/cortexm/stm32/stm32f4dis/cur-
rent/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.stm32f4dis.cfg
Open On-Chip Debugger 0.9.0 (2015-09-18-16:19)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
adapter speed: 2000 kHz

2945

STM32F4DISCOVERY Platform HAL

adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : clock speed 1800 kHz
Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748
Info : using stlink api v2
Info : Target voltage: 2.886506
Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb) monitor reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x0800422c msp: 0x20000c80
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then you will need to define a
“preload” gdb macro to emit the monitor reset halt command to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

If the HAL diagnostics are configured to use ITM, and stimulus port 31 is configured as the HAL diagnostic destination,
then the configuration example above will direct OpenOCD to direct ITM output (and also DWT and ETM) to a file named
tpiu.out in the current directory of the shell which was used to run the openocd command. A more specific filename can
be used by adjusting the OpenOCD configuration file.

To extract the ITM output, the Cortex-M architecture HAL package provides a helper program parseitm in the directory
packages/hal/cortexm/arch/current/host relative to the root of your eCos installation. It can be compiled sim-
ply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, for example:

$ parseitm -p 31 -f itm.out

It will echo all ITM stimulus for that port, continuing to read from the file until interrupted with Ctrl-C. Note that limited buffer
space in debug hardware such as the ST-LINK can result in occasionally missed ITM data. eCosPro provides a workaround
of throttling data within the CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration component
in order to reduce or avoid lost ITM data. For further details, see the note in OpenOCD ITM support.

Similarly, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the default
stimulus port 24 output can be captured. For example, assuming the application cminfo is the ELF file built from an eCos
configuration with ITM instrumentation enabled, and is loaded and run via openocd, then we could run parseitm to capture
instrumentation whilst the program executes, and then view the gathered data using the example instdump tool provided in
the Kernel package.

$ parseitm -p 24 -f tpiu.out > inst.bin
^C
$ instdump -r inst.bin cminfo
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 2:[SCHED:UNLOCK][THREAD 4095][TSHAL 195][TSTICK 0][ARG1:00000002] { ts 195 microseconds }
 3:[SCHED:LOCK][THREAD 4095][TSHAL 346][TSTICK 0][ARG1:00000002] { ts 346 microseconds }
 4:[SCHED:UNLOCK][THREAD 4095][TSHAL 495][TSTICK 0][ARG1:00000002] { ts 495 microseconds }
 5:[THREAD:RESUME][THREAD 1][TSHAL 647][TSTICK 0][ARG1:200045D0][ARG2:200045D0] { ts 647 microseconds }
 6:[SCHED:LOCK][THREAD 1][TSHAL 795][TSTICK 0][ARG1:00000002] { ts 795 microseconds }
 7:[MLQ:ADD][THREAD 1][TSHAL 945][TSTICK 0][ARG1:200045D0][ARG2:0000001F] { ts 945 microseconds }
 8:[SCHED:UNLOCK][THREAD 1][TSHAL 1096][TSTICK 0][ARG1:00000002] { ts 1096 microseconds }
 9:[INTR:ATTACH][THREAD 1][TSHAL 0][TSTICK 0][ARG1:00000000] { ts 10000 microseconds }
 10:[INTR:UNMASK][THREAD 1][TSHAL 149][TSTICK 0][ARG1:00000000] { ts 10149 microseconds }
 11:[INTR:ATTACH][THREAD 1][TSHAL 305][TSTICK 0][ARG1:00000054] { ts 10305 microseconds }

2946

STM32F4DISCOVERY Platform HAL

 12:[INTR:UNMASK][THREAD 1][TSHAL 449][TSTICK 0][ARG1:00000054] { ts 10449 microseconds }

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.stm32f4dis.cfg file supplied in the platform HAL package should be used to setup
and configure the hardware to an appropriate state to load programs.

The peedi.stm32f4dis.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the CORE0_BREAKMODE directive in the [TARGET] section. The supplied version of the file defaults to
software breakpoints. With this default, hardware breakpoints can still be set from GDB using the hbreak command, or in
the eCosPro version of Eclipse by setting the Breakpoint Type - consult the "Eclipse/CDT for eCos application development"
manual for details. The default can be changed to hardware breakpoints, and remember to use the reboot command on the
PEEDI command line interface, or press the reset button to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb. In the case of the latter,
arm-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peed-
i.stm32f4dis.cfg file, and halts the target. This behaviour is repeated with the reset command.

If the board is reset with the 'reset' command, and then the 'go' command is given, the board will boot from ROM as normal.
A similar effect can be achieved in GDB by connecting with target remote and immediately typing continue or c.

It is also possible for the target to always run, without initialization, after reset. This mode is selected with the CORE0_S-
TARTUP_MODE directive in the [TARGET] section of the peedi.stm32f4dis.cfg file. This conveniently allows the
target to be connected to the PEEDI JTAG debugger, and be able to reset and run the resident Flash program without being
required to always type 'go' every time. Finally, it is also possible to set a temporary default (unless the PEEDI is reset) by
giving an argument to the reset command, for example reset run. Use the command help reset at the PEEDI command prompt
for more options.

Suitably configured applications can be loaded either via GDB, or directly via the telnet CLI into RAM for execution. For
example:

stm32f4discovery> memory load tftp://192.168.7.9/test.bin bin 0x20000000
++ info: Loading image file: tftp://192.168.7.9/test.bin
++ info: At absolute address: 0x20000000
loading at 0x20000000
loading at 0x20004000

Successfully loaded 28KB (29064 bytes) in 0.1s
stm32f4discovery> go 0x20000000

Consult the PEEDI documentation for information on other formats and loading mechanisms.

For Eclipse users wishing to debug ROM startup programs resident in Flash, it is worth highlighting that it is possible to use
the eCosCentric Eclipse plugin to automatically reprogram Flash as the load sequence. To do so, you will need to install and
use a TFTP server so that your application can be accessed from the PEEDI from there. You may then use a GDB command
file, as described in more detail in the "Eclipse/CDT for eCos application development" manual. This file can then contain
contents similar to the following example:

define doload
 shell arm-eabi-objcopy -O binary /path/to/eclipse/workspace/projectname/Debug/myapp /path/to/tftp/server/area/myapp.bin
 monitor flash program tftp://10.1.1.1/myapp.bin bin 0x08000000 erase
 set $pc=0x08000000
end

Obviously you will need to adjust the paths and names for your system and TFTP server requirements.

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into RAM without requiring a ROM monitor. Loading can be done directly
through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

2947

STM32F4DISCOVERY Platform HAL

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the
CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel, usually a serial port. An
eCosCentric extension allows diagnostic output to appear in GDB instead. For this to work, you must enable the configuration
option CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. Then, after you load your application
but before running it, you must give GDB the command:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define postload
 set hwdebug on
end

Thay may then reference it from their Eclipse debug launch configuration. Using GDB command files is described in more
detail in the "Eclipse/CDT for eCos application development" manual.

2948

STM32F4DISCOVERY Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32F4DISCOVERY board hard-
ware and should be read in conjunction with that specification. The STM32F4DISCOVERY platform HAL package comple-
ments the Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target
board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM and JTAG startup, the HAL will perform additional initialization, programming the various internal registers in-
cluding the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the src/
stm32f4dis_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM

This is located at address 0x20000000 of the memory space, and is 128KiB in size. The eCos VSR table occupies the
bottom 392-bytes. The virtual vector table starts at 0x20000188 and extends to 0x20000288. For ROM, and JTAG
startups, the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes are reserved for the interrupt stack. The
remainder of internal RAM is available for use by applications.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region
is 1MiB in size. ROM applications are by default configured to run from this memory.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found
in the STM32F4 Reference Manual (RM0090).

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 98 entries is reserved due to the use of the STM32F4 processor.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000188.

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of available internal SRAM, which is normally 0x20020000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

2949

STM32F4DISCOVERY Platform HAL

Diagnostic LEDs
Four LEDs are fitted on the board for diagnostic purposes:

Platform HAL manifest Colour Board Label

CYGHWR_HAL_STM32F4DIS_LED0 Orange LD3

CYGHWR_HAL_STM32F4DIS_LED1 Green LD4

CYGHWR_HAL_STM32F4DIS_LED2 Red LD5

CYGHWR_HAL_STM32F4DIS_LED3 Blue LD6

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

extern void hal_stm32f4dis_led(char c);

The lowest 4-bits of the argument c correspond to each of the 4 LEDs (with LED0 as the least significant bit).

The platform HAL will automatically light LED0 when the platform initialisation is complete, however the LEDs are free for
application use.

Flash wait states
The STM32F4DISCOVERY platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32F40xxx Flash programming manual (PM0081)
for appropriate values for different clock speeds or voltages. The default of 5 reflects a supply voltage of 3.3V and HCLK
of 168MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for JTAG startup with optimization flag -O2.

Example 304.1. stm32f4dis Real-time characterization

 Startup, main stack : stack used 84 size 1536
 Startup : Idlethread stack used 80 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 4.13 microseconds (4 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 6
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1096

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 4.67 4.00 5.00 0.44 66% 33% Create thread

2950

STM32F4DISCOVERY Platform HAL

 1.00 1.00 1.00 0.00 100% 100% Yield thread [all suspended]
 1.00 1.00 1.00 0.00 100% 100% Suspend [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Resume thread
 1.67 1.00 2.00 0.44 66% 33% Set priority
 0.00 0.00 0.00 0.00 100% 100% Get priority
 2.83 2.00 3.00 0.28 83% 16% Kill [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [no other] thread
 1.50 1.00 2.00 0.50 100% 50% Resume [suspended low prio] thread
 1.00 1.00 1.00 0.00 100% 100% Resume [runnable low prio] thread
 1.17 1.00 2.00 0.28 83% 83% Suspend [runnable] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [only low prio] thread
 1.00 1.00 1.00 0.00 100% 100% Suspend [runnable->not runnable]
 2.67 2.00 3.00 0.44 66% 33% Kill [runnable] thread
 2.50 2.00 3.00 0.50 100% 50% Destroy [dead] thread
 4.33 4.00 5.00 0.44 66% 66% Destroy [runnable] thread
 5.17 5.00 6.00 0.28 83% 83% Resume [high priority] thread
 1.86 1.00 2.00 0.24 85% 14% Thread switch

 0.21 0.00 1.00 0.33 78% 78% Scheduler lock
 0.80 0.00 1.00 0.31 80% 19% Scheduler unlock [0 threads]
 0.85 0.00 1.00 0.25 85% 14% Scheduler unlock [1 suspended]
 0.84 0.00 1.00 0.27 83% 16% Scheduler unlock [many suspended]
 0.88 0.00 1.00 0.22 87% 12% Scheduler unlock [many low prio]

 0.22 0.00 1.00 0.34 78% 78% Init mutex
 1.19 1.00 2.00 0.30 81% 81% Lock [unlocked] mutex
 1.44 1.00 2.00 0.49 56% 56% Unlock [locked] mutex
 1.13 1.00 2.00 0.22 87% 87% Trylock [unlocked] mutex
 0.97 0.00 1.00 0.06 96% 3% Trylock [locked] mutex
 0.28 0.00 1.00 0.40 71% 71% Destroy mutex
 6.00 6.00 6.00 0.00 100% 100% Unlock/Lock mutex

 0.44 0.00 1.00 0.49 56% 56% Create mbox
 0.19 0.00 1.00 0.30 81% 81% Peek [empty] mbox
 1.19 1.00 2.00 0.30 81% 81% Put [first] mbox
 0.16 0.00 1.00 0.26 84% 84% Peek [1 msg] mbox
 1.19 1.00 2.00 0.30 81% 81% Put [second] mbox
 0.22 0.00 1.00 0.34 78% 78% Peek [2 msgs] mbox
 1.28 1.00 2.00 0.40 71% 71% Get [first] mbox
 1.19 1.00 2.00 0.30 81% 81% Get [second] mbox
 1.03 1.00 2.00 0.06 96% 96% Tryput [first] mbox
 1.03 1.00 2.00 0.06 96% 96% Peek item [non-empty] mbox
 1.16 1.00 2.00 0.26 84% 84% Tryget [non-empty] mbox
 1.00 1.00 1.00 0.00 100% 100% Peek item [empty] mbox
 1.00 1.00 1.00 0.00 100% 100% Tryget [empty] mbox
 0.22 0.00 1.00 0.34 78% 78% Waiting to get mbox
 0.22 0.00 1.00 0.34 78% 78% Waiting to put mbox
 0.44 0.00 1.00 0.49 56% 56% Delete mbox
 3.84 3.00 4.00 0.26 84% 15% Put/Get mbox

 0.28 0.00 1.00 0.40 71% 71% Init semaphore
 0.97 0.00 1.00 0.06 96% 3% Post [0] semaphore
 1.00 1.00 1.00 0.00 100% 100% Wait [1] semaphore
 0.97 0.00 1.00 0.06 96% 3% Trywait [0] semaphore
 1.00 1.00 1.00 0.00 100% 100% Trywait [1] semaphore
 0.25 0.00 1.00 0.38 75% 75% Peek semaphore
 0.41 0.00 1.00 0.48 59% 59% Destroy semaphore
 3.78 3.00 4.00 0.34 78% 21% Post/Wait semaphore

 0.47 0.00 1.00 0.50 53% 53% Create counter
 0.34 0.00 1.00 0.45 65% 65% Get counter value
 0.16 0.00 1.00 0.26 84% 84% Set counter value
 1.09 1.00 2.00 0.17 90% 90% Tick counter
 0.34 0.00 1.00 0.45 65% 65% Delete counter

 0.31 0.00 1.00 0.43 68% 68% Init flag
 1.09 1.00 2.00 0.17 90% 90% Destroy flag
 0.97 0.00 1.00 0.06 96% 3% Mask bits in flag
 1.00 1.00 1.00 0.00 100% 100% Set bits in flag [no waiters]
 1.56 1.00 2.00 0.49 56% 43% Wait for flag [AND]
 1.50 1.00 2.00 0.50 100% 50% Wait for flag [OR]
 1.56 1.00 2.00 0.49 56% 43% Wait for flag [AND/CLR]

2951

STM32F4DISCOVERY Platform HAL

 1.50 1.00 2.00 0.50 100% 50% Wait for flag [OR/CLR]
 0.25 0.00 1.00 0.38 75% 75% Peek on flag

 0.63 0.00 1.00 0.47 62% 37% Create alarm
 1.63 1.00 2.00 0.47 62% 37% Initialize alarm
 0.97 0.00 1.00 0.06 96% 3% Disable alarm
 1.50 1.00 2.00 0.50 100% 50% Enable alarm
 1.06 1.00 2.00 0.12 93% 93% Delete alarm
 1.25 1.00 2.00 0.38 75% 75% Tick counter [1 alarm]
 8.66 8.00 9.00 0.45 65% 34% Tick counter [many alarms]
 2.22 2.00 3.00 0.34 78% 78% Tick & fire counter [1 alarm]
 39.91 39.00 40.00 0.17 90% 9% Tick & fire counters [>1 together]
 9.59 9.00 10.00 0.48 59% 40% Tick & fire counters [>1 separately]
 4.00 4.00 4.00 0.00 100% 100% Alarm latency [0 threads]
 3.25 3.00 4.00 0.38 75% 75% Alarm latency [2 threads]
 3.22 3.00 4.00 0.34 78% 78% Alarm latency [many threads]
 7.01 7.00 8.00 0.01 99% 99% Alarm -> thread resume latency

 224 220 228 (main stack: 877) Thread stack used (1096 total)
 All done, main stack : stack used 877 size 1536
 All done : Idlethread stack used 168 size 1280

Timing complete - 27850 ms total

PASS:<Basic timing OK>
EXIT:<done>

2952

Chapter 305. STM324X9I-EVAL Platform
HAL

2953

STM324X9I-EVAL Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM324X9I_EVAL — eCos Support for the STM324X9I-EVAL Board

Description
This documentation describes the platform-specific elements of the STM324X9I-EVAL board support within eCos. It should
be read in conjunction with the STM32 variant HAL section, which covers the common functionality shared by all STM32
variants, including eCos HAL features and on-chip device support. In addition ST's "STM32429I-EVAL evaluation board for
the STM32F429 line" (ST User Manual id: UM1667) should be consulted for hardware setup and settings.

The board is equipped with an on-board ST-LINK/V2 hardware debugger interface (via the CN21 “USB ST-LINK” connector),
which is typically used for eCos application development. Alternatively the CN13 trace and CN16 JTAG/SWD connectors are
available for connecting off-board hardware debuggers.

Supported Hardware
The STM32F429NI has three main on-chip memory regions. The device has a SRAM region of 192KiB present at 0x20000000,
and a 2MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). There is another
on-chip RAM region of 64KiB present at 0x10000000 that is only accessible via the CPU core. Also, the STM324X9I-EVAL
motherboard has 32MiB of SDRAM memory mapped to address 0x80000000, 2MiB of SRAM memory mapped to address
0x64000000 and 16MiB of NOR-flash memory mapped to address 0x60000000.

Warning

Prior to silicon Rev3 an errata exists that precludes concurrent use of static and dynamic FMC memories. The
eCos STARTUP type configures which RAM is used for the main application memory, and eCos does not provide
any specific workaround. How the non-eCos memory is used is the domain of the application.

For example, if developing applications for silicon revisions that exhibit the problem then if the memory-mapped
NOR flash is required a STARTUP selecting the off-chip PSRAM should be configured, and the off-chip SDRAM
not accessed.

When targeting this STM324x9I-EVAL platform where an early chip revision is present then the STM32 variant
option CYGHWR_HAL_CORTEXM_STM32_F42_ERRATA_FMC_BANKSWITCH can be enabled. This will en-
sure that the external NOR flash definitions are NOT provided for STARTUP types where SDRAM is selected
for use. Alternatively the application developer is free to leave this ERRATA option disabled and use run-time
logic to ascertain the chip revision from the relevant I/O registers. The application code can then allow NOR
flash access as appropriate.

The STM32 variant HAL includes support for the eight on-chip serial devices which are documented in the variant HAL.
However, the STM324X9I-EVAL motherboard only provides a single standard DB9 UART connector CN8.

The STM32 variant HAL also includes support for the I²C buses. A single I²C device is instantiated as part of the platform
port, which is for the STMPE811 touch-panel sensor connected via bus I²C1. It is exported to <cyg/io/i2c.h> with the
name hal_stm324x9i_eval_touchpanel in the normal way.

Similarly the STM32 variant HAL includes support for the SPI buses. Though the evaluation board does not provide any SPI
devices as standard.

USB host and peripheral modes are supported on both the FS OTG1 (connector CN14) and HS OTG2 (connector CN9) con-
trollers available on the evaluation board. The HS OTG2 controller support is currently limited to use at FS speed only. Consult
the STM32 variant HAL documentation for USB driver details.

Note

The evaluation board does not support the use of the FS OTG2 (connector CN15) without a hardware modification
detailed in the ST evaluation board user manual.

2954

STM324X9I-EVAL Platform HAL

Device drivers are also provided for the STM32 on-chip Ethernet MAC, ADC, BXCAN and SDIO interfaces. Additionally,
support is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management of the STM32's
on-chip Flash.

Note

The STM32 variant HAL support for the SDIO interface is currently limited to supporting MMC/SD cards. If the
multi-bit MMC/SD support is used it is recommended that on-chip SRAM transfer buffers are used to avoid RX
overrun or TX underrun due to the slow external SDRAM access speed.

The STM32F4 processor and the STM324X9I-EVAL board provide a wide variety of peripherals, but unless support is specif-
ically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3e, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2.

2955

STM324X9I-EVAL Platform HAL

Name
Setup — Preparing the STM324X9I-EVAL Board for eCos Development

Overview
Typically, since the STM324X9I-EVAL motherboard has a built-in ST-LINK/V2 interface providing hardware debug support,
eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then communicates
with the “GDB server” provided by the relevant host ST-LINK/V2 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM and SDRAM is required for application run-time use.

If off-chip non-volatile memory (NVM) is used to hold the main application then the board can boot from the internal flash
using the BootUp ROM loader. This BootUp code will then start the main application (after an optional update sequence).

If required, it is still possible to program a GDB stub or RedBoot ROM image into on-chip Flash and download and debug
via the serial UART (CN8). In that case, eCos applications are configured for RAM startup and then downloaded and run on
the board via the debugger arm-eabi-gdb, or via the Eclipse IDE. By default for serial communications, all versions run with
8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed in the eCos configuration used for building the
GDB stub ROM image.

Preparing ST-LINK/V2 interface
The support for using the on-chip ITM stimulus ports for diagnostic and instrumentation output requires that the ST-LINK/V2
firmware is at least version V2.J17.SO. The firmware for the ST-LINK/V2 interface can be checked, and updated if needed,
using a tool available from STMicroelectronics. The firmware version is also reported when the openocd command is executed
(using a suitable configuration file). For example, the following OpenOCD output reports JTAG v23:

Info : STLINK v2 JTAG v27 API v2 SWIM v0 VID 0x0483 PID 0x3748

Unfortunately the official firmware updater is only available for the Windows platform at the moment. From a Windows
machine:

1. Ensure that the Windows PC and STM324X9I-EVAL board are disconnected.

2. Download the STM32 ST-Link USB driver from ST's website.

The page titled “ST-Link, ST-Link/V2, ST-Link/V2-1 USB driver signed for XP, Windows7, Windows8” provides
the driver download http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-
link009.html

3. Install the ST-Link USB driver on your Windows PC, by simply unzipping the downloaded file and running the installer
contained within.

4. Download the STM32 ST-LINK Utility from ST's website.

The page titled “STSW-LINK004 STM32 ST-LINK utility” provides the download of the utility http://www.st.com/web/
en/catalog/tools/PF258168

5. Install the ST-LINK Utility software on your Windows PC. This is achieved by simply unzipping the downloaded file
stsw-link004.zip and running the STM32 ST-LINK Utility_vX.X.0.exe that was contained within it. Fol-
low the on-screen instructions.

6. Connect the STM324X9I-EVAL board to the PC.

Connect the STM324X9I-EVAL board to the PC using the ST supplied USB-B cable. Windows should correctly identify the
USB device and load the device driver. Windows Device Manager should now show “STMicroelectronics STLink dongle”
under “Universal Serial Bus controllers”.

2956

http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html
http://www.st.com/content/st_com/en/products/embedded-software/development-tool-software/stsw-link009.html
http://www.st.com/web/en/catalog/tools/PF258168
http://www.st.com/web/en/catalog/tools/PF258168

STM324X9I-EVAL Platform HAL

7. Run the ST-LINK Utility and ensure the ST-LINK firmware is up to date.

From the Windows “Start” menu run the “STM32 ST-LINK Utility”. Click on the connect icon, or select Tar-
get->Connect from the menu. This should confirm that a successful connection can be made to the board. To update the
on-board ST-LINK/V2 firmware select ST-LINK->Firmware Update from the menu. In the ST-LINK dialog box that
then appears click on the Device Connect button. This will likely result in a message “ST-Link is not in DFU mode.
Please restart it.”. In this case simply disconnect the board from the PC, power cycle the board and then reconnect it after
a couple of seconds. Click the OK button on the message. In the original ST-Link dialog box click Device Connect
again. The dialog box should now report the current on-board and available firmware versions, and enable you to upgrade
the board by pressing the Yes >>>> button. We have tested the system with firmware version V2.J17.SO and would
recommend this version as a minimum. Clicking Yes >>>> will cause a progress bar in the dialog to be animated and
should eventually result in a “Update Successful” message. You can then close the various dialogs and exit the ST-LINK
Utility. Disconnect and power-cycle the board. Reconnect the board and it is now ready for use with OpenOCD.

Programming ROM images
Since the STM324X9I-EVAL board has a built-in ST-LINK/V2 SWD interface, the USB host connection (CN21) and suitable
host software (e.g. The OpenOCD package openocd tool) can be used to program the flash.

The openocd GDB server can directly program flash based applications from the GDB load command.

Note

The openocd command being used should have been configured and built to support the ST-LINK/V2 interface.
This is achieved by specifying the --enable-stlink when configuring the OpenOCD build. Additional information
on running openocd may be found in the OpenOCD notes.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the “bootup.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 4.7.3c) 7.6.1
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018
Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8
Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a command-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2957

STM324X9I-EVAL Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM324X9I-EVAL board platform HAL package is loaded automatically when eCos is configured for the
stm32429i_eval or stm32439i_eval targets. It should never be necessary to load this package explicitly. Unloading
the package should only happen as a side effect of switching target hardware.

Startup
The STM324X9I-EVAL board platform HAL package supports six separate startup types:

ROM

This startup type can be used for finished (stand-alone) applications which will be programmed into internal flash at
location 0x08000000. Data and BSS will be put into external SDRAM starting from 0x80000000. The application will
be self-contained with no dependencies on services provided by other software. The program expects to boot from reset
with ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform
all necessary hardware initialization.

ROMAPP

This startup type can be used for finished applications which will be programmed into internal (on-chip) flash at the
configured offset from location (0x08000000+CYGIMP_BOOTUP_RESERVED), and started via a suitably configured
BootUp ROM loader. Data and BSS will be put into internal SRAM. The application will be self-contained with no
dependencies on services provided by other software.

ROMINT

This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x20000288. Internal SRAM below this address
is reserved for vector tables. The application will be self-contained with no dependencies on services provided by other
software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the
0x08000000 region. eCos startup code will perform all necessary hardware initialization.

The off-chip SDRAM memory from 0x80000000 and off-chip SRAM memory from 0x64000000 are available, but are
not referenced by the eCos run-time so are available for application use if required.

JTAG

This is the startup type used to build applications that are loaded via the hardware debugger interface. The application will
be self-contained with no dependencies on services provided by other software. The program expects to be loaded from
0x80000000 and entered at that address. eCos startup code will perform all necessary hardware initialization, though since
the application is loaded via the hardware debugger interface the host debug environment is responsible for configuring
the necessary I/O state to initialise the off-chip SDRAM.

This is the startup type normally used during application development, since the large SDRAM memory space allows for
larger debug applications where compiler optimisation may be disabled, and run-time assert checking enabled.

Note

Executing code from the SDRAM memory has a performance downside. It is significantly slower than ex-
ecution from on-chip SRAM or flash. If performance is an issue then hardware debugging can be used for
any of the startup types if required.

SRAM

This is a variation of the JTAG type that only uses internal memory. The application will be self-contained with no de-
pendencies on services provided by other software. The program expects to be loaded from 0x20000288 and entered at

2958

STM324X9I-EVAL Platform HAL

that address. eCos startup code will perform all necessary hardware initialization. Unlike the JTAG startup no explicit
hardware debugger configuration is needed, since the application (like the ROM and ROMINT startup types) will initialise
the off-chip SDRAM memory.

SRAMEXT

This is a variation of the JTAG type that uses the external SRAM memory from 0x64000000.

RAM

For the ST-LINK/V2 enabled STM324X9I-EVAL platform this startup type is unlikely to be used. It is provided for
completeness.

When the board has RedBoot (or a GDB stub ROM) programmed into internal Flash at location 0x08000000 then the arm-
eabi-gdb debugger can communicate with the relevant UART connection to load and debug applications. An application
is loaded into memory from 0x80008000. It is assumed that the hardware has already been initialized by RedBoot. By
default the application will not be stand-alone, and will use the eCos virtual vectors mechanism to obtain services from
RedBoot, including diagnostic output.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

Note

Though, as previously discussed, since the option of hardware debugging is available as standard on the ST-
M324X9I-EVAL platform it is unlikely that the RAM startup type would be used for development.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

No SPI devices are instantiated for this platform by default.

Note

An example SPI M25PXX configuration can be enabled for boards suitably modified with an attached compatible
flash device. The CDL option CYGPKG_HAL_CORTEXM_STM32_STM324X9I_EVAL_SPI1_FLASH can be
enabled, and uses SPI bus 1 with the chip-select on PA4.

When configured the m25pxx_flash_device device is exported and can be accessed via the standard flash
API. The device is given a logical base address of 0x00000000 but is not memory-mapped.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. Since
the platform uses an I²C bus 1 based I/O expander the I²C support is always enabled. The STMPE811 touch-panel device is
instantiated and becomes available for applications from <cyg/io/i2c.h>.

2959

STM324X9I-EVAL Platform HAL

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM324X9I-EVAL platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

CAN Driver
The STM32 has a dual BXCAN device for CAN support. This consists of a master device, BXCAN1, and a slave device,
BXCAN2. If BXCAN2 is to be used, BXCAN1 must be powered and clocked, regardless of whether it is to be used for CAN
traffic. BXCAN1 is the only device connected to an external D-Sub socket at CN22. It shares an IO pin with the OTG FS
controller. JP16 controls connection of CAN1_RX to PA11. By default this jumper is not fitted, so one must be fitted to enable
BXCAN1. Additionally, the OTG_FS1 connector at CN14 cannot now be used and must be left unconnected. This means that
the OTG_FS USB controller and CAN cannot be used concurrently.

Consult the generic CAN driver API documentation in the eCosPro Reference Manual for further details on CAN support in
eCosPro, along with the documentation and configuration options in the BXCAN device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM324X9I-EVAL board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

2960

STM324X9I-EVAL Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M4 core of the STM32F429ZI
only supports six such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V2 interface.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. The architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable such use.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

However, when using the STM324X9I-EVAL board via the ST-LINK/V2 interface then it is recommended that the gdb_h-
wdebug_fileio approach is used to provide access to diagnostics via the GDB debug connection. When ITM support is
used it has been observed that the ST-LINK/V2 firmware can drop data, leading to the possibility of confusing output. How-
ever, with care the ITM system can be tuned to provide diagnostic and instrumentation via the host SWD debugger.

Using the ST-LINK/V2 connection allows for a single cable to provide power (JP12), hardware debug support and diagnostic
output.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board ST-LINK/V2 interface available via the USB CN21 con-
nection. When configuring the openocd tool build, the configure script can be given the option --enable-stlink to pro-
vide for ST-LINK support.

An example OpenOCD configuration file openocd.stm324x9i_eval.cfg is provided within the eCos platform HAL
package in the source repository. This will be in the directory packages/hal/cortexm/stm32/stm324x9i_e-
val/current/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.stm324x9i_eval.cfg
Open On-Chip Debugger 0.9.0 (2015-09-18-16:19)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared \
 to plain JTAG/SWD
adapter speed: 2000 kHz
adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : clock speed 1800 kHz
Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748
Info : using stlink api v2

2961

STM324X9I-EVAL Platform HAL

Info : Target voltage: 2.886506
Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then see the “eCos Hardware
Debugging” section of the “eCosPro CDT plug-in user's guide” document's “Debugging eCos applications” chapter.

If the HAL diagnostics are configured to use ITM, and stimulus port 31 is configured as the HAL diagnostic destination,
then the configuration example above will direct OpenOCD to direct ITM output (and also DWT and ETM) to a file named
tpiu.out in the current directory of the shell which was used to run the openocd command. A more specific filename can
be used by adjusting the OpenOCD configuration file.

To extract the ITM output, the Cortex-M architecture HAL package provides a helper program parseitm in the directory
packages/hal/cortexm/arch/current/host relative to the root of your eCos installation. It can be compiled sim-
ply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, for example:

$ parseitm -p 31 -f itm.out

It will then echo all ITM stimulus for that port, continuing to read from the file until interrupted with Ctrl-C. Note that lim-
ited buffer space in debug hardware such as the ST-LINK can result in occasionally missed ITM data. eCosPro provides a
workaround of throttling data within the CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration
component in order to reduce or avoid lost ITM data. For further details, see the note in OpenOCD ITM support.

Similarly, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the default
stimulus port 24 output can be captured. For example, assuming the application cminfo is the ELF file built from an eCos
configuration with ITM instrumentation enabled, and is loaded and run via openocd, then we could run parseitm to capture
instrumentation whilst the program executes, and then view the gathered data using the example instdump tool provided in
the Kernel package.

$ parseitm -p 24 -f tpiu.out > inst.bin
^C
$ instdump -r inst.bin cminfo
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 2:[SCHED:UNLOCK][THREAD 4095][TSHAL 195][TSTICK 0][ARG1:00000002] { ts 195 microseconds }
 3:[SCHED:LOCK][THREAD 4095][TSHAL 346][TSTICK 0][ARG1:00000002] { ts 346 microseconds }
 4:[SCHED:UNLOCK][THREAD 4095][TSHAL 495][TSTICK 0][ARG1:00000002] { ts 495 microseconds }
 5:[THREAD:RESUME][THREAD 1][TSHAL 647][TSTICK 0][ARG1:200045D0][ARG2:200045D0] { ts 647 microseconds }
 6:[SCHED:LOCK][THREAD 1][TSHAL 795][TSTICK 0][ARG1:00000002] { ts 795 microseconds }
 7:[MLQ:ADD][THREAD 1][TSHAL 945][TSTICK 0][ARG1:200045D0][ARG2:0000001F] { ts 945 microseconds }
 8:[SCHED:UNLOCK][THREAD 1][TSHAL 1096][TSTICK 0][ARG1:00000002] { ts 1096 microseconds }
 9:[INTR:ATTACH][THREAD 1][TSHAL 0][TSTICK 0][ARG1:00000000] { ts 10000 microseconds }
 10:[INTR:UNMASK][THREAD 1][TSHAL 149][TSTICK 0][ARG1:00000000] { ts 10149 microseconds }
 11:[INTR:ATTACH][THREAD 1][TSHAL 305][TSTICK 0][ARG1:00000054] { ts 10305 microseconds }
 12:[INTR:UNMASK][THREAD 1][TSHAL 449][TSTICK 0][ARG1:00000054] { ts 10449 microseconds }

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM or SDRAM without requiring a ROM monitor. Loading can be
done directly through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the

2962

STM324X9I-EVAL Platform HAL

CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric exten-
sion allows diagnostic output to appear in GDB. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package.

For details of using hardware debug with the Eclipse IDE see the “eCos Hardware Debugging” section of the “eCosPro CDT
plug-in user's guide” manual.

2963

STM324X9I-EVAL Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM324X9I-EVAL board hardware,
and should be read in conjunction with that specification. The STM324X9I-EVAL platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMINT, SRAM, JTAG and SRAMEXT startup types the HAL will perform additional initialization, programming the
various internal registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may
be found in the src/stm324x9i_eval_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal RAM

This is located at address 0x20000000 of the memory space, and is 192KiB in size. The eCos VSR table occupies the
bottom 392 bytes of memory, with the virtual vector table starting at 0x200001AC and extending to 0x200002AC.

For all configurations there is also a block of (close-coupled) SRAM located at address 0x10000000 of the memory
space, and 64KiB in size.

External SDRAM

This is located at address 0x80000000 of the memory space, and is 32MiB long. For ROM applications, all of the SDRAM
is available for use. For JTAG applications the application is loaded from 0x80000000 with the remaining SDRAM
after the code+data available for application use.

For RAM startup applications, SDRAM below 0x80008000 is reserved for the debug monitor (e.g. RedBoot).

External SRAM

This is located at address 0x64000000 of the memory space, and is 2MiB long. For SRAMEXT applications, all of the
external SRAM is available for use.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region
is 2048KiB in size. ROM and ROMINT applications are by default configured to run from this memory.

External FLASH

This is located at address 0x60000000 of the memory space. This region is 16MiB in size.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found
in the STM32 User Manual.

2964

STM324X9I-EVAL Platform HAL

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 98 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x200001AC.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, 0x20030000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

I/O expander
If the CYGPKG_KERNEL is configured then a “helper” thread is created to handle forwarding of signals received by the I²C
bus 1 based STMPE1600 I/O expander as eCos interrupts. The design approach minimises the overall system ISR latency
which would occur if the I²C was directly accessed from the system ISR processing, at the cost of deferring the demultiplexing
of the I/O expander interrupt source.

Device drivers and applications can access the signals using the same APIs as for standard STM32 GPIO lines, with respect
to attaching interrupt handlers or examining/setting pin state.

Note

The priority of the ioexp_helper_thread() should be configured as high as possible, to minimise the
latency in forwarding the de-multiplexed “virtual” interrupt sources to the relevant device driver (e.g. Ethernet
PHY status change).

Diagnostic LEDs
Four LEDs are fitted on the board for diagnostic purposes and are labelled LD1 (green), LD2 (orange), LD3 (red) and LD4
(blue).

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow the LEDs
to be set:

extern void hal_stm324x9i_eval_led(char c);

The lowest 4-bits of the argument c correspond to each of the 4 LEDs (with LED0 as the least significant bit).

Table 305.1. LEDs

eCos LED GPIO manifest STM32F4
GPIO

Bit number Board label Colour

CYGHWR_HAL_STM324X9I_EVAL_LED0 PG6 0 LD1 Green

CYGHWR_HAL_STM324X9I_EVAL_LED1 PG7 1 LD2 Orange

CYGHWR_HAL_STM324X9I_EVAL_LED2 PG10 2 LD3 Red

CYGHWR_HAL_STM324X9I_EVAL_LED3 PG12 3 LD4 Blue

The platform HAL will automatically light LED0 when the platform initialisation is complete, however the LEDs are then
free for application use.

2965

STM324X9I-EVAL Platform HAL

Note

If the CDL option CYGPKG_HAL_CORTEXM_STM32_STM324X9I_EVAL_SPI1_FLASH is configured
(for example, as is the case for the modified “drb” platform with externally attached SPI flash) then the
HAL_PLF_DEVS_DISK_MMC_FEEDBACK macro is defined by the platform plf_io.h to provide MMC/SD
card access feedback using the CYGHWR_HAL_STM324X9I_EVAL_LED3 (blue) LED.

Flash wait states
The STM324X9I-EVAL platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32 Flash programming manual (PM0081) for
appropriate values for different clock speeds or voltages. The default of 5 reflects a supply voltage of 3.3V and HCLK of
168MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for SRAM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 305.1. stm324x9i_eval Real-time characterization

 Startup, main thrd : stack used 344 size 1536
 Startup : Idlethread stack used 84 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 5.00 microseconds (5 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 8
 Thread switches: 128
 Mutexes: 16
 Mailboxes: 16
 Semaphores: 16
 Scheduler operations: 128
 Counters: 16
 Flags: 16
 Alarms: 16
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 4.00 4.00 4.00 0.00 100% 100% Create thread
 1.00 1.00 1.00 0.00 100% 100% Yield thread [all suspended]
 0.88 0.00 1.00 0.22 87% 12% Suspend [suspended] thread
 0.88 0.00 1.00 0.22 87% 12% Resume thread
 1.25 1.00 2.00 0.38 75% 75% Set priority
 0.38 0.00 1.00 0.47 62% 62% Get priority
 2.63 2.00 3.00 0.47 62% 37% Kill [suspended] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [no other] thread
 1.38 1.00 2.00 0.47 62% 62% Resume [suspended low prio] thread
 0.88 0.00 1.00 0.22 87% 12% Resume [runnable low prio] thread
 1.13 1.00 2.00 0.22 87% 87% Suspend [runnable] thread
 0.88 0.00 1.00 0.22 87% 12% Yield [only low prio] thread
 0.88 0.00 1.00 0.22 87% 12% Suspend [runnable->not runnable]
 2.75 2.00 3.00 0.38 75% 25% Kill [runnable] thread
 2.25 2.00 3.00 0.38 75% 75% Destroy [dead] thread

2966

STM324X9I-EVAL Platform HAL

 4.25 4.00 5.00 0.38 75% 75% Destroy [runnable] thread
 4.75 4.00 6.00 0.56 50% 37% Resume [high priority] thread
 1.54 1.00 2.00 0.50 53% 46% Thread switch

 0.20 0.00 1.00 0.31 80% 80% Scheduler lock
 0.79 0.00 1.00 0.33 78% 21% Scheduler unlock [0 threads]
 0.79 0.00 1.00 0.33 78% 21% Scheduler unlock [1 suspended]
 0.77 0.00 1.00 0.36 76% 23% Scheduler unlock [many suspended]
 0.80 0.00 1.00 0.32 79% 20% Scheduler unlock [many low prio]

 0.25 0.00 1.00 0.38 75% 75% Init mutex
 1.25 1.00 2.00 0.38 75% 75% Lock [unlocked] mutex
 1.19 1.00 2.00 0.30 81% 81% Unlock [locked] mutex
 1.00 1.00 1.00 0.00 100% 100% Trylock [unlocked] mutex
 0.88 0.00 1.00 0.22 87% 12% Trylock [locked] mutex
 0.31 0.00 1.00 0.43 68% 68% Destroy mutex
 5.00 5.00 5.00 0.00 100% 100% Unlock/Lock mutex

 0.44 0.00 1.00 0.49 56% 56% Create mbox
 0.13 0.00 1.00 0.22 87% 87% Peek [empty] mbox
 1.19 1.00 2.00 0.30 81% 81% Put [first] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [1 msg] mbox
 1.13 1.00 2.00 0.22 87% 87% Put [second] mbox
 0.06 0.00 1.00 0.12 93% 93% Peek [2 msgs] mbox
 1.19 1.00 2.00 0.30 81% 81% Get [first] mbox
 1.06 1.00 2.00 0.12 93% 93% Get [second] mbox
 1.00 1.00 1.00 0.00 100% 100% Tryput [first] mbox
 0.94 0.00 1.00 0.12 93% 6% Peek item [non-empty] mbox
 1.06 1.00 2.00 0.12 93% 93% Tryget [non-empty] mbox
 0.94 0.00 1.00 0.12 93% 6% Peek item [empty] mbox
 0.94 0.00 1.00 0.12 93% 6% Tryget [empty] mbox
 0.25 0.00 1.00 0.38 75% 75% Waiting to get mbox
 0.25 0.00 1.00 0.38 75% 75% Waiting to put mbox
 0.44 0.00 1.00 0.49 56% 56% Delete mbox
 3.50 3.00 4.00 0.50 100% 50% Put/Get mbox

 0.19 0.00 1.00 0.30 81% 81% Init semaphore
 0.81 0.00 1.00 0.31 81% 18% Post [0] semaphore
 0.94 0.00 1.00 0.12 93% 6% Wait [1] semaphore
 1.00 1.00 1.00 0.00 100% 100% Trywait [0] semaphore
 0.81 0.00 1.00 0.31 81% 18% Trywait [1] semaphore
 0.25 0.00 1.00 0.38 75% 75% Peek semaphore
 0.25 0.00 1.00 0.38 75% 75% Destroy semaphore
 3.00 3.00 3.00 0.00 100% 100% Post/Wait semaphore

 0.38 0.00 1.00 0.47 62% 62% Create counter
 0.38 0.00 1.00 0.47 62% 62% Get counter value
 0.19 0.00 1.00 0.30 81% 81% Set counter value
 1.19 1.00 2.00 0.30 81% 81% Tick counter
 0.25 0.00 1.00 0.38 75% 75% Delete counter

 0.25 0.00 1.00 0.38 75% 75% Init flag
 1.00 1.00 1.00 0.00 100% 100% Destroy flag
 1.00 1.00 1.00 0.00 100% 100% Mask bits in flag
 1.00 1.00 1.00 0.00 100% 100% Set bits in flag [no waiters]
 1.50 1.00 2.00 0.50 100% 50% Wait for flag [AND]
 1.31 1.00 2.00 0.43 68% 68% Wait for flag [OR]
 1.31 1.00 2.00 0.43 68% 68% Wait for flag [AND/CLR]
 1.38 1.00 2.00 0.47 62% 62% Wait for flag [OR/CLR]
 0.19 0.00 1.00 0.30 81% 81% Peek on flag

 0.69 0.00 1.00 0.43 68% 31% Create alarm
 1.44 1.00 2.00 0.49 56% 56% Initialize alarm
 1.00 1.00 1.00 0.00 100% 100% Disable alarm
 1.44 1.00 2.00 0.49 56% 56% Enable alarm
 0.94 0.00 1.00 0.12 93% 6% Delete alarm
 1.19 1.00 2.00 0.30 81% 81% Tick counter [1 alarm]
 3.81 3.00 4.00 0.31 81% 18% Tick counter [many alarms]
 2.00 2.00 2.00 0.00 100% 100% Tick & fire counter [1 alarm]
 17.88 17.00 18.00 0.22 87% 12% Tick & fire counters [>1 together]
 4.63 4.00 5.00 0.47 62% 37% Tick & fire counters [>1 separately]
 4.00 4.00 4.00 0.00 100% 100% Alarm latency [0 threads]

2967

STM324X9I-EVAL Platform HAL

 4.00 4.00 4.00 0.00 100% 100% Alarm latency [2 threads]
 4.00 4.00 4.00 0.00 100% 100% Alarm latency [many threads]
 7.01 7.00 8.00 0.01 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 2.71 2.00 3.00 0.00 Clock DSR latency

 204 204 204 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 796 size 1536
 All done : Idlethread stack used 172 size 1280

Timing complete - 29330 ms total

PASS:<Basic timing OK>
EXIT:<done>

2968

STM324X9I-EVAL Platform HAL

Name
Test Programs — Details

Test Programs
The STM324X9I-EVAL platform HAL contains some test programs which allow various aspects of the board to be tested.

Manual Test
The manual test is not built by default. The configuration option
CYGPKG_HAL_CORTEXM_STM32_STM324X9I_EVAL_TESTS_MANUAL should be enabled to allow the test to be built.

This program tests various aspects of the basic platform port, e.g. flashing LEDs, checking I²C device access and that the push-
button GPIO operates.

SPI Flash Test
The m25pxx1 test is not built by default, since the standard (unmodifed) STM324x9I-EVAL platform does not provide a
suitable SPI flash device. The configuration option CYGPKG_HAL_CORTEXM_STM32_STM324X9I_EVAL_SPI1_FLASH
should be enabled to allow the test to be built if a suitably modified board is being used.

This program tests the M25Pxx compatible serial flash connected to SPI bus 1. It erases, programs and reads a number of
sectors in the flash, and should therefore not be run if the flash contains data that should be retained. The CYGPKG_IO_FLASH
package must be present to allow this test to be built.

ADC Test
The adc1 program tests the ADC driver for the STM32. The only device connected to the ADC on the board is the potentiometer
connected to ADC3 logical channel 8, named RV1 “ADC channel PF10” on the motherboard. Therefore this test primarily
tests that. However, in addition it also report the values of the Vrefint and Vbat+Temp inputs that are sourced on-chip. The
option CYGBLD_HAL_CORTEXM_STM324X9I_EVAL_TEST_ADC must be enabled to run this test since it needs human
interaction.

2969

STM324X9I-EVAL Platform HAL

Name
BootUp Integration — Detail

BootUp
The BootUp support for the STM324x9I-EVAL target is primarily implemented in the stm324x9i_eval_support.c
file. The majority of the functions provided by that source file are only included when the CYGPKG_BOOTUP package is being
used to construct the actual BootUp ROM loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once its implementation has been tested and validated,
the binary will only need to be installed onto a device once. Its only purpose is to allow the safe updating and startup of the
main application. If the BootUp code ever needs to be replaced then it is a “factory” operation, for example using JTAG/SWD
to re-program the on-chip flash.

This platform specific documentation should be read in conjunction with the generic BootUp package and bundle image support
documentation.

The BootUp package provides a basic but fully functional implementation for the platform. This has been tested to ensure
that the underlying mechanism is sound. It is envisaged that the developer will customize and further extend the platform side
support to meet their specific application update requirements.

BootUp loaded applications

Applications started via the BootUp loader, since they cannot include the CYGPKG_BOOTUP package themselves, may need
access to some related configuration state. The platform is responsible for providing such “common” information. For example,
the CDL option CYGIMP_BOOTUP_RESERVED specifies the amount of on-chip flash set aside for BootUp. Applications can
then ensure that they do not interfere with the BootUp loader if using the remaining on-chip flash for their own purposes.

Warning

Care must be taken to ensure that the target application configuration matches the BootUp configuration, since it
is normally expected that the applications to be loaded will be independent of the initial BootUp build environ-
ment. This includes the fundamental on-chip flash space set aside for the BootUp ROM loader code (CYGIM-
P_BOOTUP_RESERVED) as well as, when using CYGPKG_BUNDLE support, where the bundle image is located
(selected Non-Volatile Memory (NVM) and offset/partition information). It is expected that such values, for a
particular platform instance, will be fixed at a suitable point during development, and definitely before products
are shipped. It is the responsibility of the developer to ensure a consistent configuration between the BootUp
ROM loader and any applications that may be installed/started by that BootUp code.

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function for BootUp, and
applications started by BootUp, to ascertain the configured off-chip bundle/update location:

extern struct cyg_flash_dev *hal_stm324x9i_eval_source_flash(cyg_flashaddr_t *pbase,
 cyg_flashaddr_t *plimit);

The function will return a pointer to the relevant flash device. The passed pbase parameter is a pointer to the value to be filled
with the base address for the image (or NULL if the value is not needed by the caller). Similarly the plimit parameter is a
pointer to the value to be filled with the limiting address for any image, or NULL if the address is not needed.

Primarily to avoid source duplication, the hal_stm324x9i_eval_source_flash() function provides com-
mon run-time access to the settings derived from the CDL options CYGIMP_BOOTUP_STM324X9I_E-
VAL_SOURCE, CYGNUM_BOOTUP_STM324X9I_EVAL_SOURCE_OFFSET and CYGNUM_BOOTUP_STM324X9I_E-
VAL_SOURCE_LIMIT.

Bundle based applications

When the CDL option CYGIMP_BOOTUP_STM324X9I_EVAL_BUNDLE is enabled, the STM324x9I-EVAL platform Boot-
Up code incorporates the CYGPKG_BUNDLE package and support for bundle based application distribution.

2970

STM324X9I-EVAL Platform HAL

The current STM324x9I-EVAL platform BootUp bundle support is limited (by design) to starting SDRAM based applications.
i.e. CYG_HAL_STARTUP_JTAG startup type. This has implications for early EVAL hardware containing parts that suffer
from the FMC errata since that precludes the use of the off-chip PSRAM and NOR memories when targetting SDRAM for
main application code+data.

Note

The (slightly misleading) JTAG startup type name is used for standalone SDRAM based applications for his-
torical reasons. The RAM startup name is assumed by some systems to refer to an application that relies on the
presence of a debug monitor. BootUp is purely a “loader” and does NOT provide GDB stubs, so cannot support
CYG_HAL_STARTUP_RAM applications.

The platform HAL and CYGPKG_BUNDLE package provide a common set of routines shared by both BootUp and applications.
This ensures that all bundle operations are carried out in a compatible and consistent manner.

Figure 305.1. On-chip flash

BootUp ROMINT application in on-chip flash

On startup the BootUp loader will use the hal_stm324x9i_eval_source_flash() function to ascertain the NVM
memory used to hold the source bundle image. If a valid bundle image is found, then the configured “main application” item tag
as specified by the CDL option CYGNUM_BOOTUP_STM324X9I_EVAL_BUNDLE_TAG is searched for within the bundle.
If a valid matching tag item is found, then the data from that item is loaded into SDRAM and executed.

Note

This simple approach of using a fixed, pre-allocated, area for holding the bundle image simplifies the BootUp
(and similarly any main application based update) code without the issues that would need to be considered if the
bundle was stored in a filesystem. e.g. a JFFS2 filesystem on the SPI flash, with potentially slow JFFS2 mount
performance, inability to ascertain how much “true” free space is available on the filesystem, programmatic
support for deletion of “data” to free space for a bundle as part of an update, etc. The normal “lifetime” cycles
of NOR flash (e.g. S25FL256S) should be more than sufficient for the “limited” number of in-field updates that
may be undertaken on a specific board over its lifetime.

Figure 305.2. NVM bundle

Main application held in bundle stored in NVM

If a valid bundle exists and contains a valid CYGNUM_BOOTUP_STM324X9I_EVAL_BUNDLE_TAG item, then the BootUp
loader will always start that application. The BootUp loader itself does NOT perform any update revision based automatic
update support. That support is entirely within the domain of the started application program, which is responsible for all
system update decisions and processing.

The only case where BootUp will initiate a system update is when a bundle is not present or is invalid, or when an otherwise
valid bundle doesn't contain a valid CYGNUM_BOOTUP_STM324X9I_EVAL_BUNDLE_TAG item. In this case BootUp will
attempt to install a bundle from external media. The current example implementation uses a FATFS formatted SD Card for
this purpose.

2971

STM324X9I-EVAL Platform HAL

Note

A beneficial side-effect of this approach is that it can help simplify the board production process. Boards only
need to be pre-initialized with the stable BootUp binary, which can then be used to install the latest application
firmware in NVM.

The example BootUp bundle support provided for this platform expects a single release bundle to be stored in the root
directory of an inserted FATFS SD Card. The first file found that matches the CYGDAT_BOOTUP_STM324X9I_E-
VAL_BUNDLE_PREFIX prefix is used. Any filename text after the prefix is ignored and can contain human-readable
or customer specific identification information as required. For example, assuming CYGDAT_BOOTUP_STM324X9I_E-
VAL_BUNDLE_PREFIX is configured as “MyProductName_”, then files named MyProductName_1.02, MyPro-
ductName_1.03.B99.1234, MyProductName_example.bin would all be matched.

The SD Card FATFS filesystem is mounted read-only, so any interrupted update operations (e.g. loss-of-power, reset condition)
should not affect the “validity” of the FATFS filesystem held on the SD Card.

Since only a single bundle image is held in the SPI flash there is a chance for the SPI flash based bundle to be in a “corrupt”
state if an update fails (power-loss, CPU reset, etc.) during an active update. However, since an update is only manually started
when a validated image is available on an SDcard, if the update is interrupted the same SDcard (and field-engineer/operator)
should be available to re-apply the update on the system restart. This avoids the (normal) “robustness” requirement of providing
two application images to be held in the SPI flash to ensure “safe” updates.

To reiterate, the BootUp code will ONLY perform an update from an SD Card to the NVM when there is NO valid main
application bundle/item pair (missing or corrupted). For in-field upgrades any update process will be instigated under the control
of the BootUp started “main application”. For example, the application could use the CYGPKG_BUNDLE API to validate a
bundle image from whatever source it has access to, and then to update the relevant NVM image itself. If the update is provided
on an SD Card then (after ensuring the SD Card does contain a valid bundle image) the main application just needs to invalidate
the current NVM bundle image, and then force a CPU reset to have BootUp detect the now invalid main application and apply
the update. It is up to the developer to decide the best approach for their particular needs in how point-revision updates are
installed, and is beyond the scope of this documentation.

The bundle implementation currently limits the number of automatic update attempts when a missing/invalid bundle is detected.
This is a deliberate choice to avoid continually failing attempts that could eventually wear out a flash device. The platform
hal_stm324x9i_eval_badapp() function implementation, when bundle support is configured, will reset the system to
allow another restart attempt if the “Tamper/Key” (CYGHWR_HAL_STM324X9I_EVAL_BUTTON_USER) button is pressed
for more than one second. This can be used to manually force another “automatic” update attempt to be started.

When BootUp has installed a bundle to the SPI flash, the last 4-bytes of the SPI flash area (partition) set aside for the bundle
will be erased to 0xFFFFFFFF. This location and value can be used by the customer main application to ascertain that an
install/update has just been performed (since sector erase will only occur as part of a bundle install/update). It is the respon-
sibility of the main application to update this single location (clearing at minimum 1-bit) if it wants to track “post update”
state. This can by used by the main application to acknowledge the update, and can ensure, for example, that any (potentially
slow) “post update” main application specific functionality is not performed on every normal startup. For example, the main
application may need to check and update the software components of attached daughter-boards from the bundle, and can use
this mechanism to ensure it is only performed once after an update. This simple (erased flash) mechanism avoids complicated
support for passing non-volatile “log” information between the seperate BootUp and main application worlds.

Note

The main application should NOT use bit 31 of this field (treating the 32-bit value as being stored in little-endian
format) since it is reserved as a flag for the BootUp loader update processing. The main application should
ALWAYS leave bit 31 set.

On-Chip ROMAPP applications

If the CDL option CYGIMP_BOOTUP_STM324X9I_EVAL_BUNDLE is not enabled, then BootUp provides an alternative
mechanism that supports the safe update of on-chip flash resident (CYG_HAL_STARTUP_ROMAPP) applications.

Updates using this mechanism are initiated and directed solely by the application itself. The application is responsible for
locating, acquiring and verifying a new update, and placing it into NVM storage. If BootUp detects a verified update in NVM,

2972

STM324X9I-EVAL Platform HAL

it installs the update into the on-chip flash, overwriting and replacing the existing application. The updated application is then
executed.

Figure 305.3. BootUp and Application

BootUp ROMINT loader and ROMAPP main application held in on-chip flash

Figure 305.4. Application Update image

Update for ROMAPP main application held in NVM

The example implementation uses a simple scheme that checks a fixed-format contiguous structure near the start of the
binary application image file. Other than the fields used to identify the structure, the BootUp code does not interpret the
hal_stm324x9i_eval_bootup_structure_t structure identity field.

Depending on how the alternative (pending update) application is downloaded and installed in the NVM, it may be more
relevant to have the tail marker at the very end of the binary image. The developer may wish to update the build/release
process so that the actual binary length is held in the application description structure, since that could avoid the overhead
of unnecessary flash reads and writes when processing updates. Similarly, instead of a simple binary number being used to
differentiate application images, the choice may be made to use the 64-bit UTC timestamp the application was created, or a
human-readable string as the unique identification for a release. It is the responsibility of the build/release engineer to ensure
individual releases are uniquely identifiable.

It is critical that the main application, when storing a pending update, stores the tail marker as the last bytes written. It is the
responsibility of the main application to verify the data written, prior to placing the tail marker. This ensures that a partial
image is not treated as a valid update. For example the sequence undertaken by the main application would be:

Table 305.2. Pending update sequence

Operation Details

Invalidate “previous”
alternative image

At a minimum ensure an invalid signature tail marker is written. Erasing the flash is normally
required anyway, and would invalidate any previous image.

Receive update appli-
cation image and write
to alternative image lo-
cation

NOT writing the tail marker. The code that stores the application should leave a “hole” where
the tail marker resides to ensure a partial image is not incorrectly treated as valid

Verify downloaded
contents

e.g. CRC or binary comparison. Normally this would be done as individual application chunks are
downloaded and written to the alternative storage

Write tail marker This is the very last operation after validating that the alternative image has been stored correctly.
If an error has occured during the download then not-writing the tail ensures that the BootUp
loader will not interpret the data written as a pending update

Force system RESET
to start update

e.g. using the HAL_PLATFORM_RESET macro

The BootUp loader code will only READ from the alternative image location. This ensures that if an in-progress update is
interrupted (e.g. power-loss) then when the system restarts the BootUp code will restart the application update as required.

2973

STM324X9I-EVAL Platform HAL

If the BootUp platform implementation for validating the alternative image is extended to include a CRC, or similar “slow”
processing, it may be worth considering whether the main application on startup will always invalidate the tail marker after
an update to avoid subsequent system resets having to re-validate the alternative image prior to discovering that it is the same
as the current main application.

Note

We cannot have the SIGNATURE support purely conditional on the BOOTUP support; since non-BOOTUP
applications need to be built leaving the space. For the moment this is only enforced for ROMAPP applications,
since that is all that the simple (non-BUNDLE) BootUp update support implements.

Building BootUp

The ROMINT startup type is chosen for BootUp so that the loader uses the on-chip SRAM for its workspace, to avoid the
overhead of managing off-chip memory where the target application will be loaded.

Example eCos configuration templates for BootUp are provided in the misc directory of the release. The host-
boot_ROMINT.ecm configuration file can be used to construct a bundle based BootUp loader and bootup_ROMINT.ecm
for the simpler on-chip ROMAPP update BootUp loader.

Building a BootUp ROM image is most conveniently done at the command line. For the stm32429i_eval_drb (SPI
modified board), the steps needed to rebuild the bundle based ROMINT version of BootUp on linux are:

$ mkdir hostboot_romint
$ cd hostboot_romint
$ ecosconfig new stm32429i_eval_drb minimal
[… ecosconfig output elided …]
$ ecosconfig import \
 $ECOS_REPOSITORY/hal/cortexm/stm32/stm324x9i_eval/current/misc/hostboot_ROMINT.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The steps needed to rebuild the bundle based ROMINT version of BootUp on Windows within the Shell Environment are

C:\Users\demo> mkdir hostboot_romint
C:\Users\demo> cd hostboot_romint
C:\Users\demo\hostboot_romint> ecosconfig new stm32429i_eval_drb minimal
[… ecosconfig output elided …]
C:\Users\demo\hostboot_romint> ecosconfig import \
 %ECOS_REPOSITORY%/hal/cortexm/stm32/stm324x9i_eval/current/misc/hostboot_ROMINT.ecm
C:\Users\demo\hostboot_romint> ecosconfig resolve
C:\Users\demo\hostboot_romint> ecosconfig tree
C:\Users\demo\hostboot_romint> make

The resulting install/bin/bootup.bin binary can then be programmed into the on-chip flash from address
0x08000000.

It is expected that the BootUp binary is installed onto the STM32F427 on-chip flash either via JTAG/SWD or by utilising the
on-chip BootROM USB based DFU process. This is a factory or in-field process requiring specific equipment/host-software.

Once BootUp is installed it is not normally expected to require updating. Its purpose is to bootstrap the main application, and
provide a standard mechanism for installing the main application. The update mechanism does NOT provide a method for
updating the BootUp loader itself. If in-field updates of the BootUp binary are necessary, this could be achieved via the STM32
on-chip BootROM USB based DFU process.

BootUp Test Programs

The tests/bundle_example.c source implements a simple example of an application that utilises the CYGPKG_BUN-
DLE package. Its code could serve as a useful starting point when adding bundle update support to your own application.

Normally a standard CYG_HAL_STARTUP_JTAG configured build of the bundle_example would be used. If the boot-
up application is used to bootstrap the processor and is built as described in Building BootUp, the eCos Configuration

2974

STM324X9I-EVAL Platform HAL

against which bundle_example is linked must also include “CRC Support” (CYGPKG_CRC), “Zlib compress/decompress sup-
port” (CYGPKG_COMPRESS_ZLIB), “File IO” (CYGPKG_IO_FILEIO) and “Generic FLASH memory support” (CYGP-
KG_IO_FLASH). The “ST STM32 SPI bus 1 option” (CYGHWR_DEVS_SPI_CORTEXM_STM32_BUS1) must also be en-
abled.

As well as ensuring the required packages are present in the configuration,
the CDL option CYGBLD_HAL_CORTEXM_STM324X9I_EVAL_TESTS_MANUAL, and its sub-option
CYGBLD_HAL_CORTEXM_STM324X9I_EVAL_TEST_BOOTUP, should be enabled to allow bundle_example to be built.

Note

If required, the release provides an example “default” template for the stm32429i_eval_drb platform in
the misc/bundle_example.ecm file which includes all the necessary packages and defines the necessary
options. This can be imported to a configuration (using either the command-line ecosconfig import, or the GUI
configtool “File->Import...” support).

Once built, a raw binary copy of the application would be extracted for adding to a bundle using the arm-eabi-objcopy
command. For example:

$ arm-eabi-objcopy -O binary bundle_example bundle_example.bin

The resulting binary could then be added to a bundle image using the host-based bundle tool:

$ bundle MyProductName_example.bin create add 0x0001:bundle_example.bin:C:md5

Refer to the bundle host tool section for detailed information on the bundle host tool.

In this example the bundle image would then be placed onto a suitably formatted FATFS SD Card. The bundle would then
be installed into the NVM either by a pre-existing main application, or by the BootUp loader if a valid bundle is not currently
installed in the NVM.

Note

When placing the bundle image onto a FATFS SD Card only the
CYGDAT_BOOTUP_STM324X9I_EVAL_BUNDLE_PREFIX configured filename prefix is checked by the
BootUp code. It is expected that only a single, suitably prefixed, bundle is present on an SD Card used for update/
installation.

The provided bundle_invalidate test can be used during BootUp bundle testing to explicitly invalidate any NVM held bundle.
This can be done to check the BootUp operation when no valid bundle containing a main application is available, e.g. to test
installation from FATFS SD Card.

2975

Chapter 306. STM32F7XX-EVAL Platform
HAL

2976

STM32F7XX-EVAL Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32F7XX_EVAL — eCos Support for the STM32F7XX-EVAL Board

Description
The STM32F7XX-EVAL board has a STM32F746NG microcontroller that incorporates 1MiB of internal flash and 320KiB
of internal SRAM. The board also has an additional 32MiB of external SDRAM, 2Mib of external SRAM, 16MiB NOR-flash,
64MiB Quad-SPI NOR-flash, and a variety of I/O devices and interfaces.

Since the board is equipped with an on-board ST-LINK/V2 hardware debugger interface (via the CN21 “USB ST-LINK”
connector) for typical eCos development test programs are downloaded and debugged via the hardware debugger in conjunction
with the relevant host-side tools. Alternatively the CN12 and CN15 connectors are available for connecting off-board hardware
debuggers.

This documentation describes platform-specific elements of the STM32F7XX-EVAL board support within eCos. The STM32
variant HAL documentation covers various topics including HAL support common to STM32 variants, and on-chip device
support. This document complements the STM32 documentation.

This HAL provides support for two variants of the STM32F7XX evaluation board. The original prototype board was essentially
a STM324x9I-EVAL with the processor chip replaced. The STM32F746NG-EVAL2 board is a similar but reworked board
with several differences. By default, this HAL, and this documentation concentrates on the STM32F746NG-EVAL2 board.

Supported Hardware
The STM32F746NG has two main on-chip memory regions. The device has a SRAM region of 320KiB present at 0x20000000,
and a 1MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). In addition, the
STM32F7XX-EVAL motherboard has 32MiB of SDRAM memory mapped to address 0x60000000, 2MiB of SRAM memory
mapped to address 0x64000000, 16MiB of conventional NOR-flash memory mapped to address 0xC0000000, and a 64MiB
Quad-SPI NOR-flash device which, if the relevant driver is configured, can be memory mapped to address 0x90000000.

The STM32 variant HAL includes support for the eight on-chip serial devices which are documented in the variant HAL.
However, the STM32F7XX-EVAL motherboard only provides a single standard DB9 UART connector CN7.

The STM32 variant HAL also includes support for the I²C buses. Devices are instantiated for the audio codec, touch panel
controller and MFX IO expander. The latter is used to control various IO pins for other devices.

Similarly the STM32 variant HAL includes support for the SPI buses. Though the motherboard does not provide any SPI
devices as standard.

Device drivers are also provided for the STM32 on-chip Ethernet MAC, ADC, BXCAN and SDIO interfaces.

Additionally, support is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management
of the STM32's on-chip Flash.

Note

The STM32 variant HAL support for the SDIO interface is currently limited to supporting MMC/SD cards. If the
multi-bit MMC/SD support is used it is recommended that on-chip SRAM transfer buffers are used to avoid RX
overrun or TX underrun due to the slow external SDRAM access speed.

The STM32F7 processor and the STM32F7XX-EVAL board provide a wide variety of peripherals, but unless support is
specifically indicated, it should be assumed that it is not included in this eCos port.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3g, arm-eabi-gdb version 7.6.1, and binutils version 2.23.2.

2977

STM32F7XX-EVAL Platform HAL

Name
Setup — Preparing the STM32F7XX-EVAL Board for eCos Development

Overview
Typically, since the STM32F7XX-EVAL motherboard has a built-in ST-LINK/V2 interface providing hardware debug support,
eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then communicates
with the “GDB server” provided by the relevant host ST-LINK/V2 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM and SDRAM is required for application run-time use.

If off-chip non-volatile memory (NVM) is used to hold the main application then the board can boot from the internal flash
using the BootUp ROM loader. This BootUp code will then start the main application (after an optional update sequence).

If required, it is still possible to program a GDB stub or RedBoot ROM image into on-chip Flash and download and debug via the
serial UART (CN8). In that case, eCos applications are configured for RAM startup and then downloaded and run on the board
via the debugger arm-eabi-gdb, or via the Eclipse IDE. By default for serial communications, all versions run with 8 bits, no
parity, and 1 stop bit at 115200 baud. This rate can be changed in the eCos configuration used for building the ROM image.

Preparing ST-LINK/V2 interface
The support for using the on-chip ITM stimulus ports for diagnostic and instrumentation output requires that the ST-LINK/V2
firmware is at least version V2.J17.SO. The firmware for the ST-LINK/V2 interface can be checked, and updated if needed,
using a tool available from STMicroelectronics. The firmware version is also reported when the openocd command is executed
(using a suitable configuration file). For example, the following OpenOCD output reports JTAG v17:

Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748

Unfortunately the official firmware updater is only available for the Windows platform at the moment. From a Windows
machine:

1. Ensure that the Windows PC and STM32F7XX-EVAL board are disconnected.

2. Download the STM32 ST-LINK Utility from ST's website.

The page titled “STSW-LINK004 STM32 ST-LINK utility” provides a free download of the utility http://www.st.com/web/
en/catalog/tools/PF258168

3. Install the ST-LINK Utility software on your Windows PC.

Simply unzip the downloaded file stsw-link004.zip and run the STM32 ST-LINK Utility_v3.0.0.exe that
was contained within it. Follow the on-screen instructions. This will install both the utility application and the ST-LINK/
V2 USB driver.

4. Connect the STM32F7XX-EVAL board to the PC.

Connect the STM32F7XX-EVAL board to the PC using the ST supplied mini-B USB cable. Windows should correct-
ly identify the USB device and load the device driver. Windows Device Manager should now show “STMicroelectron-
ics STLink dongle” under “Universal Serial Bus controllers”.

5. Run the ST-LINK Utility and ensure the ST-LINK firmware is up to date.

From the Windows “Start” menu run the “STM32 ST-LINK Utility”. Click on the connect icon, or select Tar-
get->Connect from the menu. This should confirm that a successful connection can be made to the board. To update the
on-board ST-LINK/V2 firmware select ST-LINK->Firmware Update from the menu. In the ST-LINK dialog box that
then appears click on the Device Connect button. This will likely result in a message “ST-Link is not in DFU mode.

2978

http://www.st.com/web/en/catalog/tools/PF258168
http://www.st.com/web/en/catalog/tools/PF258168

STM32F7XX-EVAL Platform HAL

Please restart it.”. In this case simply disconnect the board from the PC and then reconnect it after a couple of seconds, then
click the OK button on the message. In the original ST-Link dialog box click Device Connect again. The dialog box
should now report the current on-board and available firmware versions, and enable you to upgrade the board by pressing
the Yes >>>> button. We have tested the system with firmware version V2.J17.SO and would recommend this version
as a minimum. Clicking Yes >>>> will cause a progress bar in the dialog to be animated and should eventually result
in a “Update Successful” message. You can then close the various dialogs and exit the ST-LINK Utility. Disconnect and
reconnect the board and it is now ready for use with OpenOCD.

Programming ROM images
Since the STM32F7XX-EVAL board has a built-in ST-LINK/V2 SWD interface, the micro USB host connection (CN21) and
suitable host software (e.g. The OpenOCD package openocd tool) can be used to program the flash.

The openocd GDB server can directly program flash based applications from the GDB load command.

Note

The openocd command being used should have been configured and built to support the ST-LINK/V2 interface.
This is achieved by specifying the --enable-stlink when configuring the OpenOCD build. Additional information
on running openocd may be found in the OpenOCD notes.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the “bootup.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 4.7.3c) 7.6.1
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018
Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8
Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a command-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

2979

STM32F7XX-EVAL Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32F7XX-EVAL board platform HAL package is loaded automatically when eCos is configured for the
stm32f746g_eval2 or stm32f746g_proto targets. It should never be necessary to load this package explicitly. Un-
loading the package should only happen as a side effect of switching target hardware.

Startup
The STM32F7XX-EVAL board platform HAL package supports six separate startup types.

Note

Due to Cortex-M limitations regarding executable addresses, and the STM32F7 FMC memory bank address
locations, it is not possible to have a configuration with code executing from SDRAM and PSRAM/NOR without
run-time support for manipulating FMC_MEMRMP when moving between regions. The eCos run-time does
not provide such support. The relevant CYG_HAL_STARTUP configuration should be chosen for the desired
application CODE+DATA memory usage, with the other external memory being used purely for DATA storage.

ROM

This startup type can be used for finished (stand-alone) applications which will be programmed into internal flash at
location 0x08000000. Data and BSS will be put into external SDRAM starting from 0x60000000. The application will
be self-contained with no dependencies on services provided by other software. The program expects to boot from reset
with ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos startup code will perform
all necessary hardware initialization.

The off-chip SRAM memory from 0xC8000000 is available, but is not referenced by the eCos run-time. It is available
for application DATA use if required.

ROMAPP

This startup type can be used for finished applications which will be programmed into internal (on-chip) flash at the
configured offset from location (0x08000000+CYGIMP_BOOTUP_RESERVED), and started via a suitably configured
BootUp ROM loader. Data and BSS will be put into internal SRAM. The application will be self-contained with no
dependencies on services provided by other software.

ROMINT

This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x200002C8. Internal SRAM below this address
is reserved for vector tables. The application will be self-contained with no dependencies on services provided by other
software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the
0x08000000 region. eCos startup code will perform all necessary hardware initialization.

The off-chip SDRAM memory from 0x60000000 and off-chip SRAM memory from 0xC8000000 are available, but are
not referenced by the eCos run-time so are available for application use if required. The SDRAM can be used for CODE
+DATA, with the external SRAM for DATA.

JTAG

This is the startup type used to build applications that are loaded via the hardware debugger interface. The application will
be self-contained with no dependencies on services provided by other software. The program expects to be loaded from
0x60000000 and entered at that address. eCos startup code will perform all necessary hardware initialization, though since
the application is loaded via the hardware debugger interface the host debug environment is responsible for configuring
the necessary I/O state to initialise the off-chip SDRAM.

2980

STM32F7XX-EVAL Platform HAL

This is the startup type normally used during application development, since the large SDRAM memory space allows for
larger debug applications where compiler optimisation may be disabled, and run-time assert checking enabled.

Note

Executing code from the SDRAM memory has a performance downside. It is significantly slower than ex-
ecution from on-chip SRAM or flash. If performance is an issue then hardware debugging can be used for
any of the startup types if required.

The off-chip SRAM memory from 0xC8000000 is available, but is not referenced by the eCos run-time. It is available
for application DATA use if required.

SRAM

This is a variation of the JTAG type that only uses internal memory. The application will be self-contained with no de-
pendencies on services provided by other software. The program expects to be loaded from 0x200002C8 and entered at
that address. eCos startup code will perform all necessary hardware initialization. Unlike the JTAG startup no explicit
hardware debugger configuration is needed, since the application (like the ROM and ROMINT startup types) will initialise
the off-chip SDRAM memory as required.

The off-chip SRAM memory from 0xC8000000 is also available, but is not referenced by the eCos run-time. It is available
for application DATA use if required.

SRAMEXT

This is a variation of the JTAG type that uses the external SRAM memory addressed from 0x68000000.

The off-chip SDRAM memory from 0xC0000000 is also available, but is not referenced by the eCos run-time. It is available
for application DATA use if required.

RAM

For the ST-LINK/V2 enabled STM32F7XX-EVAL platform this startup type is unlikely to be used. It is provided for
completeness.

When the board has RedBoot (or a GDB stub ROM) programmed into internal Flash at location 0x08000000 then the arm-
eabi-gdb debugger can communicate with the relevant UART connection to load and debug applications. An application
is loaded into memory from 0x60100000. It is assumed that the hardware has already been initialized by RedBoot. By
default the application will not be stand-alone, and will use the eCos virtual vectors mechanism to obtain services from
RedBoot, including diagnostic output.

Note

As well as having a memory footprint cost, RedBoot use can adversely affect the real-time performance of
an eCos application.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

Note

Though, as previously discussed, since the option of hardware debugging is available as standard on the ST-
M32F7XX-EVAL platform it is unlikely that the RAM startup type would be used for development.

2981

STM32F7XX-EVAL Platform HAL

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

When QSPI NOR flash support is enabled in the configuration with CYGHWR_HAL_CORTEXM_STM32_FLASH_QSPI, then
the m25pxx_flash_device device is exported and can be accessed via the standard flash API. The device is given a logical
base address to match its physical base address of 0x90000000 (corresponding to FMC bank 4) when it is memory mapped
(if CYGFUN_DEVS_FLASH_QSPI_CORTEXM_STM32_MEMMAPPED is enabled in the QSPI driver, which is the default).
Even if memory mapping is disabled, using the eCos Flash API will still allow the device to be read/written at that logical
base address.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. Since the
platform uses an I²C bus 1 based I/O expander the I²C support is always enabled. The touch-panel device is instantiated and
becomes available for applications from <cyg/io/i2c.h>.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32F7XX-EVAL platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

Ethernet Driver
The Ethernet MAC is connected to a DP83848 PHY via the MII interface and thence to a RJ45 connector at CN9. By default
the external 25MHz crystal is used to supply the clock and JP6 must be set to the 1-2 position, which should be the default
setting. The MMIO and MDC signals must be connected to PA2 and PC1, so JP21 and JP22 should be set to the 1-2 position,
which should also be the default settings.

By default solder bridges SB36, SB47 and SB9 are open, which means that MII_CRS, MII_COL and MII_RX_ER are not
connected to the PHY. Without MII_CRS and MII_COL, the MAC will only operate in full duplex mode and not half duplex.
This means that it will work with Ethernet switches, but not with older hubs.

CAN Driver
The STM32 has a dual BXCAN device for CAN support. This consists of a master device, BXCAN1, and a slave device,
BXCAN2. If BXCAN2 is to be used, BXCAN1 must be powered and clocked, regardless of whether it is to be used for CAN
traffic. BXCAN1 is the only device connected to an external D-Sub socket at CN22. It shares an IO pin with the OTG FS
controller. JP8 controls connection of CAN1_RX to PA11. By default this jumper is not fitted, so one must be fitted to enable
BXCAN1. Additionally, the OTG_FS1 connector at CN13 cannot now be used and must be left unconnected. This means that
the OTG_FS USB controller and CAN cannot be used concurrently.

Consult the generic CAN driver API documentation in the eCosPro Reference Manual for further details on CAN support in
eCosPro, along with the documentation and configuration options in the BXCAN device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-

2982

STM32F7XX-EVAL Platform HAL

vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32F7XX-EVAL board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

2983

STM32F7XX-EVAL Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M7 core of the STM32F7 only
supports eight such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V2 interface.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. The architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable such use.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

However, when using the STM32F7XX-EVAL board via the ST-LINK/V2 interface then it is recommended that the gdb_h-
wdebug_fileio approach is used to provide access to diagnostics via the GDB debug connection. When ITM support is
used it has been observed that the ST-LINK/V2 firmware can drop data, leading to the possibility of confusing output. How-
ever, with care the ITM system can be tuned to provide diagnostic and instrumentation via the host SWD debugger.

Using the ST-LINK/V2 connection allows for a single cable to provide power (JP12), hardware debug support and diagnostic
output.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board ST-LINK/V2 interface available via the USB CN21 con-
nection. When configuring the openocd tool build, the configure script can be given the option --enable-stlink to pro-
vide for ST-LINK support.

Two example OpenOCD configuration files, openocd.stm32f7xx_eval.sdram.cfg and
openocd.stm32f7xx_eval.psram.cfg, are provided within the eCos platform HAL package in the source repository.
The latter file is used for SRAMEXT startup types (although it can also be used for SRAM and ROMINT startup types) with the
former used for all other startup types. These are in the directory packages/hal/cortexm/stm32/stm32f7xx_e-
val/current/misc relative to the root of your eCos installation and the appropriate OpenOCD configuration configuration
file will be copied as the file PREFIX/etc/openocd.cfg when you build the target.ld for your configuration.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f PREFIX/etc/openocd.cfg
Open On-Chip Debugger 0.9.0 (2015-09-18-16:19)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
adapter speed: 2000 kHz
adapter_nsrst_delay: 100
none separate
Info : Unable to match requested speed 2000 kHz, using 1800 kHz
Info : Unable to match requested speed 2000 kHz, using 1800 kHz

2984

STM32F7XX-EVAL Platform HAL

Info : clock speed 1800 kHz
Info : STLINK v2 JTAG v17 API v2 SWIM v0 VID 0x0483 PID 0x3748
Info : using stlink api v2
Info : Target voltage: 2.886506
Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

Note

Do not edit the PREFIX/etc/openocd.cfg directly for use by openocd as this will be over-written by the
original when the eCos configuration changes and target.ld is rebuilt. Instead, create a copy of the file for
local changes and specify the copy as the -f argument to openocd.

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb) monitor reset halt
target state: halted
target halted due to debug-request, current mode: Thread
xPSR: 0x01000000 pc: 0x0800422c msp: 0x20000c80
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then you can review the “Hard-
ware Assisted Debugging” section of the “Eclipse/CDT for eCos application development” document's “Debugging eCos ap-
plications” chapter for further details.

If the HAL diagnostics are configured to use ITM, and stimulus port 31 is configured as the HAL diagnostic destination,
then the configuration example above will direct OpenOCD to direct ITM output (and also DWT and ETM) to a file named
tpiu.out in the current directory of the shell which was used to run the openocd command. A more specific filename can
be used by adjusting the OpenOCD configuration file.

To extract the ITM output, the Cortex-M architecture HAL package provides a helper program parseitm in the directory
packages/hal/cortexm/arch/current/host relative to the root of your eCos installation. It can be compiled sim-
ply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, for example:

$ parseitm -p 31 -f itm.out

It will then echo all ITM stimulus for that port, continuing to read from the file until interrupted with Ctrl-C. Note that lim-
ited buffer space in debug hardware such as the ST-LINK can result in occasionally missed ITM data. eCosPro provides a
workaround of throttling data within the CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration
component in order to reduce or avoid lost ITM data. For further details, see the note in OpenOCD ITM support.

Similarly, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the default
stimulus port 24 output can be captured. For example, assuming the application cminfo is the ELF file built from an eCos
configuration with ITM instrumentation enabled, and is loaded and run via openocd, then we could run parseitm to capture
instrumentation whilst the program executes, and then view the gathered data using the example instdump tool provided in
the Kernel package.

$ parseitm -p 24 -f tpiu.out > inst.bin
^C
$ instdump -r inst.bin cminfo
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 2:[SCHED:UNLOCK][THREAD 4095][TSHAL 195][TSTICK 0][ARG1:00000002] { ts 195 microseconds }
 3:[SCHED:LOCK][THREAD 4095][TSHAL 346][TSTICK 0][ARG1:00000002] { ts 346 microseconds }
 4:[SCHED:UNLOCK][THREAD 4095][TSHAL 495][TSTICK 0][ARG1:00000002] { ts 495 microseconds }
 5:[THREAD:RESUME][THREAD 1][TSHAL 647][TSTICK 0][ARG1:200045D0][ARG2:200045D0] { ts 647 microseconds }
 6:[SCHED:LOCK][THREAD 1][TSHAL 795][TSTICK 0][ARG1:00000002] { ts 795 microseconds }

2985

STM32F7XX-EVAL Platform HAL

 7:[MLQ:ADD][THREAD 1][TSHAL 945][TSTICK 0][ARG1:200045D0][ARG2:0000001F] { ts 945 microseconds }
 8:[SCHED:UNLOCK][THREAD 1][TSHAL 1096][TSTICK 0][ARG1:00000002] { ts 1096 microseconds }
 9:[INTR:ATTACH][THREAD 1][TSHAL 0][TSTICK 0][ARG1:00000000] { ts 10000 microseconds }
 10:[INTR:UNMASK][THREAD 1][TSHAL 149][TSTICK 0][ARG1:00000000] { ts 10149 microseconds }
 11:[INTR:ATTACH][THREAD 1][TSHAL 305][TSTICK 0][ARG1:00000054] { ts 10305 microseconds }
 12:[INTR:UNMASK][THREAD 1][TSHAL 449][TSTICK 0][ARG1:00000054] { ts 10449 microseconds }

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM or SDRAM without requiring a ROM monitor. Loading can be
done directly through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support this mode, it is recommended to use the JTAG startup type which will implic-
itly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the
CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output being encoded
into GDB ($O) packets. These configuration changes could be made by hand, but use of the JTAG startup type will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric exten-
sion allows diagnostic output to appear in GDB. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. If you are using the graphical configuration
tool then you should then accept any suggested solutions to the subsequent configuration conflicts. Older eCos releases also
required the gdb "set hwdebug on" command to be used to enable GDB or Eclipse console output, but this is no longer required
with the latest tools.

2986

STM32F7XX-EVAL Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32F7XX-EVAL board hardware,
and should be read in conjunction with that specification. The STM32F7XX-EVAL platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMINT, SRAM, JTAG and SRAMEXT startup types the HAL will perform additional initialization, programming the
various internal registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may
be found in the src/stm32f7xx_eval_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal RAM

This is located at address 0x20000000 of the memory space, and is 320KiB in size. The eCos VSR table occupies the
bottom 392 bytes of memory, with the virtual vector table starting at 0x200001AC and extending to 0x200002AC.

This memory region comprises three contiguous memory blocks, the DTCM (Data Tightly Coupled Memory), SRAM
region 1 and SRAM region 2.

External SDRAM

This is located at address 0x60000000 of the memory space, and is 32MiB long. For ROM applications, all of the SDRAM
is available for use. For JTAG applications the application is loaded from 0x80000000 with the remaining SDRAM
after the code+data available for application use.

For RAM startup applications, SDRAM below 0x60008000 is reserved for the debug monitor (e.g. RedBoot).

External SRAM

This is located at address 0x64000000 of the memory space, and is 2MiB long. For SRAMEXT applications, all of the
external SRAM is available for use.

Internal FLASH

This is located at address 0x08000000 of the memory space and will be mapped to 0x00000000 at reset. This region
is 1024KiB in size. ROM and ROMINT applications are by default configured to run from this memory.

External FLASH

This is located at address 0xC0000000 of the memory space. This region is 16MiB in size.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found
in the STM32 User Manual.

2987

STM32F7XX-EVAL Platform HAL

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 98 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x200001AC.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, 0x20030000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Diagnostic LEDs
Four LEDs are fitted on the board for diagnostic purposes and are labelled LD1 (green), LD2 (orange), LD3 (red) and LD4
(blue).

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow LEDs LD1
and LD3 to be set:

extern void hal_stm32f7xx_eval_led(char c);

However, LEDs LD2 and LD4 cannot be set with this function as it is intended for low level control of the LEDs, but LD2 and
LD4 are under MFX_GPO control. This means setting them would result in I²C transactions which in turn means the function
could not be called from ISR/DSR or system-critical code.

Nevertheless, the lowest 4-bits of the argument c correspond to the LED number (with LED0/LD1 as the least significant bit).
Attempting to set the bits for LD2/LD4 will have no effect.

Table 306.1. LEDs

eCos LED GPIO manifest STM32F7 GPIO Bit number Board label Colour

CYGHWR_HAL_STM32F7XX_EVAL_LED0 PF10 0 LD1 Green

CYGHWR_HAL_STM32F7XX_EVAL_LED2 PB7 2 LD3 Red

The platform HAL will automatically light LED0 when the platform initialisation is complete, however the LEDs are then
free for application use.

Flash wait states
The STM32F7XX-EVAL platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32 Flash programming manual (PM0081) for
appropriate values for different clock speeds or voltages. The default of 5 reflects a supply voltage of 3.3V and HCLK of
168MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for SRAM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

2988

STM32F7XX-EVAL Platform HAL

Example 306.1. stm32f7xx_eval Real-time characterization

 Startup, main thrd : stack used 352 size 1536
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 3.13 microseconds (3 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 16
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 2.00 1.00 3.00 0.13 87% 6% Create thread
 0.44 0.00 1.00 0.49 56% 56% Yield thread [all suspended]
 0.56 0.00 1.00 0.49 56% 43% Suspend [suspended] thread
 0.50 0.00 1.00 0.50 100% 50% Resume thread
 0.69 0.00 1.00 0.43 68% 31% Set priority
 0.25 0.00 1.00 0.38 75% 75% Get priority
 1.19 1.00 2.00 0.30 81% 81% Kill [suspended] thread
 0.44 0.00 1.00 0.49 56% 56% Yield [no other] thread
 0.69 0.00 1.00 0.43 68% 31% Resume [suspended low prio] thread
 0.50 0.00 1.00 0.50 100% 50% Resume [runnable low prio] thread
 0.56 0.00 1.00 0.49 56% 43% Suspend [runnable] thread
 0.44 0.00 1.00 0.49 56% 56% Yield [only low prio] thread
 0.44 0.00 1.00 0.49 56% 56% Suspend [runnable->not runnable]
 1.25 1.00 2.00 0.38 75% 75% Kill [runnable] thread
 1.13 1.00 2.00 0.22 87% 87% Destroy [dead] thread
 2.19 2.00 3.00 0.30 81% 81% Destroy [runnable] thread
 2.88 2.00 4.00 0.44 62% 25% Resume [high priority] thread
 0.80 0.00 2.00 0.33 78% 20% Thread switch

 0.12 0.00 1.00 0.21 88% 88% Scheduler lock
 0.36 0.00 1.00 0.46 64% 64% Scheduler unlock [0 threads]
 0.33 0.00 1.00 0.44 67% 67% Scheduler unlock [1 suspended]
 0.40 0.00 1.00 0.48 60% 60% Scheduler unlock [many suspended]
 0.33 0.00 1.00 0.44 67% 67% Scheduler unlock [many low prio]

 0.16 0.00 1.00 0.26 84% 84% Init mutex
 0.53 0.00 1.00 0.50 53% 46% Lock [unlocked] mutex
 0.50 0.00 1.00 0.50 100% 50% Unlock [locked] mutex
 0.47 0.00 1.00 0.50 53% 53% Trylock [unlocked] mutex
 0.38 0.00 1.00 0.47 62% 62% Trylock [locked] mutex
 0.22 0.00 1.00 0.34 78% 78% Destroy mutex
 3.69 3.00 4.00 0.43 68% 31% Unlock/Lock mutex

 0.28 0.00 1.00 0.40 71% 71% Create mbox
 0.16 0.00 1.00 0.26 84% 84% Peek [empty] mbox
 0.56 0.00 1.00 0.49 56% 43% Put [first] mbox
 0.16 0.00 1.00 0.26 84% 84% Peek [1 msg] mbox
 0.59 0.00 1.00 0.48 59% 40% Put [second] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek [2 msgs] mbox
 0.50 0.00 1.00 0.50 100% 50% Get [first] mbox
 0.44 0.00 1.00 0.49 56% 56% Get [second] mbox
 0.47 0.00 1.00 0.50 53% 53% Tryput [first] mbox
 0.47 0.00 1.00 0.50 53% 53% Peek item [non-empty] mbox

2989

STM32F7XX-EVAL Platform HAL

 0.56 0.00 1.00 0.49 56% 43% Tryget [non-empty] mbox
 0.44 0.00 1.00 0.49 56% 56% Peek item [empty] mbox
 0.44 0.00 1.00 0.49 56% 56% Tryget [empty] mbox
 0.13 0.00 1.00 0.22 87% 87% Waiting to get mbox
 0.13 0.00 1.00 0.22 87% 87% Waiting to put mbox
 0.28 0.00 1.00 0.40 71% 71% Delete mbox
 2.19 2.00 3.00 0.30 81% 81% Put/Get mbox

 0.13 0.00 1.00 0.22 87% 87% Init semaphore
 0.41 0.00 1.00 0.48 59% 59% Post [0] semaphore
 0.47 0.00 1.00 0.50 53% 53% Wait [1] semaphore
 0.38 0.00 1.00 0.47 62% 62% Trywait [0] semaphore
 0.41 0.00 1.00 0.48 59% 59% Trywait [1] semaphore
 0.25 0.00 1.00 0.38 75% 75% Peek semaphore
 0.16 0.00 1.00 0.26 84% 84% Destroy semaphore
 2.00 2.00 2.00 0.00 100% 100% Post/Wait semaphore

 0.19 0.00 1.00 0.30 81% 81% Create counter
 0.06 0.00 1.00 0.12 93% 93% Get counter value
 0.13 0.00 1.00 0.22 87% 87% Set counter value
 0.53 0.00 1.00 0.50 53% 46% Tick counter
 0.16 0.00 1.00 0.26 84% 84% Delete counter

 0.16 0.00 1.00 0.26 84% 84% Init flag
 0.34 0.00 1.00 0.45 65% 65% Destroy flag
 0.38 0.00 1.00 0.47 62% 62% Mask bits in flag
 0.41 0.00 1.00 0.48 59% 59% Set bits in flag [no waiters]
 0.63 0.00 1.00 0.47 62% 37% Wait for flag [AND]
 0.66 0.00 1.00 0.45 65% 34% Wait for flag [OR]
 0.69 0.00 1.00 0.43 68% 31% Wait for flag [AND/CLR]
 0.63 0.00 1.00 0.47 62% 37% Wait for flag [OR/CLR]
 0.16 0.00 1.00 0.26 84% 84% Peek on flag

 0.38 0.00 1.00 0.47 62% 62% Create alarm
 0.66 0.00 1.00 0.45 65% 34% Initialize alarm
 0.44 0.00 1.00 0.49 56% 56% Disable alarm
 0.59 0.00 1.00 0.48 59% 40% Enable alarm
 0.44 0.00 1.00 0.49 56% 56% Delete alarm
 0.69 0.00 1.00 0.43 68% 31% Tick counter [1 alarm]
 2.31 2.00 3.00 0.43 68% 68% Tick counter [many alarms]
 0.94 0.00 1.00 0.12 93% 6% Tick & fire counter [1 alarm]
 14.03 14.00 15.00 0.06 96% 96% Tick & fire counters [>1 together]
 2.69 2.00 3.00 0.43 68% 31% Tick & fire counters [>1 separately]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [0 threads]
 2.48 2.00 3.00 0.50 52% 52% Alarm latency [2 threads]
 3.00 3.00 3.00 0.00 100% 100% Alarm latency [many threads]
 4.99 4.00 5.00 0.02 99% 0% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 1.92 1.00 2.00 0.00 Clock DSR latency

 191 160 204 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 796 size 1536
 All done : Idlethread stack used 164 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>
EXIT:<done>

2990

STM32F7XX-EVAL Platform HAL

Name
Test Programs — Details

Test Programs
The STM32F7XX-EVAL platform HAL contains some test programs which allow various aspects of the board to be tested.

Manual Test
The manual test is not built by default. The configuration option
CYGPKG_HAL_CORTEXM_STM32_STM32F7XX_EVAL_TESTS_MANUAL should be enabled to allow the test to be built.

This program tests various aspects of the basic platform port, e.g. flashing LEDs, checking I²C device access and that the push-
button GPIO operates.

2991

STM32F7XX-EVAL Platform HAL

Name
BootUp Integration — Detail

BootUp
The BootUp support for the STM32F7xx-EVAL target is primarily implemented in the stm32f7xx_eval_support.c
file. The majority of the functions provided by that source file are only included when the CYGPKG_BOOTUP package is being
used to construct the actual BootUp ROM loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once its implementation has been tested and validated,
the binary will only need to be installed onto a device once. Its only purpose is to allow the safe updating and startup of the
main application. If the BootUp code ever needs to be replaced then it is a “factory” operation, for example using JTAG/SWD
to re-program the on-chip flash.

This platform specific documentation should be read in conjunction with the generic BootUp package and bundle image support
documentation.

The BootUp package provides a basic but fully functional implementation for the platform. This has been tested to ensure
that the underlying mechanism is sound. It is envisaged that the developer will customize and further extend the platform side
support to meet their specific application update requirements.

BootUp loaded applications

Applications started via the BootUp loader, since they cannot include the CYGPKG_BOOTUP package themselves, may need
access to some related configuration state. The platform is responsible for providing such “common” information. For example,
the CDL option CYGIMP_BOOTUP_RESERVED specifies the amount of on-chip flash set aside for BootUp. Applications can
then ensure that they do not interfere with the BootUp loader if using the remaining on-chip flash for their own purposes.

Warning

Care must be taken to ensure that the target application configuration matches the BootUp configuration, since it
is normally expected that the applications to be loaded will be independent of the initial BootUp build environ-
ment. This includes the fundamental on-chip flash space set aside for the BootUp ROM loader code (CYGIM-
P_BOOTUP_RESERVED) as well as, when using CYGPKG_BUNDLE support, where the bundle image is located
(selected Non-Volatile Memory (NVM) and offset/partition information). It is expected that such values, for a
particular platform instance, will be fixed at a suitable point during development, and definitely before products
are shipped. It is the responsibility of the developer to ensure a consistent configuration between the BootUp
ROM loader and any applications that may be installed/started by that BootUp code.

The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function for BootUp, and
applications started by BootUp, to ascertain the configured off-chip bundle/update location:

extern struct cyg_flash_dev *hal_stm32f7xx_eval_source_flash(cyg_flashaddr_t *pbase,cyg_flashaddr_t *plimit);

The function will return a pointer to the relevant flash device. The passed pbase parameter is a pointer to the value to be filled
with the base address for the image (or NULL if the value is not needed by the caller). Similarly the plimit parameter is a
pointer to the value to be filled with the limiting address for any image, or NULL if the address is not needed.

Primarily to avoid source duplication, the hal_stm32f7xx_eval_source_flash() function
provides common run-time access to the settings derived from the CDL options
CYGIMP_BOOTUP_STM32F7XX_EVAL_SOURCE, CYGNUM_BOOTUP_STM32F7XX_EVAL_SOURCE_OFFSET and
CYGNUM_BOOTUP_STM32F7XX_EVAL_SOURCE_LIMIT.

Bundle based applications

When the CDL option CYGIMP_BOOTUP_STM32F7XX_EVAL_BUNDLE is enabled, the STM32F7xx-EVAL platform
BootUp code incorporates the CYGPKG_BUNDLE package and support for bundle based application distribution.

2992

STM32F7XX-EVAL Platform HAL

The current STM32F7xx-EVAL platform BootUp bundle support is limited (by design) to starting SDRAM based applications.
i.e. CYG_HAL_STARTUP_JTAG startup type.

Note

The (slightly misleading) JTAG startup type name is used for standalone SDRAM based applications for his-
torical reasons. The RAM startup name is assumed by some systems to refer to an application that relies on the
presence of a debug monitor. BootUp is purely a “loader” and does NOT provide GDB stubs, so cannot support
CYG_HAL_STARTUP_RAM applications.

The platform HAL and CYGPKG_BUNDLE package provide a common set of routines shared by both BootUp and applications.
This ensures that all bundle operations are carried out in a compatible and consistent manner.

Figure 306.1. On-chip flash

BootUp ROMINT application in on-chip flash

On startup the BootUp loader will use the hal_stm32f7xx_eval_source_flash() function to ascertain the NVM
memory used to hold the source bundle image. If a valid bundle image is found, then the configured “main application” item tag
as specified by the CDL option CYGNUM_BOOTUP_STM32F7XX_EVAL_BUNDLE_TAG is searched for within the bundle.
If a valid matching tag item is found, then the data from that item is loaded into SDRAM and executed.

Note

This simple approach of using a fixed, pre-allocated, area for holding the bundle image simplifies the BootUp
(and similarly any main application based update) code without the issues that would need to be considered if the
bundle was stored in a filesystem. e.g. a JFFS2 filesystem on the SPI flash, with potentially slow JFFS2 mount
performance, inability to ascertain how much “true” free space is available on the filesystem, programmatic
support for deletion of “data” to free space for a bundle as part of an update, etc. The normal “lifetime” cycles
of NOR flash (e.g. S25FL256S) should be more than sufficient for the “limited” number of in-field updates that
may be undertaken on a specific board over its lifetime.

Figure 306.2. NVM bundle

Main application held in bundle stored in NVM

If a valid bundle exists and contains a valid CYGNUM_BOOTUP_STM32F7XX_EVAL_BUNDLE_TAG item, then the BootUp
loader will always start that application. The BootUp loader itself does NOT perform any update revision based automatic
update support. That support is entirely within the domain of the started application program, which is responsible for all
system update decisions and processing.

The only case where BootUp will initiate a system update is when a bundle is not present or is invalid, or when an otherwise
valid bundle doesn't contain a valid CYGNUM_BOOTUP_STM32F7XX_EVAL_BUNDLE_TAG item. In this case BootUp will
attempt to install a bundle from external media. The current example implementation uses a FATFS formatted SD Card for
this purpose.

2993

STM32F7XX-EVAL Platform HAL

Note

A beneficial side-effect of this approach is that it can help simplify the board production process. Boards only
need to be pre-initialized with the stable BootUp binary, which can then be used to install the latest application
firmware in NVM.

The example BootUp bundle support provided for this platform expects a single release bundle to be
stored in the root directory of an inserted FATFS SD Card. The first file found that matches the
CYGDAT_BOOTUP_STM32F7XX_EVAL_BUNDLE_PREFIX prefix is used. Any filename text after the prefix is ignored
and can contain human-readable or customer specific identification information as required. For example, assuming
CYGDAT_BOOTUP_STM32F7XX_EVAL_BUNDLE_PREFIX is configured as “MyProductName_”, then files named
MyProductName_1.02, MyProductName_1.03.B99.1234, MyProductName_example.bin would all be
matched.

The SD Card FATFS filesystem is mounted read-only, so any interrupted update operations (e.g. loss-of-power, reset condition)
should not affect the “validity” of the FATFS filesystem held on the SD Card.

Since only a single bundle image is held in the SPI flash there is a chance for the SPI flash based bundle to be in a “corrupt”
state if an update fails (power-loss, CPU reset, etc.) during an active update. However, since an update is only manually started
when a validated image is available on an SDcard, if the update is interrupted the same SDcard (and field-engineer/operator)
should be available to re-apply the update on the system restart. This avoids the (normal) “robustness” requirement of providing
two application images to be held in the SPI flash to ensure “safe” updates.

To reiterate, the BootUp code will ONLY perform an update from an SD Card to the NVM when there is NO valid main
application bundle/item pair (missing or corrupted). For in-field upgrades any update process will be instigated under the control
of the BootUp started “main application”. For example, the application could use the CYGPKG_BUNDLE API to validate a
bundle image from whatever source it has access to, and then to update the relevant NVM image itself. If the update is provided
on an SD Card then (after ensuring the SD Card does contain a valid bundle image) the main application just needs to invalidate
the current NVM bundle image, and then force a CPU reset to have BootUp detect the now invalid main application and apply
the update. It is up to the developer to decide the best approach for their particular needs in how point-revision updates are
installed, and is beyond the scope of this documentation.

The bundle implementation currently limits the number of automatic update attempts when a missing/invalid bundle is detected.
This is a deliberate choice to avoid continually failing attempts that could eventually wear out a flash device. The platform
hal_stm32f7xx_eval_badapp() function implementation, when bundle support is configured, will reset the system
to allow another restart attempt if the “Wakeup/Tamper” (CYGHWR_HAL_STM32F7XX_EVAL_BUTTON_USER) button is
pressed for more than one second. This can be used to manually force another “automatic” update attempt to be started.

When BootUp has installed a bundle to the SPI flash, the last 4-bytes of the SPI flash area (partition) set aside for the bundle
will be erased to 0xFFFFFFFF. This location and value can be used by the customer main application to ascertain that an
install/update has just been performed (since sector erase will only occur as part of a bundle install/update). It is the respon-
sibility of the main application to update this single location (clearing at minimum 1-bit) if it wants to track “post update”
state. This can by used by the main application to acknowledge the update, and can ensure, for example, that any (potentially
slow) “post update” main application specific functionality is not performed on every normal startup. For example, the main
application may need to check and update the software components of attached daughter-boards from the bundle, and can use
this mechanism to ensure it is only performed once after an update. This simple (erased flash) mechanism avoids complicated
support for passing non-volatile “log” information between the seperate BootUp and main application worlds.

Note

The main application should NOT use bit 31 of this field (treating the 32-bit value as being stored in little-endian
format) since it is reserved as a flag for the BootUp loader update processing. The main application should
ALWAYS leave bit 31 set.

On-Chip ROMAPP applications

If the CDL option CYGIMP_BOOTUP_STM32F7XX_EVAL_BUNDLE is not enabled, then BootUp provides an alternative
mechanism that supports the safe update of on-chip flash resident (CYG_HAL_STARTUP_ROMAPP) applications.

2994

STM32F7XX-EVAL Platform HAL

Updates using this mechanism are initiated and directed solely by the application itself. The application is responsible for
locating, acquiring and verifying a new update, and placing it into NVM storage. If BootUp detects a verified update in NVM,
it installs the update into the on-chip flash, overwriting and replacing the existing application. The updated application is then
executed.

Figure 306.3. BootUp and Application

BootUp ROMINT loader and ROMAPP main application held in on-chip flash

Figure 306.4. Application Update image

Update for ROMAPP main application held in NVM

The example implementation uses a simple scheme that checks a fixed-format contiguous structure near the start of the
binary application image file. Other than the fields used to identify the structure, the BootUp code does not interpret the
hal_stm32f7xx_eval_bootup_structure_t structure identity field.

Depending on how the alternative (pending update) application is downloaded and installed in the NVM, it may be more
relevant to have the tail marker at the very end of the binary image. The developer may wish to update the build/release
process so that the actual binary length is held in the application description structure, since that could avoid the overhead
of unnecessary flash reads and writes when processing updates. Similarly, instead of a simple binary number being used to
differentiate application images, the choice may be made to use the 64-bit UTC timestamp the application was created, or a
human-readable string as the unique identification for a release. It is the responsibility of the build/release engineer to ensure
individual releases are uniquely identifiable.

It is critical that the main application, when storing a pending update, stores the tail marker as the last bytes written. It is the
responsibility of the main application to verify the data written, prior to placing the tail marker. This ensures that a partial
image is not treated as a valid update. For example the sequence undertaken by the main application would be:

Table 306.2. Pending update sequence

Operation Details

Invalidate “previous”
alternative image

At a minimum ensure an invalid signature tail marker is written. Erasing the flash is normally
required anyway, and would invalidate any previous image.

Receive update appli-
cation image and write
to alternative image lo-
cation

NOT writing the tail marker. The code that stores the application should leave a “hole” where
the tail marker resides to ensure a partial image is not incorrectly treated as valid

Verify downloaded
contents

e.g. CRC or binary comparison. Normally this would be done as individual application chunks are
downloaded and written to the alternative storage

Write tail marker This is the very last operation after validating that the alternative image has been stored correctly.
If an error has occured during the download then not-writing the tail ensures that the BootUp
loader will not interpret the data written as a pending update

Force system RESET
to start update

e.g. using the HAL_PLATFORM_RESET macro

2995

STM32F7XX-EVAL Platform HAL

The BootUp loader code will only READ from the alternative image location. This ensures that if an in-progress update is
interrupted (e.g. power-loss) then when the system restarts the BootUp code will restart the application update as required.

If the BootUp platform implementation for validating the alternative image is extended to include a CRC, or similar “slow”
processing, it may be worth considering whether the main application on startup will always invalidate the tail marker after
an update to avoid subsequent system resets having to re-validate the alternative image prior to discovering that it is the same
as the current main application.

Note

We cannot have the SIGNATURE support purely conditional on the BOOTUP support; since non-BOOTUP
applications need to be built leaving the space. For the moment this is only enforced for ROMAPP applications,
since that is all that the simple (non-BUNDLE) BootUp update support implements.

Building BootUp

The ROMINT startup type is chosen for BootUp so that the loader uses the on-chip SRAM for its workspace, to avoid the
overhead of managing off-chip memory where the target application will be loaded.

Example eCos configuration templates for BootUp are provided in the misc directory of the release. The host-
boot_ROMINT.ecm configuration file can be used to construct a bundle based BootUp loader and bootup_ROMINT.ecm
for the simpler on-chip ROMAPP update BootUp loader.

Building a BootUp ROM image is most conveniently done at the command line. For the stm32f746g_eval2, the steps
needed to rebuild the bundle based ROMINT version of BootUp on linux are:

$ mkdir hostboot_romint
$ cd hostboot_romint
$ ecosconfig new stm32f746g_eval2 minimal
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm32f7xx_eval/current/misc/hostboot_ROMINT.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The steps needed to rebuild the bundle based ROMINT version of BootUp on Windows within the Shell Environment are

C:\Users\demo> mkdir hostboot_romint
C:\Users\demo> cd hostboot_romint
C:\Users\demo\hostboot_romint> ecosconfig new stm32f746g_eval2 minimal
[… ecosconfig output elided …]
C:\Users\demo\hostboot_romint> ecosconfig import \
 %ECOS_REPOSITORY%/hal/cortexm/stm32/stm32f7xx_eval/current/misc/hostboot_ROMINT.ecm
C:\Users\demo\hostboot_romint> ecosconfig resolve
C:\Users\demo\hostboot_romint> ecosconfig tree
C:\Users\demo\hostboot_romint> make

The resulting install/bin/bootup.bin binary can then be programmed into the on-chip flash from address
0x08000000.

It is expected that the BootUp binary is installed onto the STM32F427 on-chip flash either via JTAG/SWD or by utilising the
on-chip BootROM USB based DFU process. This is a factory or in-field process requiring specific equipment/host-software.

Once BootUp is installed it is not normally expected to require updating. Its purpose is to bootstrap the main application, and
provide a standard mechanism for installing the main application. The update mechanism does NOT provide a method for
updating the BootUp loader itself. If in-field updates of the BootUp binary are necessary, this could be achieved via the STM32
on-chip BootROM USB based DFU process.

BootUp Test Programs

The tests/bundle_example.c source implements a simple example of an application that utilises the
CYGPKG_BUNDLE package. Its code could serve as a useful starting point when adding bundle update support to your own
application.

Normally a standard CYG_HAL_STARTUP_JTAG configured build of the bundle_example would be used. If
the bootup application is used to bootstrap the processor and is built as described in Building BootUp, the

2996

STM32F7XX-EVAL Platform HAL

eCos Configuration against which bundle_example is linked must also include “CRC Support” (CYGPKG_CRC),
“Zlib compress/decompress support” (CYGPKG_COMPRESS_ZLIB), “File IO” (CYGPKG_IO_FILEIO) and
“Generic FLASH memory support” (CYGPKG_IO_FLASH).

As well as ensuring the required packages are present in the configuration,
the CDL option CYGBLD_HAL_CORTEXM_STM32F7XX_EVAL_TESTS_MANUAL, and its sub-option
CYGBLD_HAL_CORTEXM_STM32F7XX_EVAL_TEST_BOOTUP, should be enabled to allow bundle_example to be built.

Note

If required, the release provides an example “default” template for the stm32f746g_eval2 platform in the
misc/bundle_example.ecm file which includes all the necessary packages and defines the necessary op-
tions. This can be imported to a configuration (using either the command-line ecosconfig import, or the GUI
configtool “File->Import...” support).

Once built, a raw binary copy of the application would be extracted for adding to a bundle using the arm-eabi-objcopy
command. For example:

$ arm-eabi-objcopy -O binary bundle_example bundle_example.bin

The resulting binary could then be added to a bundle image using the host-based bundle tool:

$ bundle MyProductName_example.bin create add 0x0001:bundle_example.bin:C:md5

Refer to the bundle host tool section for detailed information on the bundle host tool.

In this example the bundle image would then be placed onto a suitably formatted FATFS SD Card. The bundle would then
be installed into the NVM either by a pre-existing main application, or by the BootUp loader if a valid bundle is not currently
installed in the NVM.

Note

When placing the bundle image onto a FATFS SD Card only the
CYGDAT_BOOTUP_STM32F7XX_EVAL_BUNDLE_PREFIX configured filename prefix is checked by the
BootUp code. It is expected that only a single, suitably prefixed, bundle is present on an SD Card used for update/
installation.

The provided bundle_invalidate test can be used during BootUp bundle testing to explicitly invalidate any NVM held bundle.
This can be done to check the BootUp operation when no valid bundle containing a main application is available, e.g. to test
installation from FATFS SD Card.

2997

Chapter 307. STM32L476-DISCO Platform
HAL

2998

STM32L476-DISCO Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32L476_DISCO — eCos Support for the STM32L476-DISCO Board

Description
This documentation describes the platform-specific elements of the ST STM32L476 board support within eCos. It should
be read in conjunction with the STM32 variant HAL section, which covers the common functionality shared by all STM32
variants, including eCos HAL features and on-chip device support.

The board is equipped with an on-board ST-LINK/V2 hardware debugger interface (via the CN1 “USB ST-LINK” connector),
which is typically used for eCos application development.

Supported Hardware
The STM32L476VG has two main on-chip memory regions. The device has a SRAM region of 96KiB present at 0x20000000,
and a 1MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). A 128Mbit
N25Q SPI flash device it available through the QSPI controller.

The STM32 variant HAL includes support for the six on-chip serial devices. These consist of three USARTs, two UARTs
and a LPUART. These are all supported by a common driver and are documented in the variant HAL. However, the ST-
M32L476-DISCO motherboard has no direct UART connectors. It is possible to use USART1 on PIO pins PB6 and PB7 which
are connected to pins 15 and 16 of the P1 header.

The STM32 variant HAL also includes support for the I²C buses. A number of I²C devices are present on the board, but none are
currently supported by eCosPro. Connections for external I²C devices on bus 1 can be made either via the CN2 I²C extension
connector or pins 15 and 16 of P1. Note that these are the same pins as used by USART1, so these two devices cannot be
used simultaneously.

Similarly the STM32 variant HAL includes support for the SPI buses. There are a number of SPI devices on the board, but
none are currently supported by eCosPro. External access to SPI bus 1 can be had via P2 header pins 15 to 18 which are
connected to PIO pins PE12-15. However, these pins are also used for the QSPI memory, so it is not possible to use SPI and
QSPI simultaneously.

Device drivers are also provided for the STM32 on-chip, ADC devices. There are no usable analog inputs on the board, only
the internal sources are generally available. Only a limited number of PIO pins that connect to the ADCs are accessible. These
are mainly limited to PA0-3 and PA5 on the P1 header, which are shared with the joystick switch. If the LCD is removed then
further pins are accessible via the socket.

Additionally, support is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management
of the STM32's on-chip Flash.

The STM32L4 processor and the STM32L476-DISCO board provide a wide variety of peripherals, but unless support is
specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3j, arm-eabi-gdb version 7.8.2, and binutils version 2.23.2.

2999

STM32L476-DISCO Platform HAL

Name
Setup — Preparing the STM32L476-DISCO Board for eCos Development

Overview
Typically, since the STM32L476-DISCO motherboard has a built-in ST-LINK/V2-1 interface providing hardware debug sup-
port, eCos applications are loaded and run via the debugger arm-eabi-gdb or via the Eclipse IDE. The debugger then commu-
nicates with the “GDB server” provided by the relevant host ST-LINK/V2-1 support tool being used (e.g. OpenOCD).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM is required for application run-time use.

If off-chip Non-Volatile Memory (NVM) is used to hold the main application then the board can boot from the internal flash
using a suitable boot loader. For example, the eCosPro BootUp ROM loader, where the BootUp code can start the main
application (after an optional update sequence).

If required, it is still possible to program a GDB stub or RedBoot ROM image into on-chip Flash and download and debug via a
serial connection (using USART3 on J8). In that case, eCos applications are configured for RAM startup and then downloaded
and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE as appropriate. However, the space available to
applications with this approach is so limited as to make it essentially impractical.

Preparing ST-LINK/V2-1 interface
Use of the ST-LINK with STM32L4 microcontrollers and OpenOCD currently requires that the ST-LINK/V2-1 firmware is
version V2.J20.XXX and not a more recent version. The firmware for the ST-LINK/V2-1 interface can be checked, and
updated if needed, using a tool available from STMicroelectronics. The firmware version is also reported when the openocd
command is executed (using a suitable configuration file). For example, the following OpenOCD output reports JTAG v20:

Info : STLINK v2 JTAG v20 API v2 SWIM v11 VID 0x0483 PID 0x374B

Future revisions of ST-LINK firmware may restore compatibility, but would require testing to confirm this. The user should
refer to the ST “ST-LINK/V2-1 firmware upgrade” (RN0093) Release Note, which provides details on upgrading the ST-Link
firmware on Linux, Mac OS X and Windows hosts.

Programming ROM images
Since the STM32L476-DISCO board has a built-in ST-LINK/V2-1 SWD interface, the USB host connection (CN1) and suitable
host software (e.g. The OpenOCD package openocd tool) can be used to program the flash.

The openocd GDB server can directly program flash based applications from the GDB load command.

Note

The openocd command being used should have been configured and built to support the ST-LINK/V2-1 interface.
This is achieved by specifying the --enable-stlink when configuring the OpenOCD build. Additional information
on running openocd may be found in the OpenOCD notes.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the “bootup.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 4.7.3j) 7.8.2
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018

3000

STM32L476-DISCO Platform HAL

Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8
Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

3001

STM32L476-DISCO Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32L476-DISCO board platform HAL package CYGPKG_HAL_CORTEXM_STM32_STM32L476_DISCO is loaded
automatically when eCos is configured for the stm32l476_disco target. It should never be necessary to load this package
explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The STM32L476-DISCO board platform HAL package supports four separate startup types:

ROM

This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x20000288. Internal SRAM below this address
is reserved for vector tables. The application will be self-contained with no dependencies on services provided by other
software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the
0x08000000 region. eCos startup code will perform all necessary hardware initialization.

ROMAPP

This startup type can be used for finished applications which will be programmed into internal flash at location
0x08008000. Data and BSS will be put into internal SRAM starting from 0x20000288. Internal SRAM below this address
is reserved for vector tables. The application will be self-contained with no dependencies on services provided by other
software. The program expects to boot from reset with ROM mapped at location zero. It will then transfer control to the
0x08000000 region. eCos startup code will perform all necessary hardware initialization.

This startup type is identical to the ROM startup with the exception of the flash base address. It is used for applications
that can be started or updated by BootUp.

SRAM

This startup type can be used for finished applications which will be loaded into internal SRAM via a JTAG interfae. The
application will be self-contained with no dependencies on services provided by other software. The program expects to be
loaded from 0x20000288 and entered at that address. eCos startup code will perform all necessary hardware initialization.

RAM

When the board has RedBoot (or a GDB stub ROM) programmed into internal Flash at location 0x08000000 then the
arm-eabi-gdb debugger can communicate with a suitably configured UART connection to load and debug applications.
An application is loaded into memory from 0x20001000. It is assumed that the hardware has already been initialized by
RedBoot. By default the application will not be stand-alone, and will use the eCos virtual vectors mechanism to obtain
services from RedBoot, including diagnostic output.

Warning

RedBoot can have an adverse affect on the real-time performance of applications.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building

3002

STM32L476-DISCO Platform HAL

for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

Note

Though, as previously discussed, since the option of hardware debugging is available as standard on the ST-
M32L476-DISCO platform, and space in the SRAM is limited, it is unlikely that the RAM startup type would
be used for development.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

No SPI devices are instantiated for this platform by default.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. Howev-
er, the platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32L476_DIS-
CO_I2C. This enables I²C bus 1. A CAT2C128 EEPROM is available on this bus and is instantiated with the name
hal_stm32l476_disco_eeprom. The instantiated device is available for applications via <cyg/io/i2c.h>.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32L476-DISCO platform HAL enables the support for
the devices ADC1, ADC2 and ADC3 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32L476-DISCO board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

QSPI Flash Driver
When QSPI NOR flash support is enabled in the configuration with CYGHWR_HAL_CORTEXM_STM32_FLASH_QSPI, then
the m25pxx_flash_device device is exported and can be accessed via the standard flash API. The device is given a logical
base address to match its physical base address of 0x90000000 (corresponding to FMC bank 4) when it is memory mapped
(if CYGFUN_DEVS_FLASH_QSPI_CORTEXM_STM32_MEMMAPPED is enabled in the QSPI driver, which is the default).
Even if memory mapping is disabled, using the eCos Flash API will still allow the device to be read/written at that logical
base address.

3003

STM32L476-DISCO Platform HAL

Name
SWD support — Usage

Use of JTAG/SWD for debugging
JTAG/SWD can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M7 core of the STM32L476 only
supports eight such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end such as Eclipse,
check it has not set unnecessary extra breakpoints such as at main(). Some JTAG/SWD devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL. This should not be necessary when using a SWD-based hardware debugger such as the on-board ST-LINK/V2-1 inter-
face.

The default eCos configuration does not enable the use of ITM stimulus ports for the output of HAL diagnostics or Kernel
instrumentation. The architecture HAL package CYGPKG_HAL_CORTEXM provides options to enable such use.

For HAL diagnostic (e.g. diag_printf()) output the architecture CDL option CYGHWR_HAL_CORTEXM_DIAG-
NOSTICS_INTERFACE should be updated to select ITM as the output destination. Once the ITM option has been configured
the option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_ITM_PORT allows the actual stimulus port used for the diagnostics
to be selected.

When the Kernel instrumentation option CYGPKG_KERNEL_INSTRUMENT is enabled then the CYGHWR_HAL_COR-
TEXM_ITM_INSTRUMENTATION option can be enabled to direct instrumentation record output via an ITM stimulus port,
rather than into a local memory buffer. The stimulus port used can be configured via the CYGHWR_HAL_CORTEXM_IT-
M_INSTRUMENTATION_PORT_BASE option.

However, when using the STM32L476-DISCO board via the ST-LINK/V2-1 interface then it is recommended that the gdb_h-
wdebug_fileio approach is used to provide access to diagnostics via the GDB debug connection. When ITM support is
used it has been observed that the ST-LINK/V2-1 firmware can drop data, leading to the possibility of confusing output. How-
ever, with care the ITM system can be tuned to provide diagnostic and instrumentation via the host SWD debugger.

Using the ST-LINK/V2-1 connection allows for a single cable to provide power, hardware debug support and diagnostic output.

OpenOCD notes

The OpenOCD debugger can be configured to support the on-board ST-LINK/V2-1 interface available via the USB CN14
connection. When configuring the openocd tool build, the configure script can be given the option --enable-stlink to
provide for ST-LINK support.

An example OpenOCD configuration file openocd.stm32l476_disco.cfg is provided within the eCos platform HAL
package in the source repository. This will be in the directory packages/hal/cortexm/stm32/stm32l476_dis-
co/current/misc relative to the root of your eCos installation.

This configuration file can be used with OpenOCD on the host as follows:

$ openocd -f openocd.stm32l476_disco.cfg
Open On-Chip Debugger 0.10.0-dev-00371-g81631e4 (2016-09-08-17:23)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD
adapter speed: 480 kHz
adapter_nsrst_delay: 100
srst_only separate srst_nogate srst_open_drain connect_assert_srst
Info : clock speed 480 kHz
Info : STLINK v2 JTAG v20 API v2 SWIM v4 VID 0x0483 PID 0x374B
Info : using stlink api v2
Info : Target voltage: 3.227369
Info : stm32l4x.cpu: hardware has 6 breakpoints, 4 watchpoints

3004

STM32L476-DISCO Platform HAL

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then, if required, you can
define a “preload” gdb macro to emit any necessary commands to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

If the HAL diagnostics are configured to use ITM, and stimulus port 31 is configured as the HAL diagnostic destination,
then the configuration example above will direct OpenOCD to direct ITM output (and also DWT and ETM) to a file named
tpiu.out in the current directory of the shell which was used to run the openocd command. A more specific filename can
be used by adjusting the OpenOCD configuration file.

To extract the ITM output, the Cortex-M architecture HAL package provides a helper program parseitm in the directory
packages/hal/cortexm/arch/current/host relative to the root of your eCos installation. It can be compiled sim-
ply with:

$ gcc -o parseitm parseitm.c

You simply run it with the desired ITM stimulus port and name of the file containing the ITM output, for example:

$ parseitm -p 31 -f itm.out

It will then echo all ITM stimulus for that port, continuing to read from the file until interrupted with Ctrl-C. Note that lim-
ited buffer space in debug hardware such as the ST-LINK can result in occasionally missed ITM data. eCosPro provides a
workaround of throttling data within the CYGHWR_HAL_CORTEXM_ITM_DIAGNOSTICS_THROTTLE CDL configuration
component in order to reduce or avoid lost ITM data. For further details, see the note in OpenOCD ITM support.

Similarly, if the eCos application is built with Kernel instrumentation enabled and configured for ITM output, then the default
stimulus port 24 output can be captured. For example, assuming the application cminfo is the ELF file built from an eCos
configuration with ITM instrumentation enabled, and is loaded and run via openocd, then we could run parseitm to capture
instrumentation whilst the program executes, and then view the gathered data using the example instdump tool provided in
the Kernel package.

$ parseitm -p 24 -f tpiu.out > inst.bin
^C
$ instdump -r inst.bin cminfo
Threads:
 threadid 1 threadobj 200045D0 "idle_thread"

 0:[THREAD:CREATE][THREAD 4095][TSHAL 4][TSTICK 0][ARG1:200045D0] { ts 4 microseconds }
 1:[SCHED:LOCK][THREAD 4095][TSHAL 45][TSTICK 0][ARG1:00000002] { ts 45 microseconds }
 2:[SCHED:UNLOCK][THREAD 4095][TSHAL 195][TSTICK 0][ARG1:00000002] { ts 195 microseconds }
 3:[SCHED:LOCK][THREAD 4095][TSHAL 346][TSTICK 0][ARG1:00000002] { ts 346 microseconds }
 4:[SCHED:UNLOCK][THREAD 4095][TSHAL 495][TSTICK 0][ARG1:00000002] { ts 495 microseconds }
 5:[THREAD:RESUME][THREAD 1][TSHAL 647][TSTICK 0][ARG1:200045D0][ARG2:200045D0] { ts 647 microseconds }
 6:[SCHED:LOCK][THREAD 1][TSHAL 795][TSTICK 0][ARG1:00000002] { ts 795 microseconds }
 7:[MLQ:ADD][THREAD 1][TSHAL 945][TSTICK 0][ARG1:200045D0][ARG2:0000001F] { ts 945 microseconds }
 8:[SCHED:UNLOCK][THREAD 1][TSHAL 1096][TSTICK 0][ARG1:00000002] { ts 1096 microseconds }
 9:[INTR:ATTACH][THREAD 1][TSHAL 0][TSTICK 0][ARG1:00000000] { ts 10000 microseconds }
 10:[INTR:UNMASK][THREAD 1][TSHAL 149][TSTICK 0][ARG1:00000000] { ts 10149 microseconds }
 11:[INTR:ATTACH][THREAD 1][TSHAL 305][TSTICK 0][ARG1:00000054] { ts 10305 microseconds }
 12:[INTR:UNMASK][THREAD 1][TSHAL 449][TSTICK 0][ARG1:00000054] { ts 10449 microseconds }

Configuration of JTAG/SWD applications

JTAG/SWD applications can be loaded directly into SRAM or flash without requiring a ROM monitor. Loading can be done
directly through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support these modes, it is recommended to use the SRAM, ROM or ROMAPP startup types
which will implicitly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled.
Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output

3005

STM32L476-DISCO Platform HAL

being encoded into GDB ($O) packets. These configuration changes could be made by hand, but use of the aformentioned
startup types will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel. An eCosCentric exten-
sion allows diagnostic output to appear in GDB. For this feature to work, you must enable the configuration option
CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common HAL package. If you are using the graphical configuration
tool then you should then accept any suggested solutions to the subsequent configuration conflicts. Older eCos releases also
required the gdb "set hwdebug on" command to be used to enable GDB or Eclipse console output, but this is no longer required
with the latest tools.

3006

STM32L476-DISCO Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32L476-DISCO board hardware,
and should be read in conjunction with that specification. The STM32L476-DISCO platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMAPP and SRAM startup types the HAL will perform additional initialization, programming the various internal
registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the
src/stm32l476_disco_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal SRAM This is located at address 0x20000000 of the memory space, and is 192KiB in size. The eCos
VSR table occupies the bottom 392 bytes of memory, with the virtual vector table starting at
0x20000188 and extending to 0x20000288.

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 1024KiB in size. ROM and ROMAPP applications are by
default configured to run from this memory.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 98 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x20000188.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, from 0x20018000 down.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Flash wait states
The STM32L476-DISCO platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the relevant STM32 datasheets and programming manuals

3007

STM32L476-DISCO Platform HAL

for the STM32L476 parts for appropriate values for different clock speeds or voltages. The default of 4 reflects a supply voltage
in Vcore range 1 and HCLK of 80MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for SRAM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 307.1. stm32l476_disco Real-time characterization

 Startup, main thrd : stack used 360 size 1536
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 13.03 microseconds (13 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 16
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 7.13 6.00 8.00 0.66 37% 25% Create thread
 2.00 2.00 2.00 0.00 100% 100% Yield thread [all suspended]
 1.88 1.00 2.00 0.22 87% 12% Suspend [suspended] thread
 1.69 1.00 2.00 0.43 68% 31% Resume thread
 2.50 2.00 4.00 0.56 93% 56% Set priority
 0.38 0.00 1.00 0.47 62% 62% Get priority
 4.63 4.00 7.00 0.63 93% 50% Kill [suspended] thread
 1.63 1.00 2.00 0.47 62% 37% Yield [no other] thread
 2.56 2.00 3.00 0.49 56% 43% Resume [suspended low prio] thread
 2.06 2.00 3.00 0.12 93% 93% Resume [runnable low prio] thread
 2.19 2.00 3.00 0.30 81% 81% Suspend [runnable] thread
 2.00 2.00 2.00 0.00 100% 100% Yield [only low prio] thread
 1.50 1.00 2.00 0.50 100% 50% Suspend [runnable->not runnable]
 4.50 4.00 6.00 0.56 93% 56% Kill [runnable] thread
 3.88 3.00 5.00 0.33 75% 18% Destroy [dead] thread
 8.31 8.00 10.00 0.47 75% 75% Destroy [runnable] thread
 9.88 9.00 12.00 0.55 56% 31% Resume [high priority] thread
 3.02 3.00 5.00 0.03 99% 99% Thread switch

 0.36 0.00 1.00 0.46 64% 64% Scheduler lock
 1.49 1.00 2.00 0.50 50% 50% Scheduler unlock [0 threads]
 1.52 1.00 2.00 0.50 51% 48% Scheduler unlock [1 suspended]
 1.41 1.00 2.00 0.48 59% 59% Scheduler unlock [many suspended]
 1.42 1.00 2.00 0.49 57% 57% Scheduler unlock [many low prio]

 0.41 0.00 1.00 0.48 59% 59% Init mutex
 1.97 1.00 2.00 0.06 96% 3% Lock [unlocked] mutex
 2.03 2.00 3.00 0.06 96% 96% Unlock [locked] mutex
 1.78 1.00 2.00 0.34 78% 21% Trylock [unlocked] mutex
 1.66 1.00 2.00 0.45 65% 34% Trylock [locked] mutex

3008

STM32L476-DISCO Platform HAL

 0.53 0.00 1.00 0.50 53% 46% Destroy mutex
 12.09 12.00 13.00 0.17 90% 90% Unlock/Lock mutex

 1.00 1.00 1.00 0.00 100% 100% Create mbox
 0.34 0.00 1.00 0.45 65% 65% Peek [empty] mbox
 2.03 2.00 3.00 0.06 96% 96% Put [first] mbox
 0.38 0.00 1.00 0.47 62% 62% Peek [1 msg] mbox
 2.03 2.00 3.00 0.06 96% 96% Put [second] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [2 msgs] mbox
 1.94 1.00 3.00 0.18 87% 9% Get [first] mbox
 1.91 1.00 2.00 0.17 90% 9% Get [second] mbox
 1.75 1.00 2.00 0.38 75% 25% Tryput [first] mbox
 1.69 1.00 2.00 0.43 68% 31% Peek item [non-empty] mbox
 1.81 1.00 2.00 0.31 81% 18% Tryget [non-empty] mbox
 1.75 1.00 2.00 0.38 75% 25% Peek item [empty] mbox
 1.72 1.00 3.00 0.45 65% 31% Tryget [empty] mbox
 0.34 0.00 1.00 0.45 65% 65% Waiting to get mbox
 0.38 0.00 1.00 0.47 62% 62% Waiting to put mbox
 0.63 0.00 1.00 0.47 62% 37% Delete mbox
 8.78 8.00 9.00 0.34 78% 21% Put/Get mbox

 0.38 0.00 1.00 0.47 62% 62% Init semaphore
 1.59 1.00 2.00 0.48 59% 40% Post [0] semaphore
 1.81 1.00 2.00 0.31 81% 18% Wait [1] semaphore
 1.50 1.00 2.00 0.50 100% 50% Trywait [0] semaphore
 1.59 1.00 2.00 0.48 59% 40% Trywait [1] semaphore
 0.50 0.00 1.00 0.50 100% 50% Peek semaphore
 0.50 0.00 1.00 0.50 100% 50% Destroy semaphore
 7.63 7.00 8.00 0.47 62% 37% Post/Wait semaphore

 0.81 0.00 1.00 0.31 81% 18% Create counter
 0.59 0.00 1.00 0.48 59% 40% Get counter value
 0.44 0.00 1.00 0.49 56% 56% Set counter value
 2.00 2.00 2.00 0.00 100% 100% Tick counter
 0.44 0.00 1.00 0.49 56% 56% Delete counter

 0.41 0.00 1.00 0.48 59% 59% Init flag
 1.72 1.00 3.00 0.45 65% 31% Destroy flag
 1.53 1.00 2.00 0.50 53% 46% Mask bits in flag
 1.84 1.00 3.00 0.32 78% 18% Set bits in flag [no waiters]
 2.44 2.00 3.00 0.49 56% 56% Wait for flag [AND]
 2.41 2.00 3.00 0.48 59% 59% Wait for flag [OR]
 2.53 2.00 4.00 0.53 96% 50% Wait for flag [AND/CLR]
 2.50 2.00 3.00 0.50 100% 50% Wait for flag [OR/CLR]
 0.38 0.00 1.00 0.47 62% 62% Peek on flag

 1.22 1.00 2.00 0.34 78% 78% Create alarm
 2.63 2.00 3.00 0.47 62% 37% Initialize alarm
 1.53 1.00 2.00 0.50 53% 46% Disable alarm
 2.59 2.00 4.00 0.52 53% 43% Enable alarm
 1.69 1.00 2.00 0.43 68% 31% Delete alarm
 2.16 2.00 3.00 0.26 84% 84% Tick counter [1 alarm]
 10.34 10.00 11.00 0.45 65% 65% Tick counter [many alarms]
 3.50 3.00 5.00 0.53 96% 53% Tick & fire counter [1 alarm]
 51.81 51.00 53.00 0.36 75% 21% Tick & fire counters [>1 together]
 11.69 11.00 12.00 0.43 68% 31% Tick & fire counters [>1 separately]
 12.00 12.00 12.00 0.00 100% 100% Alarm latency [0 threads]
 10.06 10.00 12.00 0.12 95% 95% Alarm latency [2 threads]
 11.20 10.00 12.00 0.52 54% 12% Alarm latency [many threads]
 18.02 18.00 20.00 0.03 99% 99% Alarm -> thread resume latency

 1.00 1.00 1.00 0.00 Clock/interrupt latency

 4.96 4.00 6.00 0.00 Clock DSR latency

 181 152 212 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 796 size 1536
 All done : Idlethread stack used 164 size 1280

Timing complete - 29810 ms total

PASS:<Basic timing OK>

3009

STM32L476-DISCO Platform HAL

EXIT:<done>

3010

STM32L476-DISCO Platform HAL

Name
Test Programs — Details

Test Programs
The STM32L476-DISCO platform HAL contains some test programs which allow various aspects of the board to be tested.

ADC Test
The adc1 program tests the ADC driver for the STM32. In order to run this test a potentiometer needs to be connected to the
board; outer pins to 3V3 and GND (P1:1 and P1:2 are convienient), and the center pin to P1:10, which is attached to PA0. This
test primarily tests that the external input functions correctly. However, in addition it also reports the values of the Vrefint,
Vbat and Vts inputs that are sourced on-chip. The option CYGBLD_HAL_CORTEXM_STM32L476_DISCO_TESTS_ADC
must be enabled to run this test since it needs human interaction.

3011

STM32L476-DISCO Platform HAL

Name
BootUp Integration — Detail

BootUp

The BootUp support for the STM32L476-DISCO target is primarily implemented in the stm32l476_disco_support.c
file. The majority of the functions provided by that source file are only included when the CYGPKG_BOOTUP package is being
used to construct the actual BootUp ROM loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once its implementation has been tested and validated,
the binary will only need to be installed onto a device once. Its only purpose is to allow the safe updating and startup of the
main application. If the BootUp code ever needs to be replaced then it is a “factory” operation, for example using JTAG to
re-program the on-chip flash.

This platform specific documentation should be read in conjunction with the generic BootUp package.

The BootUp package provides a basic but fully functional implementation for the platform. This has been tested to ensure
that the underlying mechanism is sound. It is envisaged that the developer will customize and further extend the platform side
support to meet their specific application update requirements.

BootUp loaded applications

Applications started via the BootUp loader, since they cannot include the CYGPKG_BOOTUP package themselves, may need
access to some related configuration state. The platform is responsible for providing such “common” information. For example,
the CDL option CYGIMP_BOOTUP_RESERVED specifies the amount of on-chip flash set aside for BootUp. Applications can
then ensure that they do not interfere with the BootUp loader if using the remaining on-chip flash for their own purposes.

Warning

Care must be taken to ensure that the target application configuration matches the BootUp configuration, since
it is normally expected that the applications to be loaded will be independent of the initial BootUp build
environment. This includes the fundamental on-chip flash space set aside for the BootUp ROM loader code
(CYGIMP_BOOTUP_RESERVED). It is expected that such values, for a particular platform instance, will be fixed
at a suitable point during development, and definitely before products are shipped. It is the responsibility of the
developer to ensure a consistent configuration between the BootUp ROM loader and any applications that may
be installed/started by that BootUp code.

On-Chip ROMAPP applications

BootUp provides an alternative mechanism that supports the safe update of on-chip flash resident (CYG_HAL_START-
UP_ROMAPP) applications.

Updates using this mechanism are initiated and directed solely by the application itself. The application is responsible for
locating, acquiring and verifying a new update, and placing it into Non-Volatile Memory (NVM) storage. If BootUp detects
a verified update in NVM, it installs the update into the on-chip flash, overwriting and replacing the existing application. The
updated application is then executed.

Figure 307.1. BootUp and Application

BootUp ROM loader and ROMAPP main application held in on-chip flash

3012

STM32L476-DISCO Platform HAL

Figure 307.2. Application Update image

Update for ROMAPP main application held in NVM

The example implementation uses a simple scheme that checks a fixed-format contiguous structure near the start of the
binary application image file. Other than the fields used to identify the structure, the BootUp code does not interpret the
hal_stm32l476_disco_bootup_structure_t in any other way.

Depending on how the alternative (pending update) application is downloaded and installed in the NVM, it may be more
relevant to have the tail marker at the very end of the binary image. The developer may wish to update the build/release
process so that the actual binary length is held in the application description structure, since that could avoid the overhead
of unnecessary flash reads and writes when processing updates. Similarly, instead of a simple binary number being used to
differentiate application images, the choice may be made to use the 64-bit UTC timestamp the application was created, or a
human-readable string as the unique identification for a release. It is the responsibility of the build/release engineer to ensure
individual releases are uniquely identifiable.

It is critical that the main application, when storing a pending update, stores the tail marker as the last bytes written. It is the
responsibility of the main application to verify the data written, prior to placing the tail marker. This ensures that a partial
image is not treated as a valid update. For example the sequence undertaken by the main application would be:

Table 307.1. Pending update sequence

Operation Details

Invalidate “previous”
alternative image

At a minimum ensure an invalid signature tail marker is written. Erasing the flash is normally
required anyway, and would invalidate any previous image.

Receive update appli-
cation image and write
to alternative image lo-
cation

NOT writing the tail marker. The code that stores the application should leave a “hole” where
the tail marker resides to ensure a partial image is not incorrectly treated as valid

Verify downloaded
contents

e.g. CRC or binary comparison. Normally this would be done as individual application chunks are
downloaded and written to the alternative storage

Write tail marker This is the very last operation after validating that the alternative image has been stored correctly.
If an error has occured during the download then not-writing the tail ensures that the BootUp
loader will not interpret the data written as a pending update

Force system RESET
to start update

e.g. using the HAL_PLATFORM_RESET macro

The BootUp loader code will only READ from the alternative image location. This ensures that if an in-progress update is
interrupted (e.g. power-loss) then when the system restarts the BootUp code will restart the application update as required.

If the BootUp platform implementation for validating the alternative image is extended to include a CRC, or similar “slow”
processing, it may be worth considering whether the main application on startup will always invalidate the tail marker after
an update to avoid subsequent system resets having to re-validate the alternative image prior to discovering that it is the same
as the current main application.

Note

We cannot have the SIGNATURE support purely conditional on the BOOTUP support; since non-BOOTUP
applications need to be built leaving the space. For the moment this is only enforced for ROMAPP applications,
since that is all that the simple BootUp update support implements.

3013

STM32L476-DISCO Platform HAL

Building BootUp

The ROM startup type is chosen for BootUp so that the loader uses the on-chip SRAM for its workspace.

Example eCos configuration templates for BootUp are provided in the misc directory of the release. The bootup_ROM.ecm
configuration file can be used to configure the BootUp loader.

Building a BootUp ROM image is most conveniently done at the command line. The steps needed to rebuild the ROM version
of BootUp on linux are:

$ mkdir bootup_rom
$ cd bootup_rom
$ ecosconfig new stm32l476-disco minimal
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm32l476_disco/current/misc/bootup_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The steps needed to rebuild the bundle based ROM version of BootUp on Windows within the Shell Environment are:

C:\Users\demo> mkdir bootup_rom
C:\Users\demo> cd bootup_rom
C:\Users\demo\bootup_rom> ecosconfig new stm32429i_eval_drb minimal
[… ecosconfig output elided …]
C:\Users\demo\bootup_rom> ecosconfig import %ECOS_REPOSITORY%/hal/cortexm/stm32/stm32l476_disco/current/misc/bootup_rom.ecm
C:\Users\demo\bootup_rom> ecosconfig resolve
C:\Users\demo\bootup_rom> ecosconfig tree
C:\Users\demo\bootup_rom> make

The resulting install/bin/bootup.bin binary can then be programmed into the on-chip flash from address
0x08000000.

It is expected that the BootUp binary is installed onto the STM32L476 on-chip flash either via JTAG or by utilising the on-
chip BootROM USB based DFU process. This is a factory or in-field process requiring specific equipment/host-software.

Once BootUp is installed it is not normally expected to require updating. Its purpose is to bootstrap the main application, and
provide a standard mechanism for installing the main application. The update mechanism does NOT provide a method for
updating the BootUp loader itself. If in-field updates of the BootUp binary are necessary, this could be achieved via the STM32
on-chip BootROM USB based DFU process.

Altinit Test
This application is used to test BootUp support for updating a ROMAPP application from the QSPI flash. Since there is no
Ethernet available on the board, this test uses the application already programmed in to the on-chip flash.

The test expects a ROMAPP application to be stored in the on-chip flash. It erases the alternate application in the QSPI flash,
copies the ROMAPP application from on-chip flash into QSPI, and then invalidates the signature of the application in on-
chip flash. When BootUp starts it will discover that the main application is invalid, copy the alternate application from the
QSPI and then run it.

An example eCos configuration template for building the altinit application is provided in the misc directory. The steps needed
to build this application are as follows:

$ mkdir altinit
$ cd altinit
$ ecosconfig new stm32l476-disco kernel
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm32l476_disco/current/misc/altinit_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make
$ make -C hal/cortexm/stm32/stm32l476_disco/current tests

Following this, the altinit executable can be found in install/tests/hal/cortexm/stm32/stm32l476_dis-
co/current/tests/altinit. running this will produce the following output:

INFO:<STM32L4_M25P64_ALTERNATIVE_OFFSET 00008000>

3014

STM32L476-DISCO Platform HAL

INFO:<STM32L4_M25P64_ALTERNATIVE_MAXLEN 000F8000>
INFO:<CYGNUM_BOOTUP_SIGNATURE_OFFSET 8>
INFO:<CYGNUM_BOOTUP_SIGNATURE_LENGTH 16>
INFO:<Erasing M25P64 area for alternative image>
INFO:<Copy main image to alt>
INFO:<Set signature in alt image>
INFO:<Invalidate main image>
INFO:<Update done>

The erase and copy operations here may take a some time, do not reset the board until the program is finished.

3015

Chapter 308. BCM943362WCD4 Platform
HAL

3016

BCM943362WCD4 Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_BCM943362WCD4 — eCos Support for the BCM943362WCD4 WICED Module

Description
This documentation describes the platform-specific elements of the STM32F205 based BCM943362WCD4 WICED module
support within eCos. It should be read in conjunction with the STM32 variant HAL section, which covers the common func-
tionality shared by all STM32 variants, including eCos HAL features and on-chip device support.

For this platform, the expected eCos development model is that programs may be downloaded and debugged via a hardware
JTAG debugger. Nevertheless it is still possible to program a GDB stub image into the on-chip Flash and download and debug
eCos applications with the GDB debugger via available UART pins.

Supported Hardware
The BCM943362WCD4 module consists primarily of a STM32F205RG CPU and a WM-N-BM-02 SiP (BCM43362 Wi-Fi)
module.

The base BCM943362WCD4 module exposes a set of I/O pins that are used to provide functionality based on the configura-
tion of the STM32F2 host CPU on the module. This platform HAL optionally provides the ability to target the module as
installed on the BCM943362WCD4_EVB development kit (a BCM943362WCD4 module installed on a BCM9WCD1EVAL1
motherboard).

Note

The BCM9WCD1EVAL1 motherboard is intended for evaluating 31-pin WICED modules, and currently sup-
ports the following modules: BCM943362WCD2, BCM943362WCD4, BCM943362WCD6, BCM943362W-
CD8 and BCM9WCDUSI09.

The STM32F205RG has two main on-chip memory regions. The device has a SRAM region of 128KiB present at 0x20000000,
and a 1MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution).

The STM32 variant HAL includes support for the six on-chip serial devices which are documented in the variant HAL, however
it is assumed that only USART1 is available. There is no connection for hardware flow control (RTS/CTS) lines for USART1.

Device drivers are also provided for the STM32 on-chip SPI interfaces, watchdog, RTC (wallclock) and Flash.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3g, arm-eabi-gdb version 7.6.1, and binutils version 2.32.2.

3017

BCM943362WCD4 Platform HAL

Name
Setup — Preparing the Broadcom BCM943362WCD4 for eCos Development

Overview
Given the limited available RAM memory, it is expected that the most common development method is to use JTAG for
development, either by loading smaller applications into the on-chip SRAM, or by programming larger applications directly
into on-chip Flash. In the first case, eCos applications should be configured for the SRAM startup type, and in the second case
for ROM startup type.

Nevertheless, it is still possible to program a GDB stub ROM image into on-chip Flash and download and debug via a serial
UART, if pins for the UART are available. In that case, eCos applications are configured for RAM startup and then downloaded
and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE. For serial communications, all versions run
with 8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed in the eCos configuration used for building
the GDB stub ROM image.

HAL startup types

The following startup types may be selected for applications:

Configuration Description

SRAM Stand-alone programs running from on-chip SRAM, loaded via JTAG hardware debugger

ROM Stand-alone programs running from on-chip FLASH

ROMAPP Stand-alone programs running from an offset into the on-chip FLASH, that are started by a separate
boot loader

RAM Programs loading via a GDB stub ROM into on-chip RAM, which rely on a debug monitor

Further details are available later in this manual.

Programming ROM images
To program ROM startup applications into Flash, including the GDB stub ROM, a JTAG debugger that understands the STM32
flash may be used, such as the OpenOCD tool. The openocd GDB server can directly program flash based applications from
the GDB load command.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the “bootup.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 4.7.3g) 7.6.1
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018
Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8
Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444

3018

BCM943362WCD4 Platform HAL

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

Rebuilding the GDB stub

Should it prove necessary to rebuild a GDB stub ROM binary, this is done most conveniently at the command line. For the
bcm943362wcd4_evb platform the steps needed are:

$ mkdir gdbstub_bcm943362wcd4_evb
$ cd gdbstub_bcm943362wcd4_evb
$ ecosconfig new bcm943362wcd4_evb stubs
[… ecosconfig output elided …]
$ ecosconfig tree
$ make

At the end of the build, the install/bin subdirectory should contain the file gdb_module.bin. This may be programmed
to the board using the above procedure.

3019

BCM943362WCD4 Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview

The Broadcom BCM943362WCD4 module platform HAL package is loaded automatically when eCos is configured for the
bcm943362wcd4 or bcm943362wcd4_evb targets. It should never be necessary to load this package explicitly. Unloading
the package should only happen as a side effect of switching target hardware.

Startup

The Broadcom BCM943362WCD4 module platform HAL package supports four separate startup types:

SRAM

This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-con-
tained with no dependencies on services provided by other software. The program expects to be loaded from hal_vir-
tual_vector_table_end and entered at that address. Memory below hal_virtual_vector_table_end is
set aside for vector tables. eCos startup code will perform all necessary hardware initialization.

ROM

This startup type can be used for finished applications which will be programmed into internal Flash ROM at location
0x08000000. Data and BSS will be put into internal SRAM starting from hal_virtual_vector_table_end.
The application will be self-contained with no dependencies on services provided by other software. The program expects
to boot from reset with ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos
startup code will perform all necessary hardware initialization.

ROMAPP

This startup type can be used for finished applications which will be programmed into internal Flash ROM at the CYGIM-
P_BOOTUP_RESERVED configured offset. This is a variation of the ROM startup type for applications that are started by
a smaller boot loader application. eCos startup code will perform all necessary hardware initialization.

RAM

This is the startup type which is used if relying on a GDB stub ROM image programmed into internal Flash to download and
run applications into SRAM via arm-eabi-gdb and a serial UART. RAM from 0x20000000 to 0x20001000 is reserved
for the GDB stub, but then the RAM startup application may be loaded into memory from 0x20001000 and debugged
using GDB. It is assumed that the hardware has already been initialized by the GDB stub ROM. By default the application
will use the eCos virtual vectors mechanism to obtain services from the GDB stub ROM, including diagnostic output.

Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration op-
tion CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB stub ROM (or
RedBoot).

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, and disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

3020

BCM943362WCD4 Platform HAL

UART Serial Driver
The BCM943362WCD4 module uses the STM32's internal UART serial support. The HAL diagnostic interface, used for
both polled diagnostic output and GDB stub communication, is only expected to be available to be used on the USART1 port
(counting the first UART as UART1).

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_CORTEXM_STM32 package which
contains all the code necessary to support interrupt-driven operation with greater functionality. All six UARTs can be supported
by this driver. For the BCM943362WCD4 module however the available I/O pins impose a limit on the available functionality.

Note

It is not recommended to use this driver with a port at the same time as using that port for HAL diagnostic I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option (within the generic serial driver
support package CYGPKG_IO_SERIAL) is enabled in the configuration. By default this will only enable support in the driver
for the USART1 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable
support for other serial ports. Note that in this package, serial port numbering starts at 0, rather than 1. So for example, to enable
the serial driver for ports USART1 and USART2, enable the configuration options “ST STM32 serial port 0 driver” (CYG-
PKG_IO_SERIAL_CORTEXM_STM32_SERIAL0) and “ST STM32 serial port 1 driver” (CYGPKG_IO_SERIAL_COR-
TEXM_STM32_SERIAL1).

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

For the base BCM943362WCD4 module SPI bus 1 is configured for off-module SPI connections. If SPI is being used to
communicate with the on-module WM-N-BM-02 SiP tne SPI bus 2 is also configured. Suitable device entries are created as
appropriate for application use.

When CYGPKG_HAL_CORTEXM_STM32_BCM943362WCD4_SPI_ACCESS is configured then the SPI2 device spi_de-
vice_wm_n_bm_02 is enumerated.

When targetting the BCM9WCD1EVAL1 based bcm943362wcd4_evb platform then the SPI1 device m25pxx_spi_de-
vice is enumerated.

To disable support for both the above SPI devices, the platform HAL contains an option “SPI devices” (CYGPKG_HAL_COR-
TEXM_STM32_BCM943362WCD4_SPI) which can be disabled. No other SPI devices are instantiated.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memo-
ry support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration.

The driver will configure itself automatically for the size and parameters of the specific STM32 variant present on the
BCM943362WCD4 module.

A number of other aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism
and program burst size. Consult the driver for more details.

3021

BCM943362WCD4 Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including the GDB
stub ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the STM32 only
supports six such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check it
has not set unnecessary extra breakpoints such as at main(). Some JTAG devices give the option of whether to set hardware
or software breakpoints by default. Be sure to configure your device appropriately.

The base BCM943362WCD4 module exposes the STM32F205RG JTAG/SWD signals on the module connectors TP6..TP10.
A suitable hardware connection would be required to allow JTAG debugging. The BCM943362WCD4_EVB kit provides a
standard 20-pin ARM JTAG header J8, but by default the module JTAG connection is configured to use the BCM9WCD1E-
VAL1 motherboard FT2232 connection presented via the USB J5 connector. Direct support for this USB interface is provided
by the WICED-SDK supplied OpenOCD binary.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Normally a notable disadvantage with JTAG debugging is that it does not allow thread-aware debugging, such as the ability
to inspect different eCos threads or their stack backtraces, set thread-specific breakpoints, and so on. Fortunately the Ronetix
PEEDI JTAG unit does support thread-aware debugging of eCos applications, however extra configuration steps are required.
Consult the PEEDI documentation for more details as usage is beyond the scope of this document.

OpenOCD notes

The following OpenOCD documentation uses as an example the BCM943362WCD4_EVB J5 USB JTAG connection. An
OpenOCD configuration that supports the ft2232 interface and understands the ft2232_layout BCM9WCD1EVAL1
configuration must be used, Such an openocd is pre-built and available in the WICED-SDK. For example WICED-SDK
revision 3.1.2 the necessary host binaries can be found in the directory WICED-SDK-3.1.2/tools/OpenOCD.

An example OpenOCD configuration file openocd.bcm943362wcd4_evb.cfg is provided within the eCos platform
HAL package in the source repository. This will be in the directory packages/hal/cortexm/stm32/bcm943362w-
cd4/VERSION/misc relative to the root of your eCos installation.

This configuration file can be used with the WICED-SDK supplied OpenOCD on the host as follows:

$./Linux64/openocd-all-brcm-libftdi -f openocd.bcm943362wcd4_evb.cfg
Open On-Chip Debugger 0.8.0-dev-00139-g4505978-dirty (2013-08-26-15:55)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.sourceforge.net/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'jtag'
trst_and_srst separate srst_nogate trst_push_pull srst_push_pull connect_assert_srst
adapter speed: 1000 kHz
adapter_nsrst_delay: 100
jtag_ntrst_delay: 100
jtag_init
Info : max TCK change to: 30000 kHz
Info : clock speed 1000 kHz
Polling target stm32f2xxx.cpu failed, GDB will be halted. Polling again in 100ms
Info : JTAG tap: stm32f2xxx.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
Info : JTAG tap: stm32f2xxx.bs tap/device found: 0x06411041 (mfg: 0x020, part: 0x6411, ver: 0x0)
Info : Selecting JTAG transport command set.
Info : AP INIT COMPLETE
Info : stm32f2xxx.cpu: hardware has 6 breakpoints, 4 watchpoints
Polling target stm32f2xxx.cpu succeeded again
Info : JTAG tap: stm32f2xxx.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
Info : JTAG tap: stm32f2xxx.bs tap/device found: 0x06411041 (mfg: 0x020, part: 0x6411, ver: 0x0)

3022

BCM943362WCD4 Platform HAL

Info : Selecting JTAG transport command set.
Info : AP INIT COMPLETE
Info : Selecting JTAG transport command set.
Info : AP INIT COMPLETE

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then, if required, you can
define a “preload” gdb macro to emit any necessary commands to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

3023

BCM943362WCD4 Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Broadcom BCM943362WCD4 mod-
ule hardware and should be read in conjunction with the specification for that device. The BCM943362WCD4 platform HAL
package complements the Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific
to the target module, and optionally, specifically supported motherboards.

Targetting the eCos platform bcm943362wcd4 will configure eCos for a stand-alone BCM943362WCD4 module with no
assumption made about the I/O connected to the module TP pins.

Targetting the bcm943362wcd4_evb platform will configure eCos for a BCM9WCD1EVAL1 motherboard based module,
and provide access to the LEDs, switches, thermistor and SPI flash device available on that motherboard.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For the stand-alone application startup types, the HAL will perform additional initialization, programming the various internal
registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the
src/bcm943362wcd4_misc.c in both the hal_system_init and hal_platform_init functions.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM This is located at address 0x20000000 of the memory space, and is 128KiB in size. The eCos
VSR table always occupies the initial bytes at the base of this memory, followed by the op-
tional virtual vector table depending on the eCos configuration. The top CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE bytes of memory are reserved for the interrupt stack. The
remainder of on-chip SRAM is available for use by applications.

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 1MiB in size. and ROM applications are by default con-
figured to run from this memory.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the relevant STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for CYGNUM_HAL_VSR_COUNT entries is reserved to match the use
of a STM32F2 processor.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, and
is normally 0x20000184 for STM32F2 targets.

The CDL option CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT defines whether this
virtual vector support is needed. If not defined then the table is zero sized.

hal_virtual_vector_table_end This defines the location of the end of the (optional) virtual vector table.

3024

BCM943362WCD4 Platform HAL

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of internal SRAM, at 0x20020000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack. The size of the interrupt stack is defined by
the CDL option CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE.

Flash wait states
The BCM943362WCD4 platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32 Flash programming manual (PM0059) for
appropriate values for different clock speeds or voltages. The default of 3 reflects a supply voltage of 3.3V and HCLK of
120MHz.

Diagnostic LEDs
The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow any LEDs
to be set:

extern void hal_bcm943362wcd4_led(unsigned char c);

The low-order bits of the argument c correspond to individual LEDs.

The default BCM943362WCD4 module support does not provide LEDs, since the relevant off-module GPIO signals are not
defined. However, when targetting the BCM9WCD1EVAL1 motherboard two LEDs are fitted for diagnostic purposes: D1
(red) and D2 (green). These LEDs are free for application use. The bcm943362wcd4_evbmanual test provides a simple
example of changing the LED state.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for the bcm943362wcd4_evb platform using the SRAM
startup type and optimization flag -O2.

Example 308.1. bcm943362wcd4 Real-time characterization

 Startup, main thrd : stack used 360 size 1536
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 7.06 microseconds (7 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 8
 Thread switches: 128
 Mutexes: 16
 Mailboxes: 16
 Semaphores: 16
 Scheduler operations: 128
 Counters: 16
 Flags: 16
 Alarms: 16
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>

3025

BCM943362WCD4 Platform HAL

 5.63 5.00 6.00 0.47 62% 37% Create thread
 1.00 1.00 1.00 0.00 100% 100% Yield thread [all suspended]
 1.38 1.00 2.00 0.47 62% 62% Suspend [suspended] thread
 1.38 1.00 2.00 0.47 62% 62% Resume thread
 1.88 1.00 2.00 0.22 87% 12% Set priority
 0.25 0.00 1.00 0.38 75% 75% Get priority
 3.63 3.00 4.00 0.47 62% 37% Kill [suspended] thread
 1.25 1.00 2.00 0.38 75% 75% Yield [no other] thread
 2.00 2.00 2.00 0.00 100% 100% Resume [suspended low prio] thread
 1.25 1.00 2.00 0.38 75% 75% Resume [runnable low prio] thread
 2.00 2.00 2.00 0.00 100% 100% Suspend [runnable] thread
 1.00 1.00 1.00 0.00 100% 100% Yield [only low prio] thread
 1.38 1.00 2.00 0.47 62% 62% Suspend [runnable->not runnable]
 4.00 4.00 4.00 0.00 100% 100% Kill [runnable] thread
 3.00 3.00 3.00 0.00 100% 100% Destroy [dead] thread
 5.75 5.00 6.00 0.38 75% 25% Destroy [runnable] thread
 6.50 6.00 7.00 0.50 100% 50% Resume [high priority] thread
 2.28 2.00 3.00 0.40 71% 71% Thread switch

 0.21 0.00 1.00 0.33 78% 78% Scheduler lock
 1.11 1.00 2.00 0.19 89% 89% Scheduler unlock [0 threads]
 1.13 1.00 2.00 0.22 87% 87% Scheduler unlock [1 suspended]
 1.14 1.00 2.00 0.24 85% 85% Scheduler unlock [many suspended]
 1.13 1.00 2.00 0.22 87% 87% Scheduler unlock [many low prio]

 0.38 0.00 1.00 0.47 62% 62% Init mutex
 1.44 1.00 2.00 0.49 56% 56% Lock [unlocked] mutex
 2.00 2.00 2.00 0.00 100% 100% Unlock [locked] mutex
 1.44 1.00 2.00 0.49 56% 56% Trylock [unlocked] mutex
 1.31 1.00 2.00 0.43 68% 68% Trylock [locked] mutex
 0.44 0.00 1.00 0.49 56% 56% Destroy mutex
 7.00 7.00 7.00 0.00 100% 100% Unlock/Lock mutex

 0.69 0.00 1.00 0.43 68% 31% Create mbox
 0.50 0.00 1.00 0.50 100% 50% Peek [empty] mbox
 1.63 1.00 2.00 0.47 62% 37% Put [first] mbox
 0.25 0.00 1.00 0.38 75% 75% Peek [1 msg] mbox
 1.63 1.00 2.00 0.47 62% 37% Put [second] mbox
 0.00 0.00 0.00 0.00 100% 100% Peek [2 msgs] mbox
 1.56 1.00 2.00 0.49 56% 43% Get [first] mbox
 1.50 1.00 2.00 0.50 100% 50% Get [second] mbox
 1.31 1.00 2.00 0.43 68% 68% Tryput [first] mbox
 1.31 1.00 2.00 0.43 68% 68% Peek item [non-empty] mbox
 1.44 1.00 2.00 0.49 56% 56% Tryget [non-empty] mbox
 1.25 1.00 2.00 0.38 75% 75% Peek item [empty] mbox
 1.31 1.00 2.00 0.43 68% 68% Tryget [empty] mbox
 0.25 0.00 1.00 0.38 75% 75% Waiting to get mbox
 0.31 0.00 1.00 0.43 68% 68% Waiting to put mbox
 0.56 0.00 1.00 0.49 56% 43% Delete mbox
 4.94 4.00 5.00 0.12 93% 6% Put/Get mbox

 0.31 0.00 1.00 0.43 68% 68% Init semaphore
 1.00 1.00 1.00 0.00 100% 100% Post [0] semaphore
 1.44 1.00 2.00 0.49 56% 56% Wait [1] semaphore
 1.19 1.00 2.00 0.30 81% 81% Trywait [0] semaphore
 1.13 1.00 2.00 0.22 87% 87% Trywait [1] semaphore
 0.44 0.00 1.00 0.49 56% 56% Peek semaphore
 0.38 0.00 1.00 0.47 62% 62% Destroy semaphore
 4.69 4.00 5.00 0.43 68% 31% Post/Wait semaphore

 0.56 0.00 1.00 0.49 56% 43% Create counter
 0.44 0.00 1.00 0.49 56% 56% Get counter value
 0.38 0.00 1.00 0.47 62% 62% Set counter value
 1.63 1.00 2.00 0.47 62% 37% Tick counter
 0.31 0.00 1.00 0.43 68% 68% Delete counter

 0.38 0.00 1.00 0.47 62% 62% Init flag
 1.38 1.00 2.00 0.47 62% 62% Destroy flag
 1.13 1.00 2.00 0.22 87% 87% Mask bits in flag
 1.44 1.00 2.00 0.49 56% 56% Set bits in flag [no waiters]
 2.00 2.00 2.00 0.00 100% 100% Wait for flag [AND]
 1.81 1.00 2.00 0.31 81% 18% Wait for flag [OR]

3026

BCM943362WCD4 Platform HAL

 2.00 2.00 2.00 0.00 100% 100% Wait for flag [AND/CLR]
 1.94 1.00 2.00 0.12 93% 6% Wait for flag [OR/CLR]
 0.25 0.00 1.00 0.38 75% 75% Peek on flag

 1.00 1.00 1.00 0.00 100% 100% Create alarm
 2.00 2.00 2.00 0.00 100% 100% Initialize alarm
 1.19 1.00 2.00 0.30 81% 81% Disable alarm
 2.00 2.00 2.00 0.00 100% 100% Enable alarm
 1.31 1.00 2.00 0.43 68% 68% Delete alarm
 1.00 1.00 1.00 0.00 100% 100% Tick counter [1 alarm]
 5.00 5.00 5.00 0.00 100% 100% Tick counter [many alarms]
 2.94 2.00 3.00 0.12 93% 6% Tick & fire counter [1 alarm]
 25.00 25.00 25.00 0.00 100% 100% Tick & fire counters [>1 together]
 6.44 6.00 7.00 0.49 56% 56% Tick & fire counters [>1 separately]
 6.00 6.00 6.00 0.00 100% 100% Alarm latency [0 threads]
 6.00 6.00 6.00 0.00 100% 100% Alarm latency [2 threads]
 5.83 5.00 6.00 0.28 82% 17% Alarm latency [many threads]
 10.01 10.00 11.00 0.01 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 2.75 2.00 3.00 0.00 Clock DSR latency

 208 180 212 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 804 size 1536
 All done : Idlethread stack used 164 size 1280

Timing complete - 29320 ms total

PASS:<Basic timing OK>
EXIT:<done>

3027

BCM943362WCD4 Platform HAL

Name
Test Programs — Details

Test Programs
The BCM943362WCD4 platform HAL contains a test suitable for the bcm943362wcd4_evb platform, that allows various
aspects of that board to be tested.

Manual Test
The manual test is only built by default when targetting a BCM9WCD1EVAL1 motherboard based BCM943362WCD4 mod-
ule (e.g. the BCM943362WCD4_EVB development kit).

This program tests various aspects of the basic platform port. The basic test can be used to validate the LED and push-button
GPIO operation. Depending on the eCos configuration further testing of the flash (detecting on-chip and motherboard SPI
devices) and ADC device access is performed.

When flash support is configured the test will display the memory address ranges for the flash areas.

Note

Whereas the on-chip flash is directly addressable, the off-chip SPI flash is given a logical address for use through
the flash API but it is not actually memory mapped.

When ADC support is configured the manual program tests the ADC driver for the STM32. The only device connected to the
ADC on the board is the thermistor connected to ADC1 logical channel 3, named TH1 on the motherboard. In addition the test
also report the values of the Temperature, Vrefint and Vbat inputs that are sourced on-chip.

3028

Chapter 309. BCM943364WCD1 Platform
HAL

3029

BCM943364WCD1 Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_BCM943364WCD1 — eCos Support for the BCM943364WCD1 WICED Module

Description
This documentation describes the platform-specific elements of the STM32F411 based BCM943364WCD1 WICED module
support within eCos. It should be read in conjunction with the STM32 variant HAL section, which covers the common func-
tionality shared by all STM32 variants, including eCos HAL features and on-chip device support.

For this platform, the expected eCos development model is that programs may be downloaded and debugged via a hardware
JTAG debugger. Nevertheless it is still possible to program a GDB stub image into the on-chip Flash and download and debug
eCos applications with the GDB debugger via available UART pins.

Supported Hardware
The BCM943364WCD1 module consists primarily of a STM32F411RE CPU and a BCM43364 Wi-Fi CoB.

The base BCM943364WCD1 module exposes a set of I/O pins that are used to provide functionality based on the configura-
tion of the STM32F4 host CPU on the module. This platform HAL optionally provides the ability to target the module as
installed on the BCM943364WCD1_EVB development kit (a BCM943364WCD1 module installed on a BCM9WCD9EVAL1
motherboard).

Note

The BCM9WCD9EVAL1 motherboard is intended for evaluating 44-pin WICED modules.

The STM32F411RE has two main on-chip memory regions. The device has a SRAM region of 128KiB present at 0x20000000,
and a 512KiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution).

The STM32 variant HAL includes support for the three on-chip serial devices which are documented in the variant HAL,
however it is assumed that only USART1 is available.

Device drivers are also provided for the STM32 on-chip SPI interfaces, I²C interfaces, watchdog, RTC (wallclock) and Flash.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 4.7.3j, arm-eabi-gdb version 7.6.1, and binutils version 2.32.2.

3030

BCM943364WCD1 Platform HAL

Name
Setup — Preparing the Broadcom BCM943364WCD1 for eCos Development

Overview
Given the limited available RAM memory, it is expected that the most common development method is to use JTAG for
development, either by loading smaller applications into the on-chip SRAM, or by programming larger applications directly
into on-chip Flash. In the first case, eCos applications should be configured for the SRAM startup type, and in the second case
for ROM startup type.

Nevertheless, it is still possible to program a GDB stub ROM image into on-chip Flash and download and debug via a serial
UART, if pins for the UART are available. In that case, eCos applications are configured for RAM startup and then downloaded
and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE. For serial communications, all versions run
with 8 bits, no parity, and 1 stop bit at 115200 baud. This rate can be changed in the eCos configuration used for building
the GDB stub ROM image.

HAL startup types

The following startup types may be selected for applications:

Configuration Description

SRAM Stand-alone programs running from on-chip SRAM, loaded via JTAG hardware debugger

ROM Stand-alone programs running from on-chip FLASH

ROMAPP Stand-alone programs running from an offset into the on-chip FLASH, that are started by a separate
boot loader

RAM Programs loading via a GDB stub ROM into on-chip RAM, which rely on a debug monitor

Further details are available later in this manual.

Programming ROM images
To program ROM startup applications into Flash, including the GDB stub ROM, a JTAG debugger that understands the STM32
flash may be used, such as the OpenOCD tool. The openocd GDB server can directly program flash based applications from
the GDB load command.

For example, assuming that openocd is running on the same host as GDB, and is connected to the target board the following
will program the “bootup.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 4.7.3g) 7.6.1
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018
Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8
Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444

3031

BCM943364WCD1 Platform HAL

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000
wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

Rebuilding the GDB stub

Should it prove necessary to rebuild a GDB stub ROM binary, this is done most conveniently at the command line. For the
bcm943364wcd1_evb platform the steps needed are:

$ mkdir gdbstub_bcm943364wcd1_evb
$ cd gdbstub_bcm943364wcd1_evb
$ ecosconfig new bcm943364wcd1_evb stubs
[… ecosconfig output elided …]
$ ecosconfig tree
$ make

At the end of the build, the install/bin subdirectory should contain the file gdb_module.bin. This may be programmed
to the board using the above procedure.

3032

BCM943364WCD1 Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview

The Broadcom BCM943364WCD1 module platform HAL package is loaded automatically when eCos is configured for the
bcm943364wcd1 or bcm943364wcd1_evb targets. It should never be necessary to load this package explicitly. Unloading
the package should only happen as a side effect of switching target hardware.

Startup

The Broadcom BCM943364WCD1 module platform HAL package supports four separate startup types:

SRAM

This is the startup type used to build applications that are loaded via a JTAG interface. The application will be self-con-
tained with no dependencies on services provided by other software. The program expects to be loaded from hal_vir-
tual_vector_table_end and entered at that address. Memory below hal_virtual_vector_table_end is
set aside for vector tables. eCos startup code will perform all necessary hardware initialization.

ROM

This startup type can be used for finished applications which will be programmed into internal Flash ROM at location
0x08000000. Data and BSS will be put into internal SRAM starting from hal_virtual_vector_table_end.
The application will be self-contained with no dependencies on services provided by other software. The program expects
to boot from reset with ROM mapped at location zero. It will then transfer control to the 0x08000000 region. eCos
startup code will perform all necessary hardware initialization.

ROMAPP

This startup type can be used for finished applications which will be programmed into internal Flash ROM at the CYGIM-
P_BOOTUP_RESERVED configured offset. This is a variation of the ROM startup type for applications that are started by
a smaller boot loader application. eCos startup code will perform all necessary hardware initialization.

RAM

This is the startup type which is used if relying on a GDB stub ROM image programmed into internal Flash to download and
run applications into SRAM via arm-eabi-gdb and a serial UART. RAM from 0x20000000 to 0x20001000 is reserved
for the GDB stub, but then the RAM startup application may be loaded into memory from 0x20001000 and debugged
using GDB. It is assumed that the hardware has already been initialized by the GDB stub ROM. By default the application
will use the eCos virtual vectors mechanism to obtain services from the GDB stub ROM, including diagnostic output.

Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration op-
tion CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building the GDB stub ROM (or
RedBoot).

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, and disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diagnostic
output.

3033

BCM943364WCD1 Platform HAL

UART Serial Driver
The BCM943364WCD1 module uses the STM32's internal UART serial support. The HAL diagnostic interface, used for
both polled diagnostic output and GDB stub communication, is only expected to be available to be used on the USART1 port
(counting the first UART as UART1).

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_CORTEXM_STM32 package which
contains all the code necessary to support interrupt-driven operation with greater functionality. All three UARTs can be sup-
ported by this driver. For the BCM943364WCD1 module however the available I/O pins impose a limit on the available func-
tionality.

Note

It is not recommended to use this driver with a port at the same time as using that port for HAL diagnostic I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option (within the generic serial driver
support package CYGPKG_IO_SERIAL) is enabled in the configuration. By default this will only enable support in the driver
for the USART1 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable
support for other serial ports. Note that in this package, serial port numbering starts at 0, rather than 1. So for example, to enable
the serial driver for ports USART1 and USART2, enable the configuration options “ST STM32 serial port 0 driver” (CYG-
PKG_IO_SERIAL_CORTEXM_STM32_SERIAL0) and “ST STM32 serial port 1 driver” (CYGPKG_IO_SERIAL_COR-
TEXM_STM32_SERIAL1).

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

For the base BCM943364WCD1 module SPI bus 1 and bus 2 are configured for off-module SPI connections.

When targetting the BCM9WCD9EVAL1 based bcm943364wcd1_evb platform then the SPI1 flash memory device
m25pxx_spi_device is enumerated.

To disable support for both the above SPI devices, the platform HAL contains an option “SPI devices” (CYGPKG_HAL_COR-
TEXM_STM32_BCM943364WCD1_SPI) which can be disabled. No other SPI devices are instantiated.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memo-
ry support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration.

The driver will configure itself automatically for the size and parameters of the specific STM32 variant present on the
BCM943364WCD1 module.

A number of other aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism
and program burst size. Consult the driver for more details.

3034

BCM943364WCD1 Platform HAL

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM, including the GDB
stub ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M3 core of the STM32 only
supports six such hardware breakpoints, so they should be used sparingly. If using a GDB front-end such as Eclipse, check it
has not set unnecessary extra breakpoints such as at main(). Some JTAG devices give the option of whether to set hardware
or software breakpoints by default. Be sure to configure your device appropriately.

The base BCM943364WCD1 module exposes the STM32F411RE JTAG/SWD signals on the module connectors TP7..TP11.
A suitable hardware connection would be required to allow JTAG debugging. The BCM943364WCD1_EVB kit provides a
standard 20-pin ARM JTAG header J3, but by default the module JTAG connection is configured to use the BCM9WCD9E-
VAL1 motherboard FT2232 connection presented via the USB J4 connector. Direct support for this USB interface is provided
by the WICED-SDK supplied OpenOCD binary.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

Normally a notable disadvantage with JTAG debugging is that it does not allow thread-aware debugging, such as the ability
to inspect different eCos threads or their stack backtraces, set thread-specific breakpoints, and so on. Fortunately the Ronetix
PEEDI JTAG unit does support thread-aware debugging of eCos applications, however extra configuration steps are required.
Consult the PEEDI documentation for more details as usage is beyond the scope of this document.

OpenOCD notes

The following OpenOCD documentation uses as an example the BCM943364WCD1_EVB J4 USB JTAG connection. An
OpenOCD configuration that supports the ft2232 interface and understands the ft2232_layout BCM9WCD1EVAL1
configuration must be used, Such an openocd is pre-built and available in the WICED-SDK. For example WICED-SDK
revision 3.5.1 the necessary host binaries can be found in the directory WICED-SDK-3.5.1/tools/OpenOCD.

An example OpenOCD configuration file openocd.bcm943364wcd1_evb.cfg is provided within the eCos platform
HAL package in the source repository. This will be in the directory packages/hal/cortexm/stm32/bcm943364w-
cd1/VERSION/misc relative to the root of your eCos installation.

This configuration file can be used with the WICED-SDK supplied OpenOCD on the host as follows:

$./Linux64/openocd-all-brcm-libftdi -f openocd.bcm943364wcd1_evb.cfg
Open On-Chip Debugger 0.9.0-00029-g33ca6ac-dirty (2015-05-28-14:31)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.sourceforge.net/doc/doxygen/bugs.html
Info : only one transport option; autoselect 'jtag'
trst_and_srst separate srst_nogate trst_push_pull srst_push_pull connect_assert_srst
adapter speed: 2000 kHz
adapter_nsrst_delay: 100
jtag_ntrst_delay: 100
cortex_m reset_config sysresetreq
jtag_init
Warn : Using DEPRECATED interface driver 'ft2232'
Info : Consider using the 'ftdi' interface driver, with configuration files in interface/ftdi/...
Info : max TCK change to: 30000 kHz
Info : clock speed 2000 kHz
Info : JTAG tap: stm32f4x.cpu tap/device found: 0x4ba00477 (mfg: 0x23b, part: 0xba00, ver: 0x4)
Info : JTAG tap: stm32f4x.bs tap/device found: 0x06431041 (mfg: 0x020, part: 0x6431, ver: 0x0)
Info : stm32f4x.cpu: hardware has 6 breakpoints, 4 watchpoints

By default openocd provides a console on port 4444, and this can be used to interact with the target system. This console
interface can be used to perform debugging, program the flash, etc.

3035

BCM943364WCD1 Platform HAL

Normally arm-eabi-gdb is used to connect to the default GDB server port 3333 for debugging. For example:

(gdb) target remote localhost:3333
Remote debugging using localhost:3333
0x00000000 in ?? ()
(gdb)

The application can then be loaded and executed under GDB as normal. If you are using Eclipse then, if required, you can
define a “preload” gdb macro to emit any necessary commands to OpenOCD. See the “Hardware Assisted Debugging” section
of the “Eclipse/CDT for eCos application development” document's “Debugging eCos applications” chapter.

3036

BCM943364WCD1 Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Broadcom BCM943364WCD1 mod-
ule hardware and should be read in conjunction with the specification for that device. The BCM943364WCD1 platform HAL
package complements the Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific
to the target module, and optionally, specifically supported motherboards.

Targetting the eCos platform bcm943364wcd1 will configure eCos for a stand-alone BCM943364WCD1 module with no
assumption made about the I/O connected to the module TP pins.

Targetting the bcm943364wcd1_evb platform will configure eCos for a BCM9WCD9EVAL1 motherboard based module,
and provide access to the LEDs, switches, thermistor and SPI flash device available on that motherboard.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For the stand-alone application startup types, the HAL will perform additional initialization, programming the various internal
registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the
src/bcm943364wcd1_misc.c in both the hal_system_init and hal_platform_init functions.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Internal RAM This is located at address 0x20000000 of the memory space, and is 128KiB in size. The eCos
VSR table always occupies the initial bytes at the base of this memory, followed by the op-
tional virtual vector table depending on the eCos configuration. The top CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE bytes of memory are reserved for the interrupt stack. The
remainder of on-chip SRAM is available for use by applications.

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 512KiB in size. and ROM applications are by default con-
figured to run from this memory.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the relevant STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for CYGNUM_HAL_VSR_COUNT entries is reserved to match the use
of a STM32F2 processor.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, and
is normally 0x20000198 for STM32F4 targets.

The CDL option CYGSEM_HAL_VIRTUAL_VECTOR_SUPPORT defines whether this
virtual vector support is needed. If not defined then the table is zero sized.

hal_virtual_vector_table_end This defines the location of the end of the (optional) virtual vector table.

3037

BCM943364WCD1 Platform HAL

hal_interrupt_stack This defines the location of the interrupt stack. For all startup types this is allocated to
the top of internal SRAM, at 0x20020000.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack. The size of the interrupt stack is defined by
the CDL option CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE.

Flash wait states
The BCM943364WCD1 platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the STM32 Flash programming manual (PM0059) for
appropriate values for different clock speeds or voltages. The default of 3 reflects a supply voltage of 3.3V and HCLK of
100MHz.

Diagnostic LEDs
The platform HAL header file at <cyg/hal/plf_io.h> defines the following convenience function to allow any LEDs
to be set:

extern void hal_bcm943364wcd1_led(unsigned char c);

The low-order bits of the argument c correspond to individual LEDs.

The default BCM943364WCD1 module support does not provide LEDs, since the relevant off-module GPIO signals are not
defined. However, when targetting the BCM9WCD9EVAL1 motherboard two LEDs are fitted for diagnostic purposes: D4
(red) and D3 (green). These LEDs are free for application use. The bcm943364wcd1_evbmanual test provides a simple
example of changing the LED state.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for the bcm943364wcd1_evb platform using the SRAM
startup type and optimization flag -O2.

Example 309.1. bcm943364wcd1 Real-time characterization

 Startup, main thrd : stack used 352 size 1536
 Startup : Idlethread stack used 84 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 8.50 microseconds (8 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 8
 Thread switches: 128
 Mutexes: 16
 Mailboxes: 16
 Semaphores: 16
 Scheduler operations: 128
 Counters: 16
 Flags: 16
 Alarms: 16
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>

3038

BCM943364WCD1 Platform HAL

 7.13 7.00 8.00 0.22 87% 87% Create thread
 1.50 1.00 2.00 0.50 100% 50% Yield thread [all suspended]
 1.50 1.00 2.00 0.50 100% 50% Suspend [suspended] thread
 1.50 1.00 2.00 0.50 100% 50% Resume thread
 2.25 2.00 3.00 0.38 75% 75% Set priority
 0.38 0.00 1.00 0.47 62% 62% Get priority
 4.50 4.00 5.00 0.50 100% 50% Kill [suspended] thread
 1.50 1.00 2.00 0.50 100% 50% Yield [no other] thread
 2.50 2.00 3.00 0.50 100% 50% Resume [suspended low prio] thread
 1.63 1.00 2.00 0.47 62% 37% Resume [runnable low prio] thread
 2.13 2.00 3.00 0.22 87% 87% Suspend [runnable] thread
 1.38 1.00 2.00 0.47 62% 62% Yield [only low prio] thread
 1.50 1.00 2.00 0.50 100% 50% Suspend [runnable->not runnable]
 4.75 4.00 5.00 0.38 75% 25% Kill [runnable] thread
 3.88 3.00 4.00 0.22 87% 12% Destroy [dead] thread
 7.25 7.00 8.00 0.38 75% 75% Destroy [runnable] thread
 8.13 8.00 9.00 0.22 87% 87% Resume [high priority] thread
 2.84 2.00 4.00 0.29 82% 17% Thread switch

 0.37 0.00 1.00 0.46 63% 63% Scheduler lock
 1.35 1.00 2.00 0.46 64% 64% Scheduler unlock [0 threads]
 1.35 1.00 2.00 0.46 64% 64% Scheduler unlock [1 suspended]
 1.35 1.00 2.00 0.46 64% 64% Scheduler unlock [many suspended]
 1.35 1.00 2.00 0.46 64% 64% Scheduler unlock [many low prio]

 0.44 0.00 1.00 0.49 56% 56% Init mutex
 1.81 1.00 2.00 0.31 81% 18% Lock [unlocked] mutex
 2.06 2.00 3.00 0.12 93% 93% Unlock [locked] mutex
 1.81 1.00 2.00 0.31 81% 18% Trylock [unlocked] mutex
 1.69 1.00 2.00 0.43 68% 31% Trylock [locked] mutex
 0.44 0.00 1.00 0.49 56% 56% Destroy mutex
 9.06 9.00 10.00 0.12 93% 93% Unlock/Lock mutex

 0.75 0.00 1.00 0.38 75% 25% Create mbox
 0.19 0.00 1.00 0.30 81% 81% Peek [empty] mbox
 2.00 2.00 2.00 0.00 100% 100% Put [first] mbox
 0.19 0.00 1.00 0.30 81% 81% Peek [1 msg] mbox
 2.00 2.00 2.00 0.00 100% 100% Put [second] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [2 msgs] mbox
 1.94 1.00 2.00 0.12 93% 6% Get [first] mbox
 1.94 1.00 2.00 0.12 93% 6% Get [second] mbox
 1.00 1.00 1.00 0.00 100% 100% Tryput [first] mbox
 1.44 1.00 2.00 0.49 56% 56% Peek item [non-empty] mbox
 1.75 1.00 2.00 0.38 75% 25% Tryget [non-empty] mbox
 1.56 1.00 2.00 0.49 56% 43% Peek item [empty] mbox
 1.50 1.00 2.00 0.50 100% 50% Tryget [empty] mbox
 0.38 0.00 1.00 0.47 62% 62% Waiting to get mbox
 0.25 0.00 1.00 0.38 75% 75% Waiting to put mbox
 1.00 1.00 1.00 0.00 100% 100% Delete mbox
 6.25 6.00 7.00 0.38 75% 75% Put/Get mbox

 0.44 0.00 1.00 0.49 56% 56% Init semaphore
 1.44 1.00 2.00 0.49 56% 56% Post [0] semaphore
 2.00 2.00 2.00 0.00 100% 100% Wait [1] semaphore
 1.38 1.00 2.00 0.47 62% 62% Trywait [0] semaphore
 1.50 1.00 2.00 0.50 100% 50% Trywait [1] semaphore
 0.50 0.00 1.00 0.50 100% 50% Peek semaphore
 0.50 0.00 1.00 0.50 100% 50% Destroy semaphore
 5.50 5.00 6.00 0.50 100% 50% Post/Wait semaphore

 0.75 0.00 1.00 0.38 75% 25% Create counter
 0.50 0.00 1.00 0.50 100% 50% Get counter value
 0.31 0.00 1.00 0.43 68% 68% Set counter value
 1.88 1.00 2.00 0.22 87% 12% Tick counter
 0.44 0.00 1.00 0.49 56% 56% Delete counter

 0.50 0.00 1.00 0.50 100% 50% Init flag
 1.94 1.00 2.00 0.12 93% 6% Destroy flag
 1.50 1.00 2.00 0.50 100% 50% Mask bits in flag
 1.81 1.00 2.00 0.31 81% 18% Set bits in flag [no waiters]
 2.50 2.00 3.00 0.50 100% 50% Wait for flag [AND]
 2.38 2.00 3.00 0.47 62% 62% Wait for flag [OR]

3039

BCM943364WCD1 Platform HAL

 2.50 2.00 3.00 0.50 100% 50% Wait for flag [AND/CLR]
 2.31 2.00 3.00 0.43 68% 68% Wait for flag [OR/CLR]
 0.31 0.00 1.00 0.43 68% 68% Peek on flag

 1.19 1.00 2.00 0.30 81% 81% Create alarm
 2.38 2.00 3.00 0.47 62% 62% Initialize alarm
 1.44 1.00 2.00 0.49 56% 56% Disable alarm
 2.50 2.00 3.00 0.50 100% 50% Enable alarm
 1.31 1.00 2.00 0.43 68% 68% Delete alarm
 2.19 2.00 3.00 0.30 81% 81% Tick counter [1 alarm]
 6.56 6.00 7.00 0.49 56% 43% Tick counter [many alarms]
 3.75 3.00 4.00 0.38 75% 25% Tick & fire counter [1 alarm]
 31.38 31.00 32.00 0.47 62% 62% Tick & fire counters [>1 together]
 8.00 8.00 8.00 0.00 100% 100% Tick & fire counters [>1 separately]
 8.00 8.00 8.00 0.00 100% 100% Alarm latency [0 threads]
 7.23 6.00 8.00 0.38 73% 1% Alarm latency [2 threads]
 7.13 6.00 8.00 0.43 63% 11% Alarm latency [many threads]
 12.01 12.00 13.00 0.01 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 3.66 2.00 4.00 0.00 Clock DSR latency

 192 172 204 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 796 size 1536
 All done : Idlethread stack used 172 size 1280

Timing complete - 29320 ms total

PASS:<Basic timing OK>
EXIT:<done>

3040

BCM943364WCD1 Platform HAL

Name
Test Programs — Details

Test Programs
The BCM943364WCD1 platform HAL contains a test suitable for the bcm943364wcd1_evb platform, that allows various
aspects of that board to be tested.

Manual Test
The manual test is only built by default when targetting a BCM9WCD9EVAL1 motherboard based BCM943364WCD1 mod-
ule (e.g. the BCM943364WCD1_EVB development kit).

This program tests various aspects of the basic platform port. The basic test can be used to validate the LED and push-button
GPIO operation. Depending on the eCos configuration further testing of the flash (detecting on-chip and motherboard SPI
devices) and ADC device access is performed.

When flash support is configured the test will display the memory address ranges for the flash areas.

Note

Whereas the on-chip flash is directly addressable, the off-chip SPI flash is given a logical address for use through
the flash API but it is not actually memory mapped.

When ADC support is configured the manual program tests the ADC driver for the STM32. The only device connected to the
ADC on the board is the thermistor connected to ADC1 logical channel 3, named TH1 on the motherboard. In addition the test
also report the values of the Temperature, Vrefint and Vbat inputs that are sourced on-chip.

Wi-Fi firmware

With a suitable eCos configuration the manual application can be used to initialise the off-chip SPI flash memory on the
BCM9WCD9EVAL1 motherboard. The use of the off-chip flash will normally be required for this platform due to the limited
on-chip flash space with which to hold both an application and the required radio firmware binary.

The following example uses the command-line ecosconfig tool, though, as always, the necessary configuration changes can be
performed using the graphical configtool tool if desired. This configuration is just being used to build a DIRECT application
containing a copy of the firmware binary, and to allow that image to be written to the off-chip flash memory. It is not envisaged
that real-world applications for this platform will make use of the DIRECT mode due to the limited space remaining for
applications.

Prior to creating the actual configuration some non-default options should be placed into a file suitable for importing. These
are used to ensure the correct configuration for the firmware update build of the manual application. This example assumes
the following has been placed into the file tmp.ecm.

cdl_option CYG_HAL_STARTUP { user_value ROM };
cdl_option CYGFUN_NET_WIFI_BROADCOM_WWD_RESOURCES_INDIRECT { user_value 0 };
cdl_option CYGHWR_HAL_CORTEXM_DIAGNOSTICS_INTERFACE { user_value "gdb_hwdebug_fileio" };

Once the configuration fragment file has been created then the application can be configured and built using the following
command sequence:

$ ecosconfig new bcm943364wcd1_evb lwip_eth
$ ecosconfig add CYGPKG_IO CYGPKG_IO_FLASH CYGPKG_CRC
$ ecosconfig import tmp.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make
$ make tests

The resulting install/tests/hal/cortexm/stm32/bcm943364wcd1/current/tests/manual application
will then validate, and update appropriately if required, the off-chip firmware image. The firmware binary image included in
the application is as defined by the selected WWD SDK. A successful run of the application will be similar to:

3041

BCM943364WCD1 Platform HAL

INFO:<Manual Test>
FLASH: 0x08000000-0x0807ffff, 4 x 0x4000 blocks, 1 x 0x10000 blocks, 3 x 0x20000 blocks
FLASH: 0xc0000000-0xc00fffff, 16 x 0x10000 blocks
INFO:<WWD configuration PLATFORM "BCM943364WCD1_EVB" SDK "3.5.2">
INFO:<WWD firmware image required and platform is INDIRECT capable>
INFO:<DIRECT F/W CRC 4585C974 mismatch against INDIRECT F/W CRC 48D488E3>
... Unlocking from 0xc0000000-0xc007ffff:
... Erase from 0xc0000000-0xc007ffff:
PASS:<Erased INDIRECT area C0001000-C0080000>
... Program from 0x080070dc-0x0805e5b0 to 0xc0001000:
PASS:<Programmed INDIRECT area>
... Locking from 0xc0000000-0xc007ffff:
PASS:<Current F/W image written to INDIRECT area with CRC 4585C974>
[… rest of output elided …]

Re-running the application will report that the off-chip image matches:

INFO:<Manual Test>
FLASH: 0x08000000-0x0807ffff, 4 x 0x4000 blocks, 1 x 0x10000 blocks, 3 x 0x20000 blocks
FLASH: 0xc0000000-0xc00fffff, 16 x 0x10000 blocks
INFO:<WWD configuration PLATFORM "BCM943364WCD1_EVB" SDK "3.5.2">
INFO:<WWD firmware image required and platform is INDIRECT capable>
INFO:<DIRECT F/W CRC 4585C974 image already installed in INDIRECT area>
[… rest of output elided …]

Subsequently, normal WWD Wi-Fi applications will use the CYGFUN_NET_WIFI_BROAD-
COM_WWD_RESOURCES_INDIRECT enabled support to allow all of the on-chip memory for application use; with the code
loading the firmware binary from the off-chip storage.

3042

Chapter 310. STM32L4R9-DISCO Platform
HAL

3043

STM32L4R9-DISCO Platform HAL

Name
CYGPKG_HAL_CORTEXM_STM32_STM32L4R9_DISCO — eCos Support for the STM32L4R9-DISCO Board

Description
This documentation describes the platform-specific elements of the ST STM32L4R9I_DISCO board support within eCos. It
should be read in conjunction with the STM32 variant HAL section, which covers the common functionality shared by all
STM32 variants, including eCos HAL features and on-chip device support.

The board is equipped with an on-board ST-Link interface, which is typically used for eCos application development. There
is also a TAG connector (CN8) available for a direct SWD debug connection.

Supported Hardware
The STM32L4R9AI has two main on-chip memory regions. The device has a SRAM region of 640KiB present at 0x20000000,
and a 2MiB FLASH region present at 0x08000000 (which is aliased to 0x00000000 during normal execution). A 512Mbit
MX25LM51245G Octo SPI flash device is available through the OCTOSPI controller. A 16Mbit PSRAM device provides an
off-chip RAM area after the initialisaton of the system (the MFX I/O expander is used to configure the H/W appropriately).

The STM32 variant HAL includes support for the six on-chip serial devices. These consist of three USARTs, two UARTs
and a LPUART. These are all supported by a common driver and are documented in the variant HAL. However, the ST-
M32L4R9-DISCO motherboard only makes use of two of these. USART2 is routed to the on-board ST-Link and presented as a
CDC-ACM device on the CN13 USB connector. USART3 is routed to the DSI with its hardware RTS/CTS flow control lines.

The STM32 variant HAL also includes support for the I²C buses. Support is provided for the on-board MFX I/O expander and
audio codec I²C devices, with both being on bus 1. The descriptors are exported in the normal way via <cyg/io/i2c.h>,
with the respective names hal_st_mfx and hal_stm32l4r9_disco_cs42l51.

Similarly the STM32 variant HAL includes support for the SPI buses. Though the board does not provide any SPI devices
as standard.

Device drivers are also provided for the STM32 on-chip, ADC devices. The internal channels are available, with some I/O
pins on the connectors available for analog input.

Additionally, support is provided for the on-chip watchdog, RTC (wallclock) and a Flash driver exists to permit management
of the STM32's on-chip Flash and the off-chip Quad SPI NOR flash.

The STM32L4 processor and the STM32L4R9-DISCO board provide a wide variety of peripherals, but unless support is
specifically indicated, it should be assumed that it is not included.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 7.3.0c, arm-eabi-gdb version 8.1, and binutils version 2.23.2.

3044

STM32L4R9-DISCO Platform HAL

Name
Setup — Preparing the STM32L4R9-DISCO Board for eCos Development

Overview
The STM32L4R9-DISCO motherboard incorporates a ST-Link interface, which is used to provide hardware debug support
for eCos application development. Applications can be loaded, run and debugged either via the command line GDB debugger
arm-eabi-gdb, or via the Eclipse IDE. These host tools communicate with the target via a “GDB server” intermediary that
supports a specific JTAG-based hardware debugger (e.g. JLinkGDBServer for the Segger J-Link, or OpenOCD for the J-
Link and other hardware debuggers).

Normally for release applications the ROM startup type would be used, with the application programmed into the on-chip flash
for execution when the board boots. It is still possible to use the hardware debugging support to debug such flash-based ROM
applications, and this may be the desired approach if the application is too large for execution from on-chip SRAM, or where
all of the SRAM is required for application run-time use.

If off-chip Non-Volatile Memory (NVM) is used to hold the main application then the board can boot from the internal flash
using a suitable boot loader. For example, the eCosPro BootUp ROM loader, where the BootUp code can start the main
application (after an optional update sequence).

If required, it is still possible to program a GDB stub or RedBoot ROM image into on-chip Flash and download and debug
via a serial connection (using USART1). In that case, eCos applications are configured for RAM startup and then downloaded
and run on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE as appropriate. However, the space available to
applications with this approach is so limited as to make it essentially impractical.

Programming ROM images
The JTAG connection and suitable host software (e.g. The OpenOCD package openocd tool, or the Segger J-Link
JLinkGDBServer) can be used to program the flash.

Both these GDB servers can directly program flash based applications from the GDB load command. For example, assuming
that openocd is running on the same host as GDB, and is connected to the target board the following will program the “boot-
up.elf” application into the on-chip flash:

$ arm-eabi-gdb install/bin/bootup.elf
GNU gdb (eCosCentric GNU tools 7.3.0c) 8.1
[… GDB output elided …]
(gdb) target remote localhost:3333
hal_reset_vsr () at path/hal_misc.c:171
(gdb) load
Loading section .rom_vectors, size 0x14 lma 0x8000000
Loading section .text, size 0x3adc lma 0x8000018
Loading section .rodata, size 0x6c0 lma 0x8003af8
Loading section .data, size 0x6dc lma 0x80041b8
Start address 0x8000018, load size 18572
Transfer rate: 14 KB/sec, 4643 bytes/write.
(gdb)

If using JLinkGDBServer, the approach is identical, apart from using port 2231 to connect to the server.

Alternatively, the openocd telnet interface can be used to manually program the flash. By default the openocd session provides
a comand-line via port 4444. Consult the OpenOCD documentation for more details if a non-default openocd configuration
is being used.

With a telnet connection established to the openocd any binary data can easily be written to the on-chip flash. e.g.

$ telnet localhost 4444
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Open On-Chip Debugger
> flash write_image test.bin 0x08000000

3045

STM32L4R9-DISCO Platform HAL

wrote 32518 bytes from file test.bin in 1.073942s (29.569 KiB/s)

To create a binary for flash programming the arm-eabi-objcopy command is used. This converts the, ELF format, linked
application into a raw binary. For example:

$ arm-eabi-objcopy -O binary programname programname.bin

3046

STM32L4R9-DISCO Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The STM32L4R9-DISCO board platform HAL package CYGPKG_HAL_CORTEXM_STM32_STM32L4R9_DISCO is loaded
automatically when eCos is configured for the stm32l4r9_disco target. It should never be necessary to load this package
explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The STM32L4R9-DISCO board platform HAL package supports four separate startup types:

ROM This startup type can be used for finished applications which will be programmed into internal flash at location
0x08000000. Data and BSS will be put into internal SRAM starting from 0x200002D8. Internal SRAM below
this address is reserved for vector tables. The application will be self-contained with no dependencies on services
provided by other software. The program expects to boot from reset with ROM mapped at location zero. It will then
transfer control to the 0x08000000 region. eCos startup code will perform all necessary hardware initialization.

ROMAPP This startup type can be used for finished applications which will be programmed into internal flash at location
0x08008000. Data and BSS will be put into internal SRAM starting from 0x200002D8. Internal SRAM below
this address is reserved for vector tables. The application will be self-contained with no dependencies on services
provided by other software. The program expects to boot from reset with ROM mapped at location zero. It will then
transfer control to the 0x08000000 region. eCos startup code will perform all necessary hardware initialization.

This startup type is identical to the ROM startup with the exception of the flash base address. It is used for appli-
cations that can be started or updated by BootUp.

SRAM This startup type can be used for finished applications which will be loaded into internal SRAM via a JTAG in-
terface. The application will be self-contained with no dependencies on services provided by other software. The
program expects to be loaded from 0x200002D8 and entered at that address. eCos startup code will perform all
necessary hardware initialization.

RAM When the board has RedBoot (or a GDB stub ROM) programmed into internal Flash at location 0x08000000
then the arm-eabi-gdb debugger can communicate with a suitably configured UART connection to load and debug
applications. An application is loaded into memory from 0x20001000. It is assumed that the hardware has already
been initialized by RedBoot. By default the application will not be stand-alone, and will use the eCos virtual vectors
mechanism to obtain services from RedBoot, including diagnostic output.

Warning

RedBoot can have an adverse affect on the real-time performance of applications.

It should be noted that due to the MFX I/O expander needing to be used to configure the hardware for correct PSRAM operation
there is no direct startup type for loading and executing applications from PSRAM. However, there is nothing to stop a suitable
boot loader from initialising the hardware appropriately and application code subsequently being loaded into and executed
from the PSRAM.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

3047

STM32L4R9-DISCO Platform HAL

Note

Though, as previously discussed, since the option of hardware debugging is available as standard on the ST-
M32L4R9-DISCO platform, and space in the SRAM is limited, it is unlikely that the RAM startup type would
be used for development.

SPI Driver
An SPI bus driver is available for the STM32 in the package “ST STM32 SPI driver” (CYGPKG_DEVS_SPI_CORTEXM_ST-
M32).

No SPI devices are instantiated for this platform by default.

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the STM32 SPI device driver.

I²C Driver
The STM32 variant HAL provides the main I²C hardware driver itself, configured at CYGPKG_HAL_STM32_I2C. Howev-
er, the platform I²C support can also be configured separately at CYGPKG_HAL_CORTEXM_STM32_STM32L4R9_DIS-
CO_I2C. This enables I²C bus 1. Some board H/W features are routed via the I²C MFXv3 I/O expander device, and as such,
the support for bus 1 is enabled by default. An audio codec is also available on this bus and is instantiated with the name
hal_stm32l4r9_disco_cs42l51. The instantiated device is available for applications via <cyg/io/i2c.h>.

ADC Driver
The STM32 processor variant HAL provides an ADC driver. The STM32L4R9-DISCO platform HAL enables the support for
the device ADC1 and for configuration of the respective ADC device input channels.

Consult the generic ADC driver API documentation in the eCosPro Reference Manual for further details on ADC support in
eCosPro, along with the configuration options in the STM32 ADC device driver.

Flash Driver
The STM32's on-chip Flash may be programmed and managed using the Flash driver located in the “STM32 Flash memory
support” (CYGPKG_DEVS_FLASH_STM32) package. This driver is enabled automatically if the generic “Flash device dri-
vers” (CYGPKG_IO_FLASH) package is included in the eCos configuration. The driver will configure itself automatically for
the size and parameters of the specific STM32 variant present on the STM32L4R9-DISCO board.

A number of aspects of Flash driver behaviour can be configured within that driver, such as program/erase parallelism and
program burst size. Consult the driver for more details.

OCTOSPI Flash Driver
When OCTOSPI NOR flash support is enabled in the configuration with CYGHWR_HAL_CORTEXM_STM32_FLASH_OC-
TOSPI, then the cyg_stm32_octospi1_device device is exported and can be accessed via the standard flash API.
The device is given a logical base address to match its physical base address of 0x90000000 (corresponding to FMC bank
4) when it is memory mapped (if CYGFUN_DEVS_FLASH_OCTOSPI1_CORTEXM_STM32_MEMMAPPED is enabled in the
OCTOSPI driver, which is not the default). When memory mapping is disabled, using the eCos Flash API will still allow the
device to be read/written at that logical base address.

3048

STM32L4R9-DISCO Platform HAL

Name
SWD support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug loaded applications, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The Cortex-M4 core of the STM32L4R9 only
supports a limited number of such hardware breakpoints, so they may need to be used sparingly. If using a GDB front-end
such as Eclipse, check it has not set unnecessary extra breakpoints such as at main(). Some JTAG devices give the option of
whether to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

When debugging via JTAG, you are likely to need to disable the default HAL idle thread action, otherwise there may be issues
where the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural
HAL.

J-Link Support

The preferred debug device for this board is the on-board ST-Link debug interface probe. This also has the benefit fof routing
USART2 as a standard USB CDC-ACM terminal.

Initialization scripts that support debugging the board via either the OpenOCD or J-Link GDB servers can be found in the
directory packages/hal/cortexm/stm32/stm32l4r9_disco/VERSION/misc relative to the root of your eCos
installation.

For JLinkGDBServer, the file stm32l4r9_disco.jlink, provides initialization for the board and should be used in the
following command line:

 $ JLinkGDBServer -device STM32L4R9AI -xc stm32l4r9_disco.jlink

Similarly OpenOCD may be invoked with the following command line:

 $ openocd -f openocd.stm32l4r9_disco.cfg

Configuration of JTAG applications

JTAG/SWD applications can be loaded directly into SRAM or flash without requiring a ROM monitor. Loading can be done
directly through the JTAG/SWD device, or through GDB where supported by the JTAG/SWD device.

In order to configure the application to support these modes, it is recommended to use the SRAM, ROM or ROMAPP startup types
which will implicitly cause two important settings to change. Firstly, CYGSEM_HAL_USE_ROM_MONITOR must be disabled.
Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option should be enabled in order to prevent HAL diagnostic output
being encoded into GDB ($O) packets. These configuration changes could be made by hand, but use of the aformentioned
startup types will just work.

With these changes, any diagnostic output will appear out of the configured diagnostic channel, by default USART2 on ST-
Link USB CN13. An eCosCentric extension allows diagnostic output to appear on the GDB console, or on the Eclipse console.
To enable this feature, you must set the configuration option CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN in the common
HAL package. If you are using the graphical configuration tool then you should then accept any suggested solutions to the
subsequent configuration conflicts. Older eCos releases also required the gdb "set hwdebug on" command to be used to enable
GDB or Eclipse console output, but this is no longer required with the latest tools.

3049

STM32L4R9-DISCO Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STM32L4R9-DISCO board hardware,
and should be read in conjunction with that specification. The STM32L4R9-DISCO platform HAL package complements the
Cortex-M architectural HAL and the STM32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize many of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM, ROMAPP and SRAM startup types the HAL will perform additional initialization, programming the various internal
registers including the PLL, peripheral clocks and GPIO pins. The details of the early hardware startup may be found in the
src/stm32l4r9_disco_misc.c in both hal_system_init and hal_platform_init.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. For all the STARTUP
variations the top CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE bytes of the on-chip SRAM are reserved for the
interrupt stack. The remainder of the internal SRAM is available for use by applications. The key memory locations are as
follows:

Internal SRAM This is located at address 0x20000000 of the memory space, and is 640KiB in size. The eCos
VSR table occupies the bottom 444 bytes of memory, with the virtual vector table starting at
0x200001BC and extending to 0x200002D8.

Internal FLASH This is located at address 0x08000000 of the memory space and will be mapped to
0x00000000 at reset. This region is 2048KiB in size. ROM and ROMAPP applications are by
default configured to run from this memory.

OCTOSPI NOR Flash The OCTOSPI NOR flash is accessible through the flash API. It is partitioned between the al-
ternate application image and test space for the JFFS2 flash file system. The alternate applica-
tion image occupies the first 1Mbyte of the OCTOSPI flash. The JFFS2 test space currently oc-
cupies the next 256Kbytes. The space allocated for the alternate application image may be ad-
justed by changing STM32L4_BOOTUP_ALTERNATIVE_OFFSET and STM32L4_BOOT-
UP_ALTERNATIVE_MAXLEN in plf_arch.h. The JFFS2 test space is defined in __ST-
M32L4R9_DISCO_FLASHTEST_OCTOSPI in plf_io.h. Applications would not normal-
ly use this to define their JFFS2 filesystem location, but use the device/offset/length placement
device format in the filesystem mount() call.

On-Chip Peripherals These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of
the contents can be found in the STM32 User Manual.

Linker Scripts
The platform linker scripts define the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20000000 for all startup
types, and space for 111 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between an
ROM monitor and an eCos application. This is allocated right after the VSR table, at
0x200002BC.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of internal
SRAM, from 0x200A0000 down.

3050

STM32L4R9-DISCO Platform HAL

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Flash wait states
The STM32L4R9-DISCO platform HAL provides a configuration option to set the number of Flash read wait states to use:
CYGNUM_HAL_CORTEXM_STM32_FLASH_WAIT_STATES. It is important to verify and if necessary update this value if
changing the CPU clock (HCLK) frequency or CPU voltage. Consult the relevant STM32 datasheets and programming manuals
for the STM32L476 parts for appropriate values for different clock speeds or voltages. The default of 5 reflects a supply voltage
in Vcore range 1 and HCLK of 120MHz.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The
sample output is shown here for information. The test was built for SRAM startup with optimization flag -O2, since it provides
the best performance as both code and data could remain on-chip.

Example 310.1. stm32l4r9_disco Real-time characterization

Configured
Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Startup, main thrd : stack used 356 size 1536
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 7.09 microseconds (7 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 7.67 6.00 10.00 1.14 39% 45% Create thread
 1.50 1.00 2.00 0.50 100% 50% Yield thread [all suspended]
 1.44 1.00 2.00 0.49 56% 56% Suspend [suspended] thread
 1.34 1.00 2.00 0.45 65% 65% Resume thread
 2.00 2.00 2.00 0.00 100% 100% Set priority
 0.00 0.00 0.00 0.00 100% 100% Get priority

3051

STM32L4R9-DISCO Platform HAL

 3.67 3.00 4.00 0.44 67% 32% Kill [suspended] thread
 1.41 1.00 2.00 0.48 59% 59% Yield [no other] thread
 2.09 2.00 3.00 0.17 90% 90% Resume [suspended low prio] thread
 1.38 1.00 2.00 0.47 62% 62% Resume [runnable low prio] thread
 1.88 1.00 2.00 0.22 87% 12% Suspend [runnable] thread
 1.44 1.00 2.00 0.49 56% 56% Yield [only low prio] thread
 1.42 1.00 2.00 0.49 57% 57% Suspend [runnable->not runnable]
 3.72 3.00 4.00 0.40 71% 28% Kill [runnable] thread
 3.36 3.00 4.00 0.46 64% 64% Destroy [dead] thread
 6.25 6.00 7.00 0.38 75% 75% Destroy [runnable] thread
 6.64 6.00 8.00 0.48 60% 37% Resume [high priority] thread
 2.47 2.00 3.00 0.50 53% 53% Thread switch

 0.27 0.00 1.00 0.39 73% 73% Scheduler lock
 1.23 1.00 2.00 0.36 76% 76% Scheduler unlock [0 threads]
 1.23 1.00 2.00 0.36 76% 76% Scheduler unlock [1 suspended]
 1.26 1.00 2.00 0.38 74% 74% Scheduler unlock [many suspended]
 1.27 1.00 2.00 0.39 73% 73% Scheduler unlock [many low prio]

 0.31 0.00 1.00 0.43 68% 68% Init mutex
 1.63 1.00 2.00 0.47 62% 37% Lock [unlocked] mutex
 1.81 1.00 2.00 0.31 81% 18% Unlock [locked] mutex
 1.44 1.00 2.00 0.49 56% 56% Trylock [unlocked] mutex
 1.38 1.00 2.00 0.47 62% 62% Trylock [locked] mutex
 0.28 0.00 1.00 0.40 71% 71% Destroy mutex
 7.00 7.00 7.00 0.00 100% 100% Unlock/Lock mutex

 0.53 0.00 1.00 0.50 53% 46% Create mbox
 0.22 0.00 1.00 0.34 78% 78% Peek [empty] mbox
 1.84 1.00 2.00 0.26 84% 15% Put [first] mbox
 0.31 0.00 1.00 0.43 68% 68% Peek [1 msg] mbox
 2.00 2.00 2.00 0.00 100% 100% Put [second] mbox
 0.41 0.00 1.00 0.48 59% 59% Peek [2 msgs] mbox
 1.97 1.00 2.00 0.06 96% 3% Get [first] mbox
 1.84 1.00 2.00 0.26 84% 15% Get [second] mbox
 1.59 1.00 2.00 0.48 59% 40% Tryput [first] mbox
 1.50 1.00 2.00 0.50 100% 50% Peek item [non-empty] mbox
 1.56 1.00 2.00 0.49 56% 43% Tryget [non-empty] mbox
 1.50 1.00 2.00 0.50 100% 50% Peek item [empty] mbox
 1.38 1.00 2.00 0.47 62% 62% Tryget [empty] mbox
 0.38 0.00 1.00 0.47 62% 62% Waiting to get mbox
 0.06 0.00 1.00 0.12 93% 93% Waiting to put mbox
 0.41 0.00 1.00 0.48 59% 59% Delete mbox
 5.09 5.00 6.00 0.17 90% 90% Put/Get mbox

 0.19 0.00 1.00 0.30 81% 81% Init semaphore
 1.38 1.00 2.00 0.47 62% 62% Post [0] semaphore
 1.56 1.00 2.00 0.49 56% 43% Wait [1] semaphore
 1.41 1.00 2.00 0.48 59% 59% Trywait [0] semaphore
 1.34 1.00 2.00 0.45 65% 65% Trywait [1] semaphore
 0.31 0.00 1.00 0.43 68% 68% Peek semaphore
 0.28 0.00 1.00 0.40 71% 71% Destroy semaphore
 4.94 4.00 5.00 0.12 93% 6% Post/Wait semaphore

 0.56 0.00 1.00 0.49 56% 43% Create counter
 0.41 0.00 1.00 0.48 59% 59% Get counter value
 0.19 0.00 1.00 0.30 81% 81% Set counter value
 1.75 1.00 2.00 0.38 75% 25% Tick counter
 0.28 0.00 1.00 0.40 71% 71% Delete counter

 0.31 0.00 1.00 0.43 68% 68% Init flag
 1.53 1.00 2.00 0.50 53% 46% Destroy flag
 1.31 1.00 2.00 0.43 68% 68% Mask bits in flag
 1.50 1.00 2.00 0.50 100% 50% Set bits in flag [no waiters]
 2.06 2.00 3.00 0.12 93% 93% Wait for flag [AND]
 2.09 2.00 3.00 0.17 90% 90% Wait for flag [OR]
 2.06 2.00 3.00 0.12 93% 93% Wait for flag [AND/CLR]
 2.03 2.00 3.00 0.06 96% 96% Wait for flag [OR/CLR]
 0.22 0.00 1.00 0.34 78% 78% Peek on flag

 1.00 1.00 1.00 0.00 100% 100% Create alarm
 2.13 2.00 3.00 0.22 87% 87% Initialize alarm

3052

STM32L4R9-DISCO Platform HAL

 1.31 1.00 2.00 0.43 68% 68% Disable alarm
 2.25 2.00 3.00 0.38 75% 75% Enable alarm
 1.47 1.00 2.00 0.50 53% 53% Delete alarm
 1.91 1.00 2.00 0.17 90% 9% Tick counter [1 alarm]
 9.00 9.00 9.00 0.00 100% 100% Tick counter [many alarms]
 2.84 2.00 3.00 0.26 84% 15% Tick & fire counter [1 alarm]
 46.97 46.00 47.00 0.06 96% 3% Tick & fire counters [>1 together]
 10.25 10.00 11.00 0.38 75% 75% Tick & fire counters [>1 separately]
 6.00 6.00 6.00 0.00 100% 100% Alarm latency [0 threads]
 6.00 6.00 6.00 0.00 100% 100% Alarm latency [2 threads]
 5.77 5.00 6.00 0.36 76% 23% Alarm latency [many threads]
 10.01 10.00 11.00 0.01 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 2.74 2.00 3.00 0.00 Clock DSR latency

 175 132 220 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 704 size 1536
 All done : Idlethread stack used 172 size 1280

Timing complete - 29740 ms total

PASS:<Basic timing OK>
EXIT:<done>

3053

STM32L4R9-DISCO Platform HAL

Name
Test Programs — Details

Test Programs
The STM32L4R9-DISCO platform HAL contains some test programs which allow various aspects of the board to be tested.

ADC Test
The adc1 program tests the ADC driver for the STM32. The test reports the values of the Vrefint, Vbat and Vts inputs that
are sourced on-chip. The option CYGBLD_HAL_CORTEXM_STM32L4R9_DISCO_TESTS_ADC must be enabled to run
this test since it needs human interaction.

3054

STM32L4R9-DISCO Platform HAL

Name
BootUp Integration — Detail

BootUp
The BootUp support for the STM32L4R9-DISCO target is primarily implemented in the stm32l4r9_disco_support.c
file. The majority of the functions provided by that source file are only included when the CYGPKG_BOOTUP package is being
used to construct the actual BootUp ROM loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once its implementation has been tested and validated,
the binary will only need to be installed onto a device once. Its only purpose is to allow the safe updating and startup of the
main application. If the BootUp code ever needs to be replaced then it is a “factory” operation, for example using JTAG to
re-program the on-chip flash.

This platform specific documentation should be read in conjunction with the generic BootUp package.

The BootUp package provides a basic but fully functional implementation for the platform. This has been tested to ensure
that the underlying mechanism is sound. It is envisaged that the developer will customize and further extend the platform side
support to meet their specific application update requirements.

BootUp loaded applications

Applications started via the BootUp loader, since they cannot include the CYGPKG_BOOTUP package themselves, may need
access to some related configuration state. The platform is responsible for providing such “common” information. For example,
the CDL option CYGIMP_BOOTUP_RESERVED specifies the amount of on-chip flash set aside for BootUp. Applications can
then ensure that they do not interfere with the BootUp loader if using the remaining on-chip flash for their own purposes.

Warning

Care must be taken to ensure that the target application configuration matches the BootUp configuration, since it
is normally expected that the applications to be loaded will be independent of the initial BootUp build environ-
ment. This includes the fundamental on-chip flash space set aside for the BootUp ROM loader code (CYGIM-
P_BOOTUP_RESERVED). It is expected that such values, for a particular platform instance, will be fixed at a
suitable point during development, and definitely before products are shipped. It is the responsibility of the de-
veloper to ensure a consistent configuration between the BootUp ROM loader and any applications that may be
installed/started by that BootUp code.

On-Chip ROMAPP applications

BootUp provides an alternative mechanism that supports the safe update of on-chip flash resident (CYG_HAL_START-
UP_ROMAPP) applications.

Updates using this mechanism are initiated and directed solely by the application itself. The application is responsible for
locating, acquiring and verifying a new update, and placing it into Non-Volatile Memory (NVM) storage. If BootUp detects
a verified update in NVM, it installs the update into the on-chip flash, overwriting and replacing the existing application. The
updated application is then executed.

The example implementation uses a simple scheme that checks a fixed-format contiguous structure near the start of the
binary application image file. Other than the fields used to identify the structure, the BootUp code does not interpret the
hal_stm32l4r9_disco_bootup_structure_t in any other way.

Depending on how the alternative (pending update) application is downloaded and installed in the NVM, it may be more
relevant to have the tail marker at the very end of the binary image. The developer may wish to update the build/release
process so that the actual binary length is held in the application description structure, since that could avoid the overhead
of unnecessary flash reads and writes when processing updates. Similarly, instead of a simple binary number being used to
differentiate application images, the choice may be made to use the 64-bit UTC timestamp the application was created, or a
human-readable string as the unique identification for a release. It is the responsibility of the build/release engineer to ensure
individual releases are uniquely identifiable.

3055

STM32L4R9-DISCO Platform HAL

It is critical that the main application, when storing a pending update, stores the tail marker as the last bytes written. It is the
responsibility of the main application to verify the data written, prior to placing the tail marker. This ensures that a partial
image is not treated as a valid update. For example the sequence undertaken by the main application would be:

Table 310.1. Pending update sequence

Operation Details

Invalidate “previous”
alternative image

At a minimum ensure an invalid signature tail marker is written. Erasing the flash is normally
required anyway, and would invalidate any previous image.

Receive update appli-
cation image and write
to alternative image lo-
cation

NOT writing the tail marker. The code that stores the application should leave a “hole” where
the tail marker resides to ensure a partial image is not incorrectly treated as valid

Verify downloaded
contents

e.g. CRC or binary comparison. Normally this would be done as individual application chunks are
downloaded and written to the alternative storage

Write tail marker This is the very last operation after validating that the alternative image has been stored correctly.
If an error has occured during the download then not-writing the tail ensures that the BootUp
loader will not interpret the data written as a pending update

Force system RESET
to start update

e.g. using the HAL_PLATFORM_RESET macro

The BootUp loader code will only READ from the alternative image location. This ensures that if an in-progress update is
interrupted (e.g. power-loss) then when the system restarts the BootUp code will restart the application update as required.

If the BootUp platform implementation for validating the alternative image is extended to include a CRC, or similar “slow”
processing, it may be worth considering whether the main application on startup will always invalidate the tail marker after
an update to avoid subsequent system resets having to re-validate the alternative image prior to discovering that it is the same
as the current main application.

Note

We cannot have the SIGNATURE support purely conditional on the BOOTUP support; since non-BOOTUP
applications need to be built leaving the space. For the moment this is only enforced for ROMAPP applications,
since that is all that the simple BootUp update support implements.

Building BootUp

The ROM startup type is chosen for BootUp so that the loader uses the on-chip SRAM for its workspace.

Example eCos configuration templates for BootUp are provided in the misc directory of the release. The bootup_ROM.ecm
configuration file can be used to configure the BootUp loader.

Building a BootUp ROM image is most conveniently done at the command line. The steps needed to rebuild the ROM version
of BootUp on linux are:

$ mkdir bootup_rom
$ cd bootup_rom
$ ecosconfig new stm32l4r9_disco minimal
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm32l4r9_disco/current/misc/bootup_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

The steps needed to rebuild the bundle based ROM version of BootUp on Windows within the Shell Environment are:

C:\Users\demo> mkdir bootup_rom
C:\Users\demo> cd bootup_rom
C:\Users\demo\bootup_rom> ecosconfig new stm32l4r9_disco minimal
[… ecosconfig output elided …]
C:\Users\demo\bootup_rom> ecosconfig import %ECOS_REPOSITORY%/hal/cortexm/stm32/stm32l4r9_disco/current/misc/bootup_ROM.ecm
C:\Users\demo\bootup_rom> ecosconfig resolve
C:\Users\demo\bootup_rom> ecosconfig tree

3056

STM32L4R9-DISCO Platform HAL

C:\Users\demo\bootup_rom> make

The resulting install/bin/bootup.bin binary can then be programmed into the on-chip flash from address
0x08000000.

It is expected that the BootUp binary is installed onto the STM32L4S5VI on-chip flash either via JTAG or by utilising the on-
chip BootROM USB based DFU process. This is a factory or in-field process requiring specific equipment/host-software.

Once BootUp is installed it is not normally expected to require updating. Its purpose is to bootstrap the main application, and
provide a standard mechanism for installing the main application. The update mechanism does NOT provide a method for
updating the BootUp loader itself. If in-field updates of the BootUp binary are necessary, this could be achieved via the STM32
on-chip BootROM USB based DFU process.

Altinit Test
This application is used to test BootUp support for updating a ROMAPP application from the QSPI flash. Since there is no
Ethernet available on the board, this test uses the application already programmed in to the on-chip flash.

The test expects a ROMAPP application to be stored in the on-chip flash. It erases the alternate application in the QSPI flash,
copies the ROMAPP application from on-chip flash into QSPI, and then invalidates the signature of the application in on-
chip flash. When BootUp starts it will discover that the main application is invalid, copy the alternate application from the
QSPI and then run it.

An example eCos configuration template for building the altinit application is provided in the misc directory. The steps needed
to build this application are as follows:

$ mkdir altinit
$ cd altinit
$ ecosconfig new stm32l4r9_disco kernel
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/stm32/stm32l4r9_disco/current/misc/altinit_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make
$ make -C hal/cortexm/stm32/stm32l4r9_disco/current tests

Following this, the altinit executable can be found in install/tests/hal/cortexm/stm32/stm32l4r9_dis-
co/current/tests/altinit. Running this will produce the following output:

INFO:<STM32L4_BOOTUP_ALTERNATIVE_OFFSET 00008000>
INFO:<STM32L4_BOOTUP_ALTERNATIVE_MAXLEN 000F8000>
INFO:<CYGNUM_BOOTUP_SIGNATURE_OFFSET 8>
INFO:<CYGNUM_BOOTUP_SIGNATURE_LENGTH 16>
INFO:<Erasing MX25L128 area for alternative image>
INFO:<Copy main image to alt>
INFO:<Set signature in alt image>
INFO:<Invalidate main image>
INFO:<Update done>

The erase and copy operations here may take a some time, do not reset the board until the program is finished.

3057

Chapter 311. STM32L4R9-EVAL Platform
HAL
This documentation is still under development.

3058

Chapter 312. NXP i.MX RT10XX Variant
HAL

3059

NXP i.MX RT10XX Variant HAL

Name
CYGPKG_HAL_CORTEXM_IMX — eCos Support for the NXP i.MX RT10XX Microprocessor Family

Description
The NXP i.MX RT10XX series of Cortex-M microcontrollers is supported by eCos with an eCos processor variant (VAR)
HAL and a number of device drivers supporting some of the on-chip peripherals. These include device drivers for the on-
chip flash, serial, I²C, SPI, Ethernet, CAN, PWM and watchdog devices. In addition it provides common functionality and
definitions that RT10XX based platform ports may require, as well as definitions useful to application developers. Throughout
this document this processor family will just be referred to as i.MX or IMX, without any numerical designations.

This documentation covers the i.MX functionality provided but should be read in conjunction with the specific HAL docu-
mentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here, and
may also describe differences that override or supersede what the IMX variant HAL provides. The areas that are specific to
platform HALs and not the IMX variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• Pin multiplexing and GPIO setup

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

• LED/LCD control

3060

NXP i.MX RT10XX Variant HAL

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support
The IMX family contains many on-chip peripherals.

On-chip memory

The IMX parts include on-chip SRAM (OCRAM). The SRAM can vary in size from as little as 4KiB to 1MiB. Support is also
available for external FLASH and SDRAM.

Typically, an eCos platform HAL port will expect a standalone application image to be programmed into boot memory, and
the board would boot this image from reset.

Note

The i.MX RT ROM bootloader will only load and execute SRAM (OCRAM) or memory-mapped flash applica-
tions. If your final application is linked for SRAM then creating a bootable image as described in the relevant
platform specific documentation is sufficient. For applications that are linked to execute from external memory
(e.g. SDRAM) then the first stage of booting an application will be via execution of a second-level boot loader
application started by the ROM bootloader. For eCos this second-level is normally BootUp (CYGPKG_BOOTUP)
or RedBoot (CYGPKG_REDBOOT), though it can just as well be a custom application if required.

The i.MX RT ROM bootloader will parse a table describing the initial I/O setup and memory destination for the application
image (copying the image if required). This table is known as the DCD (Device Configuration Data).

For embedded development it is normally expected that H/W debugging (JTAG/SWD) via a suitable adapter is used to aid
application development of standalone applications. For standalone applications (no dependency on a ROM monitor) there is
no application binary difference whether the application is started from the i.MX RT ROM bootloader process or loaded via
a H/W debugger interface; with the exception that the H/W debugger may need to perform the same actions as the DCD table
prior to loading an executable to ensure the MCU setup is the same as execution via the ROM bootloader.

An alternative to H/W debugging using an external adapter is for RedBoot to be installed as the application started by the IMX
boot process. RedBoot provides GDB stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger using serial interfaces or other debug channels. If RedBoot is present it may also be used
to manage the external flash memory. For RedBoot based production purposes, applications are programmed into external
FLASH and may be self-booting. Applications may also be loaded into memory using a RedBoot startup script. RedBoot has
a memory and performance impact on applications if they are configured to use RedBoot provided functionality. The use of
the simple BootUp world instead of RedBoot means that there is no performance or memory impact on the final standalone
application started by the boot process.

Cache Handling

The RT10XX variants contain an instruction and data cache controller defined as part of the Cortex-M architectural specifica-
tion. Support for this controller is supplied by the architecture HAL.

The variant HAL provides a mechanism for setting aside a, configurable size, block of OCRAM as uncached for device driver
and DMA usage.

OCOTP (On-Chip One-Time-Programmable) fuses

The HAL provides for basic OCOTP operations. Details are supplied later.

Serial I/O

The IMX variant HAL supports basic polled HAL diagnostic I/O over any of the on-chip serial devices. There is also a fully
interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver consists of

3061

NXP i.MX RT10XX Variant HAL

an eCos package: CYGPKG_IO_SERIAL_NXP_LPUART which provides support for the IMX on-chip serial devices. Using
the HAL diagnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication with
GDB. If a device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB
communication using the HAL I/O support. An alternative serial port should be used instead.

The HAL defines CDL interfaces, CYGINT_HAL_CORTEXM_IMX_UART1 to CYGINT_HAL_CORTEXM_IMX_UART8 for
each of the available UARTs. The platform HAL CDL should contain an implements directive for each such UART that is
available for use on the board. This will enable use of the UART for diagnostic use.

Interrupts

The IMX HAL relies on the architectural HAL to provide support for the interrupts directly routed to the NVIC. The cyg/
hal/var_intr.h header defines the vector mapping for these.

Pin Multiplexing and GPIO

The variant HAL provides support for packaging the pin, GPIO and daisy chain configurations of an external line into 32-bit
descriptors that can then be used with macros to configure the pin and set and read its value. Details are supplied later.

Ethernet

eCos includes a device driver for the on-chip ENET Ethernet controllers. This is located in the package CYGPKG_DE-
VS_ETH_FREESCALE_ENET (“Freescale ENET ethernet driver”).

This variant HAL provides some common support for ENET interfaces via the initialisation helper function CYGHWR_FREES-
CALE_ENET_PLATFORM_INIT(base) and the IEEE MAC acquisition function CYGHWR_FREESCALE_ENET_PLAT-
FORM_MAC(base, p_enaddr).

Note

The CYGHWR_FREESCALE_ENET_PLATFORM_MAC() will attempt to use the OCOTP fuses set aside for hold-
ing MAC addresses, but from the factory these are unset. In which case for the first ENET controller the code will
fall back to providing a MAC address based on the OCOTP unique ID field.

It is the responsibility of the developer to implement any factory production steps required to fuse a unique MAC
address into the relevant OCOTP locations as required.

CAN

eCos includes a device driver for the on-chip FlexCAN controllers. This is located in the package CYGPKG_DEVS_CAN_NX-
P_FLEXCAN (“NXP FlexCAN driver”).

Watchdog

eCos includes device drivers for the on-chip watchdog in the IMX family. This is located in the package CYGPKG_DE-
VICES_WALLCLOCK_NXP ("NXP wallclock driver").

Clock Control
The platform HAL must provide the input oscillator frequency (CYGHWR_HAL_CORTEXM_IMX_OSC_MAIN) in its CDL file.
Under normal circumstances this is set to 24MHz.

The actual values of the clock frequencies, is stored in a global structure, hal_imx_clock, which contains the PLL frequen-
cies, PFDs and root clocks. The clock supplied to the SysTick timer is also assigned to hal_cortexm_systick_clock.
These variables are set by examining the actual hardware register so they reflect settings made by any bootloader or JTAG
adaptor.

Note that when changing or configuring any of these clock settings, you should consult the relevant processor datasheet as
there may be both upper and lower constraints on the frequencies of some clock signals, including intermediate clocks. There

3062

NXP i.MX RT10XX Variant HAL

are also some clocks where, while there is no strict constraint, clock stability is improved if values are chosen wisely. Finally,
be aware that increasing clock speeds using this package may have an effect on platform specific properties, such as memory
timings which may have to be adjusted accordingly.

3063

NXP i.MX RT10XX Variant HAL

Name
Hardware Configuration Support on IMX Processors — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_uint32 desc = CYGHWR_HAL_IMX_PAD(pad, mode);

cyg_uint32 desc = CYGHWR_HAL_IMX_SNVS_PAD(pad, mode);

CYGHWR_HAL_IMX_PAD_SET (desc);

cyg_uint32 desc = CYGHWR_HAL_IMX_DAISY(reg, value);

CYGHWR_HAL_IMX_DAISY_SET (desc);

cyg_uint32 desc = CYGHWR_HAL_IMX_CLOCK_GATE(reg, gate);

CYGHWR_HAL_IMX_CLOCK_ENABLE (desc);

CYGHWR_HAL_IMX_CLOCK_DISABLE (desc);

cyg_uint32 desc = CYGHWR_HAL_IMX_GPIO(ctlr, pin, mode);

CYGHWR_HAL_IMX_GPIO_SET (desc);

CYGHWR_HAL_IMX_GPIO_OUT (desc, val);

CYGHWR_HAL_IMX_GPIO_IN (desc, val);

CYGHWR_HAL_IMX_GPIO_INTSTAT (desc, status);

CYGHWR_HAL_IMX_GPIO_INTMASK (desc, enable);

CYGHWR_HAL_IMX_GPIO_INTCLR (desc);

Description
The IMX HAL provides a number of macros to support the encoding of various hardware configuration options into a 32-bit
descriptor. This is useful to drivers and other packages that need to configure the hardware.

PAD Multiplexing

Many of the IO pads on the chip can be connected to a variety of different devices and have a variety of properties that need to
be configured. A standard pad descriptor is created by the CYGHWR_HAL_IMX_PAD() macro. For the SNVS pads connected
to GPIO5 the CYGHWR_HAL_IMX_SNVS_PAD() is used instead. The pad argument defines the pad to be configured, and
follows the hardware naming convention, for example AD_B0(12) or SD_B1(3). The mode argument is the terminal part
of a CYGHWR_HAL_IMX_PAD_MODE_XXXX macro; this may be one supplied in the HAL, or one constructed by the driver
or application. This macro is defined as a combination of the CYGHWR_HAL_IMX_PAD_MODE_ definitions in cyg/hal/
var_io.h, which correspond to the definitions in the hardware pad MUX and CTL registers.

The macro CYGHWR_HAL_IMX_PAD_SET() is used to configure a pad according to the descriptor.

The following example shows how the LPUART pads are configured.

#define CYGHWR_HAL_IMX_PAD_MODE_LPUART_PAD(__alt) \
 CYGHWR_HAL_IMX_PAD_MODE_MUX(__alt) | \

3064

NXP i.MX RT10XX Variant HAL

 CYGHWR_HAL_IMX_PAD_MODE_PUE | \
 CYGHWR_HAL_IMX_PAD_MODE_PKE | \
 CYGHWR_HAL_IMX_PAD_MODE_PUS_47K_PU | \
 CYGHWR_HAL_IMX_PAD_MODE_DSE(6) | \
 CYGHWR_HAL_IMX_PAD_MODE_SPEED_MED2

#define CYGHWR_HAL_IMX_LPUART1_TX CYGHWR_HAL_IMX_PAD(AD_B0(12), LPUART_PAD(2))
#define CYGHWR_HAL_IMX_LPUART1_RX CYGHWR_HAL_IMX_PAD(AD_B0(13), LPUART_PAD(2))

PAD Daisy Chaining

Some device IO lines can connect to multiple pads, the daisy chain registers select which pad is to be used for the device. A
daisy chain descriptor is created by the CYGHWR_HAL_IMX_DAISY macro. The reg argument selects which daisy chain
device line is to be programmed, and the val argument defines the pad selection. Both of these arguments are fragments of
macros defined in cyg/hal/var_io.h. Only registers and values currently used are defined there, new ones can be added
there or defined in the driver or application.

The CYGHWR_HAL_IMX_DAISY_SET macro is called to program the configuration from a descriptor into the hardware.

The following example shows some daisy chain descriptor definitions.

define CYGHWR_HAL_NXP_LPUART3_TXD_DAISY CYGHWR_HAL_IMX_DAISY(LPUART3_TX, AD_B1_06_ALT2)

define CYGHWR_HAL_NXP_LPUART3_RXD_DAISY CYGHWR_HAL_IMX_DAISY(LPUART3_RX, AD_B1_07_ALT2)

define CYGHWR_HAL_NXP_LPUART3_CTS_DAISY CYGHWR_HAL_IMX_DAISY(LPUART3_CTS_B, AD_B1_04_ALT2)
define CYGHWR_HAL_NXP_LPUART3_RTS_DAISY CYGHWR_HAL_IMX_DAISY_NONE

Clock Gating Control

Most device clocks are controlled by a gate that needs to be switched on or off. The HAL provides macros which may be
used to enable or disable peripheral clocks. Effectively this indicates whether the peripheral is powered on (enabled) or pow-
ered down (disabled), and so may be used to ensure unused peripherals are turned off to save power. The macro CYGH-
WR_HAL_IMX_CLOCK_GATE() defines a clock gate descriptor. The reg argument gives the CCGR register to be used and
the gate argument selects the clock gate bit in that register. Clock gate descriptors are defined in cyg/hal/var_io.h and
new values will be added there as needed.

The macros CYGHWR_HAL_IMX_CLOCK_ENABLE() and CYGHWR_HAL_IMX_CLOCK_DISABLE() enable and disable
the clock described by the descriptor. At present clocks are either fully on or fully off, the option to switch clocks off in WAIT
mode is not implemented.

It is important to remember that before a peripheral can be used, it must be enabled. It is safe to re-enable a peripheral that is
already enabled, although usually a device driver will only do so once in its initialization. eCos will automatically initialize
some peripheral blocks where it needs to use the associated peripherals, and in eCos-supplied device drivers which are included
in the eCos configuration. However this should not be relied on - it is always safest to enable the peripheral clocks anyway
just in case.

GPIO

A descriptor is created by the CYGHWR_HAL_IMX_GPIO() macro. The ctlr argument selects the GPIO controller while
the pin argument selects the GPIO pin in the controller. The mode argument configures the pin within the GPIO controller.

For basic I/O the supplied mode is either IN or OUT. For input pins an interrupt configuration mode can us used instead (with
IN implied). At present the options LOW_LEVEL, HIGH_LEVEL, RISING_EDGE, FALLING_EDGE and BOTH_EDGES are
available to define which input transitions/states will generate an interrupt event.

For example, the descriptor for GPIO output control of GPIO1 pin 9 could be declared as follows:

#define OUTPUT_EXAMPLE CYGHWR_HAL_IMX_GPIO(1, 9, OUT)

3065

NXP i.MX RT10XX Variant HAL

Correspondingly, a descriptor for polled input of GPIO5 pin 0 can simply be declared using IN for the mode field:

#define INPUT_EXAMPLE CYGHWR_HAL_IMX_GPIO(5, 0, IN)

For polled or interrupt driven input the relevant interrupt detection can be specifiued as the mode field. e,g:

#define INPUT_EXAMPLE CYGHWR_HAL_IMX_GPIO(5, 0, BOTH_EDGES)

In addition to GPIO configuration, the matching pad will need to be configured using a PAD descriptor as detailed above in
PAD Multiplexing.

Prior to a pin being accessed for GPIO then the pin and its corresponding pad will need to be configured at run-time. With
appropriate descriptor values defined this is done via the SET calls. For example, using the manifests from above:

 // One-time initialisation of output pin:
 CYGHWR_HAL_IMX_PAD_SET(OUTPUT_PAD);
 CYGHWR_HAL_IMX_GPIO_SET(OUTPUT_EXAMPLE);

 // One-time initialisation of input pin:
 CYGHWR_HAL_IMX_PAD_SET(INPUT_PAD)
 CYGHWR_HAL_IMX_GPIO_SET(INPUT_EXAMPLE);

Subsequent to the setting of the I/O configuration the GPIO pin can then be accessed as configured.

If a GPIO pin has been configured as an output then its value may be set using CYGHWR_HAL_IMX_GPIO_OUT(). For
example:

 CYGHWR_HAL_IMX_GPIO_OUT(OUTPUT_EXAMPLE, 0); // set LOW
 some_app_processing();
 CYGHWR_HAL_IMX_GPIO_OUT(OUTPUT_EXAMPLE, 1); // set HIGH

Similarly the current value of an input pin can be read using CYGHWR_HAL_IMX_GPIO_IN(). For example:

 int bstat;
 CYGHWR_HAL_IMX_GPIO_IN(INPUT_EXAMPLE, &bstat);

Note

Normally the variant HAL will manage the masking and acknowledgment of interrupts via the standard kernel
interrupt support API, and so the application level code does not normally need to access the low-level INTMASK
and INTCLR functions directly since they will be called by the kernel as appropriate.

For completeness the low-level helpers exposed to the standard interrupt support are documented here.

The CYGHWR_HAL_IMX_GPIO_INTMASK() parameter enable controls the masking/unmasking of the interrupt associ-
ated with the pin descriptor. A non-zero value will enable the source, with 0 disabling the source.

If required, the current active “interrupt asserted” state of a pin can be interrogated using CYGHWR_HAL_IMX_GPIO_IN-
TSTAT().

The CYGHWR_HAL_IMX_GPIO_INTCLR function can be used to acknowledge an active interrupt.

Since most of the individual GPIO pin interrupt sources are multiplexed through the Cortex-M NVIC the variant HAL provides
support for demultiplexing the combined GPIO interrupts to individual logical vectors. The CDL option CYGSEM_HAL_COR-
TEXM_IMX_GPIO_INT_DEMUX controls whether the demux feature is implemented. It is enabled by default when the CYG-

3066

NXP i.MX RT10XX Variant HAL

PKG_KERNEL is configured. This feature avoids application code having to manage their own demux support when interrupt
support is required for multiple pins on a specific GPIO controller.

For example, the physical GPIO2 pin 5 is actually multiplexed via the hardware CYGNUM_HAL_INTERRUPT_GPIO2_COM-
BO_0_15 interrupt vector. If the HAL demux support is enabled then that specific pin source can be supported individually
via the CYGNUM_HAL_INTERRUPT_GPIO2_INT5 logical vector manifest, with the other 15 sources multiplexed onto the
underlying NVIC interrupt also available via their own logical vector numbers.

3067

NXP i.MX RT10XX Variant HAL

Name
OCOTP Support on IMX Processors — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_bool success = cyg_imx_ocotp_timing();

cyg_bool success = cyg_imx_ocotp_read(addr, p_value);

cyg_bool success = cyg_imx_ocotp_write(addr, value, key);

cyg_imx_ocotp_reload();

Description
The IMX HAL provides a number of functions to support interaction with the OCOTP (On-Chip One-Time-Programmable)
fuses.

OCOTP Initialisation

Prior to accessing the OCOTP the function cyg_imx_ocotp_timing() should be used to configure the required timing
setup. If the function returns false then an error has occurred and the OCOTP API should not be used.

OCOTP Reading

The addr is constructed using the CYGHWR_HAL_IMX_HW_OCOTP_ADDR(bank, word) macro to convert a bank# and
word# into a register offset.

The passed p_value parameter is then filled with the OCOTP fuse value corresponding to the passed addr.

OCOTP Writing

Note

Due to the fact that OCOTP updates can affect how the CPU operates from boot, the writing of fuses (setting
from 0 to 1) is disabled by default.

If OCOTP write support is required then the CDL option CYGHWR_HAL_CORTEXM_IMX_OCOTP_WRITE
should be explicitly enabled.

When the OCOTP write support is configured then the function cyg_imx_ocotp_write() can be used to set a specific
value for the specified fuse location. The key parameter is an extra safety measure since the write will only be performed
if key is CYGHWR_HAL_IMX_HW_OCOTP_WRITE_KEY. This is to minimise the chance for errant execution of the write
function due to some application flaw resulting in erroneous OCOTP updates. The source code is constructed so that the 32-
bit key value does not appear in the binary. Application users of the OCOTP write support should ideally implement similar
functionality. e.g.

static const cyg_uint32 keyth = (0xDEAD0000 | (CYGHWR_HAL_IMX_HW_OCOTP_WRITE_KEY >> 16));
static const cyg_uint32 keybh = (0xC0DE0000 | (CYGHWR_HAL_IMX_HW_OCOTP_WRITE_KEY & 0xFFFF));

cyg_uint32 bitshigh;
cyg_uint32 bitslow;

HAL_READ_UINT32(&keyth, bitshigh);
HAL_READ_UINT32(&keybh, bitslow);

cyg_uint32 writekey = (((bitshigh & 0xFFFF) << 16) | (bitslow & 0xFFFF));

3068

NXP i.MX RT10XX Variant HAL

if (cyg_imx_ocotp_write(CYGHWR_HAL_IMX_HW_OCOTP_ADDR(bank, word), bitmask, writekey)) {
 // success // OCOTP updated
} else {
 // failure
}

After updating the fuses the cyg_imx_ocotp_reload() should be called to reload the shadow registers. This ensures
other code, that may directly access the shadow state, will see the updated fuse state.

3069

NXP i.MX RT10XX Variant HAL

Name
BootUp second level boot loader — Bootstrap

BootUp

BootUp (CYGPKG_BOOTUP) is a lightweight second-level boot loader package, which can be extended with VAR and PLF
specific features as required (e.g. firmware updates, secure boot, etc.).

The BootUp support for the i.MX RT targets is primarily implemented in the imx_support.c file. The functions are nor-
mally only included when the CYGPKG_BOOTUP package is being used to construct the actual BootUp loader binary.

The BootUp code is designed to be very simple, and it is envisaged that once an implementation has been defined the binary
will only need to be installed onto a device once.

Alternative

An alternative to using BootUp to start applications is to use a SRAM (OCRAM) based RedBoot to manage the flash space,
and to use the RedBoot features to load and start the main application.

The benefit of RedBoot is the ability for command-line interaction with the management of the stored application. The down-
side of RedBoot is the code+data space overhead and potential for run-time performance costs when using (via the virtual
vector interface) RedBoot features or debugging an application via RedBoot. The BootUp package offers a light weight so-
lution without impacting the memory space or performance of the final application, and is better suited to a H/W debugger
development environment.

Boot details

Currently, its only purpose is to allow the startup of the main application when linked for external memory (e.g. SDRAM) since
the i.MX RT ROM Bootloader will only load and execute applications to SRAM (OCRAM). If an SRAM based application
is to be booted then the BootUp intermediate (second-level) code is not needed since the CPU can directly load and start the
SRAM application from the bootable NVM.

This platform specific documentation should be read in conjunction with the generic BootUp package documentation.

The BootUp package provides a basic but fully functional implementation for the platform. It is envisaged that the developer
will customize and further extend the platform side support to meet their specific application identification and update require-
ments.

The BootUp binary iself can be installed on any i.MX RT bootable media, and is not restricted to being placed into FlexSPI flash.

On execution BootUp will copy the configured final application from its Non-Volatile-Memory (NVM) location to its desti-
nation address and start the application. The configuration option CYGIMP_BOOTUP_IMX_SOURCE selects where the sec-
ond-level BootUp code will look for the final application image. The available options depend on the configured target CPU,
and whether the variant/platform specific BootUp has support for the specific storage medium.

The following diagrams give an overview of the first-level (on-chip) ROM Bootloader and second-level (SRAM) boot sequence.
Blocks shown in green indicate running code. The blue arrows indicate a memory copy operation. The red arrows indicate
a switch in execution. The BootUp application image stored in the bootable NVM is expected to be a valid image prefixed
with FCFB, BootData, DCD and IVT information as required for the on-chip ROM Bootloader. This example is for the final
application binary to be executed from SDRAM.

3070

NXP i.MX RT10XX Variant HAL

Figure 312.1. On-chip ROM Bootloader executes

Figure 312.2. On-chip ROM Bootloader copies second-level boot code from NVM to on-chip SRAM

3071

NXP i.MX RT10XX Variant HAL

Figure 312.3. SRAM loaded second-level boot code is executed

Figure 312.4. Final application is located in NVM

3072

NXP i.MX RT10XX Variant HAL

Figure 312.5. Second-level boot copies application from NVM to SDRAM

Figure 312.6. Application is started

The example above shows an application with the platform startup type JSDRAM, but the application could also be the spe-
cial-case RBRAM startup type for a RAM based RedBoot image, or some other platform specific SDRAM or other exter-
nal-memory startup type as required.

Building BootUp

Building a BootUp loader image is most conveniently done at the command line. The steps needed to rebuild the SRAM version
of BootUp are:

$ mkdir bootup_SRAM
$ cd bootup_SRAM
$ ecosconfig new TARGET minimal
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/packages/hal/cortexm/imx/var/current/misc/bootup_SRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

3073

NXP i.MX RT10XX Variant HAL

Where TARGET is replaced with the required i.MX target platform name, e.g. mimxrt1064_evk, mimxrt1050_evk, etc.

The resulting install/bin/bootup.bin binary can then be packaged into a bootable image (see platform specific doc-
umentation), with that bootable image subsequently programmed into a suitable non-volatile memory as supported by the
i.MX RT on-chip ROM Bootloader. To be clear, the BootUp binary itself needs to be wrapped with the descriptors required
by the i.MX RT ROM Bootloader but the binary started by BootUp is just the unmodified final application binary.

The example bootup_SRAM.ecm is configured to expect to find the application stored in the selected FlexSPI flash from
the address offset CYGNUM_BOOTUP_IMX_SOURCE_OFFSET.

The option CYGIMP_BOOTUP_IMX_SOURCE selects the NVM location used by BootUp. Currently this is limited to the
FlexSPI flash interface(s), and will default to the controller instance used by the ROM Bootloader to match the device where
the second-level boot loader is stored.

For convenience, prebuilt wrapped BootUp images named qspi_bootup.bin are provided with eCosPro releases in the
loaders/target subdirectory of your eCosPro installation alongside the unwrapped BootUp images as well as various Red-
Boot images.

Application Signature

The BootUp loader will only copy and start execution of binaries with a suitable “signature” block. For the i.MX targets
the location of the descriptor block is fixed at the offset of 8-bytes within the binary image (CYGNUM_BOOTUP_SIGNA-
TURE_OFFSET).

The binary image descriptor provides “magic” identifier values used to detect a complete signature block, and the descriptor
holds the necessary information required by BootUp. e.g. a length field specifying the number of bytes in the binary image.

If the binary image at offset CYGNUM_BOOTUP_IMX_SOURCE_OFFSET is not valid then BootUp will enter the
hal_imx_badapp() function. The VAR HAL provides a default implementation which is a simple infinite loop, but the
weak VAR HAL definition can be overridden by a PLF specific implementation if required.

3074

Chapter 313. NXP MIMXRT1xxx-EVK
Platform HAL

3075

NXP MIMXRT1xxx-EVK Platform HAL

Name
CYGPKG_HAL_CORTEXM_MIMXRT1XXX_EVK — eCos Support for the IMXRT1050-EVKB and MIMXRT1064-EVK
boards

Description
This document covers the configuration and usage of eCos on the NXP MIMXRT10XX-EVK evaluation kits. This includes
the RT1052 and RT1064 on which this support has been tested. Boards containing other devices in the RT10XX family should
be supportable with minimal effort.

For typical eCos development it is expected that programs will be downloaded and debugged via a hardware debugger (JTAG/
SWD) attached to either the standard ARM 20-pin JTAG connector or via the on-board CMSIS-DAP USB socket. Use of a
hardware debugging interface avoids the requirement for (and cost overheads of) a debug monitor application to be present
on the platform.

Note

As shipped the EVK boards are configured for H/W debugging via the onboard CMSIS-DAP interface. If the
standard ARM 20-pin 2.54mm IDC J21 connector is to be used the jumpers may need to be re-configured. For
example, the MIMXRT1064-EVK requires jumpers J47..J50 to be disconnected. The relevant NXP schematic
or board documentation should be referenced to correctly configure the target board if using an external H/W
debugger connected via J21.

The Startup section below gives an overview of the various STARTUP types that can be configured. The selected STARTUP
type defines where the final application binary will be linked to execute from, as well as control some run-time features of the
final application (e.g. standalone or dependant on a ROM monitor, etc.).

Supported Hardware
The variant HAL includes support for the on-chip serial devices which are documented in the variant HAL. LPUART1 is
connected to the CMSIS socket where it is available as a CDC/ACM interface. There is no support for hardware flow control
in this device. LPUART1 is configured as the default diagnostics console.

Device drivers provide support for the I²C interfaces, which are instantiated by the platform (PLF) HAL. These have been
tested using external I²C devices.

Device drivers provide support for the SPI interfaces, which are instantiated by the platform HAL. These have been tested
using external SPI devices.

Support is available for the FlexSPI controller(s) with attached QSPI device(s). In the case of the MIMXRT1064-EVK board
this support is provided for the SiP QSPI device as well as the external ISSI IS25WP064D QSPI device. For the IMXRT1050-
EVKB the FlexSPI support requires board modifications to use the on-board QSPI ISSI IS25WP064D device in place of the
default HyperFlash device.

Normally the first few blocks of the bootable QSPI NOR flash are set aside for a bootable application image (e.g. standalone
SRAM application, 2nd-level boot loader, or a (RBSRAM) RedBoot debug monitor image). The bootable application image
requires specific descriptor structures to be prefixed to allow the i.MX RT ROM Bootloader to start the application, as docu-
mented in the flashimg_rt10 section. When using RedBoot (either a directly booted RBSRAM build, or a RBRAM build
loaded via BootUp or a RBSRAM RedBoot), the last couple of blocks of the flash device are used to hold the RedBoot fconfig
and FIS information. The remaining blocks are free for use by application code. When not using RedBoot all of the flash
beyond the i.MX RT ROM Bootloader required (DCD+image) is available for application use.

Warning

The IMXRT1050-EVKB and MIMXRT1064-EVK boards ship with J1 configured to power the board via the
CMSIS-DAP debug connector. Unfortunately, depending on the host connection, that connection is insufficient
to power the USB and CAN tranceivers, and the Ethernet PHY, such that USB, CAN and Ethernet are unlikely
to operate correctly when the board is powered via that debug USB connection.

3076

NXP MIMXRT1xxx-EVK Platform HAL

It is important to power the board via an external PSU via J2, with the J1 pins 1-2 connected as appropriate if
CAN, USB or Ethernet are to be used.

Support for USB host and peripheral mode is provided by EHCI drivers. Host mass storage and CDC-ACM class drivers are
present. The peripheral port is configured by default to provide a CDC-ACM device.

Support for Ethernet and CAN (not CAN-FD) is provided by configuring the respective device drivers.

Note

The IMXRT1050-EVKB and MIMXRT1064-EVK boards seen to date do not have the CAN connector J11
populated. So a suitable connector will need to be soldered to provide access to the on-board CAN transceiver.

Tools
The board port is intended to work with GNU tools configured for an arm-eabi target. The original port was done using arm-
eabi-gcc version 7.3.0e, arm-eabi-gdb version 8.1, and binutils version 2.30.

flashimg_rt10

The i.MX RT ROM Bootloader will only bootstrap applications prefixed with headers describing the application to be started.
A suitable bootable image can be created using the flashimg_rt10 tool to prefix the eCos executable binary with the
required descriptors.

The tool will by default create an image suitable to be booted from an SDcard.

To create a QSPI boot image from a binary image the --qspi command-line option should be used:

$ flashimg_rt10 --qspi image.bin qspi_boot.bin

Note

Only binaries linked to execute from the On-Chip SRAM are supported as bootable applications.

Application Boot Location Examples
For the mimxrt1050_evk and mimxrt1064_evk targets the code executed at boot can be loaded from flash using the
ROM Bootloader FlexSPI NOR flash support. Refer to the NXP H/W board documentation and relevant i.MX RT Processor
Reference Manual for details on the available boot-from-reset configurations.

The following section just highlights where images are stored in the FlexSPI NOR for some, common, example startup con-
figurations.

Note

The following examples are not exhaustive. For example, a custom second-level bootloader can be used to start
an application. These are just common examples.

For FlexSPI configured boots the mimxrt1050_evk target only has the FlexSPI1 flash mapped from address 0x60000000.
However, the FlexSPI boot option for the mimxrt1064_evk can only boot from the FlexSPI2 (SiP) flash mapped from
address 0x70000000, but any second-level boot loader or application started has access to the external FlexSPI1 flash mapped
from 0x60000000.

If an application binary is linked for SDRAM execution then it needs to be loaded via a second-level boot loader. Only the
second-level bootloader (as started by the i.MX RT ROM Bootloader) needs to be created using the flashimg_rt10 tool.
The final application does not need to be converted. When using BootUp as the second-level boot loader the SDRAM appli-
cation stored in NVM will be a simple, raw, binary located at a fixed location. When using RedBoot as the second-level loader
the application image stored in the NVM will be the larger ELF image, with FIS controlling where the image is located.

3077

NXP MIMXRT1xxx-EVK Platform HAL

In the following figures BLUE is used to indicate an image at its storage location, with GREEN indicating an application at
its final execution location. For applications that can be loaded via a RedBoot debug session YELLOW is used.

Direct standalone application startup

If the final application loads and executes from On-Chip SRAM, or is itself a second-level boot loader executing from SRAM
then the suitable wrapped (QSPI bootable) image is placed from offset 0 of the respective bootable flash device.

The following figures highlight the RT1064 and RT1052 locations.

Figure 313.1. Standalone mimxrt1064_evk SRAM application

Figure 313.2. Standalone mimxrt1050_evk SRAM application

Since the RedBoot specific RBSRAM is just a variation of a SRAM application, for the figures above we can replace the SRAM
Application with a RBSRAM RedBoot QSPI bootable image. Examples of which are shown below.

3078

NXP MIMXRT1xxx-EVK Platform HAL

BootUp used to start application

For systems where a standalone, external-SDRAM, application is to be started at boot then the BootUp second-level boot
loader can be used.

Normally the final application would be a JSDRAM startup application as shown for the RT1064 and RT1050 platforms re-
spectively.

Figure 313.3. Standalone mimxrt1064_evk JSDRAM application

(1) address shown is the result of adding the default CYGNUM_BOOTUP_IMX_SOURCE_OFFSET offset onto the relevant
FlexSPI# flash base

(2) default CYGIMP_BOOTUP_IMX_SOURCE is FlexSPI2, but BootUp can use FlexSPI1 if required

Figure 313.4. Standalone mimxrt1050_evk JSDRAM application

3079

NXP MIMXRT1xxx-EVK Platform HAL

(3) address shown is the result of adding the default CYGNUM_BOOTUP_IMX_SOURCE_OFFSET offset onto the FlexSPI1
base address

(4) CYGIMP_BOOTUP_IMX_SOURCE is FlexSPI1

However, if a SDRAM based RedBoot is required (RBRAM startup) then BootUp can be used to load and start the SDRAM
RedBoot, which can then subsequently be used to load RAM startup applications that make use of RedBoot functionality via
the virtual vector support. The following figures highlight that the SDRAM configured RedBoot requires a second-level boot
loader to copy and start the RedBoot instance from SDRAM:

Figure 313.5. Standalone mimxrt1064_evk RBRAM application

(5) address shown is the result of adding the default CYGNUM_BOOTUP_IMX_SOURCE_OFFSET offset onto the relevant
FlexSPI# flash base

(6) default CYGIMP_BOOTUP_IMX_SOURCE is FlexSPI2, but BootUp can use FlexSPI1 if required

(7) default CYGMEM_REGION_redboot_SIZE offset into SDRAM defined in the “mlt_mimxrt1xxx_evk.h”
header with app loaded by RedBoot from FIS or via GDB stubs

3080

NXP MIMXRT1xxx-EVK Platform HAL

Figure 313.6. Standalone mimxrt1050_evk RBRAM application

(8) address shown is the result of adding the default CYGNUM_BOOTUP_IMX_SOURCE_OFFSET offset onto the FlexSPI1
flash base

(9) CYGIMP_BOOTUP_IMX_SOURCE is FlexSPI1

(10) default CYGMEM_REGION_redboot_SIZE offset into SDRAM defined in the “mlt_mimxrt1xxx_evk.h”
header with app loaded by RedBoot from FIS or via GDB stubs

RedBoot used to start application

When RedBoot is being used to load an application, the storage location of the ELF image held in flash is controlled by the
RedBoot FIS support. The following figure shows a SRAM based RedBoot setup, but the same FIS held ELF image is also
applicable to external-SDRAM (RBRAM) RedBoot instances.

Only the RT1064 platform is shown in the figures below, but as per the standalone SRAM examples above, for the RT1052
based target the bootable second-level loader image and stored application image will be held in the FlexSPI1 flash memory.

3081

NXP MIMXRT1xxx-EVK Platform HAL

Figure 313.7. mimxrt1064_evk SRAM RedBoot and RAM application

(11) address shown is the result of adding the default CYGMEM_REGION_redboot_SIZE offset onto the SDRAM base
address, where that offset manifest is defined in the “mlt_mimxrt1xxx_evk.h” header, and the app subsequently

loaded by RedBoot from FIS or via GDB stubs

(12) figure shows RedBoot managed application stored in flash, but app can also be loaded via the GDB stubs debug con-
nection

Figure 313.8. mimxrt1064_evk SRAM RedBoot and JSDRAM application

(13) figure shows RedBoot managed application stored in flash, but app can also be loaded via the GDB stubs debug con-
nection

3082

NXP MIMXRT1xxx-EVK Platform HAL

Name
Setup — Preparing the MIMXRT1xxx-EVK Board for eCos Development

Overview
In a development environment the EVK board may be programmed via a JTAG/SWD interface or via RedBoot loaded from
boot memory.

When debugging via JTAG, you may need to disable the default HAL idle thread action, otherwise there may be issues where
the target fails to halt and the debugging session is unreliable. More details can be found in the Cortex-M architectural HAL.
If you are debugging via SWD this should not be necessary. When using hardware debug we recommend that the board SW7
DIP switches (1234) are used to select SD card boot (ON OFF ON OFF). Without an SD card installed, this will have the
useful side effect of causing the processor to pause in the ROM loader. It avoids potential issues caused by any pre-installed
firmware re-configuring the SoC as part of the ROM Bootloader process.

For debugging, applications are loaded and then executed on the board via the debugger arm-eabi-gdb, or via the Eclipse IDE.
The following describes setting up to use OpenOCD with GDB.

OpenOCD

Note

As mentioned in the Overview section, if there is unknown firmware already installed in the bootable QSPI then
it is worth ensuring that it does not interfere with the H/W debug session by changing the SW7 bootstrap selection
to disable QSPI execution, until a known eCos application has been installed in the bootable flash.

To debug via OpenOCD the etc/openocd.cfg from the build install directory should be used. Running OpenOCD on a
host connected to the board via a suitable cable should produce something similar to the following:

$ openocd -f openocd.cfg
Open On-Chip Debugger 0.11.0-2 (eCosCentric 2021-06-15)
Licensed under GNU GPL v2
For bug reports, read
 http://openocd.org/doc/doxygen/bugs.html
Info : auto-selecting first available session transport "swd". To override use 'transport select <transport>'.
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : CMSIS-DAP: SWD Supported
Info : CMSIS-DAP: FW Version = 1.10
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 0 SWDIO/TMS = 1 TDI = 0 TDO = 0 nTRST = 0 nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : clock speed 1000 kHz
Info : SWD DPIDR 0x0bd11477
Info : imxrt1050.cpu: hardware has 8 breakpoints, 4 watchpoints
Info : starting gdb server for imxrt1050.cpu on 3333
Info : Listening on port 3333 for gdb connections

When subsequently connecting via GDB, the output similar to the following will be seen from the OpenOCD session:

Info : accepting 'gdb' connection on tcp/3333

Initialising CPU...
target halted due to debug-request, current mode: Thread
xPSR: 0x21000000 pc: 0x2020e3a8 psp: 0x2023f728
force hard breakpoints
Note: Breakpoints limited to 8 hardware breakpoints
Disable Caches
Initialising SDRAM

semihosting is enabled

As can be see from the “Initialising SDRAM” above, the default CDL behaviour is to install the SDRAM initialising OpenOCD
configuration script. This ensures that applications configured for the JSDRAM or RBRAM startup types can be loaded directly
via GDB and OpenOCD for debugging, without requiring staging via a second-level boot loader.

3083

NXP MIMXRT1xxx-EVK Platform HAL

See OpenOCD scripts for notes regarding the OpenOCD scripts.

PEEDI
For the Ronetix PEEDI, the peedi.mimxrt1064_evk.cfg or peedi.imxrt1050_evkb.cfg file respectively
should be used to setup and configure the MIMXRT1064-EVK and IMXRT1050-EVKB hardware to an appropriate state to
load programs. These files only perform basic initialization by default, leaving application code to initialize PLLs and other
clocks. However, these files do include an initialization section to configure SDRAM.

The configuration files also contains an option to define whether hardware or software breakpoints are used by default, using
the CORE0_BREAKMODE directive in the [PLATFORM_Cortex-M_SWD] section. Edit this file if you wish to use hardware
break points, and remember to restart the PEEDI to make the changes take effect.

Note

Normally, when shipped, the EVK platforms are configured to use the on-board CMSIS-DAP H/W debug inter-
face via the micro-USB connector. If an external H/W debugger is being attached via the standard ARM 20-
pin 2.54mm IDC debug connector (labelled J21 on RevA1 boards) then the corresponding H/W debug signal
jumpers need to be adjusted accordingly. Please refer to the schematic or board documentation. For example,
on the RevA1 MIMXRT1064-EVK board jumpers J47 through J50 control access to the external H/W debug
signals.

On the PEEDI, debugging can be performed either via the telnet interface or using arm-eabi-gdb and the GDB interface. In
the case of the latter, arm-eabi-gdb needs to connect to TCP port 9000 on the PEEDI's IP address. For example:

(gdb) target remote 111.222.333.444:9000

By default when the PEEDI is powered up, the target will always run the initialization section of the configuration file, and
halts the target. This behaviour is repeated with the PEEDI reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot as normal and run from the contents of the flash.

Consult the PEEDI documentation for information on other features.

H/W Debugging
Currently the standalone startup types, where H/W debug can be used, default to outputting all diagnostics information via
LPUART1. The default communications parameters are 115200 baud, no parity, 1 stop bit. It is recommended that LPUART1
be accessed via the virtual CDC-ACM communication device presented by the CMSIS-DAP port.

It is possible to arrange for diagnostics to be output via the H/W debug GDB connection and appear on the gdb console. This
requires the configuration option CYGFUN_HAL_GDB_FILEIO in the common HAL package to be enabled. This has two sub-
options, CYGSEM_HAL_DIAG_TO_GDBFILEIO_CHAN and CYGSEM_HAL_DIAG_VIA_GDB_FILEIO_IMMEDIATE,
that are enabled by default when CYGFUN_HAL_GDB_FILEIO is enabled and both should remain enabled. In this case, when
arm-eabi-gdb is attached to the PEEDI, the following gdb command must be issued:

(gdb) set hwdebug on

Eclipse users can do this by creating a GDB command file with the contents:

define preload
 set hwdebug on
end

This will be referenced from their Eclipse debug launch configuration. Using GDB command files is described in more detail
in the "Eclipse/CDT for eCos application development" manual.

OpenOCD scripts

The OpenOCD .cfg files supplied in the platform package misc directory assume that the debug session is being used to
load/start a new application. If the developer wants to attach a H/W debug session to a running system (debugging a live system)
then a `noinit` configuration file that connects but does not modify the hardware state should be used instead.

3084

NXP MIMXRT1xxx-EVK Platform HAL

For historical reasons the scripts are prefixed with openocd.mimxrt1050-evk, but are also used for the i.MX RT1064
targets (e.g. mimxrt1064_evk). Similarly, internally the OpenOCD configuration scripts use the imxrt1050 name to
identity CPU information messages generated by OpenOCD. The OpenOCD naming can be ignored.

A full overview of all of OpenOCD is beyond the scope of this document, and the developer is referred to the 3rd-party
OpenOCD website for detailed documentation.

Installing RedBoot

RedBoot allows for S/W based debugging of applications over the LPUART1 diagnostic channel, or an Ethernet connection,
via the GDB stubs support built into RedBoot. RedBoot is normally used to load+debug applications when a H/W debugger
interface is not available. Since the IMX EVK boards provide an on-board CMSIS-DAP then RedBoot is not strictly required
for debugging since a H/W debugger is always present. However, RedBoot also provides some functionality that may be
required for the target use case (e.g. RBL (CYGPKG_RBL)).

Warning

The default RedBoot configuration enables Ethernet support to allow debug sessions over Ethernet. See the Sup-
ported Hardware warning about powering the board from an external PSU if RedBoot-with-Ethernet is being
installed.

The following RedBoot installation process uses a H/W debug session with a RBSRAM RedBoot image to provide the flash
access support for updating the bootable QSPI device. This approach of using a on-chip SRAM based RedBoot to provide
flash write capability is applicable to any binary data that the developer wishes to install in flash (and in the case of the
MIMXRT1064-EVK target the SiP QSPI as well as the external QSPI). For example, the SRAM based RedBoot can be used
to write the BootUp bootable QSPI image as well as the binary (JSDRAM) application that BootUp will start.

Prebuilt RedBoot binaries are provided in the loaders/mimxrt1xxx_evk subdirectory of the eCosPro release installa-
tion. The host directory within this subdirectory includes the openocd.cfg OpenOCD configuration file used to load and
execute RedBoot such that the QSPI flash boot image can be programmed into the bootable FlexSPI QSPI flash memory of
the i.MX RT10XX boards.

Notes:

1. The IMXRT1050-EVKB hardware must be modified from its default (as shipped) HyperFlash configuration to
enable QSPI access. This is documented in the relevant "MIMXRT1050-EVK Board Hardware User Guide".
It involves removing and moving some 0 Ω resistors on the underside of the board. The MIMXRT1064-EVK
requires no such modification since the external QSPI is already the default, and the RT1064 boots from the
internal SiP flash anyway.

2. Detailed instructions for rebuilding and programming your own version of RedBoot may be found in the
section called “Rebuilding and Installing RedBoot” below.

In one shell window, start OpenOCD as described in the section called “OpenOCD” above, replacing openocd.cfg with
the OpenOCD configuration file loaders/mimxrt1xxx_evk/host/openocd.cfg provided within the eCosPro in-
stallation directory.

Within a second shell window, open a suitable terminal application and connect to the CDC-ACM device provided by the
CMSIS-DAP debug USB interface.

Within a third shell window, as illustrated in the figure below, change to the loaders/mimxrt1xxx_evk subdirectory of
the eCosPro release installation, run cksum to note the checksum and size of the QSPI boot image, and load the (RBSRAM)
RedBoot ELF prebuilt image into the target using OpenOCD and GDB.

3085

https://openocd.org/

NXP MIMXRT1xxx-EVK Platform HAL

Figure 313.9. Checksum of QSPI image and Execution of RedBoot

$ cd eCos-4.x.y/loaders/mimxrt1050_evk
$ cksum qspi_boot.bin
2434204827 111164 qspi_boot.bin
$ arm-eabi-gdb redboot_RBSRAM.elf
GNU gdb (eCosCentric GNU tools 7.3.0e) 8.1
Copyright (C) 2018 Free Software Foundation, Inc.
... elided ...
Reading symbols from redboot_RBSRAM.elf...done.
(gdb) tar extended-rem localhost:3333
Remote debugging using localhost:3333
0x2020c330 in hal_delay_us (us=100) at .../packages/hal/cortexm/arch/current/src/hal_misc.c:609
(gdb) load
Loading section .rom_vectors, size 0x8 lma 0x20209020
Loading section .text, size 0xc080 lma 0x20209028
Loading section .rodata, size 0x36f8 lma 0x202150a8
Loading section .data, size 0x634 lma 0x202187a0
Start address 0x20209028, load size 64948
Transfer rate: 42 KB/sec, 9278 bytes/write.
(gdb) cont
Continuing.

From the cksum result above you can see the checksum and size of the QSPI boot image which are 2434204827 and 111164
respectively. On the second shell window running the terminal application, RedBoot output similar to the following should
appear.

Figure 313.10. RedBoot Output

RedBoot(tm) bootstrap and debug environment [RBSRAM]
eCosCentric certified release, version 4.6.6 - built 15:15:21, Mar 17 2022

Copyright (C) 2000-2009 Free Software Foundation, Inc.
Copyright (C) 2003-2022 eCosCentric Limited
The RedBoot bootloader is a component of the eCos real-time operating system.
Want to know more? Visit www.ecoscentric.com for everything eCos & RedBoot related.
This is free software, covered by the eCosPro Non-Commercial Public License
and eCos Public License. You are welcome to change it and/or distribute copies
of it under certain conditions. Under the license terms, RedBoot's source code
and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: NXP MIMXRT1050-EVK (Cortex-M7)
RAM: 0x20200000-0x2023f000 [0x20220b40-0x2023b000 available]
 0x20240000-0x20280000 [0x20240000-0x20280000 available]
 0x80000000-0x82000000 [0x80000000-0x82000000 available]
FLASH: 0x60000000-0x607fffff, 2048 x 0x1000 blocks
RedBoot>

The naming and RAM and FLASH areas reported will depend on the target board.

RedBoot is now running on the NXP EVK and may be interacted with through the terminal application. The RedBoot output
shows the available RAM that can be used as a temporary load buffer for the RedBoot QSPI boot image. In the example above
the spaces 0x20240000-0x20280000 and 0x80000000-0x82000000 are available. The flash can now be initialised
using RedBoot with the following flash initialisation issued at the RedBoot> prompt within the terminal application.

Note

Change your responses below accordingly if using DHCP/BOOTP or provide your own IP addresses and netmask
for the gateway, server and local address of NXP EVK.

3086

NXP MIMXRT1xxx-EVK Platform HAL

Figure 313.11. Initialise Flash

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: false
Gateway IP address: 192.168.1.1
Local IP address: 192.168.1.5
Local IP address mask: 255.255.255.0
Default server IP address: 192.168.1.2
Console baud rate: 115200
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Default network device: enet0_eth
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x607fe000-0x607fefff: .
... Program from 0x20231000-0x20232000 to 0x607fe000: .
RedBoot>

Once the flash is initialised perform the following actions, as illustrated in Figure 313.12, “Loading RedBoot QSPI boot image
into memory”:

1. Temporarily interrupt RedBoot execution by using ctrl-C within the third shell window (in which GDB is executing),
returning to the (gdb) prompt.

2. Load the prepared QSPI boot image into available SRAM using the restore command. In this example location
0x20240000 was used.

3. Resume execution of RedBoot.

The steps above are just a simple mechanism to use the GDB debug connection to load an arbitrary binary from the host
machine into the target board memory.

Figure 313.12. Loading RedBoot QSPI boot image into memory

...
(gdb) cont
Continuing.
^C
Program received signal SIGINT, Interrupt.
0x2020c330 in hal_delay_us (us=76) at .../packages/hal/cortexm/arch/current/src/hal_misc.c:609
(gdb) restore qspi_boot.bin binary 0x20240000
Restoring binary file qspi_boot.bin into memory (0x20240000 to 0x202524ac)
(gdb) cont
Continuing.

Within the RedBoot terminal, confirm the image has been loaded correctly into memory by performing a checksum of the
memory region into which the QSPI boot image was loaded by GDB and compare these results with the results from the
cksum application as illustrated in Figure 313.9, “Checksum of QSPI image and Execution of RedBoot”. The RedBoot cksum
command requires the base address of the memory region (0x20240000 as used above) as well as the size of the region
(111164 in our example).

Figure 313.13. RedBoot cksum of memory image

RedBoot> cksum -b 0x20240000 -l 111164
POSIX cksum = 2434204827 111164 (0x9117049b 0x000124ac)

As you can see the checksum values 2434204827 from both sources match. Instruct RedBoot to program the bootable QSPI
flash with the image in memory as shown below.

Note

For the IMXRT1050-EVKB external QSPI the bootable flash base address is 0x60000000. For the
MIMXRT1064-EVK SiP flash the base address is 0x70000000.

3087

NXP MIMXRT1xxx-EVK Platform HAL

Figure 313.14. Program RedBoot into QSPI from memory image

RedBoot> fis write -f 0x60000000 -b 0x20240000 -l 111164
* CAUTION * about to program FLASH
 at 0x60000000..0x60012fff from 0x20240000 - continue (y/n)? y
... Erase from 0x60000000-0x60012fff:
... Program from 0x20240000-0x20253000 to 0x60000000:

At this point RedBoot has been programmed into the QSPI flash. The GDB session as well as OpenOCD must now be terminated
using the ctrl-C keystroke combination in each window to interrupt and terminate the application. Assuming the SW7 is set
to OFF, OFF, ON, OFF for QSPI boot selection then on the next hardware reset the system will boot (the RBSRAM) RedBoot
from the QSPI copy automatically. The output illustrated in Figure 313.10, “RedBoot Output” will again be seen in the window
executing the terminal application and normal interaction with RedBoot may again occur.

Finally, terminate the terminal application to release the CDC-ACM interface and enable both GDB and Eclipse to make use
of the interface to download and debug user applications.

Rebuilding and Installing RedBoot
The following process is actually applicable to any standalone application that needs to be programmed into the FlexSPI
QSPI flash memory and started from CPU reset, not just the special RBSRAM RedBoot startup type. For example, a different
second-level boot loader or the final standalone (SRAM) application. The RBSRAM is for RedBoot configurations that execute
from SRAM and can be directly started by the i.MX RT ROM bootloader, with RBRAM being used for RedBoot configurations
that execute from SDRAM and are started via a second-level boot loader (e.g. BootUp, a RBSRAM RedBoot or a customer
specific boot loader application). See the section called “Startup” for an overview of the different application startup types.

See the Notes: from the previous section with regards to IMXRT1050-EVKB QSPI support.

RedBoot can be configured to reside+execute from SRAM (OCRAM) or the external SDRAM. A RBSRAM RedBoot ap-
plication should be configured and built using the redboot_RBSRAM.ecm file provided in the packages/hal/cor-
texm/imx/mimxrt1xxx_evk/current/misc subdirectory of the eCosPro installation. Correspondingly a SDRAM
resident RedBoot application should be configured and built using the redboot_RBRAM.ecm configuration fragment.

However, since the decision to keep a single RAM startup type for applications loaded into SDRAM and executed under RedBoot
regardless of whether a SRAM or SDRAM RedBoot is active means that the RedBoot SRAM allocation is always set aside.
This means that there is no substantive benefit from an SDRAM based RedBoot currently. So the following example just
documents the RBSRAM case.

Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the SRAM version of RedBoot are:

$ mkdir redboot_rbsram
$ cd redboot_rbsram
$ ecosconfig new mimxrt1050_evk redboot
[… ecosconfig output elided …]
$ ecosconfig import $ECOS_REPOSITORY/hal/cortexm/imx/mimxrt1xxx_evk/VERSION/misc/redboot_RBSRAM.ecm
$ ecosconfig tree
$ make

The standard make build process will create a binary version of the RedBoot application alongside the ELF version used for
debugging. The install/bin subdirectory should contain the file redboot.bin which will be used when building the
boot image. The example above targets the mimxrt1050_evk platform, but the same process can be used by replacing with
the mimxrt1064_evk platform name.

Create a QSPI boot image from this RBSRAM RedBoot binary as follows:

$ flashimg_rt10 --qspi install/bin/redboot.bin install/bin/qspi_boot.bin

Notes:

1. Prebuilt host executables of the flashimg_rt10 are located in the loaders/mimxrt1050_evk/host sub-
directory of the eCosPro installation directory. Ensure these executables are either in the host's PATH or pro-

3088

NXP MIMXRT1xxx-EVK Platform HAL

vide the full or relative path to the executable relevant to your host's operating system when executing the
above command.

2. The --qspi parameter is required to ensure the correct layout and contents of boot ROM descriptor structures
to allow the application to be booted from the QSPI device.

3. If using the prebuilt RedBoot images provided in the release, the filenames redboot_RBSRAM.elf,
redboot_RBSRAM.bin and its flashimg_rt10 derivative qspi_boot.bin within the load-
ers/mimxrt1050_evk subdirectory should be referenced in place of the files install/bin/red-
boot.elf, install/bin/redboot.bin and install/bin/qspi_boot.bin respectively in the
examples below.

The simplest approach for installing the boot image is to use the onboard CMSIS-DAP debug interface and GDB to load the
boot image into memory and use the RBSRAM RedBoot itself to initialise the flash. See the OpenOCD section for an overview
of starting the necessary GDB server, and the Installing RedBoot section for an example of using RedBoot to flash an image.

Further application installation examples
The following are just examples of some possible use cases that may helpful in providing an overview for developers.

SRAM application

Since SRAM resident applications, configured with the SRAM startup type, do not need a second-stage boot loader they can be
packaged as a bootable image and flashed to the start of the respective flash memory directly.

The RBSRAM (SRAM resident) RedBoot is just a special-case of an SRAM application since it needs to ensure SRAM and
SDRAM are shared between itself and the non-standalone RAM startup applications that it hosts. Aside: The RBSRAM RedBoot
can be used to start a standalone (e.g. JSDRAM) application and so can just act as a second-stage boot loader if required
where the executed application makes no use of RedBoot functionality after it has been started, but note that such standalone
applications can then not be debugged via the RedBoot GDB stubs connection.

To boot any application built from a SRAM startup type configuration you first need to extract the binary image from the
generated ELF file. e.g. replacing app.elf and the destination binary name as appropriate:

$ arm-eabi-objcopy -O binary app.elf app.bin

Then, as described in the flashimg_rt10 section, you convert that raw binary into a bootable image:

$ flashimg_rt10 --qspi app.bin qspi_boot.bin

The resulting image can then be written to the relevant bootable flash device as demonstrated in the Installing RedBoot section,
with the filenames replaced accordingly.

BootUp started application

When the user wants to start an external SDRAM based application at boot a SRAM based second-level boot loader like BootUp
is required. BootUp provides a simpler, quicker, smaller implementation than RedBoot. It can be extended with customer or
platform features as required; but the basic implementation simply copies the application from its stored NVM (Non-Volatile
Memory) location to SDRAM and executes it.

As documented in the VAR BootUp section the command-line BootUp build creates the bootup.bin image. So the arm-
eabi-objcopy step as documented above for SRAM applications is already done. However the flashimg_rt10 step
should still be performed to create a bootable image. The resulting QSPI bootable image should be written to the start of the
flash.

For the actual application, created from a JSDRAM configured build, just like the SRAM approach, the generated ELF file
should be converted to a binary for flashing.

$ arm-eabi-objcopy -O binary sdramapp.elf sdramapp.bin

3089

NXP MIMXRT1xxx-EVK Platform HAL

That binary needs no further processing, and should be written as-is to the relevant flash memory at offset CYGNUM_BOOT-
UP_IMX_SOURCE_OFFSET. The use of a H/W debug session and a RBSRAM RedBoot provides a mechanism for writing
arbitrary images to flash.

On subsequent target resets, the system ROM Bootloader will execute the BootUp code, which in turn will find, load and start
the SDRAM application.

For subsequent updates of the main SDRAM based application only the application binary from offset CYGNUM_BOOT-
UP_IMX_SOURCE_OFFSET onwards need be replaced. The BootUp installation itself is normally just a one-time process.

As previously noted, the SDRAM based RBRAM is just a special-case startup type used when building a SDRAM resi-
dent RedBoot. If using the RBRAM RedBoot then its binary should be written to the flash from offset CYGNUM_BOOT-
UP_IMX_SOURCE_OFFSET.

RedBoot started application

For details of using RedBoot to start the final SDRAM based application refer to the Executing Programs from RedBoot
documentation.

3090

NXP MIMXRT1xxx-EVK Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The MIMXRT1xxx-EVK board platform HAL package is loaded automatically when eCos is configured for a suitable target,
e.g. mimxrt1050_evk or mimxrt1064_evk. It should never be necessary to load this package explicitly. Unloading the
package should only happen as a side effect of switching target hardware.

Startup
The MIMXRT1xxx-EVK board platform HAL package supports six separate startup types:

JTAG

This is the default startup type. It is used to build applications that are loaded via a H/W debug interface. The application
will be self-contained with no dependencies on services provided by other software. The program expects to be loaded
from 0x20209000 and entered at 0x20209008. eCos startup code will perform all necessary hardware initialization.

Even though this startup type is the default, it is not normally expected to be used in the field. It is normally used for
testing and development on uninitialised boards.

SRAM

This startup type is currently essentially equivalent to the JTAG startup type in memory layout and usage. This startup
is intended to be used for standalone applications, either loaded from an external memory device such as an SD card or
FlexSPI flash at boot time, or via a H/W debug interface.

The program expects to be loaded from 0x20209020, and the eCos startup code will perform all necessary hardware
initialisation. The difference in load address from the JTAG startup is to allow space for the boot ROM configuration
structures required when the application is packaged into a boot image using the flashimg_rt10 tool.

This startup type should be configured for standalone applications to execute from SRAM. All of the SRAM is available
for application use, and the external SDRAM is unassigned and not managed by eCos, but is available for application use.

JSDRAM

This startup is intended to be used for standalone applications, either loaded from an external memory device such as an
SD card or FlexSPI flash at boot time via a second-level boot loader, or via a H/W debug interface into external SDRAM.

The application will be self-contained with no dependencies on services provided by other software. The program expects
to be loaded from 0x80000000 and entered at 0x80000018 (based on the current application signature block size). eCos
startup code will perform all necessary hardware initialization. JSDRAM applications can only be loaded once the SDRAM
has been initialised, either when loaded from a boot location in conjunction with a valid IVT+DCD via a second-level
boot loader, or when loaded via a suitable H/W debug session directly.

This startup type should be configured for standalone applications to execute from SDRAM. All of the SDRAM and
SRAM is available for application use.

RBRAM

This is a special case startup type intended for SDRAM based RedBoot applications. It is essentially equivalent to the
JSDRAM startup type, but with a section from the start of SRAM and SDRAM allocated to RedBoot for its code+data
storage. The remaining SRAM and SDRAM is set aside for applications loaded/executed via the RedBoot instance. As
mentioned, this startup is intended to be used for the standalone RedBoot, either loaded at boot from a memory device
such as the FlexSPI flash via a second-level boot loader, or via a H/W debug interface.

The program expects to be loaded from 0x80000000, and the eCos startup code will perform all necessary hardware
initialisation.

3091

NXP MIMXRT1xxx-EVK Platform HAL

RBSRAM

This is a special case startup type intended for SRAM based RedBoot applications. It is essentially equivalent to the
SRAM startup type, but with the bottom of the SRAM allocated to RedBoot, along with an (unused) section at the start
of SDRAM, for the RedBoot code+data requirements. The remaining SRAM and SDRAM are set aside for applications
loaded/executed via the RedBoot instance. As mentioned, this startup is intended to be used for the standalone RedBoot,
either loaded at boot from a memory device such as the FlexSPI flash, or via a H/W debug interface.

The program expects to be loaded from 0x20209020, and the eCos startup code will perform all necessary hardware
initialisation. The difference in load address from the JTAG startup is to allow space for the boot ROM configuration
structures required when the application is packaged into a boot image. e.g. as by the flashimg_rt10 tool.

RAM

This startup type is for applications that are loaded via RedBoot into external SDRAM. They rely on services supplied by
RedBoot. RAM applications can only be loaded via RedBoot.

Note

Due to the RBSRAM startup type RedBoot code+data occupying SRAM, only the upper section of SRAM
is available for RAM applications.

Similarly due to the RBRAM startup type RedBoot code+data occupying the start of SDRAM, the available
SDRAM for RAM applications starts from the offset CYGMEM_REGION_redboot_SIZE.

The decision to set aside the SRAM and SDRAM space for RedBoot in both RBRAM and RBSRAM RedBoot
configurations was taken to allow the RAM startup applications to be loaded irrespective of whether RedBoot
is executing from SRAM or SDRAM.

As highlighted in the VAR On-chip memory section, the i.MX RT ROM bootloader cannot directly boot external-SDRAM
applications. If the final application is a JSDRAM standalone application, or a RBRAM RedBoot, then a second-level boot loader
is required. The BootUp (CYGPKG_BOOTUP) application is a lightweight second-level loader implementation, with the VAR
BootUp section providing an overview. Alternatively a RBSRAM RedBoot could be used to boot the final RBRAM RedBoot if
really required, but since the SRAM cost of both RedBoot configurations are the same it is expected that if RedBoot is required
then a RBSRAM version is used (as can be directly booted by the i.MX RT ROM bootloader). The only benefit for a SDRAM
based RedBoot would be if the RBRAM and RAM startup types were modified to not make use of the SRAM, but that would
preclude using RAM startup applications under a RBSRAM RedBoot.

UART Serial Driver
The MIMXRT1050-EVK board uses the RT10XX internal UART serial support. The HAL diagnostic interface, used for both
polled diagnostic output and GDB stub communication, is only expected to be available to be used on the LPUART1 port.

As well as the polled HAL diagnostic interface, there is also a CYGPKG_IO_SERIAL_NXP_LPUART package which contains
all the code necessary to support interrupt-driven operation with greater functionality.

It is not recommended to use the interrupt-driven serial driver with a port at the same time as using that port for HAL diagnostic
I/O.

This driver is not active until the CYGPKG_IO_SERIAL_DEVICES configuration option within the generic serial driver
support package CYGPKG_IO_SERIAL is enabled in the configuration. By default this will only enable support in the driver
for the LPUART1 port (the same as the HAL diagnostic interface), but the default configuration can be modified to enable
support for other serial ports.

SPI Driver
An SPI bus driver is available in the package "NXP LPSPI Support" (CYGPKG_DEVS_SPI_NXP_LPSPI).

Consult the generic SPI driver API documentation in the eCosPro Reference Manual for further details on SPI support in
eCosPro, along with the configuration options in the NXP SPI device driver.

3092

NXP MIMXRT1xxx-EVK Platform HAL

I²C Driver
Support for NXP I²C busses is provided by the "NXP LPI2C Support" package (CYGPKG_DEVS_I2C_NXP_LPI2C). The
variant HAL causes two buses to be instantiated. These have been tested using external I²C devices.

Flash Driver
The external FlexSPI Flash, and in the case of RT1064 boards the FlexSPI2 attached SiP Flash. may be programmed and
managed using the Flash driver located in the "NXP FlexSPI Support" (CYGPKG_DEVS_FLASH_NXP_FLEXSPI) package.
This driver is enabled automatically if the generic "Flash device drivers" (CYGPKG_IO_FLASH) package is included in the
eCos configuration. The driver will configure itself automatically for the size and parameters of the specific flash variant present
on the IMXRT1050-EVKB and MIMXRT1064-EVK boards.

Ethernet Driver
The EVK boards use the internal ENET Ethernet device attached to an external Micrel KSZ8081RNB PHY. The CYGP-
KG_DEVS_ETH_FREESCALE_ENET package, in conjunction with the VAR HAL, contains all the code necessary to support
this device and the platform HAL package contains definitions that customize the driver to the board. The driver is not active
until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

This PLF HAL provides support for enforcing the start-of-day PHY pin strapping for correct operation.

CAN Driver
The iMX RT1xxx devices have multiple FlexCAN interfaces. Device support is via the NXP FlexCAN CAN Driver package.

The EVK boards have a single CAN connector (unpopulated by default) on J11 that is configured as FlexCAN2 for RT1052
boards, and FlexCAN3 for RT1064 boards.

Consult the generic Chapter 90, CAN Support documentation for further details on use of the CAN API, CAN configuration
and device drivers.

Watchdog Driver
The board uses the RT10XX Watchdog timer 1. The CYGPKG_DEVICES_WATCHDOG_ARM_IMX package contains all the
code necessary to support this device. Within that package the CYGNUM_DEVS_WATCHDOG_ARM_IMX_DESIRED_TIME-
OUT_MS configuration option controls the watchdog timeout, and by default will force a reset of the board upon timeout.
This driver is not active until the generic watchdog device support package, CYGPKG_IO_WATCHDOG, is included in the
configuration.

PWM Driver
Support for the NXP FlexPWM devices is provided by the "NXP PWM Support" package (CYGPKG_DEVS_PWM_NXP) which
needs to be used in conjunction with the CYGPKG_IO_PWM generic PWM package. Refer to the documentation for that package
for usage details.

The RT10XX contains four FlexPWM devices, each of which contains four independent submodules. Each submodule has
two semi-independent output lines that can be routed to a variety of pads. Each submodule is presented as a separate PWM
device and have names such as "pwm1.0" for FlexPWM 1 submodule 0 or "pwm3.2" for FlexPWM 3 submodule 2. The output
lines are mapped on to channel 0 for output A and channel 1 for output B. These outputs are semi-independent in that they
must share a period, but may have different duty cycles.

USB Support
Support for both Host and Peripheral mode operation is provided by the USB protocol stack plus EHCI host and peripheral
drivers (CYGPKG_DEVS_USB_EHCI and CYGPKG_DEVS_USB_PCD_EHCI).

3093

NXP MIMXRT1xxx-EVK Platform HAL

Host mode is supported for USB2 which is connected to the USB_HOST microab receptacle. Class support is available for
mass storage devices, and CDC-ACM serial.

Peripheral mode is supported for USB1 which is connected to the USB_OTG microab receptacle. Note that OTG mode is not
supported. By default this peripheral port is configured as a CDC-ACM device.

USB configuration is handled by the "RT10XX USB controller configuration" package (CYGPKG_DEVS_USB_RT10XX).
Here both the host and peripheral drivers are instantiated along with the CDC-ACM peripheral serial device if configured.

3094

NXP MIMXRT1xxx-EVK Platform HAL

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the IMXRT1050-EVKB and
MIMXRT1064-EVK board hardware, and should be read in conjunction with that specification. The MIMXRT1xxx-EVK
platform HAL package complements the Cortex-M architectural HAL and the i.MX variant HAL. It provides functionality
which is specific to the target boards.

Startup
For the SRAM, JTAG, JSDRAM, RBRAM and RBSRAM startups, the HAL will perform initialization, programming the various
internal registers including the PLL, peripheral clocks and pin multiplexing. The details of the early hardware startup may be
found in the src/imx_misc.c in both hal_system_init() and hal_platform_init().

Note

Some of the initial I/O run-time configuration is performed by the iMX boot ROM parsing the IVT+DCD binary
structures that describe a bootable image. The relevant i.MX RTxxx PRM (Processor Reference Manual) docu-
mentation should be consulted for a detailed overview if required.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
areas are as follows:

Internal SRAM

This is located at address 0x20200000 of the memory space, and is 512KiB in size for RT105x CPUs and 1MiB in size
for the RT1064. The eCos VSR table occupies the bottom 704 bytes, with the virtual vector table starting at 0x200002C0
and extending to 0x200003C0. Depending on the startup type the top of SRAM may have CYGNUM_HAL_COMMON_IN-
TERRUPTS_STACK_SIZE bytes reserved for the interrupt stack, as well as an uncached area for driver/DMA use. The
remainder of internal SRAM is available for use by applications.

External SDRAM

This is located at address 0x800000000 of the memory space. This region is 32MiB in size. Standalone JSDRAM or
RedBoot loaded RAM applications are by default configured to run from this memory. This memory is only available after
either A) an application has been loaded from a boot device, since it is initialized by the DCD that is part of the boot image
or B) configured by the H/W debugger connection script.

For example, if RedBoot is installed as the bootable application then the DCD prefixed to the RedBoot application con-
figures the SDRAM as needed.

On-Chip Peripherals

These are accessible at locations 0x40000000 and 0xE0000000 upwards. Descriptions of the contents can be found in the
i.MX RT10XX User Manual.

Flash

For the RT1052 and RT1064 the external (off-chip) QSPI flash is mapped from address 0x60000000. For the RT1052 this
external flash is the bootable flash device.

For the RT1064 the “external” (SiP) QSPI attached to FlexSPI2 is mapped from address 0x70000000. For the RT1064
this SiP flash is the bootable flash device.

3095

NXP MIMXRT1xxx-EVK Platform HAL

Linker Scripts
The platform linker script defines the following symbols:

hal_vsr_table This defines the location of the VSR table. This is set to 0x20200000 for all startup
types, and space for 176 entries is reserved.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between a ROM
monitor and an eCos application. If required this is allocated right after the VSR table,
at 0x202002C0.

hal_interrupt_stack This defines the location of the interrupt stack. This is allocated to the top of application
available SRAM or SDRAM depending on the startup type.

hal_startup_stack This defines the location of the startup stack. For all startup types it is initially allocated
at the half-way point of the interrupt stack.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information. The test was built for JTAG startup on a MIMXRT1050-EVK board.

Example 313.1. MIMXRT1050-EVK Real-time characterization

Configured
Testing parameters:
 Clock samples: 32
 Threads: 25
 Thread switches: 128
 Mutexes: 1165
 Mailboxes: 340
 Semaphores: 2040
 Scheduler operations: 128
 Counters: 680
 Flags: 1360
 Alarms: 582
 Stack Size: 1088

 Startup, main thrd : stack used 356 size 2048
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 7.84 microseconds (7 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 25
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32
 Stack Size: 1088

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
INFO:<Ctrl-C disabled until test completion>
 6.64 5.00 8.00 0.72 76% 8% Create thread

3096

NXP MIMXRT1xxx-EVK Platform HAL

 1.44 1.00 2.00 0.49 56% 56% Yield thread [all suspended]
 1.56 1.00 2.00 0.49 56% 44% Suspend [suspended] thread
 1.36 1.00 2.00 0.46 64% 64% Resume thread
 2.04 2.00 3.00 0.08 96% 96% Set priority
 0.32 0.00 1.00 0.44 68% 68% Get priority
 3.20 3.00 5.00 0.34 84% 84% Kill [suspended] thread
 1.48 1.00 2.00 0.50 52% 52% Yield [no other] thread
 1.96 1.00 3.00 0.15 88% 8% Resume [suspended low prio] thread
 1.40 1.00 2.00 0.48 60% 60% Resume [runnable low prio] thread
 2.04 2.00 3.00 0.08 96% 96% Suspend [runnable] thread
 1.52 1.00 2.00 0.50 52% 48% Yield [only low prio] thread
 1.40 1.00 2.00 0.48 60% 60% Suspend [runnable->not runnable]
 3.16 3.00 5.00 0.28 88% 88% Kill [runnable] thread
 3.52 3.00 5.00 0.54 96% 52% Destroy [dead] thread
 7.52 7.00 8.00 0.50 52% 48% Destroy [runnable] thread
 6.80 6.00 9.00 0.51 60% 32% Resume [high priority] thread
 2.34 2.00 4.00 0.46 66% 66% Thread switch

 0.33 0.00 1.00 0.44 67% 67% Scheduler lock
 1.21 1.00 2.00 0.33 78% 78% Scheduler unlock [0 threads]
 1.26 1.00 2.00 0.38 74% 74% Scheduler unlock [1 suspended]
 1.24 1.00 2.00 0.37 75% 75% Scheduler unlock [many suspended]
 1.26 1.00 2.00 0.38 74% 74% Scheduler unlock [many low prio]

 0.50 0.00 1.00 0.50 100% 50% Init mutex
 1.81 1.00 3.00 0.36 75% 21% Lock [unlocked] mutex
 1.88 1.00 2.00 0.22 87% 12% Unlock [locked] mutex
 1.59 1.00 2.00 0.48 59% 40% Trylock [unlocked] mutex
 1.53 1.00 2.00 0.50 53% 46% Trylock [locked] mutex
 0.44 0.00 1.00 0.49 56% 56% Destroy mutex
 10.00 10.00 10.00 0.00 100% 100% Unlock/Lock mutex

 0.56 0.00 1.00 0.49 56% 43% Create mbox
 0.38 0.00 1.00 0.47 62% 62% Peek [empty] mbox
 1.81 1.00 2.00 0.31 81% 18% Put [first] mbox
 0.38 0.00 1.00 0.47 62% 62% Peek [1 msg] mbox
 1.69 1.00 3.00 0.47 62% 34% Put [second] mbox
 0.38 0.00 1.00 0.47 62% 62% Peek [2 msgs] mbox
 1.78 1.00 3.00 0.39 71% 25% Get [first] mbox
 1.72 1.00 2.00 0.40 71% 28% Get [second] mbox
 1.59 1.00 2.00 0.48 59% 40% Tryput [first] mbox
 1.53 1.00 2.00 0.50 53% 46% Peek item [non-empty] mbox
 1.56 1.00 2.00 0.49 56% 43% Tryget [non-empty] mbox
 1.38 1.00 2.00 0.47 62% 62% Peek item [empty] mbox
 1.50 1.00 2.00 0.50 100% 50% Tryget [empty] mbox
 0.47 0.00 1.00 0.50 53% 53% Waiting to get mbox
 0.50 0.00 1.00 0.50 100% 50% Waiting to put mbox
 0.53 0.00 1.00 0.50 53% 46% Delete mbox
 6.66 6.00 7.00 0.45 65% 34% Put/Get mbox

 0.50 0.00 1.00 0.50 100% 50% Init semaphore
 1.44 1.00 2.00 0.49 56% 56% Post [0] semaphore
 1.59 1.00 2.00 0.48 59% 40% Wait [1] semaphore
 1.34 1.00 2.00 0.45 65% 65% Trywait [0] semaphore
 1.38 1.00 2.00 0.47 62% 62% Trywait [1] semaphore
 0.44 0.00 1.00 0.49 56% 56% Peek semaphore
 0.44 0.00 1.00 0.49 56% 56% Destroy semaphore
 6.31 6.00 7.00 0.43 68% 68% Post/Wait semaphore

 0.75 0.00 1.00 0.38 75% 25% Create counter
 0.47 0.00 1.00 0.50 53% 53% Get counter value
 0.38 0.00 1.00 0.47 62% 62% Set counter value
 1.81 1.00 2.00 0.31 81% 18% Tick counter
 0.50 0.00 1.00 0.50 100% 50% Delete counter

 0.41 0.00 1.00 0.48 59% 59% Init flag
 1.47 1.00 3.00 0.53 56% 56% Destroy flag
 1.25 1.00 2.00 0.38 75% 75% Mask bits in flag
 1.53 1.00 2.00 0.50 53% 46% Set bits in flag [no waiters]
 1.91 1.00 3.00 0.23 84% 12% Wait for flag [AND]
 1.97 1.00 3.00 0.12 90% 6% Wait for flag [OR]
 1.91 1.00 3.00 0.23 84% 12% Wait for flag [AND/CLR]

3097

NXP MIMXRT1xxx-EVK Platform HAL

 1.94 1.00 2.00 0.12 93% 6% Wait for flag [OR/CLR]
 0.34 0.00 1.00 0.45 65% 65% Peek on flag

 0.88 0.00 1.00 0.22 87% 12% Create alarm
 2.47 2.00 3.00 0.50 53% 53% Initialize alarm
 1.47 1.00 2.00 0.50 53% 53% Disable alarm
 2.38 2.00 3.00 0.47 62% 62% Enable alarm
 1.59 1.00 2.00 0.48 59% 40% Delete alarm
 1.84 1.00 2.00 0.26 84% 15% Tick counter [1 alarm]
 7.34 7.00 8.00 0.45 65% 65% Tick counter [many alarms]
 2.97 2.00 3.00 0.06 96% 3% Tick & fire counter [1 alarm]
 42.19 42.00 43.00 0.30 81% 81% Tick & fire counters [>1 together]
 8.47 8.00 9.00 0.50 53% 53% Tick & fire counters [>1 separately]
 7.00 7.00 7.00 0.00 100% 100% Alarm latency [0 threads]
 6.59 6.00 7.00 0.49 58% 41% Alarm latency [2 threads]
 6.67 6.00 7.00 0.44 67% 32% Alarm latency [many threads]
 11.02 11.00 13.00 0.03 99% 99% Alarm -> thread resume latency

 0.00 0.00 0.00 0.00 Clock/interrupt latency

 3.08 2.00 4.00 0.00 Clock DSR latency

 180 148 228 Worker thread stack used (stack size 1088)
 All done, main thrd : stack used 704 size 2048
 All done : Idlethread stack used 172 size 1280

Timing complete - 29820 ms total

PASS:<Basic timing OK>
EXIT:<done>

Platform specific tests
A single platform specific test is available.

platform

The platform test is a simple validity check application. It tests application access to some basic functionality, as well as
providing some diagnostic information on system settings.

The test source is set up for automated testing (e.g. as used in the eCosCentric test farm). However, the __MANUAL manifest
can be manually enabled to provide some extra testing requiring user interaction. Currently __MANUAL controls access to a
simple polled and interrupt-driven GPIO SW8 (USER_BUTTON) test. That specific test case implements an example of using
the de-multiplexed GPIO interrupt support.

3098

Part LXXIX. H8300 Architecture

Table of Contents
314. H8/300 Architectural Support ... 3101

Overview ... 3102
Configuration ... 3103
The HAL Port .. 3105

3100

Chapter 314. H8/300 Architectural Support

3101

H8/300 Architectural Support

Name
Overview — eCos Support for the H8/300 Family of Processors

Description
The H8/300 family includes the H8/300H and H8S processors. These processors execute a largely common instruction set and
have the following common features:

• Eight general purpose 32-bit registers, ER0 to ER7,which may also be addressed as 16 16-bit and 16 8-bit registers. Register
ER7 is also used as the stack pointer. In addition there is a 24-bit program counter, an 8-bit condition code register, and on
the H8S an 8 bit extended control register.

• A linear address space, limited to 24-bits, matching the size of the PC. Hence the processor can address 16 megabytes of
memory.

• No separate address space for I/O operations. Instead devices are accessed just like memory via the main address and data
buses.

• A variable-length instruction set with a variety of different addressing modes.

• The H8/300H has a simple single-level interrupt system while the H8S can support an 8-level prioritized system via the
extended control register.

• The H8S has support for single instruction tracing.

The architectural HAL provides support for those features which are common to all members of the H8/300 families, and
for certain features which are present on some but not all members. A typical eCos configuration will also contain a variant
HAL package with support code for a family of processors, possibly a processor HAL package with support for one specific
processor, and a platform HAL which contains the code needed for a specific hardware platform. For example the variant
or processor HAL may define the exact interrupt controller hardware that is available, and the platform HAL will define the
external interrupt vector connections.

3102

H8/300 Architectural Support

Name
Options — Configuring the H8/300 Architectural Package

Loading and Unloading the Package
The H8/300 architectural HAL package CYGPKG_HAL_H8300 should be loaded automatically when eCos is configured for
H8/300-based target hardware. It should never be necessary to load this package explicitly. Unloading the package should only
happen as a side effect of switching target hardware.

Stacks
By default the architectural HAL provides a single block of memory to act as both the startup stack and the interrupt stack.
The variant, processor or platform HAL may override this. For example if there are several banks of RAM with different
performance characteristics it may be desirable to place the interrupt stack in fast RAM rather than in ordinary RAM.

The assembler startup code sets the stack pointer to the startup stack before switching to C code. This stack is used for all HAL
initialization, running any C++ static constructors defined either by eCos or by the application, and the cyg_start entry
point. In configurations containing the eCos kernel cyg_start will enable interrupts, activate the scheduler and threads will
then run on their own stacks. In non-kernel single-threaded applications the whole system continues to run on the startup stack.

When an interrupt occurs the default behaviour is to switch to a separate interrupt stack. This behaviour is controlled by
the common HAL configuration option CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK. It reduces the
stack requirements of all threads in the system, at the cost of some extra instructions during interrupt handling. In kernel
configurations the startup stack is no longer used once the scheduler starts running so its memory can be reused for the interrupt
stack. To handle the possibility of nested interrupts the interrupt handling code will detect if it is already on the interrupt stack,
so in non-kernel configurations it is also safe to use the same area of memory for both startup and interrupt stacks. This leads
to the following scenarios:

1. If interrupt stacks are enabled via CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK and the interrupt
stack is not provided by the variant, processor or platform HAL then a single block of memory will be used for both startup
and interrupt stacks. The size of this block is determined by the common HAL configuration option CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE, with a default value CYGNUM_HAL_DEFAULT_INTERRUPT_STACK_SIZE pro-
vided by the H8300 architectural HAL.

2. If the use of an interrupt stack is disabled then the H8/300 architectural HAL will provide just the startup stack, unless this
is done by the variant, processor or platform HAL. The size of the startup stack is still controlled by CYGIMP_HAL_COM-
MON_INTERRUPTS_USE_INTERRUPT_STACK.

3. Otherwise the interrupt and/or startup stacks are provided by other packages and it is up to those packages to provide
configuration options for setting the sizes.

SCI Baud Rate
The architecture HAL provides a polled driver for the SCI serial device that is common to all H8/300 implementations. This is
used by RedBoot for user interaction and by eCos applications for diagnostic output. Configuration of the device is handled in
the variant HAL, but the baud rate is set in the architecture HAL using the CYGNUM_HAL_H8300_SCI_BAUD_RATE option.

Interrupt Vector Hook
The H8/300 architecture does not provide any mechanism for determining the source of an interrupt or exception other than
the address of the routine to which control is vectored. Since eCos uses common code for most vectors, and demultiplexes
the source later, this makes handling difficult. To overcome this, all interrupt and exception vectors are pointers to entries in a
table of single instruction JSR instructions which all call the common handling code. The stacked return address can then be
used to synthesize a vector number that is used by the common handling code.

By default this JSR hook table is stored in on-chip RAM (it is actually placed by the platform specific .ldi file). This
placement makes this vectoring fast and of minimal impact on performance. It also allows individual vectors to be replaced

3103

H8/300 Architectural Support

if desired -- although this functionality is also provided in a more convenient form by the standard eCos VSR table that is
also placed in on-chip RAM. If the option CYGSEM_HAL_H8300_VECTOR_HOOK is disabled, then the hook table will be
stored in ROM, which will free space in the on-chip RAM but will increase interrupt processing time and remove the ability
to revector exceptions at this level (but won't affect the VSR table).

If the option CYGSEM_HAL_H8300_SAVE_STUB_VECTOR is enabled then the vector hook table will be saved by an eCos
application before being replaced with its own table. This is theoretically to permit RedBoot to coexist with eCos. In practice
the common VSR table mechanism handles this in a more portable manner.

Other Options
The H8/300 architectural HAL package does not define any other configuration options that can be manipulated by the user.

3104

H8/300 Architectural Support

Name
HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto H8/300 hardware, and should be read
in conjunction with that specification. It also describes how variant, processor and platform HALs can modify the default
behaviour.

eCos support for any given target will involve either three or four HAL packages: the architectural HAL, the platform HAL,
the variant HAL, and optionally a processor HAL. This package, the architectural HAL, provides code and definitions that
are applicable to all H8/300 processors. The platform HAL provides support for one specific board, or possibly for a number
of almost-identical boards. The processor HAL, if present, serves mainly to provide details of on-chip peripherals including
the interrupt controller. The variant HAL provides functionality that is common to a group of processors, for example all H8S
processors have very similar UARTs and hence can share HAL diagnostic code. There is no fixed specification of what should
go into the variant HAL versus the processor HAL. For simplicity the description below only refers to variant HALs, but the
work may actually happen in a processor HAL instead.

As a design goal lower-level HALs can always override functionality that is normally provided higher up. For example the
architectural HAL will provide the required eCos HAL_LSBIT_INDEX and HAL_MSBIT_INDEX macros, but these can be
provided lower down instead. In some areas such as handling context switching the architectural HAL will usually provide
the basic functionality but it may be extended by lower HALs. The architecture HAL consequently contains a large number of
macros at both C and assembler level that variant HALs are expected to supply functionality for.

The architectural HAL provides header files cyg/hal/hal_arch.h, cyg/hal/hal_intr.h, cyg/hal/
hal_cache.h, cyg/hal/hal_io.h and cyg/hal/arch.inc. These automatically include an equivalent header file
from the variant HAL, for example cyg/hal/var_arch.h. The variant HAL header will in turn include processor and
platform-specific headers. This means that application developers and other packages can simply include the architectural
HAL headers without needing to know about variants or platforms. It also allows the variant and platform HALs to override
architectural settings.

Data Types

For eCos purposes all H8/300 processors are big-endian and 32-bit, so the default data types in cyg/infra/cyg_type.h
are used. Some variants have external bus widths less than 32-bit, but this does not affect the architectural HAL.

Startup and Exception Vectors

The conventional bootstrap mechanism involves a table of exception vectors at the base of memory. The first two words of
this table are reset entry points for power-on reset and manual reset. In a typical embedded system the hardware is arranged
such that non-volatile flash memory is found at location 0x0 so it is the start of flash that contains the exception vectors and
the boot code. The table of exception vectors is used subsequently for interrupt handling and for hardware exceptions.

The exact hardware details, the various startup types, the steps needed for low-level hardware initialization, and so on are not
known to the architectural HAL. Hence although the architectural HAL does provide the basic framework for startup, much of
the work is done via macros provided by lower-level HAL packages and those macros are likely to depend on various config-
uration options. Rather than try to enumerate all the various combinations here it is better to look at the actual code in vec-
tors.S and in appropriate variant, processor or platform HALs. vectors.S is responsible for any low-level initialization
that needs to happen. This includes setting up a standard C environment with the stack pointer set to the startup stack in working
RAM, making sure all statically initialized global variables have the correct values, and that all uninitialized global variables
are zeroed. Once the C environment has been set up the code jumps to cyg_start() which completes the initialization and
jumps to the application entry point.

Interrupt Handling

The H8/300 architecture reserves a vector table area of memory for exception vectors. These are used for internal and external
interrupts, exceptions, software traps, and special operations such as reset handling. Some of the vectors have well-defined

3105

H8/300 Architectural Support

uses. However when it comes to interrupt handling the details will depend on the processor variant and on the platform, and
the appropriate package documentation should be consulted for full details.

The default behaviour is for all exceptions and interrupts to be vectored from the hardware vector table via the JSR hook table
to a piece of trampoline code. This saves the CPU state on the stack and decodes the hook table return address into a simple
vector number. This is then used to index the VSR table and fetch the address of the Vector Service Routine for that exception.
This is then called with the vector number in ER1.

The standard eCos macros HAL_VSR_GET and HAL_VSR_SET just manipulate one of the entries in the VSR table. Hence
it is possible to replace the default handlers for exceptions and traps in addition to interrupt handlers. hal_intr.h provides
#define's for the more common exception vectors, and additional ones can be provided by the platform or variant. It is the
responsibility of the platform or variant HAL to initialize the table, and to provide the HAL_VSR_SET_TO_ECOS_HANDLER
macro since that requires knowledge of the default table entries.

At the architecture level there is no fixed mapping between VSR and ISR vectors. Instead that is left to the variant or plat-
form HAL. The architectural HAL does provide default implementations of HAL_INTERRUPT_ATTACH, HAL_INTERRUP-
T_DETACH and HAL_INTERRUPT_IN_USE since these just involve updating a static table.

By default the interrupt state control macros HAL_DISABLE_INTERRUPTS, HAL_RESTORE_INTERRUPTS, HAL_EN-
ABLE_INTERRUPTS and HAL_QUERY_INTERRUPTS are implemented by the variant HAL for the different processor vari-
ants, and involve updating either the condition code or extended control registers.

HAL_DISABLE_INTERRUPTS has no effect on non-maskable interrupts. This causes a problem because parts of the system
assume that all normal interrupt sources are affected by this macro. If the target hardware can raise non-maskable interrupts
then it is the responsibility of application code to install a suitable VSR and handle non-maskable interrupts entirely within the
application, bypassing the usual eCos ISR and DSR mechanisms.

The architectural HAL does not provide any support for the interrupt controller management macros like HAL_INTERRUP-
T_MASK. These can only be implemented on a per-variant, per-processor or per-platform basis.

Exception Handling

Synchronous exception handling is done in much the same way as interrupt handling.

The details of exception handling vary from one variant to the next depending on the interrupt control mode. The architectural
HAL makes no attempt to cope with these differences, and it is the responsibility of the variants to provide more advanced
support. Otherwise if an exception needs to be handled in a very specific way then it is up to the application to install a suitable
VSR and handle the exception directly.

Stacks and Stack Sizes

cyg/hal/hal_arch.h defines values for minimal and recommended thread stack sizes, CYGNUM_HAL_S-
TACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPICAL. These values are specific to the current configura-
tion, and are affected mainly by options related to interrupt handling.

By default eCos uses a separate interrupt stack, although this can be disabled through the configuration option CYGIM-
P_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK. When an interrupt or exception occurs eCos will save the
context on the current stack and then switch to the interrupt stack before calling the appropriate ISR interrupt handler. This
means that thread stacks can be significantly smaller because there is no need to worry about interrupt handling overheads,
just the thread context. However switching the stack does require some extra work and hence increases the interrupt latency.
Disabling the interrupt stack removes this processing overhead but requires larger stack sizes. It depends on the application
whether or not this is a sensible trade off.

By default eCos does not allow nested interrupts, but this can be controlled via the configuration option CYGSEM_HAL_COM-
MON_INTERRUPTS_ALLOW_NESTING. Supporting nested interrupts requires larger thread stacks, especially if the separate
interrupt stack is also disabled. It may also require additional support from the variant and platform HALs. Note that at present
this support is not complete in any variant, so interrupt nesting is currently disabled.

The H8/300 is somewhat register-poor, and although the calling conventions are register-oriented, a lot of use is made of
stack space. In particular register contents must be spilled to the stack frequently, and the return address is pushed rather than

3106

H8/300 Architectural Support

ending up in a link register. To allow for this the recommended minimum stack sizes are a little bit larger than for some other
architectures. Variant HALs cannot directly affect these stack sizes.

Usually the H8/300 architectural HAL will provide a single block of memory which acts as both the startup and interrupt stack,
and there are configuration options to control the size of this block.

Thread Contexts and Setjmp/Longjmp

A typical thread context consists of the following:

1. The integer context. This consists of the data registers ER0 to ER6. The stack pointer register ER7 does not have to be
always saved explicitly since it is implicit in the pointer to the saved context.

The caller-save registers are ER0 to ER2, and the condition code register. The remaining registers are callee-save. The result
is passed back via ER0.

2. The condition code register, the program counter, and extended status register EXR on H8S. These are special because when
an interrupt occurs the hardware automatically pushes these onto the stack, but exactly what gets pushed depends on the
variant.

setjmp and longjmp only deal with the callee-save registers. The variant HAL package can override the default implemen-
tations if necessary.

When porting to a new H8/300 variant, the variant HAL must define a number of assembler-level macros to customize the
behaviour of the architecture HAL to the variant. These are too numerous to specify in detail here and the reader is directed
to look at the existing HAL ports for examples.

Bit Indexing

For performance reasons the HAL_LSBIT_INDEX and HAL_MSBIT_INDEX macros are implemented using functions con-
taining inline assembler. A variant HAL can override the default definitions if, for example, the variant has special instructions
to perform these operations.

Idle Thread Processing

The default HAL_IDLE_THREAD_ACTION implementation is a no-op. A variant HAL may override this, for example to
put the processor into sleep mode. Alternative implementations should consider exactly how this macro gets used in eCos
kernel code.

Clock Support

The architectural HAL cannot provide the required clock support because it does not know what timer hardware may be
available on the target hardware. Instead this is left to either the variant or platform HAL, depending on whether the processor
has a suitable on-chip timer or whether an off-chip timer has to be used.

HAL I/O

The H8/300 architecture does not have a separate I/O bus. Instead all hardware is assumed to be memory-mapped. Further it
is assumed that all peripherals on the memory bus are wired appropriately for a big-endian processor and that there is no need
for any byte swapping. Hence the various HAL macros for performing I/O simply involve pointers to volatile memory.

The variant, processor and platform equivalents of the cyg/hal/hal_io.h header will typically also provide details of
some or all of the peripherals, for example register offsets and the meaning of various bits in those registers.

Diagnostic Support

The architecture HAL provides an implementation of the SCI serial device that is common to all H8/300 microcontrollers.
However, it is the responsibility of the the variant or platform HAL to provide the register definitions and to instantiate the
devices by calling cyg_hal_plf_sci_init().

3107

H8/300 Architectural Support

SMP Support

The H8/300 port does not have SMP support.

Debug Support

The H8300 architectural HAL package provides basic support only for gdb stubs. There is no support for more advanced debug
features like hardware watchpoints. Trace-based single step is supported on the H8S variant.

Other Functionality

The H8/300 architectural HAL only implements the functionality provided by the eCos HAL specification and does not export
any extra functionality.

3108

Part LXXX. i386 Architecture

Table of Contents
315. I386 PC Support .. 3111

eCos Support for the i386 PC ... 3112
Setup .. 3113
Configuration ... 3116
The HAL Port .. 3120

316. STPC Atlas Support ... 3122
STPC Atlas Processor .. 3123

3110

Chapter 315. I386 PC Support

3111

I386 PC Support

Name
eCos Support for the i386 PC — Overview

Description
This document covers the eCos support for all i386 based PCs. This configuration of eCos should run on all i386/486/Pentium
motherboards and PC compatible embedded devices.

For typical eCos development, a RedBoot image is programmed onto a disk device and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
eCos runs the i386 CPU in 32-bit protected mode. The segment registers are initialized to provide a flat 32-bit address space
and the MMU is not enabled. Coherence between the cache and device memory is handled entirely by the hardware.

There is a serial driver CYGPKG_IO_SERIAL_GENERIC_16X5X which supports the 16X5X UARTs used by the PC. The
CYGPKG_IO_SERIAL_I386_PC package provides customization of this generic driver to the PC hardware. These devices
can be used by RedBoot for communication with the host. If any of these devices is needed by the application, either directly or
via the serial driver, then it cannot also be used for RedBoot communication. Another communication channel such as ethernet
should be used instead. The serial driver packages are loaded automatically when configuring for the PC target.

Supported Ethernet devices include the Intel i82559, Intel i82544, National Semiconductor DP83816 and RealTek RTL8139.
Each of these devices is supported by a generic device driver plus a package that customizes it to the PC hardware environment.

eCos manages the standard PC priority interrupt controller. PIT timer 0 is used to implement the eCos system clock and the
microsecond delay function. eCos assumes that the PCI bus will be configured by the BIOS.

Tools
The i386 port is intended to work with GNU tools configured for an i386-elf target. The original port was undertaken using
i386-elf-gcc version 3.2.1, i386-elf-gdb version 5.3, and binutils version 2.13.1.

3112

I386 PC Support

Name
Setup — Preparing a PC for eCos Development

Overview
In a typical development environment, the PC boots into the RedBoot monitor from a floppy disk. eCos applications are con-
figured for RAM startup and then downloaded and run on the board via the debugger i386-elf-gdb. Preparing for development
therefore involves writing a suitable RedBoot image onto a floppy disk.

The following RedBoot configurations are supported:

Configuration Description Use File

FLOPPY RedBoot booted from a flop-
py disk and running in the
bottom 640k of RAM

redboot_FLOPPY.ecm redboot_FLOPPY.bin

GRUB RedBoot loaded by the
GRUB bootloader into mem-
ory above 0x00100000

redboot_GRUB.ecm redboot_GRUB.bin

ROM RedBoot booted directly from
ROM (experimental and un-
supported)

redboot_ROM.ecm redboot_ROM.bin

FLOPPY_SMP RedBoot booted from a flop-
py disk and running in the
bottom 640k of RAM. This
version supports dual proces-
sor systems.

redboot_FLOPPY_SM-
P.ecm

redboot_FLOPPY_SM-
P.bin

GRUB_SMP RedBoot loaded by the
GRUB bootloader into mem-
ory above 0x00100000. This
version supports dual proces-
sor systems.

redboot_GRUB_SMP.ecm redboot_GRUB_SMP.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. RedBoot also supports ethernet
communication and flash management.

Initial Installation

Floppy Installation

RedBoot takes the form of a self-booting image that must be written onto a formatted floppy disk. The process will erase any
file system or data that already exists on that disk, so proceed with caution.

For Red Hat Linux users, writing the RedBoot image to floppy disk this can be achieved using the following command:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0H1440

For Windows users with recent versions of Cygwin, the raw floppy device should be accessible as /dev/fd0. Users with
older versions of Cygwin may need to mount the floppy drive explicitly using the command:

$ mount -f -b //./a: /dev/fd0

To actually install the boot image on the floppy under Cygwin, use the command:

$ dd conv=sync if=install/bin/redboot.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot from A: by
default. On reset, the PC will boot from the floppy and the target will be ready for GDB debug sessions via either serial line,
or the ethernet interface if it is installed.

3113

I386 PC Support

NOTE

Unreliable floppy media may cause the write to silently fail. This can be determined if the RedBoot image does not
correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the fdformat command
on Linux, or format a: /u on DOS/Windows.

VMWare Installation

The PC platform HAL may also be run under VMWare (Player, Server, etc). This can provide an initial development envi-
ronment using simulated i386 PC hardware. The setup is similar to a floppy installation. However no IDE devices should be
included in the guest definition due to issues with VMWare. The AMD Lance ethernet device is also recommended as the
mechanism to communicate to the simulated PC hardware. The remainder of this sub-section describes how to set up a suitable
virtual machine under VMWare that will be bootstrapped by RedBoot and allow for debugging of i386 PC applications either
over the network or using serial communications.

First create a RedBoot floppy bootstrap image with the AMD Lance ethernet device included:

% ecosconfig new pc_vmWare redboot
% ecosconfig import $ECOS_REPOSITORY/hal/i386/pc/VERSION/misc/redboot_FLOPPY.ecm
% ecosconfig tree
% make

Create a VMWare virtual machine definition with no SCSI or IDE interfaces, 1MB memory, a single serial interface to a file,
NAT Network adaptor and a floppy. Copy the redboot.bin you created above into place on the VMWare host and point
the floppy image to this file. Example .vmx and .vmxf files for this configuration may be found in the misc subdirectory
of the PC hal ($ECOS_REPOSITORY/packages/hal/i386/pc/). You may use other types of Network connections or
serial ports as required.

To configure the Network connection to be an AMD Lance ethernet, you must edit the .vmx if you created your own VM
definition and set ethernet0.virtualDev to vlance.

Note

The example .vmx file is intended for a Windows VMWare host so the setting serial0.fileName also must
be adjusted accordingly.

If you intend to develop on a different host from the VMWare host, you may also wish to set up a NAT port forward from the
VMWare host to the PC running RedBoot. An example Linux nat.conf NAT configuration file may also be found in the
misc directory. For Windows, the Virtual Network Editor is recommended.

When the VM is powered on in this configuration, you will be able to download and debug executables through either the
network connection or through the virtualised serial port using RedBoot.

GRUB Installation

If RedBoot is built with the GRUB startup type, it is configured to be loaded by the GRUB bootloader.

GRUB is an open source boot loader that supports many different operating systems. It is available from http://www.gnu.org/
software/grub. The latest version of GRUB should be downloaded from there and installed. GRUB is now the default bootloader
for most Linux distributions and therefore is already installed in many systems.

To install GRUB on a floppy disk from Linux you need to execute the following commands, with a fresh floppy diskette in
the main drive:

$ mformat a:
$ mount /mnt/floppy
$ grub-install --root-directory=/mnt/floppy '(fd0)'
Probing devices to guess BIOS drives. This may take a long time.
Installation finished. No error reported.
This is the contents of the device map /mnt/floppy/boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script `grub-install'.

3114

http://www.gnu.org/software/grub
http://www.gnu.org/software/grub

I386 PC Support

(fd0) /dev/fd0
$ cp $ECOS_REPOSITORY/packages/hal/i386/pc/current/misc/redboot_menu.lst /mnt/floppy/boot/grub/menu.lst
$ umount /mnt/floppy

The file redboot_menu.lst is a GRUB menu configuration file. It contains a menu item to load RedBoot from the floppy
diskette. Alternatively you can use the command-line interface of GRUB to input commands yourself.

To install RedBoot on the diskette, execute the following command:

$ mcopy redboot_GRUB.img a:/boot/redboot

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot from A: by
default. On reset, the PC will boot from the floppy into GRUB which will display its Boot Menu. If left for 30 seconds it will
boot into RedBoot automatically. However, typing a return on the keyboard will cause it to boot RedBoot immediately.

To install GRUB on a hard disk, refer to the GRUB documentation. Be warned, however, that if you get this wrong it may
compromise any existing bootloader that exists on the hard disk and may make any other operating systems unbootable. Practice
on floppy disks or sacrificial hard disks first. On machines already running a GRUB-booted Linux you can just add your own
menu items to the /boot/grub/menu.lst file that already exists.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is achieved most conveniently at the command line. The steps
needed to rebuild the the FLOPPY version of RedBoot for the PC are:

$ mkdir redboot_pc_floppy
$ cd redboot_pc_floppy
$ ecosconfig new TARGET redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/i386/pc/VERSION/misc/redboot_FLOPPY.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

When following the above instructions, the user should adopt one of i386 PC target names detailed in the following section
to build RedBoot with support for a specific ethernet adapter. At the end of the build the install/bin subdirectory should
contain the file redboot.bin.

The steps needed to rebuild the the GRUB version of RedBoot for the PC are:

$ mkdir redboot_pc_grub
$ cd redboot_pc_grub
$ ecosconfig new pc redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/i386/pc/current/misc/redboot_GRUB.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.img..

3115

I386 PC Support

Name
Configuration — Platform-specific Configuration Options

Overview
The PC platform HAL package is loaded automatically when eCos is configured for a pc target. It should never be necessary
to load this package explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The PC platform HAL package accommodates four separate startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot running in low
memory and boots into that initially. i386-elf-gdb is then used to load a RAM startup application into memory above
0x00200000 and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the appli-
cation will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

FLOPPY

This startup type can be used for finished applications which will be loaded from a floppy disk by the BIOS. The application
will be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization. Such applications are limited to running only within the bottom 640k of RAM.

GRUB

This startup type can be used for finished applications which can be loaded using the GRUB boot loader. The application
will be self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization. These applications are loaded above the 0x00100000 boundary and therefore have all
of the upper RAM area available.

The load address for GRUB applications is 0x00108000 while that for RAM applications is 0x00200000. This allows a
GRUB-loaded RedBoot to occupy the first 1MB of upper memory and while allowing RAM applications to be loaded
beyond the second 1MB boundary, avoiding any potential clashes.

ROM

This startup type can be used for eCos applications booting directly from ROM. The ROM startup code for the i386 PC
target is experimental at present and ROM startup is therefore unsupported in this release.

Floppy Startup Installation
If an application is built with a startup type of FLOPPY, then it is configured to be a self-booting image that must be written
onto a formatted floppy disk. This will erase any existing file system or data that is already on the disk, so proceed with caution.

To write an application to floppy disk, it must first be converted to a pure binary format. This is done with the following
command:

$ i386-elf-objcopy -O binary app.elf app.bin

Here app.elf is the final linked application executable, in ELF format (it may not have a .elf extension). The file app.bin
is the resulting pure binary file. This must be written to the floppy disk with the following command:

$ dd conv=sync if=app.bin of=/dev/fd0

Insert this floppy in the A: drive of the PC to be used as a target and ensure that the BIOS is configured to boot from A: by
default. On reset, the PC will boot from the floppy and the eCos application will load itself and execute immediately.

3116

I386 PC Support

NOTE

Unreliable floppy media may cause the write to silently fail. This can be determined if the application image
does not correctly boot. In such cases, the floppy should be (unconditionally) reformatted using the fdformat
command on Linux, or format a: /u on DOS/Windows. If this fails, try a different disk.

GRUB Bootloader Support (version 0.97)
If an application is built with the GRUB startup type, it is configured to be loaded by the GRUB bootloader.

GRUB is an open source boot loader that supports many different operating systems. It is available from http://www.gnu.org/
software/grub. The latest version of GRUB should be downloaded from there and installed. GRUB is now the default bootloader
for Linux and therefore is already installed in many installations.

To install GRUB on a floppy disk from Linux you need to execute the following commands:

$ mformat a:
$ mount /mnt/floppy
$ grub-install --root-directory=/mnt/floppy '(fd0)'
Probing devices to guess BIOS drives. This may take a long time.
Installation finished. No error reported.
This is the contents of the device map /mnt/floppy/boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script `grub-install'.

(fd0) /dev/fd0
$ cp $ECOS_REPOSITORY/packages/hal/i386/pc/VERSION/misc/menu.lst /mnt/floppy/boot/grub
$ umount /mnt/floppy

The file menu.lst is an example GRUB menu configuration file. It contains menu items to load some of the standard eCos
tests from floppy or from partition zero of the first hard disk. You should, of course, customize this file to load your own
application. Alternatively you can use the command-line interface of GRUB to input commands yourself.

Applications can be installed, or updated simply by copying them to the floppy disk at the location expected by the menu.lst
file. For booting from floppy disks it is recommended that the executable be stripped of all debug and symbol table information
before copying. This reduces the size of the file and can make booting faster.

To install GRUB on a hard disk, refer to the GRUB documentation. Be warned, however, that if you get this wrong it may
compromise any existing bootloader that exists on the hard disk and may make any other operating systems unbootable. Practice
on floppy disks or sacrificial hard disks first. On machines already running a GRUB-booted Linux you can just add your own
menu items to the /boot/grub/menu.lst file that already exists.

NOTE

Certain distributions of Linux, including Red Hat Linux, supply a version of GRUB which references a configu-
ration file named grub.conf rather than menu.lst.

GRUB 2 Bootloader Support (version 1.98)
If an application is built with the GRUB startup type, it is configured to be loaded by the GRUB bootloader.

GRUB 2 is an open source boot loader that supports many different operating systems. GRUB 2 is the sucessor to the legacy
GRUB boot loader. It has been rewritten and requires a new configuration file that is different from the legacy GRUB loader.
It is available from http://www.gnu.org/software/grub. The latest version of GRUB should be downloaded from there and
installed. Cygwin users will need to install the GRand Unified Bootloader package on their system.

To install GRUB 2 on a disk drive from Cygwin you will first need to format your disk. Begin by launching a windows Com-
mand Prompt with ADMINISTRATOR priviledges. This example assumes that your destination drive is E and the filesystem
type is FAT32.

$ format e: /fs:fat32 /q

3117

http://www.gnu.org/software/grub
http://www.gnu.org/software/grub
http://www.gnu.org/software/grub

I386 PC Support

The type of the file system is FAT32.
WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE E: WILL BE LOST!
Proceed with Format (Y/N)? y
QuickFormatting 512M
Initializing the File Allocation Table (FAT)...
Volume label (11 characters, ENTER for none)?
Format complete.

When your drive is finished formatting, Cygwin will automatically mount the drive under /cygdrive/e. Next, launch a bash
shell. Cygwin users should run their shell as ADMINISTRATOR otherwise the grub-install program will fail. To install GRUB
we need to know the device name for your disk. A second disk drive is usually called /dev/sdb. The C: drive is usually called /
dev/sda. Determine your device name by reading the /proc/partitions file. This example uses /dev/sdb as input to the GRUB
install program.

$ cat /proc/partitions
major minor #blocks name
 8 0 156290904 sda
 8 1 102400 sda1
 8 2 156185600 sda2
 8 16 156290904 sdb
 8 17 524288 sdb1

$ grub-install --root-directory=/cygdrive/e /dev/sdb
Installation finished. No error reported.

$ cp $ECOS_REPOSITORY/packages/hal/i386/pc/current/misc/grub.cfg /cygdrive/e/boot/grub

$ cp redboot.elf /cygdrive/e/boot

After installing GRUB 2, we need to a copy a configuration file for grub to use. The file grub.cfg is an example configuration
file that loads redboot.elf. You should, of course, customize this file to load your own application. Alternatively you can use
the command-line interface of GRUB to input commands yourself. Applications can be installed or updated simply by copying
them to the location expected by the grub.cfg file. In this example the /boot directory is used.

When installing GRUB on a hard disk, refer to the GRUB documentation. Be warned, however, that if you get this wrong it
may compromise any existing bootloader that exists on the hard disk and may make any other operating systems unbootable.
Practice on a spare disk or sacrificial hard disks first.

Debugging FLOPPY and GRUB Applications
When RedBoot loads an application it also provides debugging services in the form of GDB remote protocol stubs. When an
application is loaded stand-alone from a floppy disk, or by GRUB, these services are not present. To allow these application
to be debugged, it is possible to include GDB stubs into the application.

To do this, set the "Support for GDB stubs" (CYGDBG_HAL_DEBUG_GDB_INCLUDE_STUBS) configuration option. Fol-
lowing this any application built will allow GDB to connect to the debug serial port (by default serial device 0, also known
as COM1) whenever the application takes an exception, or if a Control-C is typed to the debug port. Ethernet debugging is
not supported.

The option "Enable initial breakpoint" (CYGDBG_HAL_DEBUG_GDB_INITIAL_BREAK) causes the HAL to take a break-
point immediately before calling cyg_start(). This gives the developer a chance to set any breakpoints or inspect the system
state before it proceeds. The configuration sets this option by default if GDB stubs are included, and this is not a RedBoot
build. To make the application execute immediately either disable this option, or disable CYGDBG_HAL_DEBUG_GDB_IN-
CLUDE_STUBS.

RedBoot and Virtual Vectors
If the application is intended to act as a monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a monitor, via the eCos virtual vector mechanism, then the
configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building for

3118

I386 PC Support

a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained, as
a testing step before switching to FLOPPY or GRUB startup.

If the application does not rely on a monitor for diagnostic services then the serial port will be claimed for HAL diagnostics.

Ethernet Drivers
eCos is designed to support typical embedded development and production boards. These usually have a fixed set of hardware
devices which are either on-chip or are soldered to the board. The PC target is unusual in that is does not have a fixed ethernet
device, instead a variety PCI ethernet cards may be installed in the PCI card slots.

eCos supports different ethernet cards by defining a separate target configuration for each supported device. An instance of
eCos or RedBoot configured to use one device will not work with a different ethernet device installed. The following table
lists the targets and driver packages for the supported devices.

Device Target Driver Packages Cards

Intel i82559 pc_i82559 CYGPKG_DEVS_ETH_INTEL_I82559,
CYGPKG_DEVS_ETH_I386_PC_I82559

Intel Pro 10/100

RealTek RTL8139 pc_rltk8139 CYGPKG_DEVS_ETH_RLTK_8139,
CYGPKG_DEVS_ETH_I386_PC_RLTK8139

D-Link
DFE-538TX

National Semiconductor
DP83816

pc_dp83816 CYGPKG_DEVS_ETH_NS_DP83816,
CYGPKG_DEVS_ETH_I386_PC_DP83816

Netgear FA311

Intel i82544 pc_i82544 CYGPKG_DEVS_ETH_INTEL_I82544,
CYGPKG_DEVS_ETH_I386_PC_I82544

Intel Pro 1000

AMD Lance PCNet32 pc_vmWare CYGPKG_DEVS_ETH_AMD_LANCEPCI,
CYGPKG_DEVS_ETH_I386_PC_LANCEPCI

VMWare vlance

Entries in the cards column are examples only. There are for example many cards that contain the RealTek RTL8139 or a
compatible device. Also be aware that manufacturers may change the device on a particular card to a totally different one
without changing the model number.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are no i386 specific
flags that need to be specified for a PC platform.

3119

I386 PC Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the PC hardware, and should be read
in conjunction with that specification. The PC platform HAL package complements the i386 architectural HAL. It provides
functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the on-chip peripherals that are used by eCos. There is an
exception for RAM startup applications which depend on a monitor for certain services.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Low RAM This is the original 640KB of PC RAM between 0x00000000 and 0x000a0000. For FLOPPY startup
this is all the RAM that is available since the BIOS operations used to load the executable off the
diskette can only write to this memory region.

The lower few K bytes of this region are allocated to special uses as follows:

Base Size Purpose

0x00000000 0x1000 The BIOS stores various system parameters in this area, and it is
left untouched in case these values are of use.

0x00001000 0x800 The Interrupt Descriptor Table (IDT). Space for a full sized 256
entry table is left, although a full size table is not normally creat-
ed.

0x00001800 0x400 The Vector Service Routine (VSR) table. There is space here for
256 entries, matching the IDT, although not all will be used.

0x00001c00 0x400 The Virtual Vector Table. This is used to pass control between
RedBoot and the application for access to services and debug-
ging.

0x00002000 0x1000 This area is used in SMP configurations to start up and synchro-
nize the slave CPUs. It is unused in non-SMP configurations.

0x00003000 0xbd000 Any FLOPPY startup application will load itself at 0x00003000
and use RAM up to the 0x000a0000 boundary. In RAM and
GRUB startup configurations this area is unused.

Reserved Region The region between 0x000a0000 and 0x00100000 is reserved for ROMs, devices and display memory.
The only thing of real interest here is the character display buffer at 0x000B8000.

Main Memory The region above 0x00100000 is the main memory area. This is where RAM and GRUB startup
applications are loaded. The upper limit of this region depends on the amount of RAM fitted and is
determined at runtime by querying the BIOS.

PCI Devices The exact memory region used to map PCI devices is largely dependent on the BIOS, but is usually
placed above the 0xD0000000 boundary. Drivers for PCI devices will usually determine the location
of any device memory regions by querying the device configuration.

IO Ports The i386 architecture defines a separate address space for IO device registers. These are accessed by
the IO instructions. All the standard PC devices are available in this space, and any PCI devices that

3120

I386 PC Support

define IO ports will also be allocated here by the BIOS. In eCos these ports are accessed using the
HAL_READ_XXX() and HAL_WRITE_XXX() macros defined in the hal_io.h header.

SMP Support
The i386 HAL contains support for Symmetric Multi-Processing (SMP). The HAL expects the machine to be running under
a multiprocessor-aware BIOS and expects to find an MP configuration table from which to configure itself. The HAL also
switches over to using the per-CPU APICs and the shared IOAPIC for interrupt control in preference to the standard PIC.

SMP support in eCos is enabled by setting the CYGPKG_KERNEL_SMP_SUPPORT configuration option. This will cause the
HAL-level support to be enabled. If applications are to be run under RedBoot then an SMP-aware RedBoot must be used. The
FLOPPY_SMP and GRUB_SMP configurations of RedBoot supply this.

Other Issues
The PC platform HAL does not affect the implementation of other parts of the eCos HAL specification. The generic i386
variant HAL, and the I386 architectural HAL documentation should be consulted for further details.

3121

Chapter 316. STPC Atlas Support

3122

STPC Atlas Support

Name
CYGPKG_HAL_I386_STPC_ATLAS — eCos Support for the STPC Atlas Processor

Description
The STPC Atlas is an x86 core PC compatible system-on-chip intended for embedded applications. The central processor is
largely 486-compatible and can run at up to 133MHz. The chip includes an integrated SDRAM controller, a VGA/SVGA
graphics controller with TFT panel support, two serial ports, a parallel port, keyboard, mouse and USB host interfaces, support
for PCI, PCMCIA and ISA buses as well as a local bus, and interrupt controller, timers, and DMA engines as per the standard
PC architecture.

The STPC Atlas variant HAL package CYGPKG_HAL_I386_STPC_ATLAS provides support for all platforms based around
this chip. It complements the I386 architectural HAL CYGPKG_HAL_I386. An eCos configuration for an STPC Atlas-based
platform should also include a platform HAL package to support board-level details like the nature of the external memory
chips.

Configuration
The STPC Atlas variant HAL package should be loaded automatically when eCos is configured for appropriate target hardware.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

The package does not contain any configuration options.

The HAL Port
This section describes how the STPC Atlas variant HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and platform HAL documentation.

HAL I/O

The cyg/hal/var_io.h header provides definitions for the on-chip peripherals. This header file is automatically includ-
ed by the architectural cyg/hal/hal_io.h so other packages and application code will usually only include the latter.
It is also necessary to include cyg/hal/hal_intr.h. The definitions largely follow the STPC documentation, so for ex-
ample the ISA Port_B register has a definition HAL_STPC_ATLAS_Port_B, and there also definitions HAL_STPC_AT-
LAS_Port_B_PE and HAL_STPC_ATLAS_Port_B_SE for the PE and SE bits.

STPC Atlas registers can be accessed in a variety of ways. Some of them can be accessed directly via the x86 in and out
instructions, and the eCos macros HAL_READ_UINT8, HAL_WRITE_UINT8, etc. can be used for these. However there are
also memory-mapped registers, registers accessed indirectly via the IDX and DATA registers, local bus registers, PCI registers,
and so on. In an attempt to reduce confusion various suffixes are used, and in some cases utility macros are provided to access
the registers:

Type Suffix Size Access using

Normal I/O port None 8, 16 or 32 HAL_READ_UINT8, HAL_WRITE_UINT8
etc.

Indexed via 0x22/0x23 _IDX 8 bits HAL_STPC_ATLAS_READ_IDX and
HAL_STPC_ATLAS_WRITE_IDX

Host bus _HB 32 bits HAL_STPC_ATLAS_READ_HB and
HAL_STPC_ATLAS_WRITE_HB

Local bus _LB 16 bits HAL_STPC_ATLAS_READ_LB and
HAL_STPC_ATLAS_WRITE_LB

PC _PCI 32 bits HAL_STPC_ATLAS_READ_PCI and
HAL_STPC_ATLAS_WRITE_PCI

3123

STPC Atlas Support

Type Suffix Size Access using

PCMCIA _PCMCIA 8 bits HAL_STPC_ATLAS_READ_PCMCIA and
HAL_STPC_ATLAS_WRITE_PCMCIA

Memory _MEM 32 bits as C pointers

Accessing IDX, HB, LB, PCI and PCMCIA registers involves non-atomic sequences of operations so to avoid concurrency
problems the associated macros briefly disable interrupts. If this is known to be unnecessary, for example because the rele-
vant code runs during system initialization before interrupts are enabled, then INTS_UNSAFE variants of the macros such as
HAL_STPC_ATLAS_READ_IDX_INTS_UNSAFE can be used instead.

Interrupts

The STPC Atlas variant HAL provides default implementations of the HAL macros related to the interrupt controller:
HAL_INTERRUPT_ACKNOWLEDGE, HAL_INTERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_CON-
FIGURE and HAL_INTERRUPT_SET_LEVEL. The platform HAL can override these definitions if platform-specific macros
are more appropriate. It is up to the platform HAL to define the interrupt vector numbers. The SET_LEVEL macro is a no-
op so there is no support for prioritizing interrupts.

Clock and Profiling Support

The STPC Atlas variant HAL provides default definitions of the clock-related macros HAL_CLOCK_INITIALIZE,
HAL_CLOCK_RESET, HAL_CLOCK_READ and HAL_CLOCK_LATENCY. The implementation uses the processor's PIT0
timer since that is the only on-chip timer which can generate interrupts. The platform HAL determines the default clock fre-
quency, and can override any of these definitions if required. If the variant HAL clock macros should be used then the platform
HAL should implement the CDL interface CYGINT_HAL_I386_STPC_ATLAS_STANDARD_CLOCK.

When the variant HAL's clock macros are enabled the package will also provide profiling timer support.

Idle Thread Processing

The variant HAL defines a macro HAL_IDLE_THREAD_ACTION which gets invoked automatically by the kernel's idle
thread. This macro executes a hlt instruction, suspending the CPU until the next interrupt and thus reducing power consump-
tion. The platform HAL can override this definition if necessary.

Other Functionality

The variant HAL defines a HAL_PLATFORM_RESET macro which resets the processor using functionality provided by the
STPC Atlas' keyboard/mouse controller. It also provides a HAL_DELAY_US macro which works in terms of a simple busy
loop, so it does not depend on PIT0 having been started.

The implementation of other parts of the HAL specification is unaffected, and no additional functionality is provided.

3124

Part LXXXI. M68000 /
ColdFire Architecture

Table of Contents
317. M68000 / ColdFire Architectural Support ... 3127

Overview ... 3128
Configuration ... 3130
The HAL Port .. 3132

318. Freescale MCFxxxx Variant Support ... 3137
MCFxxxx ColdFire Processors .. 3138

319. Freescale MCF5272 Processor Support .. 3143
The MCF5272 ColdFire Processor ... 3144

320. Freescale M5272C3 Board Support ... 3146
Overview ... 3147
Setup .. 3148
Configuration ... 3152
The HAL Port .. 3154

321. Freescale MCF5275 Processor Support .. 3156
The MCF5275 ColdFire Processor Family ... 3157

322. Freescale MCF5282 Processor Support .. 3161
The MCF5282 ColdFire Processor ... 3162

323. Freescale M5282EVB Board Support .. 3165
Overview ... 3166
Setup .. 3168
Configuration ... 3171
The HAL Port .. 3173

324. Freescale M5282LITE Board Support .. 3175
Overview ... 3176
Setup .. 3178
Configuration ... 3181
The HAL Port .. 3184

325. SSV DNP/5280 Board Support ... 3186
Overview ... 3187
Setup .. 3190
Configuration ... 3193
The HAL Port .. 3195

326. Motorola MCF521x Processor Support .. 3197
The MCF521x ColdFire Processor Family ... 3198

327. Motorola M5213EVB Board Support .. 3202
M5213EVB Board .. 3203

328. Freescale M5208EVBe Platform HAL ... 3212
Overview ... 3213
Setup .. 3215
Configuration ... 3219
Test Programs .. 3221

329. Motorola MCF532x Processor Support .. 3222
The MCF532x ColdFire Processor Family ... 3223

330. senTec Cobra5329 Board Support ... 3226
Overview ... 3227
Setup .. 3230
Configuration ... 3236

331. Motorola MCF520x Processor Support .. 3238
The MCF520x ColdFire Processor Family ... 3239

3126

Chapter 317. M68000 / ColdFire
Architectural Support

3127

M68000 / ColdFire Architectural Support

Name
Overview — eCos Support for the M68K Family of Processors

Description
The original Motorola 68000 processor was released in 1979, and featured the following:

• Eight general purpose 32-bit data registers, %D0 to %D7. Seven 32-bit address registers %A0 to %A6, with %A7 dedicated
as the stack pointer. A 16-bit status register.

• A linear address space, limited to 24-bits because the chip package only had 24 address pins. Hence the processor could
address 16 megabytes of memory.

• No separate address space for I/O operations. Instead devices are accessed just like memory via the main address and data
buses.

• 16-bit external data bus, even though the data registers were 32 bits wide.

• A CISC variable-length instruction set with no less than 14 different addressing modes (although of course the terms RISC
and CISC were not yet in common use).

• Separate supervisor and user modes. The processor actually has two distinct stack pointer registers %A7, and the mode
determines which one gets used.

• An interrupt subsystem with support for vectored and prioritized interrupts.

The 68000 processor was used in several microcomputers of its time, including the original Apple Macintosh, the Commodore
Amiga, and the Atari ST. Over the years numerous variants have been developed. The core instruction set has remained essen-
tially unchanged. Some of the variants have additional instructions. The development of MMUs led to changes in exception
handling. In more recent variants, notably the Freescale ColdFire family, some infrequently used instructions and addressing
modes have been removed.

• The 68008 reduced the widths of the external data and address buses to 8 bits and 20 bits respectively, giving the processor
slow access to only one megabyte.

• The 68010 (1982) added virtual memory support.

• In the 68020 (1984) both the address and data buses were made 32-bits wide. A 256-byte instruction cache was added, as
were some new instructions and addressing modes.

• The 68030 (1987) included an on-chip mmu and a 256-byte data cache.

• The 68040 (1991) added hardware floating point (previous processors relied on an external coprocessor or on software
emulation). It also had larger caches and an improved mmu.

• The 68060 (1994) involved an internally very different superscalar implementation of the architecture, but few changes at
the interface level. It also contained support for power management.

• There have been numerous 683xx variants for embedded use, with on-chip peripherals like UARTs and timers. The cpu core
of these variants is also known as cpu32.

• The MCFxxxx ColdFire series (1995) resembles a stripped-down 68060, with some instructions and addressing modes
removed to allow for a much smaller and more efficient implementation. Various hardware units such as the and FPU and
MMU have become optional.

eCos only provides support for some of these variants, although it should be possible to add support for additional variants
with few or no changes to the architectural HAL package.

The architectural HAL provides support for those features which are common to all members of the 68000 and ColdFire
families, and for certain features which are present on some but not all members. A typical eCos configuration will also contain:

3128

M68000 / ColdFire Architectural Support

a variant HAL package with support code for a family of processors, for example MCFxxxx; possibly a processor HAL package
with support for one specific processor, for example the MCF5272; and a platform HAL which contains the code needed for
a specific hardware platform such as the m5272c3.

3129

M68000 / ColdFire Architectural Support

Name
Options — Configuring the M68K Architectural Package

Loading and Unloading the Package
The M68K architectural HAL package CYGPKG_HAL_M68K should be loaded automatically when eCos is configured for
M68K-based target hardware. It should never be necessary to load this package explicitly. Unloading the package should only
happen as a side effect of switching target hardware. CYGPKG_HAL_M68K serves primarily as a container for lower-level
HALs and has only a small number of configuration options.

Stacks
By default the architectural HAL provides a single block of memory to act as both the startup stack and the interrupt stack.
The variant, processor or platform HAL may override this. For example if there are several banks of RAM with different
performance characteristics it may be desirable to place the interrupt stack in fast RAM rather than in ordinary RAM.

The assembler startup code sets the stack pointer to the startup stack before switching to C code. This stack used for all HAL
initialization, running any C++ static constructors defined either by eCos or by the application, and the cyg_start entry
point. In configurations containing the eCos kernel cyg_start will enable interrupts, activate the scheduler and threads will
then run on their own stacks. In non-kernel single-threaded applications the whole system continues to run on the startup stack.

When an interrupt occurs the default behaviour is to switch to a separate interrupt stack. This behaviour is controlled by
the common HAL configuration option CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK. It reduces the
stack requirements of all threads in the system, at the cost of some extra instructions during interrupt handling. In kernel
configurations the startup stack is no longer used once the scheduler starts running so its memory can be reused for the interrupt
stack. To handle the possibility of nested interrupts the interrupt handling code will detect if it is already on the interrupt stack,
so in non-kernel configurations it is also safe to use the same area of memory for both startup and interrupt stacks. This leads
to the following scenarios:

1. If interrupt stacks are enabled via CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK and the interrupt
stack is not provided by the variant, processor or platform HAL then a single block of memory will be used for both startup
and interrupt stacks. The size of this block is determined by the common HAL configuration option CYGNUM_HAL_COM-
MON_INTERRUPTS_STACK_SIZE, with a default value CYGNUM_HAL_DEFAULT_INTERRUPT_STACK_SIZE pro-
vided by the M68K architectural HAL.

2. If the use of an interrupt stack is disabled then the M68K architectural HAL will provide just the startup stack, unless this
is done by the variant, processor or platform HAL. The size of the startup stack is controlled by CYGNUM_HAL_M68K_S-
TARTUP_STACK_SIZE.

3. Otherwise the interrupt and/or startup stacks are provided by other packages and it is up to those packages to provide
configuration options for setting the sizes.

Floating Point Support
There are many variants of the basic M68K architecture. Some of these have hardware floating point support. Originally this
came in the form of a separate 68881 coprocessor, but with modern variants it will be part of the main processor chip. If the
processor does not have hardware floating point then software emulation will be used instead.

If the processor on the target hardware has a floating point unit then the variant or processor HAL will implement the CDL
interface CYGINT_HAL_M68K_VARIANT_FPU. This allows the architectural HAL and other packages to do the right thing
on different hardware.

Saving and restoring hardware floating point context increases interrupt and dispatch latency, code size, and data size. If the
application does not actually use floating point then these overheads are unnecessary, and can be suppressed by disabling the
configuration option CYGIMP_HAL_M68K_FPU_SAVE. Some applications do use floating point but only in one thread. In
that scenario it is also unnecessary to save the floating point context during interrupts and context switches, so the configuration
option can be disabled.

3130

M68000 / ColdFire Architectural Support

The exact behaviour of the hardware floating point unit is determined by the floating point control register %fpcr. By default
this is initialized to 0, giving IEE754 standard behaviour, but another initial value can be specified using the configuration option
CYGNUM_HAL_M68K_FPU_CR_DEFAULT. For details of the various bits in this control register see appropriate hardware
documentation. eCos assumes that the control register does not change on a per-thread basis and hence the register is not saved
or restored during interrupt handling or a context switch.

Warning

At the time of writing eCos has not run on an M68K processor with hardware floating point so the support for
this is untested.

Other Options
There are configuration options to change the compiler flags used for building this packages. The M68K architectural HAL
package does not define any other configuration options that can be manipulated by the user. It does define a number of inter-
faces such as CYGINT_HAL_M68K_USE_STANDARD_PLATFORM_STUB_SUPPORT which can be used by lower levels
of the M68K HAL hierarchy to enable certain functionality within the architectural package. Usually these are of no interest
to application developers.

3131

M68000 / ColdFire Architectural Support

Name
HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto M68K hardware, and should be read
in conjunction with that specification. It also describes how variant, processor and platform HALs can modify the default
behaviour.

eCos support for any given target will involve either three or four HAL packages: the architectural HAL, the platform HAL,
the variant HAL, and optionally a processor HAL. This package, the architectural HAL, provides code and definitions that
are applicable to all M68K processors. The platform HAL provides support for one specific board, for example an M5272C3
evaluation board, or possibly for a number of almost-identical boards. The processor HAL, if present, serves mainly to provide
details of on-chip peripherals including the interrupt controller. The variant HAL provides functionality that is common to
a group of processors, for example all MCFxxxx processors have very similar UARTs and hence can share HAL diagnostic
code. There is no fixed specification of what should go into the variant HAL versus the processor HAL. For simplicity the
description below only refers to variant HALs, but the work may actually happen in a processor HAL instead.

As a design goal lower-level HALs can always override functionality that is normally provided higher up. For example the
architectural HAL will provide the required eCos HAL_LSBIT_INDEX and HAL_MSBIT_INDEX macros, but these can be
provided lower down instead. Many but not all ColdFire processors have the ff1 and bitrev instructions which allow for
a more efficient implementation than the default architectural ones. In some areas such as handling context switching the
architectural HAL will usually provide the basic functionality but it may be extended by lower HALs, for example to add
support for the multiply-accumulate units present in certain ColdFire processors.

The architectural HAL provides header files cyg/hal/hal_arch.h, cyg/hal/hal_intr.h, cyg/hal/
hal_cache.h, cyg/hal/hal_io.h and cyg/hal/arch.inc. These automatically include an equivalent header file
from the variant HAL, for example cyg/hal/var_arch.h. The variant HAL header will in turn include processor and
platform-specific headers. This means that application developers and other packages can simply include the architectural
HAL headers without needing to know about variants or platforms. It also allows the variant and platform HALs to override
architectural settings.

The port assumes that eCos and application code always runs in supervisor mode, with full access to all hardware and special
registers.

Data Types

For eCos purposes all M68K processors are big-endian and 32-bit, so the default data types in cyg/infra/cyg_type.h
are used. Some variants have external bus widths less than 32-bit, but this does not affect the architectural HAL.

When porting to another variant it is possible to override some or all of the type definitions. The variant HAL needs to implement
the CDL interface CYGINT_HAL_M68K_VARIANT_TYPES and provide a header file cyg/hal/var_basetype.h.

Startup and Exception Vectors

The conventional bootstrap mechanism involves a table of exception vectors at the base of memory. The first two words of
this table give the initial program counter and stack pointer. In a typical embedded system the hardware is arranged such that
non-volatile flash memory is found at location 0x0 so it is the start of flash that contains the exception vectors and the boot
code. The table of exception vectors is used subsequently for interrupt handling and for hardware exceptions such as attempts
to execute an illegal instruction. There are a number of common scenarios:

1. On systems with very limited memory flash may remain mapped at location 0 and the table of exception vectors remains
mapped there as well. The M68K architecture defines the table to have 256 entries and hence it occupies 1K of memory,
but in reality many of the entries are unused so part of the table may get used for code instead. Since the whole exception
vector table is in read-only memory parts of the eCos interrupt and exception handling mechanisms have to be statically
initialized and macros like HAL_VSR_SET are not available.

2. As a minor variation of the previous case, flash remains at location 0 but the table of exception vectors gets remapped
elsewhere in the address space, usually RAM. This allows HAL_VSR_SET to operate normally but at the cost of increased

3132

M68000 / ColdFire Architectural Support

memory usage. The exception vector table in flash only contains two entries, for the initial program counter and stack
pointer. The exception vector table in RAM typically gets initialized at run-time.

3. On systems with more memory it is conventional to rearrange the address map during bootstrap. The flash gets relocated,
typically to near the end of the address space, and RAM gets placed at location 0 instead. The exception vector table stays
at location 0 but is now in RAM and gets initialized at run-time. The bootstrap exception vector table in flash again only
needs two entries. A variation places the RAM elsewhere in the address space and moves the exception vector table there,
leaving location 0 unused. This provides some protection against null pointer accesses in errant code.

As a further complication, larger systems typically support different startup types. The application can be linked against
a ROM startup configuration and placed directly in flash, as before. Alternatively there may be a ROM monitor such as
RedBoot in the flash, taking care of initial bootstrap. The user's application is linked against a RAM startup configuration,
loaded into RAM via the ROM monitor, and debugged using functionality provided by the ROM monitor. Yet another
possibility involves a RAM startup application but it gets loaded and run via a hardware debug technology such as BDM,
and the ROM monitor is either missing or not used.

The exact hardware details, the various startup types, the steps needed for low-level hardware initialization, and so on are not
known to the architectural HAL. Hence although the architectural HAL does provide the basic framework for startup, much of
the work is done via macros provided by lower-level HAL packages and those macros are likely to depend on various config-
uration options. Rather than try to enumerate all the various combinations here it is better to look at the actual code in vec-
tors.S and in appropriate variant, processor or platform HALs. vectors.S is responsible for any low-level initialization
that needs to happen. This includes setting up a standard C environment with the stack pointer set to the startup stack in working
RAM, making sure all statically initialized global variables have the correct values, and that all uninitialized global variables
are zeroed. Once the C environment has been set up the code jumps to hal_m68k_c_startup in file hal_m68k.c which
completes the initialization and jumps to the application entry point.

Interrupt Handling

The M68K architecture reserves a 1K area of memory for 256 exception vectors. These are used for internal and external
interrupts, exceptions, software traps, and special operations such as reset handling. Some of the vectors have well-defined
uses. However when it comes to interrupt handling the details will depend on the processor variant and on the platform, and the
appropriate package documentation should be consulted for full details. Most platforms will not use the full set of 256 vectors,
instead re-using some of this memory for other purposes.

By default the exception vectors are located at location 0, but some variants allow the vectors to be located elsewhere. This
is managed by an M68K-specific macro CYG_HAL_VSR_TABLE. The default value is 0, but a variant HAL can provide an
alternative value.

The standard eCos macros HAL_VSR_GET and HAL_VSR_SET just manipulate one of the 256 entries in the table of ex-
ception vectors. Hence it is usually possible to replace the default handlers for exceptions and traps in addition to interrupt
handlers. hal_intr.h provides #define's for the more common exception vectors, and additional ones can be provided
by the platform or variant. It is the responsibility of the platform or variant HAL to initialize the table, and to provide the
HAL_VSR_SET_TO_ECOS_HANDLER macro since that requires knowledge of the default table entries.

It should be noted that in some configurations the table of exception vectors may reside in read-only memory so entries cannot
be changed. If so then the HAL_VSR_SET and HAL_VSR_SET_TO_ECOS_HANDLER macros will not be defined. Portable
code may need to consider this possibility and test for the existence of these macros before using them.

The architectural HAL provides an entry point hal_m68k_interrupt_vsr in the file hal_arch.S. When an inter-
rupt occurs the original 68000 pushed the program counter and the status register on to the stack, and then called the VSR
via the exception table. On newer variants some additional information is pushed, including details of the interrupt source.
hal_m68k_interrupt_vsr assumes the latter and can be used directly as the VSR on these newer variants. On older
variants a small trampoline is needed which pushes the additional information and then jumps to the generic VSR. Interpret-
ing the additional information is handled via an assembler macro hal_context_extract_isr_vector_shl2 which
should be defined by the variant, matching the behaviour of the hardware or the trampoline.

At the architecture level there is no fixed mapping between VSR and ISR vectors. Instead that is left to the variant or plat-
form HAL. The architectural HAL does provide default implementations of HAL_INTERRUPT_ATTACH, HAL_INTERRUP-
T_DETACH and HAL_INTERRUPT_IN_USE since these just involve updating a static table.

3133

M68000 / ColdFire Architectural Support

By default the interrupt state control macros HAL_DISABLE_INTERRUPTS, HAL_RESTORE_INTERRUPTS, HAL_EN-
ABLE_INTERRUPTS and HAL_QUERY_INTERRUPTS are implemented by the architectural HAL, and simply involve up-
dating the status register. Disabling interrupts involves setting the three IPL bits to 0x07. Enabling interrupts involves setting
those bits to a smaller value, CYGNUM_HAL_INTERRUPT_DEFAULT_IPL_LEVEL, which defaults to 0.

HAL_DISABLE_INTERRUPTS has no effect on non-maskable interrupts. This causes a problem because parts of the system
assume that all normal interrupt sources are affected by this macro. If the target hardware can raise non-maskable interrupts
then it is the responsibility of application code to install a suitable VSR and handle non-maskable interrupts entirely within the
application, bypassing the usual eCos ISR and DSR mechanisms.

The architectural HAL does not provide any support for the interrupt controller management macros like HAL_INTERRUP-
T_MASK. These can only be implemented on a per-variant, per-processor or per-platform basis.

Exception Handling

Synchronous exception handling is done in much the same way as interrupt handling. The architectural HAL provides a generic
entry point hal_m68k_exception_vsr. On some variants this can be used directly as the exception VSR, on others it
will be called via a small trampoline.

The details of exception handling vary widely from one variant to the next. Some variants push a great deal of additional
information on to the stack for certain exceptions, but not all. The pushed program counter may correspond to the specific
instruction that caused the exception, or the next instruction, or there may be only a loose correlation because of buffered
writes. The architectural HAL makes no attempt to cope with all these differences, although some variants may provide more
advanced support. Otherwise if an exception needs to be handled in a very specific way then it is up to the application to install
a suitable VSR and handle the exception directly.

Stacks and Stack Sizes

cyg/hal/hal_arch.h defines values for minimal and recommended thread stack sizes, CYGNUM_HAL_S-
TACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPICAL. These values are specific to the current configura-
tion, and are affected mainly by options related to interrupt handling.

By default eCos uses a separate interrupt stack, although this can be disabled through the configuration option CYGIM-
P_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK. When an interrupt or exception occurs eCos will save the
context on the current stack and then switch to the interrupt stack before calling the appropriate ISR interrupt handler. This
means that thread stacks can be significantly smaller because there is no need to worry about interrupt handling overheads,
just the thread context. However switching the stack does require some extra work and hence increases the interrupt latency.
Disabling the interrupt stack removes this processing overhead but requires larger stack sizes. It depends on the application
whether or not this is a sensible trade off.

By default eCos does not allow nested interrupts, but this can be controlled via the configuration option CYGSEM_HAL_COM-
MON_INTERRUPTS_ALLOW_NESTING. Supporting nested interrupts requires larger thread stacks, especially if the separate
interrupt stack is also disabled.

Although the M68K has enough registers for typical operation, the calling conventions are memory-oriented. In particular all
arguments are pushed on the stack rather than held in registers, and the return address is also pushed rather than ending up in
a link register. To allow for this the recommended minimum stack sizes are a little bit larger than for some other architectures.
Variant HALs cannot directly affect these stack sizes. However the sizes do depend in part on the size of a thread context, so
if for example the processor supports hardware floating point and support for that is enabled then the stack sizes will increase.

Usually the M68K architectural HAL will provide a single block of memory which acts as both the startup and interrupt stack,
and there are configuration options to control the size of this block. Alternatively a variant, processor or platform HAL may
define either or both of _HAL_M68K_STARTUP_STACK_ and _HAL_M68K_INTERRUPT_STACK_BASE_ if for some
reason the stacks should not be placed in ordinary RAM.

Thread Contexts and Setjmp/Longjmp

A typical thread context consists of the following:

1. The integer context. This consists of the data registers %d0 to %d7 and the address registers %a0 to %a6, The stack pointer
register %a7 does not have to be saved explicitly since it is implicit in the pointer to the saved context.

3134

M68000 / ColdFire Architectural Support

The caller-save registers are %d0, %d1, %a0, %a1, %a7 and the status register. The remaining registers are callee-save.
Function arguments are always passed on the stack. The result is held in %d0.

2. Floating point context, consisting of eight 64-bit floating point registers %fp0 to %fp7 and two support registers %fpsr and
%fpiar. Support for this is only relevant if the processor variant has a hardware floating point unit, and even then saving
floating point context is optional and can be disabled using a configuration option CYGIMP_HAL_M68K_FPU_SAVE. The
control register %fpcr is not saved as part of the context. It is assumed that a single %fpcr value, usually 0, will be used
throughout the application.

The architectural HAL provides support for the hardware floating point unit. The variant or processor HAL should implement
the CDL interface CYGINT_HAL_M68K_VARIANT_FPU if this hardware unit is actually present.

3. Some M68K variants have additional hardware units, for example the multiply-accumulate units in certain ColdFire proces-
sors. The architectural HAL allows the context to be extended through various macros such as HAL_CONTEXT_OTHER.

4. The status register %sr and the program counter. These are special because when an interrupt occurs the hardware auto-
matically pushes these onto the stack, but exactly what gets pushed depends on the variant.

setjmp and longjmp only deal with the integer and fpu contexts. It is assumed that any special hardware units will only
be used by application code, not by the compiler. Hence it is the responsibility of application code to define and implement
appropriate setjmp semantics for these units. The variant HAL package can override the default implementations if necessary.

When porting to a new M68K variant, if this has a hardware floating point unit then the variant HAL should implement
the CDL interface CYGINT_HAL_M68K_VARIANT_FPU, thus enabling support provided by the architectural HAL. If the
variant has additional hardware units involving state that should be preserved during a context switch or when an inter-
rupt occurs, the variant HAL should define a number of macros. The header file cyg/hal/var_arch.h should define
HAL_CONTEXT_OTHER, HAL_CONTEXT_OTHER_SIZE, and HAL_CONTEXT_OTHER_INIT, either directly or via cyg/
hal/proc_arch.h. The assembler header file cyg/hal/var.inc should define a number of macros such as hal_con-
text_other_save_caller. For details of these macros see the architectural hal_arch.S file.

Variants also need to define exactly how the status register and program counter are saved onto the stack when an interrupt or
exception occurs. This is handled through C macros HAL_CONTEXT_PCSR_SIZE, HAL_CONTEXT_PCSR_RTE_ADJUST,
and HAL_CONTEXT_PCSR_INIT, and a number of assembler macros such as hal_context_pcsr_save_sr. Again
the architectural files cyg/hal/hal_arch.h and hal_arch.S provide more details of these.

Bit Indexing

For performance reasons the HAL_LSBIT_INDEX and HAL_MSBIT_INDEX macros are implemented using assembler func-
tions. A variant HAL can override the default definitions if, for example, the variant has special instructions to perform these
operations.

Idle Thread Processing

The default HAL_IDLE_THREAD_ACTION implementation is a no-op. A variant HAL may override this, for example to
put the processor into sleep mode. Alternative implementations should consider exactly how this macro gets used in eCos
kernel code.

Clock Support

The architectural HAL cannot provide the required clock support because it does not know what timer hardware may be
available on the target hardware. Instead this is left to either the variant or platform HAL, depending on whether the processor
has a suitable on-chip timer or whether an off-chip timer has to be used.

HAL I/O

The M68K architecture does not have a separate I/O bus. Instead all hardware is assumed to be memory-mapped. Further it is
assumed that all peripherals on the memory bus are wired appropriately for a big-endian processor and that there is no need
for any byte swapping. Hence the various HAL macros for performing I/O simply involve pointers to volatile memory.

3135

M68000 / ColdFire Architectural Support

The variant, processor and platform equivalents of the cyg/hal/hal_io.h header will typically also provide details of
some or all of the peripherals, for example register offsets and the meaning of various bits in those registers.

Cache Handling

If the processor has a cache then the variant HAL should implement the CDL interface CYGINT_HAL_M68K_VARIAN-
T_CACHE. This causes the architectural header cyg/hal/hal_cache.h to pick up appropriate definitions from cyg/
hal/var_cache.h. The architectural header will provide null defaults for anything not defined by the variant.

Linker Scripts

The architectural HAL will generate the linker script for eCos applications. This involves the architectural file m68k.ld and
a .ldi memory layout file provided lower down, typically by the platform HAL. It is the LDI file which specifies the types
and amount of memory available and which places code and data in appropriate places, but most of the hard work is done via
macros provided by the architectural m68k.ld file.

Diagnostic Support

The architectural HAL does not implement diagnostic support. Instead this is left to the variant or platform HAL, depending
on whether suitable peripherals are available on-chip or off-chip.

SMP Support

The M68K port does not have SMP support.

Debug Support

The M68K architectural HAL package provides basic support only for gdb stubs. There is no support for more advanced debug
features like hardware watchpoints.

The generic gdb support in the common HAL requires a platform header <cyg/hal/plf_stub.h. In practice there is rarely
any need for the contents of this file to change between platforms so the architectural HAL can provide a suitable default. It
will do so if the CDL interface CYGINT_HAL_M68K_USE_STANDARD_PLATFORM_STUB_SUPPORT is implemented.

HAL_DELAY_US Macro

The architectural HAL provides a default implementation of the standard HAL_DELAY_US macro using a simply busy loop. To
use this support a lower-level HAL should define _HAL_M68K_DELAY_US_LOOPS_, typically a small number of about 20
but it will need to be calibrated during the porting process. If the processor has a cache then the lower-level HAL may also define
_HAL_M68K_DELAY_US_LOOPS_UNCACHED_ for the case when a delay loop is triggered while the cache is disabled.

Profiling Support

The M68K architectural HAL implements the mcount function, allowing profiling tools like gprof to determine the applica-
tion's call graph. It does not implement the profiling timer. Instead that functionality needs to be provided by the variant or
platform HAL. The implementation of mcount requires a dedicated frame pointer register so code should be compiled without
the -fomit-frame-pointer flag.

Other Functionality

The M68K architectural HAL only implements the functionality provided by the eCos HAL specification and does not export
any extra functionality.

3136

Chapter 318. Freescale MCFxxxx Variant
Support

3137

Freescale MCFxxxx Variant Support

Name
CYGPKG_HAL_M68K_MCFxxxx — eCos Support for Freescale MCFxxxx Processors

Description
The Freescale ColdFire family is a range of processors including the MCF5208 and the MCF5282. From a programmer's
perspective these processors all share basically the same processor core, albeit with minor differences in the instruction set.
They differ in areas like performance, on-chip peripherals and caches. Even when it comes to peripherals there is a lot of
commonality. For example many but not all Coldfire processors use the same basic interrupt controller(s) as the MCF5282.
Similarly the on-chip UARTs tend to use the same basic design although there are variations in the number of UARTs, the
fifo sizes, and in certain details.

The MCFxxxx variant HAL package CYGPKG_HAL_M68K_MCFxxxx provides support for various features that are com-
mon to many but not all Coldfire processors. This includes HAL diagnostics via an on-chip UART and interrupt controller
management for those processors which have MCF5282-compatible controllers. The variant HAL complements the M68K
architectural HAL package. An eCos configuration should also include a processor-specific HAL package such as CYGP-
KG_HAL_M68K_MCF5272 to support the chip-specific peripherals and cache details, and a platform HAL package such as
CYGPKG_HAL_M68K_M5272C3 to support board-level details like external memory chips. The processor or platform HAL
can override the functionality provided by the variant HAL.

Configuration
The MCFxxxx variant HAL package should be loaded automatically when eCos is configured for appropriate target hardware.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

On most ColdFire platforms the variant HAL will provide the HAL diagnostics support via one of the UARTs. Some plat-
forms may provide their own HAL diagnostics facility, for example output via an LCD. The variant HAL diagnostics sup-
port is active if the processor or platform implements the CYGINT_HAL_M68K_MCFxxxx_DIAGNOSTICS_USE_DE-
FAULT interface. It is also active only in configurations which do not rely on an underlying rom monitor such as RedBoot:
if CYGSEM_HAL_USE_ROM_MONITOR is enabled then the default diagnostics channel will automatically be inherited from
RedBoot. The variant HAL then provides a number of configuration options related to diagnostics:

CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT

This selects the destination for HAL diagnostics. The number of UARTs available depends on the processor, and on
any given board some of the UARTs may not be connected. Hence the variant HAL looks for configuration options
CYGHWR_HAL_M68K_MCFxxxx_UART0, CYGHWR_HAL_M68K_MCFxxxx_UART1 and CYGHWR_HAL_M68K_M-
CFxxxx_UART2 to see which on-chip UARTs are actually available on the processor and target hardware, and uses this
information to let the user select a UART.

Instead of using a uart the diagnostics support can be set to discard all output. This is useful when other packages or
application code makes unconditional use of HAL diagnostics facilities, for example to report error conditions, but the
target hardware does not have a spare UART. Alternatively when debugging via a hardware debug solution such as BDM
it is possible to direct the diagnostics output to a gdb hwdebug file I/O channel. By default this will also discard diagnostics
output. However if the application is running inside a gdb session and the gdb set hwdebug command has been used then
the diagnostics will be output via gdb.

When a UART is in use as the HAL diagnostics channel, that UART should not be used for any other purpose. In particular
application code should avoid using it for I/O via the serial driver.

CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD

When a UART is selected for HAL diagnostics this option specifies the default baud rate. The most common setting is
38400. That provides a compromise between performance and reliability, especially in electrically noisy environments
such as an industrial environment or a test farm. Some platforms may define CYGNUM_HAL_M68K_MCFxxxx_DIAG-
NOSTICS_DEFAULT_BAUD to handle scenarios where another default baud rate is preferable, typically for compatibility
with existing software.

3138

Freescale MCFxxxx Variant Support

CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_ISRPRI

Usually the HAL diagnostics channel is driven in polled mode but in some scenarios interrupts are required. For example,
when debugging an application over a serial line on top of the gdb stubs provided by RedBoot, the user should be able to
interrupt the application with a control-C. The application will not be polling the HAL diagnostics UART at this point so
instead the eCos interrupt management code interacts with the gdb stubs to do the right thing. This configuration option
selects the interrupt priority. It should be noted that on some processors with MCF5282-compatible interrupt controllers
all priorities for enabled interrupts should be unique, and it is the responsibility of application developers to ensure this
condition is satisfied.

The HAL Port

This section describes how the MCFxxxx variant HAL package implements parts of the eCos HAL specification. It should be
read in conjunction with similar sections from the architectural and processor HAL documentation.

HAL I/O

The cyg/hal/var_io.h header provides various definitions for on-chip peripherals, where the current processor has pe-
ripherals compatible with the MCF5282's or which are available on several different coldfires. This header is automatically in-
cluded by the architectural cyg/hal/hal_io.h so other packages and application code will usually only include the latter.

It is up to the processor HAL to specify exactly what var_io.h should export. For example the MCF5213's proc_io.h
header contains the following:

define HAL_MCFxxxx_HAS_MCF5282_INTC 1
define HAL_MCFxxxx_INTC0_BASE (HAL_MCF521x_IPSBAR + 0x00000C00)

This enables support within the variant HAL for a single MCF5282-compatible interrupt controller, and cases var_io.h to
export symbols such as:

#ifdef HAL_MCFxxxx_HAS_MCF5282_INTC
// Two 32-bit interrupt mask registers
define HAL_MCFxxxx_INTCx_IMRH 0x0008
define HAL_MCFxxxx_INTCx_IMRL 0x000C
…
define HAL_MCFxxxx_INTCx_ICRxx_IL_MASK (0x07 << 3)
define HAL_MCFxxxx_INTCx_ICRxx_IL_SHIFT 3

Symbols such as HAL_MCFxxxx_INTCx_IMRH can be used to access the relevant hardware registers via HAL_READ_UIN-
T32 and HAL_WRITE_UINT32. Symbols like HAL_MCFxxxx_INTCx_ICRxx_IL_MASK can be used to generate or de-
code the contents of the hardware registers.

The header file does mostly use a naming convention, but is not guaranteed to be totally consistent. There may also be discrep-
ancies with the documentation because the manuals for the various Coldfire processors are not always consistent about their
naming schemes. All I/O definitions provided by the variant HAL will start with HAL_MCFxxxx_, followed by the name of
the peripheral. If a peripheral is likely to be a singleton, for example an on-chip flash unit, then the name is unadorned. If there
may be several instances of the peripheral then the name will be followed by a lower case x. For example:

define HAL_MCFxxxx_CFM_CR 0x0000
…
define HAL_MCFxxxx_UARTx_UMR 0x00

Register names will be relative to some base address such as HAL_MCFxxxx_CFM_BASE or HAL_MCFxxxx_UAR-
T0_BASE, so code accessing a register would look like:

 HAL_READ_UINT32(HAL_MCFxxxx_CFM_BASE + HAL_MCFxxxx_CFM_PROT, reg);
 …
 HAL_WRITE_UINT8(base + HAL_MCFxxxx_UARTx_UTB, '*');

Usually the register names are singletons, but in some cases such as the interrupt controller priority registers there
may be multiple instances of the register and the names will be suffixed appropriately. For example HAL_M-

3139

Freescale MCFxxxx Variant Support

CFxxxx_INTCx_ICRxx_IL_MASK indicates the field IL within one of the ICR registers within one of the interrupt con-
trollers.

As mentioned earlier the processor HAL's proc_io.h will control which definitions are exported by var_io.h. Sometimes
the processor HAL will then go on to undefine or redefine some of the symbols, to reflect incompatibilities between the
processor's devices and the equivalent devices on the MCF5282. There may also be additional symbols for the devices, and
there will be additional definitions for any processor-specific hardware. In particular GPIO pin handling is handled by the
processor HAL, not by the variant HAL. Application developers should examine proc_io.h as well as var_io.h and the
processor-specific documentation to see exactly what I/O definitions are provided. When porting to a new Coldfire processor
it is best to start with an existing processor HAL and copy code as appropriate. A search for _HAS_ in var_io.h will also
be informative.

Thread Contexts and Setjmp/Longjmp

All MCFxxxx processors support interrupts and exceptions in a uniform way. When an interrupt or exception occurs the
hardware pushes the current program counter, the status register, and an additional 16-bit word containing information about
the interrupt source, for a total of 64 bits. Hence the PCSR part of a thread context consists of two 32-bit integers, and the
variant HAL provides appropriate C and assembler macros to examine and manipulate these.

Not all MCFxxxx processors have hardware floating point, so support for this is left to the processor HAL package. Some
MCFxxxx processors have additional hardware units such as a multiply-accumulator, but these are not currently supported
by eCos.

HAL Diagnostics

The various MCFxxxx processors usually have one or more UARTs based on very similar hardware. The variant HAL package
can provide HAL diagnostic support using such a UART. There are some minor differences such as fifo sizes, and the UARTs
will be accessed at different memory locations. These differences are handled by a small number of macros provided by the
processor and platform HAL.

The MCFxxxx variant HAL only provides HAL diagnostic support via a UART if the processor or platform HAL does not
provide an alternative implementation. That copes with situations where the on-chip UARTs are not actually accessible on the
target board and an alternative communication channel must be used.

If the variant HAL should implement HAL diagnostics then the processor or platform HAL should implement the
CDL interface CYGINT_HAL_M68K_MCFxxxx_DIAGNOSTICS_USE_DEFAULT. It should also define one or more
of CYGHWR_HAL_M68K_MCFxxxx_UART0, CYGHWR_HAL_M68K_MCFxxxx_UART1 and CYGHWR_HAL_M68K_M-
CFxxxx_UART2, and ensure that any multi-purpose GPIO pins are set correctly. The variant HAL will take care of the rest.

Cache Handling

MCFxxxx processors support a number of different caching schemes. Partial support for some of is provided by the variant
HAL's cyg/hal/var_cache.h, but it is up to the processor HAL to define which caching scheme should be used, as well
as parameters such as the cache size.

Exceptions

All MCFxxxx processors support synchronous exceptions in a uniform way, with the hardware pushing sufficient informa-
tion on to the stack to identify the nature of the exception. This means that the architectural entry point hal_m68k_excep-
tion_vsr can be used as the default VSR for all exceptions, with no need for separate trampoline functions.

The variant HAL does not provide any special support for recovering from exceptions.

Interrupts

All MCFxxxx processors supports interrupts in a uniform way. When an interrupt occurs the hardware pushes sufficient infor-
mation on to the stack to identify the interrupt. Therefore the architectural entry point hal_m68k_interrupt_vsr can be
used as the default VSR for all interrupts, with the variant just supplying a small number of macros that allow the generic code
to extract details of the interrupt source. There is no need for separate trampoline functions for every interrupt source.

3140

Freescale MCFxxxx Variant Support

On processors which have MCF5282-compatible interrupt and edge port modules the variant HAL can provide the HAL_IN-
TERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_SET_LEVEL, HAL_INTERRUPT_ACKNOWLEDGE
and HAL_INTERRUPT_CONFIGURE macros. There is support for processors with a single interrupt controller or with two
separate interrupt controllers. Otherwise these macros are left to the processor HAL. The allocation of interrupt vectors to the
various on-chip devices is also a characteristic of the processor HAL. proc_intr.h should be consulted for appropriate
definitions, for example CYGNUM_HAL_ISR_UART0.

The mask and umask operations are straightforward: if the interrupt controller has the SIMR and CIMR registers those will
be used; otherwise the IRM registers will be updated by a read-modify-write cycle. The acknowledge macro is only relevant
for external interrupts coming in via the edge port module and will clear the interrupt by writing to the EPIER register. There
is no simple way to clear interrupts generated by the on-chip peripherals, so that is the responsibility of the various device
drivers or of application code. The configure macro is only relevant for external interrupts and involves manipulating the edge
port module.

The HAL_INTERRUPT_SET_LEVEL macro is used implicitly by higher level code such as cyg_interrupt_create.
With MCF5282-compatible interrupt controllers the priority level corresponds to the ICRxx register. The exact format depends
on the processor. Interrupt priorities corresponding to IPL level 7 are non-maskable. Such interrupts cannot be managed safely
by the usual eCos ISR and DSR mechanisms. Instead application code will have to install a custom VSR and manage the
entire interrupt.

Some MCF5282-compatible interrupt controllers have a major restriction: all interrupt priorities within each controller must
be unique. If two interrupts go off at the same time and have exactly the same priority then the controllers' behaviour is unde-
fined. In a typical application some of the interrupts will be handled by eCos device drivers while others will be handled di-
rectly by application code. Since eCos cannot know which interrupts may get used, it cannot allocate unique priorities. Instead
this has to be left to the application developer. eCos does provide configuration options such as CYGNUM_KERNEL_COUN-
TERS_CLOCK_ISR_PRIORITY and CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_ISR_PRIORITY to provide con-
trol over the eCos-managed interrupts, and provides default values for these which are unique.

Caution

Non-unique interrupt priorities can lead to very confusing system behaviour. For example on an MCF5282, if
the PIT3 system clock (interrupt 0x3a) and ethernet RX frame (interrupt 0x1b) are accidentally given the same
priority and go off at the same time, the interrupt controller may actually issue an interrupt 0x3b, the bitwise or
of the two interrupt numbers. That interrupt belongs to the on-chip flash module. There may not be an installed
handler for that interrupt at all, and even if there is a handler it will only manipulate the flash hardware and not
clear the system clock and ethernet interrupts. Hence the system is likely to go into a spin, continually trying
to service the wrong interrupt. To track down such problems during debugging it may prove useful to install a
breakpoint on the hal_arch_default_isr function.

Clock Support

On processors with an MCF5282-compatible programmable interrupt timer module or PIT, the variant HAL can provide
the HAL_CLOCK_INITIALIZE, HAL_CLOCK_RESET, HAL_CLOCK_READ and HAL_CLOCK_LATENCY macros. These
macros are used by the eCos kernel to implement the system clock and may be used for other purposes in non-kernel config-
urations. When multiple timers are available it is up to the processor or platform HAL to select which one gets used for the
system clock. It is also up to the processor or platform HAL to provide various clock-related configuration options such as
CYGNUM_HAL_RTC_PERIOD. Those options need to take into account the processor clock speed, which is usually a charac-
teristic of the platform and hence not known to the variant HAL.

When porting to a new Coldfire processor, the processor or platform HAL should define the symbols CYGNUM_HAL_IN-
TERRUPT_RTC, _HAL_MCFxxxx_CLOCK_PIT_BASE_, and _HAL_MCFxxxx_CLOCK_PIT_PRE_. Existing ports can
be examined for more details.

Reset

On processors with an MCF5282-compatible reset module or RST, the variant HAL can provide the HAL_PLATFORM_RESET
macro. That macro is typically used by the gdb stubs support inside RedBoot to reset the hardware between debug sessions,
ensuring that each session runs in as close to pristine hardware as possible. The macro uses the SOFTRST bit of the RCR register.

3141

Freescale MCFxxxx Variant Support

Bit Indexing

By default the variant HAL will provide versions of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX which are more efficient
than the default ones in the architectural HAL. The implementation uses the ff1.l and bitrev.l instructions. If the Coldfire
processor does not support these instructions then the processor HAL should define _HAL_M68K_MCFxxxx_NO_FF1_.

Other Issues

The MCFxxxx variant HAL does not affect the implementation of data types, stack size definitions, idle thread processing,
linker scripts, SMP support, system startup, or debug support.

Other Functionality

The MCFxxxx variant HAL only implements functionality defined in the eCos HAL specification and does not export any
additional functions.

3142

Chapter 319. Freescale MCF5272
Processor Support

3143

Freescale MCF5272 Processor Support

Name
CYGPKG_HAL_M68K_MCF5272 — eCos Support for the Freescale MCF5272 Processor

Description
The MCF5272 is one member of the Freescale MCFxxxx ColdFire range of processors. It comes with a number of on-chip
peripherals including 2 UARTs, ethernet, and USB slave. The processor HAL package CYGPKG_HAL_M68K_MCF5272 pro-
vides support for features that are specific to the MCF5272. It complements the M68K architectural HAL package CYGP-
KG_HAL_M68K and the variant HAL package CYGPKG_HAL_M68K_MCFxxxx. An eCos configuration should also include
a platform HAL package, for example CYGPKG_HAL_M68K_M5272C3 to support board-level details like the external mem-
ory chips.

Configuration
The MCF5272 processor HAL package should be loaded automatically when eCos is configured for appropriate target hard-
ware. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

The component CYGPKG_HAL_M68K_MCF5272_HARDWARE contains configuration options for the available hardware.
This includes all GPIO pin settings, with defaults provided by the platform HAL. In turn the pin settings are used to determine
defaults for other hardware settings, for example which of the two on-chip uarts are usable. Users can override these settings
if necessary, subject to any constraints imposed by the platform HAL, but care has to be taken that the resulting configuration
still matches the actual hardware.

The option CYGIMP_HAL_M68K_MCF5272_IDLE controls what happens in configurations containing the eCos kernel when
the idle thread runs, i.e. when there is nothing for the processor to do until the next interrupt comes in. Usually the processor
made to sleep, halting the cpu but leaving all peripherals active.

The package contains a single configuration option CYGFUN_HAL_M68K_MCF5272_PROFILE_TIMER. This controls the
support for gprof-based profiling. By default it is active and enabled if the configuration contains the gprof profiling package,
otherwise inactive. The relevant code uses hardware timer 2, so that timer is no longer available for application code. If the timer
is required but a platform HAL provides an alternative implementation of the profiling support then this option can be disabled.

The HAL Port
This section describes how the MCF5272 processor HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/proc_io.h specifies which generic MCFxxxx devices are present, and provides details of
MCF5272-specific devices. This header file is automatically included by the architectural header cyg/hal/hal_io.h, so
typically application code and other packages will just include the latter.

It should be noted that the Freescale documentation is occasionally confusing when it comes to numbering devices. For example
the four on-chip timers are numbered TMR0 to TMR3, but in the interrupt controller the corresponding interrupts are numbered
TMR1 to TMR4. The eCos port consistently starts numbering at 0, so these interrupts have been renamed TMR0 to TMR3.

Interrupt Handling

The header file cyg/hal/proc_intr.h provides VSR and ISR vector numbers for all interrupt sources. The VSR vector
number, for example CYGNUM_HAL_VECTOR_TMR0, should be used for calls like cyg_interrupt_get_vsr. It corre-
sponds directly to the M68K exception number. The ISR vector number, for example CYGNUM_HAL_ISR_TMR0, should be
used for calls like cyg_interrupt_create. This header file is automatically included by the architectural header cyg/
hal/hal_intr.h, and other packages and application code will normally just include the latter.

The eCos HAL macros HAL_INTERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_SET_LEVEL,
HAL_INTERRUPT_ACKNOWLEDGE, and HAL_INTERRUPT_CONFIGURE are implemented by the processor HAL. The

3144

Freescale MCF5272 Processor Support

mask and unmask operations are straightforward, simply manipulating the on-chip interrupt controller. The acknowledge and
configure macros are only relevant for external interrupts: internal interrupts generated by on-chip devices do not need to be
acknowledged. The set-level operation, used implicitly by higher level code such as cyg_interrupt_create, is mapped
on to M68K IPL levels so interrupts can be given a priority between 1 and 7. Priority 7 corresponds to non-maskable interrupts
and must be used with care: such interrupts cannot be managed safely by the usual eCos ISR and DSR mechanisms; instead
application code will have to install a custom VSR and manage the entire interrupt.

Clock Support

The processor HAL provides support for the eCos system clock. This always uses hardware timer 3, which should not be used
directly by application code. If gprof-based profiling is in use then that will use hardware timer 2. Timers 0 and 1 are never
used by eCos so application code is free to manipulate these as required.

Some of the configuration options related to the system clock, for example CYGNUM_HAL_RTC_PERIOD, are actually con-
tained in the platform HAL rather than the processor HAL. These options need to take into account the processor clock speed,
a characteristic of the platform rather than the processor.

Cache Handling

The MCF5272 has a small instruction cache of 1024 bytes. This is fully supported by the processor HAL. There is no data cache.

Idle Thread Support

The configuration option CYGIMP_HAL_M68K_MCF5272_IDLE controls what happens when the kernel idle thread runs.
The default behaviour is to put the processor to sleep until the next interrupt.

Profiling Support

The MCF5272 processor HAL provides a profiling timer for use with the gprof profiling package. This uses hardware timer
2, so application code should not manipulate this timer if profiling is enabled. The M68K architectural HAL implements the
mcount function so profiling is fully supported on all MCF5272-based platforms.

Other Issues

The MCF5272 processor HAL does not affect the implementation of data types, stack size definitions, linker scripts, SMP
support, system startup, or debug support. The architectural HAL's bit index instructions are used rather than the MCFxxxx
variant HAL's versions since the MCF5272 does not implement the ff1 and bitrev instructions.

Other Functionality

The MCF5272 processor HAL only implements functionality defined in the eCos HAL specification and does not export any
additional functions.

3145

Chapter 320. Freescale M5272C3 Board
Support

3146

Freescale M5272C3 Board Support

Name
eCos Support for the Freescale M5272C3 Board — Overview

Description
The Freescale M5272C3 board has an MCF5272 ColdFire processor, 4MB of external SDRAM, 2MB of external flash memory,
and connectors plus required support chips for all the on-chip peripherals. By default the board comes with its own dBUG
ROM monitor, located in the bottom half of the flash.

For typical eCos development a RedBoot image is programmed into the top half of the flash memory, and the board is made
to boot this image rather than the existing dBUG monitor. RedBoot provides gdb stub functionality so it is then possible to
download and debug eCos applications via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
In a typical setup the bottom half of the flash memory is reserved for the dBUG ROM monitor and is not accessible to eCos.
That leaves four flash blocks of 256K each. Of these one is used for the RedBoot image and another is used for managing
the flash and holding RedBoot fconfig values. The remaining two blocks at 0xFFF40000 and 0xFFF80000 can be used by
application code.

By default eCos will only support the four megabytes of external SDRAM present on the initial versions of the board, accessible
at location 0x00000000. Later versions come with 16MB. If all 16MB of memory are required then the ACR0 register needs
to be changed. The default value is controlled by the configuration option CYGNUM_HAL_M68K_M5272C3_ACR0, but this
option is only used during ROM startup so in a typical setup it would be necessary to rebuild and update RedBoot. Alternatively
the register can be updated by application code, preferably using a high priority static constructor to ensure that the extra
memory is visible before any code tries to use that memory. It will also be necessary to change the memory layout so that the
linker knows about the additional memory.

By default the 4K of internal SRAM is mapped to location 0x20000000 using the RAMBAR register. This is not used by eCos
or by RedBoot so can be used by application code. The M68K architectural HAL has an iram1.c testcase to illustrate the
linker script support for this. The internal 16K of ROM is left disabled by default because its contents are of no use to most
applications. The on-chip peripherals are mapped at 0x10000000 via the MBAR register.

There is a serial driver CYGPKG_DEVS_SERIAL_MCFxxxx which supports both on-chip UARTs. One of the UARTs, usually
uart0, can be used by RedBoot for communication with the host. If this UART is needed by the application, either directly or
via the serial driver, then it cannot also be used for RedBoot communication. Another communication channel such as ethernet
should be used instead. The serial driver package is loaded automatically when configuring for the M5272C3 target.

There is an ethernet driver CYGPKG_DEVS_ETH_MCFxxxx for the on-chip ethernet device. This driver is also loaded auto-
matically when configuring for the M5272C3 target. The M5272C3 board does not have a unique MAC address, so a suitable
address has to be programmed into flash via RedBoot's fconfig command.

eCos manages the on-chip interrupt controller. Timer 3 is used to implement the eCos system clock, but timers 0, 1 and 2 are
unused and left for the application. The GPIO pins are manipulated only as needed to get the UARTs and ethernet working.
eCos will reset the remaining on-chip peripherals (DMA, USB, PLCI, QSPI and PWM) during system startup or soft reset but
will not otherwise manipulate them.

Tools
The M5272C3 port is intended to work with GNU tools configured for an m68k-elf target. The original port was done using
m68k-elf-gcc version 3.2.1, m68k-elf-gdb version 5.3, and binutils version 2.13.1.

By default eCos is built using the compiler flag -fomit-frame-pointer. Omitting the frame pointer eliminates some work
on every function call and makes another register available, so the code should be smaller and faster. However without a frame
pointer m68k-elf-gdb is not always able to identify stack frames, so it may be unable to provide accurate backtrace information.
Removing this compiler flag from the configuration option CYGBLD_GLOBAL_CFLAGS avoids such debug problems.

3147

Freescale M5272C3 Board Support

Name
Setup — Preparing the M5272C3 board for eCos Development

Overview
In a typical development environment the M5272C3 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for a RAM startup, and then downloaded and run on the board via the debugger m68k-elf-gdb. Preparing the
board therefore involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROM.ecm redboot_rom.bin

dBUG Used for initial setup redboot_DBUG.ecm redboot_dbug.srec

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot_ram.bin

ROMFFE RedBoot running from the
board's flash at 0xFFE00000

redboot_ROMFFE.ecm redboot_romffe.bin

For serial communications all versions run with 8 bits, no parity, and 1 stop bit. The dBUG version runs at 19200
baud. The ROM and RAM versions run at 38400 baud. These baud rates can be changed via the configuration option
CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD and rebuilding RedBoot. By default RedBoot will use the board's
terminal port, corresponding to uart0, but this can also be changed via the configuration option CYGHWR_HAL_M68K_M-
CFxxxx_DIAGNOSTICS_PORT. On an M5272C3 platform RedBoot also supports ethernet communication and flash man-
agement.

Initial Installation
This process assumes that the board still has its original dBUG ROM monitor and does not require any special debug hardware.
It leaves the existing ROM monitor in place, allowing the setup process to be repeated just in case that should ever prove
necessary.

Programming the RedBoot rom monitor into flash memory requires an application that can manage flash blocks. RedBoot itself
has this capability. Rather than have a separate application that is used only for flash management during the initial installation,
a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used to load the normal
flash-resident version of RedBoot and program it into the flash.

The first step is to connect an RS232 cable between the M5272C3 terminal port and the host PC. A suitable cable is supplied
with the board. Next start a terminal emulation application such as HyperTerminal or minicom on the host PC and set the serial
communication parameters to 19200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Make
sure that the jumper next to the flash chip is set for bootstrap from the bottom of flash, location 0xFFE00000. The details of
this jumper depend on the revision of the board, so the supplied board documentation should be consulted for more details.
Apply power to the board and you should see a dBUG> prompt.

Once dBUG is up and running the RAM-resident version of RedBoot can be downloaded:

dBUG> dl
Escape to local host and send S-records now...

The required S-records file is redboot_dbug.srec, which is normally supplied with the eCos release in the loaders
directory. If it needs to be rebuilt then instructions for this are supplied below. The file should be sent to the target as raw
text using the terminal emulator:

S-record download successful!
dBUG>

It is now possible to run the RAM-resident version of RedBoot:

3148

Freescale M5272C3 Board Support

dBUG> go 0x20000
+FLASH configuration checksum error or invalid key
Ethernet eth0: MAC address 00:00:00:00:00:03
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [DBUG]
Non-certified release, version v2_0_1 - built 09:55:34, Jun 24 2003

Platform: M5272C3 (Freescale MCF5272)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x00400000, 0x0003f478-0x003bd000 available
FLASH: 0xffe00000 - 0x00000000, 8 blocks of 0x00040000 bytes each.
RedBoot>

At this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration check-
sum error is expected. To perform this initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0xfff40000-0xfffc0000: ..
... Erase from 0x00000000-0x00000000:
... Erase from 0xfffc0000-0xffffffff: .
... Program from 0x003bf000-0x003ff000 at 0xfffc0000: .
RedBoot>

The flash chip on the M5272C3 board is slow at erasing flash blocks so this operation can take some time. At the end the block
of flash at location 0xFFFC0000 holds information about the various flash blocks, allowing other flash management operations
to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
DNS server IP address:
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0x00:0x00:0x00:0x00:0x03
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0xfffc0000-0xffffffff: .
... Program from 0x003bf000-0x003ff000 at 0xfffc0000: .
RedBoot>

For most of these configuration variables the default value is correct. If there is no suitable BOOTP service running on the local
network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address, netmask, and addresses for
the local gateway and DNS server. The other exception is the network hardware address, also known as MAC address. All
boards should be given a unique MAC address, not the one in the above example. If there are two boards on the same network
trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_rom.bin should now be uploaded using the terminal emulator. The file is a raw binary and should be
transferred using the Y-modem protocol.

Raw file loaded 0x0003f800-0x000545a3, assumed entry at 0x0003f800
xyzModem - CRC mode, 2(SOH)/84(STX)/0(CAN) packets, 5 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0xfff00000-0xfff40000: .
... Program from 0x0003f800-0x0007f800 at 0xfff00000: .
... Erase from 0xfffc0000-0xffffffff: .

3149

Freescale M5272C3 Board Support

... Program from 0x003bf000-0x003ff000 at 0xfffc0000: .
RedBoot>

The flash-resident version of RedBoot has now programmed at location 0xFFF00000, and the flash info block at 0xFFFC0000
has been updated. The initial setup is now complete. Power off the board and set the flash jumper to boot from location
0xFFF00000 instead of 0xFFE00000. Also set the terminal emulator to run at 38400 baud (the usual baud rate for RedBoot),
and power up the board again.

+Ethernet eth0: MAC address 00:00:00:00:00:03
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version v2_0_1 - built 09:57:50, Jun 24 2003

Platform: M5272C3 (Freescale MCF5272)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x00400000, 0x0000b400-0x003bd000 available
FLASH: 0xffe00000 - 0x00000000, 8 blocks of 0x00040000 bytes each.
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from m68k-elf-gdb, allowing eCos applications to be
downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done simply by repeating the above
process, using dBUG to load the dBUG version of RedBoot redboot_dbug.srec. Alternatively the existing RedBoot
install can be used to load a RAM-resident version, redboot_ram.bin.

The ROMFFE version of RedBoot can be installed at location 0xFFE00000, replacing dBUG. This may be useful if the system
needs more flash blocks than are available with the usual ROM RedBoot. Installing this RedBoot image will typically involve
a BDM-based utility.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the dBUG version of RedBoot are:

$ mkdir redboot_dbug
$ cd redboot_dbug
$ ecosconfig new m5272c3 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/m68k/mcf52xx/mcf5272/m5272c3/v2_0_1/misc/redboot_DBUG.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_dbug.srec.

Rebuilding the RAM and ROM versions involves basically the same process. The RAM version uses the file red-
boot_RAM.ecm and generates a file redboot_ram.bin. The ROM version uses the file redboot_ROM.ecm and gen-
erates a file redboot_rom.bin.

BDM
An alternative to debugging an application on top of Redboot is to use a BDM hardware debug solution. On the eCos side
this requires building the configuration for RAM startup and with CYGSEM_HAL_USE_ROM_MONITOR disabled. Note that
a RAM build of RedBoot automatically has the latter configuration option disabled, so it is possible to run a RAM RedBoot
via BDM and bypass the dBUG stages of the installation process.

On the host-side the details depend on exactly which BDM solution is in use. The recommended BDM debug solution is the
Ronetix PEEDI. Other solutions such as the P&E USBMultilink device have proved unreliable, so if a PEEDI is not available
then it is recommended that application developers should debug their applications on top of RedBoot's gdb stubs.

The PEEDI requires a configuration file peedi.cfg which can be found in the platform HAL's misc directory. The configuration
file will initialize the hardware in the same way as standard eCos applications, so applications can be loaded into RAM and

3150

Freescale M5272C3 Board Support

run as normal. The configuration file will need minor edits, for example to specify the correct license keys. For full details see
the Ronetix documentation. Once the PEEDI is correctly set up m68k-elf-gdb can then connect to it in the usual way:

$ m68k-elf-gdb install/tests/kernel/current/tests/tm_basic
GNU gdb 6.4.50.20060226-cvs (eCosCentric)
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=m68k-elf"...
(gdb) target remote peedi:9000
0x400008f6 in ?? ()
(gdb) load
Loading section .m68k_start, size 0x98 lma 0x40010000
Loading section .text, size 0xa918 lma 0x40010098
Loading section .rodata, size 0x114a lma 0x4001a9b0
Loading section .data, size 0x18c lma 0x4001bafc
Start address 0x40010000, load size 48262
Transfer rate: 260172 bits/sec, 3217 bytes/write.
(gdb) break cyg_test_exit
Breakpoint 1 at 0x40016172: file /home/bartv/ecos/ecospro-common/infra/current/src/tcdiag.cxx, line 310.
void cyg_test_exit(void);
(gdb) continue
Continuing.

Breakpoint 1, cyg_test_exit () at /home/bartv/ecos/ecospro-common/infra/current/src/tcdiag.cxx:310
310 if (code_checksum != cyg_crc16(_stext, _etext - _stext)) {
(gdb) quit
The program is running. Exit anyway? (y or n) y
$

Unlike the PEEDI, some BDM solutions will not automatically initialize the hardware. Instead this can be achieved using a set
of example gdb macros which can be found in the bdm.gdb file in the platform HAL's misc subdirectory. The macros need
to be called either through a configuration file or directly to initialize the hardware prior to downloading the eCos application.

3151

Freescale M5272C3 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The M5272C3 platform HAL package is loaded automatically when eCos is configured for an M5272C3 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The M5272C3 platform HAL package supports four separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash at location 0xFFF00000 and boots from that location. m68k-elf-gdb is then used to load a
RAM startup application into memory and debug it. It is assumed that the hardware has already been initialized
by RedBoot. By default the application will use eCos' virtual vectors mechanism to obtain certain services from
RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xFFF00000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup
code will perform all necessary hardware initialization.

ROMFFE This is a variant of the ROM startup type which can be used if the application will be programmed into flash at
location 0xFFE00000, overwriting the board's dBUG ROM monitor.

DBUG This is a variant of the RAM startup which allows applications to be loaded via the board's dBUG ROM monitor
rather than via RedBoot. It exists mainly to support the dBUG version of RedBoot which is needed during hardware
setup. Once the application has started it will take over all the hardware, and it will not depend on any services
provided by dBUG. This startup type does not provide gdb debug facilities.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then one of the serial ports will be claimed for HAL
diagnostics. By default eCos will use the terminal port, corresponding to uart0. The auxiliary port, uart1, can be selected instead
via the configuration option CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT. The baud rate for the selected port is
controlled by CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD.

Flash Driver
The platform HAL package contains flash driver support. By default this is inactive, and it can be made active by loading the
generic flash package CYGPKG_IO_FLASH.

Special Registers
The MCF5272 processor has a number of special registers controlling the cache, on-chip RAM and ROM, and so on. The plat-
form HAL provides a number of configuration options for setting these, for example CYGNUM_HAL_M68K_M5272C3_RAM-
BAR controls the initial value of the RAMBAR register. These options are only used during a ROM or ROMFFE startup.

3152

Freescale M5272C3 Board Support

For a RAM startup it will be RedBoot that initializes these registers, so if the default values are not appropriate for the target
application then it will be necessary to rebuild RedBoot with new settings for these options. Alternatively it should be possible
to reprogram some or all of the registers early on during startup, for example by using a high-priority static constructor.

One of the special registers, MBAR, cannot be controlled via a configuration option. Changing the value of this register could
have drastic effects on the system, for example moving the on-chip peripherals to a different location in memory, and it would
be very easy to end up with inconsistencies between RedBoot and the eCos application. Instead the on-chip peripherals are
always mapped to location 0x10000000.

System Clock
By default the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_PERIOD, the number of microseconds between clock ticks. Other clock-related settings
are recalculated automatically if the period is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to this port:

-mcpu=5272 The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. For an MCF5272 processor -mcpu=5272 should be used.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However without a frame
pointer register the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

3153

Freescale M5272C3 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the M5272C3 hardware, and shold be
read in conjunction with that specification. The M5272C3 platform HAL package complements the M68K architectural HAL,
the MCFxxxx variant HAL, and the MCF5272 processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services: the UARTs and the ethernet device will not
be reinitialized because they may be in use by RedBoot for communication with the host.

For a ROM or ROMFFE startup the HAL will perform additional initialization, setting up the external DRAM and programming
the various internal registers. The values used for most of these registers are configurable. Full details can be found in the
exported headers cyg/hal/plf.inc and cyg/hal/proc.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

external SDRAM This is mapped to location 0x00000000. The first 384 bytes are used for hardware exception
vectors. The next 256 bytes are normally used for the eCos virtual vectors, allowing RAM-based
applications to use services provided by the ROM monitor. For ROM and ROMFFE startup
all remaining SDRAM is available. For RAM and DBUG startup available SDRAM starts at
location 0x00020000, with the bottom 128K reserved for use by either the RedBoot or dBUG
ROM monitors.

on-chip peripherals These are accessible at location 0x10000000 onwards, as per the defined symbol HAL_M-
CFxxxx_MBAR. This address cannot easily be changed during development because both the
ROM monitor and the application must use the same address. The %mbar system register is
initialized appropriately during a ROM or ROMFFE startup.

on-chip SRAM The 4K of internal SRAM are normally mapped at location 0x20000000. The %ram-
bar register is initialized during a ROM startup using the value of the configuration op-
tion CYGNUM_HAL_M68K_M5272C3_RAMBAR. Neither eCos nor RedBoot use the internal
SRAM so all of it is available to application code.

on-chip ROM Usually this is left disabled since its contents are of no interest to most applications.
If it is enabled then it is usually mapped at location 0x21000000. The %rombar reg-
ister is initialized during a ROM startup using the value of the configuration option
CYGNUM_HAL_M68K_M5272C3_ROMBAR.

off-chip Flash This is located at the top of memory, location 0xFFE00000 onwards. For ROM and RAM star-
tups it is assumed that a jumper is used to disable the bottom half of the flash, so location
0xFFE00000 is actually a mirror of 0xFFF00000. For ROMFFE and DBUG startups all of the
flash is visible. By default the flash block at location 0xFFF00000 is used to hold RedBoot
or another ROM startup application, and the block at location 0xFFFC00000 is used to hold
flash management data and the RedBoot fconfig variables. The blocks at 0xFFF400000 and
0xFFF80000 can be used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer 3, which
should not be used directly by application code. The gprof-based profiling code uses timer 2, so that is only available when not

3154

Freescale M5272C3 Board Support

profiling. Timers 0 and 1 are never used by eCos so application code is free to manipulate these as required. The actual HAL
macros for managing the clock are provided by the MCF5272 processor HAL. The specific numbers used are a characteristic
of the platform because they depend on the processor speed.

Other Issues
The M5272C3 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The MCF5272
processor HAL, the MCFxxxx variant HAL, and the M68K architectural HAL documentation should be consulted for further
details.

Other Functionality
The platform HAL package also provides a flash driver for the off-chip AMD AM29PL160C flash chip. This driver is inactive
by default, and only becomes active if the configuration includes the generic flash support CYGPKG_IO_FLASH.

When building RedBoot with the Robust Boot Loader package CYGPKG_RBL, the platform HAL provides a macro for the
rbl condboot command. If the INT6 button is pressed when rbl condboot executes then the boot will be aborted, otherwise
it will proceed normally.

3155

Chapter 321. Freescale MCF5275
Processor Support

3156

Freescale MCF5275 Processor Support

Name
CYGPKG_HAL_M68K_MCF5275 — eCos Support for Freescale MCF5275 Processors

Description
The Freescale MCF5275 microcontroller family covers the MCF5274, MCF5274L, MCF5275 and MCF5275L ColdFire
processors. These differ slightly in the set of peripherals available. The L parts are limited to a single ethernet controller and
2 UARTs, with the non-L parts having two ethernet controllers and 3 UARTs. The MCF5275L and MCF5275 parts have a
hardware cryptography accelerator, which is not currently used by eCos.

Note

The eCos MCF52xx ethernet driver currently only supports a single ethernet device (FEC0), so the second ethernet
available on the MCF5274 and MCF5275 parts is not currently used by eCos.

The processor HAL package CYGPKG_HAL_M68K_MCF5275 provides support for all MCF5275 processors, although at
the time of writing it has only been tested on an MCF5274. It complements the M68K architectural HAL package CYGP-
KG_HAL_M68K and the variant HAL package CYGPKG_HAL_M68K_MCFxxxx. An eCos configuration should also include
a platform HAL package to support board-level details. e.g. how the on-chip peripherals are connected to the outside world.

Configuration
The MCF5275 processor HAL package should be loaded automatically when eCos is configured for appropriate target hard-
ware. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

The package's CDL script provides default interrupt priorities for some of the mcf5275's on-chip devices. This makes it easier
for the various device driver packages to install unique interrupt priorities, as required by the hardware.

Most of the package's configuration options relate to hardware. The settings are generally determined by the platform HAL
and there is little need for application developers to change them. The first hardware option is CYGHWR_HAL_M68K_M-
CF5275_CPU, identifying the specific MCF5275 processor being used. Legal values are MCF5274L, MCF5275L, MCF5274
and MCF5275. Typically the platform HAL will set this option via a CDL constraint.

Component CYGHWR_HAL_M68K_MCF5275_GPIO contains various options related to pin-connectivity. This gives full con-
trol over the PAR pin assignment registers, and for those pins configured as GPIO it is also possible to control the pin di-
rection and data settings. These options are used to initialize the processor's GPIO module early on during system initializa-
tion, but applications may change settings later on as necessary. The platform HAL can define CYGHWR_HAL_M68K_M-
CF5275_BOARD_PINS to specify the default I/O pin mapping to be used.

The GPIO settings are used to determine default settings for on-chip peripherals, including the three UARTs, the I²C bus and the
QSPI bus. For example if none of the relevant GPIO pins are assigned to UART2 then component CYGHWR_HAL_M68K_M-
CFxxxx_UART2 will be disabled by default, and that UART cannot be used for HAL diagnostics nor accessed via the serial
device driver. It is possible to override these settings if desired, for example if a UART is connected but will be manipulated
directly by application code instead of via a device driver.

1. For each of the three on-chip UARTs there will be a component, e.g. CYGHWR_HAL_M68K_MCFxxxx_UART0, deter-
mining whether or not the UART is usable on the target hardware. There are additional options CYGHWR_HAL_M68K_M-
CFxxxx_UART0_RTS and CYGHWR_HAL_M68K_MCFxxxx_UART0_CTS indicating whether or not the hardware hand-
shake lines are connected, and CYGHWR_HAL_M68K_MCFxxxx_UART0_RS485_RTS to indicate that the RTS line con-
trols an RS485 transceiver.

2. Component CYGHWR_HAL_M68K_MCF5275_I2C determines whether or not the processor HAL will instantiate an I²C
bus device hal_mcfxxxx_i2c_bus. There are also options to control the interrupt priority and to set the FDR register
which controls the bus speed. The default bus speed will be the standard I²C bus speed of 100KHz, or as close as can be
achieved given hardware limitations.

3. Component CYGHWR_HAL_M68K_MCF5275_SPI determines whether or not the processor HAL will instantiate an SPI
bus device hal_mcfxxxx_qspi_bus. It contains an additional configuration option for the interrupt priority.

3157

Freescale MCF5275 Processor Support

For configurations which include the eCos kernel, CYGIMP_HAL_M68K_MCF5275_IDLE determines what happens when
the idle thread runs.

The option CYGPKG_HAL_M68K_MCF5275_ISR_PRIORITIES provides support for configuring the interrupt priorities
as detailed in the interrupt priorities section.

The HAL Port
This section describes how the MCF5275 processor HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/proc_io.h provides definitions of MCF5275-specific on-chip peripherals. Many of the on-
chip peripherals are compatible with those on the MCF5282 or other ColdFire processors, and for those peripherals it is the
var_io.h header provided by the MCFxxxx variant HAL which provides the appropriate definitions. Both headers are
automatically included by the architectural header cyg/hal/hal_io.h, so typically application code and other packages
will just include the latter.

The MCF5275 reserves a 1GB area of memory for the internal peripheral space. Usually this is mapped between 0x40000000
and 0x7FFFFFFF. Most of this space is not used, but accessing it can cause problems including apparently locking up the
processor such that either a hard reset or a watchdog timeout is needed. The target-side gdb stubs code can trap most accesses
initiated by host-side gdb, but cannot protect against errant accesses by application code.

Interrupt Handling

The header file cyg/hal/proc_intr.h provides VSR and ISR vector numbers for all interrupt sources. The VSR vector
number, for example CYGNUM_HAL_VECTOR_TMR0, should be used for calls like cyg_interrupt_get_vsr. It corre-
sponds directly to the M68K exception number. The ISR vector number, for example CYGNUM_HAL_ISR_TMR0, should be
used for calls like cyg_interrupt_create. This header file is automatically included by the architectural header cyg/
hal/hal_intr.h, and other packages and application code will normally just include the latter.

The eCos HAL macros HAL_INTERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_ACKNOWLEDGE, and
HAL_INTERRUPT_CONFIGURE are implemented by the processor HAL. The mask and unmask operations are straightfor-
ward, simply manipulating the IMR registers in the on-chip interrupt controllers. The acknowledge macro is only relevant for
external interrupts coming in via the edge port module and will clear the interrupt by writing to the EPIER register. There is
no simple way to clear interrupts generated by other sources. Instead each such interrupt has to be cleared in a device-specific
way, and that is the responsibility of the appropriate device driver. The configure macro is only relevant for external interrupts
and involves manipulating the edge port module.

The HAL_INTERRUPT_SET_LEVEL macro, used implicitly by higher level code such as cyg_interrupt_create, is
also implemented by the processor HAL. In the MCF5275 processor interrupt priorities have to be managed very carefully.
Interrupts are managed via two interrupt controllers, INTC0 and INTC1. Each controller contains ICRxx control registers
for each interrupt to manage that interrupt's priority. The HAL_INTERRUPT_SET_LEVEL macro simply fills in the ICRxx
register.

An ICRxx value is a six-bit number. The top three bits correspond to the standard M68K IPL interrupt level. The bottom three
bits give a finer-grained priority within that IPL level. For example, if the priority argument to cyg_interrupt_create
is 42 then that corresponds to an IPL level of 5 and a finer-grained priority of 2. If the system has been configured to support
nested interrupts and a level 42 interrupt goes off, the processor's IPL level will be set to 5 so all interrupts with priorities
< 48 will remain blocked. The finer-grained priority controls what happens when two interrupts with the same IPL level go
off at the same time.

Interrupt priorities between 0 and 7 would correspond to an IPL level of 0. The interrupt controller can only raise an interrupt
if the IPL level is at least 1, so the smallest valid interrupt priority is 8. Interrupt priorities between 56 and 63 correspond to
IPL level 7, and such interrupts are non-maskable and must be used with care. These interrupts cannot be managed safely by
the usual eCos ISR and DSR mechanisms, instead application code will have to install a custom VSR and manage the entire
interrupt. This means that interrupt priorities should normally be in the range 8 to 55.

3158

Freescale MCF5275 Processor Support

As a special case, external interrupts coming in via the edge port module have hard-wired priorities which do not clash with the
programmable ones. For these the priority argument to HAL_INTERRUPT_SET_LEVEL and higher-level code is ignored.

The MCF5275 interrupt controllers have a major restriction: all interrupt priorities within each controller must be unique.
If two interrupts go off at the same time and have exactly the same priority then the controllers' behaviour is undefined.
In a typical application some of the interrupts will be handled by eCos device drivers while others will be handled direct-
ly by application code. Since eCos cannot know which interrupts may get used, it cannot allocate unique priorities. Instead
this has to be left to the application developer. eCos does provide configuration options such as CYGNUM_KERNEL_COUN-
TERS_CLOCK_ISR_PRIORITY and CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_ISR_PRIORITY to provide con-
trol over the eCos-managed interrupts, and provides default values for these which are unique.

To ensure that the configured interrupt priorities are unique the processor HAL comes with a test case intrpri. The source
code for this can be found in the package's tests subdirectory. The test examines the ICRxx registers in both interrupt
controllers. It will report all priorities that are in use, and report a failure if a non-unique priority is detected. This code may
prove useful for application developers trying to allocate interrupt priorities.

Caution

Non-unique interrupt priorities can lead to very confusing system behaviour. For example if the PIT3 system
clock (interrupt 0x27) and UART2 (interrupt 0x0F) are accidentally given the same priority and go off at the same
time, the interrupt controller may actually issue an interrupt 0x2F, the bitwise-or of the two interrupt numbers.
That interrupt belongs to the on-chip USB module. There may not be an installed handler for that interrupt at
all, and even if there is a handler it will only manipulate the USB hardware and not clear the system clock and
UART interrupts. Hence the system is likely to go into a spin, continually trying to service the wrong interrupt. To
track down such problems during debugging it may prove useful to install a breakpoint on the hal_arch_de-
fault_isr function.

Clock Support

The processor HAL provides support for the eCos system clock. This always uses hardware timer PIT3, which should not be
manipulated directly by application code. If gprof-based profiling is enabled then that will use hardware timer PIT2. PIT timers
0 and 1 are never used by eCos so application code is free to manipulate these as required.

Some of the configuration options related to the system clock, for example CYGNUM_HAL_RTC_PERIOD, are actually con-
tained in the platform HAL rather than the processor HAL. These options need to take into account the processor clock speed,
a characteristic of the platform rather than the processor.

Cache Handling

The MCF5275 has 16K of cache. Usually this will be set up as a split cache, 8K for instructions and 8K for data, which should
give the best performance for typical applications. The standard HAL cache macros are supported.

On some platforms it may be better to organize the cache differently. For example if the platform involves running code only
out of internal SRAM which may access external data, it may be possible to improve performance by using a 16K data cache
instead of a split cache. This is controlled by CYGIMP_HAL_M68K_MCF5275_CACHE_MODE, which may be either a fixed
#define or a configuration option depending on the platform. For more details see the header file proc_cache.h.

The HAL also defines a macro HAL_MEMORY_BARRIER() which acts to synchronize the pipeline, delaying execution until
all previous operations including all pending writes are complete. This will usually be necessary when interacting with devices
that access memory directly.

Other Issues

The MCF5275 processor HAL does not affect the implementation of data types, stack size definitions, SMP support, sys-
tem startup, or debug support. The MCFxxxx variant HAL versions of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX are
used since the processor supports the ff1.l and bitrev.l instructions. HAL_DELAY_US is implemented as a simple
counting loop. HAL_IDLE_THREAD_ACTION may be defined depending on configuration option CYGIMP_HAL_M68K_M-
CF5275_IDLE.

3159

Freescale MCF5275 Processor Support

Other Functionality

The processor HAL will instantiate a cyg_i2c_bus structure hal_mcfxxxx_i2c_bus when the configuration option CYGH-
WR_HAL_M68K_MCFxxxx_I2C is enabled. That option is enabled by default if various GPIO pins are configured appropri-
ately. The implementation is provided by the CYGPKG_DEVS_I2C_MCFxxxx device driver. The processor HAL does not
know what I²C devices may be attached to the bus so that is left to the platform HAL.

The processor HAL will instantiate a cyg_spi_bus structure hal_mcfxxxx_qspi_bus when the configuration option
CYGHWR_HAL_M68K_MCFxxxx_SPI is enabled. That option is enabled by default if various GPIO pins are configured
appropriately. The implementation is provided by the CYGPKG_DEVS_SPI_MCFxxxx_QSPI device driver. The processor
HAL does not know what SPI devices may be attached to the bus so that is left to the platform HAL. All SPI device structures
should be placed in the table mcfxxxx_qspi.

3160

Chapter 322. Freescale MCF5282
Processor Support

3161

Freescale MCF5282 Processor Support

Name
CYGPKG_HAL_M68K_MCF5282 — eCos Support for the Freescale MCF5282 Processor

Description
The MCF5282 is one member of the Freescale MCFxxxx ColdFire range of processors. It comes with a number of on-chip
peripherals including 3 UARTs and ethernet. The processor HAL package CYGPKG_HAL_M68K_MCF5282 provides support
for features that are specific to the MCF5282. It complements the M68K architectural HAL package CYGPKG_HAL_M68K
and the variant HAL package CYGPKG_HAL_M68K_MCFxxxx. An eCos configuration should also include a platform HAL
package, for example CYGPKG_HAL_M68K_M5282EVB to support board-level details like the external memory chips.

The MCF5282 processor HAL supports the MCF5280. The only difference between these two processors is the presence of
on-chip flash. The platform HAL and the ecos.db target entry will handle this difference.

Configuration
The MCF5282 processor HAL package should be loaded automatically when eCos is configured for appropriate target hard-
ware. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

The package's CDL script provides default interrupt priorities for some of the mcf5282's on-chip devices. This makes it easier
for the various device driver packages to install unique interrupt priorities, as required by the hardware.

The HAL Port
This section describes how the MCF5282 processor HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/proc_io.h provides definitions of all on-chip peripherals, except for some UART definitions
which are provided by the variant HAL instead. This header file is automatically included by the architectural header cyg/
hal/hal_io.h, so typically application code and other packages will just include the latter. There are default INIT macros
for the various on-chip devices which can be used by platform initialization code, although on any given platform some of
the devices may need special attention.

The MCF5282 reserves a 1-gbyte area of memory for the internal peripheral space. Usually this is mapped between 0x40000000
and 0x7fffffff. Most of this space is not used, but accessing it can cause problems including apparently locking up the processor
such that either a hard reset or a watchdog timeout is needed. The target-side gdb stubs code can trap most accesses initiated
by host-side gdb, but cannot protect against errant accesses by application code.

It should be noted that the Freescale documentation is occasionally confusing when it comes to numbering devices. For example
the four on-chip programmable timers are numbered PIT1 to PIT4, but in the interrupt controller the corresponding interrupts
are numbered PIT0 to PIT3. The eCos port consistently starts numbering at 0, so the timers have been renamed PIT0 to PIT3.

Interrupt Handling

The header file cyg/hal/proc_intr.h provides VSR and ISR vector numbers for all interrupt sources. The VSR vector
number, for example CYGNUM_HAL_VECTOR_TMR0, should be used for calls like cyg_interrupt_get_vsr. It corre-
sponds directly to the M68K exception number. The ISR vector number, for example CYGNUM_HAL_ISR_TMR0, should be
used for calls like cyg_interrupt_create. This header file is automatically included by the architectural header cyg/
hal/hal_intr.h, and other packages and application code will normally just include the latter.

The eCos HAL macros HAL_INTERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_ACKNOWLEDGE, and
HAL_INTERRUPT_CONFIGURE are implemented by the processor HAL. The mask and unmask operations are straightfor-
ward, simply manipulating the IMR registers in the on-chip interrupt controllers. The acknowledge macro is only relevant for
external interrupts coming in via the edge port module and will clear the interrupt by writing to the EPIER register. There is

3162

Freescale MCF5282 Processor Support

no simple way to clear interrupts generated by other sources. Instead each such interrupt has to be cleared in a device-specific
way, and that is the responsibility of the appropriate device driver. The configure macro is only relevant for external interrupts
and involves manipulating the edge port module.

The HAL_INTERRUPT_SET_LEVEL macro, used implicitly by higher level code such as cyg_interrupt_create, is
also implemented by the processor HAL. In the MCF5282 processor interrupt priorities have to be managed very carefully.
Interrupts are managed via two interrupt controllers, INTC0 and INTC1. Each controller contains ICRxx control registers
for each interrupt to manage that interrupt's priority. The HAL_INTERRUPT_SET_LEVEL macro simply fills in the ICRxx
register.

An ICRxx value is a six-bit number. The top three bits correspond to the standard M68K IPL interrupt level. The bottom three
bits give a finer-grained priority within that IPL level. For example, if the priority argument to cyg_interrupt_create
is 42 then that corresponds to an IPL level of 5 and a finer-grained priority of 2. If the system has been configured to support
nested interrupts and a level 42 interrupt goes off, the processor's IPL level will be set to 5 so all interrupts with priorities
< 48 will remain blocked. The finer-grained priority controls what happens when two interrupts with the same IPL level go
off at the same time.

Interrupt priorities between 0 and 7 would correspond to an IPL level of 0. The interrupt controller can only raise an interrupt
if the IPL level is at least 1, so the smallest valid interrupt priority is 8. Interrupt priorities between 56 and 63 correspond to
IPL level 7, and such interrupts are non-maskable and must be used with care. These interrupts cannot be managed safely by
the usual eCos ISR and DSR mechanisms, instead application code will have to install a custom VSR and manage the entire
interrupt. This means that interrupt priorities should normally be in the range 8 to 55.

As a special case, external interrupts coming in via the edge port module have hard-wired priorities which do not clash with the
programmable ones. For these the priority argument to HAL_INTERRUPT_SET_LEVEL and higher-level code is ignored.

The MCF5282 interrupt controllers have a major restriction: all interrupt priorities within each controller must be unique.
If two interrupts go off at the same time and have exactly the same priority then the controllers' behaviour is undefined.
In a typical application some of the interrupts will be handled by eCos device drivers while others will be handled direct-
ly by application code. Since eCos cannot know which interrupts may get used, it cannot allocate unique priorities. Instead
this has to be left to the application developer. eCos does provide configuration options such as CYGNUM_KERNEL_COUN-
TERS_CLOCK_ISR_PRIORITY and CYGNUM_DEVS_SERIAL_MCFxxxx_SERIAL0_ISR_PRIORITY to provide con-
trol over the eCos-managed interrupts, and provides default values for these which are unique.

To ensure that the configured interrupt priorities are unique the processor HAL comes with a test case intrpri. The source
code for this can be found in the package's tests subdirectory. The test examines the ICRxx registers in both interrupt
controllers. It will report all priorities that are in use, and report a failure if a non-unique priority is detected. This code may
prove useful for application developers trying to allocate interrupt priorities.

Caution

Non-unique interrupt priorities can lead to very confusing system behaviour. For example if the PIT3 system
clock (interrupt 0x3a) and ethernet RX frame (interrupt 0x1b) are accidentally given the same priority and go
off at the same time, the interrupt controller may actually issue an interrupt 0x3b, the bitwise or of the two
interrupt numbers. That interrupt belongs to the on-chip flash module. There may not be an installed handler for
that interrupt at all, and even if there is a handler it will only manipulate the flash hardware and not clear the
system clock and ethernet interrupts. Hence the system is likely to go into a spin, continually trying to service
the wrong interrupt. To track down such problems during debugging it may prove useful to install a breakpoint
on the hal_arch_default_isr function.

Clock Support

The processor HAL provides support for the eCos system clock. This always uses hardware timer PIT3, which should not be
manipulated directly by application code. If gprof-based profiling is enabled then that will use hardware timer PIT2. PIT timers
0 and 1 are never used by eCos so application code is free to manipulate these as required.

Some of the configuration options related to the system clock, for example CYGNUM_HAL_RTC_PERIOD, are actually con-
tained in the platform HAL rather than the processor HAL. These options need to take into account the processor clock speed,
a characteristic of the platform rather than the processor.

3163

Freescale MCF5282 Processor Support

Cache Handling

The MCF5282 has 2K of cache. Usually this will be set up as a split cache, 1K for instructions and 1K for data, which should
give the best performance for typical applications. The standard HAL cache macros are supported.

On some platforms it may be better to organize the cache differently. For example if the platform involves running code only
out of internal flash but may access external data, it may be possible to improve performance by using a 2K data cache instead of
a split cache. This is controlled by CYGIMP_HAL_M68K_MCF5282_CACHE_MODE, which may be either a fixed #define
or a configuration option depending on the platform. For more details see the header file proc_cache.h.

Other Issues

The MCF5282 processor HAL does not affect the implementation of data types, stack size definitions, bit indexing, idle thread
processing, linker scripts, SMP support, system startup, or debug support.

Other Functionality

The MCF5282 processor HAL only implements functionality defined in the eCos HAL specification and does not export any
additional functions.

3164

Chapter 323. Freescale M5282EVB Board
Support

3165

Freescale M5282EVB Board Support

Name
eCos Support for the Freescale M5282EVB Board — Overview

Description
The Freescale M5282EVB board has an MCF5282 ColdFire processor, 16MB of external SDRAM, 2MB of external flash
memory, plus required support chips for the on-chip peripherals. By default the board comes with its own dBUG ROM monitor,
located in the bottom half of the flash.

For typical eCos development a RedBoot image is programmed into the top half of the flash memory, and the board is made
to boot this image rather than the existing dBUG monitor. RedBoot provides gdb stub functionality so it is then possible to
download and debug eCos applications via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length

External SDRAM 0x00000000 0x01000000

Internal RAM 0x20000000 0x00010000

On-chip Peripherals 0x40000000 0x40000000

On-chip Flash 0xF0000000 0x00080000

External Flash 0xFFE00000 0x00200000

eCos can be configured for one of four startup types:

RAM This is the startup type normally used during application development. RedBoot is programmed into flash and
performs the initial bootstrap. m68k-elf-gdb is then used to load a RAM startup application into memory and debug
it. By default the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot,
including diagnostic output.

With a minor change to the eCos configuration this startup type can also be used to debug applications via BDM.

DBUG This is a variant of the RAM startup which allows applications to be loaded via the board's dBUG ROM monitor
rather than via RedBoot. Once the application has started it will take over all the hardware, and it will not depend
on any services provided by dBUG. This startup type does not provide gdb debug facilities. It is used primarily for
building a special version of RedBoot, used during hardware setup.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xFFF00000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup
code will perform all necessary hardware initialization. This startup type is used for building the flash-resident
version of RedBoot but can also be used for application code.

ROMFFE This is a variant of the ROM startup type which can be used if the application will be programmed into flash at
location 0xFFE00000, overwriting the board's dBUG ROM monitor.

For all startup types the external SDRAM is used to hold all data. For RAM and dBUG startup the code also resides in external
SDRAM, with the first 64K reserved for use by the ROM monitor. The 64K of internal RAM is not used, either by RedBoot
or by eCos, so all of it is available to the application. The 512K of internal flash is not currently used.

In a typical setup the bottom half of the external flash is reserved for the dBUG ROM monitor and is not accessible to eCos.
That leaves 16 flash blocks of 64K each. Of these the first two are used for the RedBoot image and another is used for managing
the flash and holding RedBoot fconfig values. The remaining 13 blocks from 0xFFF20000 to 0xFFFF0000 can be used by
application code.

Alternatively it is possible to build an application for ROM startup and program it into flash at 0xFFF00000, replacing RedBoot.
For a larger application ROMFFE startup can be used instead, making all of external flash available to application code.

3166

Freescale M5282EVB Board Support

RedBoot can communicate with the host using either ethernet or one of the UARTs - usually uart0 corresponding to the terminal
port on the m5282evb board.

All configurations for the M5282EVB target include an ethernet driver package CYGPKG_DEVS_ETH_MCFxxxx. If the ap-
plication does not actually require ethernet functionality then the package is inactive and the final executable will not suf-
fer any overheads from unused functionality. This is determined by the presence of the generic ethernet I/O package CYGP-
KG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right thing to happen. For example the default
template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and redboot
templates do include a TCP/IP stack so will specify that package and hence enable the ethernet driver. The ethernet device can
be shared by RedBoot and the application, so it is possible to debug a networked application over ethernet.

The M5282EVB board does not have a serial EPROM or similar hardware providing a unique network MAC address. Instead
a suitable address has to be programmed into flash via RedBoot's fconfig command.

All configurations for the M5282EVB target include a serial device driver package CYGPKG_DEVS_SERIAL_MCFxxxx.
The driver as a whole is inactive unless the generic serial support, CYGPKG_IO_SERIAL_DEVICES is enabled. Exactly
which of the on-chip UARTs are supported is controlled by configuration options within the platform HAL. By default both
uart0 and uart1 are supported, corresponding to the terminal and auxiliary ports. If the UART is needed by the application then
it cannot also be used by RedBoot for gdb traffic, so another communication channel such as ethernet should be used instead.

All configurations for the M5282EVB target also include a watchdog device driver CYGPKG_DEVS_WATCHDOG_MCF5282.
This driver is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG is loaded.

The on-chip interrupt controllers and the edge port module are managed by eCos using macros provided by the MCF5282
processor HAL. PIT timer 3 is normally used to implement the eCos system clock. If gprof-based profiling is enabled then that
will use PIT timer 2. PIT timers 0 and 1 are unused and can be manipulated by the application. The GPIO pins are manipulated
only as needed to get the UART(s) and ethernet working. eCos will reset the remaining on-chip peripherals (DMA, GPT, DMA
timers, QSPI, I²C, FlexCAN, and QADC) during system startup or soft reset, but will not otherwise manipulate them.

Tools
The M5282EVB port is intended to work with GNU tools configured for an m68k-elf target. The original port was done using
m68k-elf-gcc version 3.2.1, m68k-elf-gdb version 5.3, and binutils version 2.13.1.

By default eCos is built using the compiler flag -fomit-frame-pointer. Omitting the frame pointer eliminates some work
on every function call and makes another register available, so the code should be smaller and faster. However without a frame
pointer m68k-elf-gdb is not always able to identify stack frames, so it may be unable to provide accurate backtrace information.
Removing this compiler flag from the configuration option CYGBLD_GLOBAL_CFLAGS avoids such debug problems.

A typical setup involves m68k-elf-gdb interacting with RedBoot using either serial or ethernet. Alternatively it is possible to
debug via the BDM port. The package's misc subdirectory contains a script bdm.gdb that contains macros for the low-level
hardware initialization normally performed by the ROM startup code. The application should be linked with an eCos config-
uration using RAM startup, and with the options CYGSEM_HAL_ROM_MONITOR and CYGSEM_HAL_USE_ROM_MONITOR
disabled to stop eCos accessing any services provided by RedBoot. Diagnostic output will be sent out of uart0.

3167

Freescale M5282EVB Board Support

Name
Setup — Preparing the M5282EVB board for eCos Development

Overview
In a typical development environment the M5282EVB board boots from flash into the RedBoot ROM monitor. eCos applica-
tions are configured for a RAM startup, and then downloaded and run on the board via the debugger m68k-elf-gdb. Preparing
the board therefore involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROM.ecm redboot_rom.bin

dBUG Used for initial setup redboot_DBUG.ecm redboot_dbug.srec

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot_ram.bin

ROMFFE RedBoot running from the
board's flash at 0xFFE00000

redboot_ROMFFE.ecm redboot_romffe.bin

For serial communications all versions run with 8 bits, no parity, and 1 stop bit. The dBUG version runs at 19200
baud. The ROM and RAM versions run at 38400 baud. These baud rates can be changed via the configuration option
CYGNUM_HAL_M68K_M5282EVB_DIAG_BAUD. By default RedBoot will use the board's terminal port, corresponding to
uart0, but this can also be changed via the configuration option CYGHWR_HAL_M68K_M5282EVB_DIAGNOSTICS_PORT.
On an M5282EVB platform RedBoot also supports ethernet communication and flash management.

Initial Installation
This process assumes that the board still has its original dBUG ROM monitor and does not require any special debug hardware.
It leaves the existing ROM monitor in place, allowing the setup process to be repeated just in case that should ever prove
necessary.

Programming the RedBoot rom monitor into flash memory requires an application that can manage flash blocks. RedBoot itself
has this capability. Rather than have a separate application that is used only for flash management during the initial installation,
a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used to load the normal
flash-resident version of RedBoot and program it into the flash.

The first step is to connect an RS232 cable between the M5282EVB terminal port and the host PC. A suitable cable is supplied
with the board. Next start a terminal emulation application such as HyperTerminal or minicom on the host PC and set the serial
communication parameters to 19200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Make
sure that jumper jp16 is set for bootstrap from the bottom of flash, location 0xFFE00000. Apply power to the board and you
should see a dBUG> prompt.

Once dBUG is up and running the RAM-resident version of RedBoot can be downloaded:

dBUG> dl
Escape to local host and send S-records now...

The required S-records file is redboot_dbug.srec, which is normally supplied with the eCos release in the loaders
directory. If it needs to be rebuilt then instructions for this are supplied below. The file should be sent to the target as raw
text using the terminal emulator:

S-record download successful!
dBUG>

It is now possible to run the RAM-resident version of RedBoot:

dBUG> go 0x10000

3168

Freescale M5282EVB Board Support

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
... waiting for BOOTP information
Ethernet eth0: MAC address 00:00:00:00:00:03
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [DBUG]
Non-certified release, version UNKNOWN - built 23:36:11, Mar 31 2004

Platform: M5282EVB (Motorola MCF5282)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x01000000, 0x0002f274-0x00fed000 available
FLASH: 0xffe00000 - 0x00000000, 32 blocks of 0x00010000 bytes each.
RedBoot>

At this stage, RedBoot flash management initialization has not yet happened so the warning about the configuration checksum
error is expected. There will also be a delay while RedBoot tries to contact a local BOOTP server. To perform the flash
initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0xfff20000-0xffff0000: ..
... Erase from 0x00000000-0x00000000:
... Erase from 0xffff0000-0xffffffff: .
`... Program from 0x00ff0000-0x01000000 at 0xffff0000: .
RedBoot>

At this stage the block of flash at location 0xFFFF0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
DNS server IP address:
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0x00:0x00:0x00:0x00:0x03
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0xffff0000-0xffffffff: .
... Program from 0x00ff0000-0x01000000 at 0xffff0000: .
RedBoot>

For most of these configuration variables the default value is correct. If there is no suitable BOOTP service running on the local
network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address, netmask, and addresses for
the local gateway and DNS server. The other exception is the network hardware address, also known as the MAC address. All
boards should be given a unique MAC address, not the one in the above example. If there are two boards on the same network
trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_rom.bin should now be uploaded using the terminal emulator. The file is a raw binary and should be
transferred using the Y-modem protocol.

Raw file loaded 0x0002f400-0x00045af7, assumed entry at 0x0002f400
xyzModem - CRC mode, 772(SOH)/0(STX)/0(CAN) packets, 5 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0xfff00000-0xfff20000: .
... Program from 0x0002f400-0x0004f400 at 0xfff00000: .

3169

Freescale M5282EVB Board Support

... Erase from 0xffff0000-0xffffffff: .

... Program from 0x00ff0000-0x01000000 at 0xffff0000: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0xFFF00000, and the flash info block at
0xFFFF0000 has been updated. The initial setup is now complete. Power off the board and set the flash jumper to boot from
location 0xFFF00000 instead of 0xFFE00000. Also set the terminal emulator to run at 38400 baud (the usual baud rate for
RedBoot), and power up the board again.

+Ethernet eth0: MAC address 00:00:00:00:00:03
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 23:44:10, Mar 31 2004

Platform: M5282EVB (Motorola MCF5282)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x01000000, 0x0000d390-0x00fed000 available
FLASH: 0xffe00000 - 0x00000000, 32 blocks of 0x00010000 bytes each.
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from m68k-elf-gdb, allowing eCos applications to be
downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done simply by repeating the above
process, using dBUG to load the dBUG version of RedBoot redboot_dbug.srec. Alternatively the existing RedBoot
install can be used to load a RAM-resident version, redboot_ram.bin.

The ROMFFE version of RedBoot can be installed at location 0xFFE00000, replacing dBUG. This may be useful if the system
needs more flash blocks than are available with the usual ROM RedBoot. Installing this RedBoot image will typically involve
a BDM-based utility.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the dBUG version of RedBoot are:

$ mkdir redboot_dbug
$ cd redboot_dbug
$ ecosconfig new m5282evb redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/m68k/mcf52xx/mcf5282/m5282evb/current/misc/redboot_DBUG.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_dbug.srec.

Rebuilding the RAM and ROM versions involves basically the same process. The RAM version uses the file red-
boot_RAM.ecm and generates a file redboot_ram.bin. The ROM version uses the file redboot_ROM.ecm and gen-
erates a file redboot_rom.bin.

3170

Freescale M5282EVB Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The M5282EVB platform HAL package is loaded automatically when eCos is configured for an M5282EVB target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The M5282EVB platform HAL package supports four separate startup types, controlled by the configuration option
CYG_HAL_STARTUP:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash at location 0xFFF00000 and boots from that location. m68k-elf-gdb is then used to load a RAM
startup application into memory and debug it. It is assumed that the hardware has already been initialized by Red-
Boot. By default the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot,
including diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR.

ROM This startup type can be used for finished applications which boot directly from flash at location 0xFFF00000. The
application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization. The flash-resident version of RedBoot uses this startup type.

ROMFFE This is a variant of the ROM startup type which can be used if the application will be programmed into flash at
location 0xFFE00000, overwriting the board's dBUG ROM monitor.

DBUG This is a variant of the RAM startup which allows applications to be loaded via the board's dBUG ROM monitor
rather than via RedBoot. It exists mainly to support the dBUG version of RedBoot which is needed during hardware
setup. Once the application has started it will take over all the hardware, and it will not depend on any services
provided by dBUG. This startup type does not provide gdb debug facilities.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via BDM.

If the application does not rely on a ROM monitor for diagnostic services then one of the serial ports will be claimed for HAL
diagnostics. By default eCos will use the terminal port, corresponding to uart0. The auxiliary port, uart1, can be selected instead
via the configuration option CYGHWR_HAL_M68K_M5282EVB_DIAGNOSTICS_PORT. The baud rate for the selected port
is controlled by CYGNUM_HAL_M68K_M5282EVB_DIAG_BAUD.

Flash Driver
The platform HAL package contains flash driver support for the external flash. By default this is inactive, and it can be made
active by loading the generic flash package CYGPKG_IO_FLASH.

Special Registers
The MCF5282 processor has a number of special registers controlling the cache, on-chip RAM and flash,
and so on. The platform HAL provides a number of configuration options for setting these, for example
CYGNUM_HAL_M68K_M5282EVB_RAMBAR controls the initial value of the RAMBAR register.

3171

Freescale M5282EVB Board Support

System Clock
By default the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_PERIOD, the number of microseconds between clock ticks. Other clock-related settings
are recalculated automatically if the period is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to this port:

-m5200 The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. A -m option should be used to select the specific variant in use,
and with current tools -m5200 is the closest match for an MCF5282 processor.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However, without a frame
pointer register, the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

3172

Freescale M5282EVB Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the M5282EVB hardware, and should be
read in conjunction with that specification. The M5282EVB platform HAL package complements the M68K architectural HAL,
the MCFxxxx variant HAL, and the MCF5282 processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services: the UARTs and the ethernet device will not
be reinitialized because they may be in use by RedBoot for communication with the host. Full details of this initialization can
be found in the function hal_m68k_m5282evb_init in platform.c.

For a ROM or ROMFFE startup the HAL will perform additional initialization, setting up the external DRAM and programming
the various internal registers. The values used for some of these registers are configurable. Full details can be found in the
exported header cyg/hal/plf.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External SDRAM This is mapped to location 0x00000000. Most of the first kilobyte is used for hardware exception
vectors. The eCos virtual vectors are also placed here, allowing RAM-based applications to use
services provided by the ROM monitor. For ROM and ROMFFE startup all remaining SDRAM
is available. For RAM and DBUG startup available SDRAM starts at location 0x00010000,
with the bottom 64K reserved for use by either the RedBoot or dBUG ROM monitors.

Internal RAM The 64K of internal RAM are normally mapped at location 0x20000000. Neither eCos nor
RedBoot use the internal RAM so all of it is available to application code.

On-chip Peripherals These are accessible at location 0x40000000 onwards, as per the defined symbol HAL_M-
CF5282_ISPBAR.

Note

On some other coldfire processors the equivalent register is known as %mbar.
The symbol HAL_MCFxxxx_MBAR is an alias for HAL_MCF5282_ISPBAR,
making it easier to share device drivers.

On-chip Flash The 512K of internal flash are normally mapped at location 0xF0000000. Currently this is not
used by eCos or RedBoot.

External Flash This is located at the top of memory, location 0xFFE00000 onwards. For ROM startup it is
assumed that a jumper is used to disable the bottom half of the flash, so location 0xFFE00000 is
actually a mirror of 0xFFF00000. For ROMFFE and DBUG startups all of the flash is visible.
RAM startup will work irrespective of the jumper setting.

In a typical setup the first two 64K flash blocks at location 0xFFF00000 are used to hold Red-
Boot, and the block at location 0xFFFF0000 is used to hold flash management data and the
RedBoot fconfig variables. The remaining blocks can be used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer PIT3, which
should not be used directly by application code. The actual HAL macros for managing the clock are provided by the MCF5282

3173

Freescale M5282EVB Board Support

processor HAL. The specific numbers used are a characteristic of the platform because they depend on the processor speed.
The gprof-based profiling code uses PIT2. Timers PIT0 and PIT1 are not used by eCos so application code is free to manipulate
these as required.

Other Issues
The M5282EVB platform HAL does not affect the implementation of other parts of the eCos HAL specification. The MCF5282
processor HAL, the MCFxxxx variant HAL, and the M68K architectural HAL documentation should be consulted for further
details.

Other Functionality
The platform HAL package also provides a flash driver for the off-chip AMD AM29LV160 flash chip. This driver is inactive
by default, and only becomes active if the configuration includes the generic flash support CYGPKG_IO_FLASH.

The platform HAL provides one additional function to manipulate the on-board LEDs: void
hal_m5282evb_led_set(which, what). The which argument specifies the LED and should be either 0 or 1. The
what argument should be non-zero to switch the LED on, zero to switch it off. Note that only two of the four user LEDs can
be manipulated in this way: the other two are normally connected to signals needed by one of the uarts.

3174

Chapter 324. Freescale M5282LITE Board
Support

3175

Freescale M5282LITE Board Support

Name
eCos Support for the Freescale M5282LITE Board — Overview

Description
The Freescale M5282LITE board has an MCF5282 ColdFire processor, 16MB of external SDRAM, 2MB of external flash
memory, and connectors plus required support chips for the on-chip peripherals. By default the board comes with its own
dBUG ROM monitor located in the external flash.

For typical eCos development a RedBoot image is programmed into the external flash replacing the existing dBUG monitor.
RedBoot provides gdb stub functionality so it is then possible to download and debug eCos applications via the gdb debugger.
This can happen over either a serial line or over ethernet.

Supported Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length

External SDRAM 0x00000000 0x01000000

Internal RAM 0x20000000 0x00010000

On-chip Peripherals 0x40000000 0x40000000

On-chip Flash 0xF0000000 0x00080000

External Flash 0xFFE00000 0x00200000

eCos can be configured for one of three startup types:

RAM This is the startup type normally used during application development. RedBoot is programmed into flash and performs
the initial bootstrap. m68k-elf-gdb is then used to load a RAM startup application into memory and debug it. By
default the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot, including
diagnostic output.

With a minor change to the eCos configuration this startup type can also be used to debug applications via BDM.

DBUG This is a variant of the RAM startup which allows applications to be loaded via the board's dBUG ROM monitor rather
than via RedBoot. Once the application has started it will take over all the hardware, and it will not depend on any
services provided by dBUG. This startup type does not provide gdb debug facilities. It is used primarily for building
a special version of RedBoot, used during hardware setup.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xFFE00000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization. This startup type is used for building the flash-resident version of
RedBoot but can also be used for application code.

For all startup types the external SDRAM is used to hold all data. For RAM and dBUG startup the code also resides in external
SDRAM, with the first 64K reserved for use by the ROM monitor. The 64K of internal RAM is not used, either by RedBoot
or by eCos, so all of it is available to the application. The 512K of internal flash is not currently used.

In a typical setup the first two 64K flash blocks are used for holding the RedBoot image, and the last block is used for managing
the flash and holding the RedBoot fconfig values. The remaining 29 blocks from 0xFFE20000 to 0xFFFEFFFF can be used
by application code.

RedBoot can communicate with the host using either ethernet or one of the UARTs - usually uart0 corresponding to the existing
serial connector on the M5282LITE board.

All configurations for the M5282LITE target include an ethernet driver package CYGPKG_DEVS_ETH_MCFxxxx. If the
application does not actually require ethernet functionality then the package is inactive and the final executable will not suf-

3176

Freescale M5282LITE Board Support

fer any overheads from unused functionality. This is determined by the presence of the generic ethernet I/O package CYGP-
KG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right thing to happen. For example the default
template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and redboot
templates do include a TCP/IP stack so will specify that package and hence enable the ethernet driver. The ethernet device can
be shared by RedBoot and the application, so it is possible to debug a networked application over ethernet.

The M5282LITE board does not have a serial EPROM or similar hardware providing a unique network MAC address. Instead
a suitable address has to be programmed into flash via RedBoot's fconfig command.

All configurations for the M5282LITE target include a serial device driver package CYGPKG_DEVS_SERIAL_MCFxxxx.
The driver as a whole is inactive unless the generic serial support, CYGPKG_IO_SERIAL_DEVICES is enabled. Exactly
which of the on-chip UARTs are supported is controlled by configuration options within the platform HAL. By default only
uart0 is supported since on the standard board that is the only one with a connector. If the UART is needed by the application
then it cannot also be used by RedBoot for gdb traffic, so another communication channel such as ethernet should be used
instead.

All configurations for the M5282LITE target also include a watchdog device driver CYGPKG_DEVS_WATCHDOG_MCF5282.
This driver is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG is loaded.

The on-chip interrupt controllers and the edge port module are managed by eCos using macros provided by the MCF5282
processor HAL. PIT timer 3 is normally used to implement the eCos system clock. If gprof-based profiling is enabled then that
will use PIT timer 2. PIT timers 0 and 1 are unused and can be manipulated by the application. The GPIO pins are manipulated
only as needed to get the UART(s) and ethernet working. eCos will reset the remaining on-chip peripherals (DMA, GPT, DMA
timers, QSPI, I²C, FlexCAN, and QADC) during system startup or soft reset, but will not otherwise manipulate them.

Tools
The M5282LITE port is intended to work with GNU tools configured for an m68k-elf target. The original port was done using
m68k-elf-gcc version 3.2.1, m68k-elf-gdb version 5.3, and binutils version 2.13.1.

By default eCos is built using the compiler flag -fomit-frame-pointer. Omitting the frame pointer eliminates some work
on every function call and makes another register available, so the code should be smaller and faster. However without a frame
pointer m68k-elf-gdb is not always able to identify stack frames, so it may be unable to provide accurate backtrace information.
Removing this compiler flag from the configuration option CYGBLD_GLOBAL_CFLAGS avoids such debug problems.

A typical setup involves m68k-elf-gdb interacting with RedBoot using either serial or ethernet. Alternatively it is possible to
debug via the BDM port. The package's misc subdirectory contains a script bdm.gdb that contains macros for the low-level
hardware initialization normally performed by the ROM startup code. The application should be linked with an eCos config-
uration using RAM startup, and with the options CYGSEM_HAL_ROM_MONITOR and CYGSEM_HAL_USE_ROM_MONITOR
disabled to stop eCos accessing any services provided by RedBoot. Diagnostic output will be sent out of uart0.

3177

Freescale M5282LITE Board Support

Name
Setup — Preparing the M5282LITE board for eCos Development

Overview
In a typical development environment the M5282LITE board boots from flash into the RedBoot ROM monitor. eCos applica-
tions are configured for a RAM startup, and then downloaded and run on the board via the debugger m68k-elf-gdb. Preparing
the board therefore involves programming a suitable RedBoot image into flash memory, replacing the existing dBUG monitor.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROM.ecm redboot_rom.bin

dBUG Used for initial setup redboot_DBUG.ecm redboot_dbug.srec

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot_ram.bin

For serial communications all versions run with 8 bits, no parity, and 1 stop bit. The dBUG version runs at 19200
baud. The ROM and RAM versions run at 38400 baud. These baud rates can be changed via the configuration option
CYGNUM_HAL_M68K_M5282LITE_DIAG_BAUD and rebuilding RedBoot. On the standard board only UART0 has a serial
connector so by default RedBoot will use that. If the board has been extended to provide connectors for the other on-chip uarts
then the configuration option CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT can be used to make RedBoot use
one of thoe. On an M5282LITE platform RedBoot also supports ethernet communication and flash management.

Initial Installation
This process assumes that the board still has its original dBUG ROM monitor and does not require any special debug hardware.
Programming the RedBoot rom monitor into flash memory requires an application that can manage flash blocks. RedBoot itself
has this capability. Rather than have a separate application that is used only for flash management during the initial installation,
a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used to load the normal
flash-resident version of RedBoot and program it into the flash.

The first step is to connect an RS232 cable between the M5282LITE serial port and the host PC. A suitable cable is supplied
with the board. Next start a terminal emulation application such as HyperTerminal or minicom on the host PC and set the serial
communication parameters to 19200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Apply
power to the board and you should see a dBUG> prompt.

Once dBUG is up and running the RAM-resident version of RedBoot can be downloaded:

dBUG> dl
Escape to local host and send S-records now...

The required S-records file is redboot_dbug.srec, which is normally supplied with the eCos release in the loaders
directory. If it needs to be rebuilt then instructions for this are supplied below. The file should be sent to the target as raw
text using the terminal emulator:

S-record download successful!
dBUG>

It is now possible to run the RAM-resident version of RedBoot:

dBUG> go 0x10000
FLASH configuration checksum error or invalid key
... waiting for BOOTP information
Ethernet eth0: MAC address 00:00:00:00:00:03
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [DBUG]

3178

Freescale M5282LITE Board Support

Non-certified release, version UNKNOWN - built 11:26:11, Jul 24 2004

Platform: M5282LITE (Motorola MCF5282)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x01000000, 0x0002d0f0-0x00fed000 available
FLASH: 0xffe00000 - 0x00000000, 32 blocks of 0x00010000 bytes each.
RedBoot>

At this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration check-
sum error is expected. There will also be a delay while RedBoot tries to contact a local BOOTP server. To perform the flash
initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0xffff0000-0xffffffff: .
`... Program from 0x00ffef00-0x00fff000 at 0xffff0000: .
RedBoot>

At this stage the block of flash at location 0xFFFF0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
DNS server IP address:
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0xff:0x12:0x34:0x01:0x08
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0xffff0000-0xffffffff: .
... Program from 0x00fef000-0x00fff000 at 0xffff0000: .
RedBoot>

For most of these configuration variables the default value is correct. If there is no suitable BOOTP service running on the local
network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address, netmask, and addresses for
the local gateway and DNS server. The other exception is the network hardware address, also known as MAC address. All
boards should be given a unique MAC address, not the one in the above example. If there are two boards on the same network
trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_rom.bin should now be uploaded using the terminal emulator. The file is a raw binary and should be
transferred using the Y-modem protocol.

Raw file loaded 0x0002d400-0x00042c2b, assumed entry at 0x0002d400
xyzModem - CRC mode, 691(SOH)/0(STX)/0(CAN) packets, 5 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0xffe00000-0xffe20000: .
... Program from 0x0002d400-0x0004d400 at 0xffe00000: .
... Erase from 0xffff0000-0xffffffff: .
... Program from 0x00fef000-0x00fff000 at 0xffff0000: .
RedBoot>

The flash-resident version of RedBoot has now programmed at location 0xFFE00000, and the flash info block at 0xFFFF0000
has been updated. The initial setup is now complete. Power off the board, set the terminal emulator to run at 38400 baud (the
usual baud rate for RedBoot), and power up the board again.

3179

Freescale M5282LITE Board Support

+Ethernet eth0: MAC address 00:ff:12:34:01:08
IP: 10.1.1.71/255.255.255.0, Gateway: 10.1.1.241
Default server: 10.1.1.1, DNS server IP: 10.1.1.240

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 15:41:51, Jul 24 2004

Platform: M5282LITE (Motorola MCF5282)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x01000000, 0x0000bef8-0x00fed000 available
FLASH: 0xffe00000 - 0x00000000, 32 blocks of 0x00010000 bytes each.
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from m68k-elf-gdb, allowing eCos applications to be
downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done by loading a RAM-resident
version of RedBoot, redboot_ram.bin, rather than the dBUG version of RedBoot used above. The ROM version can then
be loaded into memory using RedBoot's load and the flash version version can be updated using fis create RedBoot.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the dBUG version of RedBoot are:

$ mkdir redboot_dbug
$ cd redboot_dbug
$ ecosconfig new m5282lite redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/m68k/mcf52xx/mcf5282/m5282lite/current/misc/redboot_DBUG.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_dbug.srec.

Rebuilding the RAM and ROM versions involves basically the same process. The RAM version uses the file red-
boot_RAM.ecm and generates a file redboot_ram.bin. The ROM version uses the file redboot_ROM.ecm and gen-
erates a file redboot_rom.bin.

3180

Freescale M5282LITE Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The M5282LITE platform HAL package is loaded automatically when eCos is configured for an M5282LITE target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup

The M5282LITE platform HAL package supports three separate startup types: RAM, DBUG and ROM. The configuration
option CYG_HAL_STARTUP: controls which startup type is being used. For typical application development RAM startup
should be used, and the application will be run via m68k-elf-gdb interacting with RedBoot using either serial or ethernet. It
is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR.

ROM startup can be used for applications which boot directly from flash. All the hardware will be initialized, and the appli-
cation is self-contained. This startup type is used by the flash-resident version of RedBoot, and can also be used for finished
applications.

DBUG startup can be used for applications which will be loaded via the DBUG ROM monitor rather than RedBoot. As with
RAM startup it is assumed that the memory map has already been set up, but the application will not use any services provided
by the ROM monitor.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via BDM.

If the application does not rely on a ROM monitor for diagnostic services then one of the serial ports will be claimed for HAL
diagnostics. By default eCos will use UART0 since on the standard board that is the only uart with a suitable connector. If
the board has been extended with additional transceiver chips and connectors for UART1 or UART2 then one of those can be
selected via the CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT. The baud rate for the selected port is controlled
by CYGNUM_HAL_M68K_M5282LITE_DIAG_BAUD.

Optional Hardware

The M5282LITE board can be customized in a number of ways, primarily by connecting additional hardware to the MCU port.
There are a number of configuration options which allow the platform HAL to adapt to minor changes to the hardware:

CYGHWR_HAL_M68K_M5282LITE_UART0_RTS

On the default hardware UART0 RTS and CTS are not connected. If the uart will only be used for interacting with RedBoot
and debugging, that should be fine. If the uart will be used for another purpose, for example PPP, then it will usually be
desirable to support RTS/CTS hardware handshaking. The board has an option pad to allow the serial connector's RTS
pin to be wired to the processor's DTOUT3 pin. Alternatively any of the DTIN3, DTOUT1 or DTIN1 signals on the MCU
port could be wired instead. This configuration option can be used to specify how the board has been wired. Note that
CTS would have to be wired as well as RTS.

3181

Freescale M5282LITE Board Support

CYGHWR_HAL_M68K_M5282LITE_UART0_CTS

As with RTS, CTS is not wired on the default board. Although there is an option pad this is not usable: the option pad
would wire the serial connector's CTS pin to the processor's DTIN3 pin, but DTIN3 cannot be configured to carry the uart
CTS signal. Instead one of the DTOUT2, DTIN2, DTOUT0, or DTIN0 signals on the MCU port should be used.

CYGHWR_HAL_M68K_M5282LITE_UART1_CONNECTED
CYGHWR_HAL_M68K_M5282LITE_UART1_RTS
CYGHWR_HAL_M68K_M5282LITE_UART1_RTS_RS485
CYGHWR_HAL_M68K_M5282LITE_UART1_CTS

The default board has no connector for the on-chip UART1. However all the signals are accessible on the MCU port so
it is possible to wire up a suitable transceiver chip and connector. Enabling CYGHWR_HAL_M68K_M5282LITE_UAR-
T1_CONNECTED specifies that the RX and TX signals are connected. RTS is optional and can come from any of DTOUT3,
DTIN3, DTOUT1 or DTIN1, although obviously the same signal cannot be used for both UART0 and UART1. RTS may
be used either to tristate an RS485 transceiver in which case CTS should be left disconnected, or it can be used for RS232
hardware handshaking in which case CTS must also be connected. The CTS signal can come from any of DTOUT2,
DTIN2, DTOUT0 or DTIN0.

CYGHWR_HAL_M68K_M5282LITE_UART2_CONNECTED

The on-chip UART2 is not connected on the standard board. However if this uart is needed then it can be accessed via
the MCU port, using either the A1A0 SCL/SDA signals normally used for I²C, or the A3A2 CANTX/CANRX signals
normally used for CAN communication. This UART does not support RTS or CTS.

Flash Driver
The platform HAL package contains flash driver support for the external flash device. By default this is inactive, and it can be
made active by loading the generic flash package CYGPKG_IO_FLASH.

Special Registers
The MCF5282 processor has a number of special registers controlling the cache, on-chip RAM and flash,
and so on. The platform HAL provides a number of configuration options for setting these, for example
CYGNUM_HAL_M68K_M5282LITE_RAMBAR controls the initial value of the RAMBAR register.

System Clock
By default the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_PERIOD, the number of microseconds between clock ticks. Other clock-related settings
are recalculated automatically if the period is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to this port:

-m5200 The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. A -m option should be used to select the specific variant in use,
and with current tools -m5200 is the closest match for an MCF5282 processor.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

3182

Freescale M5282LITE Board Support

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However without a frame
pointer register the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

3183

Freescale M5282LITE Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the M5282LITE hardware, and should
be read in conjunction with that specification. The M5282LITE platform HAL package complements the M68K architectural
HAL, the MCFxxxx variant HAL, and the MCF5282 processor HAL. It provides functionality which is specific to the target
board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services: the UARTs and the ethernet device will not
be reinitialized because they may be in use by RedBoot for communication with the host. Full details of this initialization can
be found in the function hal_m68k_m5282lite_init in platform.c.

For a ROM startup the HAL will perform additional initialization, setting up the external DRAM and chip selects. Full details
can be found in the exported header cyg/hal/plf.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External SDRAM This is mapped to location 0x00000000. Most of the first kilobyte is used for hardware exception
vectors. The eCos virtual vectors are also placed here, allowing RAM-based applications to use
services provided by the ROM monitor. For ROM startup all remaining SDRAM is available.
For RAM and DBUG startup available SDRAM starts at location 0x00010000, with the bottom
64K reserved for use by either the RedBoot or dBUG ROM monitors.

Internal RAM The 64K of internal RAM are normally mapped at location 0x20000000. Neither eCos nor
RedBoot use the internal RAM so all of it is available to application code.

On-chip Peripherals These are accessible at location 0x40000000 onwards, as per the defined symbol HAL_M-
CF5282_ISPBAR.

Note

On some other coldfire processors the equivalent register is known as %mbar.
The symbol HAL_MCFxxxx_MBAR is an alias for HAL_MCF5282_ISPBAR,
making it easier to share device drivers.

On-chip Flash The 512K of internal flash are normally mapped at location 0xF0000000. Currently this is not
used by eCos or RedBoot.

External Flash This is located at the top of memory, location 0xFFE00000 onwards. In a typical setup the
first two 64K flash blocks at location 0xFFE00000 are used to hold RedBoot, and the last flash
block at location 0xFFFF0000 is used to hold flash management data and the RedBoot fconfig
variables. The remaining blocks can be used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer PIT3, which
should not be used directly by application code. The actual HAL macros for managing the clock are provided by the MCF5282
processor HAL. The specific numbers used are a characteristic of the platform because they depend on the processor speed.

3184

Freescale M5282LITE Board Support

The gprof-based profiling code uses PIT2. Timers PIT0 and PIT1 are not used by eCos so application code is free to manipulate
these as required.

Other Issues
The M5282LITE platform HAL does not affect the implementation of other parts of the eCos HAL specification. The MCF5282
processor HAL, the MCFxxxx variant HAL, and the M68K architectural HAL documentation should be consulted for further
details.

Other Functionality
The platform HAL package also provides a flash driver for the off-chip ST M29W160EB flash chip or compatible. This driver
is inactive by default, and only becomes active if the configuration includes the generic flash support CYGPKG_IO_FLASH.

3185

Chapter 325. SSV DNP/5280 Board
Support

3186

SSV DNP/5280 Board Support

Name
eCos Support for the SSV DNP/5280 and DNP/5282 Modules — Overview

Description
The SSV DNP/5280 module has an MCF5280 ColdFire processor, 16MB of external SDRAM, 8MB of external flash memory,
an ethernet phy chip, and in later revisions a DS1306 real-time clock. The module needs to be plugged into a suitable carrier
board, typically an SSV DNP/EVA2_SV6 or a DNP/EVA6, but custom boards may be used. The carrier board provides power
as well as connectors for the ethernet and some of the on-chip devices. The DNP/5282 module is similar but has a smaller
footprint. The modules are supplied with some firmware already programmed into the external flash. This firmware can be
either RedBoot, a ROM monitor based on eCos, or dBUG.

This package CYGPKG_HAL_M68K_DNP5280 provides a port to both modules. Specifically it supports the following targets:

dnp5280 A DNP/5280 module plugged into an EVA2_SV6 carrier board.

dnp5280_v12 A V1.2 DNP/5280 plugged into an EVA2_SV6 carrier board. This adds support for the
DS1306 clock device on this revision of the module.

dnp5282 A DNP/5282 plugged into an EVA6 carrier board.

eCos configuration options can be used to change the settings. CYGHWR_HAL_M68K_MCF528x_HARDWARE_D-
NP528x_BOARD determines the carrier board. This in turn affects the default GPIO pin settings and hence which of the on-
chip peripherals are accessible. These pin settings are also controlled by configuration options. Hence custom carrier boards
can be supported by creating an initial configuration for one of the standard targets and then changing the pin settings to reflect
the I/O capabilities of the actual carrier board.

Typical eCos development involves using RedBoot as the board's firmware, replacing dBUG if necessary. RedBoot provides
gdb stub functionality so it is then possible to download and debug eCos applications via the gdb debugger. This can happen
over either a serial line or over ethernet.

The eCos port can be configured for one of three startup types:

RAM This is the startup type normally used during application development. RedBoot is programmed into flash and performs
the initial bootstrap. m68k-elf-gdb is then used to load a RAM startup application into memory and debug it. By default
the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic
output. The RAM startup type can also be used for finished applications: RedBoot can be made to load and run such
applications automatically following bootstrap.

With a minor change to the eCos configuration this startup type can also be used to debug applications via BDM. eCos
will no longer assume the presence of RedBoot and hence will not make any virtual vector calls to obtain RedBoot
services.

DBUG This is another variant of RAM startup, used only when initializing a board. It can be used to run a special RAM-
resident version of RedBoot on top of the dBUG ROM monitor, allowing a ROM startup version of RedBoot to be
programmed into flash.

ROM This should be used for applications which will boot directly from flash at location 0xFF800000, replacing any ROM
monitor. The application will be self-contained. eCos startup code will perform all necessary hardware initialization.
ROM startup is used for building the flash-resident version of RedBoot, but can also be used for finished applications.

Supported Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length

External SDRAM 0x00000000 0x01000000

Internal RAM 0x20000000 0x00010000

3187

SSV DNP/5280 Board Support

Memory Base Length

On-chip Peripherals 0x40000000 0x40000000

External Flash 0xFF800000 0x00800000

DNP/5282 modules also have on-chip flash at 0xF0000000. For all startup types the external SDRAM is used to hold all data.
For RAM and DBUG startup the code also resides in external SDRAM, with the first 64K reserved for use by the ROM monitor.
In a typical setup RedBoot will occupy the first two external flash blocks, and it will also use the last flash block for storing
fconfig run-time configuration settings and the fis directory.

Code and data can be placed in the internal RAM using the linker script section “.iram_text” for code, and “.iram_data” and
“.iram_bss” for initialized and unitialized data respectively. The M68K architectural HAL contains a testcase iram1.c which
demonstrates how to use these linker sections.

RedBoot can communicate with the host using either ethernet or one of the UARTs - usually uart0 because the DNP/EVA2_SV6
carrier board only provides a connector for that board.

All configurations for the DNP/5280 and DNP/5282 targets include an ethernet driver package CYGPKG_DEVS_ETH_M-
CFxxxx. If the application does not actually require ethernet functionality then the package is inactive and the final executable
will not suffer any overheads from unused functionality. This is determined by the presence of the generic ethernet I/O pack-
age CYGPKG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right thing to happen. For example the
default template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and
redboot templates do include a TCP/IP stack so will specify that package and hence enable the ethernet driver. The ethernet
device can be shared by RedBoot and the application, so it is possible to debug a networked application over ethernet.

The DNP/5280 board does not have a serial EPROM or similar hardware providing a unique network MAC address. Instead
a suitable address has to be programmed into flash via RedBoot's fconfig command.

The on-chip uarts are supported via the serial device driver package CYGPKG_DEVS_SERIAL_MCFxxxx. The driver as a
whole is inactive unless the generic serial support, CYGPKG_IO_SERIAL_DEVICES is enabled. Only those uarts for which
GPIO pins are configured appropriately are available. By default this is only uart0 when using an EVA2_SV6 carrier board,
and both uart0 and uart1 when using an EVA6 carrier board. One of the uarts, typically uart0, may also be used for HAL
diagnostics. If so it should not be accessed via the serial driver.

All configurations for the DNP/5280 target also include a watchdog device driver CYGPKG_DEVS_WATCHDOG_MCF5282.
This driver is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG is loaded.

An I²C bus device driver is also included, but will not be built by default. If the DNP/5280 is plugged into a DNP/EVA2-
SV6 carrier board the relevant pins are already in use, connected to the dip switch. Even if a different carrier board is being
used the same pins may still be needed for GPIO or for uart2. If the I²C bus can be safely enabled on the target hardware then
GPIO pin configuration options should be adjusted to connect the SCL and SDA signals. The MCF5282 processor HAL will
then instantiate a cyg_i2c_bus structure hal_mcfxxxx_i2c_bus, allowing appropriate CYG_I2C_DEVICE structures to
be defined.

Similarly an SPI bus device driver is included but will not be built by default. If the GPIO pins are adjusted to connect
the QSPI DOUT, DIN and CLK signals then the MCF5282 processor HAL will instantiate an SPI bus device hal_m-
cfxxxx_qspi_bus, allowing appropriate CYG_MCFxxxx_QSPI_DEVICE structures to be defined.

Some releases may come with a driver CYGPKG_DEVS_CAN_FLEXCAN for the on-chip CAN device. This will be inactive
unless the generic CAN support CYGPKG_IO_CAN is added to the configuration. In addition it will be necessary to adjust the
GPIO pins to connect the CANTX and CANRX signals.

When configured for a dnp5280_v12 target the configuration will include a wallclock driver CYGPKG_DEVICES_WALL-
CLOCK_DALLAS_DS1306. This will be used automatically by the C library's time-related functions, for example time and
asctime, and can be changed by an eCos-specific function cyg_libc_time_settime.

All configurations will include a flash device driver CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2 for the external
flash. In addition when configured for a dnp5282 target the configuration will include a flash driver CYGPKG_DE-
VS_FLASH_M68K_MCFxxxx_CFM. Both drivers will be inactive unless the generic flash support CYGPKG_IO_FLASH is
added to the configuration.

3188

SSV DNP/5280 Board Support

On an EVA2_SV6 carrier board the platform HAL provides utility routines for accessing the LEDs and dip switch. The on-
chip interrupt controllers and the edge port module are managed by eCos using macros provided by the MCF5282 processor
HAL. PIT timer 3 is normally used to implement the eCos system clock. If gprof-based profiling is enabled then that will use
PIT timer 2. PIT timers 0 and 1 are unused and can be manipulated by the application. The remaining on-chip peripherals
are not used by eCos.

Tools
The DNP/5280 port is intended to work with GNU tools configured for an m68k-elf target. The original port was done using
m68k-elf-gcc version 3.2.1, m68k-elf-gdb version 5.3, and binutils version 2.13.1.

By default eCos is built using the compiler flag -fomit-frame-pointer. Omitting the frame pointer eliminates some work
on every function call and makes another register available, so the code should be smaller and faster. However without a frame
pointer m68k-elf-gdb is not always able to identify stack frames, so it may be unable to provide accurate backtrace information.
Removing this compiler flag from the configuration option CYGBLD_GLOBAL_CFLAGS avoids such debug problems.

A typical setup involves m68k-elf-gdb interacting with RedBoot using either serial or ethernet. Alternatively it is possible to
debug via the BDM port. The package's misc subdirectory contains a script bdm.gdb that contains macros for the low-level
hardware initialization normally performed by the ROM startup code. The application should be linked with an eCos config-
uration using RAM startup, and with the options CYGSEM_HAL_ROM_MONITOR and CYGSEM_HAL_USE_ROM_MONITOR
disabled to stop eCos accessing any services provided by RedBoot. Diagnostic output will be sent out of uart0.

3189

SSV DNP/5280 Board Support

Name
Setup — Preparing the DNP/5280 board for eCos Development

Overview
In a typical development environment the DNP/5280 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for a RAM startup, and then downloaded and run on the board via the debugger m68k-elf-gdb. Boards may
be shipped with one of two ROM monitors in the flash, either RedBoot or dBUG. If the latter, dBUG must be replaced so
preparing the board involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROM.ecm redboot_rom.bin

dBUG Used for initial setup redboot_DBUG.ecm redboot_dbug.srec

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot_ram.bin

For serial communications all versions run with 8 bits, no parity, and 1 stop bit. The dBUG version runs at 115200 baud. The
ROM and RAM versions usually run at 38400 baud, but this can be changed via a RedBoot fconfig option or by manipulating
the configuration option CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD and then rebuilding RedBoot. By default
RedBoot will use the board's terminal port, corresponding to uart0, but this can also be changed via the configuration option
CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT. On the DNP/5280 and DNP/5282 platforms RedBoot also sup-
ports ethernet communication and flash management.

Initial Installation
This process assumes that the board currently has the dBUG ROM monitor in flash and does not require any special debug
hardware. Programming the RedBoot rom monitor into flash memory requires an application that can manage flash blocks.
RedBoot itself has this capability. Rather than have a separate application that is used only for flash management during the
initial installation, a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used
to load the normal flash-resident version of RedBoot and program it into the flash.

The first step is to connect an RS232 cable between the DNP/5280 terminal port and the host PC. A suitable cable is supplied
with the board. Next start a terminal emulation application such as HyperTerminal or minicom on the host PC and set the
serial communication parameters to 115200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking).
Make sure that the RCM jumper is set to boot into dBUG rather than directly into uCLinux. Apply power to the board and
you should see a dBUG> prompt.

Once dBUG is up and running the RAM-resident version of RedBoot can be downloaded:

dBUG> dl
Escape to local host and send S-records now...

The required S-records file is redboot_dbug.srec, which is normally supplied with the eCos release in the loaders
directory. If it needs to be rebuilt then instructions for this are supplied below. The file should be sent to the target as raw
text using the terminal emulator:

S-record download successful!
dBUG>

It is now possible to run the RAM-resident version of RedBoot:

dBUG> go 0x10000
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
... waiting for BOOTP information
Ethernet eth0: MAC address 00:00:00:00:00:03

3190

SSV DNP/5280 Board Support

Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [DBUG]
Non-certified release, version UNKNOWN - built 21:15:10, Mar 16 2004

Platform: DNP/5280 (Freescale MCF5280)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x01000000, 0x0002f4c8-0x00fed000 available
FLASH: 0xff800000 - 0x00000000, 128 blocks of 0x00010000 bytes each.
RedBoot>

At this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration check-
sum error is expected. There will also be a delay while RedBoot tries to contact a local BOOTP server. To perform the flash
initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0xffff0000-0xffffffff: .
... Program from 0x00ff0000-0x00100000 at 0xffff0000: .
RedBoot>

At this stage the block of flash at location 0xFFFF0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Console baud rate: 115200
DNS server IP address:
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0x00:0x00:0x00:0x00:0x03
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0xffff0000-0xffffffff: .
... Program from 0x00ff0000-0x01000000 at 0xffff0000: .
RedBoot>

For most of these configuration variables the default value is correct. If there is no suitable BOOTP service running on the local
network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address, netmask, and addresses for
the local gateway and DNS server. The other exception is the network hardware address, also known as MAC address. All
boards should be given a unique MAC address, not the one in the above example. If there are two boards on the same network
trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_rom.bin should now be uploaded using the terminal emulator. The file is a raw binary and should be
transferred using the Y-modem protocol.

Raw file loaded 0x0002f800-0x0004613f, assumed entry at 0x0002f800
xyzModem - CRC mode, 726(SOH)/1(STX)/0(CAN) packets, 6 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0xff800000-0xff820000: .
... Program from 0x0002f800-0x0004f800 at 0xff800000: .
... Erase from 0xffff0000-0xffffffff: .
... Program from 0x00ff0000-0x01000000 at 0xffff0000: .
RedBoot>

3191

SSV DNP/5280 Board Support

The flash-resident version of RedBoot has now programmed at location 0xFF800000, and the flash info block at 0xFFFF0000
has been updated. The initial setup is now complete. Reset the board:

+Ethernet eth0: MAC address 00:00:00:00:00:03
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 20:52:02, Mar 16 2004

Platform: DNP/5280 (Freescale MCF5280)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x00000000-0x01000000, [0x0000d3c8-0x00fed000 available
FLASH: 0xff800000 - 0x00000000, 128 blocks of 0x00010000 bytes each.
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from m68k-elf-gdb, allowing eCos applications to be
downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done by loading a RAM-resident
version of RedBoot, redboot_ram.bin, rather than the DBUG version of RedBoot used above. The ROM version can then
be loaded into memory using RedBoot's load command, and the flash version can be updated using fis create RedBoot.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the dBUG version of RedBoot are:

$ mkdir redboot_dbug
$ cd redboot_dbug
$ ecosconfig new dnp5280 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/m68k/mcf52xx/mcf5282/dnp5280/current/misc/redboot_DBUG.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_dbug.srec.

Rebuilding the RAM and ROM versions involves basically the same process. The RAM version uses the file red-
boot_RAM.ecm and generates a file redboot_ram.bin. The ROM version uses the file redboot_ROM.ecm and gen-
erates a file redboot_rom.bin.

3192

SSV DNP/5280 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The DNP/5280 platform HAL package is loaded automatically when eCos is configured for a dnp5280, dnp5280_v12 or
dnp5282 target. It should never be necessary to load this package explicitly. Unloading the package should only happen as a
side effect of switching target hardware.

Startup
The DNP/5280 platform HAL package supports three separate startup types: RAM, DBUG, and ROM. The configuration
option CYG_HAL_STARTUP controls which startup type is being used. For typical application development RAM startup
should be used, and the application will be run via m68k-elf-gdb interacting with RedBoot using either serial or ethernet. It
is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR.

ROM startup can be used for applications which boot directly from flash. All the hardware will be initialized, and the appli-
cation is self-contained. This startup type is used by the flash-resident version of RedBoot, and can also be used for finished
applications.

DBUG startup can be used for applications which will be loaded via the DBUG ROM monitor rather than RedBoot. As with
RAM startup it is assumed that the memory map has already been set up, but the application will not use any services provided
by the ROM monitor.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via BDM.

If the application does not rely on a ROM monitor for diagnostic services then one of the serial ports will be claimed for
HAL diagnostics. By default eCos will use uart0. If the actual hardware has connectors for uart1 or uart2, one of these can
be selected instead via the configuration option CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT. The baud rate for
the selected port is controlled by CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD.

Optional Hardware
The platform HAL assumes that a DNP/5280 module is plugged into a standard DNP/EVA2_SV6 carrier board, and that a
DNP/5282 module is plugged into a DNP/EVA6. This can be changed via the configuration option CYGHWR_HAL_M68K_M-
CF528x_HARDWARE_DNP528x_BOARD. The choice of carrier board determines the default settings of the various GPIO
pins, in other words which pins are connected to on-chip peripherals. For example an EVA2_SV6 board only has a single
uart transceiver and connector so only uart0's signals are connected to the appropriate pins. An EVA6 has two transceivers
and connectors so both uart0 and uart1 are connected. When using a non-standard carrier board it is possible to define the pin
connectivity via configuration options in the CDL component CYGHWR_HAL_M68K_MCF528x_GPIO. The configuration
should adjust accordingly, enabling or disabling devices as appropriate. Mostly this happens in the MCF5282 processor HAL
and the MCFxxxx variant HAL.

Special Registers
The MCF5282 processor has a number of special registers controlling the cache, on-chip RAM, and so on. The platform HAL
provides a number of configuration options for setting these, for example CYGNUM_HAL_M68K_DNP5280_RAMBAR controls
the initial value of the RAMBAR register.

3193

SSV DNP/5280 Board Support

System Clock
By default the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_PERIOD, the number of microseconds between clock ticks. Other clock-related settings
are recalculated automatically if the period is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to this port:

-m5200 The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. A -m option should be used to select the specific variant in use,
and with current tools -m5200 is the closest match for an MCF5282 processor.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However without a frame
pointer register the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

3194

SSV DNP/5280 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the DNP/5280 hardware, and should be
read in conjunction with that specification. The DNP/5280 platform HAL package complements the M68K architectural HAL,
the MCFxxxx variant HAL, and the MCF5282 processor HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize those devices for which there are active device drivers. There is an
exception for RAM startup applications which depend on a ROM monitor for certain services: the UARTs and the ethernet
device will not be reinitialized because they may be in use by RedBoot for communication with the host. Full details of this
initialization can be found in the function hal_m68k_dnp5280_init in platform.c.

For a ROM startup the HAL will perform additional initialization, setting up the external DRAM and chip selects. Full details
can be found in the exported header cyg/hal/plf.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External SDRAM This is mapped to location 0x00000000. Most of the first kilobyte is used for hardware exception
vectors. The eCos virtual vectors are also placed here, allowing RAM-based applications to use
services provided by the ROM monitor. For ROM startup all remaining SDRAM is available.
For RAM and DBUG startup available SDRAM starts at location 0x00010000, with the bottom
64K reserved for use by either the RedBoot or dBUG ROM monitors.

Internal RAM The 64K of internal RAM are normally mapped at location 0x20000000. Neither eCos nor
RedBoot use the internal RAM so all of it is available to application code.

On-chip Peripherals These are accessible at location 0x40000000 onwards, as per the defined symbol HAL_M-
CF5282_ISPBAR.

Note

On some other ColdFire processors the equivalent register is known as %mbar.
The symbol HAL_MCFxxxx_MBAR is an alias for HAL_MCF5282_ISPBAR,
making it easier to share device drivers.

On-chip Flash When configured for a DNP/5282 the on-chip flash will be located at 0xF0000000. This flash
is not used by either eCos or RedBoot so it is all available for use by application code.

External Flash This is located at the top of memory, location 0xFF800000 onwards. In a typical setup the
first two 64K flash blocks at location 0xFF800000 are used to hold RedBoot, and the block at
location 0xFFFF0000 is used to hold flash management data and the RedBoot fconfig variables.
The remaining blocks can be used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer PIT3, which
should not be used directly by application code. The actual HAL macros for managing the clock are provided by the MCF5282
processor HAL. The specific numbers used are a characteristic of the platform because they depend on the processor speed.
The gprof-based profiling code uses PIT2. Timers PIT0 and PIT1 are not used by eCos so application code is free to manipulate
these as required.

3195

SSV DNP/5280 Board Support

Other Issues
The DNP/5280 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The MCF5282
processor HAL, the MCFxxxx variant HAL, and the M68K architectural HAL documentation should be consulted for further
details.

Other Functionality
The platform HAL package provides a flash driver for the off-chip AMD AM29LV640 flash chip. This driver is inactive by
default, and only becomes active if the configuration includes the generic flash support CYGPKG_IO_FLASH.

The platform HAL provides some additional functions for manipulating the LEDs and dipswitch on the DNP/EVA2_SV6
carrier board:

void hal_dnp5280_led_set(which, what)

This can be used to switch one of the LEDs on or off. The which argument specifies the LED and should be a number
between 0 and 7. The what argument should be non-zero to switch the LED on, zero to switch it off. This function must
not be called if the processor's QA and QB pins are not actually connected to the LEDs.

int hal_dnp5280_dipswitch_read(which)

This allows application code to query the state of one of the dip switches. The which argument should be a number
between 1 and 8.

int hal_dnp5280_dipswitch_read_all(void)

This allows application code to query the state of all the dip switches in one go. The result is an 8-bit number with bit
0 corresponding to dipswitch 1.

3196

Chapter 326. Motorola MCF521x
Processor Support

3197

Motorola MCF521x Processor Support

Name
CYGPKG_HAL_M68K_MCF521x — eCos Support for Freescale MCF521x Processors

Description
The Freescale MCF521x group of processors is part of the larger family of Coldfire processors. The MCF521x group has
several members including the MCF5211, MCF5212 and MCF5213. They differ from other Coldfire processors in that there
is no external memory bus, instead all memory is on-chip. For example the MCF5213 has 256KB on-chip flash and 32K of
on-chip SRAM. All MCF521x processors have basically the same set of peripherals (CAN is not available on the MCF5211
or MCF5212) but differ in the amount of on-chip memory.

The processor HAL package CYGPKG_HAL_M68K_MCF521x provides support for all MCF521x processors, although at
the time of writing it has only been tested on an MCF5213. It complements the M68K architectural HAL package CYGP-
KG_HAL_M68K and the variant HAL package CYGPKG_HAL_M68K_MCFxxxx. An eCos configuration should also include
a platform HAL package, for example CYGPKG_HAL_M68K_M5213EVB to support board-level details like how the on-chip
peripherals are connected to the outside world. It should be noted that compared with other eCos Coldfire ports rather more
work is done by the MCF521x processor HAL and rather less by the platform HAL. This is possible because of the lack of
an external memory bus.

Configuration
The MCF521x processor HAL package should be loaded automatically when eCos is configured for appropriate target hard-
ware. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

The configuration option CYGHWR_HAL_M68K_MCF521x_PROCESSOR defines the exact processor type, for example
MCF5213. Usually it will be set by the platform HAL and should not be manipulated by the user.

The option CYG_HAL_STARTUP determines whether the application will reside in RAM or in ROM (flash). With just 32K
of RAM on the MCF5213 only fairly simple applications will fit into RAM so the default is ROM startup. This can make
debugging significantly more difficult because it requires the use of hardware breakpoints, and the processor only supports a
small number of these. Debugging RAM startup applications can be rather easier because the debugger can insert breakpoints
by modifying the code. Hence it may sometimes be convenient to debug a cut-down version of an application linked against a
RAM startup eCos configuration. Alternatively with ROM startup individual functions can be placed in a “.2ram” section which
means they will be copied from flash to RAM during initialization and execute from RAM. Again this may make debugging
rather easier, assuming sufficient RAM is available.

For ROM startup the table of M68K exception vectors can reside either in ROM or in RAM. This table occupies 512 bytes
(a full M68K exception vector table is 1K but on an MCF521x running eCos only half of this is needed). Keeping it in ROM
saves a significant portion of the scarce RAM, but means that some eCos functionality (such as the HAL_VSR_SET macros)
is not available. Few applications require that functionality so by default the vectors are kept in ROM.

The processor HAL gives application developers full control over how the GPIO pins should be initialized, using configuration
options such as CYGHWR_HAL_M68K_MCF521x_GPIO_PORTQS_QS0. That pin is normally used for QSPI but can also be
used for CAN, UART0, or as a general-purpose input or output. For a GPIO output it is also possible to specify whether the
pins should be initialized high or low. The default settings for each pin are determined by the platform HAL. However there
may be various jumpers or an expansion connector on the board, in which case the platform HAL may not know exactly how
the various pins should be set up. Hence the processor HAL allows application developers to override the default settings for
every pin. There are also configuration options for controlling the pin slew rates and drive strengths.

The GPIO pin settings are used to determine default values for a variety of other hardware-related configuration options. For
example CYGHWR_HAL_M68K_MCFxxxx_UART0 will be enabled if either the TX or RX lines are connected, and that option
is used elsewhere in the system when deciding which UARTs are potentially usable for HAL diagnostics or should have serial
device driver support. The user may be able to override some of these settings, to handle scenarios where a pin should come
up as a GPIO output but may later get switched to e.g. a UART tx line. The platform HAL may impose some restrictions.

If the SPI bus should be enabled then there is a configuration option CYGNUM_HAL_M68K_MCF521x_QSPI_ISRPRI to
control the interrupt priority of the QSPI bus device. MCF521x processors use the same interrupt controller as the MCF5282,

3198

Motorola MCF521x Processor Support

and this has a limitation that all interrupt priorities should be unique. The processor HAL provides non-conflicting defaults for
the various on-chip devices but when changing interrupt priorities it is the application developer's responsibility to maintain
unique priorities.

If the I²C bus should be enabled then again there is a configuration option CYGNUM_HAL_M68K_MCF521x_I2C_ISRPRI to
control the interrupt priority of the I²C device. There is also a configuration option CYGNUM_HAL_M68K_MCF521x_I2C_F-
DR to set the FDR register which controls the I²C bus speed. The default speed is the I²C standard 100KHz, or as close to that as
the hardware allows, but if all attached I²C devices can operate at a faster speed then this option may be adjusted accordingly.

The processor HAL provides a configuration option CYGNUM_HAL_RTC_PERIOD to control the system clock speed. The
default setting is 10 milliseconds between clock interrupts or as close to that as the hardware allows, giving a 100Hz system
clock.

In kernel configurations the behaviour of the idle thread can be controlled using CYGIMP_HAL_M68K_MCF521x_IDLE.
The default behaviour is wait where the cpu, flash and SRAM enter a low power mode but all peripherals continue operating
normally. Any interrupt will bring the processor out of low power mode.

The processor HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to the MCF521x port:

-m528x The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. A -m option should be used to select the specific variant in
use, and as far as the compiler is concerned the MCF521x has the same cpu core as the
MCF5282.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However without a frame
pointer register the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

The HAL Port
This section describes how the MCF521x processor HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and variant HAL documentation.

Memory Map and Linker Script

On most platforms the memory map is determined by the platform HAL. However, on an MCF521x processor, all memory
is on-chip and the memory map can be determined by the processor HAL, so less work has to be done to port to different
MCF521x platforms. For ROM startup, the memory map is as follows:

0x00000000 The base of on-chip flash, and the table of exception vectors. Usually the first 512 bytes
are used for exception vectors, but if CYGIMP_HAL_STARTUP_VECTORS_IN_RAM
is enabled then only 8 bytes of flash are needed and the exception vectors are relocated
to RAM at 0x20000000.

The M68K architecture reserves 1K for the table of exception vectors but on an
MCF521x only half of this is needed. Memory between the end of the flash exception

3199

Motorola MCF521x Processor Support

vectors and 0x00000400 is used for certain eCos functions such as startup and the in-
terrupt VSR.

0x00000400 The MCF521x on-chip flash requires a 24-byte hal_mcfxxxx_cfm_security_settings da-
ta structure at this location. This structure controls the initial locked status of flash blocks
and related security settings. eCos provides default settings which leave everything dis-
abled, but the relevant structure hal_68k_mcf5213_security_settings is de-
clared weak so applications can override this if desired.

0x00000418 onwards Code and constant data are placed in on-chip flash immediately after the CFM security
settings. If the application does not fill the whole of flash then any remaining flash blocks
may be used for storing persistent data using the standard eCos flash API functions such
as cyg_flash_program.

0x20000000-0x200001FF This is the base address for the on-chip SRAM. If the run-time exception vectors
are placed in RAM via the configuration option CYGIMP_HAL_STARTUP_VEC-
TORS_IN_RAM then the first 512 bytes are used for the table of exception vectors. Oth-
erwise this SRAM is available for application data.

0x20000000 onwards or
0x20000200 onwards

On-chip SRAM is used for holding application data, both initialized data held in the
.data region and uninitialized data in the .bss region. Any SRAM left over at the
end can be used for a standard C heap accessed via malloc and free.

The on-chip SRAM can also be used to hold code placed in .2ram section. This mech-
anism is used by the CFM flash driver for certain low-level functions which cannot
normally execute from flash. It can also be used for application functions. For code
held in flash the debugger must use hardware breakpoints and the processor supports
only a limited number of these. For code held in RAM the debugger can use software
breakpoints, modifying the instructions at run-time, so there is no limit on the number
of breakpoints. Hence placing certain functions in .2ram sections and hence in RAM
may facilitate debugging. Obviously on-chip RAM is a scarce resource so this technique
will not always be applicable.

0x40000000 onwards The on-chip peripherals are mapped into memory starting at this addres.

For RAM startup the on-chip flash is ignored (although the CFM security settings will still affect the flash device driver).
Instead all code and data gets placed into RAM and must somehow fit into the limited amount of available on-chip RAM. This
can be useful for specialized applications and for debugging certain problems.

Since all MCF521x memory is on-chip the processor does not have a cache and the default empty cache macros provided by
the architectural HAL will be used.

The processor HAL provides the .ldi file which, in conjunction with the architectural m68k.ld file, is used to generate
the linker script.

HAL I/O

The header file cyg/hal/proc_io.h provides definitions of MCF521x-specific on-chip peripherals. Many of the on-chip
peripherals are compatible with those on the MCF5282, and for those peripherals it is the var_io.h header provided by the
MCFxxxx variant HAL which provides the appropriate definitions. Both headers are automatically included by the architectural
header cyg/hal/hal_io.h, so typically application code and other packages will just include the latter.

Interrupt Handling

MCF521x processors implement standard Coldfire interrupt and exception handling, and comes with a single MCF5282-
compatible interrupt controller and edge port module. Therefore all interrupt and exception handling is left to the archi-
tectural and MCFxxxx variant HAL. The processor's cyg/hal/proc_intr.h serves mainly to define symbols such as
CYGNUM_HAL_ISR_UART0, mapping the MCF521x on-chip interrupt sources to the interrupt vectors.

3200

Motorola MCF521x Processor Support

In the default configuration, an MCF521x boots from flash and the exception vectors are held in flash. Hence the
HAL_VSR_SET macro and associated functionality are not available. This behaviour can be changed via the configuration
option CYGIMP_HAL_STARTUP_VECTORS_IN_RAM.

Clock Support

MCF521x processors come with two MCF5282-compatible programmable interrupt timers. PIT1 is used for the system clock
using functionality provided by the variant HAL. PIT0 is available for use by the application. Timer-based profiling is not
available since there is not enough RAM available for the arrays needed to hold profiling information.

The MCF521x processor HAL depends on the platform HAL to provide a configuration option CYGH-
WR_HAL_SYSTEM_CLOCK_HZ, corresponding to the default processor clock speed. The input clock can be provided in var-
ious ways and it is only the platform HAL which knows how the clock has been implemented on a given board.

Other Issues

The MCF521x processor HAL does not affect the implementation of data types, stack size definitions, SMP support, system
startup, or debug support. The MCFxxxx variant HAL versions of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX are used
since the processor supports the ff1.l and bitrev.l instructions.

Other Functionality

The MCF521x processor HAL can instantiate a single flash device structure using the functionality provided by the CYG-
PKG_DEVS_FLASH_M68K_MCFxxxx_CFM device driver. This will only happen if the generic flash support CYGP-
KG_IO_FLASH is part of the configuration. Not all applications require flash driver support so to avoid unnecessary code
and data overheads the generic flash support is not included in the standard eCos templates. Instead it will have to be added
explicitly to the configuration.

The processor HAL will instantiate a cyg_i2c_bus structure hal_mcf521x_i2c_bus when the configuration option CYGH-
WR_HAL_M68K_MCF521x_I2C is enabled. That option is enabled by default if various GPIO pins are configured appropri-
ately. The implementation is provided by the CYGPKG_DEVS_I2C_MCFxxxx device driver. The processor HAL does not
know what I²C devices may be attached to the bus so that is left to the platform HAL.

The processor HAL will instantiate a cyg_spi_bus structure hal_mcf521x_qspi_bus when the configuration option
CYGHWR_HAL_M68K_MCF521x_SPI is enabled. That option is enabled by default if various GPIO pins are configured
appropriately. The implementation is provided by the CYGPKG_DEVS_SPI_MCFxxxx_QSPI device driver. The processor
HAL does not know what SPI devices may be attached to the bus so that is left to the platform HAL. All SPI device structures
should be placed in the table mcf521x_qspi.

3201

Chapter 327. Motorola M5213EVB Board
Support

3202

Motorola M5213EVB Board Support

Name
CYGPKG_HAL_M68K_M5213EVB — eCos Platform HAL

Description
The Motorola M5212EVB board has an MCF5213 ColdFire processor, support chips for the on-chip peripherals such as the
UARTs and CAN bus, power and clock circuitry, a Zigbee chip attached to the MCF5213's SPI serial bus, some LEDs and
switches, and an expansion connector for application-specific devices. The MCF5213 does not have an external memory bus,
instead applications have to fit into the 256KB of on-chip flash and 32KB of on-chip SRAM.

The platform HAL package CYGPKG_HAL_M68K_M5213EVB provides the platform-specific support needed to configure
and build eCos. It complements the M68K architectural HAL, the MCFxxxx variant HAL, and the MCF521x processor HAL.
On the M5213EVB the role of the platform HAL is small compared with many other eCos platforms. The absence of an
external memory bus means that the differences between one MCF5213 platform and the next will be comparatively small,
and much of the work that would normally be done by the platform HAL can instead be done by the processor HAL. The main
responsibilities of the platform HAL are to control the hardware clock and to define the default GPIO pin settings.

For typical application development eCos will be configured for a ROM startup. An application linked against eCos will be
programmed into the base of flash, location 0x0, using a BDM debug solution. The application will run as soon as the board is
reset, or it can be debugged over a BDM device such as the Ronetix PEEDI using the m68k-elf-gdb debugger. Alternatively
it is possible to configure eCos for a RAM startup, load the application into RAM via m68k-elf-gdb and BDM, and execute it
from RAM. However with only 32KB of RAM to work with this will only be possible for comparatively simple applications.
Even for ROM startup application complexity will be limited by the 32KB of SRAM for data and the 256KB of flash for code.

All configurations for the M5213EVB include serial, watchdog, flash, I²C and SPI device drivers. However these are not
always active:

1. The serial device CYGPKG_DEVS_SERIAL_MCFxxxx is inactive unless the generic serial support CYGP-
KG_IO_SERIAL is loaded and the configuration option CYGPKG_IO_SERIAL_DEVICES is enabled. Exactly which
of the on-chip UARTs are supported depends on options in the processor HAL such as CYGHWR_HAL_M68K_M-
CFxxxx_UART0, which in turn depend on the GPIO pin settings. With the default settings all three UARTs can be accessed
via the serial device driver, using standard I/O facilities and names such as /dev/ser0. However by default UART0 will
also be used as the HAL diagnostics channel and if so it should not be accessed via the serial driver. The MCFxxxx variant
HAL and the serial device driver provide relevant configuration options.

2. The watchdog device driver CYGPKG_DEVS_WATCHDOG_MCFxxxx is inactive unless the generic watchdog support
CYGPKG_IO_WATCHDOG is loaded into the configuration. The latter provides functions such as watchdog_reset for
manipulating the watchdog.

3. The flash device driver CYGPKG_DEVS_FLASH_M68K_MCFxxxx_CFM is inactive unless the generic flash support CYG-
PKG_IO_FLASH is loaded into the configuration. The latter provides functions such as cyg_flash_program for ma-
nipulating the on-chip flash.

4. The I²C bus driver CYGPKG_DEVS_I2C_MCFxxxx is automatically available to the application and can be accessed
through functions such as cyg_i2c_tx provided by the generic I²C package CYGPKG_IO_I2C. The M5213EVB board
does not have any I²C devices on board but the I²C SDA and SCL signals can be accessed via the expansion connector so
devices can be attached that way. It would then be up to the application to instantiate appropriate cyg_i2c_device structures.
If the application does not use any I²C functionality then it will all be eliminated at link-time and the application will not
suffer any unnecessary overheads. The I²C and FlexCAN support are mutually exclusive.

5. The SPI bus driver CYGPKG_DEVS_SPI_MCFxxxx_QSPI is automatically available to the application and can be ac-
cessed through functions such as cyg_spi_transfer provided by the generic SPI package CYGPKG_IO_SPI. The
M5213EVB has a single on-board SPI device, the Zigbee chip, and the platform HAL provides a cyg_spi_device structure
cyg_spi_zigbee_mc13191. The SPI signals are available on the expansion connector so additional devices can be
attached that way. It would then be up to the application to instantiate appropriate cyg_spi_device structures. If the appli-
cation does not use any SPI functionality then it will all be eliminated at link-time and the application will not suffer any
unnecessary overheads

6. The FlexCAN device driver CYGPKG_DEVS_CAN_FLEXCAN is inactive unless the generic CAN support CYGP-
KG_IO_CAN is loaded into the configuration. It is also necessary to set the appropriate jumpers, specifically the CAN_EN

3203

Motorola M5213EVB Board Support

jumpers must be closed and the COM_SEL jumpers must be set to CAN. The corresponding configuration option CYGH-
WR_HAL_M68K_M5213EVB_CAN_EN should then enabled. The driver provides a single channel, by default “can0”. The
FlexCAN and I²C support are mutually exclusive.

The on-chip interrupt controller and the edge port module are managed by eCos using macros provided by the MCFxxxx variant
HAL. PIT timer 1 is normally used to implement the eCos system clock. PIT timer 0 is unused and can be manipulated by the
application. The remaining peripherals (DMA, GPT, DTIM, ADC, PWM, FLEXCAN) are not used by eCos.

Some standard eCos functionality is not available on the M5213EVB board. On most platforms in a development environment
the RedBoot ROM monitor is programmed into flash, allowing applications to be loaded into RAM and debugged over a serial
line or ethernet. This is not possible on an M5213EVB. Even if RedBoot's data requirements could be squeezed into the 32KB
of available SRAM there would not be enough left for applications. Instead on an M5213EVB debugging involves a hardware
debug solution such as BDM and the application is programmed directly into flash. Other eCos functionality such as the Robust
Boot Loader (RBL) package or the common HAL's virtual vector mechanism are only relevant in systems containing RedBoot,
so will not work on an M5213EVB. The 32KB RAM limitation also means that some of the more advanced eCos functionality
such as TCP/IP networking, the JFFS2 flash file system, and gprof-based profiling, will not fit into an M5213EVB.

Setup and eCos Configuration
Both eCos and applications should be built using the GNU tools m68k-elf-gcc, m68k-elf-g++, and so on. The original port of
eCos to the M5213EVB was done using m68k-elf-gcc version 3.4.4 (eCosCentric). The recommended BDM debug solution
is the Ronetix PEEDI. This requires a configuration file peedi.cfg which can be found in the platform HAL's misc directory.
The configuration file will initialize the hardware in the same way as the ROM startup code. It will need minor edits, for
example to specify the correct license keys and to select the CORE_FLASH for the M5213EVB. For full details see the Ronetix
documentation.

Note

Application development using eCosPro releases prior to version 3.1 operated via the processor's BDM port, the
on-chip debug module and a proprietary stub program m68k-elf-cfpe-stub. This is no longer supported.

Once the PEEDI is set up applications can be linked against an eCos configuration built with either RAM or ROM startup
mode. Applications can then be debugged via m68k-elf-gdb either used directly at the command line or via an integrated
development environment such as Eclipse.

The M5213EVB board comes with a large number of jumpers. This means that the platform HAL does not automatically know
which on-chip peripherals should be connected to the appropriate pins and which pins should be left for general purpose I/O.
For example usually processor pin 7 will be used for the UART0 RX line but by removing a jumper it can be disconnected
from the RS232 transceiver. Instead some other device can be hooked up to this pin via the expansion connector and the pin
should be set up as a GPIO output to drive that device. Jumpers also control which input clock should be used, and that affects
how eCos should initialize the clock hardware.

The default eCos configuration will assume the default jumper settings as follows:

CLKSEL 1 and 2 in, 3 to 6 out Use the external 8MHz reference crystal oscillator Y1 in PLL mode. This will be mul-
tiplied internally to give an 80MHz system clock.

UART0_EN all in
UART1_EN all in
UART2_EN all in

All on-chip UARTs have all of TX, RX, RTS and CTS connected to the RS232 trans-
ceivers.

COM_SEL all set tot UART The DB9 socket for UART2_CAN carries the UART2 signals.

LED_EN in The processor can drive the LEDs.

BDM_EN in The debug port is used for BDM and not JTAG.

The platform HAL does not concern itself with other jumpers such as those controlling the I²C pull-ups, although obviously
these will have to be set appropriately if the corresponding on-chip peripherals are to function correctly.

If any of these jumper settings are changed then configuration options within the platform HAL will need to be changed
accordingly. If some other clock input is enabled or if the system clock should run at some speed other than 80MHz then

3204

Motorola M5213EVB Board Support

CYGHWR_HAL_M68K_M5213EVB_SYNCR and CYGHWR_HAL_SYSTEM_CLOCK_HZ should be edited. The first of these
determines what gets programmed into the SYNCR register and the processor reference manual should be consulted for more
information. The second informs eCos what the actual system clock speed will be. This depends on the hardware as well as
the SYNCR setting so cannot be calculated.

If the LED_EN jumper is disconnected then the configuration option CYGHWR_HAL_M68K_M5213EVB_LED_EN should
be disabled. Similary if any of the jumper blocks UART0_EN, UART1_EN or UART2_EN are disconnected then the corre-
sponding configuration options CYGHWR_HAL_M68K_M5213EVB_UART0_EN etc. should be disabled. This assumes all of
the jumpers in a jumper block are either in or out. If instead say UART1 still has its TX line connected but not RX, RTS
or CTS then the processor HAL provides finer-grained configuration options such as CYGHWR_HAL_M68K_MCF521x_G-
PIO_PORTUB_UB1 which allow the application developer to specify exactly which pins should be used for what purpose.

The coarse-grained platform HAL options such as CYGHWR_HAL_M68K_M5213EVB_LED_EN are used to determine the
default values of various processor HAL options such as CYGHWR_HAL_M68K_MCF521x_GPIO_PORTTC. Application
developers can always edit the latter options rather than the platform HAL ones to gain full control over each pin. The processor
HAL will initialize all the pins as per its GPIO options, and the information is also used by the configuration system to determine
whether, for example, the serial device driver should allow access to UART2.

Assuming default jumper settings there is no need to change any of the configuration options. eCos can be built and applications
linked as normal. Because only very simple applications will fit into the 32KB of on-chip SRAM the default startup mode is
ROM, requiring that the application be programmed into flash at location 0. Any suitable flash programming utility can be
used for this as well as the Ronetix PEEDI. Assumed that all the GNU tools are already installed, the examples below assume
that a PEEDI JTAG/BDM debugger is attached to the M5213EVB and listening for connections on TCP/IP port 9000.

Programming ROM images with a Ronetix PEEDI

This section describes how to program ROM images using a Ronetix PEEDI debugger.

The PEEDI must be configured to allow communication with your local network, and configured with the parameters for
interfacing with the target board. It must then be used to download and program the ROM image into the internal flash. The
following steps give a typical outline for doing this. Consult the PEEDI documentation for alternative approaches, such as
using FTP or HTTP instead of TFTP.

Preparing the Ronetix PEEDI JTAG/BDM debugger

1. Prepare a PC to act as a host and start a TFTP server on it.

2. Connect the PEEDI JTAG/BDM debugger via both serial and ethernet to the host PC and power it on. Use the serial cable
supplied with the PEEDI (straight through, not null modem).

3. Verify the PEEDI is using up-to-date firmware, of version 11.10.1 or later. If the firmware is not recent enough, follow the
PEEDI User Manual's instructions which describe how to update the PEEDI firmware.

4. Locate the PEEDI configuration file peedi.cfg within the eCos platform HAL package in the source repository. This will
be in the directory packages/hal/m68k/mcf52xx/mcf521x/m5213evb/VERSION/misc relative to the root of
your eCos installation.

5. Place the PEEDI configuration file in a location on the PC accessible to the TFTP server. Later you will configure the PEEDI
to load this file via TFTP as its configuration file.

6. Open peedi.cfg in an editor such as emacs or notepad and insert your own license information in the [LICENSE]
section.

7. Install and configure the PEEDI in line with the PEEDI Quick Start Guide or User's Manual, especially configuring PEEDI's
RedBoot with the network information. Configure it to use the peedi.cfg target configuration file on the TFTP server at
the appropriate point of the config process, for example with a path such as: tftp://192.168.7.9/peedi.cfg

8. Reset the PEEDI.

9. Connect to the PEEDI's CLI interface via TCP/IP on the standard telnet port 23. The telnet application is suitable for this.
You should see output similar to the following:

$ telnet peedi-0

3205

Motorola M5213EVB Board Support

Trying 172.16.19.140...
Connected to peedi-0.
Escape character is '^]'.

PEEDI - Powerful Embedded Ethernet Debug Interface
Copyright (c) 2005-2011 www.ronetix.at - All rights reserved
Hw:1.2, L:BDM v1.1 Fw:11.10.1, SN: PD-XXXX-XXXX-XXXX
--

m5213evb>

Preparing the M5213EVB for programming with PEEDI

Follow the steps in this section in order to allow communication between the board and the host PC, and between the board
and the BDM device.

If programming a GDB stub ROM or an application which uses serial output, you should first:

1. Connect an adaptor from the serial pins on the board to an RS232 DB9 serial connector or cable, then connect from there
to a serial port on the host computer with a null modem DB9 RS232 serial cable.

2. Start a suitable terminal emulator on the host computer such as minicom on Linux or PuTTY on Windows. Set the com-
munication parameters to 38400 baud, 8 data bits, no parity bit and 1 stop bit with no flow control.

For all applications, you must:

1. Connect the board to the PEEDI using an appropriate cable from the BDM interface connector to the Target port on the
PEEDI.

2. Power up the M5213EVB.

3. Connect to the PEEDI's telnet CLI on port 23 as before.

4. Confirm correct connection with the PEEDI with the reset reset command as follows:

m5213evb> reset reset
++ info: RESET and BKPT asserted
++ info: RESET released
++ info: BKPT released
++ info: core 0: initialized

m5213evb>

Installation into Flash using the Ronetix PEEDI

The following describes the procedure for installing a ROM application into on-chip Flash using the Ronetix PEEDI, using
the tm_basic test as an example of such an application.

1. Use m68k-elf-objcopy to convert the linked application, in ELF format, into binary format. For example:

$ m68k-elf-objcopy -O binary programname programname.bin

2. Copy the binary file (.bin file) into a location on the host computer accessible to its TFTP server.

3. Connect to the PEEDI's telnet interface, and program the image into Flash with the following command, replacing TFT-
P_SERVER with the address of the TFTP server and /BINPATH with the location of the .bin file relative to the TFTP
server root directory. For example for the tm_basic test:

m5213evb> flash program tftp://TFTP_SERVER/BINPATH/tm_basic.bin bin 0x0 erase
++ info: Programming image file: tftp://TFTP_SERVER/BINPATH/tm_basic.bin
++ info: Programming directly
++ info: At absolute address: 0x00000000
erasing at 0x00000000 (page #0)
erasing at 0x00000800 (page #1)
programming at 0x00000000
erasing at 0x00001000 (page #2)
erasing at 0x00001800 (page #3)
programming at 0x00001000
erasing at 0x00002000 (page #4)

3206

Motorola M5213EVB Board Support

erasing at 0x00002800 (page #5)
programming at 0x00002000
erasing at 0x00003000 (page #6)
erasing at 0x00003800 (page #7)
programming at 0x00003000
erasing at 0x00004000 (page #8)
erasing at 0x00004800 (page #9)
programming at 0x00004000
erasing at 0x00005000 (page #10)
erasing at 0x00005800 (page #11)
programming at 0x00005000
erasing at 0x00006000 (page #12)
erasing at 0x00006800 (page #13)
programming at 0x00006000
erasing at 0x00007000 (page #14)
erasing at 0x00007800 (page #15)
programming at 0x00007000
erasing at 0x00008000 (page #16)
erasing at 0x00008800 (page #17)
programming at 0x00008000
erasing at 0x00009000 (page #18)
erasing at 0x00009800 (page #19)
programming at 0x00009000
erasing at 0x0000A000 (page #20)
erasing at 0x0000A800 (page #21)
programming at 0x0000A000
erasing at 0x0000B000 (page #22)
erasing at 0x0000B800 (page #23)
programming at 0x0000B000

++ info: successfully programmed 48.00 KB in 1.45 sec

m5213evb>

Once programmed into flash the application can be run simply by resetting the board. This may be acheived through the PEEDI
telnet session by running the command reset reset and issuing the go command. For example:

m5213evb> reset reset
++ info: user reset
m5213evb>
++ info: RESET and BKPT asserted
++ info: RESET released
++ info: BKPT released
++ info: core 0: initialized

m5213evb> go

UART0 will be used for the HAL diagnostics channel so any output generated by the application will appear there. The default
communication parameters are 8 bits, no parity, 1 stop bit, and 38400 baud. HAL diagnostics are managed by the MCFxxxx
variant HAL and there are two main configuration options: CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT can be
used to change the UART used or to cause diagnostics to be discarded completely; CYGNUM_HAL_M68K_MCFxxxx_DIAG-
NOSTICS_BAUD can be used to change the baud rate. In the case of the tm_basic image, output similar to the following
should be visible:

Example 327.1. m5213evb Real-time characterization

INFO:<code from 0x00000000 -> 0x0000a900, CRC e654>
 Startup, main stack : stack used 356 size 2152
 Startup : Idlethread stack used 76 size 1280

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 14.28 microseconds (14 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 2

3207

Motorola M5213EVB Board Support

 Thread switches: 128
 Mutexes: 32
 Mailboxes: 21
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 13.00 13.00 13.00 0.00 100% 100% Create thread
 2.50 2.00 3.00 0.50 100% 50% Yield thread [all suspended]
 3.00 3.00 3.00 0.00 100% 100% Suspend [suspended] thread
 3.00 3.00 3.00 0.00 100% 100% Resume thread
 4.00 4.00 4.00 0.00 100% 100% Set priority
 0.50 0.00 1.00 0.50 100% 50% Get priority
 7.50 7.00 8.00 0.50 100% 50% Kill [suspended] thread
 2.50 2.00 3.00 0.50 100% 50% Yield [no other] thread
 4.00 4.00 4.00 0.00 100% 100% Resume [suspended low prio] thread
 2.00 2.00 2.00 0.00 100% 100% Resume [runnable low prio] thread
 4.00 4.00 4.00 0.00 100% 100% Suspend [runnable] thread
 3.00 3.00 3.00 0.00 100% 100% Yield [only low prio] thread
 3.00 3.00 3.00 0.00 100% 100% Suspend [runnable->not runnable]
 8.00 8.00 8.00 0.00 100% 100% Kill [runnable] thread
 6.00 6.00 6.00 0.00 100% 100% Destroy [dead] thread
 12.00 12.00 12.00 0.00 100% 100% Destroy [runnable] thread
 16.00 15.00 17.00 1.00 100% 50% Resume [high priority] thread
 5.27 5.00 7.00 0.39 74% 74% Thread switch

 0.81 0.00 1.00 0.31 81% 18% Scheduler lock
 2.13 2.00 3.00 0.22 87% 87% Scheduler unlock [0 threads]
 2.13 2.00 3.00 0.22 87% 87% Scheduler unlock [1 suspended]
 2.13 2.00 3.00 0.22 87% 87% Scheduler unlock [many suspended]
 2.13 2.00 3.00 0.22 87% 87% Scheduler unlock [many low prio]

 1.16 1.00 2.00 0.26 84% 84% Init mutex
 3.56 3.00 4.00 0.49 56% 43% Lock [unlocked] mutex
 3.75 3.00 4.00 0.38 75% 25% Unlock [locked] mutex
 2.84 2.00 3.00 0.26 84% 15% Trylock [unlocked] mutex
 2.75 2.00 3.00 0.38 75% 25% Trylock [locked] mutex
 1.38 1.00 2.00 0.47 62% 62% Destroy mutex
 17.28 17.00 18.00 0.40 71% 71% Unlock/Lock mutex

 1.57 1.00 2.00 0.49 57% 42% Create mbox
 0.81 0.00 1.00 0.31 80% 19% Peek [empty] mbox
 3.52 3.00 4.00 0.50 52% 47% Put [first] mbox
 0.81 0.00 1.00 0.31 80% 19% Peek [1 msg] mbox
 3.57 3.00 4.00 0.49 57% 42% Put [second] mbox
 0.86 0.00 1.00 0.25 85% 14% Peek [2 msgs] mbox
 3.19 3.00 4.00 0.31 80% 80% Get [first] mbox
 3.48 3.00 4.00 0.50 52% 52% Get [second] mbox
 2.71 2.00 3.00 0.41 71% 28% Tryput [first] mbox
 2.76 2.00 3.00 0.36 76% 23% Peek item [non-empty] mbox
 3.00 3.00 3.00 0.00 100% 100% Tryget [non-empty] mbox
 2.57 2.00 3.00 0.49 57% 42% Peek item [empty] mbox
 2.57 2.00 3.00 0.49 57% 42% Tryget [empty] mbox
 0.95 0.00 1.00 0.09 95% 4% Waiting to get mbox
 0.95 0.00 1.00 0.09 95% 4% Waiting to put mbox
 1.57 1.00 2.00 0.49 57% 42% Delete mbox
 11.43 11.00 12.00 0.49 57% 57% Put/Get mbox

 1.09 1.00 2.00 0.17 90% 90% Init semaphore
 2.50 2.00 3.00 0.50 100% 50% Post [0] semaphore
 3.13 3.00 4.00 0.22 87% 87% Wait [1] semaphore
 2.63 2.00 3.00 0.47 62% 37% Trywait [0] semaphore
 2.50 2.00 3.00 0.50 100% 50% Trywait [1] semaphore
 1.25 1.00 2.00 0.38 75% 75% Peek semaphore
 1.25 1.00 2.00 0.38 75% 75% Destroy semaphore
 9.97 9.00 10.00 0.06 96% 3% Post/Wait semaphore

3208

Motorola M5213EVB Board Support

 1.66 1.00 2.00 0.45 65% 34% Create counter
 1.00 1.00 1.00 0.00 100% 100% Get counter value
 1.06 1.00 2.00 0.12 93% 93% Set counter value
 3.63 3.00 4.00 0.47 62% 37% Tick counter
 1.19 1.00 2.00 0.30 81% 81% Delete counter

 1.25 1.00 2.00 0.38 75% 75% Init flag
 3.00 3.00 3.00 0.00 100% 100% Destroy flag
 2.44 2.00 3.00 0.49 56% 56% Mask bits in flag
 2.91 2.00 3.00 0.17 90% 9% Set bits in flag [no waiters]
 4.78 4.00 5.00 0.34 78% 21% Wait for flag [AND]
 4.50 4.00 5.00 0.50 100% 50% Wait for flag [OR]
 4.81 4.00 5.00 0.31 81% 18% Wait for flag [AND/CLR]
 4.50 4.00 5.00 0.50 100% 50% Wait for flag [OR/CLR]
 0.88 0.00 1.00 0.22 87% 12% Peek on flag

 2.28 2.00 3.00 0.40 71% 71% Create alarm
 4.00 4.00 4.00 0.00 100% 100% Initialize alarm
 2.38 2.00 3.00 0.47 62% 62% Disable alarm
 4.88 4.00 5.00 0.22 87% 12% Enable alarm
 2.81 2.00 3.00 0.31 81% 18% Delete alarm
 3.91 3.00 4.00 0.17 90% 9% Tick counter [1 alarm]
 22.31 22.00 23.00 0.43 68% 68% Tick counter [many alarms]
 6.47 6.00 7.00 0.50 53% 53% Tick & fire counter [1 alarm]
 112.81 112.00 113.00 0.31 81% 18% Tick & fire counters [>> together]
 25.16 25.00 26.00 0.26 84% 84% Tick & fire counters [>> separately]
 13.00 13.00 13.00 0.00 100% 100% Alarm latency [0 threads]
 13.66 13.00 16.00 0.88 83% 67% Alarm latency [2 threads]
 13.68 13.00 16.00 0.90 82% 66% Alarm latency [many threads]
 21.02 21.00 23.00 0.03 99% 99% Alarm -> thread resume latency

 1.20 1.00 2.00 0.00 Clock/interrupt latency

 4.65 4.00 8.00 0.00 Clock DSR latency

 210 208 212 (main stack: 845) Thread stack used (712 total)
 All done, main stack : stack used 845 size 2152
 All done : Idlethread stack used 188 size 1280

Timing complete - 37600 ms total

PASS:<Basic timing OK>
EXIT:<done>

Programming the application with ecoflash

eCos comes with its own utility ecoflash that is an expect script. Your host must therefore also have expect installed in order
to run ecoflash. The expect program is not distributed along with eCosPro but is available for most Linux distributions and
from ActiveState for Windows. Assuming both ecoflash and expect have been correctly installed, to program an executable
tm_basic into flash would involve a command such as:

$ ecoflash -b m5213evb -t 'remote peedi-0:9000' program tm_basic
Erasing 0x00000000 - 0x0000b6c7
Writing 0x00000000 - 0x00003fff (16384 bytes) from file "/tmp/tm_basic.1358785576", offset 0
Writing 0x00004000 - 0x00007fff (16384 bytes) from file "/tmp/tm_basic.1358785576", offset 16384
Writing 0x00008000 - 0x0000b6c7 (14024 bytes) from file "/tmp/tm_basic.1358785576", offset 32768

The -b argument identifies the target hardware and the -t option informs ecoflash how to access the board in the current
development environment. Here it is told to interact with a Ronetix JTAG/BDM PEEDI with the hostname peedi-0 listening
on TCP/IP port 9000. For repeated use ecoflash supports various environment variables:

$ export ECOFLASH_BOARD=m5213evb
$ export ECOFLASH_TARGET='remote peedi-0:9000'
$ ecoflash program tm_basic
Erasing 0x00000000 - 0x0000b6c7
Writing 0x00000000 - 0x00003fff (16384 bytes) from file "/tmp/tm_basic.1358785576", offset 0
Writing 0x00004000 - 0x00007fff (16384 bytes) from file "/tmp/tm_basic.1358785576", offset 16384
Writing 0x00008000 - 0x0000b6c7 (14024 bytes) from file "/tmp/tm_basic.1358785576", offset 32768

3209

Motorola M5213EVB Board Support

For the Windows CMD environment replace export with SET above. The separate ecoflash documentation in the section
ecoflash Flash Programming Utility should be consulted for further details.

Debugging the application with gdb

More commonly some debugging will be necessary and m68k-elf-gdb can be used for this. It can be invoked directly for
command line use, or it may be used indirectly as the backend for an integrated development environment such as Eclipse.
Typical command-line usage for a ROM startup application would involve:

$ m68k-elf-gdb --quiet hello
(gdb) shell ecoflash -b m5213evb -t 'remote peedi-0:9000' program hello
Erasing 0x00000000 - 0x00004ad7
Writing 0x00000000 - 0x00003fff (16384 bytes) from file "/tmp/hello.1358786211", offset 0
Writing 0x00004000 - 0x00004ad7 (2776 bytes) from file "/tmp/hello.1358786211", offset 16384
(gdb) set remote memory-write-packet-size 128
(gdb) set remote memory-read-packet-size 128
(gdb) target remote peedi-0:9000
Remote debugging using peedi-0:9000
0x0000045c in main (argc=9146, argv=0x0) at hello.c:53
(gdb) set $pc=hal_m68k_exception_reset
Current language: auto; currently asm
(gdb) hbreak main
Hardware assisted breakpoint 1 at 0x420: file hello.c, line 48.
(gdb) c
Continuing.

Breakpoint 1, main (argc=9146, argv=0x0) at hello.c:48
48 CYG_TEST_INIT();
Current language: auto; currently c

In typical usage most of these commands will be automated via a macro in the user's .gdbinit file. The first two commands
limit the size of data transfers between gdb and the PEEDI. This may or may not be necessary, but problems in this area have
been observed with some versions of the tools. The shell command invokes ecoflash to program the hello program into flash.
The target command connects gdb to a Ronetix PEEDI listening on TCP/IP port 9000. The entry point for an M5213EVB eCos
application is hal_m68k_exception_reset. Normally the entry point is set automatically by gdb when the application
is loaded into memory, but when debugging an application in flash there is no load phase so the program counter has to be
set explicitly.

Normally gdb uses software breakpoints which means that it will modify the instructions in RAM to trigger a breakpoint
exception. That is not possible for code in flash. Instead hardware breakpoints must be specified via the hbreak command
instead of the more usual break command. The MCF5213 only supports four hardware breakpoints, one of which may be
needed by gdb to implement functionality such as single-stepping at the C level, so debugging a flash-based application can
prove more difficult than a RAM-based application. It should also be noted that m68k-elf-gdb has no built-in awareness of eCos
data structures so there is no support for thread-aware debugging. On other platforms it is the target-side gdb stubs embedded
into RedBoot that provide such support.

For very simple applications where both code and data will fit into the 32KB of available SRAM it is possible to set the
configuration option CYG_HAL_STARTUP to RAM and then build eCos and the application for that startup. Running such
an application via command-line gdb involves:

% m68k-elf-gdb --quiet hello
(gdb) set remote memory-write-packet-size 128
(gdb) set remote memory-read-packet-size 128
(gdb) target remote peedi-0:9000
Remote debugging using peedi-0:9000
(gdb) load
Loading section .ram_vectors, size 0x200 lma 0x20000000
Loading section .m68k_start, size 0x48 lma 0x20000200
Loading section .text, size 0x46ac lma 0x20000248
Loading section .rodata, size 0x585 lma 0x200048f4
Loading section .data, size 0x17c lma 0x20004e7c
Start address 0x20000200, load size 20469
Transfer rate: 50385 bits/sec, 108 bytes/write.
(gdb) break main
Breakpoint 1 at 0x2000038e: file hello.c:48
(gdb) c
Continuing.

3210

Motorola M5213EVB Board Support

Breakpoint 1, main (argc=9146, argv=0x0) at hello.c:48
48 CYG_TEST_INIT();
(gdb)

The same commands are used to connect to the PEEDI and to set the communication parameters, and again a gdb macro would
normally be used for this. The application is then loaded into RAM, which automatically sets the program counter. Ordinary
software breakpoints can now be used.

HAL Port Implementation Details
The M5213EVB platform HAL has very limited functionality compared with more typical eCos platform HALs. Because
there is no external memory bus much of the work normally done by the platform HAL can instead be done higher up in the
MCF521x processor HAL, and hence the code can be shared with other MCF521x-based platforms.

The M5213EVB platform HAL does not override the behaviour of any of the higher-level HALs. The M68K architectural
HAL handles the bulk of system startup, interrupt and exception handling, thread context management, and the main linker
script. The MCFxxxx variant HAL provides the diagnostics support, interrupt controller management, the system clock, reset,
microsecond delay, and the LSBIT and MSBIT utility macros. The MCF521x processor HAL defines the memory map and
provides processor-specific startup code, idle thread support. It also initializes the GPIO pins, and instantiates flash, SPI and
I²C bus devices. The platform HAL mainly provides the default settings for the GPIO pins and the system clock.

When the configuration option CYGHWR_HAL_M68K_M5213EVB_LED_EN is enabled, indicating that the four LEDs are
connected to the appropriate GPIO pins, the platform HAL package provides a utility function for manipulating the LEDs:

#include <cyg/hal/hal_arch.h>

externC void hal_m5213evb_led_set(int, int);

The first argument identifies the LED and should be a number between 0 and 3. The second argument should be 1 to switch
the LED on, 0 to switch it off.

When SPI support is enabled in the processor HAL via the configuration option CYGHWR_HAL_M68K_MCF521x_SPI the
platform HAL will instantiate a cyg_spi_device structure cyg_spi_zigbee_mc13192 for the on-board Zigbee chip. The
platform HAL does not attempt to initialize or otherwise interact with this chip.

The platform HAL provides the necessary support for the ecoflash flash programming utility. The m5213evb.ecf configu-
ration file and the m5213evb_flash.elf target-side executable may have been installed automatically when you installed
eCos. If not, the misc subdirectory contains the configuration file and a configuration template ecoflash.ecm which can
be used to rebuild the target-side executable.

3211

Chapter 328. Freescale M5208EVBe
Platform HAL

3212

Freescale M5208EVBe Platform HAL

Name
eCos Support for the Freescale M5208EVBe and M5208EVB (Intec Automation) Boards — Overview

Description
This package CYGPKG_HAL_M68K_M5208EVBE provides a port to the Freescale M5208EVBe board. The older M5208EVB
is also supported via CDL configuration. The port supports RedBoot programmed into the external flash. This can be used for
application bootstrap. It also provides gdb stub functionality, allowing developers to download and debug eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet. Alternatively a BDM hardware debug module
can be used.

The eCos port can be configured for one of three startup types:

RAM This is the startup type normally used during application development. RedBoot is programmed into flash and
performs the initial bootstrap. m68k-elf-gdb is then used to load a RAM startup application into memory and debug
it. By default the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot,
including diagnostic output. The RAM startup type can also be used for finished applications: RedBoot can be made
to load and run such applications automatically following bootstrap.

RAMB-
DM

This is a variant of RAM startup which can be used for debugging using a BDM hardware debug module, if for
some reason an application cannot be run on top of RedBoot. The main difference between RAMBDM and RAM
startup is that the former does not assume the presence of RedBoot and hence will not make any virtual vector calls
to obtain RedBoot services.

ROM This startup type can be used for finished applications which will be programmed into external flash at location
0x00000000, and which will execute as soon as the processor starts running. The application will be self-contained
with no dependencies on services provided by other software. This startup type is used for building the flash-resident
version of RedBoot but can also be used for application code.

Hardware
The memory map used by both eCos and RedBoot for the M5208EVBe is as follows:

Memory Base Length Write-protected

External Flash 0x00000000 0x00800000 Yes

External SDRAM 0x40000000 0x02000000 No

Internal RAM 0x80000000 0x00004000 No

On-chip Peripherals 0xF0000000 0x10000000 No

For the older M5208EVB platform the eCos and RedBoot memory map is:

Memory Base Length Write-protected

External Flash 0x00000000 0x00200000 Yes

External SDRAM 0x40000000 0x02000000 No

Internal RAM 0x80000000 0x00004000 No

On-chip Peripherals 0xF0000000 0x10000000 No

By default caching is enabled for the external flash and SDRAM. There is no need to cache the internal RAM, and caching the
peripherals would break all device drivers. As a debugging aid the flash is set to write-protected, which should catch some null
pointer indirections. The flash driver will temporarily set this part of the address space to read-write when modifying the flash.

For all startup types the M68K exception vectors, the eCos virtual vector table, and a small amount of additional data is placed
at the base of SDRAM. For ROM startup the application's data starts immediately afterwards. For RAM and RAMBDM startup
application code starts at 0x40010000, with just under 64K reserved for use by RedBoot, and data follows after the code.

3213

Freescale M5208EVBe Platform HAL

Typically the first 128K of flash is used for RedBoot, and the last 64K of flash is used for RedBoot's FIS and fconfig data. The
remainder of the flash is available for use by the application, and is supported via the V2 AMD flash driver CYGPKG_DE-
VS_FLASH_AMD_AM29XXXXX_V2. That driver is inactive unless the generic flash support CYGPKG_IO_FLASH has been
included in the configuration. The amount of flash available is the main difference between the newer M5208EVBe board
and the older M5208EVB. The default M5208EVBe platform HAL uses CFI to determine the actual flash chips present, with
the M5208EVB being restricted to the known/fixed 2MB flash due to hardware mapping of the flash chip. The generic flash
support provides an API that ensures an application need not worry about the details of which flash chips are present.

Code and data can be placed in the internal RAM using the linker script section “.iram_text” for code, and “.iram_data” and
“.iram_bss” for initialized and unitialized data respectively. The M68K architectural HAL contains a testcase iram1.c which
demonstrates how to use these linker sections.

Of the three on-chip UARTs, UART0 and UART1 have on-board RS232 transceivers and UART2 is available via GPIO
configuration on the CN1 I/O header. Normally UART0 will be used as the default diagnostics channel for RedBoot and
for stand-alone applications, and may also be inherited as the diagnostics/debug channel when debugging a RAM startup
application over serial.

The on-chip ethernet device is supported via the device driver CYGPKG_DEVS_ETH_MCFxxxx. This driver will be inactive
unless the generic ethernet support CYGPKG_IO_ETH_DRIVERS is included in the configuration. Typically that will happen
automatically when the configuration is created using the net template. For RedBoot or applications run on top of RedBoot
the ethernet MAC address will typically be supplied by an fconfig setting. Otherwise the address will be set by a configuration
option in the ethernet driver. Care should be taken that no two boards on the same network segment accidentally use the same
MAC address.

The I²C bus is supported by the generic package CYGPKG_IO_I2C and the device driver CYGPKG_DEVS_I2C_MCFxxxx.
Both of these will be included automatically in any configuration for the M5208EVBe, but will be eliminated at link-time if
the application does not use any I²C functionality. The I²C bus instance is called hal_mcfxxxx_i2c_bus.

The QSPI bus is supported by the generic package CYGPKG_IO_SPI and the device driver CYGPKG_DEVS_SPI_M-
CFxxxx_QSPI. Both of these will be included automatically in any configuration for the M5208EVBe, but will be eliminated
at link-time if the application does not use any SPI functionality. The SPI bus instance is called hal_mcfxxxx_qspi_bus,
and the platform HAL also instantiates an SPI device object hal_m5208evbe_m13192.

All eCos configurations for the M5208EVBe also include a watchdog device driver CYGPKG_DEVS_WATCHDOG_M-
CFxxxx_SCM. That driver is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG has been added to the
configuration, and should be accessed via the API provided by that package.

eCos also manages the interrupt controllers, the FlexBus settings, and the SDRAM controller. The Crossbar switch is set to
favour I/O rather than the cpu, avoiding problems with DMA underruns. Timer PIT0 is normally used for the eCos system clock,
and when using the profiling package CYGPKG_PROFILE_GPROF PIT1 will be used for the profiling timer. The remaining
hardware is available for use by the application.

Tools
The M5208EVBe port is intended to work with GNU tools configured for an m68k-elf target. The original port was done using
m68k-elf-gcc version 4.4.5c m68k-elf-gdb version 7.2, and binutils version 2.20.1.

By default eCos is built using the compiler flag -fomit-frame-pointer. Omitting the frame pointer eliminates some work
on every function call and makes another register available, so the code should be smaller and faster. However without a frame
pointer m68k-elf-gdb is not always able to identify stack frames, so it may be unable to provide accurate backtrace information.
Removing this compiler flag from the configuration option CYGBLD_GLOBAL_CFLAGS avoids such debug problems.

3214

Freescale M5208EVBe Platform HAL

Name
Setup — Preparing the M5208EVBe board for eCos Development

Overview
In a typical development environment the M5208EVBe board boots from flash into the RedBoot ROM monitor. eCos appli-
cations are configured for a RAM startup, and then downloaded and run via either ethernet or serial using the m68k-elf-gdb
debugger. Preparing the board therefore involves programming a suitable RedBoot image into flash memory. Alternatively it
is possible to use a BDM hardware debug module to load and run a RAMBDM startup application, with no need to install
RedBoot into flash first. Some functionality provided by RedBoot via virtual vectors will not be available in that scenario. In
particular the ethernet driver will not be able to access an fconfig setting for the MAC address, and instead it will use a fixed
address controlled by a configuration option.

Setting Up BDM
The recommended BDM debug solution is the Ronetix PEEDI. This requires a configuration file peedi.m5208evbe.cfg
which can be found in the platform HAL's misc directory. The configuration file will initialize the hardware in the same way as
the ROM startup code. It will need minor edits, for example to specify the correct license keys and to select the CORE_FLASH
respectively for the M5208EVBe or M5208EVB. For full details see the Ronetix documentation.

Once the PEEDI is set up applications can be linked against an eCos configuration built with RAMBDM startup mode. That
is largely equivalent to RAM startup but disables the use of virtual vectors, so it does not assume that RedBoot is present.
Applications can then be run via m68k-elf-gdb:

% m68k-elf-gdb install/tests/kernel/current/tests/tm_basic
…
(gdb) target remote peedi:9000
Remote debugging using peedi:9000
0x00015b6c in ?? ()
(gdb) load
Loading section .m68k_start, size 0xa4 lma 0x40010000
Loading section .text, size 0xaadc lma 0x400100a4
Loading section .rodata, size 0xfc1 lma 0x4001ab80
Loading section .data, size 0x14c lma 0x4001bb44
Start address 0x40010000, load size 48269
Transfer rate: 250 KB/sec, 8044 bytes/write.
(gdb) break cyg_test_exit
Breakpoint 1 at 0x40016670: file /work/ecos/ecospro-common/packages/infra/current/src/tcdiag.cxx, line 316.
(gdb) continue
Continuing.

Breakpoint 1, cyg_test_exit () at /work/ecos/ecospro-common/packages/infra/current/src/tcdiag.cxx:316
316 cyg_test_exit(void)
$

The application output will go via the configured HAL diagnostics channel, as per CYGHWR_HAL_M68K_MCFxxxx_DIAG-
NOSTICS_PORT. The default settings will send the output via UART0 at 115200 baud, 8 bits, no parity, and 1 stop bit. The
baud rates can be changed via the configuration option CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD. It is also
possible to set the diagnostics port to discard all output or to use the gdb hwdebug fileio channel. The latter requires running
an extra gdb command after loading the application:

…
(gdb) load
Loading section .m68k_start, size 0xa4 lma 0x40010000
Loading section .text, size 0xaa9c lma 0x400100a4
Loading section .rodata, size 0xfc1 lma 0x4001ab40
Loading section .data, size 0x150 lma 0x4001bb04
Start address 0x40010000, load size 48209
Transfer rate: 250 KB/sec, 8034 bytes/write.
(gdb) set hwdebug
(gdb) break cyg_test_exit
Breakpoint 1 at 0x40016670: file /work/ecos/ecospro-common/packages/infra/current/src/tcdiag.cxx, line 316.
(gdb) continue
…

3215

Freescale M5208EVBe Platform HAL

The application output will now be sent to gdb, which will display it.

Installing RedBoot

The following RedBoot configurations are supported for the M5208EVBe and M5208EVB boards:

Startup Description Use Files

ROM Runs from the board's flash redboot_ROM.ecm redboot.elf, red-
boot.bin

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot.elf, red-
boot.bin

Note that the RAM and RAMBDM startups are equivalent as far as RedBoot is concerned. The RAM startup version of RedBoot
can be run either via BDM or on top of an already installed ROM RedBoot. eCosPro releases come with prebuilt RedBoot
images renamed to incorporate the startup type, for example redboot_ROM.bin. It is the ROM RedBoot binary that needs
to be programmed into flash at location 0x00000000. This may involve a third party flash programming utility. Alternatively
it is possible to first run up the RAM startup version via BDM and then use that to program the ROM binary into flash. The
eCosPro installation's "loaders/m5208evbe" directory contains the prebuilt RedBoot images for the M5208EVBe target and
the "loaders/m5208evb" directory the prebuilt RedBoot images for the M5208EVB. The following example assumes you are
using a Ronetix PEEDI BDM debugger to load the appropriate RAM RedBoot prebuilt for your target.

% m68k-elf-gdb <path>/redboot.elf
…
(gdb) target remote peedi:9000
Remote debugging using peedi:9000
fis_lookup (name=0x4001bc80 "@\001\ufffd8", num=0x40016a7a) at /work/ecos/ecospro-common/packages/redboot/current/src/flash.c:267
267 {
(gdb) load
Loading section .m68k_start, size 0x98 lma 0x40010000
Loading section .text, size 0x16dd8 lma 0x40010098
Loading section .rodata, size 0x3afc lma 0x40026e70
Loading section .data, size 0xb08 lma 0x4002a96c
Start address 0x40010000, load size 111732
Transfer rate: 274 KB/sec, 12414 bytes/write.
(gdb) continue

The RAM RedBoot will now output its banner and prompt via UART0, again at 115200 baud 8 bits no parity 1 stopbit, and
will accept commands:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 00:ff:12:34:56:78
IP: 10.1.1.181/255.255.255.0, Gateway: 10.1.1.241
Default server: 0.0.0.0
DNS server IP: 10.1.1.240, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [RAM]
…
Platform: M5208EVBe (Freescale MCF5208)
RAM: 0x40000000-0x41000000 [0x40036424-0x40fed000 available]
FLASH: 0x00000000-0x007fffff, 64 x 0x10000 blocks, 64 x 0x10000 blocks
RedBoot>

At this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration check-
sum error is expected. In this example RedBoot is using a default MAC address and has contacted a local bootp server to get
the IP address information. To perform the flash initialization use the fis init command.

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
** Initialize FLASH Image System
... Erase from 0x007f0000-0x007fffff: .
... Program from 0x40ff0000-0x41000000 to 0x007f0000: .
RedBoot>

3216

Freescale M5208EVBe Platform HAL

Now the block of flash at location 0x007F0000 holds information about the various flash blocks, allowing other flash manage-
ment operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address:
DNS server IP address:
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0xff:0x12:0x34:0x01:0x15
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x007f0000-0x007fffff: .
... Program from 0x40ff0000-0x41000000 to 0x007f0000: .
RedBoot>

For most of these configuration variables the default value will be acceptable, at least initially. If there is no suitable BOOTP
service running on the local network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address,
netmask, and addresses for the local gateway and DNS server. The other exception is the network hardware address, also known
as MAC address. All boards should be given a unique MAC address, not the one in the above example. If there are two boards
on the same network trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work this involves first
loading it into RAM and then programming it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The ROM startup build of redboot.bin should now be uploaded using the terminal emulator. The file is a raw binary and
should be transferred using the Y-modem protocol.

CRaw file loaded 0x40036800-0x40051dfb, assumed entry at 0x40036800
xyzModem - CRC mode, 878(SOH)/0(STX)/0(CAN) packets, 3 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x00000000-0x0001ffff: ..
... Program from 0x40036800-0x40051dfc to 0x00000000: ..
... Erase from 0x007f0000-0x007fffff: .
... Program from 0x40ff0000-0x41000000 to 0x007f0000: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0x00000000, and the flash info block at
0x007F0000 has been updated. The initial setup is now complete. The BDM gdb session is no longer required so can be ctrl-
C'd and exited. BDM can be disconnected if desired. When the board is powercycled the ROM version of RedBoot should
now start up:

+... waiting for BOOTP information
Ethernet eth0: MAC address 00:ff:12:34:01:15
IP: 10.1.1.182/255.255.255.0, Gateway: 10.1.1.241
Default server: 0.0.0.0, DNS server IP: 10.1.1.240

RedBoot(tm) bootstrap and debug environment [ROM]
…
Platform: M5208EVBe (Freescale MCF5208)
RAM: 0x40000000-0x41000000 [0x4000be10-0x40fed000 available]
FLASH: 0x00000000-0x007fffff, 64 x 0x10000 blocks, 64 x 0x10000 blocks
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from m68k-elf-gdb, allowing eCos applications to be
downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done via BDM, as above, or by loading
a RAM RedBoot binary via the ROM RedBoot's load -r -m ymodem -b 0x40010000 and started with the go command. The
ROM version can then be loaded into memory and programmed into flash as before.

3217

Freescale M5208EVBe Platform HAL

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROM version of RedBoot are:

$ mkdir redboot_rom
$ cd redboot_rom
$ ecosconfig new m5208evbe redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/m68k/mcf52xx/mcf520x/m5208evbe/<vsn>/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot.bin, as well as the ELF
executable redboot.elf. Rebuilding the RAM involves basically the same process but using the file redboot_RAM.ecm.
For the older M5208EVB board the "ecosconfig new m5208evbe redboot" command in the above example should replaced
by "ecosconfig new m5208evb redboot".

3218

Freescale M5208EVBe Platform HAL

Name
Configuration — Platform-specific Configuration Options

Overview
The M5208EVBe platform HAL package is loaded automatically when eCos is configured for a m5208evbe target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware. The platform HAL is complemented by the M68K architectural HAL CYGPKG_HAL_M68K, the MCFxxxx
variant HAL CYGPKG_HAL_M68K_MCFxxxx, and the MCF520x processor HAL CYGPKG_HAL_M68K_MCF520x.

Startup
The M5208EVBe platform HAL package supports three separate startup types: RAM, RAMBDM and ROM. The configuration
option CYG_HAL_STARTUP: controls which startup type is being used. For typical application development RAM startup
should be used, and the application will be run via m68k-elf-gdb interacting with RedBoot using either serial or ethernet. It
is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR. RAMBDM startup is a variant of RAM
startup which has CYGSEM_HAL_USE_ROM_MONITOR disabled by default, and is intended for debugging over BDM instead
of via RedBoot.

ROM startup can be used for applications which boot directly from flash. All the hardware will be initialized, and the appli-
cation is self-contained. This startup type is used by the flash-resident version of RedBoot, and can also be used for finished
applications.

M5208EVBe or M5208EVB
By default selecting the m5208evbe target will build code for the newer M5208EVBe board, with its CFI compliant flash
interface. Normally the M5208EVBe board has 8MB of on-board flash available.

If support is needed for the older M5208EVB board then the CDL configuration option CYGP-
KG_HAL_M68K_M5208EVBE_FLASH_2MB can be enabled in the configuration. This provides support for the non-CFI flash
interface needed to access to the 2MB of on-board flash on the M5208EVB.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via BDM.

Diagnostics
Diagnostics support is provided by the MCFxxxx variant HAL. For RAM startup the application will inherit its diagnostics
channel from RedBoot: when debugging over ethernet diagnostics will travel over the TCP connection between m68k-elf-
gdb and RedBoot; if RedBoot is set to discard its diagnostics then application diagnostics will be discarded as well; otherwise
diagnostics will be sent via UART0.

For other startup types the default diagnostics channel can be set to either of the UARTs, or eCos can be configured to discard
all diagnostics. The relevant configuration option is CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT.

Optional Hardware
The MCF520x processor HAL provides configuration options for the GPIO pin assignment registers, effectively controlling
which of the on-chip peripherals are connected to the outside board. These settings are used in term to set the defaults for

3219

Freescale M5208EVBe Platform HAL

various devices, for example which UARTs are available and whether or not the hardware handshake lines are connected. The
platform HAL provides default setttings for all these registers appropriate for a M5208EVBe board, but application developers
can override these settings as required. Alternatively application can manipulate the processor's GPIO unit directly.

Cache and On-Chip RAM
The platform HAL contains configuration options for the values of the RAMBAR, CACR, ACR0 and ACR1 control registers.
The first of these determines the location of on-chip RAM and does not usually need to be changed by application develop-
ers. The other three registers determine the caching behaviour. The default settings enable caching for the external flash and
SDRAM only.

System Clock
The board is set to operate at 166.67/83.33 MHz, corresponding to the cpu and peripheral clocks respectively. However PLL
dithering is enabled, slightly reducing the effective clock frequency. Programmable interrupt timer PIT0 is used to implement
the eCos system clock. By default this is set to tick approximately once every 10ms, corresponding to a 100Hz clock. The
frequency can be changed via the configuration option CYGNUM_HAL_RTC_PERIOD, which is used to program the timer's
PIT Modulus Register. Other clock-related settings are recalculated automatically if the period is changed.

It should be noted that the effects of clock dithering are not precise, and hence the resulting system clock will not run at exactly
100Hz. A consequence of this is that conversions between seconds/nanoseconds and system clock ticks will not be precise
and may suffer from rounding errors. If application code requires very precise timings then it may be necessary to do some
experimenting and fine tuning.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to this port:

-m528x The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. A -m option should be used to select the specific variant in use,
and with current tools -m528x is appropriate for an MCF520x processor.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However without a frame
pointer register the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

3220

Freescale M5208EVBe Platform HAL

Name
Test Programs — Details

Test Programs
The M5208EVBe platform HAL contains a simple test program which allows various aspects of the board to be tested.

m5208evbe (SPI and LED) Test
The m5208evbe program tests the SPI driver by checking for presence of the on-board M13192 ZigBee transceiver. It cur-
rently does no more than verify presence of the device. Also, depending on the setting of the JP16:13 jumpers the device will
display some patterns on the on-board LEDs. If the jumpers are not present or the GPIO configuration for the platform does
not have the TIMER pins T3:0 configured for GPIO the LED changes will not be seen.

3221

Chapter 329. Motorola MCF532x
Processor Support

3222

Motorola MCF532x Processor Support

Name
CYGPKG_HAL_M68K_MCF532x — eCos Support for Freescale MCF532x Processors

Description

The Freescale MCF532x group of processors is part of the larger family of ColdFire processors. The MCF532x group has
several members including the MCF5327, MCF5328, MCF53281 and MCF5329. These differ in the set of peripherals available,
for example the MCF5327 lacks on-chip ethernet.

The processor HAL package CYGPKG_HAL_M68K_MCF532x provides support for all MCF532x processors, although at
the time of writing it has only been tested on an MCF5329. It complements the M68K architectural HAL package CYGP-
KG_HAL_M68K and the variant HAL package CYGPKG_HAL_M68K_MCFxxxx. An eCos configuration should also include
a platform HAL package, for example CYGPKG_HAL_M68K_COBRA5329, to support board-level details like how the on-
chip peripherals are connected to the outside world.

The package contains very little code. Instead it consists mainly of definitions, enabling appropriate code in the MCFxxxx
variant HAL and in the various device drivers.

Configuration

The MCF532x processor HAL package should be loaded automatically when eCos is configured for appropriate target hard-
ware. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Most of the package's configuration options relate to hardware. The settings are generally determined by the platform HAL and
there is little need for application developers to change them. The first hardware option is CYGHWR_HAL_MCF532x_PRO-
CESSOR, identifying the specific MCF532x processor being used. Legal values are MCF5327, MCF5328, MCF53281 and
MCF5329. Typically the platform HAL will set this option via a CDL constraint.

Component CYGHWR_HAL_M68K_MCF532x_GPIO contains various options related to pin-connectivity. This gives full con-
trol over the PAR pin assignment registers, and for those pins configured as GPIO it is also possible to control the pin direction
and data settings. These options are used to initialize the processor's GPIO module early on during system initialization, but
applications may change settings later on as necessary.

The GPIO settings are used to determine default settings for the three on-chip uarts, the I²C bus and the QSPI bus. For example
if none of the relevant GPIO pins are assigned to uart2 then component CYGHWR_HAL_M68K_MCFxxxx_UART2 will be
disabled by default, and that uart cannot be used for HAL diagnostics nor accessed via the serial device driver. It is possible
to override these settings if desired, for example if a uart is connected but will be manipulated directly by application code
instead of via a device driver.

1. For each of the three on-chip uarts there will be a component, e.g. CYGHWR_HAL_M68K_MCFxxxx_UART0, deter-
mining whether or not the uart is usable on the target hardware. There are additional options CYGHWR_HAL_M68K_M-
CFxxxx_UART0_RTS and CYGHWR_HAL_M68K_MCFxxxx_UART0_CTS indicating whether or not the hardware hand-
shake lines are connected, and CYGHWR_HAL_M68K_MCFxxxx_UART0_RS485_RTS to indicate that the RTS line con-
trols an RS485 transceiver.

2. Component CYGHWR_HAL_M68K_MCF532x_I2C determines whether or not the processor HAL will instantiate an I²C
bus device hal_mcfxxxx_i2c_bus. There are also options to control the interrupt priority and to set the FDR register
which controls the bus speed. The default bus speed will be the standard I²C bus speed of 100KHz, or as close as can be
achieved given hardware limitations.

3. Component CYGHWR_HAL_M68K_MCF532x_SPI determines whether or not the processor HAL will instantiate an SPI
bus device hal_mcfxxxx_qspi_bus. It contains an additional configuration option for the interrupt priority.

For configurations which include the eCos kernel, CYGIMP_HAL_M68K_MCF532x_IDLE determines what happens when
the idle thread runs.

3223

Motorola MCF532x Processor Support

The HAL Port
This section describes how the MCF532x processor HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/proc_io.h provides definitions of MCF532x-specific on-chip peripherals. Many of the on-
chip peripherals are compatible with those on the MCF5282 or other ColdFire processors, and for those peripherals it is the
var_io.h header provided by the MCFxxxx variant HAL which provides the appropriate definitions. Both headers are
automatically included by the architectural header cyg/hal/hal_io.h, so typically application code and other packages
will just include the latter.

Interrupt Handling

MCF532x processors implement standard ColdFire interrupt and exception handling, and come with two MCF5282-compatible
interrupt controllers and an edge port module. Therefore all interrupt and exception handling is left to the architectural and
MCFxxxx variant HAL. The interrupt controllers are slightly enhanced relative to the MCF5282, with extra registers to facilitate
masking and unmasking interrupts. These enhancements are supported. Unlike the MCF5282 interrupt priorities do not have
to be unique, so valid interrupt priorities are in the range 1 to 6 corresponding to M68K IPL levels.

The processor's cyg/hal/proc_intr.h serves mainly to define symbols such as CYGNUM_HAL_ISR_UART0, mapping
the MCF532x on-chip interrupt sources to the interrupt vectors.

Clock

Typically hardware timer PIT3 will be used for the eCos system clock, and that timer should not be manipulated directly by
application code. If gprof-based profiling is enabled then that will use hardware timer PIT2. PIT timers 0 and 1 are not used by
eCos so application code is free to manipulate these as required. Some of the configuration options related to the system clock,
for example CYGNUM_HAL_RTC_PERIOD, are actually contained in the platform HAL rather than the processor HAL. These
options need to take into account the processor clock speed, a characteristic of the platform rather than the processor.

Caching

The processor HAL provides full support for the 16K of unified cache in copyback mode. If desired the cache can also operate
in write-through mode, the cache macros will still function correctly. However for a processor running at typically 240MHz
write-through cache mode is likely to slow down execution significantly, especially if other devices such as ethernet or the
LCD controller need concurrent access to main memory.

The HAL also defines a macro HAL_MEMORY_BARRIER() which acts to synchronize the pipeline, delaying execution until
all previous operations including all pending writes are complete. This will usually be necessary when interacting with devices
that access memory directly.

Other Issues

The MCF532x processor HAL does not affect the implementation of data types, stack size definitions, SMP support, sys-
tem startup, or debug support. The MCFxxxx variant HAL versions of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX are
used since the processor supports the ff1.l and bitrev.l instructions. HAL_DELAY_US is implemented as a simple
counting loop. HAL_IDLE_THREAD_ACTION may be defined depending on configuration option CYGIMP_HAL_M68K_M-
CF532x_IDLE.

Other Functionality

The processor HAL will instantiate a cyg_i2c_bus structure hal_mcfxxxx_i2c_bus when the configuration option CYGH-
WR_HAL_M68K_MCFxxxx_I2C is enabled. That option is enabled by default if various GPIO pins are configured appropri-
ately. The implementation is provided by the CYGPKG_DEVS_I2C_MCFxxxx device driver. The processor HAL does not
know what I²C devices may be attached to the bus so that is left to the platform HAL.

3224

Motorola MCF532x Processor Support

The processor HAL will instantiate a cyg_spi_bus structure hal_mcfxxxx_qspi_bus when the configuration option
CYGHWR_HAL_M68K_MCFxxxx_SPI is enabled. That option is enabled by default if various GPIO pins are configured
appropriately. The implementation is provided by the CYGPKG_DEVS_SPI_MCFxxxx_QSPI device driver. The processor
HAL does not know what SPI devices may be attached to the bus so that is left to the platform HAL. All SPI device structures
should be placed in the table mcfxxxx_qspi.

3225

Chapter 330. senTec Cobra5329 Board
Support

3226

senTec Cobra5329 Board Support

Name
eCos Support for the senTec Cobra5329 Board — Overview

Description
The senTec Cobra5329 platform consists of a small module which plugs into a carrier board. The module contains: an MCF5329
ColdFire processor; 16MB of external SDRAM; 16MB of external flash memory; a configuration dip switch; a wallclock
device on the I²C bus; a temperature sensor, also on the I²C bus; a multiplexer for the SPI chip select signals; and an ethernet
phy. By default the module comes with the dBUG ROM monitor programmed in the external flash. The carrier board adds:
power circuitry; transceivers for two RS232 ports; a CAN transceiver; four LEDs; an MMC socket connected to the SPI bus
and multiplexed chip select 0; a touch screen controller, also attached to the SPI bus and chip select 1; and connectors for
the various peripherals.

This package CYGPKG_HAL_M68K_COBRA5329 provides a port to the Cobra5329 platform. The port assumes that the cpu
module is plugged into a standard carrier board. If instead it is plugged into a custom carrier board with different I/O capabilities
then it may still be possible to use the port by adjusting the eCos configuration. However the port has only been tested on a
standard board.

For typical eCos development a RedBoot image is programmed into the external flash replacing the existing dBUG monitor.
RedBoot provides gdb stub functionality so it is then possible to download and debug eCos applications via the gdb debugger.
This can happen over either a serial line or over ethernet. Alternatively a BDM hardware debug module can be used.

The eCos port can be configured for one of four startup types:

RAM This is the startup type normally used during application development. RedBoot is programmed into flash and
performs the initial bootstrap. m68k-elf-gdb is then used to load a RAM startup application into memory and debug
it. By default the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot,
including diagnostic output. The RAM startup type can also be used for finished applications: RedBoot can be made
to load and run such applications automatically following bootstrap.

RAMB-
DM

This is a variant of RAM startup which can be used for debugging using a BDM hardware debug module, if for
some reason an application cannot be run on top of RedBoot. The main difference between RAMBDM and RAM
startup is that the former does not assume the presence of RedBoot and hence will not make any virtual vector calls
to obtain RedBoot services.

DBUG This is another variant of RAM startup, used only when initializing a board. It can be used to run a special RAM-
resident version of RedBoot on top of the dBUG ROM monitor, allowing a ROM startup version of RedBoot to
be programmed into flash.

ROM This startup type can be used for finished applications which will be programmed into external flash at location
0x00000000, and which will execute as soon as the processor starts running. The application will be self-contained
with no dependencies on services provided by other software. This startup type is used for building the flash-resident
version of RedBoot but can also be used for application code.

Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length Cached Write-protected

External Flash 0x00000000 0x01000000 Write-through Yes

Flash Shadow 0x01000000 0x3F000000 Write-through Yes

External SDRAM 0x40000000 0x01000000 Copyback No

Internal RAM 0x80000000 0x00008000 Uncached No

Dummy 0xC0000000 0x20000000 Uncached Yes

On-chip Peripherals 0xE0000000 0x20000000 Uncached No

3227

senTec Cobra5329 Board Support

There is a potential problem with external memory accesses on the MCF5329 (device erratum 6): spurious accesses to unpop-
ulated parts of the address space can hang the processor. To avoid this problem the external flash is replicated throughout the
bottom of the address space, and a dummy region is created at address 0xC0000000. As a debugging aid the flash is set to
write-protected, which should catch some null pointer indirections. The flash driver will temporarily set this part of the address
space to read-write when modifying the flash.

For all startup types the M68K exception vectors, the eCos virtual vector table, and a small amount of additional data is placed
at the base of SDRAM. For ROM startup the application's data starts immediately afterwards. For RAM and RAMBDM startup
application code starts at 0x40010000, with just under 64K reserved for use by RedBoot, and data follows after the code. For
DBUG startup application code starts at 0x40020000, with 128K reserved for use by dBUG.

Typically the first 128K of flash is used for RedBoot, and the last 64K of flash @ 0x00FF0000 is used for RedBoot's FIS
and fconfig data. The remainder of the flash is available for use by the application, and is supported via the V2 AMD
flash driver CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2. That driver is inactive unless the generic flash support CYG-
PKG_IO_FLASH has been included in the configuration.

Code and data can be placed in the internal RAM using the linker script section “.iram_text” for code, and “.iram_data” and
“.iram_bss” for initialized and unitialized data respectively. The M68K architectural HAL contains a testcase iram1.c which
demonstrates how to use these linker sections.

Of the three on-chip uarts only uart0 and uart1 have external transceivers and connectors. Uart0 is normally used as the default
diagnostics channel for RedBoot and for stand-alone applications, and may also be inherited as the diagnostics/debug channel
when debugging a RAM startup application over serial. The default settings are 38400 baud 8n1, except when running on
top of dBUG when the baud rate is set to 115200 instead. If uart0 is not used for diagnostics then it can be accessed via
the serial driver CYGPKG_DEVS_SERIAL_MCFxxxx using the device name “/dev/ser0”. Similarly uart1 can be accessed
via the serial device driver using the name “/dev/ser1”. The device driver is inactive unless the generic serial support option
CYGPKG_IO_SERIAL_DEVICES is enabled.

The on-chip ethernet device is supported via the device driver CYGPKG_DEVS_ETH_MCFxxxx. This driver will be inactive
unless the generic ethernet support CYGPKG_IO_ETH_DRIVERS is included in the configuration. Typically that will happen
automatically when the configuration is created using the net template. The board does not have a serial EEPROM or equiv-
alent to hold a unique ethernet MAC address, so that has to be provided in software instead. For RedBoot or applications run
on top of RedBoot the MAC address will typically be supplied by an fconfig setting. Otherwise the address will be set by a
configuration option in the ethernet driver. Care should be taken that no two boards on the same network segment accidentally
use the same MAC address.

The I²C bus is supported by the generic package CYGPKG_IO_I2C and the device driver CYGPKG_DEVS_I2C_MCFxxxx.
Both of these will be included automatically in any configuration for the Cobra5329, but will be eliminated at link-time if
the application does not use any I²C functionality. The I²C bus instance is called hal_mcfxxxx_i2c_bus, and the plat-
form HAL also instantiates I²C device objects hal_cobra5329_lm73, hal_cobra5329_max3353, cyg_i2c_wall-
clock_isl12028 and cyg_i2c_wallclock_isl12028_eeprom for the various devices attached to the I²C bus.
These devices are not used by eCos, but example code for how to access the LM73 can be found in the platform testcase
cobra5329.c.

The QSPI bus is supported by the generic package CYGPKG_IO_SPI and the device driver CYGPKG_DEVS_SPI_M-
CFxxxx_QSPI. Both of these will be included automatically in any configuration for the Cobra5329, but will be eliminated
at link-time if the application does not use any SPI functionality. The SPI bus instance is called hal_mcfxxxx_qspi_bus,
and the platform HAL also instances SPI device objects cyg_spi_mmc_dev0 and hal_cobra5329_tsc2200 for the
two devices attached to the bus. The MMC device can be used with the eCos MMC disk driver. The TSC2200 is not used by
eCos, but example code for how to access it can be found in the platform testcase cobra5329.c.

Support for USB peripheral mode on the OTG controller is supported by the EHCI peripheral controller driver (CYGPKG_DE-
VS_USB_PCD_EHCI). A configuration package (CYGPKG_DEVS_USB_COBRA) enables the charge pump. Support is also
present for a CDC/ACM USB serial interface.

All eCos configurations for the Cobra5329 also include a watchdog device driver CYGPKG_DEVS_WATCHDOG_MCF532x.
That driver is inactive unless the generic watchdog support CYGPKG_IO_WATCHDOG has been added to the configuration,
and should be accessed via the API provided by that package.

All eCos configurations for the Cobra5329 also include a wallclock device driver CYGPKG_DEVICES_WALLCLOCK_IN-
TERSIL_ISL12028. This will be used automatically by the C library's time-related functions, for example time and as-

3228

senTec Cobra5329 Board Support

ctime, and can be changed by an eCos-specific function cyg_libc_time_settime. In addition when using RedBoot
the data command can be used to examine and change the current clock setting.

The platform HAL contains a utility function for manipulating the four LEDs:

void hal_cobra5329_led_set(which, on);

which should be a number between 1 and 4, and on should be 1 or 0. Example code for driving the LEDs can be found in
the platform testcase cobra5329.c.

When using the Robust Bootloader package CYGPKG_RBL, switch 8 on the configuration dipswitch controls the rbl condboot
functionality.

eCos also manages the interrupt controllers, the FlexBus settings for chip selects 0 and 5, and the SDRAM controller. The
Crossbar switch is set to favour I/O rather than the cpu, avoiding problems with DMA underruns. Timer PIT3 is normally
used for the eCos system clock, and when using the profiling package CYGPKG_PROFILE_GPROF PIT2 will be used for
the profiling timer. Bit 7 of the edge port module is set up for use with the board's IRQ7 button. The remaining hardware is
available for use by the application.

Tools
The Cobra5329 port is intended to work with GNU tools configured for an m68k-elf target. The original port was done using
m68k-elf-gcc version 3.4.4, m68k-elf-gdb version 6.4, and binutils version 2.16.

By default eCos is built using the compiler flag -fomit-frame-pointer. Omitting the frame pointer eliminates some work
on every function call and makes another register available, so the code should be smaller and faster. However without a frame
pointer m68k-elf-gdb is not always able to identify stack frames, so it may be unable to provide accurate backtrace information.
Removing this compiler flag from the configuration option CYGBLD_GLOBAL_CFLAGS avoids such debug problems.

3229

senTec Cobra5329 Board Support

Name
Setup — Preparing the Cobra5329 board for eCos Development

Overview
In a typical development environment the Cobra5329 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for a RAM startup, and then downloaded and run via either ethernet or serial using the m68k-elf-gdb debugger.
Preparing the board therefore involves programming a suitable RedBoot image into flash memory, replacing the existing dBUG
monitor. Four different approaches can be used for this:

1. The board can be booted into its existing dBUG ROM monitor, which is then used to load and execute a dBUG startup
build of RedBoot into RAM. The RAM-resident version of RedBoot can then be used to initialize the hardware, including
uploading a ROM startup version of RedBoot and programming it into flash. If anything goes wrong during this procedure
then the dBUG ROM monitor may have been wiped already, leaving the board unusable unless a hardware debug solution
is available.

2. A BDM hardware debug module can be used in conjunction with a suitable debugger to load and run a RAM startup build of
RedBoot. Again this can then be used to initialize the hardware, including programming a ROM startup version of RedBoot
into flash.

3. The ecoflash flash programming utility can be used. Again this depends on a BDM hardware debug module and a suitable
debugger. ecoflash can only be used to program a ROM startup version of RedBoot into flash, it cannot perform other tasks
such as initializing the fconfig board settings. However those other tasks can be performed from inside RedBoot.

4. A third party flash programming utility may be available.

The following RedBoot configurations are supported:

Startup Description Use Files

ROM Runs from the board's flash redboot_ROM.ecm redboot.elf, redboot.bin

dBUG Used for initial setup redboot_DBUG.ecm redboot.elf, redboot.bin,
redboot.srec

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot.elf, redboot.bin

The RAM startup version of RedBoot can be run either via BDM or on top of an already installed ROM RedBoot. Full eCos
releases may come with prebuilt RedBoot images renamed to incorporate the startup type, for example redboot_ROM.bin.

For serial communications all versions run with 8 bits, no parity, and 1 stop bit. The dBUG version runs at 115200
baud. The ROM and RAM versions run at 38400 baud. These baud rates can be changed via the configuration option
CYGNUM_HAL_M68K_MCFxxxx_DIAGNOSTICS_BAUD and rebuilding RedBoot. By default uart0 will be used for the di-
agnostics/debug channel.

Setting Up BDM
The recommended BDM debug solution is the Ronetix PEEDI. Other solutions such as the P&E USBMultilink device have
proved unreliable on this board, so if a PEEDI is not available then it is recommended that application developers should debug
their applications on top of RedBoot's gdb stubs.

The PEEDI requires a configuration file peedi.cfg which can be found in the platform HAL's misc directory. The config-
uration file will initialize the hardware in the same way as standard eCos applications, so applications can be loaded into RAM
and run as normal. The configuration file will need minor edits, for example to specify the correct license keys. For full details
see the Ronetix documentation. Once the PEEDI is correctly set up m68k-elf-gdb can then connect to it in the usual way:

$ m68k-elf-gdb install/tests/kernel/current/tests/tm_basic
GNU gdb 6.4.50.20060226-cvs (eCosCentric)
Copyright (C) 2006 Free Software Foundation, Inc.

3230

senTec Cobra5329 Board Support

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=m68k-elf"...
(gdb) target remote peedi:9000
0x400008f6 in ?? ()
(gdb) load
Loading section .m68k_start, size 0x98 lma 0x40010000
Loading section .text, size 0xa918 lma 0x40010098
Loading section .rodata, size 0x114a lma 0x4001a9b0
Loading section .data, size 0x18c lma 0x4001bafc
Start address 0x40010000, load size 48262
Transfer rate: 260172 bits/sec, 3217 bytes/write.
(gdb) break cyg_test_exit
Breakpoint 1 at 0x40016172: file /home/bartv/ecos/ecospro-common/infra/current/src/tcdiag.cxx, line 310.
void cyg_test_exit(void);
(gdb) continue
Continuing.

Breakpoint 1, cyg_test_exit () at /home/bartv/ecos/ecospro-common/infra/current/src/tcdiag.cxx:310
310 if (code_checksum != cyg_crc16(_stext, _etext - _stext)) {
(gdb) quit
The program is running. Exit anyway? (y or n) y
$

A P&E USBMultilink BDM device can be used in conjunction with CodeSourcery's m68k-elf-cfpe-stub server. Inside the
device is a jumper which should be set to the NO CLK position. The server requires a configuration file cobra5329.cfg
which can be found in the platform HAL's misc directory. It is recommended that the m68k-elf-cfpe-stub be restarted for
every debug session to ensure that the board is properly reset. Power cycling the boards between debug sessions may also
help to improve reliability.

$ m68k-elf-cfpe-stub -d USBMultilink -l 9000 -t <path>/cobra5329.cfg

It is also possible to use a P&E parallel port module or a senTec CobraConnect module with m68k-elf-cfpe-stub. The command
line invocation for the later changes to:

$ m68k-elf-cfpe-stub -d ParallelPortCable -l 9000 -t <path>/cobra5329.cfg

For Linux hosts there is also an alternative to using m68k-elf-cfpe-stub. Cobra5329 boards come with a CD, including a
toolchain build in the install/linux subdirectory. One of the tools is m68k-bdm-elf-gdb, a variant of m68k-elf-gdb
which can access parallel port BDM modules directly. Unlike the PEEDI or m68k-elf-cfpe-stub, m68k-bdm-elf-gdb will not
automatically initialize the hardware. Instead this can be achieved using a set of gdb macros which can be found in the bdm.gdb
file in the platform HAL's misc subdirectory. A typical debug session would look like:

$ m68k-bdm-elf-gdb install/tests/kernel/current/tests/tm_basic
GNU gdb 6.3
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=m68k-bdm-elf"...
(gdb) target bdm /dev/bdmcf0
GDB target bdm connected to /dev/bdmcf0
 Coldfire debug module version is 9 (5307/5407(e))
(gdb) source /home/bartv/ecos/m68k/hal/m68k/mcf52xx/mcf532x/cobra5329/current/misc/bdm.gdb
(gdb) bdm_preload
(gdb) load
Loading section .m68k_start, size 0x98 lma 0x40010000
Loading section .text, size 0xa918 lma 0x40010098
Loading section .rodata, size 0x114a lma 0x4001a9b0
Loading section .data, size 0x18c lma 0x4001bafc
Start address 0x40010000, load size 48262
Transfer rate: 128698 bits/sec, 502 bytes/write.
(gdb) bdm_postload
Current language: auto; currently asm
(gdb) break cyg_test_exit
Breakpoint 1 at 0x40016172: file /home/bartv/ecos/ecospro-common/infra/current/src/tcdiag.cxx, line 310.
(gdb) c

3231

senTec Cobra5329 Board Support

Continuing.

Initial Installation Using dBUG
This process assumes that the board still has its original dBUG ROM monitor and does not require any special debug hardware.
Programming the RedBoot rom monitor into flash memory requires an application that can manage flash blocks. RedBoot itself
has this capability. Rather than have a separate application that is used only for flash management during the initial installation,
a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used to load the normal
flash-resident version of RedBoot and program it into the flash.

It should be noted that some Cobra5329 boards have been shipped with a broken version of dBUG. This section describes two
different ways of loading RedBoot into RAM, over a serial line or over the network.

The first step is to connect an RS232 cable between the Cobra5329 uart0 serial port and the host PC. Next start a terminal
emulation application such as HyperTerminal or minicom on the host PC and set the serial communication parameters to
115200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Apply power to the board and you
should see a dBUG> prompt. Once dBUG is up and running the RAM-resident version of RedBoot can be downloaded:

dBUG> dl
Escape to local host and send S-records now...

The required S-records file is the dBUG startup build of redboot.srec, which is normally supplied with the eCos release
in the loaders directory. If it needs to be rebuilt then instructions for this are supplied below. The file should be sent to the
target as raw text using the terminal emulator:

S-record download successful!
dBUG>

If instead dBUG complained about the S-record addresses during the download then your board has the broken version of
dBUG. Instead it will be necessary to run a tftp server on the local network and place the dBUG startup build of redboot.bin
in the tftp server's directory. The details of this will depend on the tftp server being used. Once this has been accomplished,
dBUG's network settings must be set appropriately using the set command. The dBUG documentation should be consulted for
more information on this. Once networking is functional the RedBoot image can be downloaded:

dBUG> dn -i redboot.bin
Address: 0x40020000
Downloading Image 'redboot.bin' from 10.1.1.251
TFTP transfer completed
Read 93972 bytes (184 blocks)
dBUG>

When RedBoot has been loaded into RAM, either over serial or via the network, it can be run with the go command:

dBUG> go 0x40020000
+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 40:01:3b:e0:00:00
IP: 10.1.1.181/255.255.255.0, Gateway: 10.1.1.241
Default server: 0.0.0.0, DNS server IP: 10.1.1.240

RedBoot(tm) bootstrap and debug environment [DBUG]
Non-certified release, version UNKNOWN - built 21:15:30, Mar 5 2008

Platform: Cobra5329 (Freescale MCF5329)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited

RAM: 0x40000000-0x41000000, [0x4004204c-0x40fed000] available
FLASH: 0x00000000-0x00ffffff, 256 x 0x10000 blocks
RedBoot>

At this stage the RedBoot flash management initialization has not yet happended so the warning about the configuration check-
sum error is expected. In this example RedBoot is using a default MAC address and has contacted a local bootp server to get
the address information. To perform the flash initialization use the fis init command.

RedBoot> fis init

3232

senTec Cobra5329 Board Support

About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x00ff0000-0x00ffffff: .
... Program from 0x40ff0000-0x41000000 to 0x00ff0000: .
RedBoot>

At this stage the block of flash at location 0x00FF0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address:
DNS server IP address:
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0xff:0x12:0x34:0x01:0x13
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x00ff0000-0x00ffffff: .
... Program from 0x40ff0000-0x41000000 to 0x00ff0000: .
RedBoot>

For most of these configuration variables the default value will be acceptable, at least initially. If there is no suitable BOOTP
service running on the local network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address,
netmask, and addresses for the local gateway and DNS server. The other exception is the network hardware address, also known
as MAC address. All boards should be given a unique MAC address, not the one in the above example. If there are two boards
on the same network trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The ROM startup build of redboot.bin should now be uploaded using the terminal emulator. The file is a raw binary and
should be transferred using the Y-modem protocol.

Raw file loaded 0x40042400-0x4005936b, assumed entry at 0x40042400
xyzModem - CRC mode, 737(SOH)/0(STX)/0(CAN) packets, 3 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x00000000-0x0001ffff: ..
... Program from 0x40042400-0x4005936c to 0x00000000: ..
... Erase from 0x00ff0000-0x00ffffff: .
... Program from 0x40ff0000-0x41000000 to 0x00ff0000: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0x00000000, and the flash info block at 0x00F-
F0000 has been updated. The initial setup is now complete. Power off the board, set the terminal emulator to run at 38400 baud
(the usual baud rate for RedBoot), and power up the board again.

+... waiting for BOOTP information
Ethernet eth0: MAC address 00:ff:12:34:01:13
IP: 10.1.1.182/255.255.255.0, Gateway: 10.1.1.241
Default server: 0.0.0.0, DNS server IP: 10.1.1.240

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 17:42:36, Mar 18 2008

Platform: Cobra5329 (Freescale MCF5329)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited

RAM: 0x40000000-0x41000000, [0x4000c030-0x40fed000] available

3233

senTec Cobra5329 Board Support

FLASH: 0x00000000-0x00ffffff, 256 x 0x10000 blocks
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from m68k-elf-gdb, allowing eCos applications to be
downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done using the RAM startup build of
redboot.bin rather than the dBUG version of RedBoot used above. It should be loaded using the ROM RedBoot's load -
r -m ymodem -b 0x40010000 and started with the go command. The ROM version can then be loaded into memory and
programmed into flash as before.

Initial Installation Using BDM
Given a functional BDM setup, it is possible to run a RAM-resident version of RedBoot directly. This involves either m68k-
elf-gdb or m68k-bdm-elf-gdb, together with the RAM build of redboot.elf, for example:

$ m68k-elf-gdb install/bin/redboot.elf
GNU gdb 6.4.50.20060226-cvs (eCosCentric)
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=m68k-elf"...
(gdb) target remote peedi:9000
0x00012086 in ?? ()
(gdb) load
Loading section .m68k_start, size 0x98 lma 0x40010000
Loading section .text, size 0x12a74 lma 0x40010098
Loading section .rodata, size 0x38e9 lma 0x40022b0c
Loading section .data, size 0xad4 lma 0x400263f8
Start address 0x40010000, load size 93897
Transfer rate: 280080 bits/sec, 3611 bytes/write.
(gdb) continue
Continuing.

RedBoot's output will be sent out of uart0 at 38400 baud, so an RS232 cable should be connected and a suitable terminal
emulation application should be run. Once at the RedBoot prompt the procedure is the same as for the dBUG setup: initializing
the flash, loading the ROM build of redboot.bin into memory, and then writing it to flash using fis create.

Initial Installation Using ecoflash
Given a functional BDM setup, the ecoflash utility can be used to program a RedBoot image directly into flash. Full information
on ecoflash can be found elsewhere. It uses environment variables to determine the target hardware and how to access it. When
using a PEEDI:

$ export ECOFLASH_BOARD=cobra5329
$ export ECOFLASH_TARGET='remote peedi:9000'

For m68k-elf-cfpe-stub a different remote address will need to be specified. When using m68k-bdm-elf-gdb:

$ export ECOFLASH_BOARD=cobra5329
$ export ECOFLASH_TARGET='bdm /dev/bdmcf0'
$ export ECOFLASH_GDB=m68k-bdm-elf-gdb

The ecoflash info can be used to verify that everything is working:

$ ecoflash info
Target board is cobra5329.
 gdb is "m68k-elf-gdb", gdb target is "remote localhost:9000".
 Target-side executable is version 1.
 Detected 1 bank of flash.
 Start 0x00000000, end 0x00ffffff -> 16384K.
 256 blocks of 64K.
 Flash block locking is not supported.
 Default program location for executables is 0x00000000.
 Target-side buffer for read and write operation is 64K.

3234

senTec Cobra5329 Board Support

If anything goes wrong then ecoflash -v info will run the same command in verbose mode, possibly providing additional
information as to what is going wrong. Once everything is working a ROM startup build of RedBoot can be programmed
into flash:

$ ecoflash program <path>/redboot.elf
Erasing 0x00000000 - 0x00016f6b
Writing 0x00000000 - 0x0000ffff (65536 bytes) from file "/tmp/redboot.elf.719", offset 0
Writing 0x00010000 - 0x00016f6b (28524 bytes) from file "/tmp/redboot.elf.719", offset 65536

When the board is next reset it should boot into RedBoot, with the output sent out of uart 0 at 38400 baud. A terminal emulator
can then be used to connect to RedBoot and perform the fis init and fconfig -i initialization steps.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the dBUG version of RedBoot are:

$ mkdir redboot_dbug
$ cd redboot_dbug
$ ecosconfig new cobra5329 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/m68k/mcf52xx/mcf532x/cobra5329/<vsn>/misc/redboot_DBUG.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required files redboot.srec and red-
boot.bin, as well as the ELF executable redboot.elf.

Rebuilding the RAM and ROM versions involves basically the same process. The RAM version uses the file red-
boot_RAM.ecm and generates a file redboot_ram.bin. The ROM version uses the file redboot_ROM.ecm and gen-
erates a file redboot_rom.bin.

3235

senTec Cobra5329 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The Cobra5329 platform HAL package is loaded automatically when eCos is configured for a Cobra5329 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware. The platform HAL is complemented by the M68K architectural HAL CYGPKG_HAL_M68K, the MCFxxxx
variant HAL CYGPKG_HAL_M68K_MCFxxxx, and the MCF532x processor HAL CYGPKG_HAL_M68K_MCF532x.

Startup
The Cobra5329 platform HAL package supports three separate startup types: RAM, RAMBDM, DBUG and ROM. The con-
figuration option CYG_HAL_STARTUP: controls which startup type is being used. For typical application development RAM
startup should be used, and the application will be run via m68k-elf-gdb interacting with RedBoot using either serial or ethernet.
It is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR. RAMBDM startup is a variant of RAM
startup which has CYGSEM_HAL_USE_ROM_MONITOR disabled by default, and may be useful when debugging over BDM.

ROM startup can be used for applications which boot directly from flash. All the hardware will be initialized, and the appli-
cation is self-contained. This startup type is used by the flash-resident version of RedBoot, and can also be used for finished
applications.

DBUG startup can be used for applications which will be loaded via the dBUG ROM monitor rather than RedBoot. As with
RAM startup it is assumed that the memory map has already been set up, but the application will not use any services provided
by the ROM monitor. Typically this startup type is only used when setting up a board, as part of the process of replacing
dBUG with RedBoot.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via BDM.

Diagnostics
Diagnostics support is provided by the MCFxxxx variant HAL. For RAM startup the application will inherit its diagnostics
channel from RedBoot: when debugging over ethernet diagnostics will travel over the TCP connection between m68k-elf-
gdb and RedBoot; if RedBoot is set to discard its diagnostics then application diagnostics will be discarded as well; otherwise
diagnostics will be sent over one of the uarts, typically uart0.

For other startup types the default diagnostics channel can be set to either of the uarts, or eCos can be configured to discard all
diagnostics. The relevant configuration option is CYGHWR_HAL_M68K_MCFxxxx_DIAGNOSTICS_PORT.

Optional Hardware
The MCF532x processor HAL provides configuration options for the GPIO pin assignment registers, effectively controlling
which of the on-chip peripherals are connected to the outside board. These settings are used in term to set the defaults for
various devices, for example which uarts are available and whether or not the hardware handshake lines are connected. The
platform HAL provides default setttings for all these registers appropriate for a Cobra5329 cpu module plugged into a standard
carrier board, with no additional hardware. If the cpu module is plugged into a different carrier board or if extra hardware is

3236

senTec Cobra5329 Board Support

hooked up to the various expansion sockets, the pin assignments can be changed as appropriate. Alternatively application can
manipulate the processor's GPIO unit directly.

Cache and On-Chip RAM
The platform HAL contains configuration options for the values of the RAMBAR, CACR, ACR0 and ACR1 control registers.
The first of these determines the location of on-chip RAM and does not usually need to be changed by application developers.
The other three registers determine the caching behaviour. The default settings have the external flash cached in write-through
mode, the external SDRAM cached in copyback mode, and everything else uncached. Normally it should be necessary to
change these settings, and for a processor that can run at 240MHz it is important to make the best possible use of the cache.
However, when debugging over BDM using hardware other than a Ronetix PEEDI it has been found that debug reliability
could be improved somewhat when the cache was disabled, i.e. when the top bit of the CACR register was cleared. Obviously
this is at the cost of greatly reduced performance.

System Clock
By default the platform HAL assumes a system clock running at 240/80MHz, 240MHz for the CPU and 80MHz for the
peripherals. CYGHWR_HAL_SYSTEM_CLOCK_HZ corresponds to the peripheral clock speed. It is possible to run the board at
a slower 180/60MHz by changing one of the switches in the configuration dip switch. If so then the configuration option must
be changed for both RedBoot and the application, since it affects various I/O settings such as uart baud rates.

The port uses programmable interrupt timer PIT3 to implement the eCos system clock. By default this is set to
tick once every 10ms, corresponding to a 100Hz clock. The frequency can be changed via the configuration option
CYGNUM_HAL_RTC_PERIOD, which is used to program the timer's PIT Modulus Register (PMR3). Other clock-related set-
tings are recalculated automatically if the period is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are three flags
specific to this port:

-m528x The m68k-elf-gcc compiler supports many variants of the M68K architecture, from the
original 68000 onwards. A -m option should be used to select the specific variant in use,
and with current tools -m528x is the closest match for an MCF532x processor.

-malign-int This option forces m68k-elf-gcc to align integer and floating point data to a 32-bit
boundary rather than a 16-bit boundary. It should improve performance. However the
resulting code is incompatible with most published application binary interface speci-
fications for M68K processors, so it is possible that this option causes problems with
existing third-party object code.

-fomit-frame-pointer Traditionally the %A6 register was used as a dedicated frame pointer, and the compil-
er was expected to generate link and unlink instructions on procedure entry and exit.
These days the compiler is perfectly capable of generating working code without a frame
pointer, so omitting the frame pointer often saves some work during procedure entry and
exit and makes another register available for optimization. However without a frame
pointer register the m68k-elf-gdb debugger is not always able to interpret a thread stack,
so it cannot reliably give a backtrace. Removing -fomit-frame-pointer from the
default flags will make debugging easier, but the generated code may be worse.

3237

Chapter 331. Motorola MCF520x
Processor Support

3238

Motorola MCF520x Processor Support

Name
CYGPKG_HAL_M68K_MCF520x — eCos Support for Freescale MCF520x Processors

Description

The Freescale MCF5207 and MCF5208 processors are part of the larger family of ColdFire processors. The two processors
differ in the peripheral support: the MCF5208 has on-chip ethernet, the MCF5207 does not. The processor HAL package
CYGPKG_HAL_M68K_MCF520x provides support for both processors, although at the time of writing it has only been tested
on an MCF5208. It complements the M68K architectural HAL package CYGPKG_HAL_M68K and the variant HAL package
CYGPKG_HAL_M68K_MCFxxxx. An eCos configuration should also include a platform HAL package to support board-level
details like how the on-chip peripherals are connected to the outside world.

The package contains very little code. Instead it consists mainly of definitions, enabling appropriate code in the MCFxxxx
variant HAL and in the various device drivers.

Configuration

The MCF520x processor HAL package should be loaded automatically when eCos is configured for appropriate target hard-
ware. It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect
of switching target hardware.

Most of the package's configuration options relate to hardware. The settings are generally determined by the platform HAL and
there is little need for application developers to change them. The first hardware option is CYGHWR_HAL_MCF520x_PRO-
CESSOR, identifying the specific MCF520x processor being used. Legal values are MCF5207 and MCF5208. Typically the
platform HAL will set this option via a CDL constraint.

Component CYGHWR_HAL_M68K_MCF520x_GPIO contains various options related to pin-connectivity. This gives full con-
trol over the PAR pin assignment registers, and for those pins configured as GPIO it is also possible to control the pin direction
and data settings. These options are used to initialize the processor's GPIO module early on during system initialization, but
applications may change settings later on as necessary.

The GPIO settings are used to determine default settings for the three on-chip uarts, the I²C bus and the QSPI bus. For example
if none of the relevant GPIO pins are assigned to uart2 then component CYGHWR_HAL_M68K_MCFxxxx_UART2 will be
disabled by default, and that uart cannot be used for HAL diagnostics nor accessed via the serial device driver. It is possible
to override these settings if desired, for example if a uart is connected but will be manipulated directly by application code
instead of via a device driver.

1. For each of the three on-chip uarts there will be a component, e.g. CYGHWR_HAL_M68K_MCFxxxx_UART0, deter-
mining whether or not the uart is usable on the target hardware. There are additional options CYGHWR_HAL_M68K_M-
CFxxxx_UART0_RTS and CYGHWR_HAL_M68K_MCFxxxx_UART0_CTS indicating whether or not the hardware hand-
shake lines are connected, and CYGHWR_HAL_M68K_MCFxxxx_UART0_RS485_RTS to indicate that the RTS line con-
trols an RS485 transceiver.

2. Component CYGHWR_HAL_M68K_MCF520x_I2C determines whether or not the processor HAL will instantiate an I²C
bus device hal_mcfxxxx_i2c_bus. There are also options to control the interrupt priority and to set the FDR register
which controls the bus speed. The default bus speed will be the standard I²C bus speed of 100KHz, or as close as can be
achieved given hardware limitations.

3. Component CYGHWR_HAL_M68K_MCF520x_SPI determines whether or not the processor HAL will instantiate an SPI
bus device hal_mcfxxxx_qspi_bus. It contains an additional configuration option for the interrupt priority.

For configurations which include the eCos kernel, CYGIMP_HAL_M68K_MCF520x_IDLE determines what happens when
the idle thread runs. It should be noted that there are hardware errata associated with this functionality, and when systems were
configured to use WAIT or DOZE mode problems were observed where the processor appeared to fail to wake up even though
there were pending interrupts.

3239

Motorola MCF520x Processor Support

The HAL Port
This section describes how the MCF520x processor HAL package implements parts of the eCos HAL specification. It should
be read in conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/proc_io.h provides definitions of MCF520x-specific on-chip peripherals. Many of the on-
chip peripherals are compatible with those on the MCF5282 or other ColdFire processors, and for those peripherals it is the
var_io.h header provided by the MCFxxxx variant HAL which provides the appropriate definitions. Both headers are
automatically included by the architectural header cyg/hal/hal_io.h, so typically application code and other packages
will just include the latter.

Interrupt Handling

MCF520x processors implement standard ColdFire interrupt and exception handling, and come with one MCF5282-compatible
interrupt controller and an edge port module. Therefore all interrupt and exception handling is left to the architectural and
MCFxxxx variant HAL. The interrupt controllers are slightly enhanced relative to the MCF5282, with extra registers to facilitate
masking and unmasking interrupts. These enhancements are supported. Unlike the MCF5282 interrupt priorities do not have
to be unique, so valid interrupt priorities are in the range 1 to 6 corresponding to M68K IPL levels.

The processor's cyg/hal/proc_intr.h serves mainly to define symbols such as CYGNUM_HAL_ISR_UART0, mapping
the MCF520x on-chip interrupt sources to the interrupt vectors.

Clock

Typically hardware timer PIT0 will be used for the eCos system clock, and that timer should not be manipulated directly by
application code. If gprof-based profiling is enabled then that will use hardware timer PIT1. Some of the configuration options
related to the system clock, for example CYGNUM_HAL_RTC_PERIOD, are actually contained in the platform HAL rather
than the processor HAL. These options need to take into account the processor clock speed, a characteristic of the platform
rather than the processor.

Caching

Support for the cache is provided via the generic HAL macros in the MCFxxxx variant HAL cache. The HAL also defines a
macro HAL_MEMORY_BARRIER() which acts to synchronize the pipeline, delaying execution until all previous operations
including all pending writes are complete. This will usually be necessary when interacting with devices that access memory
directly.

Other Issues

The MCF520x processor HAL does not affect the implementation of data types, stack size definitions, SMP support, sys-
tem startup, or debug support. The MCFxxxx variant HAL versions of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX are
used since the processor supports the ff1.l and bitrev.l instructions. HAL_DELAY_US is implemented as a simple
counting loop. HAL_IDLE_THREAD_ACTION may be defined depending on configuration option CYGIMP_HAL_M68K_M-
CF520x_IDLE.

Other Functionality

The processor HAL will instantiate a cyg_i2c_bus structure hal_mcfxxxx_i2c_bus when the configuration option CYGH-
WR_HAL_M68K_MCFxxxx_I2C is enabled. That option is enabled by default if various GPIO pins are configured appropri-
ately. The implementation is provided by the CYGPKG_DEVS_I2C_MCFxxxx device driver. The processor HAL does not
know what I²C devices may be attached to the bus so that is left to the platform HAL.

The processor HAL will instantiate a cyg_spi_bus structure hal_mcfxxxx_qspi_bus when the configuration option
CYGHWR_HAL_M68K_MCFxxxx_SPI is enabled. That option is enabled by default if various GPIO pins are configured
appropriately. The implementation is provided by the CYGPKG_DEVS_SPI_MCFxxxx_QSPI device driver. The processor

3240

Motorola MCF520x Processor Support

HAL does not know what SPI devices may be attached to the bus so that is left to the platform HAL. All SPI device structures
should be placed in the table mcfxxxx_qspi.

3241

Part LXXXII. MIPS Architecture

Table of Contents
332. MIPS Architectural HAL ... 3244

MIPS Architectural HAL .. 3245
Configuration ... 3246
The HAL Port .. 3248

333. MIPS32 Variant HAL ... 3251
MIPS32 Variant HAL .. 3252
Configuration ... 3253
The MIPS32 HAL Port .. 3254

334. MIPS SEAD3 Board Support ... 3255
Overview ... 3256
Setup .. 3258
Configuration ... 3262
The HAL Port .. 3265
JTAG Debugging .. 3266

335. MIPS Malta Board Support ... 3268
Overview ... 3269
Setup .. 3270
Configuration ... 3273
The HAL Port .. 3275

336. NXP PNX83xx Common Support ... 3276
PNX83xx Processors ... 3277

337. NXP PNX8310 Processor Support .. 3278
The NXP PNX8310 Processor ... 3279

338. NXP STB200 Board Support ... 3281
Overview ... 3282
Setup .. 3284
Configuration ... 3287
The HAL Port .. 3289

339. NXP PNX8330 Processor Support .. 3290
The NXP PNX8330 Processor ... 3291

340. NXP STB220 Board Support ... 3293
Overview ... 3294
Setup .. 3296
Configuration ... 3299
The HAL Port .. 3301

3243

Chapter 332. MIPS Architectural HAL

3244

MIPS Architectural HAL

Name
CYGPKG_HAL_MIPS — eCos Support for the MIPS Architecture

Description
The MIPS architecture HAL provides support for all MIPS base processors. This includes both legacy devices, MIPS32 based
devices, and Release 2 devices. Support is included for MIP16 and microMIPS instruction sets in addition to the MIPS32
instruction set.

This HAL contains support for CPU initialization, exception and interrupt entry and exit, thread context switching, interrupt
masking, timer management, cache management and debugging.

3245

MIPS Architectural HAL

Name
Options — Configuring the MIPS Architectural HAL Package

Description
The MIPS architectural HAL is included in all ecos.db entries for MIPS targets, so the package will be loaded automatically
when creating a configuration. It should never be necessary to load the package explicitly or to unload it.

The MIPS architectural HAL contains a number of configuration points. Few of these should be altered by the user, they are
mainly present for the variant and platform HALs to select different architectural features.

CYGINT_HAL_MIPS_VARIANT

This interface is implemented by each variant HAL and acts as a check on the number of variants included in the config-
uration.

CYGPKG_HAL_MIPS_MIPS16_SUPPORT

This option is usually set with a requires statement by the variant or platform HAL to enable support for MIPS16 applica-
tions. The eCos operating system and library remains in the MIPS32 instruction set.

CYGINT_HAL_MIPS_MICROMIPS_SUPPORT

This interface is implemented by the variant or platform HAL to enable support for the microMIPS instruction set.

CYGPKG_HAL_MIPS_MICROMIPS_SUPPORT

This option is usually enabled implicitly by the variant or platform HAL implementing CYGIN-
T_HAL_MIPS_MICROMIPS_SUPPORT. Its value controls the level of support for the microMIPS instruction set. If
set to APP then only application code may be compiled in the microMIPS instruction set, eCos remains in the MIPS32
instruction set. If set to ECOS then the whole of eCos is also compiled to the microMIPS instruction set, although those
parts of the HAL involved in startup and exception handling remain in MIPS32 instructions. If set to FULL then all code is
compiled or assembled to microMIPS. This latter option is only applicable to CPU variants that only execute microMIPS
instructions and is not currently supported.

CYGNUM_HAL_MIPS_RELEASE

This option defines the architecture release that the processor supports. It is usually set by the variant or platform HAL to
enable various configuration changes in the architecture HAL.

CYGINT_HAL_MIPS_DEBUG_MODE

This interface is implemented by the variant or platform HAL to enable support for Debug Mode. Debug Mode is only
available on Release 2 devices that have EJTAG support. It is used primarily to support single step and breakpoints.

CYGHWR_HAL_MIPS_CPU_FREQ

This option contains the frequency of the CPU in MegaHertz. This will usually be set from the variant or platform HAL,
which may define additional clock related options. This may affect thing like serial device, interval clock and memory
access speed settings.

CYGSEM_HAL_MIPS_EMULATE_UNIMPLEMENTED_FPU_OPS

Enabling this option will include a hook in the exception processing so that Unimplemented Operation FPU exceptions
may be handled. This option has no effect if there is no hardware floating-point unit. Note that not all situations in which
an exception is raised may be handled. If not, the exception will be passed on as normal through the standard exception
delivery mechanism.

CYGINT_HAL_MIPS_STUB_REPRESENT_32BIT_AS_64BIT

This interface may be implemented by MIPS variant or platform HALs to instruct the MIPS stub to interwork correctly
with GDB which expects 64-bit register values, even in application code which has been compiled as 32-bit. Do not use
this for real 64-bit code.

3246

MIPS Architectural HAL

CYGINT_HAL_MIPS_INTERRUPT_RETURN_KEEP_SR_IM

On some MIPS variants, the status register (SR) contains a number of interrupt mask bits (IM\[0..7\]). Default behaviour
is to restore the whole SR over an interrupt. This means that if the ISR modifies those bits, the change is lost when the
interrupt returns. If this interface is implemented, changes made to the SR IM bits by an ISR will instead be preserved.
Variants whose HAL_INTERRUPT_MASK() routines (et al) modify the IM bits in the SR should implement this interface
to get the necessary preserving behaviour.

Redefinable Macros
In addition to the CDL configuration points above, there are a number of assembler macros that may be redefined. The as-
sembler header cyg/hal/arch.inc contains default implementations of most of these. Variant or platform HALs may
supply alternative definitions of these and define the matching preprocessor macro. For example, the default implementa-
tion of the hal_intc_init macro sets up the default interrupt mechanism using the Status register. By defining CYGP-
KG_HAL_MIPS_INTC_INIT_DEFINED, this macro may be redefined. Defining CYGPKG_HAL_MIPS_INTC_DEFINED
allows all the hal_intc_* macros to be redefined. This same approach is applicable to most other macros or macro groups
in arch.inc.

The same approach is also applicable to C-level macros for controlling interrupts, the timer, caches, bit indexing. A ..._DE-
FINED macro is tested to determine whether a macro, or group of macros, have been defined in the variant or platform and
if not then a default implementation is defined.

Compiler Flags
It is normally the responsibility of the platform HAL to define the default compiler and linker flags for all packages, although
it is possible to override these on a per-package basis. Most of the flags used are the same as for other architectures supported
by eCos.

Linker Scripts
The linker script, supplied by either the variant or platform HALs, must define some symbols that the architecture HAL depends
on:

hal_vsr_table This defines the location of the VSR table. First level interrupt and exception trampolines
use the value of the Cause register ExcCode field to index this table and vector to a VSR
routine. Generally this table should be placed in RAM close to the vector trampolines.
This table should be 64 entries in length, although not all will be used.

hal_virtual_vector_table This defines the location of the virtual vector table used to communicate between a ROM
monitor and an eCos application. This table needs to be word aligned. It is usually placed
in internal SRAM just after the VSR table, perhaps aligned to a convenient boundary.
This table should be 64 entries in length.

3247

MIPS Architectural HAL

Name
HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto the MIPS hardware and should be read in
conjunction with the manuals for the processor in use. It should be noted that the architectural HAL is usually complemented
by a variant HAL and a platform HAL, and those may affect or redefine some parts of the implementation.

Exports

The architectural HAL provides header files cyg/hal/hal_arch.h, cyg/hal/hal_intr.h and cyg/hal/
hal_io.h. These header files export the functionality provided by all the MIPS HALs for a given target, automatically in-
cluding headers from the lower-level HALs as appropriate. For example the platform HAL may provide a header cyg/hal/
plf_io.h containing additional I/O functionality, but that header will be automatically included by cyg/hal/hal_io.h
so there is no need to include it directly.

Additionally, the architecture HAL provides the cyg/hal/basetype.h header, which defines the basic properties of the
architecture, including endianness, data type sizes and alignment constraints.

Startup

The conventional bootstrap mechanism involves the CPU starting execution at 0xBFC00000. Normally ROM or flash will be
mapped here and a ROM startup RedBoot or application will be linked to start at this address. Some variants have an on-board
boot ROM that runs at this address, and RedBoot or applications must be placed elsewhere in memory. In either case, execution
must normally start at the reset_vector location in vectors.S.

The architectural HAL provides a default implementation of the low-level startup code which will be appropriate in nearly all
scenarios. For a ROM startup this includes copying initialized data from flash to RAM. For all startup types it will involve
zeroing bss regions and setting up the general C environment. It may also set up the exception trampolines in low memory,
initializing CP0 registers, the memory controller, interrupt controller caches, timers, MMU and FPU, mostly by invoking variant
or platform HAL defined macros. Depending on the variant and platform, some of these things are initialized in assembly code
during startup, others may be initialized in later C code.

In addition to the setup it does itself, the initialization code calls out to the variant and platform HALs to perform their own
initialization. Full initialization is handled by hal_variant_init and hal_platform_init. The former should han-
dle any further initialization of the CPU variant and on-chip devices. The platform initialization routine will complete any
initialization needed for devices external to the microprocessor.

The architectural HAL also initializes the VSR and virtual vector tables, sets up HAL diagnostics, and invokes C++ static
constructors, prior to calling the first application entry point cyg_start. This code resides in src/hal_misc.c.

Interrupts and Exceptions

The eCos interrupt and exception architecture is built around a table of pointers to Vector Service Routines that translate
hardware exceptions and interrupts into the function calls expected by eCos.

The vector table is either constructed at runtime or is part of the initialized data of the executable. For ROM, ROMRAM and
JTAG startup all entries are initialized. For RAM startup only the interrupt VSR table entry is (re-)initialized to point to the VSR
in the loaded code, the exception vectors are left pointing to the VSRs of the loading software, usually RedBoot or GDB stubs.

When an exception occurs it is delivered to a shared trampoline routine, other_vector which reads the Cause register,
isolates the ExcCode field and uses it to index the VSR table and jump to the routine at the given offset. VSR table entries usually
point to either __default_exception_vsr or __default_interrupt_vsr, which are responsible for delivering
the exception or interrupt to the kernel.

The exception VSR, __default_exception_vsr, saves the CPU state on the thread stack, optionally switches to the
interrupt stack and calls cyg_hal_exception_handler() to pass the exception on. Depending on the configuration,
this routine then partly decodes the exception and passes it on for FPU emulation or exception handling, limited memory access

3248

MIPS Architectural HAL

errors, GDB stub exception handling or application level handling. When it finally returns the VSR jumps to code common
with the interrupt VSR to restore the interrupted state and resume execution.

The interrupt VSR, __default_interrupt_vsr, saves the CPU state in the same way as the exception VSR, increments
the scheduler lock and switches to the interrupt stack. It then calls two variant or platform supplied macros, hal_intc_de-
code and hal_intc_translate to query the interrupt controller for an interrupt number and then translate the interrupt
number into an interrupt table offset. This offset is used to fetch an ISR from the interrupt handler table, and a data pointer from
the interrupt data table, and the ISR is called to handle the interrupt. When the ISR returns, the stack pointer is switched back
to the thread stack and interrupt_end() called. This may result in a thread context switch and the current thread may
not resume for some time. When it does, the interrupted CPU state is restored from the thread stack and execution resumed
from where it was interrupted.

The architectural HAL provides default implementations of HAL_DISABLE_INTERRUPTS, HAL_RESTORE_INTERRUP-
TS, HAL_ENABLE_INTERRUPTS and HAL_QUERY_INTERRUPTS. These involve manipulation of the Status register IE
bit. Similarly there are default implementations of the interrupt controller macros HAL_INTERRUPT_MASK, HAL_INTER-
RUPT_UNMASK and HAL_INTERRUPT_ACKNOWLEDGE macros that manipulate the Status register IM bits. HAL_INTER-
RUPT_SET_LEVEL and HAL_INTERRUPT_CONFIGURE are no-ops at the architectural level. If a variant or platform con-
tains an external interrupt controller, then it should redefine these macros to manipulate it.

Stacks and Stack Sizes

cyg/hal/hal_arch.h defines values for minimal and recommended thread stack sizes, CYGNUM_HAL_S-
TACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPICAL. These values depend on a number of configuration
options.

The MIPS architecture HAL has the option of either using thread stacks for all exception and interrupt processing or imple-
menting a separate interrupt stack. The default is to use an interrupt stack, since not doing so would require significantly larg-
er per-thread stacks. This can be changed with the configuration option CYGIMP_HAL_COMMON_INTERRUPTS_USE_IN-
TERRUPT_STACK.

Thread Contexts and setjmp/longjmp

cyg/hal/hal_arch.h defines a thread context data structure, the context-related macros, and the setjmp/longjmp
support. The implementations can be found in src/context.S. The context structure is defined as a single structure used
for all purposes: thread context, exceptions and interrupts. However, not all fields will be stored in all cases.

Bit Indexing

The architectural HAL provides inline assembler implementations of HAL_LSBIT_INDEX and HAL_MSBIT_INDEX which
use algorithmic methods to extract a bit index in constant time. Variant HALs for later versions of the architecture can replace
these with macros that use inline assembly to use CLZ or other instructions.

Idle Thread Processing

The architecture HAL provides a default HAL_IDLE_THREAD_ACTION implementation that simply spins. Variant and plat-
form HALs can provide a replacement if required.

Clock Support

The architectural HAL provides a default implementation of the various system clock macros such as
HAL_CLOCK_INITIALIZE. These macros use the architecture defined CP0 Count and Compare registers to implement the
eCos system clock. The variant or platform HAL needs to define CYGNUM_HAL_RTC_PERIOD in terms of the frequency
supplied to the Count register.

HAL I/O

The MIPS architecture does not have a separate I/O bus. Instead all hardware is assumed to be memory-mapped. Further it is
assumed that all peripherals on the memory bus will switch endianness with the processor and that there is no need for any
byte swapping. Hence the various HAL macros for performing I/O simply involve pointers to volatile memory.

3249

MIPS Architectural HAL

The variant and platform files included by the cyg/hal/hal_io.h header will typically also provide details of some or all
of the peripherals, for example register offsets and the meaning of various bits in those registers.

Cache Handling

The architecture HAL provides standard macros for dealing with both data and instruction caches. These macros make use of
the CACHE instruction to affect cache contents. The architecture HAL does not provide support for enabling and disabling the
caches, since there is no common mechanism for doing this; these must be implemented by the variant HAL.

Linker Scripts

The architecture HAL does not provide the main linker script, this must be supplied by the variant HAL and the makefile rules
to generate the final target.ld must be included in the variant's CDL file.

Diagnostic Support

The architectural HAL does not implement diagnostic support. Instead this is left to the variant or platform HAL, depending
on whether suitable peripherals are available on-chip or off-chip.

SMP Support

The MIPS architectural HAL does not provide any SMP support.

Debug Support

The architectural HAL provides basic support for gdb stubs using the debug monitor exceptions. Breakpoints may be imple-
mented using a fixed-size list of breakpoints, as per the configuration option CYGNUM_HAL_BREAKPOINT_LIST_SIZE.
When a JTAG device is connected to a MIPS device, it will steal breakpoints and other exceptions from the running code.
Therefore debugging from RedBoot or the GDB stubs can only be done after detaching any JTAG debugger and power-cycling
the board.

Debug support depends on the exact CPU model. Older parts, pre MIPS32R2, use the BREAK instruction for breakpoints and
rely on instruction analysis to plant a breakpoint for single step for both MIPS32 and MIPS16 instruction sets. CPUs with debug
mode use the SDBBP instructions for breakpoints and the Debug register SSt bit to implement single step for both MIPS32
and microMIPS instruction sets.

HAL_DELAY_US() Macro

cyg/hal/hal_intr.h provides a simple implementation of the HAL_DELAY_US macro based around reading the system
timer. The timer must therefore be initialized before this macro is used, from either the variant or platform HAL initialization
routines.

Profiling Support

The MIPS architectural HAL implements the mcount function, allowing profiling tools like gprof to determine the applica-
tion's call graph. It does not implement the profiling timer. Instead that functionality needs to be provided by the variant or
platform HAL.

3250

Chapter 333. MIPS32 Variant HAL

3251

MIPS32 Variant HAL

Name
CYGPKG_HAL_MIPS_MIPS32 — eCos Support for the MIPS32 Architecture Variant

Description
The MIPS32 variant HAL provides support for all MIPS32 base processors. This includes both legacy devices and Release 2
devices. It extends and modifies the generic architecture support provided by the architecture HAL to work with processors
that conform to the MIPS32 specification.

3252

MIPS32 Variant HAL

Name
Options — Configuring the MIPS32 Variant HAL Package

Description
The MIPS32 variant HAL is included in all ecos.db entries for MIPS32-based targets, so the package will be loaded automat-
ically when creating a configuration. It should never be necessary to load the package explicitly or to unload it.

The MIPS32 variant HAL contains a number of configuration points. Few of these should be altered by the user, they are
mainly present for the platform HAL to select different features.

CYGHWR_HAL_MIPS_MIPS32_CORE

This defines the CPU core on the target hardware. It is usually set by the platform HAL and may change the configuration
of this HAL and of any changes it makes to the architecture HAL.

CYGHWR_HAL_MIPS_MIPS32_ENDIAN

The MIPS32 core can use either a big or little endian mode. Platforms with a fixed endianness should set this to Little
or Big as appropriate. Bi-endian platforms may allow this to be set by the user, or implicitly by supplying a platform
configuration option to control endianness.

Compiler Flags
It is normally the responsibility of the platform HAL to define the default compiler and linker flags for all packages, although it
is possible to override these on a per-package basis. Most of the flags used are the same as for other architectures supported by
eCos. The endianness flags, -EL and -EB are controlled here by the CYGHWR_HAL_MIPS_MIPS32_ENDIAN option. The
selection of the instruction set for eCos: MIPS32 or microMIPS, is also selected here based on various architecture options.

3253

MIPS32 Variant HAL

Name
MIPS32 HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto the MIPS hardware and should be read
in conjunction with the manuals for the processor in use. It should be noted that the variant HAL is usually complemented by
an architecture HAL and a platform HAL, and those may affect or redefine some parts of the implementation.

Exports

The variant HAL provides header files cyg/hal/var_arch.h, cyg/hal/var_intr.h and cyg/hal/
var_cache.h. These header files export the functionality of this HAL to the architecture HAL, and are included automati-
cally by the architecture HAL where needed.

Additionally, the variant HAL provides the cyg/hal/variant.inc header, which is included into the architecture assem-
bly code and redefines some macros used there, to configure the architecture to the MIPS32 variant.

Startup

The MIPS32 HAL does no additional initialization beyond the redefined assembly macros mentioned above. As a purely CPU-
based variant there are no additional variant-specific devices to be initialized.

Interrupts and Exceptions

The MIPS32 HAL defines some additional exception vectors that are present in MIPS32 variants. Otherwise it takes no part
in interrupt or exception delivery.

Bit Indexing

The MIPS32 HAL provides replacement implementations of the HAL_LSBIT_INDEX and HAL_MSBIT_INDEX macros that
use inline assembly CLZ instructions.

Cache Handling

The main contribution that the MIPS32 HAL makes is in cache handling. It provides cache handling macros that extend and
modify those supplied in the architecture HAL. It also implements cache enable and disable support via the K0 field of the
Config0 register. It also provides default cache dimension declarations, as well as a mechanism for these to be defined by the
platform HAL.

Linker Scripts

The MIPS32 HAL provides the main linker script for use by all platforms. The MIPS32 HAL will generate the linker script
for eCos applications. This involves the file src/mips_mips32.ld and a .ldi memory layout file, typically provided by
the platform HAL. It is the .ldi file which places code and data in the appropriate places for the startup type, but most of
the hard work is done via macros in the mips_mips32.ld file.

3254

Chapter 334. MIPS SEAD3 Board Support

3255

MIPS SEAD3 Board Support

Name
eCos Support for the MIPS SEAD3 Board — Overview

Description
The MIPS SEAD3 board comes in three variants. The LX50 is fitted with a M14K processor and no SDRAM. The LX110 is
fitted with a M14Kc processor and 512MiB of SDRAM. The LX155 is virtually identical to the LX110, but is fitted with a
larger FPGA. From the point of view of eCos, it is considered identical to the LX110 and all references in this documentation
and in eCos to the LX110 should be considered to include the LX155. All boards have 4MiB of SRAM and 32MiB of NOR
flash, a dual 16550 compatible UART, and a SMSC LAN9211 ethernet controller. A two line LCD display and LEDs are also
present. For typical eCos development a RedBoot image is programmed into the external flash. RedBoot provides gdb stub
functionality so it is then possible to download and debug eCos applications via the gdb debugger. This can happen over either
a serial line or over ethernet. It is also possible to debug applications using the JTAG interface.

Supported Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length

SDRAM 0x80000000 0x20000000

SRAM 0x80000000 0x00400000

User Flash 0x9c000000 0x02000000

SRAM Shadow 0x8E000000 0x00400000

Interrupt Controller (if present) 0xBB1C0000 0x00020000

Peripherals 0xBF000000 0x00010000

SMSC LAN9211 0xBF010000 0x00010000

Boot Flash 0xBFC00000 0x00600000

On the LX110/LX155 SDRAM is mapped to physical address 0x00000000 and SRAM is visible only at the shadow location.
On the LX50 SRAM is mapped to physical location 0x00000000 as well as the shadow location. SDRAM, SRAM and flash
are normally accessed via the kseg0 segment and hence via the cache. The peripherals are normally accessed via kseg1 and
hence uncached.

eCos can be configured for one of three startup types:

RAM

This is the startup type normally used during application development. RedBoot is programmed into flash and performs
the initial bootstrap. mip-sde-elf-gdb is then used to load a RAM startup application into memory and debug it. By default
the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic
output. The bottom 1MB of RAM is used for RedBoot code and data so the application will start at 0x80100000.

ROM

This startup type can be used for finished applications which will be programmed into the start of external flash at location
0xbfc00000. On power-up the processor will automatically execute the contents of flash from 0xbfc00000. The application
will initialize the system, copy its data to RAM and zero its BSS. The application will be self-contained with no depen-
dencies on services provided by other software. eCos startup code will perform all necessary hardware initialization. This
startup type is used for building the flash-resident version of RedBoot but can also be used for application code.

ROMRAM

This startup type can be used for finished applications which will be programmed into the start of external flash at location
0xbfc00000. On power-up the processor automatically execute the contents of flash from 0xbfc00000. The application
will initialize the system, copy itself from flash to RAM, and zero its BSS. The application will be self-contained with no

3256

MIPS SEAD3 Board Support

dependencies on services provided by other software. eCos startup code will perform all necessary hardware initialization.
This startup type is used for building the flash-resident version of RedBoot but can also be used for application code.

JTAG

This can be used to run applications via JTAG rather than RedBoot. The application will be loaded at location 0x80000000
and it will take over all the hardware. Uart0 will be used for all HAL diagnostics and standard output. A JTAG application
build may prove useful for debugging certain problems, especially ones related to interrupts and exceptions. However the
JTAG software may not fully cope with the executables and debug information generated by the GNU tools, so the user
experience may be poor compared with using the GNU mips-sde-elf-gdb debugger.

In a typical setup RedBoot is programmed into the boot flash, which eCos does not manage. The last 256KiB of User flash is
used for managing the flash and holding the RedBoot fconfig values. The remaining blocks from 0x9c000000 to 0x9dfbffff
can be used by application code.

RedBoot can communicate with the host using either uart0 or ethernet.

All configurations for the SEAD3 target include an ethernet driver package CYGPKG_DEVS_ETH_SMSC_LAN9118. If the
application does not actually require ethernet functionality then the package is inactive and the final executable will not suf-
fer any overheads from unused functionality. This is determined by the presence of the generic ethernet I/O package CYGP-
KG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right thing to happen. For example, the default
template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and redboot
templates do include a TCP/IP stack so will specify that package and hence enable the ethernet driver. The ethernet device can
be shared by RedBoot and the application, so it is possible to debug a networked application over ethernet.

The SEAD3 board has a serial EPROM providing a unique network MAC address.

All configurations for the SEAD3 target include serial device driver packages CYGPKG_IO_SERIAL_GENERIC_16X5X and
CYGPKG_IO_SERIAL_MIPS_SEAD3. The 16X5X driver provided generic support for 16X5X compatible UARTs while
the SEAD3 package provides configuration to adapt that driver to the SEAD3 board. The driver as a whole is inactive unless
the generic serial support, CYGPKG_IO_SERIAL_DEVICES is enabled. Both UART0 and UART1 are connected, and both
have hardware flow control lines routed to the connector. UART0 is routed to a standard 9-pin RS232 connector and UART1
is connected to an FTDI USB adaptor. If a UART is needed by the application then it cannot also be used by RedBoot for gdb
traffic, so care should be exercised in selecting which UART to use for these purposes. Alternatively another communication
channel such as ethernet should be used instead.

The GIC interrupt controller is managed by eCos using macros provided by the SEAD3 platform HAL. The architecture
COUNTER/COMPARE timer is used to implement the eCos system clock. If gprof-based profiling is enabled then that will
use the GIC compare register and its associated interrupt. If the core does not include a GIC, then the configuration option
CYGHWR_HAL_SEAD3_HAS_GIC must be disabled, and gprof profiling will not be possible. At the moment, without a GIC
additional interrupt decoding is performed to indicate which of the two UART devices generated an interrupt, as these are
multiplexed in the same interrupt vector (2). However decoding is not performed on the multiplexed peripherals on interrupt
vector 0: PIC32 GPIO, SPI or USB as these peripherals are as yet not supported in eCosPro.

Tools
The SEAD3 port is intended to work with GNU tools configured for an mips-sde-elf target. The original port was done using
mips-sde-elf-gcc version 4.4 mips-sde-elf-gdb version 6.8, and binutils version 2.19.

3257

MIPS SEAD3 Board Support

Name
Setup — Preparing the SEAD3 board for eCos Development

Overview
In a typical development environment the SEAD3 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for a RAM startup, and then downloaded and run on the board via the debugger mips-sde-elf-gdb. Preparing
the board therefore involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROMRAM RedBoot loaded from boot
flash, running in RAM

redboot_ROMRAM.ecm redboot_romram.bin

ROM RedBoot running from boot
flash

redboot_ROM.ecm redboot_rom.bin

JTAG RedBoot debug redboot_JTAG.ecm redboot.elf

For serial communications all versions run at 115200 baud with 8 bits, no parity, and 1 stop bit. The baud rates can be changed
via the baud RedBoot command. RedBoot will support communication on both UARTs. Ethernet communication and flash
management are also supported.

Switch Setting
The LX50, LX110 and LX155 boards need the SW1 and SW2 switch banks set in order to execute code properly. These are
mostly to overcome problems in the hardware or FPGA firmware.

The LX50 needs to run at 50MHz, and the SDRAM must be mapped to zero, so the switches are set as follows:

Switch Setting

SW1[1] ON

SW1[2] OFF

SW1[3] OFF

SW1[4] ON

SW1[5] OFF

SW1[6] OFF

SW1[7] OFF

SW1[8] OFF

SW2[1] OFF

SW2[2] OFF

SW2[3] ON

SW2[4] OFF

The LX110 and LX155 also need to run at 50MHz, but the SDRAM does not need to be mapped to zero, so the switches
are set as follows:

Switch Setting

SW1[1] ON

SW1[2] OFF

3258

MIPS SEAD3 Board Support

Switch Setting

SW1[3] OFF

SW1[4] ON

SW1[5] OFF

SW1[6] OFF

SW1[7] OFF

SW1[8] OFF

SW2[1] OFF

SW2[2] OFF

SW2[3] OFF

SW2[4] OFF

These settings are the defaults for the boards as delivered from MIPS and should generally not be altered.

Initial Installation
RedBoot is installed using the USB download mechanism available on the board. The reader is referred to the SEAD3 docu-
mentation for a full description; however, the following steps should suffice to install RedBoot.

Connect a USB cable between your host machine and the SEAD3 board's USB download connector.

If your host system is Windows based open "Printers and Faxes" in the Start Menu. Click on "Add a printer". Then click "Next".
Select "Local printer attached to this computer". Uncheck the box that says "Automatically detect and install my Plug and Play
printer". Click "Next". Select a printer port. Click on "Use the following port", and select USB001 (virtual printer port for
USB). If you have previously installed a USB printer, you may see more than one USBxxx choice. You must choose the one
associated with the port connected to your USB cable. If necessary, use trial and error. When you have finished click "Next".
Under "Manufacturers", select "Generic". Under "Printers", select "Generic/Text Only". Click "Next".

Locate the file redboot_ROMRAM.fl and load into WordPad; make sure "Word Wrap" is turned OFF and that "Print page
numbers" is unchecked in "Print Setup". Print the document to the printer set up above.

For Linux users the file can be copied to the printer using a command similar to either of the following:

• % cat redboot_ROMRAM.fl >/dev/usblp0

• % cat redboot_ROMRAM.fl >/dev/usb/lp0

It may be necessary to execute this as root, depending on the permissions on the printer device.

Disconnect the USB cable and either connect a serial cable between the board and your host or plug the USB cable into the
UART1 USB adaptor socket. Run a terminal emulator (HyperTerminal, TeraTerm or minicom) at 115200 baud attached to the
serial port. Power cycle the SEAD3 board and you should see output similar to this:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 00:d0:a0:00:08:1c
IP: 10.0.2.4/255.0.0.0, Gateway: 10.0.0.3
Default server: 0.0.0.0
DNS server IP: 10.0.0.1, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 14:40:05, Apr 23 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute

3259

MIPS SEAD3 Board Support

copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: LX110 (M14Kc) LE
RAM: 0x80000000-0x9b000000 [0x8000b8b0-0x9afbd000 available]
FLASH: 0x9c000000-0x9dffffff, 128 x 0x40000 blocks
RedBoot>

The exact details may vary slightly, depending on whether or not the ethernet is plugged in yet. If no ethernet cable in plugged
in there may be a delay before this output completes. At this stage the RedBoot flash management initialization has not yet
happened so the warning about the configuration checksum error is expected. To perform the flash initialization use the fis init -
f command:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Unlocking from 0x9dfc0000-0x9dffffff: .
... Erase from 0x9dfc0000-0x9dffffff: .
... Program from 0x9afc0000-0x9b000000 to 0x9dfc0000: .
... Locking from 0x9dfc0000-0x9dffffff: .
RedBoot>

At this stage the block of flash at location 0x9dFc0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.0.1.1
Console baud rate: 115200
DNS domain name: xxxxxxx.com
DNS server IP address: 10.0.0.1
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x9dfc0000-0x9dffffff: .
... Erase from 0x9dfc0000-0x9dffffff: .
... Program from 0x9afc0000-0x9b000000 to 0x9dfc0000: .
... Locking from 0x9dfc0000-0x9dffffff: .
RedBoot>

For most of these configuration variables the default value is correct. If there is no suitable BOOTP service running on the
local network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address, netmask, and addresses
for the local gateway and DNS server.

Initialization is now complete. Press the board reset button and the following output should be seen:

+Ethernet eth0: MAC address 00:d0:a0:00:08:1c
IP: 10.0.2.4/255.0.0.0, Gateway: 10.0.0.3
Default server: 10.0.1.1
DNS server IP: 10.0.0.1, DNS domain name: <null>

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 14:40:05, Apr 23 2010

Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 eCosCentric Limited
RedBoot is free software, covered by the eCos license, derived from the
GNU General Public License. You are welcome to change it and/or distribute
copies of it under certain conditions. Under the license terms, RedBoot's
source code and full license terms must have been made available to you.
Redboot comes with ABSOLUTELY NO WARRANTY.

Platform: LX110 (M14Kc) LE
RAM: 0x80000000-0x9b000000 [0x8000b8b0-0x9afbd000 available]
FLASH: 0x9c000000-0x9dffffff, 128 x 0x40000 blocks
RedBoot>

3260

MIPS SEAD3 Board Support

When RedBoot issues its prompt it is also ready to accept connections from mips-sde-elf-gdb, allowing eCos applications to
be downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done by repeating this process.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROMRAM version of RedBoot are:

$ mkdir redboot_romram
$ cd redboot_romran
$ ecosconfig new sead3_14kc redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/mips/sead3/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_romram.fl. This
builds RedBoot for the LX155/M14Kc or LX110/M14Kc boards; to build for the LX50/M14K board substitute sead3_14k
for sead3_14kc in the above.

Rebuilding the ROM and JTAG versions involves basically the same process. The ROM version uses the file red-
boot_ROM.ecm and generates an ELF executable redboot.elf, which will be automatically converted to red-
boot_romram.fl for flash programming. The JTAG version uses the file redboot_JTAG.ecm and generates an ELF
executable redboot.elf, which may need to be converted to another format before it can be used with the JTAG software.

Note

The program that creates the redboot_romram.fl file is a perl script, srecconv.pl, that requires the
perl command to be in your path. While this is normally available under Linux, Windows users may be required
to install perl on their machine to create redboot_romram.fl.

3261

MIPS SEAD3 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The SEAD3 platform HAL package is loaded automatically when eCos is configured for an SEAD3 target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup
The SEAD3 platform HAL package supports four separate startup types: RAM, ROM, ROMRAM and JTAG. The configura-
tion option CYG_HAL_STARTUP controls which startup type is being used. For typical application development RAM startup
should be used, and the application will be run via mips-sde-elf-gdb interacting with RedBoot using either serial or ethernet.
It is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR.

ROM startup can be used for applications which are programmed into the boot flash at 0xbfc00000. On power up the processor
will jump to this location and execute the code that is there. The startup code will copy the applications data segment from
ROM to RAM at 0x80000000 and zero the BSS. Code execution will continue from ROM. All the hardware will be initialized,
and the application is self-contained. This startup type can be used by the flash-resident version of RedBoot, and can also be
used for finished applications that run stand-alone.

ROMRAM startup can be used for applications which are programmed into the boot flash at 0xbfc00000. On power up the
processor will jump to this location and execute the code that is there. The startup code will copy the applications taxt and data
segments from ROM to RAM at 0x80000000 and zero the BSS. Code execution will continue from RAM. All the hardware
will be initialized, and the application is self-contained. This startup type can be used by the flash-resident version of RedBoot,
and can also be used for finished applications that run stand-alone.

JTAG startup can be used for applications which will be debugged via JTAG instead of RedBoot. The behaviour is a combina-
tion of ROM and RAM startup: the application is loaded at 0x80000000 and initializes all the hardware, with no dependencies
on services provided by a ROM monitor.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via JTAG.

If the application does not rely on a ROM monitor for diagnostic services then UART0 will be used for HAL diagnostics and
standard output. The default baud rate is controlled by CYGNUM_HAL_VIRTUAL_VECTOR_CONSOLE_CHANNEL_BAUD.
If UART0 is needed by the HAL diagnostics code it cannot be accessed via the serial driver and applications should be
loaded via ethernet. Diagnostic output can also be switched to using UART1 by setting CYGNUM_HAL_VIRTUAL_VEC-
TOR_CONSOLE_CHANNEL to 1.

System Clock
The coprocessor 0 COUNTER/COMPARE timer is used for the eCos system clock. The configuration option
CYGNUM_HAL_RTC_PERIOD controls the value programmed into the compare register. The value of this is calculated
from the CPU frequency and the value of CYGNUM_HAL_RTC_DENOMINATOR. The calculations are arranged so that
CYGNUM_HAL_RTC_DENOMINATOR effectively defines the clock frequency and it the only configuration option that need
to be changed to select a different clock rate.

3262

MIPS SEAD3 Board Support

Board Type Selection
The option CYGHWR_HAL_MIPS_SEAD3 selects the SEAD3 board variant. It may be set to either LX50 or LX110. Normally
this will be set automatically when selecting for the sead3_14k or sead3_14kc targets.

Endian Mode Selection
The option CYGHWR_HAL_MIPS_SEAD3_ENDIAN selects the CPU and peripheral endian mode. It may be set to either
Little or Big. The default is Little. The BIGEND switch, SW2[1], needs to be set to match and if RAM applications
are to be used a matching RedBoot must also be installed. Note also that the RedBoot flash directory and configuration are not
stored in an endian-independent manner and would need to be reinitialized.

Instruction Set Selection
The option CYGPKG_HAL_MIPS_MICROMIPS_SUPPORT selects instruction set support. It may be set to either APP, ECOS
or FULL. The default is APP which causes eCos and RedBoot to be compiled in the MIPS32 instruction set, but allows user
code to be compiled in the microMIPS instruction set. When set to ECOS then all eCos/RedBoot C and C++ code is compiled
into microMIPS instructions; however assembly level startup and exception handling code remains in MIPS32 instructions, as
it must since the CPU starts in this instruction set, and switches to it for all exceptions. The FULL option is present for future
devices that operate entirely in microMIPS mode, and is not currently supported.

Unlike endian mode, the instruction set selection of RedBoot and eCos applications need not match. A MIPS32 RedBoot can
load and run microMIPS eCos applications and a microMIPS RedBoot can load and run MIPS32 applications.

To compile applications into microMIPS the standard flags that are used in eCos and exported to the ecos.mak file should
be used except that the -mips32r2 flag should be replaced by -mmicromips and the options -mno-jals -minter-
link-mips16 added.

Flash Driver
The platform HAL package contains flash driver support for the user flash device. By default this is inactive, and it can be
made active by loading the generic flash package CYGPKG_IO_FLASH. The boot flash is not programmable at runtime.

Ethernet Support
The platform HAL provides the platform-specific support for a single SMSC LAN9211 ethernet device, if the generic ethernet
support is enabled. The MAC address is stored in an EEPROM connected to the LAN9211 and will be loaded into the MAC
automatically on reset.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are some flags
specific to this port:

-mips32r2

The mips-sde-elf-gcc toolchain defaults to supporting the mips32 release 2 architecture, so this option is not strictly nec-
essary. However, it is good practice to include it.

-mmicromips

To compile code in the microMIPS instruction set, this option must be substituted for -mips32r2.

-mno-jals -minterlink-mips16

These options are necessary to link MIPS32 code with microMIPS code. They both restrict the compiler to generating
instructions for calls and other control transfers that can be converted to instructions that switch the instruction set. Without
these options some instructions either cannot be converted, or will be converted incorrectly.

3263

MIPS SEAD3 Board Support

-G0

MIPS calling conventions reserve one register for use as a global pointer register. In theory this allows static variables in
one 64K area of memory to be accessed using just one instruction instead of two, and the -G option provides some control
over this. However due to limitations within the current linker all modules have to be compiled with the same -G setting,
and the compiler support libraries are built with -G0. Therefore all eCos and application modules also have to be built
with -G0 and this optimization is not available.

-EB, EL

The eCos port supports both big-endian and little-endian modes.

-msoft-float

The M14K family does not have a hardware floating point unit so software floating point has to be used instead.

3264

MIPS SEAD3 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the SEAD3 hardware, and should be
read in conjunction with that specification. The SEAD3 platform HAL package complements the MIPS architectural HAL, the
MIPS32 variant HAL It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will set up some of the peripherals (UART, GIC, LCD etc.) appropriately for eCos, but
other peripherals (USB, PIC32) are left to their default settings. Full details of this initialization can be found in the function
hal_platform_init in sead3.c.

Memory Map
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

SDRAM On the LX110/LX155 this is 512MiB in size and mapped to location 0x80000000. The first
four kilobytes are reserved for exception vectors and for data which needs to be shared between
RAM startup applications and the ROM monitor. For JTAG startup, code will be loaded from
0x80001000 onwards. For ROM startup data will be loaded from 0x80001000 onwards. For
ROMRAM startup, the text and data of the applications will be loaded from 0x80001000 on-
wards. For RAM startup, code will start at 0x80040000, reserving the bottom 256KiB for Red-
Boot's code and data. This memory is not present on the LX50.

SRAM On the LX50 this is 4MiB in size and is mapped to location 0x80000000. The first four kilobytes
are reserved for exception vectors and for data which needs to be shared between RAM startup
applications and the ROM monitor. For JTAG startup, code will be loaded from 0x80001000
onwards. For ROM startup data will be loaded from 0x80001000 onwards. For ROMRAM
startup, the text and data of the applications will be loaded from 0x80001000 onwards. For
RAM startup, code will start at 0x80040000, reserving the bottom 256KiB for RedBoot's code
and data. This memory is present on the LX110/LX155, where it is mapped to 0x1E000000
and is unused by eCos.

On-chip Peripherals These are accessible at location 0xBF000000 onwards.

Flash The user flash device is located at 0x9C000000 onwards. CFI is used at run-time to query the
flash chip and adapt to it. Redboot is not held in this flash device, but in a separate boot flash
that is not accessible at run time. The last user flash block at location 0x9DFC0000 is used to
hold flash management data and the RedBoot fconfig variables. The remaining blocks can be
used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the architectural COUNTER/
COMPARE registers accessed via coprocessor 0. The actual HAL macros for managing the clock are provided by the MIPS
architectural HAL. The specific numbers used are a characteristic of the platform because they depend on the processor speed.
If the interrupt controller is present, its compare register and interrupt is used for profiling.

Other Issues
The SEAD3 platform HAL does not affect the implementation of other parts of the eCos HAL specification.

3265

MIPS SEAD3 Board Support

Name
JTAG Debugging — Using System Navigator

Overview
The SEAD 3 board can be debugged using the System Navigator JTAG probe. This consists of the probe itself plus the Navigator
Console software. The Navigator Console should be installed onto your host system according to the "MIPS Navigator Console
Getting Started Guide". To do this you need to obtain a license from MIPS. For Linux users, the Navigator Console version
4.0.16 currently only installs on RedHat Enterprises Linux. Once the console software is installed, connect the System Navigator
to the host.

Setup for standard eCosPro GNU tools
To use the System Navigator from GDB, the Navigator Console must be started independently. The Navigator Console must be
supplied with a startup script which can be chosen at startup, or supplied on the command line. Choose either mips_m14k.t-
cl for the LX150, or mips_m14kc.tcl for the LX110/LX155. When started correctly, the console window will appear and
show something similar to the following:

Main console display active (Tcl8.5.6 / Tk8.5.6)
mips_m14k initialization successful.
(scripts) 1 %

In addition, for Linux you should add the path to the Navigator Console binaries directory to your library load path. For
example, add the following line to your .bashrc:

export LD_LIBRARY_PATH=~/MIPS/NavigatorConsole/bin:$LD_LIBRARY_PATH

Download and install the Sourcery CodeBench Lite tools for MIPS ELF. It is sufficient to just download the TAR archive as
this download is solely required to obtain the mips-sde-elf-sprite tool. Place the "bin" directory for those tools (containing
mips-sde-elf-sprite) in your shell's PATH environment variable, making sure it comes after the PATH component for the
eCosPro GNU tools so that the eCosPro tools are still preferred.

Connect to the target from GDB by using the following connection command at the GDB console:

(gdb) target remote | mips-sde-elf-sprite -q -a 'mdi:/1/1?rst=5&lib=/home/USER/MIPS/NavigatorConsole/bin/libsysnav_mdi.so'

Substitute in the correct location for the libsysnav_mdi.so as required.

Consult the Navigator Console documentation NavConGdbGuide.pdf for further guidance on use with GDB.

Setup for CodeSourcery tools
While eCosCentric no longer recommend using the CodeSourcery tools (other than to obtain the mips-sde-elf-sprite tool), this
documentation has been preserved in case some users decide they do wish to use those tools.

To use the System Navigator from GDB, the Navigator Console must be started independently. The Navigator Console must be
supplied with a startup script which can be chosen at startup, or supplied on the command line. Choose either mips_m14k.t-
cl or mips_m14kc.tcl for the LX50 and LX110 respectively. When started correctly, the console window will appear
and show something similar to the following:

Main console display active (Tcl8.5.6 / Tk8.5.6)
mips_m14k initialization successful.
(scripts) 1 %

To use the System Navigator from GDB, GDB must be supplied with the name of a dynamic library to load, and the location
to load it from. This is best done from a .gdbinit file. For Window this should contain:

set mdi library C:\MIPS\NavigatorConsole\bin\sysnav_mdi.dll
set mdi target 1
set mdi connectreset 7

And for Linux:

3266

https://sourcery.mentor.com/GNUToolchain/subscription3537?lite=MIPS

MIPS SEAD3 Board Support

set mdi library libsysnav_mdi.so
set mdi connectreset 7
set mdi target 1

In addition, for Linux you should add the path to the Navigator Console binaries directory to your library load path. For
example, add the following line to your .bashrc:

export LD_LIBRARY_PATH=~/MIPS/NavigatorConsole/bin:$LD_LIBRARY_PATH

With these files set up it should be possible to start GDB and connect by giving the following command:

(gdb) target mdi 1:1
Selected device jtagindex-0 on MIPS mips_m14k
Connected to MDI target
(gdb)

GDB should now be ready to download and debug a JTAG startup application.

3267

Chapter 335. MIPS Malta Board Support

3268

MIPS Malta Board Support

Name
eCos Support for the Malta Board — Overview

Description
This document covers the MIPS Malta single board computer based on the MIPS 4Kc, 4KEc and 5Kc processors. Suport for
the 5Kc is restricted to RedBoot only, however, all 4Kc configurations of eCos and RedBoot will also function on a 5Kc.

The Malta board contains the processor, 32Mb of RAM, 4MB of flash memory, an AMD Am79C973 PCnet ethernet MAC,
connections for two serial channels and the various other peripherals on the board.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of two Intel 28F160 devices in parallel, giving 32 blocks of 128k bytes each. In a typical setup, the
first two flash blocks are used for the ROM RedBoot image. The topmost block is used to manage the flash and hold RedBoot
fconfig values. The remaining 29 blocks between 0xbe040000 and 0xbe3dffff can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_GENERIC_16X5X which supports the two UART serial devices on the Malta
board. This is configured for the Malta by the CYGPKG_IO_SERIAL_MIPS_MALTA package. These devices can be used
by RedBoot for communication with the host. If either of these devices is needed by the application, either directly or via the
serial driver, then it cannot also be used for RedBoot communication. Another communication channel such as ethernet should
be used instead. The serial driver package is loaded automatically when configuring for the Malta target.

There is an ethernet driver CYGPKG_DEVS_ETH_AMD_PCNET for the AMD Am79C973 PCnet ethernet device. A second
package CYGPKG_DEVS_ETH_MIPS_MIPS32_MALTA is responsible for configuring this generic driver to the Malta hard-
ware. These drivers are also loaded automatically when configuring for the Malta target.

eCos manages the on-chip interrupt controller. The MIPS32 architectural Count and Compare registers are used to implement
the eCos system clock and the microsecond delay function. Other devices (Caches, PCI, UARTs, memory and interrupt con-
trollers) are initialized only as far as is necessary for eCos to run. Other devices are not touched.

Tools
The Malta port is intended to work with GNU tools configured for an mipsisa32-elf target. The original port was undertaken
using mipsisa32-elf-gcc version 3.2.1, mipsisa32-elf-gdb version 5.3, and binutils version 2.13.1.

3269

MIPS Malta Board Support

Name
Setup — Preparing the Malta board for eCos Development

Overview
In a typical development environment, the Malta board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger mipsisa32-elf-gdb. Preparing the
board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

RAM RedBoot running from RAM,
usually loaded by another
version of RedBoot

redboot_RAM.ecm redboot_RAM.bin

ROM RedBoot running from ROM redboot_ROM.ecm redboot_ROM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. RedBoot also supports ethernet
communication and flash management.

Initial Installation
Installing RedBoot is a matter of downloading a new binary image and overwriting the existing Boot monitor ROM image.

RedBoot is installed using the code download facility built into the Malta board. See the Malta User manual for details.

Quick Download Instructions

Here are quick start instructions for downloading the prebuilt RedBoot image.

1. Locate the prebuilt files in the bin directory: deleteall.fl and redboot_ROM.fl.

2. Make sure switch S5-1 is ON. Reset the board and verify that the LED display reads Flash DL.

3. Make sure your parallel port is connected between the 1284 port of the Malta board and the parallel port of your host system.

4. Send the deleteall.fl file to the parallel port to erase previous images:

$ cat deleteall.fl >/dev/lp0

When this is complete, the LED display should read Deleted.

5. Send the RedBoot image to the board:

$ cat redboot_ROM.fl >/dev/lp0

When this is complete, the LED display should show the last address programmed. This will be something like: 1fc17000.

6. Connect a serial cable between one of the Malta board serial ports and a serial port on your host. Use a terminal emulator
to monitor the serial port (HyperTerminal on Windows or minicom on Linux).

7. Change switch S5-1 to OFF and reset the board. The LED display should read RedBoot and something similar to the
following should be output on the serial port:

No devices on IDE controller 0
No devices on IDE controller 1
... waiting for BOOTP information
Ethernet eth0: MAC address 00:d0:a0:00:01:cb
IP: 10.0.0.203/255.255.255.0, Gateway: 10.0.0.3
Default server: 10.0.0.1, DNS server IP: 10.0.0.1

3270

MIPS Malta Board Support

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 15:01:37, Oct 20 2004

Platform: Malta (MIPS32 4Kc)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x80000400-0x82000000, [0x8000cc40-0x81ed1000] available
FLASH: 0xbe000000 - 0xbe400000, 32 blocks of 0x00020000 bytes each.
RedBoot>

8. Run the RedBoot fis init and fconfig commands to initialize the flash.

Malta Download Format

In order to download RedBoot to the Malta board, it must be converted to the Malta download format.

The Atlas/Malta Developer's Kit CD contains an srecconv.pl utility which requires Perl. This utility is part of the yamon/ya-
mon-src-02.00.tar.gz tarball on the Dev Kit CD. The path in the expanded tarball is yamon/bin/tools. To use
srecconv to convert the S-record file:

$ cp redboot_ROM.srec redboot_ROM.rec
$ srecconv.pl -ES L -A 29 redboot_ROM

The resulting file is named redboot_ROM.fl.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot for the Malta are:

$ mkdir redboot_malta_rom
$ cd redboot_malta_rom
$ ecosconfig new malta redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/mips/malta/current/misc/redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.srec. This can then be converted
into the download format by using the srecconv program as described above.

Additional commands
The exec command which allows the loading and execution of Linux kernels, is supported for this architecture. The exec
parameters used for MIPS boards are:

-b <addr> Location to store command line and environment passed to kernel

-w <time> Wait time in seconds before starting kernel

-c "params" Parameters passed to kernel

<addr> Kernel entry point, defaulting to the entry point of the last image loaded

Linux kernels on MIPS platforms expect the entry point to be called with arguments in the registers equivalent to a C call
with prototype:

void Linux(int argc, char **argv, char **envp);

RedBoot will place the appropriate data at the offset specified by the -b parameter, or by default at address 0x80080000, and
will set the arguments accordingly when calling into the kernel.

The default entry point, if no image with explicit entry point has been loaded and none is specified, is 0x80000750.

3271

MIPS Malta Board Support

Other Issues
The Malta platform HAL does not affect the implementation of other parts of the eCos HAL specification. The MIPS32 variant
HAL, and the MIPS architectural HAL documentation should be consulted for further details.

3272

MIPS Malta Board Support

Name
Configuration — Platform-specific Configuration Options

Overview

The Malta platform HAL package is loaded automatically when eCos is configured for a malta target. It should never be nec-
essary to load this package explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Target Selection

The exact processor type is determined by the target selected during configuration. The following targets are currently sup-
ported:

malta_mips32_4kc Board fitted with 4Kc core card.

malta_mips32_4kec Board fitted with 4KEc core card.

malta_mips32_5kc Board fitted with 5Kc core card. This will only support a RedBoot configuration.

Startup

The Malta platform HAL package supports two startup types:

RAM

This is the startup type which is normally used during application development. The board has RedBoot programmed into
flash and boots into that initially. mipsisa32-elf-gdb is then used to load a RAM startup application into memory and debug
it. It is assumed that the hardware has already been initialized by RedBoot. By default the application will use the eCos
virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic output.

ROM

This startup type can be used for finished applications which will be programmed into flash at physical address
0xbe000000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors

If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver

The Malta board contains two 16 bit Intel 28F160 flash devices arranged in parallel to form a 32 bit wide interface. The CYG-
PKG_DEVS_FLASH_INTEL_28FXXX package contains all the code necessary to support these parts and the CYGPKG_DE-
VS_FLASH_MALTA package contains definitions that customize the driver to the Malta board.

3273

MIPS Malta Board Support

Ethernet Driver
The Malta board contains an AMD Am79C973 PCnet ethernet MAC. The CYGPKG_DEVS_ETH_AMD_PCNET package con-
tains all the code necessary to support this device and the CYGPKG_DEVS_ETH_MIPS_MIPS32_MALTA package contains
definitions that customize the driver to the Malta board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos.

-mips32 The mipsisa32-elf-gcc compiler supports many variants of the MIPS architecture. A -
m option should be used to select the specific variant in use, and with current tools -
mips32 is the correct option for the 4Kc and 4KEc processors.

-mips64 If the board is populated with a 5Kc processor, then RedBoot may be built with 64 bit
support. In that case, stand-alone applications may be built with the -mips64 option.
This option is not currently supported by eCos applications.

3274

MIPS Malta Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Malta hardware, and should be read
in conjunction with that specification. The Malta platform HAL package complements the MIPS architectural HAL and the
MIPS32 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the peripherals that it uses. There is an exception for RAM
startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the memory controller and PCI bridge and pro-
gramming the various internal registers. This is done in the assembler macros defined in the arch.inc, variant.inc and
platform.inc headers and in the hal_platform_init() function in plf_misc.c.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The MMU is not
enabled for this platform, however, the normal MIPS segment address translations are present. The key memory locations are
as follows.

NOTE

The virtual memory maps in this section use a C and B column to indicate whether or not the region is cached
(C) or buffered (B).

Virtual Address Range C B Description
----------------------- - - -----------
0x80000000 - 0x81ffffff Y Y SDRAM
0x9e000000 - 0x9e3fffff Y N System flash (cached)
0x9fc00000 - 0x9fffffff Y N System flash (mirrored)
0xa8000000 - 0xb7ffffff N N PCI Memory Space
0xb4000000 - 0xb40fffff N N Galileo System Controller
0xb8000000 - 0xb80fffff N N Southbridge / ISA
0xb8100000 - 0xbbdfffff N N PCI I/O Space
0xbe000000 - 0xbe3fffff N N System flash (noncached)
0xbf000000 - 0xbfffffff N N Board logic FPGA

MIPS16 Support
The Malta platform HAL enables MIPS16 support in the architecture HAL for those Core boards that contain capable proces-
sors. This allows application code to be compiled using MIPS16 options and linked against the 32 bit mode eCos library.

To compile for MIPS16 the standard flags that are used in eCos and exported to the ecos.mak file should be used except
that the -mips32 flag should be replaced by -mips16 -fwritable-strings. The -mips16 option enables MIPS16
compilation and the -fwritable-strings option is a work-around for a bug in the compiler.

3275

Chapter 336. NXP PNX83xx Common
Support

3276

NXP PNX83xx Common Support

Name
CYGPKG_HAL_MIPS_PNX83xx — eCos Support for NXP PNX83xx Processors

Description
The NXP PNX83xx family is a range of processors including the PNX8310 and PNX8330. This package provides support
for features that are common across the range. For example the PNX8310 and PNX8330 use similar UARTs, so the device
definitions are provided by this package rather than duplicated in the two processor HAL packages. Similarly HAL diagnostics
support using these UARTs is provided here.

Configuration
The PNX83xx common HAL package should be loaded automatically when eCos is configured for appropriate target hardware.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

The package does not contain any configuration options.

3277

Chapter 337. NXP PNX8310 Processor
Support

3278

NXP PNX8310 Processor Support

Name
CYGPKG_HAL_MIPS_PNX8310 — eCos Support for the NXP PNX8310 Processor

Description

The NXP PNX8310 processor is based around a PR1910 MIPS core, complemented by a range of on-chip peripherals. The
HAL package CYGPKG_HAL_MIPS_PNX8310 provides the processor-specific support, combining the functionality of an
eCos variant HAL and processor HAL. It complements the MIPS architectural HAL package CYGPKG_HAL_MIPS, and the
PNX83xx support package CYGPKG_HAL_MIPS_PNX83xx which contains support for features common to several members
of the PNX83xx family. An eCos configuration should also include a platform HAL package to support board-level details
like the memory chips and off-chip peripherals.

Configuration

The PNX8310 HAL package should be loaded automatically when eCos is configured for appropriate target hardware. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware. The package does not contain any user-settable options.

The HAL Port

This section describes how the PNX8310 HAL package implements parts of the eCos HAL specification. It should be read in
conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/var_io.h provides definitions of all on-chip peripherals, except for some UART definitions
which are provided by the PNX83xx support HAL instead. This header file is automatically included by the architectural header
cyg/hal/hal_io.h, so typically application code and other packages will just include the latter. The register addresses
are all in kseg1 so will be accessed uncached.

Interrupt Handling

The header file cyg/hal/var_intr.h provides ISR vector numbers for all interrupt sources, for example
CYGNUM_HAL_ISR_I2C0 and CYGNUM_HAL_ISR_PIO_1. These vector numbers should be used for calls like cyg_in-
terrupt_create. The header file is automatically included by the architectural header cyg/hal/hal_intr.h, and
other packages and application code will normally just include the latter.

The interrupt vectors come in three groups. There are three vectors for the timers implemented by the PR1910 core's co-
processor 0. There are 20 vectors for the other on-chip peripherals, managed by the priority interrupt controller. One of these,
CYGNUM_HAL_ISR_PIO is reserved for use by the HAL's interrupt decoding code to detect PIO interrupts. Finally there are
16 vectors for interrupts on the PIO pins.

The eCos HAL macros HAL_INTERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_ACKNOWLEDGE,
HAL_INTERRUPT_CONFIGURE and HAL_INTERRUPT_SET_LEVEL are implemented by the processor HAL. The imple-
mentations depend on the interrupt vector. HAL_INTERRUPT_ACKNOWLEDGE is only needed for PIO interrupts, otherwise
it is a no-op. HAL_INTERRUPT_CONFIGURE is also only relevant for PIO interrupts.

Interrupt priorities should be in the range 1 to 14, and correspond to the int_priority fields in the pic_int_reg registers. 1
is the lowest priority and 14 the highest. Interrupt priorities are ignored for the three timer interrupts. All PIO interrupt sources
operate at the same priority, which is the highest priority assigned to any of the PIO vectors.

Interrupt chaining via the common HAL's configuration option CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN is supported
for PIO interrupts only. This makes it possible to connect several external peripherals' interrupt lines to a single PIO pin if
desired.

3279

NXP PNX8310 Processor Support

Clock Support

The PR1910 core provides three timers, TMR1, TMR2 and TMR3. TMR1 is used for the eCos system clock. TMR2 is used
for gprof-based profiling if enabled, otherwise it can be used by the application. TMR3 is normally used only for the watchdog
device driver.

Cache Handling

The PNX8310 has an 8K unified cache, which is automatically initialized and enabled by the eCos startup code. The standard
macros HAL_UCACHE_INVALIDATE_ALL and HAL_UCACHE_SYNC are supported, and both the DCACHE and ICACHE
variants are just mapped on to these. Working ENABLE, DISABLE and IS_ENABLED macros are provided as well but these
are not generally useful on a MIPS processor.

Profiling Support

The PNX8310 HAL provides a profiling timer for use with the gprof profiling package. This uses the PR1910 coprocessor
0 timer TMR2, so application code should not manipulate this timer if profiling is enabled. The MIPS architectural HAL
implements the mcount function so profiling is fully supported on all PNX8310-based platforms.

Linker Script

During a build the PNX8310 HAL provides a linker script suitable for use with all C and C++ applications. This also allows parts
of the application code and data to be placed in the on-chip deeply embedded memory, using ELF linker sections .dem_text
for code, .dem_data for statically initialized data, and .dem_bss for uninitialized data. The dem1.c testcase in this
package illustrates how to use this functionality.

Other Issues

The HAL_PLATFORM_RESET is implemented via the PNX8310's system reset unit, and involves a full reset of the core and
all peripherals. Hence, whenever a soft reset is performed by the application or via a gdb command, the system should start up
again in a clean state, and there is no need for the system to reinitialize all the peripherals.

The PNX8310 HAL does not affect the implementation of data types, stack size definitions, bit indexing, idle thread processing,
SMP support, system startup, or debug support.

Other Functionality

The PNX8310 processor HAL only implements functionality defined in the eCos HAL specification and does not export any
additional functions.

3280

Chapter 338. NXP STB200 Board Support

3281

NXP STB200 Board Support

Name
eCos Support for the NXP STB200 Board — Overview

Description
The NXP STB200 board has a PNX8310 processor, 16MB of external SDRAM, 4MB of external flash, an SMSC LAN9118
ethernet chip, and connectors plus required support chips for various on-chip peripherals. For typical eCos development a Red-
Boot image is programmed into the external flash. RedBoot provides gdb stub functionality so it is then possible to download
and debug eCos applications via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length

External SDRAM 0x80000000 0x01000000

External Flash 0x98000000 0x00400000

Internal RAM 0xA4000000 0x00001000

On-chip Peripherals 0xB7000000 0x00200000

SMSC LAN9118 0xBA000000 0x02000000

External SDRAM and flash are normally accessed via the kseg0 segment and hence via the cache. The internal RAM and the
peripherals are normally accessed via kseg1 and hence uncached. Accesses to the on-chip RAM are as fast as cache accesses
so there is no point in going through the cache for those.

eCos can be configured for one of three startup types:

RAM

This is the startup type normally used during application development. RedBoot is programmed into flash and performs the
initial bootstrap. mipsisa32-elf-gdb is then used to load a RAM startup application into memory and debug it. By default
the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic
output. The bottom 256K of RAM is used for RedBoot code and data so the application will start at 0x80040000.

ROMRAM

This startup type can be used for finished applications which will be programmed into the start of external flash at location
0xB8000000. On power-up the chip's bootloader will automatically load the application into RAM at location 0x80001000
and start it. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization. This startup type is used for building the flash-resident
version of RedBoot but can also be used for application code.

JTAG

This can be used to run applications via JTAG rather than RedBoot. As with ROMRAM startup, the application will be
loaded at location 0x80001000 and it will take over all the hardware. Uart1 will be used for all HAL diagnostics and
standard output. A JTAG build of RedBoot can be used during hardware setup to program the ROMRAM version into
flash. A JTAG application build may prove useful for debugging certain problems, especially ones related to interrupts
and exceptions. However the JTAG software may not fully cope with the executables and debug information generated
by the GNU tools, so the user experience may be poor compared with using the GNU mipsisa32-elf-gdb debugger.

In a typical setup the first 128K of flash is used for holding the RedBoot image, and the last 64K is used for managing the flash
and holding the RedBoot fconfig values. The remaining blocks from 0x98020000 to 0x983EFFFF can be used by application
code.

RedBoot can communicate with the host using either uart1 or ethernet. The PNX8310's uart0 is not connected on this board.

3282

NXP STB200 Board Support

All configurations for the STB200 target include an ethernet driver package CYGPKG_DEVS_ETH_SMSC_LAN9118. If the
application does not actually require ethernet functionality then the package is inactive and the final executable will not suf-
fer any overheads from unused functionality. This is determined by the presence of the generic ethernet I/O package CYGP-
KG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right thing to happen. For example, the default
template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and redboot
templates do include a TCP/IP stack so will specify that package and hence enable the ethernet driver. The ethernet device can
be shared by RedBoot and the application, so it is possible to debug a networked application over ethernet.

The STB200 board does not have a serial EPROM or similar hardware providing a unique network MAC address. Instead a
suitable address has to be programmed into flash via RedBoot's fconfig command.

All configurations for the STB200 target include a serial device driver package CYGPKG_DEVS_SERIAL_MIPS_PNX8310.
The driver as a whole is inactive unless the generic serial support, CYGPKG_IO_SERIAL_DEVICES is enabled. Only uart1
has a suitable connector so that is the only device which can be accessed through the serial driver. The hardware flow control
lines are not connected so only software flow control is available. If the UART is needed by the application then it cannot also
be used by RedBoot for gdb traffic, so another communication channel such as ethernet should be used instead.

All configurations for the STB200 target include a watchdog device driver package CYGPKG_DEVS_WATCHDOG_MIPS_P-
NX8310. This is inactive unless the generic watchdog support, CYGPKG_IO_WATCHDOG is loaded.

The on-chip interrupt controller is managed by eCos using macros provided by the PNX8310 processor HAL. The on-chip
timer TMR1 is used to implement the eCos system clock. If gprof-based profiling is enabled then that will use TMR2, otherwise
that timer can be used by the application. TMR3 is normally used only by the watchdog device driver. GPIO pins 17 and 18
are used for uart1, and pin 14 is used for ethernet interrupts. The remaining GPIO pins are not used by eCos. Other on-chip
peripherals are left to their initial settings and not manipulated by eCos.

Tools
The STB200 port is intended to work with GNU tools configured for an mipsisa32-elf target. The original port was done using
mipsisa32-elf-gcc version 3.4.4 mipsisa32-elf-gdb version 6.3, and binutils version 2.16. The PNX8310's PR1910 core does
not implement the full mips32 functionality so all application code should be compiled with -mips2.

3283

NXP STB200 Board Support

Name
Setup — Preparing the STB200 board for eCos Development

Overview
In a typical development environment the STB200 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for a RAM startup, and then downloaded and run on the board via the debugger mipsisa32-elf-gdb. Preparing
the board therefore involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROMRAM.ecm redboot_romram.bin

JTAG Used for initial setup redboot_JTAG.ecm redboot.elf

RAM For debugging RedBoot redboot_RAM.ecm redboot_ram.bin

For serial communications all versions run at 384000 baud with 8 bits, no parity, and 1 stop bit. The baud rates can be changed
via the configuration option CYGNUM_HAL_MIPS_STB200_DIAG_BAUD and rebuilding RedBoot. Only uart1 has a serial
connector so RedBoot will use that. Ethernet communication and flash management are also supported.

Initial Installation
This process assumes that RedBoot has not yet been installed into flash, so JTAG has to be used to program the red-
boot_romram.bin file into flash. This can be done either via a flash programming utility or by first running a JTAG version
of RedBoot and using that to initialize and program the flash. This second approach is described here.

The first step is to set up a suitable JTAG module and associated debug software, as per the instructions supplied with the
JTAG kit. Next connect a straight-throught RS232 cable between the STB200's serial port and the host PC, and start a terminal
emulation application such as HyperTerminal or minicom on the host PC. The serial communication parameters should be
38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking).

It is now necessary to load and run a JTAG build of RedBoot. A prebuilt image redboot_JTAG.elf is supplied with eCos,
or can be rebuilt as described below. This file is an ELF executable complete with relocation and debug information, and may
need to be converted to another format for use with the JTAG software. For example, when using an Ashling Opella unit,
the SymFinder utility sfdwarf should be used to convert the ELF executable to a .CSO file. This utility may give numerous
warnings which can be ignored. The .CSO file can be loaded via the JTAG debugger, and it can be started running at location
0x80001000. At this point RedBoot will output text similar to the following on the serial port:

+FLASH configuration checksum error or invalid key
Ethernet eth0: MAC address 00:FF:12:34:56:78
... waiting for BOOTP information
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [JTAG]
Non-certified release, version UNKNOWN - built 20:35:11, Sep 29 2005

Platform: STB200 (Philips PNX8310)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

RAM: 0x80000000-0x81000000, [0x80028720-0x80fed000] available
FLASH: 0x98000000 - 0x983fffff 8 x 0x2000 blocks 63 x 0x10000 blocks
RedBoot>

The exact details may vary slightly, depending on the flash chip present and whether or not the ethernet is plugged in yet. At this
stage the RedBoot flash management initialization has not yet happened so the warning about the configuration checksum error
is expected. There will also be a delay while RedBoot tries to contact a local BOOTP server. To perform the flash initialization
use the fis init -f command:

3284

NXP STB200 Board Support

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x983f0000-0x983fffff: .
... Program from 0x80ff0000-0x81000000 to 0x983f0000: .
RedBoot>

At this stage the block of flash at location 0x983F0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address: 10.1.1.1
GDB connection port: 9000
Force console for special debug messages: false
Network hardware address [MAC]: 0x00:0xff:0x12:0x34:0x01:0x0C
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x983f0000-0x983fffff: .
... Program from 0x80ff0000-0x81000000 to 0x983f0000: .
RedBoot>

For most of these configuration variables the default value is correct. If there is no suitable BOOTP service running on the local
network then BOOTP should be disabled, and instead RedBoot will prompt for a fixed IP address, netmask, and addresses for
the local gateway and DNS server. The other exception is the network hardware address, also known as MAC address. All
boards should be given a unique MAC address, not the one in the above example. If there are two boards on the same network
trying to use the same MAC address then the resulting behaviour is undefined.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_romram.bin should now be uploaded using the terminal emulator. The file is a raw binary and should
be transferred using the Y-modem protocol.

CRaw file loaded 0x80028800-0x8004568f, assumed entry at 0x80028800
xyzModem - CRC mode, 930(SOH)/0(STX)/0(CAN) packets, 5 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x98000000-0x9801ffff:
... Program from 0x80028800-0x80048800 to 0x98000000:
... Erase from 0x983f0000-0x983fffff: .
... Program from 0x80ff0000-0x81000000 to 0x983f0000: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0x98000000, and the flash info block at
0x983F0000 has been updated. The initial setup is now complete and the board can now boot from flash. This can be done
either by powering the board down and back up, or simply by using RedBoot's reset command:

RedBoot> reset
... Resetting.+... waiting for BOOTP information
Ethernet eth0: MAC address 00:ff:12:34:01:0c
IP: 10.1.1.153/255.255.255.0, Gateway: 10.1.1.241
Default server: 10.1.1.1

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 12:46:19, Oct 2 2005

Platform: STB200 (Philips PNX8310)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

RAM: 0x80000000-0x81000000, [0x800288e0-0x80fed000] available

3285

NXP STB200 Board Support

FLASH: 0x98000000 - 0x983fffff 8 x 0x2000 blocks 63 x 0x10000 blocks
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from mipsisa32-elf-gdb, allowing eCos applications
to be downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done at the ROMRAM RedBoot
prompt - there is no need to run the JTAG version again unless the version already installed has been corrupted. It involves
loading the new image into RAM using RedBoot's load command, and then programming it into flash using fis create RedBoot

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROMRAM version of RedBoot are:

$ mkdir redboot_romram
$ cd redboot_romram
$ ecosconfig new stb200 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/mips/pnx83xx/pnx8310/stb200/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_romram.bin.

Rebuilding the JTAG and RAM versions involves basically the same process. The JTAG version uses the file redboot_J-
TAG.ecm and generates an ELF executable redboot.elf, which may need to be converted to another format before it
can be used with the JTAG software. The RAM version uses the file redboot_RAM.ecm and generates a raw binary red-
boot.ram.bin which can be loaded into memory at 0x80040000 and executed from there.

3286

NXP STB200 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The STB200 platform HAL package is loaded automatically when eCos is configured for an STB200 target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup
The STB200 platform HAL package supports three separate startup types: RAM, ROMRAM and JTAG. The configuration
option CYG_HAL_STARTUP controls which startup type is being used. For typical application development RAM startup
should be used, and the application will be run via mipsisa32-elf-gdb interacting with RedBoot using either serial or ethernet.
It is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR.

ROMRAM startup can be used for applications which are programmed into the base of flash at 0x98000000. On power up the
chip's boot loader will load the first 8K of code from flash to RAM at 0x80001000 and branch to that location. The startup code
will copy the remainder of the application from flash to RAM, and subsequently the flash will not be used for executing any
code. All the hardware will be initialized, and the application is self-contained. This startup type is used by the flash-resident
version of RedBoot, and can also be used for finished applications.

JTAG startup can be used for applications which will be debugged via JTAG instead of RedBoot. The behaviour is mostly the
same as for ROMRAM startup: the application is loaded at 0x80001000 and initializes all the hardware, with no dependencies
on services provided by a ROM monitor. There are some minor differences in the startup code, for example it is not necessary
to copy the remainder of the application from flash to RAM.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via BDM.

If the application does not rely on a ROM monitor for diagnostic services then uart1 will be used for HAL diagnostics and
standard output. The default baud rate is controlled by CYGNUM_HAL_MIPS_STB200_DIAG_BAUD. The board does not
have a connector for uart0 so that cannot be used instead. Since uart1 is needed by the HAL diagnostics code it cannot be
accessed via the serial driver.

System Clock
The coprocessor 0 TMR1 timer is used for the eCos system clock. The configuration option CYGNUM_HAL_RTC_PERIOD
controls the value programmed into the compare register. TMR1 ticks at 120MHz so the default value of 1200000 corresponds
to a 100Hz system clock or one tick per 10ms. Other clock-related settings are recalculated automatically if the period is
changed.

Flash Driver
The platform HAL package contains flash driver support for the external flash device. By default this is inactive, and it can be
made active by loading the generic flash package CYGPKG_IO_FLASH. The board may use one of a variety of flash chips.
The exact type present is determined at run-time using CFI and the system will adjust accordingly.

3287

NXP STB200 Board Support

Ethernet Support
The platform HAL provides the platform-specific support for a single SMSC LAN9118 ethernet device, if the generic ether-
net support is enabled. The configuration CYGNUM_HAL_MIPS_STB200_ETH_ISR_PRIORITY provides control over the
interrupt priority used for this device. The board does not have a suitable EEPROM so the MAC address is provided via a
RedBoot fconfig option.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are four flags
specific to this port:

-mips2 The mipsisa32-elf-gcc toolchain defaults to supporting the mips32 architecture, and the
PNX8310's PR1910 core does not fully implement this. Specifying -mips2 restricts
the compiler to using a subset of the mips32 instruction set appropriate for the PR1910.

-G0 MIPS calling conventions reserve one register for use as a global pointer register. In
theory this allows static variables in one 64K area of memory to be accessed using just
one instruction instead of two, and the -G option provides some control over this. How-
ever due to limitations within the current linker all modules have to be compiled with
the same -G setting, and the compiler support libraries are built with -G0. Therefore
all eCos and application modules also have to be built with -G0 and this optimization
is not available.

-EB The eCos port only supports big-endian mode so -EB must be specified.

-msoft-float The PR1910 does not have a hardware floating point unit so software floating point has
to be used instead.

3288

NXP STB200 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STB200 hardware, and should be
read in conjunction with that specification. The STB200 platform HAL package complements the MIPS architectural HAL,
the PNX8310 variant HAL, and the PNX83xx support HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will set up some of the on-chip peripherals appropriately for eCos, but most peripherals
are left to their default settings. Full details of this initialization can be found in the function hal_platform_init in
stb200.c.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External SDRAM This is mapped to location 0x80000000. The first four kilobytes are reserved for exception
vectors and for some data which needs to be shared between RAM startup applications and the
ROM monitor. For ROMRAM or JTAG startup, code will be loaded from 0x80001000 onwards.
For RAM startup, code will start at 0x80040000, reserving the bottom 256K for RedBoot's code
and data.

Internal RAM The 4K of deeply-embedded internal RAM is mapped at location 0xA4000000. Neither eCos
nor RedBoot use this so all of it is available to the application. The PNX8310 variant HAL
documentation explains how to map code or data into this memory.

On-chip Peripherals These are accessible at location 0xB7000000 onwards.

External Flash This is located at location 0x98000000 onwards. Different STB200 boards may come with dif-
ferent flash chips so CFI is used at run-time to query the flash chip and adapt. Typically the
first 128K of flash at location 0x98000000 is used to hold RedBoot, and the last flash block at
location 0x983F0000 is used to hold flash management data and the RedBoot fconfig variables.
The remaining blocks can be used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer TMR1, part
of the PR1910 core and is accessed via coprocessor 0. The actual HAL macros for managing the clock are provided by the
PNX8310 variant HAL. The specific numbers used are a characteristic of the platform because they depend on the processor
speed. TMR2 is used by the gprof-based profiling code, or is available for application use when profiling is not enabled. TMR3
is normally used only for the watchdog.

MIPS16 Support
The STB200 platform HAL enables MIPS16 support in the architecture HAL. This allows application code to be compiled
using MIPS16 options and linked against the 32 bit mode eCos library.

To compile for MIPS16 the standard flags that are used in eCos and exported to the ecos.mak file should be used except
that the -mips2 flag should be replaced by -mips16 -fwritable-strings. The -mips16 option enables MIPS16
compilation and the -fwritable-strings option is a work-around for a bug in the compiler.

Other Issues
The STB200 platform HAL does not affect the implementation of other parts of the eCos HAL specification.

3289

Chapter 339. NXP PNX8330 Processor
Support

3290

NXP PNX8330 Processor Support

Name
CYGPKG_HAL_MIPS_PNX8330 — eCos Support for the NXP PNX8330 Processor

Description
The NXP PNX8330 processor is based around a 4KEc MIPS32 core, complemented by a range of on-chip peripherals. The HAL
package CYGPKG_HAL_MIPS_PNX8330 provides the processor-specific support. It complements the MIPS architectural
HAL package CYGPKG_HAL_MIPS, the MIPS32 variant package CYGPKG_HAL_MIPS_MIPS32 and the PNX83xx support
package CYGPKG_HAL_MIPS_PNX83xx which contains support for features common to several members of the PNX83xx
family. An eCos configuration should also include a platform HAL package to support board-level details like the memory
chips and off-chip peripherals.

Configuration
The PNX8330 HAL package should be loaded automatically when eCos is configured for appropriate target hardware. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware. The package does not contain any user-settable options.

The HAL Port
This section describes how the PNX8330 HAL package implements parts of the eCos HAL specification. It should be read in
conjunction with similar sections from the architectural and variant HAL documentation.

HAL I/O

The header file cyg/hal/pnx8330_io.h provides definitions of the on-chip peripherals used by eCos, except for some
UART definitions which are provided by the PNX83xx support HAL instead. This header file is automatically included by the
architectural header cyg/hal/hal_io.h, so typically application code and other packages will just include the latter. The
register addresses are all in kseg1 so will be accessed uncached.

Interrupt Handling

The header file cyg/hal/pnx8330_intr.h provides ISR vector numbers for all interrupt sources, for example
CYGNUM_HAL_ISR_I2C0 and CYGNUM_HAL_ISR_PIO_1. These vector numbers should be used for calls like cyg_in-
terrupt_create. The header file is automatically included by the architectural header cyg/hal/hal_intr.h, and
other packages and application code will normally just include the latter.

The interrupt vectors come in four groups. There are six vectors corresponding to the external interrupts available in the CPU
SR and CAUSE registers. Of these, interrupt number 2 is attached to the on-chip interrupt controller, and interrupt number 5
is attached to the internal COMPARE register, which is used to supply system time interrupts. There are 37 vectors for the
on-chip peripherals, managed by the priority interrupt controller. One of these, CYGNUM_HAL_ISR_PIO is reserved for use
by the HAL's interrupt decoding code to detect PIO interrupts and decode them into the next 16 vectors. Another peripheral
interrupt, CYGNUM_HAL_ISR_CONFIG is decoded into the final seven interrupt vectors, which correspond to the interrupt
sources available from the CONFIG unit.

The eCos HAL macros HAL_INTERRUPT_MASK, HAL_INTERRUPT_UNMASK, HAL_INTERRUPT_ACKNOWLEDGE,
HAL_INTERRUPT_CONFIGURE and HAL_INTERRUPT_SET_LEVEL are implemented by the processor HAL. The imple-
mentations depend on the interrupt vector. HAL_INTERRUPT_ACKNOWLEDGE is only needed for PIO and CONFIG inter-
rupts, otherwise it is a no-op. HAL_INTERRUPT_CONFIGURE is only relevant for PIO interrupts.

Interrupt priorities should be in the range 1 to 14, and correspond to the int_priority fields in the pic_int_reg registers.
1 is the lowest priority and 14 the highest. Interrupt priorities are ignored for the COMPARE interrupt. All PIO and CONFIG
interrupt sources operate at the same priority, which is the highest priority assigned to any of the PIO or CONFIG vectors.

Interrupt chaining via the common HAL's configuration option CYGIMP_HAL_COMMON_INTERRUPTS_CHAIN is supported
for PIO interrupts only. This makes it possible to connect several external peripherals' interrupt lines to a single PIO pin if
desired.

3291

NXP PNX8330 Processor Support

Clock Support

The 4kEc core provides standard COUNTER and COMPARE registers which are used for the eCos system clock. The CONFIG
unit timer 0 is used for gprof-based profiling if enabled, otherwise it can be used by the application. The CONFIG unit watchdog
timer is supported by a watchdog driver.

Cache Handling

The PNX8330 has an 8K data cache and a 16k instruction cache, which are automatically initialized and enabled by the eCos
startup code. All the standard cache control macros are supported through the cache instruction. However, since all memory
is always available both cached and uncached as part of the architecture, these are not always necessary.

Profiling Support

The PNX8330 HAL provides a profiling timer for use with the gprof profiling package. This uses the PNX8330 configuration
timer 0, so application code should not manipulate this timer if profiling is enabled. The MIPS architectural HAL implements
the mcount function so profiling is fully supported on all PNX8330-based platforms.

Other Issues

The macro HAL_PLATFORM_RESET is implemented via the PNX8330's system reset unit, and involves a full reset of the
core and all peripherals. Hence, whenever a soft reset is performed by the application or via a gdb command, the system should
start up again in a clean state, and there is no need for the system to reinitialize all the peripherals.

The PNX8330 HAL does not affect the implementation of data types, stack size definitions, bit indexing, idle thread processing,
SMP support, system startup, or debug support.

Other Functionality

The PNX8330 processor HAL only implements functionality defined in the eCos HAL specification and does not export any
additional functions.

3292

Chapter 340. NXP STB220 Board Support

3293

NXP STB220 Board Support

Name
eCos Support for the NXP STB220 Board — Overview

Description
The NXP STB220 board has a PNX8330 processor, 32MB of external SDRAM, 16MB of external flash, an SMSC LAN9118
ethernet chip, and connectors plus required support chips for various on-chip peripherals. For typical eCos development a Red-
Boot image is programmed into the external flash. RedBoot provides gdb stub functionality so it is then possible to download
and debug eCos applications via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The memory map used by both eCos and RedBoot is as follows:

Memory Base Length

External SDRAM 0x80000000 0x04000000

External Flash 0x98000000 0x01000000

On-chip Peripherals 0xB7000000 0x00200000

External SDRAM and flash are normally accessed via the kseg0 segment and hence via the cache. The peripherals are normally
accessed via kseg1 and hence uncached.

eCos can be configured for one of four startup types:

RAM

This is the startup type normally used during application development. RedBoot is programmed into flash and performs the
initial bootstrap. mipsisa32-elf-gdb is then used to load a RAM startup application into memory and debug it. By default
the application will use eCos' virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic
output. The bottom 1MB of RAM is used for RedBoot code and data so the application will start at 0x80100000.

ROM

This startup type can be used for finished applications which will be programmed into the start of external flash at location
0xB8000000. On power-up the chip's bootloader will automatically execute the contents of flash from 0xB8000000. The
application will initialize SDRAM, copy its data to RAM and zero its BSS. The application will be self-contained with no
dependencies on services provided by other software. eCos startup code will perform all necessary hardware initialization.
This startup type is used for building the flash-resident version of RedBoot but can also be used for application code.

ROMRAM

This startup type can be used for finished applications which will be programmed into the start of external flash at location
0xB8000000. On power-up the chip's bootloader will automatically execute the contents of flash from 0xB8000000. The
application will initialize SDRAM, copy itself from flash to RAM, and zero its BSS. The application will be self-contained
with no dependencies on services provided by other software. eCos startup code will perform all necessary hardware
initialization. This startup type is used for building the flash-resident version of RedBoot but can also be used for application
code.

JTAG

This can be used to run applications via JTAG rather than RedBoot. The application will be loaded at location 0x80000000
and it will take over all the hardware. Uart0 will be used for all HAL diagnostics and standard output. A JTAG build of
RedBoot can be used during hardware setup to program the ROM or ROMRAM versions into flash. A JTAG application
build may prove useful for debugging certain problems, especially ones related to interrupts and exceptions. However the
JTAG software may not fully cope with the executables and debug information generated by the GNU tools, so the user
experience may be poor compared with using the GNU mipsisa32-elf-gdb debugger.

3294

NXP STB220 Board Support

In a typical setup the first 128KB of flash is used for holding the RedBoot image, and the last 128KB is used for managing
the flash and holding the RedBoot fconfig values. The remaining blocks from 0x98020000 to 0x98FEFFFF can be used by
application code.

RedBoot can communicate with the host using either uart0 or uart1.

All configurations for the STB220 target include an ethernet driver package CYGPKG_DEVS_ETH_SMSC_LAN9118. If the
application does not actually require ethernet functionality then the package is inactive and the final executable will not suf-
fer any overheads from unused functionality. This is determined by the presence of the generic ethernet I/O package CYGP-
KG_IO_ETH_DRIVERS. Typically the choice of eCos template causes the right thing to happen. For example, the default
template does not include any TCP/IP stack so CYGPKG_IO_ETH_DRIVERS is not included, but both the net and redboot
templates do include a TCP/IP stack so will specify that package and hence enable the ethernet driver. The ethernet device can
be shared by RedBoot and the application, so it is possible to debug a networked application over ethernet.

The STB220 board does not have a serial EPROM or similar hardware providing a unique network MAC address. Instead a
suitable address has to be programmed into flash via RedBoot's fconfig command.

All configurations for the STB220 target include a serial device driver package CYGPKG_DEVS_SERIAL_MIPS_PNX8310
(this driver is shared with PNX8310 based targets, and for historical reasons it is named for them, however it it applicable to
both). The driver as a whole is inactive unless the generic serial support, CYGPKG_IO_SERIAL_DEVICES is enabled. Both
Uart0 and uart1 are connected, however, only Uart0 has hardware flow control lines routed to the connector. If a UART is
needed by the application then it cannot also be used by RedBoot for gdb traffic, so care should be exercised in selecting which
UART to use for these purposes. Alternatively another communication channel such as ethernet chould be used instead.

All configurations for the STB220 target include a watchdog device driver package CYGPKG_DEVS_WATCHDOG_MIPS_P-
NX8330. This is inactive unless the generic watchdog support, CYGPKG_IO_WATCHDOG is loaded.

The on-chip interrupt controller is managed by eCos using macros provided by the PNX8330 processor HAL. The architecture
COUNTER/COMPARE timer is used to implement the eCos system clock. If gprof-based profiling is enabled then that will
use CONFIG unit timer 0, otherwise that timer can be used by the application. GPIO pins 4 to 7 are used for UART1 and pins
10 to 13 may be used for ethernet interrupts. The remaining GPIO pins are not used by eCos. Other on-chip peripherals are
left to their initial settings and not manipulated by eCos.

Tools
The STB220 port is intended to work with GNU tools configured for an mipsisa32-elf target. The original port was done using
mipsisa32-elf-gcc version 3.4.4 mipsisa32-elf-gdb version 6.3, and binutils version 2.16.

3295

NXP STB220 Board Support

Name
Setup — Preparing the STB220 board for eCos Development

Overview
In a typical development environment the STB220 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for a RAM startup, and then downloaded and run on the board via the debugger mipsisa32-elf-gdb. Preparing
the board therefore involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from paral-
lel flash

redboot_ROM.ecm redboot_rom.bin

ROMRAM RedBoot copied from flash
into RAM

redboot_ROMRAM.ecm redboot_romram.bin

JTAG Used for initial setup redboot_JTAG.ecm redboot.elf

RAM For debugging RedBoot redboot_RAM.ecm redboot_ram.bin

For serial communications all versions run at 384000 baud with 8 bits, no parity, and 1 stop bit. The baud rates can be changed
via the configuration option CYGNUM_HAL_MIPS_STB220_DIAG_BAUD and rebuilding RedBoot. RedBoot will support
communication on either UART. Flash management is supported. Ethernet communication and flash management are also
supported.

For EV8330 boards with DDR RAM there are alternative configuration files for the ROM and ROMRAM configurations. These
have the same names as the files given above, with _DDR added giving redboot_ROM_DDR.ecm and redboot_ROM-
RAM_DDR.ecm.

Initial Installation
This process assumes that RedBoot has not yet been installed into flash, so JTAG has to be used to program the red-
boot_romram.bin file into flash. This can be done either via a flash programming utility or by first running a JTAG version
of RedBoot and using that to initialize and program the flash. This second approach is described here.

The first step is to set up a suitable JTAG module and associated debug software, as per the instructions supplied with the
JTAG kit. Next connect a straight-throught RS232 cable between the STB220's serial port and the host PC, and start a terminal
emulation application such as HyperTerminal or minicom on the host PC. The serial communication parameters should be
38400 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking).

Ensure that SW801 is set to the CSn0 position, SW802 is set to OFF and that SW803 is set to 16b. It will also be necessary to
configure the JTAG software to make both the FLASH and SDRAM accessible.

It is now necessary to load and run a JTAG build of RedBoot. A prebuilt image redboot_JTAG.elf is supplied with eCos,
or can be rebuilt as described below. This file is an ELF executable complete with relocation and debug information, and may
need to be converted to another format for use with the JTAG software. For example, when using an Ashling Opella unit,
the SymFinder utility sfdwarf should be used to convert the ELF executable to a .CSO file. This utility may give numerous
warnings which can be ignored. The .CSO file can be loaded via the JTAG debugger, and it can be started running at location
0x80001000. At this point RedBoot will output text similar to the following on the serial port:

Warning FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database

RedBoot(tm) bootstrap and debug environment [JTAG]
Non-certified release, version UNKNOWN - built 15:19:46, Dec 1 2005

Platform: STB220 (Philips PNX8330)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

3296

NXP STB220 Board Support

RAM: 0x80000000-0x84000000, [0x8001aec0-0x83fdd000] available
FLASH: 0x98000000 - 0x98ffffff 128 x 0x20000 blocks
RedBoot>

The exact details may vary slightly, depending on the flash chip present and whether or not the ethernet is plugged in yet. At
this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration checksum
error is expected. To perform the flash initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x98020000-0x98fdffff: ...
...
... Unlocking from 0x98fe0000-0x98ffffff: .
... Erase from 0x98fe0000-0x98ffffff: .
... Program from 0x83fe0000-0x84000000 to 0x98fe0000: .
... Locking from 0x98fe0000-0x98ffffff: .
RedBoot>

At this stage the block of flash at location 0x98FE0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x98fe0000-0x98ffffff: .
... Erase from 0x98fe0000-0x98ffffff: .
... Program from 0x83fe0000-0x84000000 to 0x98fe0000: .
... Locking from 0x98fe0000-0x98ffffff: .
RedBoot>

For most of these configuration variables the default value is correct.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_romram.bin should now be uploaded using the terminal emulator. The file is a raw binary and should
be transferred using the Y-modem protocol.

CRaw file loaded 0x8001b000-0x80031887, assumed entry at 0x8001b000
xyzModem - CRC mode, 724(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Unlocking from 0x98000000-0x9801ffff: .
... Erase from 0x98000000-0x9801ffff: .
... Program from 0x8001b000-0x8003b000 to 0x98000000: .
... Locking from 0x98000000-0x9801ffff: .
... Unlocking from 0x98fe0000-0x98ffffff: .
... Erase from 0x98fe0000-0x98ffffff: .
... Program from 0x83fe0000-0x84000000 to 0x98fe0000: .
... Locking from 0x98fe0000-0x98ffffff: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0x98000000, and the flash info block at
0x98FE0000 has been updated. The initial setup is now complete and the board can now boot from flash. To do this, power
the board down, detach the JTAG module and power the board up. It should produce the following output:

+
RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 14:37:14, Dec 1 2005

Platform: STB220 (Philips PNX8330)

3297

NXP STB220 Board Support

Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005 eCosCentric Limited

RAM: 0x80000000-0x84000000, [0x8001b350-0x83fdd000] available
FLASH: 0x98000000 - 0x98ffffff 128 x 0x20000 blocks
RedBoot>

When RedBoot issues its prompt it is also ready to accept connections from mipsisa32-elf-gdb, allowing eCos applications
to be downloaded and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done at the ROMRAM RedBoot
prompt - there is no need to run the JTAG version again unless the version already installed has been corrupted. It involves
loading the new image into RAM using RedBoot's load command, and then programming it into flash using fis create RedBoot

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the ROMRAM version of RedBoot are:

$ mkdir redboot_romram
$ cd redboot_romram
$ ecosconfig new stb220 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/mips/pnx83xx/pnx8330/stb220/current/misc/redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the required file redboot_romram.bin.

Rebuilding the JTAG and RAM versions involves basically the same process. The JTAG version uses the file redboot_J-
TAG.ecm and generates an ELF executable redboot.elf, which may need to be converted to another format before it
can be used with the JTAG software. The RAM version uses the file redboot_RAM.ecm and generates a raw binary red-
boot.ram.bin which can be loaded into memory at 0x80100000 and executed from there.

3298

NXP STB220 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The STB220 platform HAL package is loaded automatically when eCos is configured for an STB220 target. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware.

Startup
The STB220 platform HAL package supports four separate startup types: RAM, ROM, ROMRAM and JTAG. The configura-
tion option CYG_HAL_STARTUP controls which startup type is being used. For typical application development RAM startup
should be used, and the application will be run via mipsisa32-elf-gdb interacting with RedBoot using either serial or ethernet.
It is assumed that the low-level hardware initialization, including setting up the memory map, has already been performed by
RedBoot. By default the application will use certain services provided by RedBoot via the virtual vector mechanism, including
diagnostic output, but that can be disabled via CYGSEM_HAL_USE_ROM_MONITOR.

ROM startup can be used for applications which are programmed into the base of a parallel flash device at 0x98000000. On
power up the chip's boot loader will jump to this location and execute the code that is there. The startup code will copy the
applications data segment from ROM to RAM at 0x80000000 and zero the BSS. Code execution will continue from ROM.
All the hardware will be initialized, and the application is self-contained. This startup type can be used by the flash-resident
version of RedBoot, and can also be used for finished applications.

ROMRAM startup can be used for applications which are programmed into the base of flash at 0x98000000. On power up the
chip's boot loader will jump to this location and execute the code that is there. The startup code will copy the application from
flash to RAM at 0x80000000, and subsequently the flash will not be used for executing any code. All the hardware will be
initialized, and the application is self-contained. This startup type is used by the flash-resident version of RedBoot, and can
also be used for finished applications.

JTAG startup can be used for applications which will be debugged via JTAG instead of RedBoot. The behaviour is mostly the
same as for ROMRAM startup: the application is loaded at 0x80000000 and initializes all the hardware, with no dependencies
on services provided by a ROM monitor. There are some minor differences in the startup code, for example it is not necessary
to copy the remainder of the application from flash to RAM.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained.
That is useful as a testing step before switching to ROM startup. It also allows applications to be run and debugged via JTAG.

If the application does not rely on a ROM monitor for diagnostic services then uart0 will be used for HAL diagnostics and
standard output. The default baud rate is controlled by CYGNUM_HAL_MIPS_PNX83XX_DIAG_BAUD. Since uart0 is needed
by the HAL diagnostics code it cannot be accessed via the serial driver and uart1 should be used for this purpose.

System Clock
The coprocessor 0 COUNTER/COMPARE timer is used for the eCos system clock. The configuration option
CYGNUM_HAL_RTC_PERIOD controls the value programmed into the compare register. The value of this is calculated
from the CPU frequency and the value of CYGNUM_HAL_RTC_DENOMINATOR. The calculations are arranged so that
CYGNUM_HAL_RTC_DENOMINATOR effectively defines the clock frequency and it the only configuration option that need
to be changed to select a different clock rate.

3299

NXP STB220 Board Support

DRAM Type Selection
EV8330 boards can be fitted with either DDR RAM or SDRAM. These require different initialization of the the SDRAM
interface controller. This is selected by setting CYGHWR_HAL_PNX8330_DRAM to either SDRAM or DDR. The default is to
select SDRAM.

Flash Driver
The platform HAL package contains flash driver support for the external flash device. By default this is inactive, and it can be
made active by loading the generic flash package CYGPKG_IO_FLASH. The board may use one of a variety of flash chips.
The exact type present is determined at run-time using CFI and the system will adjust accordingly.

Ethernet Support
The platform HAL provides the platform-specific support for a single SMSC LAN9118 ethernet device, if the generic ethernet
support is enabled. The configuration CYGNUM_HAL_MIPS_STB220_ETH_ISR_PRIORITY provides control over the in-
terrupt priority used for this device. The option CYGNUM_HAL_MIPS_STB220_ETH_ISR_PIO controls which PIO pin the
ethernet interrupt is connected to and CYGNUM_HAL_MIPS_STB220_ETH_CS controls which chip select is used to access
the ethernet device. These options must match the setting of the jumpers on the board. The board does not have a suitable
EEPROM so the MAC address is provided via a RedBoot fconfig option.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are four flags
specific to this port:

-mips32 The mipsisa32-elf-gcc toolchain defaults to supporting the mips32 architecture, so this
option is not strictly necessary. However, it is good practice to include it.

-G0 MIPS calling conventions reserve one register for use as a global pointer register. In
theory this allows static variables in one 64K area of memory to be accessed using just
one instruction instead of two, and the -G option provides some control over this. How-
ever due to limitations within the current linker all modules have to be compiled with
the same -G setting, and the compiler support libraries are built with -G0. Therefore
all eCos and application modules also have to be built with -G0 and this optimization
is not available.

-EB The eCos port only supports big-endian mode so -EB must be specified.

-msoft-float The PNX8330 does not have a hardware floating point unit so software floating point
has to be used instead.

3300

NXP STB220 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the STB220 hardware, and should be
read in conjunction with that specification. The STB220 platform HAL package complements the MIPS architectural HAL,
the PNX8330 variant HAL, and the PNX83xx support HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will set up some of the on-chip peripherals appropriately for eCos, but most peripherals
are left to their default settings. Full details of this initialization can be found in the function hal_platform_init in
stb220.c.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

External SDRAM This is mapped to location 0x80000000. The first four kilobytes are reserved for exception
vectors and for some data which needs to be shared between RAM startup applications and
the ROM monitor. For ROMRAM or JTAG startup, code will be loaded from 0x80001000
onwards. For ROM startup data will be loaded from 0x80001000 onwards. For RAM startup,
code will start at 0x80100000, reserving the bottom 1MB for RedBoot's code and data.

On-chip Peripherals These are accessible at location 0xB7000000 onwards.

External Flash This is located at location 0x98000000 onwards. Different STB220 boards may come with dif-
ferent flash chips so CFI is used at run-time to query the flash chip and adapt. Typically the
first 128K of flash at location 0x98000000 is used to hold RedBoot, and the last flash block at
location 0x98DE0000 is used to hold flash management data and the RedBoot fconfig variables.
The remaining blocks can be used by application code.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the 4kEc COUNTER/COM-
PARE registers accessed via coprocessor 0. The actual HAL macros for managing the clock are provided by the MIPS archi-
tectural HAL. The specific numbers used are a characteristic of the platform because they depend on the processor speed. The
CONFIG unit's timer 0 is used for profiling and its watchdog timer is supported by a watchdog driver.

MIPS16 Support
The STB220 platform HAL enables MIPS16 support in the architecture HAL. This allows application code to be compiled
using MIPS16 options and linked against the 32 bit mode eCos library.

To compile for MIPS16 the standard flags that are used in eCos and exported to the ecos.mak file should be used except
that the -mips32 flag should be replaced by -mips16 -fwritable-strings. The -mips16 option enables MIPS16
compilation and the -fwritable-strings option is a work-around for a bug in the compiler.

Other Issues
The STB220 platform HAL does not affect the implementation of other parts of the eCos HAL specification.

3301

Part LXXXIII. NIOS2 Architecture

Table of Contents
341. Nios II Architectural Support ... 3304

Nios II Architectural HAL .. 3305
Generic Installation Instructions ... 3306
Configuration ... 3309
The HAL Port .. 3310

342. Nios II Stratix II/2s60_RoHS and Cyclone II/2c35 Platform HAL ... 3314
Overview ... 3315

343. Nios II Cyclone II/2c35 Standard H/W Design HAL .. 3318
Cyclone II Standard Hardware Design HAL .. 3319

344. Nios II Cyclone II/2c35 TSEplus H/W Configuration HAL ... 3321
Cyclone II TSEplus Hardware Design HAL .. 3322

345. Nios II Stratix II/2s60_RoHS Standard H/W Design HAL ... 3324
Stratix II Standard Hardware Design HAL .. 3325

346. Nios II Stratix II/2s60_RoHS TSEplus H/W Design HAL ... 3327
Stratix II TSEplus Hardware Design HAL ... 3328

347. Board-level Support for the Nios II Embedded Evaluation Kit, Cyclone III edition ... 3330
Overview ... 3331

348. Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL 3333
Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector Hardware Design HAL 3334

3303

Chapter 341. Nios II Architectural Support

3304

Nios II Architectural Support

Name
CYGPKG_HAL_NIOS2 — eCos Support for the Nios II Architecture

Description
The Altera Nios II is a configurable processor. Using the Altera design suite a system designer can build a custom hardware
design. This will involve a Nios II cpu, possibly fine-tuned as appropriate for the application with e.g. appropriate amounts of
cache and custom instructions. Next those peripherals needed by the application are added. The resulting design is compiled
and programmed into a suitably-sized FPGA. This FPGA will be the heart of a larger circuit containing other devices such
as external flash and RAM memories and support chips such as RS232 transceivers. A number of reference hardware designs
are included with the design suite. The eCos Nios II architectural HAL package together with supporting HAL packages and
device drivers allow eCos to be configured and built for a hardware design. Complete applications can then be built with eCos.

The configurable nature of the Nios II architecture means that the eCos port is implemented somewhat differently from ports
to other architectures, although the same basic functionality is available. A conventional eCos port involves an architectural
HAL package, a variant HAL, possibly a processor HAL, and a platform HAL. Typically the architectural HAL provides a
framework for the lower HALs, interrupt and exception processing, context switch support, and gdb stub debug support. The
variant HAL deals with cpu issues which are not common to all members of the basic architecture, for example caches and
optional FPU and MMU support. The processor HAL deals with the specific set of devices on one specific chip that implements
the basic architecture, for example timers, a uart for diagnostics, and interrupt controllers. Base address for the various devices
and their interrupt vectors are also defined here. The platform HAL deals with devices that are off-chip. This includes external
flash and RAM, as well as specialized I/O chips on an I²C or SPI bus. Typically the external memory will determine how the
system boots up so issues like different startup types are largely handled by the platform HAL.

Exactly what work is done where depends very much on the specific processor, for example an interrupt controller may be
supported by the variant HAL instead of the processor HAL if it is expected that all processors implementing that variant
will use the same interrupt controller. Typically lower HALs are able to extend or override the behaviour of higher ones as
appropriate, for example a platform HAL could redefine the interrupt controller support if the platform includes an external
interrupt controller as well as an on-chip one.

The Nios II port still involves an architectural HAL and a platform HAL. The architectural HAL tends to do more of the
work than other architectural HALs. For example it provides default implementations of system clock support using an Avalon
timer and diagnostics using an Avalon uart. The platform HAL still deals with the off-chip devices such as external flash
and RAM. For example the devkit platform HAL CYGPKG_HAL_NIOS2_DEVKIT provides the appropriate support for the
Stratix II/2s60_RoHS and the Cyclone II/2c35 boards and compatibles.

There is also a new type of HAL, the hardware design HAL. Typically this does not contain any code, only definitions and
eCos configuration support. It contains the information needed by the other HALs and by device drivers to adapt themselves
to a specific hardware design, for example the presence of certain cpu instructions, the existence and size of cache, and the
base addresses and interrupt vectors assigned to the various on-chip and off-chip devices. Essentially this corresponds to the
information manipulated within the SOPC Builder component of the Altera Design Suite. An example of a hardware design
HAL is CYGPKG_HAL_NIOS2_CYCLONE2_2C35_TSEPLUS, corresponding to the eCosPro TSEplus hardware design for
a Cyclone II/2c35 board.

An eCos target, as defined by an entry in the toplevel ecos.db database, consists of the Nios II architectural HAL, a hardware
design HAL, a platform HAL, and a set of device drivers. Typically each target will have its own hardware design HAL,
although in some cases multiple targets may use the same hardware design HAL to allow for incompatible device drivers. If
a platform HAL is fairly generic then it may be shared between several targets, otherwise a target will need its own platform
HAL. Porting eCos to a new Nios II design will typically involve creating a new hardware design HAL, usually by cloning an
existing one, and either reusing or cloning an existing platform HAL, followed by creating the appropriate entries in ecos.db.

Note

At the time of writing hardware design HALs are manually written or cloned. It is expected that in a future release
these HALs will be generated automatically from the output of SOPC Builder, with little or no need for manual
intervention. For simple hardware the need for a separate platform HAL may also be eliminated at that time.

3305

Nios II Architectural Support

Name
Installation — Generic Instructions

Overview
Typical Nios II hardware for use with eCos will include an FPGA to run the hardware design, a bank each of external parallel
NOR flash and SDRAM, an rs232 transceiver plus a uart in the hardware design to act as the diagnostics and debug channel,
support logic to initialize the hardware following power up, and any other peripherals appropriate to the application. The
external flash is needed to hold the hardware design as well as code and persistent data, and external SDRAM is needed because
a typical FPGA cannot provide enough RAM for the system's requirements. Relative to the FPGA and the SDRAM the external
flash is usually somewhat slow.

In a self-contained production system both the hardware design and all code will reside in the flash, and the FPGA will start
executing code from flash shortly after power up once the hardware design has been loaded. This code will be linked against a
build of eCos configured to use a ROM startup. The code can be the actual application, which means that the entire application
will execute in place from flash and all hardware resources are available to it. However because of flash speed issues the
resulting performance may be poor. An alternative approach is to have a two-stage boot process: the code that runs from flash
is the RedBoot ROM monitor, linked using a ROM startup; following system initialization RedBoot then loads the application
from flash into RAM and starts it running; this load can be done using either the fis load and go commands in a boot script, or
alternatives such as the Robust Boot Loader CYGPKG_RBL. The application is linked against a separate eCos build configured
for RAM startup, and can access some facilities provided by RedBoot such as the fconfig persistent data database. However
some flash and RAM needs to be reserved for RedBoot.

An alternative available on some platforms is a ROMRAM startup. Here the application starts up as per a ROM startup, but
then copies itself into RAM and continues executing from there, avoiding the performance problems of executing from flash.
There is no RedBoot in the system so no resources need be reserved for it, but on the other hand its facilities are not available.

Another alternative is to use an EPCS serial flash chip instead of or in addition to the parallel flash. The hardware design and
the boot code both reside in the EPCS chip, and the FPGA will load the design on power up. The design automatically includes
a very simple bootloader provided by Altera which runs, copies the main boot code from the EPCS chip to RAM, and then
jumps to the entry point.

Obviously during software development it is undesirable to reprogram the parallel flash or the EPCS chip following every
build. Instead the nios2-elf-gdb debugger will load the application into RAM and run it under debugger control, complete with
facilities such as breakpoints and single stepping. The debugger can be run either directly from the command line or from
inside an integrated development environment, depending on the user's preferences and the tools available.

nios2-elf-gdb can interact with the target in two ways. It can use dedicated debug hardware such as the jtag-based Altera USB
Blaster. Alternatively it can communicate with the RedBoot ROM monitor over either an rs232 connection or an ethernet
network. Both approaches have advantages and disadvantages. Debugging via jtag can be less intrusive on the application's
behaviour, but some functionality such as RedBoot's fconfig data will not be available. If the hardware design incorporates
hardware breakpoints then jtag also offers limited capabilities for debugging code that executes from flash. RedBoot has
some knowledge of eCos internals so debugging via RedBoot also provides some advanced functionality such as thread-
aware debugging. Applications that will be debugged via RedBoot should be linked against an eCos built configured for RAM
startup. Note that this means that exactly same application image can later be programmed into flash in a production system.
Applications that will be debugged via jtag should be linked against an eCos built configured for RAMJTAG startup.

Preparing a board for debugging via jtag simply involves setting up the hardware and software in accordance with the appro-
priate Altera documentation. If the gdb hwdebug diagnostics channel is used then it will also be necessary to run the gdb com-
mand set hwdebug to activate that channel. Debugging via RedBoot is more complicated because it means installing RedBoot
and initializing the fis and fconfig persistent data. This is covered in more detail below. Typically the RedBoot image resides
in the first 128K of flash, the last 64K of flash is used for RedBoot's persistent data, and the first 64K of external SDRAM
is reserved for use by RedBoot.

Embedded hardware varies widely and eCos is itself a highly configurable operation system, so many variations of the above
setup are possible. Hence some platforms will have their own installation instructions and the platform HAL documentation
should be consulted first before proceeding with the instructions below. In addition some of the information such as the location
of RedBoot depend on the hardware design and possibly the platform HAL, so again the appropriate documentation should
be consulted for details.

3306

Nios II Architectural Support

Installing RedBoot
Typically the hardware design, specifically the .sof file that is the final result of compilation, needs to be programmed into
flash alongside RedBoot and everything else. This can be done either using the graphical tools provided with Quartus and the
Altera IDE, or using command line tools like sof2flash and nios2-flash-programmer. These tools require a jtag connection to
the target, and the Altera documentation should be consulted for further details. The location of the hardware design within
the flash is determined by the board's reset logic so that information can be found in the hardware design and platform HAL
documentation.

The next step is to program a ROM-startup build of RedBoot into flash at the reset location. Typically the external flash is
placed at location 0x00000000 within the address map and execution will start from that address, but this may be changed
within the hardware design. eCosPro releases for a supported target will come with prebuilts of RedBoot in a variety of file
formats (usually the ELF executable, raw binary, and S-records). Alternatively RedBoot can be rebuilt for the target as per the
standard RedBoot documentation. This may either generate the various file formats automatically or it may be necessary to
use nios2-elf-objcopy to convert from the ELF executable to other formats.

There are two main ways of getting RedBoot into flash. The first is to use the Altera utilities, either the graphical ones or
the command-line tools. For example nios2-flash-programmer can be used together with the S-record version of the RedBoot
build. When the board is reset afterwards RedBoot will start running, sending output out of the board's first serial port and
providing a prompt. Starting up a terminal emulator program on the host will allow the user to see this output and to invoke
RedBoot commands. The rs232 parameters will depend on the hardware design, but typically RedBoot will communicate at
115200 baud, 8 bits, no parity, 1 stop bit. At this stage there will be a number of warnings from RedBoot about uninitialized fis
and fconfig settings, which is to be expected since the relevant initialization commands have not been run yet. These commands
are fis init and fconfig -i, and the RedBoot documentation should be consulted for further information.

If the hardware design image is held in flash then it is usually a good idea at this stage to create one or more fis entries, marking
the relevant part of the flash as in use and preventing RedBoot from overwriting the image by accident. In theory this will
also allow RedBoot commands to be used to update the hardware design image if needed, although the jtag flash utilities are
generally more convenient for this. For example, on a Stratix II/2s60_RoHS board the current hardware design resides at offset
0x00800000 within the flash and for safety there is also a factory fallback design at 0x00C00000.

RedBoot> fis create -f 0x00800000 -l 0x00400000 -n hwdesign_user
RedBoot> fis create -f 0x00C00000 -l 0x003F0000 -n hwdesign_bak

Here the -f specifies the address, -l the length, and -n prevents RedBoot from initializing the relevant parts of flash and
thus overwriting the hardware designs already programmed.

If the hardware design includes a system id register then during initialization RedBoot will check the current value of that
register with the setting defined in the hardware design HAL. A mismatch indicates that the RedBoot build does not correspond
to the hardware design being used, so RedBoot may not be fully functional and may even fail before getting as far as providing
a prompt. Sometimes this warning is innocuous because, even though a custom hardware design is being used, it is fully
compatible with the one RedBoot was built for (same memory map, same interrupt vector assignments, same settings for those
peripherals used by RedBoot). If so the warning can either be ignored or RedBoot can be rebuilt with an updated system id value.

The alternative approach to installing RedBoot via the jtag flash programming utilities is to go via a RAM build of RedBoot.
This has the advantage of supplying the user with more information as the installation process proceeds. For example if there
is a problem with the way the hardware design attempts to access flash then a RAM build of RedBoot may still function to
some extent but report errors whenever attempting to access the flash, whereas a ROM build of RedBoot trying to execute
from that flash may fail silently.

The file that is needed is an RedBoot ELF executable for a RAM startup build (RedBoot is not a typical eCos application and
for it there is no difference between the RAM and RAMJTAG startup types). Again eCosPro releases for a supported target
will come with prebuilts, alternatively Redboot can be rebuilt in the usual way. The RedBoot build will be run via nios2-elf-
gdb over jtag, so typically this will first involve starting up nios2-gdb-server:

$ nios2-gdb-server --tcpport 9000

And then at a separate shell prompt:

$ nios2-elf-gdb <path>/redboot.elf
(gdb) target remote localhost:9000

3307

Nios II Architectural Support

(gdb) set $status=0
(gdb) load
(gdb) continue

Setting $status to 0 has the effect of disabling interrupts, useful if the board was previously used to run an application and
that run left interrupts enabled. If an interrupt is pending then as soon as the continue command is executed and RedBoot starts
running, before it has a chance to run a single instruction let alone initialize the system appropriately for interrupt handling, an
interrupt exception will occur. Disabling interrupts before the continue avoids any such problems.

Once the RAM RedBoot starts running it should send output out of the board's first serial port and provide a prompt, as before.
If this does not happen it indicates a mismatch between the RedBoot build and the hardware design, for example the RedBoot
build being used may be for a different target or the hardware design currently running on the board may not be the one that
RedBoot was built for. If the discrepancy is minor then the RAM RedBoot may still provide some diagnostics indicating what
is wrong, for example it may warn about a system id mismatch.

Once the RAM RedBoot is up and running the fis init and fconfig -i commands can be run as before, and fis entries for any
hardware design(s) in reserved areas of flash can be created. Finally a ROM version of RedBoot can be uploaded:

RedBoot> load -r -m ymodem -b %{freememlo}

The raw binary version of the RedBoot build, typically redboot.rom.bin should now be uploaded via the host's terminal
emulator program using a ymodem transfer. Once this has finished the ROM RedBoot can be installed into flash, and a reset
command will restart the processor from the reset vector which should now be RedBoot code.

RedBoot> fis create RedBoot -b %{freememlo}
…
RedBoot> reset

Updating RedBoot
Sometimes it may be necessary or desirable to install a new version of RedBoot, either because the hardware design has
changed or because of a software update. The new version can be installed using the above instructions, usually skipping the
fis and fconfig initializations because there is no need to repeat these. Alternatively it is also possible to use an existing still-
functional ROM RedBoot to run up a RAM RedBoot and then use the latter to install a new ROM RedBoot - obviously it
is not possible for a ROM RedBoot to update itself because it would be overwriting its own code. This has the advantage of
not requiring jtag unless something goes badly wrong and major recovery is needed, but it will take somewhat longer. At the
ROM RedBoot prompt:

RedBoot> load -r -m ymodem -b <address>
RedBoot> go

Again this involves a ymodem transfer from the host to the target, this time using the raw binary file redboot.ram.bin. The
address should be the execution address for RAM applications, typically 64K into external RAM but the details will depend on
the hardware design and the platform. It is also possible to skip the -r option and the address and transfer an ELF executable,
but this involves a larger transfer so will take more time. The go command transfers control to the RAM RedBoot, and the
ROM RedBoot binary can then be uploaded and programmed into flash as before.

3308

Nios II Architectural Support

Name
Options — Configuring the Nios II Architectural HAL Package

Description
The Nios II architectural HAL is included in all ecos.db entries for Nios II targets, so the package will be loaded automatically
when creating a configuration. It should never be necessary to load the package explicitly or to unload it.

The architectural HAL contains a number of configuration options, although relatively few compared with many other archi-
tectures. This is because many aspects of the system that would normally be handled at compile-time by eCos configuration
options can instead be controlled during the hardware design process. For example, the uart used for the diagnostics and debug
channel can be hardwired to a particular baud rate, eliminating the need to control this via an eCos configuration option.

The most important configuration options in the architectural HAL are CYGBLD_GLOBAL_CFLAGS and CYGBLD_GLOB-
AL_LDFLAGS, the default compiler flags for building eCos and for linking testcases. The flags are exported in the file in-
stall/include/pkgconf/ecos.mak in the eCos build tree and are usually used for building application code as well,
either as is or after any appropriate changes. Users may wish to change these flags, for example to build eCos with different
compiler optimization settings. The default values of these options adapt to information provided by the hardware design HAL
about the cpu's capabilities, for example the availability of the various multiply and divide instructions.

CYGSEM_HAL_COMMON_INTERRUPTS_FIXED_GP affects the way eCos interacts with the global pointer register or gp.
The Nios II ABI uses gp to access certain variables, allowing up to 64K worth of data to be accessed via a single instruction
rather than two separate instructions. The gp register is initialized during application startup. The use of a global pointer can
cause problems. For example when the system involves a ROM RedBoot and a RAM application, both are built independently
and have their own area for small variables and hence their own gp values. Whenever the system switches between code running
in the application and code running in RedBoot the gp register must be switched as well. That means when an interrupt or
exception occurs the gp register may have the wrong value for the interrupt or exception handler, and hence the gp register
must be saved, updated, and restored alongside other parts of the cpu state. This adds to the interrupt latency. If it is known
that there will only be one application running in the system, e.g. when using ROM or RAMJTAG startup, then the system
can assume a fixed global pointer register and there is no need for the interrupt and exception handlers to do anything with it.
This configuration option controls the gp behaviour, and usually its default value determined from other configuration options
will be appropriate.

A build of ROM RedBoot normally includes gdb stubs support, including breakpoints. Usually ordinary breakpoints involve
inserting a special breakpoint into the image in memory, and hence debugging is generally limited to applications executing
from RAM. On most architectures the host-side gdb will implement this via a memory write using the gdb remote protocol and
no special stub support is needed for that. The Nios II architecture has two breakpoint instructions, one for use when debugging
over jtag and one for use when debugging via a target-side gdb stub like the one in RedBoot. nios2-elf-gdb defaults to using
the jtag version of the breakpoint instruction, which would break debugging via RedBoot. Hence the Nios II implementation
of the gdb stubs code uses a different mechanism, involving a target-side list of the breakpoints that have been set and inserting
the appropriate breakpoint instruction on the target-side rather than via memory writes initiated from the host. The gdb stubs
code works without dynamic memory allocation so this list is a fixed size, and hence only a fixed number of breakpoints are
supported. By default this limit is set to 25 breakpoints, which should suffice for all but the most complicated debug scenar-
ios. If it should ever be necessary to have more breakpoints then the limit can be increased by changing the configuration
option CYGNUM_HAL_BREAKPOINT_LIST_SIZE in a ROM Redboot configuration and rebuilding and installing the up-
dated RedBoot.

3309

Nios II Architectural Support

Name
HAL Port — Implementation Details

Description
This documentation explains how the eCos HAL specification has been mapped onto Nios II hardware and should be read
in conjunction with that specification. It should be noted that the architectural HAL is usually complemented by a hardware
design HAL and a platform HAL, and those may affect or redefine some parts of the implementation.

Exports

The architectural HAL provides header files cyg/hal/hal_arch.h, cyg/hal/hal_intr.h, cyg/hal/
hal_cache.h, cyg/hal/hal_io.h and cyg/hal/arch.inc. These header files export the functionality provided by
all the Nios II HALs for a given target, automatically including headers from the lower-level HALs as appropriate. For example
the platform HAL may provide a header cyg/hal/plf_io.h containing additional I/O functionality, but that header will
be automatically included by cyg/hal/hal_io.h so there is no need to include it directly.

One header file is worth a special mention: pkgconf/nios2_hwconfig.h. This file is provided by the hardware design
HAL and contains definitions such as base addresses and interrupt vectors. It is automatically included and used by the archi-
tectural HAL headers, but its contents may prove useful to application developers.

Data Types

The architectural HAL assumes that the Nios II cpu in the hardware design uses 32-bit arithmetic, little-endian byte ordering,
and software floating point.

Startup

The architectural HAL provides a default implementation of the low-level startup code which will be appropriate in nearly all
scenarios. For a ROM startup this includes clearing the instruction and data caches, if present, and copying initialized data from
flash to RAM. For all startup types it will involve zeroing bss regions and setting up the stack and the general C environment.
It may also include installing the exception vector code at the desired location as well as copying code and data to on-chip
RAM or external SRAM as required. The platform HAL can override or extend this as required. The code assumes that all of
flash is directly accessible. Platform HALs may override this as required, for example when booting from a serial flash rather
more work is needed to copy data from flash to RAM. More information on the low-level startup code can be found in the
source file src/vectors.S.

The architectural HAL also implements the next stage of the startup code, including initializing the VSR and virtual vector
tables, setting up HAL diagnostics, and invoking C++ static constructors, prior to calling the first application entry point
cyg_start. This code resides in src/nios2.c.

The current code assumes that there is no memory management or MMU and hence will not perform any MMU initialization.

Interrupts and Exceptions

The architectural HAL provides default implementations of HAL_DISABLE_INTERRUPTS, HAL_RESTORE_INTERRUP-
TS, HAL_ENABLE_INTERRUPTS and HAL_QUERY_INTERRUPTS. These just involve simple manipulation of the sta-
tus control register. Similarly there are default implementations of the interrupt controller macros HAL_INTERRUPT_MASK,
HAL_INTERRUPT_UNMASK, and HAL_QUERY_INTERRUPT_MASKED macros. These are slightly more complicated to
cope with nested interrupt scenarios, involving a shadow mask as well as the ienable control register. HAL_INTERRUP-
T_ACKNOWLEDGE is a no-op because the hardware has no need for clearing an interrupt centrally. Instead interrupts must be
acknowledged within each device as appropriate, using device-specific code.

HAL_INTERRUPT_CONFIGURE is a no-op. This macro is normally only relevant to GPIO interrupts, affecting level versus
edge triggering, and on a Nios II an entire GPIO unit generates a single interrupt but the various inputs to that port can be
controlled individually. Instead it is up to application code to set the various registers within each GPIO unit appropriately.

HAL_INTERRUPT_SET_LEVEL is also a no-op. However the architectural HAL does support prioritized nested interrupts
when CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING is enabled. The implementation assumes that interrupt

3310

Nios II Architectural Support

vector 0 has the highest priority, down to interrupt vector 31 as the lowest. In other words, assuming nested interrupt support is
enabled, if the cpu is busy processing an interrupt from the device attached to interrupt vector 9 and an interrupt 0 occurs then
the latter will be handled immediately and the processing of vector 9 resumes later. Since the assignment of interrupt vectors
to devices in SOPC Builder is arbitrary this gives full flexibility without the overheads of managing priorities in software.

Interrupt handlers are managed by a simple table cyg_hal_interrupt_handlers so the implementation of HAL_IN-
TERRUPT_ATTACH, HAL_INTERRUPT_DETACH, and HAL_INTERRUPT_IN_USE is straightforward.

By default interrupt handlers run on a separate interrupt stack. This saves memory because there is no need to allow for interrupt
processing overhead on every thread stack. However switching to the interrupt stack requires a number of extra instructions
so increases the interrupt latency. If the latter is more important than memory usage then CYGIMP_HAL_COMMON_INTER-
RUPTS_USE_INTERRUPT_STACK should be disabled.

That leaves VSR management and exceptions. On the Nios II interrupt and exception processing is somewhat simpler than on
most other architectures. Typically the cpu indirects through a table in memory, the VSR table, with the table index depending
on the interrupt vector or the exception being thrown. The eCos macro HAL_VSR_SET updates an entry in the table, allowing
applications to take over completely certain interrupt sources and process them as quickly as possible, bypassing the overheads
of the default general-purpose VSR handler used by eCos. For example a custom VSR written in assembler could save only a
few registers before manipulating the hardware, whereas the general-purpose VSR handler needs to save much of the cpu state
before calling the application's interrupt handler written in C. The net result is reduced interrupt latency for critical interrupts,
at the cost of more complicated application code.

The Nios II implementation is very different. When an interrupt or exception occurs the cpu jumps to a fixed location in memory
defined in the hardware design, the exception vector. The code at that location needs to determine whether it was invoked as
the result of an interrupt or a processor exception. There is no hardware equivalent of the VSR table. eCos needs to provide
the implementation of the code at the exception vector and there is no simple way for applications to provide a customized
version. That makes it difficult for an application to handle critical interrupts with a minimum latency. It also causes other
complications, for example it makes it difficult for a RAM startup eCos application to handle interrupts while the gdb stubs
inside RedBoot handle exceptions including breakpoints.

To avoid these problems, the Nios II architectural HAL implements a VSR table in software. The code at the exception vector
simply indirects through slot 0 of the VSR table, which involves a three instruction overhead compared with a more conven-
tional implementation. Applications needing very fast handling of critical interrupts can use HAL_VSR_SET to install a custom
handler in slot 0. That handler can check whether or not a critical interrupt is pending and process it immediately, Otherwise it
can chain to the original VSR handler. The overall effect is to provide a mechanism for very fast handling of certain interrupts,
at the cost of an extra three instructions for ordinary interrupts which are handled by interrupt handlers written in C.

The default handler for VSR 0 checks whether or not any interrupts are pending. If so then it saves the current cpu state, or
the minimum subset thereof if CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT is enabled, switches
to the interrupt stack if necessary, and invokes the appropriate interrupt handler installed via HAL_INTERRUPT_ATTACH or
the higher-level functions like cyg_interrupt_create or cyg_drv_interrupt_create.

If the default handler for VSR 0 determines that no interrupt is pending then it must have been invoked as the result of a
processor exception. The cpu provides only minimal support for detecting the nature of the exception. A breakpoint trap can
be detected by examining the instruction that caused the exception. Anything else is treated as an illegal instruction. Both
exceptions are processed by indirecting through further slots in the VSR table, thus allowing the gdb stubs code inside RedBoot
to handle exceptions inside an eCos application. It should be noted that this mechanism is critically dependent on reliable
interrupt reporting. If it is possible for an interrupt line to glitch, causing an interrupt but leaving the ipending register clear
before the VSR 0 handler reads it, then this will be interpreted as an illegal instruction exception. Conceivably this can also
affect device drivers if a write to a hardware register may result in an interrupt being cleared in a couple of cycles just as that
interrupt is about to happen.

The full implementation of the interrupt and exception handling code can be found in src/nios2asm.S, and that code can
be used as the starting point for custom application VSRs.

Stacks and Stack Sizes

cyg/hal/hal_arch.h defines values for minimal and recommended thread stack sizes, CYGNUM_HAL_S-
TACK_SIZE_MINIMUM and CYGNUM_HAL_STACK_SIZE_TYPICAL. These values depend on a number of configuration

3311

Nios II Architectural Support

options. Specifically if the use of a separate interrupt stack CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_S-
TACK is disabled to reduce interrupt latency then thread stacks have to be rather larger to cope with the interrupt process-
ing overhead. If nested interrupts CYGSEM_HAL_COMMON_INTERRUPTS_ALLOW_NESTING are also enabled then thread
stacks must be much larger.

The Nios II architectural HAL always provides a separate stack to run the startup code and for exception processing. This stack
will also be used for interrupts if CYGIMP_HAL_COMMON_INTERRUPTS_USE_INTERRUPT_STACK is enabled, and its
size is determined by CYGNUM_HAL_COMMON_INTERRUPTS_STACK_SIZE.

Thread Contexts and setjmp/longjmp

cyg/hal/hal_arch.h defines a thread context data structure, the context-related macros, and the setjmp/longjmp
support. The implementations can be found in src/nios2asm.S. The context structure is straightforward, containing space
for the integer registers and the status, ienable and ipending registers. Any floating point arithmetic is assumed to be implement-
ed in software. A single data structure is used for the thread context in all eCos configurations. However some fields will only
be used in certain configurations, for example when CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT
is disabled. The use of a single data structure avoids complications when debugging a RAM startup application on top of a
ROM RedBoot because both need to use the same structure.

Bit Indexing

The architectural HAL provides an assembler implementation of HAL_LSBIT_INDEX, optimized for faster context switching
to higher priority threads. HAL_MSBIT_INDEX uses a straightforward C implementation since it is not performance-sensitive.

Idle Thread Processing

The Nios II instruction set does not include an idle instruction so the idle thread always simply spins, rather than suspend the
cpu until an interrupt occurs.

Clock Support

The architectural HAL provides a default implementation of the various system clock macros such as
HAL_CLOCK_INITIALIZE. These macros assume that the hardware design implements the system clock using a simple
Avalon timer. A platform HAL can provide an alternative implementation if necessary but that is unlikely ever to be necessary
because including an Avalon timer in the design is generally straightforward. The timer may be designed with either a fixed
period, typically 10 milliseconds to give a 100Hz system clock, or with a variable period in which case there will a configura-
tion option CYGNUM_HAL_RTC_PERIOD to control the clock frequency. Ideally the system clock should be designed with
the readable snapshot option enabled. Otherwise the HAL will not be able to provide the HAL_CLOCK_READ macro and there
will be no support for clock timings with a finer granularity than the interval between interrupts.

HAL I/O

The various I/O macros for accessing hardware registers such as HAL_READ_UINT8 are implemented using the ldbuio and
related instructions. This ensures that all I/O accesses bypass any data cache that may be included the hardware design.

Cache Handling

The hardware design may include instruction and data caches, and there is some control over parameters such as the cache
sizes and the line sizes. cyg/hal/hal_cache.h defines those cache macros which are appropriate for the current hardware
design, typically the INVALIDATE, INVALIDATE_ALL, FLUSH, STORE and SYNC ones. The hardware does not allow the
caches to be enabled or disabled so the IS_ENABLED macro always returns a 1 and the ENABLE and DISABLE macros are
never defined. Note that this may confuse some existing code which assumes that these macros are always available.

In addition cyg/hal/hal_arch.h defines macros CYGARC_CACHED_ADDRESS and CYGARC_UNCACHED_ADDRESS
which assume that the cpu only addresses 31 bits worth of address space, and that addresses with the top bit set access the same
memory locations as those with the top bit clear, but bypassing the cache. This is the default behaviour for Nios II processors.
The header file also provides a HAL_MEMORY_BARRIER macro which issues a sync instruction to cause pending memory
operations to complete.

3312

Nios II Architectural Support

Linker Scripts

The architectural HAL will generate the linker script for eCos applications. This involves the architectural file src/nios2.ld
and a .ldi memory layout file, typically provided by the platform HAL but using some definitions from the hardware design
HAL. It is the .ldi file which places code and data in the appropriate places for the startup type, but most of the hard work
is done via macros in the nios2.ld file. This includes macros for placing code and data in on-chip RAM as well as external
flash and SDRAM, using linker sections .iram_text, .iram_data and .iram_bss. Code should only be placed in on-
chip RAM if the hardware design includes a connection between the RAM and the cpu's instruction master port.

Diagnostic Support

By default the architectural HAL provides a diagnostics and debug channel using the first uart in the hardware design. If
the design does not include any uarts then all diagnostics output will instead be discarded. The configuration option CYGIM-
P_HAL_NIOS2_DIAGNOSTICS_PORT can be used to select discard mode even when a uart is available. If the hardware
includes an ethernet device then debugging is still possible over the network. Alternatively when debugging via JTAG it is
possible to direct the diagnostics output to a gdb hwdebug file I/O channel. By default this will also discard diagnostics output.
However if the application is running inside a gdb session and the gdb set hwdebug command has been used then the diag-
nostics will be output via gdb. Platform HALs may implement alternative diagnostics facilities.

SMP Support

The Nios II architectural HAL does not provide any SMP support.

Debug Support

The architectural HAL provides basic support for gdb stubs. Due to a conflict between jtag and stubs gdb support, breakpoints
are always implemented using a fixed-size list of breakpoints, as per the configuration option CYGNUM_HAL_BREAKPOIN-
T_LIST_SIZE. A hardware design may include hardware breakpoint support but these are not accessible to the gdb stubs
code, only via jtag. Hence if a debug session requires the use of hardware breakpoints, for example when debugging code in
flash, a jtag-based debug solution must be used instead of gdb stubs.

HAL_DELAY_US() Macro

cyg/hal/hal_intr.h provides a simple implementation of the HAL_DELAY_US macro using a busy loop. It requires
that the hardware design HAL provides a count value HAL_NIOS2_DELAY_US_LOOPS appropriate to the cpu speed and
the absence or presence of the instruction cache.

Other Functionality

If the hardware design includes a system id register then all RedBoot builds will include some extra initialization code checking
the register's current value against the one specified by the hardware design HAL, reporting any mismatches. This helps to
guard against accidentally running the wrong build of RedBoot or the wrong hardware design. Note that if there is a serious
incompatibility between the two then system bootstrap may fail long before this check gets to run, or the diagnostics channel
may be inoperable preventing the warning from reaching the user.

The architectural HAL provides the support needed by the gprof profiling package. This includes the mcount needed for
callgraph profiling and hal_enable_profile_timer for timer-based profiling. The latter can be implemented in two
ways. If the hardware design includes a dedicated Avalon timer labelled “profiling” then this will be used. Otherwise the
sys_clk timer will be used for profiling as well as for the main system clock. Overloading the system clock in this way is less
desirable because it means the profiling sampling is likely to miss any code that runs after clock events.

Otherwise the Nios II architectural HAL only implements the functionality provided by the eCos HAL specification and does
not export anything extra.

3313

Chapter 342. Nios II Stratix II/2s60_RoHS
and Cyclone II/2c35 Platform HAL

3314

Nios II Stratix II/2s60_RoHS and Cyclone II/2c35 Platform HAL

Name
CYGPKG_HAL_NIOS2_DEVKIT — eCos Platform HAL Support for the Stratix II/2s60-RoHS and Cyclone II/2c35 Boards

Description
The package CYGPKG_HAL_NIOS2_DEVKIT provides platform HAL support for the Altera Stratix II/2s60-RoHS and Cy-
clone II/2c35 development boards, and may also be usable with various other boards depending on compatibility. It is always
used in conjunction with the Nios II architectural HAL CYGPKG_HAL_NIOS2 and with a hardware design HAL which pro-
vides details of the design that is programmed into the FPGA.

The main characteristics of both boards are as follows:

1. An FPGA which gets loaded on power up with a hardware design. The eCos Nios II HALs assume that this hardware design
consists of a Nios II processor plus various peripherals. Different FPGAs are used on the different boards.

2. A 16MB AMD flash device or compatible. This is a 16-bit device but is attached to the FPGA via an 8-bit data bus. Part of
the flash memory is used to hold the current hardware design and a factory default design. On the Stratix II board these reside
at offsets 0x00800000 and 0x00C00000 respectively. On the Cyclone II board the offsets are 0x00C00000 and 0x00E00000.
In a typical eCos setup this flash will also hold a RedBoot image and an area for RedBoot's fconfig and fis persistent data.
It may also hold one or more application images which RedBoot can load into RAM, and any other persistent data that
the application needs.

3. Reset circuitry which on power up loads the hardware design from the flash device into the FPGA. This happens before any
code starts running so eCos does not interact with this circuitry in any way.

4. 32MB of SDRAM. In a typical setup the first 64K of this is reserved for RedBoot data and for special bits of code and data
such as the Nios II exception vector, while the remainder holds the application code and data.

5. 2MB of SRAM. Typically eCos does not use any of this so all of it is available to the application, and there is linker script
support for placing code and data there. Note that if the hardware design places the exception vector in SRAM then eCos
will use a small amount of memory at the start of SRAM. Hardware designs can also include on-chip RAM or IRAM which
applications can use in much the same way as SRAM.

6. A transceiver for a single uart. This is normally used by eCos as the diagnostics and debug channel so all hardware designs
should include a uart connected to the transceiver.

7. A jtag connector, providing an alternative debug mechanism to RedBoot's gdb stubs. The jtag connector can also be used
for programming the flash, for example when installing a new hardware design.

8. A lan91c111 ethernet chip. This can be used by one of the eCos TCP/IP stacks and for network debugging. Alternatively
network connectivity can be provided by an ethernet device incorporated into the hardware design.

9. A row of LEDs and a dual seven-segment display.

10.Various other devices such as switches which are not directly supported by eCos, and which instead are left available for
application use. The Stratix II and Cyclone II boards also come with expansion connectors so that additional hardware can
be connected.

Installation
Generic instructions for setting up a board for use with eCos are provided by the Nios II architectural HAL documentation.
The Stratix II and Cyclone II boards have no special requirements so the generic instructions should be followed. The address
map depends on the hardware design so the documentation for the hardware design HAL should be consulted for details.

Configuration Options
The devkit platform HAL package should be loaded automatically when eCos is configured for appropriate target hardware.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

3315

Nios II Stratix II/2s60_RoHS and Cyclone II/2c35 Platform HAL

The main configuration option in this package is CYG_HAL_STARTUP. This can take the following values:

ROM This startup type should be used for code that should execute from flash. The executable
will start executing from the Nios II reset vector and will contain all the low-level ini-
tialization code needed to bring up the system. Typically this startup type is only used for
the RedBoot ROM monitor. On the Stratix II and Cyclone II boards the flash is accessed
via an 8-bit data bus so executing code from flash will be slow, even with an instruction
cache. Instead application code will normally execute in RAM. It will either be loaded
during a gdb debug session, or it can be loaded from flash and started automatically by
RedBoot using the load and go commands.

RAM This startup type should be used for applications that should execute from RAM, either
via a gdb debug session interacting with RedBoot's gdb stubs or loaded from flash by
RedBoot. eCos will assume that certain services such as diagnostics channel support
will be provided by RedBoot and can be accessed via the virtual vector mechanism.

RAMJTAG This startup type is also for applications that should execute from RAM. However it is
assumed that the application is not running on top of RedBoot and cannot access any
services via the virtual vector mechanisms. Instead the HAL diagnostics channel will
be implemented by direct access to the uart, and functionality like RedBoot's fconfig
settings will not be available at all. This startup type is used primarily when debugging
an application via jtag instead of via RedBoot's gdb stubs.

Builds of RedBoot are a special case. For a RAM-resident version of RedBoot there is
no difference between the RAM and RAMJTAG startup types.

If the hardware design includes support for the lan91c111 ethernet chip and if the eCos configuration involves ethernet network-
ing then there are two options related to the lan91c111 device. CYGDAT_HAL_NIOS2_DEVKIT_ETH_LAN91C111_NAME
specifies the name of the ethernet device, defaulting to “eth0”. There should be no need to change this unless the hardware de-
sign includes other ethernet devices and their drivers use the same name for the device instances. CYGDAT_HAL_NIOS2_DE-
VKIT_ETH_LAN91C111_MAC specifies the fallback ethernet station address or MAC address. The Stratix II and Cyclone II
boards do not have a serial eeprom or similar hardware to provide a unique MAC address, so instead this address has to be
provided by software. Usually it will be held in flash as a RedBoot fconfig persistent variable. However if the fconfig entries
have not been initialized, or if they are not accessible because the application is being debugged over jtag and uses the RAMJ-
TAG startup type, then the lan91c111 ethernet device will instead use the fallback MAC address specified by this configuration
option. No two boards on the same network should ever use the same MAC address so great care must be taken when debugging
multiple boards over jtag using the same eCos configuration.

The devkit platform HAL contains a number of other configuration options but these are mainly for internal use by other
packages and it should not normally be necessary to edit their values manually.

The HAL Port
The devkit platform HAL does not change the Nios II architectural HAL's implementation of the eCos HAL specification. It
does provide the platform-specific linker script support. This takes into account the supported startup types, the locations of
the Nios II reset and exception vectors, and the presence of SRAM and any on-chip IRAM.

eCos itself does not use any of the SRAM or the IRAM, except as necessary for exception processing. Instead these memories
are available for use by the application. Any code that should end up running from SRAM should be placed in a .sram_text
section. Similarly initialized data should be placed in .sram_data, and uninitialized data should go in .sram_bss. All
uninitialized data will be zeroed by the eCos startup code. The equivalent sections for on-chip IRAM are .iram_text,
.iram_data and .iram_bss. The platform HAL comes with a testcase tests/memories.c which also serves as an
example of how to use this functionality.

Other Functionality
If the hardware design includes GPIO units for the row of LEDs and for the dual seven-segment display then the platform HAL
provides a number of utility functions for manipulating these.

3316

Nios II Stratix II/2s60_RoHS and Cyclone II/2c35 Platform HAL

#include <cyg/hal/hal_io.h>

externC void hal_nios2_led_set(int /* which */, int /* on */);
externC void hal_nios2_led_set_all(int /* settings */);
externC void hal_nios2_set_7seg(int /* left */, int /* right */);

There is a testcase tests/lights.c which also serves as an example of how to use functions.

At the end of its initialization sequence RedBoot will switch all the LEDs off, thus setting them to a known state, and it will
set the seven-segment display to rb, acting as a visual hint to the user that initialization is complete.

Reusing the Devkit Platform HAL
The devkit platform HAL is intended for use with the Stratix II/2s60_RoHS and Cyclone II/2c35 boards. However it should
be usable as is with various other boards, or need only minor changes. The important points to note are as follows:

1. The devkit platform HAL assumes that there is an AMD-compatible flash device on the board, and that it is a 16-bit device
attached to the FPGA via an 8-bit bus. The exact flash device and its size do not matter since a run-time CFI query is
performed to determine the actual characteristics of the flash device. However if the flash device is not AMD-compatible,
not a 16-bit device, or not attached via an 8-bit bus, then the file src/devkit_flash.c will have to be changed. With
default configuration settings it is also assumed that the Nios II reset vector is at the start of the flash, that the first 128K of
flash are available for RedBoot code, and that the last 64K of flash can be used for RedBoot's fis and fconfig persistent data.

2. The linker script assumes that there is a bank of SDRAM and that this will be used as the main location for application
code and data. The size of the SDRAM is obtained from the hardware design HAL. Typically the first 64K is reserved for
RedBoot's data area and for special bits of code such as the Nios II exception vector.

3. The SRAM and on-chip IRAM are optional. The devkit platform HAL checks whether or not the hardware design HAL
provides base address and size definitions for these.

4. Usually at least one uart is essential to provide the diagnostics and debug channel.

5. The lan91c111 ethernet chip is optional. The devkit platform HAL will only instantiate the ethernet device if the hardware
design HAL specifies that this chip is present.

6. Similarly the row of LEDs and the dual seven-segment display are optional and support for these is only provided if the
hardware design includes GPIO units labelled “led” and “seven_seg”

3317

Chapter 343. Nios II Cyclone II/2c35
Standard H/W Design HAL

3318

Nios II Cyclone II/2c35 Standard H/W Design HAL

Name
CYGPKG_HAL_NIOS2_CYCLONE2_2C35_STANDARD — eCos Support for the Standard Hardware Design on a Cy-
clone II/2c35 Board

Description
This package provides the hardware design HAL for the standard hardware design running on a Cyclone II/2c35 board.
This design is provided with the Altera Nios II Embedded Design Suite in the directory nios2eds/examples/vhdl/
niosII_cycloneII_2c35/standard/. It includes the following functionality:

CPU A Nios II/s processor running at 85MHz. This has 4K of instruction cache and no data cache. It has level
1 jtag support only with no hardware breakpoints. The reset vector is at address 0x00000000 in external
flash and the exception vector is at address 0x02100020 in on-chip IRAM.

Flash 16MB of external AMD flash at 0x00000000 attached via an 8-bit data bus.

SDRAM 32MB of external SDRAM at 0x04000000.

SRAM 2MB of external SRAM at 0x01000000.

IRAM 4K of on-chip RAM at 0x02100000.

system clock An Avalon timer labelled sys_clk used to implement the main eCos system clock. This is hardwired
to run at 100Hz.

uart An Avalon uart connected to the external transceiver on the board. This is hardwired at 115200 baud, 8
bits, no parity, 1 stop bit, and no RTS/CTS support. This uart is used by eCos for the HAL diagnostics
and debug channel.

lan91c111 An interface to the external lan91c111 ethernet chip on the board. This provides network communications
for RedBoot and for eCos applications using one of the available TCP/IP stacks.

GPIO GPIO units connected to the row of LEDs, the dual seven-segment display, and the buttons. The devkit
platform HAL provides some utility functions for the first two of these.

sysid A system id register. This is used by RedBoot to check that the current hardware design matches the
RedBoot build.

Other A number of other hardware units including a second Avalon timer, a jtag uart, a character LCD controller,
and an EPCS serial flash controller. These are not currently used by eCos so can be accessed directly by
application code.

Configuration Options
This hardware design HAL package will be loaded automatically when creating an eCos configuration for the nios2_cy-
clone2_2c35_standard target, together with the Nios II architectural HAL and the devkit platform HAL. It should never
be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching target
hardware. The package does not contain any user configuration options.

Memory Map
For typical eCos usage the memory map is as follows:

Address Purpose

0x00000000 16MB of flash

0x00000000 reset vector

0x00000000 128K for RedBoot code

3319

Nios II Cyclone II/2c35 Standard H/W Design HAL

Address Purpose

0x00c00000 current hardware design

0x00e00000 factory hardware design

0x00FF0000 RedBoot fis and fconfig data

0x01000000 2MB of SRAM

0x02100000 4K of on-chip IRAM

0x02100020 exception vector

0x02120000 peripherals

0x04000000 32MB of SDRAM

0x04000000 64K for RedBoot data

0x04010000 application code and data

3320

Chapter 344. Nios II Cyclone II/2c35
TSEplus H/W Configuration HAL

3321

Nios II Cyclone II/2c35 TSEplus H/W Configuration HAL

Name
Overview — eCos Support for the TSEplus Hardware Design on a Cyclone II/2c35 Board

Description
This package provides the hardware design HAL for the eCosPro TSEplus hardware design running on a Cyclone II/2c35
board. The design is based on the TSE_SGDMA design provided with the Altera Nios II Embedded Design Suite, with a
number of extensions. It includes the following functionality:

CPU A Nios II/f processor running at 85MHz. This has 4K of instruction cache and 2K of data cache. It has
level 2 jtag support with two hardware breakpoints. The reset vector is at address 0x00000000 in external
flash and the exception vector is at address 0x04000020 in external SDRAM.

Flash 16MB of external AMD flash at 0x00000000 attached via an 8-bit data bus.

SDRAM 32MB of external SDRAM at 0x04000000.

SRAM 2MB of external SRAM at 0x01200000.

IRAM 8K of on-chip RAM at 0x01400000. Some of this will used by the triple speed ethernet device driver to
store DMA descriptors.

system clock An Avalon timer labelled sys_clk used to implement the main eCos system clock. This defaults to
100Hz but can be changed via the CYGNUM_HAL_RTC_PERIOD eCos configuration option.

uart An Avalon uart connected to the external transceiver on the board. This is hardwired to 8 bits, no parity,
and 1 stop bit. The default baud rate is 115200 but can be changed at run-time. The RTS and CTS signals
are supported. This uart is used by eCos for the HAL diagnostics and debug channel.

TSE A triple speed ethernet tse_mac and associated rx_sgdma and tx_sgdma scatter-gather DMA controllers.
This provides network communications for RedBoot and for eCos applications using one of the available
TCP/IP stacks. Note that this device requires an external phy board to be plugged into one of the main
board's expansion connectors.

lan91c111 An interface to the external lan91c111 ethernet chip on the board. This can be used for network commu-
nication instead of the triple speed ethernet device, useful if the external phy board is not available.

watchdog An Avalon timer set up to act as a watchdog device with a 10-second timeout.

profiling An additional Avalon timer used for gprof-based profiling.

GPIO GPIO units connected to the row of LEDs, the dual seven-segment display, and the buttons. The devkit
platform HAL provides some utility functions for the first two of these.

sysid A system id register. This is used by RedBoot to check that the current hardware design matches the
RedBoot build.

Other A number of other hardware units including a second Avalon timer, a jtag uart, a character LCD controller,
and an EPCS serial flash controller. These are not currently used by eCos so can be accessed directly by
application code.

Configuration Options
The TSEplus hardware design HAL package is used with two different eCos targets. The nios2_cyclone2_2c35_tse-
plus target includes the TSE ethernet driver but not the lan91c111 ethernet driver, and can be used when the external phy
board is present. The nios2_cyclone2_2c35_lan91c111 target includes the lan91c111 ethernet driver but no the TSE
ethernet driver and can be used in the absence of the external phy board. When using a RAM startup configuration the same
eCos target should be used for both RedBoot and the application.

3322

Nios II Cyclone II/2c35 TSEplus H/W Configuration HAL

The hardware design HAL package will be loaded automatically when creating an eCos configuration for either target, together
with the Nios II architectural HAL and the devkit platform HAL. It should never be necessary to load this package explicitly.
Unloading the package should only happen as a side effect of switching target hardware. The package does not contain any
user configuration options.

The package contains a single configuration option, CYGNUM_HAL_RTC_PERIOD. This determines the period of the system
clock. By default this operates at 100Hz but the value can be changed if a faster or slower clock is desired. The value is used
to program the PERIODH and PERIODL registers of the sys_clk Avalon timer.

Memory Map
For typical eCos usage the memory map is as follows:

Address Purpose

0x00000000 16MB of flash

0x00000000 reset vector

0x00000000 128K for RedBoot code

0x00800000 current hardware design

0x00c00000 factory hardware design

0x00FF0000 RedBoot fis and fconfig data

0x01200000 2MB of SRAM

0x01400000 8K of on-chip IRAM

0x01401E00 TSE DMA descriptors

0x01403000 peripherals

0x04000000 32MB of SDRAM

0x04000020 exception vector

0x04000100 ~64K for RedBoot data

0x04010000 application code and data

3323

Chapter 345. Nios II Stratix II/2s60_RoHS
Standard H/W Design HAL

3324

Nios II Stratix II/2s60_RoHS Standard H/W Design HAL

Name
CYGPKG_HAL_NIOS2_STRATIX2_2S60_ROHS_STANDARD — eCos Support for the Standard Hardware Design on a
Stratix II/2s60-RoHS Board

Description
This package provides the hardware design HAL for the standard hardware design running on a Stratix II/2s60-RoHS board.
This design is provided with the Altera Nios II Embedded Design Suite in the directory nios2eds/examples/vhdl/
niosII_stratixII_2s60_RoHS/standard/. It includes the following functionality:

CPU A Nios II/s processor running at 100MHz. This has 4K of instruction cache and no data cache. It has level
1 jtag support only with no hardware breakpoints. The reset vector is at address 0x00000000 in external
flash and the exception vector is at address 0x02100020 in on-chip IRAM.

Flash 16MB of external AMD flash at 0x00000000 attached via an 8-bit data bus.

SDRAM 32MB of external SDRAM at 0x04000000.

SRAM 2MB of external SRAM at 0x01000000.

IRAM 4K of on-chip RAM at 0x02100000.

system clock An Avalon timer labelled sys_clk used to implement the main eCos system clock. This is hardwired
to run at 100Hz.

uart An Avalon uart connected to the external transceiver on the board. This is hardwired at 115200 baud, 8
bits, no parity, 1 stop bit, and no RTS/CTS support. This uart is used by eCos for the HAL diagnostics
and debug channel.

lan91c111 An interface to the external lan91c111 ethernet chip on the board. This provides network communications
for RedBoot and for eCos applications using one of the available TCP/IP stacks.

GPIO GPIO units connected to the row of LEDs, the dual seven-segment display, and the buttons. The devkit
platform HAL provides some utility functions for the first two of these.

sysid A system id register. This is used by RedBoot to check that the current hardware design matches the
RedBoot build.

Other A number of other hardware units including a second Avalon timer, a jtag uart, a character LCD controller,
and an EPCS serial flash controller. These are not currently used by eCos so can be accessed directly by
application code.

Configuration Options
This hardware design HAL package will be loaded automatically when creating an eCos configuration for the nios2_s-
tratix2_2s60_rohs_standard target, together with the Nios II architectural HAL and the devkit platform HAL. It
should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switch-
ing target hardware. The package does not contain any user configuration options.

Memory Map
For typical eCos usage the memory map is as follows:

Address Purpose

0x00000000 16MB of flash

0x00000000 reset vector

0x00000000 128K for RedBoot code

3325

Nios II Stratix II/2s60_RoHS Standard H/W Design HAL

Address Purpose

0x00800000 current hardware design

0x00c00000 factory hardware design

0x00FF0000 RedBoot fis and fconfig data

0x01000000 2MB of SRAM

0x02100000 4K of on-chip IRAM

0x02100020 exception vector

0x02120000 peripherals

0x04000000 32MB of SDRAM

0x04000000 64K for RedBoot data

0x04010000 application code and data

3326

Chapter 346. Nios II Stratix II/2s60_RoHS
TSEplus H/W Design HAL

3327

Nios II Stratix II/2s60_RoHS TSEplus H/W Design HAL

Name
— eCos Support for the TSEplus Hardware Design on a Stratix II/2s60-RoHS Board

Description
This package provides the hardware design HAL for the eCosPro TSEplus hardware design running on a Stratix II/2s60-RoHS
board. The design is based on the TSE_SGDMA design provided with the Altera Nios II Embedded Design Suite, with a
number of extensions. It includes the following functionality:

CPU A Nios II/f processor running at 85MHz. This has 4K of instruction cache and 2K of data cache. It has
level 2 jtag support with two hardware breakpoints. The reset vector is at address 0x00000000 in external
flash and the exception vector is at address 0x04000020 in external SDRAM.

Flash 16MB of external AMD flash at 0x00000000 attached via an 8-bit data bus.

SDRAM 32MB of external SDRAM at 0x04000000.

SRAM 2MB of external SRAM at 0x01200000.

IRAM 8K of on-chip RAM at 0x01400000. Some of this will used by the triple speed ethernet device driver to
store DMA descriptors.

system clock An Avalon timer labelled sys_clk used to implement the main eCos system clock. This defaults to
100Hz but can be changed via the CYGNUM_HAL_RTC_PERIOD eCos configuration option.

uart An Avalon uart connected to the external transceiver on the board. This is hardwired to 8 bits, no parity,
and 1 stop bit. The default baud rate is 115200 but can be changed at run-time. The RTS and CTS signals
are supported. This uart is used by eCos for the HAL diagnostics and debug channel.

TSE A triple speed ethernet tse_mac and associated rx_sgdma and tx_sgdma scatter-gather DMA controllers.
This provides network communications for RedBoot and for eCos applications using one of the available
TCP/IP stacks. Note that this device requires an external phy board to be plugged into one of the main
board's expansion connectors.

lan91c111 An interface to the external lan91c111 ethernet chip on the board. This can be used for network commu-
nication instead of the triple speed ethernet device, useful if the external phy board is not available.

watchdog An Avalon timer set up to act as a watchdog device with a 10-second timeout.

profiling An additional Avalon timer used for gprof-based profiling.

GPIO GPIO units connected to the row of LEDs, the dual seven-segment display, and the buttons. The devkit
platform HAL provides some utility functions for the first two of these.

sysid A system id register. This is used by RedBoot to check that the current hardware design matches the
RedBoot build.

Other A number of other hardware units including a second Avalon timer, a jtag uart, a character LCD controller,
and an EPCS serial flash controller. These are not currently used by eCos so can be accessed directly by
application code.

Configuration Options
The TSEplus hardware design HAL package is used with two different eCos targets. The nios2_s-
tratix2_2s60_rohs_tseplus target includes the TSE ethernet driver but not the lan91c111 ethernet driver, and can
be used when the external phy board is present. The nios2_stratix2_2s60_rohs_lan91c111 target includes the
lan91c111 ethernet driver but no the TSE ethernet driver and can be used in the absence of the external phy board. When using
a RAM startup configuration the same eCos target should be used for both RedBoot and the application.

3328

Nios II Stratix II/2s60_RoHS TSEplus H/W Design HAL

The hardware design HAL package will be loaded automatically when creating an eCos configuration for either target, together
with the Nios II architectural HAL and the devkit platform HAL. It should never be necessary to load this package explicitly.
Unloading the package should only happen as a side effect of switching target hardware. The package does not contain any
user configuration options.

The package contains a single configuration option, CYGNUM_HAL_RTC_PERIOD. This determines the period of the system
clock. By default this operates at 100Hz but the value can be changed if a faster or slower clock is desired. The value is used
to program the PERIODH and PERIODL registers of the sys_clk Avalon timer.

Memory Map
For typical eCos usage the memory map is as follows:

Address Purpose

0x00000000 16MB of flash

0x00000000 reset vector

0x00000000 128K for RedBoot code

0x00800000 current hardware design

0x00c00000 factory hardware design

0x00FF0000 RedBoot fis and fconfig data

0x01200000 2MB of SRAM

0x01400000 8K of on-chip IRAM

0x01401E00 TSE DMA descriptors

0x01403000 peripherals

0x04000000 32MB of SDRAM

0x04000020 exception vector

0x04000100 ~64K for RedBoot data

0x04010000 application code and data

3329

Chapter 347. Board-level Support for the
Nios II Embedded Evaluation Kit, Cyclone
III edition

3330

Board-level Support for the Nios II Embedded Evaluation Kit, Cyclone III edition

Name
CYGPKG_HAL_NIOS2_NEEK_CYCLONE3_BOARD — eCos Platform HAL Support for the Nios II Embedded Evaluation
Kit, Cyclone III Edition

Description
This package provides platform HAL support for the Altera Nios II Embedded Evaluation Kit, Cyclone III Edition, also known
as the NEEK board. Since this platform is based around an FPGA it can run a variety of hardware designs, and each design
needs its own h/w design HAL to define the details of the hardware configured into the FPGA. The platform HAL contains
support for some of the off-chip peripherals on the board, for example the external flash memory and the I²C device used to
hold the ethernet MAC address. It also contains some code and configuration options which are likely to be reusable across
many h/w designs, to avoid duplicating code unnecessarily.

The h/w design determines which peripherals are available, and that in turn affects how eCos can be used. Hence details of
setting up a NEEK board for eCos development can be found in the h/w design HAL documentation. In addition the Nios II
architectural HAL documentation contains some generic setup instructions which will be applicable to most h/w designs.

Configuration Options
This platform HAL package should be loaded automatically when eCos is configured for appropriate target hardware. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

The main configuration option provided by this package is CYG_HAL_STARTUP. This can take either two or three values,
depending on the h/w design:

ROM This startup type should be used for code that should execute from the external flash.
The executable will start running from the Nios II reset vector defined in the h/w design
and will contain all the low-level initialization code needed to bring up the system. ROM
startup can be used for production systems. It can also be used for building the RedBoot
ROM monitor on h/w designs that support RedBoot, and the application can then be
loaded into RAM and run from there.

RAMJTAG This startup type will be used mainly for debugging via JTAG. The nios2-elf-gdb de-
bugger will be used, directly or indirectly, to load the application into RAM and start
it running.

RAM This startup type is only available if the h/w design incorporates a uart. It assumes that
a ROM-startup RedBoot has been programmed into flash. JTAG is not used for debug-
ging, only for the initial installation. For debugging, nios2-elf-gdb connects to the Red-
Boot ROM monitor over serial or ethernet and can then be used to load the application
into RAM and run it. For production systems a RedBoot boot script can be used to load
the application from flash to RAM and start it running.

For ROM and RAMJTAG startup, if the h/w design incorporates a uart then by default that will be used for the diagnostics
channel. This can be changed via the configuration option CYGIMP_HAL_NIOS2_DIAGNOSTICS_PORT. The alternative
destination is discard which just discards all diagnostics output. For RAM startup the application will inherit its diagnostics
channel from the RedBoot ROM monitor.

The remaining configuration options in this package are primarily for internal use within the configuration system.

External Flash
The NEEK board comes with a single Strata-compatible external flash chip. Assuming the h/w design incorporates support for
this, the Strata V2 flash driver will automatically be loaded when creating a new eCos configuration. However the driver will be
inactive by default. To activate the driver the generic flash support CYGPKG_IO_FLASH must be added to the configuration.
The platform HAL will then instantiate a flash device object.

3331

Board-level Support for the Nios II Embedded Evaluation Kit, Cyclone III edition

I2C Buses and Devices
The NEEK board comes with a number of I²C devices on two sets of GPIO lines. Given the right support in the h/w design
the platform HAL will instantiate bit-banged I²C bus objects and define I²C device objects. The latter can then be manipulated
using the generic eCos I²C API, for example cyg_i2c_tx, as defined by the package CYGPKG_IO_I2C.

If the h/w design HAL defines symbols HAL_NIOS2_AVALON_PIO_id_eeprom_dat_BASE and HAL_NIOS2_AVAL-
ON_PIO_id_eeprom_scl_BASE then the platform HAL will instantiate an I²C bus hal_neek_cyclone3_id_eep-
rom_bus and an I²C device hal_neek_cyclone3_24lc02b, corresponding to an EEPROM chip. This chip is facto-
ry-programmed with an ethernet MAC address in bytes 2-7. If the h/w design and the eCos configuration involve an ethernet
device then the platform HAL will provide this MAC address to the ethernet driver. The other bytes in the EEPROM are not
used by eCos so are available to application code.

If the h/w design HAL defines symbols HAL_NIOS2_AVALON_PIO_lcd_i2c_scl_BASE and HAL_NIOS2_AVAL-
ON_PIO_lcd_i2c_sdat_BASE then the platform HAL will instantiate an I²C bus hal_neek_cyclone3_l-
cd_i2c_bus and two I²C device objects hal_neek_cyclone3_wm8731 and hal_neek_cyclone3_adv7180.

LEDs
The NEEK board comes with four LEDs, although not all h/w designs will allow access to all four. If the h/w design incorporates
a suitable GPIO port and the h/w design HAL defines the symbol HAL_NIOS2_AVALON_PIO_led_BASE then the platform
HAL will provide two additional functions for manipulating the LEDs:

#include <cyg/hal/hal_io.h>
extern void hal_nios2_led_set(int which, int on);
extern void hal_nios2_led_set_all(int setting);

The first function can be used to switch a single LED on or off. The second can be used to change the setting of all four LEDs,
using the bottom four bits of the setting argument.

3332

Chapter 348. Nios II Embedded Evaluation
Kit, Cyclone III Edition, appselector H/W
Design HAL

3333

Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL

Name
CYGPKG_HAL_NIOS2_NEEK_CYCLONE3_APPSELECTOR — eCos Support for the Appselector Hardware Design on a
Nios II Embedded Evaluation Kit, Cyclone III Edition

Description
This package provides the hardware design HAL for the version 8.0 appselector hardware design running on a Nios II Embedded
Evaluation Kit, Cyclone III edition, also known as the NEEK board. This is the hardware design programmed into boards as
shipped from the factory, and in the examples/application_selector and factory_recovery directories of the
software supplied with the board.

Note

There are a number of different and incompatible versions of the appselector hardware design. This package
supports only the 8.0 version, a copy of which is supplied with eCosPro releases. If your NEEK board runs a
different version of the hardware design then it will be necessary to update the board before eCos can be used.
Instructions on how to do this are given below.

The hardware design includes the following functionality:

CPU A Nios II/s processor running at 60MHz. This has 4K of instruction cache and 2K of data cache. It has level
1 jtag support only with no hardware breakpoints. The reset vector is at address 0x04100000 in external
flash and the exception vector is at address 0x05000020 in external SRAM.

SDRAM 32MB of external SDRAM at 0x00000000. If RedBoot is used then the bottom 64K will be reserved for
RedBoot. The remainder is used as the default location for application data, and for application code for
RAM and RAMJTAG startups.

SRAM 1MB of external SRAM at 0x05000000. Some of this will be used for exception and interrupt handling.
The remainder is available for use by the application. Code and data can be placed here by putting
it into .sram_text, .sram_data and .sram_bss sections. The platform HAL package CYGP-
KG_HAL_NIOS2_NEEK_CYCLONE3_BOARD contains a memories.c testcase which can be used as
an example.

IRAM 4K of on-chip RAM at 0x08000000. This can be used only for holding data, not code. Some of this is
used for holding DMA descriptors for the triple-speed ethernet device. The remainder is available for
use by application data, by putting it into .iram_data and .iram_bss sections. The platform HAL
package CYGPKG_HAL_NIOS2_NEEK_CYCLONE3_BOARD contains a memories.c testcase which
can be used as an example.

Flash 16MB of external Strata flash at 0x04000000 attached via an 16-bit data bus. This is supported via the V2
Strata flash driver CYGPKG_DEVS_FLASH_STRATA_V2. The driver will be inactive unless the generic
flash support package CYGPKG_IO_FLASH has been added to the configuration. The first megabyte of
the flash is reserved for holding the hardware design. Locations 0x04100000 onwards are used to hold the
code for ROM startup applications, or to hold RedBoot if that is used. RedBoot's FIS and fconfig data are
held at the end of the flash. The remainder is available for use by the application.

system clock An Avalon timer labelled sys_clk used to implement the main eCos system clock. By default the
system clock will operate at 100Hz, but this can be changed by editing the configuration option
CYGNUM_HAL_RTC_PERIOD.

uart An Avalon uart connected to the external transceiver on the board. This is hardwired at 115200 baud, 8
bits, no parity, 1 stop bit, and no RTS/CTS support. Usually this uart will be used by eCos and/or RedBoot
for the HAL diagnostics and debug channel, so it will not be available to the application. If the uart is
not used in this way then it can be accessed by the application code via the serial device driver CYGP-
KG_DEVS_SERIAL_NIOS2_AVALON_UART. The configuration will also need to include the generic
serial support package CYGPKG_IO_SERIAL, and the option CYGPKG_IO_SERIAL_DEVICES will
need to be enabled.

3334

Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL

tse A triple-speed ethernet device, and associated DMA engines. In eCos configurations which in-
volve networking this device will be supported via the ethernet driver package CYGPKG_DE-
VS_ETH_NIOS2_TSE. The ethernet's MAC address is held in an external EEPROM attached to a bit-
banged I²C bus.

I2C The NEEK board has two I²C buses, implemented by bit-banging GPIO ports: hal_neek_cy-
clone3_id_eeprom_bus and hal_neek_cyclone3_lcd_i2c_bus. There are I²C device in-
stances for the devices attached to these buses: hal_neek_cyclone3_24lc02b for the EEPROM,
hal_neek_cyclone3_adv7180 for the video decoder and hal_neek_cyclone3_wm8731 for
the sound chip. The generic I²C package CYGPKG_IO_I2C provides an API for manipulating such de-
vices. Bytes 2 to 7 of the EEPROM are used to hold the ethernet MAC address so should not be changed
by application code. If any of the bus or device instances are not used directly or indirectly then they will
be removed by link-time garbage collection.

sysid A system id register. This is used by RedBoot to check that the current hardware design matches the
RedBoot build.

Other A number of other hardware units including a jtag uart, an SPI bus, and a framebuffer device driving an
LCD panel. These are not currently used by eCos so can be accessed directly by application code.

Setting up a Board
The eCos port targets a VHDL hardware design named appselector. This hardware design is provided by Altera, and new
NEEK boards usually come with this h/w design preprogrammed into the external flash. However, there are several different
and incompatible versions of this design. The eCos port specifically targets the 8.0 version. If your board comes with a different
version of the h/w design or if a different h/w design has been programmed into flash then it will first be necessary to program
the right design into flash. The required image file restore_cycloneIII_3c25.flash can be found in the nios2/ subdirectory of
the installation. The sources for this h/w design are also included with the release.

The most convenient way to install a h/w design is to use Altera's flash programming tools, provided with Quartus and the
Nios II Embedded Development Suite (nios2eds). The NEEK board has a built-in jtag interface accessible via a USB port,
which can be used for this purpose.

The Quartus tools can be downloaded from Altera. Version 13.1 is the last version released that supports the Cyclone III FPGA
that the Neek board is based upon. The free “web” version can be downloaded from http://dl.altera.com/13.1/?edition=web
and the subscription version from http://dl.altera.com/13.1/?edition=subscription. Version 13.1, unlike some earlier versions,
incorporates the EDS tools within the Quartus download.

Assuming that the Altera software as been correctly installed and that a USB cable has been connected between the host PC
and the NEEK board, the following commands will install Altera's appselector application and support data, as well as the
hardware design. On a Windows PC these commands need to be issued within the Altera EDS Nios command shell, not the
Windows or eCos command shells.

$ cd <ecosproinstalldir>/ecos-<version>/nios2
$ nios2-flash-programmer --base=0x04000000 --go restore_cycloneIII_3c25.flash

If application development will use just the jtag interface then the board can now be used to run eCos applications configured
for RAMJTAG startup. This involves running the Nios II gdb server supplied by Altera:

$ nios2-gdb-server --tcpport 9000 --tcppersist

eCos applications and tests configured for RAMJTAG startup can now be downloaded and executed via nios2-elf-gdb at
another command line prompt. For example:

nios2-elf-gdb <executable-file>
(gdb) target remote localhost:9000
(gdb) set $ienable=0
(gdb) load
(gdb) continue

When using jtag, by default diagnostic output will be directed to the serial port and may be viewed using a terminal emulator
configured for 115200/8N1 with no handshaking.

3335

http://dl.altera.com/13.1/?edition=web
http://dl.altera.com/13.1/?edition=subscription

Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL

If instead application development will happen via RedBoot then the next step is to install a RedBoot image, replacing the
appselector application. Note you must power cycle the board between the above step and this one. Start by connecting a serial
cable between the host PC and the NEEK board, and start up a terminal emulator running at 115200/8N1 with no handshaking.
Next use Altera's EDS command shell to issue the following commands to program the RedBoot image into flash via jtag:

$ cd <ecosproinstalldir>/ecos-<version>/loaders/nios2_neek_cyclone3_appselector
$ bin2flash --location=0x00100000 \
 --input=redboot_ROM.bin \
 --output=redboot.flash
$ nios2-flash-programmer --base=0x04000000 \
 --sidp=0x08002f40 \
 --id=1727563914 \
 --no-keep-nearby \
 --go \
 redboot.flash

The --sidp and --id arguments are used to check that the board is running the correct h/w design. The --go argument causes the
board to restart, so RedBoot should now be running and should have output its banner and a prompt. The terminal emulator
can now be used to execute the following commands at the RedBoot prompt to initialise the Flash contents:

RedBoot> fis init
RedBoot> fconfig -i

eCos applications and tests configured for RAM startup can now be downloaded and executed via nios2-elf-gdb. For example,
to run the prebuilt eCos test over serial, first exit the terminal emulator so that nios2-elf-gdb can access the serial port, and
then use the following commands:

nios2-elf-gdb <path>/thread_gdb
(gdb) set remotebaud 115200
(gdb) target remote /dev/ttyS0
(gdb) load
(gdb) continue

RedBoot binaries are provided under the 'loaders' directory in the release. They may be rebuilt by making RAM and ROM
startup RedBoot images in the documented manner, each in a separate working directory. For RAM startup:

$ ecosconfig new nios2_neek_cyclone3_appselector redboot
$ ecosconfig import <path>/redboot_RAM.ecm
$ ecosconfig check
$ ecosconfig tree
$ make

The .ecm import file can be found in the misc subdirectory of this package. Similarly for ROM startup:

$ ecosconfig new nios2_neek_cyclone3_appselector redboot
$ ecosconfig import <path>/redboot_ROM.ecm
$ ecosconfig check
$ ecosconfig tree
$ make

Configuration Options
This hardware design HAL package will be loaded automatically when creating an eCos configuration for the
nios2_neek_cyclone3_appselector target, together with the Nios II architectural HAL CYGPKG_HAL_NIOS2 and
the platform HAL CYGPKG_HAL_NIOS2_NEEK_CYCLONE3_BOARD. It should never be necessary to load this package
explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Selecting the nios2_neek_cyclone3_appselector target will also load a flash driver, a serial driver, an ethernet
driver, and I²C support. The flash driver will be inactive unless the configuration also includes the generic flash support package
CYGPKG_IO_FLASH. The serial driver will be inactive unless the configuration includes the generic serial support package
CYGPKG_IO_SERIAL and the option CYGPKG_IO_SERIAL_DEVICES is enabled. The ethernet driver will be active only
in eCos configurations which involve networking. The I²C package is always active, but any functionality that is not used
directly or indirectly will be removed via link-time garbage collection.

The port to the appselector h/w design supports three startup types:

3336

Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL

ROM This startup type should be used for code that should execute from the external flash.
The executable will start running from the Nios II reset vector and will contain all the
low-level initialization code needed to bring up the system. ROM startup can be used
for production systems. It can also be used for building the RedBoot ROM monitor on
h/w designs that support RedBoot, and the application can then be loaded into RAM
and run from there.

RAMJTAG This startup type will be used mainly for debugging via JTAG. The nios2-elf-gdb de-
bugger will be used, directly or indirectly, to load the application into RAM and start
it running.

RAM This startup type assumes that a ROM-startup RedBoot has been programmed into flash.
JTAG is not used for debugging, only for the initial installation. For debugging, nios2-
elf-gdb connects to the RedBoot ROM monitor over serial or ethernet and can then be
used to load the application into RAM and run it. For production systems a RedBoot
boot script can be used to load the application from flash to RAM and start it running.

For ROM and RAMJTAG startup, by default the uart will be used for the diagnostics channel. This can be changed via the
configuration option CYGIMP_HAL_NIOS2_DIAGNOSTICS_PORT. The alternative destination is discard which just
discards all diagnostics output. For RAM startup the application will inherit its diagnostics channel from the RedBoot ROM
monitor.

The configuration option CYGNUM_HAL_RTC_PERIOD can be used to change the system clock frequency. The default value
gives a 100Hz clock.

3337

Part LXXXIV. PowerPC Architecture

Table of Contents
349. A&M Adder Board Support ... 3340

Overview ... 3341
Setup .. 3342
Configuration ... 3344
The HAL Port .. 3346

350. ADS512101 Board Support ... 3347
Overview ... 3348
Setup .. 3349
Configuration ... 3352
JTAG debugging support .. 3354
The HAL Port .. 3355

351. Freescale MPC5554DEMO Board Support ... 3358
Overview ... 3359
Setup .. 3360
Configuration ... 3362
JTAG debugging support .. 3364
The HAL Port .. 3366

352. MPC8309KIT Board Support ... 3369
Overview ... 3370
Setup .. 3372
Configuration ... 3376
JTAG debugging support .. 3378
The HAL Port .. 3379
GPIO Support ... 3382
Test Programs .. 3383

353. MPC512X Variant Support .. 3385
MPC512X Variant HAL .. 3386
On-chip Subsystems and Peripherals .. 3387
SPI Slave support ... 3390

3339

Chapter 349. A&M Adder Board Support

3340

A&M Adder Board Support

Name
eCos Support for the Adder Board — Overview

Description
This document covers two Analogue & Micro boards, the Adder I and the Adder II. The Adder I board contains an MPC850
processor, 8Mb of RAM, 4MB of flash memory, and external connections for two serial channels and ethernet. The Adder II
is identical except that it is built around an MPC852T processor, which is largely compatible with the MPC850. Everything
in this document applies to both boards unless otherwise stated.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of 64 blocks of 64k bytes each. In a typical setup, the first three flash blocks are used for the
ROMRAM RedBoot image The topmost block is used to manage the flash and hold RedBoot fconfig values. The remaining
60 blocks between 0xFE030000 and 0xFE3EFFFF can be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_POWERPC_QUICC_SMC which supports both the SMC2 (AdderII: SMC1)
and SCC3 based on-chip serial devices. These devices can be used by RedBoot for communication with the host. If either
of these devices is needed by the application, either directly or via the serial driver, then it cannot also be used for RedBoot
communication. Another communication channel such as ethernet should be used instead. The serial driver package is loaded
automatically when configuring for the Adder target.

There is an ethernet driver CYGPKG_DEVS_ETH_POWERPC_ADDER for the on-chip ethernet device (CYGPKG_DE-
VS_ETH_POWERPC_ADDERII for the AdderII). This driver is also loaded automatically when configuring for the Adder
target.

eCos manages the on-chip interrupt controller. The architecture-defined decrementer is used to implement the eCos system
clock and the microsecond delay function. Other on-chip devices (Caches, PIO, UARTs, FEC) are initialized only as far as is
necessary for eCos to run. Other devices (SPI,I2C, PCMCIA) are not touched.

Tools
The Adder port is intended to work with GNU tools configured for a powerpc-eabi target. The original port was undertaken
using powerpc-eabi-gcc version 3.2.1, powerpc-eabi-gdb version 5.3, and binutils version 2.13.1.

3341

A&M Adder Board Support

Name
Setup — Preparing the Adder board for eCos Development

Overview
In a typical development environment, the Adder board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger powerpc-eabi-gdb. Preparing
the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROMRAM RedBoot running from RAM,
but contained in the board's
flash boot sector.

adder[II]_redboot_ROM-
RAM.ecm

adder[II]_redboot_ROM-
RAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. The baud rate can be changed
using the flash configuration console baud rate option. RedBoot also supports ethernet communication and flash management.

Initial Installation

Flash Installation

The Adder boards are shipped from A&M with a version of RedBoot already installed. If the software distribution you are
using provides a more recent certified version of RedBoot then you should install that in place of the existing version.

Updating RedBoot is a simple matter of downloading a new binary image and overwriting the existing ROM image. Connect
a serial cable between the Adder board and a host computer and start a terminal emulator such as HyperTerminal or minicom.
When RedBoot starts up you will see something similar to this:

+... waiting for BOOTP information
Ethernet eth0: MAC address 00:02:b3:46:01:00
IP: 10.0.0.202/255.255.255.0, Gateway: 10.0.0.1
Default server: 10.0.0.102, DNS server IP: 10.0.0.1

RedBoot(tm) bootstrap and debug environment [ROMRAM]
Non-certified release, version UNKNOWN - built 17:00:15, Jan 5 2004

Platform: A&M Adder II (PowerPC 852T)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x00000000-0x00800000, [0x0003afc0-0x007ed000] available
FLASH: 0xfe000000 - 0xfe400000, 64 blocks of 0x00010000 bytes each.
RedBoot>

To download the new RedBoot image to the board via ethernet, ensure that the ethernet cable is connected (if not, connect it
and reset RedBoot). Then copy the new RedBoot image (adderII_redboot_ROMRAM.bin) to the TFTP server directory
(/tftpboot on Linux). You can now download the new RedBoot image with the following command:

RedBoot> load -r -b %{FREEMEMLO} -h 10.0.0.100 adderII_redboot_ROMRAM.bin

If the TFTP server is running on the machine with the IP address shown against "Default server" at startup, then the -h
<host> option may be omitted.

Alternatively, if no TFTP server is available, the file may be downloaded more slowly over the serial line with the following
command:

RedBoot> load -r -b %{FREEMEMLO} -m ymodem

Use the terminal emulator's Y-Modem file transfer option to send the file adderII_redboot_ROMRAM.bin. Once the
file has been uploaded, you can check that it has been transferred correctly using the cksum command. On the host (Linux or
Cygwin) run the cksum program on the binary file:

3342

A&M Adder Board Support

$ cksum adderII_redboot_ROMRAM.bin
1574308703 150312 adderII_redboot_ROMRAM.bin

In RedBoot, run the cksum command on the data that has just been loaded:

RedBoot> cksum -b %{FREEMEMLO} -l 150312
POSIX cksum = 1574308703 150312 (0x5dd60b5f 0x00024b28)

The second number in the output of the host cksum program is the file size, which should be used as the argument to the -l
option in the RedBoot cksum command. The first numbers in each instance are the checksums, which should be equal.

If the program has downloaded successfully, then it can be programmed into the flash using the following command:

RedBoot> fis create -b %{FREEMEMLO} RedBoot
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0xfe000000-0xfe030000: ...
... Program from 0x0003b000-0x0006b000 at 0xfe000000: ...
... Erase from 0xfe3f0000-0xfe400000: .
... Program from 0x007f0000-0x00800000 at 0xfe3f0000: .
RedBoot>

The Adder board may now be reset either by cycling the power, or with the reset command. It should then display the startup
screen for the new version of RedBoot.

This description has used the Adder II as an example. The process for the Adder I is identical except that the new image file
is called adder_redboot_ROMRAM.bin. Make sure you load the correct file if both are present.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROMRAM version of RedBoot for the Adder I are:

$ mkdir redboot_adder_romram
$ cd redboot_adder_romram
$ ecosconfig new adder redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/powerpc/adder/v2_0_9/misc/adder_redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

To rebuild the ROMRAM version of RedBoot for the Adder II:

$ mkdir redboot_adderII_romram
$ cd redboot_adderII_romram
$ ecosconfig new adderII redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/powerpc/adder/v2_0_9/misc/adderII_redboot_ROMRAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

3343

A&M Adder Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The Adder platform HAL package is loaded automatically when eCos is configured for an adder or adderII target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The Adder platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot pro-
grammed into flash at location 0xFE000000 and boots from that location. powerpc-eabi-gdb is then used to load
a RAM startup application into memory and debug it. It is assumed that the hardware has already been initialized
by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain certain services from
RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xFE000000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup
code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at location 0xFE000000.
However, when it starts up the application will first copy itself to RAM at 0x00000000 and then run from there.
RAM is generally faster than flash memory, so the program will run more quickly than a ROM-startup application.
The application will be self-contained with no dependencies on services provided by other software. eCos startup
code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The Adder board contains a 4Mb AMD AM29XXXXX series flash device The CYGPKG_DEVS_FLASH_AMD_AM29XXXXX
package contains all the code necessary to support these parts and the CYGPKG_DEVS_FLASH_POWERPC_ADDER package
contains definitions that customize the driver to the Adder board.

Ethernet Driver
The Adder I board uses SCC2 configured to be a 10Mb/s ethernet interface. The CYGPKG_DEVS_ETH_POWERPC_QUICC
package contains all the code necessary to support this device and the CYGPKG_DEVS_ETH_POWERPC_ADDER package
contains definitions that customize the driver to the Adder board.

The Adder II board uses the separate FEC (Fast Ethernet Controller) device. The CYGPKG_DEVS_ETH_POWERPC_FEC
package contains all the code necessary to support this device and the CYGPKG_DEVS_ETH_POWERPC_ADDERII package
contains definitions that customize the driver to the Adder II board.

3344

A&M Adder Board Support

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are two flags
specific to this port:

-mcpu=860 The powerpc-eabi-gcc compiler supports many variants of the PowerPC architecture. A
-m option should be used to select the specific variant in use, and with current tools -
mcpu-860 is the correct option for both Adder boards.

-msoft-float The PowerPC processor used in the Adder boards does not have a floating point unit.
Therefore it is necessary to translate any floating point operations into software emula-
tion. This option tells the compiler to do that.

3345

A&M Adder Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the Adder hardware, and should be read
in conjunction with that specification. The Adder platform HAL package complements the PowerPC architectural HAL and
the MPC8XX variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM or ROMRAM startup, the HAL will perform additional initialization, setting up the external RAM and programming
the various internal registers. This is all done in the hal_hardware_init function in the assembler source file adder.S.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0xFE000000 of the physical memory space.

SDRAM This is located at address 0x00000000 of the physical memory space. The first 12k bytes are
used for hardware exception vectors. The next 512 bytes are used for the VSR table and the
next 256 bytes are normally used for the eCos virtual vectors, allowing RAM-based applica-
tions to use services provided by the ROM monitor. For ROM/ROMRAM startup, all remain-
ing SDRAM is available. For RAM startup, available RAM starts at location 0x00060000,
with the bottom 384kB reserved for use by RedBoot.

on-chip peripherals These are accessible via the CPU IMMR register, which is normally set to 0xFA200000. How-
ever, applications should not rely on this. See the documentation for the MPC850 or MPC852T
for information on the on-chip peripherals.

off-chip peripherals The Adder II has an MPC180 Encryption Processor on-board. However, this is not used by
eCos.

Other Issues
The Adder platform HAL does not affect the implementation of other parts of the eCos HAL specification. The MPC8XX
variant HAL, and the PowerPC architectural HAL documentation should be consulted for further details.

3346

Chapter 350. ADS512101 Board Support

3347

ADS512101 Board Support

Name
eCos Support for the ADS512101 Board — Overview

Description
This document covers the ADS512101 board. The board contains an MPC5121e microprocessor, 128MiB of RAM, 64MiB of
Flash and 128KiB of internal SRAM. There are external connections for a single UART and the Fast Ethernet Controller.

For typical eCos development, a RedBoot image is programmed into the on-chip flash memory, and the board will boot this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger using the serial line.

Supported Hardware
The Flash memory consists of 256 blocks each of 256KiB, occupying 64MiB. The Flash is actually composed of two 32Mib
devices operating in parallel. In a typical setup, RedBoot is programmed into flash at 0xFFF00000 and occupies the next
768KiB. The topmost block is used to manage the flash and holds RedBoot fconfig values. The first 255MiB may be used
by application code.

There is a serial driver CYGPKG_IO_SERIAL_POWERPC_PSC which supports both the PSC based on-chip serial devices.
Only PSC3 is actually brought out to a usable external connector. This device can be used by RedBoot for communication with
the host. The serial driver package is loaded automatically when configuring for the ADS512101 target.

The FEC driver, CYGPKG_DEVS_ETH_POWERPC_FEC is used to control the FEC. The package CYGPKG_DE-
VS_ETH_POWERPC_ADS512101 is used to configure the generic driver for the MPC5121e and this board.

eCos manages the on-chip interrupt controller. The architecture-defined decrementer is used to implement the eCos system
clock and the microsecond delay function. A GPT is used to implement a profiling timer. Other on-chip devices (Caches,
GPIO, UARTs) are initialized only as far as is necessary for eCos to run. The remaining devices (PCI, PATA, SATA etc.)
are not touched.

Tools
The ADS512101 port is intended to work with GNU tools configured for a powerpc-eabi target. The original port was under-
taken using powerpc-eabi-gcc version 4.4.5, powerpc-eabi-gdb version 7.2, and binutils version 2.20.1.

3348

ADS512101 Board Support

Name
Setup — Preparing the ADS512101 board for eCos Development

Overview
In a typical development environment, the ADS512101 board boots from flash into the RedBoot ROM monitor. eCos applica-
tions are configured for RAM startup and then downloaded and run on the board via the debugger powerpc-eabi-gdb. Prepar-
ing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROMRAM RedBoot loaded from ROM
into RAM

redboot_ROMRAM.ecm redboot_ROMRAM.bin

ROM RedBoot running directly
from flash

redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running in external
RAM

redboot_RAM.ecm redboot_RAM.bin

JTAG RedBoot running in external
RAM, loaded by JTAG

redboot_JTAG.ecm redboot_JTAG.bin

Under normal circumstances the ROMRAM RedBoot is used. The JTAG RedBoot is used to install the ROMRAM RedBoot
on the board.

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. The baud rate can be changed
using the flash configuration console baud rate option. RedBoot also supports flash management.

Initial Installation
The simplest approach to installing RedBoot is to make use of a JTAG device to run a version of RedBoot on the board and
use that to download and install RedBoot. The following is a simple step-by-step guide to installing RedBoot on the board
using a Ronetix PEEDI JTAG emulator:

1. Set up the PEEDI as described in the Ronetix documentation. The peedi.mpc5121ads.cfg file should be used to setup
and configure the hardware.

2. Connect a null modem serial cable between the ADS512101 board and a suitable host. Run a serial terminal emulator
(Hyperterm or minicom) on the host, connecting to the serial device at 115200 baud with no flow control.

3. Connect an ethernet cable between the board and your local network.

4. From the loaders/ads512101 sub-directory of your eCosPro installation, copy redboot_JTAG.srec and red-
boot_ROMRAM.bin to the data area of a TFTP server the PEEDI can access.

5. Connect a telnet session to the PEEDI and issue a reset command to the PEEDI to put the device into a known state:

 mpc5121> reset stop
 ++ info: user reset
 mpc5121>
 ++ info: HRESET, SRESET and TRST asserted
 ++ info: TRST released
 ++ info: BYPASS check passed
 ++ info: 1 TAP controller(s) detected
 ++ info: TAP : IDCODE = 0x1540A01D, Freescale MPC5121
 ++ info: HRESET and SRESET released
 ++ info: CPU PVR is 0x80862010 (e300c4)
 ++ info: CPU SVR is 0x80180020
 ++ info: setting breakpoint at 0xFFF00100

3349

ADS512101 Board Support

 ++ info: core 0: initialized

6. Now issue the following command, substituting your own TFTP server address:

 mpc5121>> mem load tftp://10.0.1.1/redboot_JTAG.srec srec
 ** warning: default file for this core not specified
 ** warning: use CORE_FILE parameter to specify default file
 ++ info: Loading image file: tftp://10.0.1.1/redboot_JTAG.srec
 ++ info: At absolute address: 0x00000000
 loading at 0x0
 loading at 0x3300
 loading at 0xB300
 loading at 0x13300
 loading at 0x1B300
 loading at 0x22080

 Successfully loaded 154KB (158408 bytes) in 1.2s
 mpc5121>>

7. Now issue the go command:

 mpc5121> go 0x100

You should see something similar to the following output on the board serial line.

 +**Warning** FLASH configuration checksum error or invalid key
 Use 'fconfig -i' to [re]initialize database
 Ethernet eth0: MAC address 08:00:3e:28:7a:ba
 IP: 10.0.2.5/255.0.0.0, Gateway: 10.0.0.3
 Default server: 0.0.0.0
 DNS server IP: 10.0.1.1, DNS domain name: <null>

 RedBoot(tm) bootstrap and debug environment [JTAG]
 Non-certified release, version UNKNOWN - built 15:05:36, Jun 20 2011

 Copyright (C) 2000-2009 Free Software Foundation, Inc.
 Copyright (C) 2003-2011 eCosCentric Limited
 RedBoot is free software, covered by the eCos license, derived from the
 GNU General Public License. You are welcome to change it and/or distribute
 copies of it under certain conditions. Under the license terms, RedBoot's
 source code and full license terms must have been made available to you.
 Redboot comes with ABSOLUTELY NO WARRANTY.

 Platform: ADS512101 (PowerPC MPC5121e)
 RAM: 0x00000000-0x08000000 [0x0003e400-0x07fb1000 available]
 FLASH: 0xfc000000-0xffffffff, 256 x 0x40000 blocks
 RedBoot>

8. RedBoot's flash management and configuration should be initialized as follows:

 RedBoot> fis init
 About to initialize [format] FLASH image system - continue (y/n)? y
 *** Initialize FLASH Image System
 ... Unlocking from 0xfffc0000-0xffffffff: .
 ... Erase from 0xfffc0000-0xffffffff: .
 ... Program from 0x07fc0000-0x08000000 to 0xfffc0000: .
 ... Locking from 0xfffc0000-0xffffffff: .
 RedBoot> fconfig -i
 Initialize non-volatile configuration - continue (y/n)? y
 Run script at boot: false
 Use BOOTP for network configuration: true
 Default server IP address: 10.0.1.1
 Console baud rate: 115200
 DNS domain name: example.com
 DNS server IP address: 10.0.1.1
 Network hardware address [MAC]: 0x08:0x00:0x3E:0x28:0x7A:0xBA
 GDB connection port: 9000
 Force console for special debug messages: false
 Network debug at boot time: false
 Update RedBoot non-volatile configuration - continue (y/n)? y
 ... Unlocking from 0xfffc0000-0xffffffff: .
 ... Erase from 0xfffc0000-0xffffffff: .

3350

ADS512101 Board Support

 ... Program from 0x07fc0000-0x08000000 to 0xfffc0000: .
 ... Locking from 0xfffc0000-0xffffffff: .
 RedBoot>

For the "Default server IP address", enter the IP address of the TFTP server on which the redboot_ROMRAM.bin is
to be found.

9. Now we need to download and program a ROMRAM version of RedBoot. From RedBoot, issue the following command:

 RedBoot> load -r -b %{freememlo} redboot_ROMRAM.bin
 Using default protocol (TFTP)
 Raw file loaded 0x0003e400-0x000682a7, assumed entry at 0x0003e400
 RedBoot>

10.Program the RedBoot into the board:

 RedBoot> fis cre RedBoot
 An image named 'RedBoot' exists - continue (y/n)? y
 ... Unlocking from 0xfff00000-0xfffbffff: ...
 ... Erase from 0xfff00000-0xfffbffff: ...
 ... Program from 0x0003e400-0x000682a8 to 0xfff00000: ...
 ... Locking from 0xfff00000-0xfffbffff: ...
 RedBoot>

11.RedBoot is now programmed into the board. Detach the PEEDI and reset the board and you should see the following output:

 +Ethernet eth0: MAC address 08:00:3e:28:7a:ba
 IP: 10.0.2.5/255.0.0.0, Gateway: 10.0.0.3
 Default server: 0.0.0.0
 DNS server IP: 10.0.1.1, DNS domain name: <null>

 RedBoot(tm) bootstrap and debug environment [ROMRAM]
 Non-certified release, version UNKNOWN - built 15:12:36, Jun 20 2011

 Copyright (C) 2000-2009 Free Software Foundation, Inc.
 Copyright (C) 2003-2011 eCosCentric Limited
 RedBoot is free software, covered by the eCos license, derived from the
 GNU General Public License. You are welcome to change it and/or distribute
 copies of it under certain conditions. Under the license terms, RedBoot's
 source code and full license terms must have been made available to you.
 Redboot comes with ABSOLUTELY NO WARRANTY.

 Platform: ADS512101 (PowerPC MPC5121e)
 RAM: 0x00000000-0x08000000 [0x0003e400-0x07fb1000 available]
 FLASH: 0xfc000000-0xffffffff, 256 x 0x40000 blocks
 RedBoot>

To reinstall RedBoot, a new binary file can be installed and programmed into flash from the installed ROMRAM RedBoot,
from step 9 above. It is not necessary to use JTAG for this unless the board is rendered unusable.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot for the ADS512101 are:

 $ mkdir redboot_ads512101_romram
 $ cd redboot_ads512101_romram
 $ ecosconfig new ads512101 redboot
 $ ecosconfig import $ECOS_REPOSITORY/hal/powerpc/ads512101/current/misc/ads512101_redboot_ROMRAM.ecm
 $ ecosconfig resolve
 $ ecosconfig tree
 $ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

3351

ADS512101 Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The ADS512101 platform HAL package is loaded automatically when eCos is configured for an ads512101 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The ADS512101 platform HAL package supports four separate startup types:

RAM This is the startup type which is normally used during application development. The board has ROMRAM RedBoot
running from 0x00000000 and applications will be loaded from 0x00100000. powerpc-eabi-gdb is then used to load
a RAM startup application into memory and debug it. It is assumed that the hardware has already been initialized
by RedBoot. By default the application will use the eCos virtual vectors mechanism to obtain certain services from
RedBoot, including diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xFFF00000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup
code will perform all necessary hardware initialization.

ROM-
RAM

This startup type can be used for finished applications which will be programmed into flash at location 0xFFF00000.
The first thing the application does is to relocate itself to RAM at location 0x00000000. The application will be
self-contained with no dependencies on services provided by other software. eCos startup code will perform all
necessary hardware initialization.

JTAG This startup type can be used for finished applications which will be loaded into external RAM via a JTAG debugger.
The application will be self-contained with no dependencies on services provided by other software. The JTAG
debugger should initialize the hardware enough to load the code into RAM, eCos startup code will perform any
further hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The ADS512101 board contains 64MiB of flash memory. The CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2 package
contains all the code necessary to support access to the flash. The ADS512101 platform HAL package contains definitions
that customize the driver to the ADS512101 board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

3352

ADS512101 Board Support

Ethernet Driver
The ADS512101 board uses the MPC5121e's internal FEC ethernet device attached to an external PHY. The CYGPKG_DE-
VS_ETH_POWERPC_FEC package contains all the code necessary to support this device. The CYGPKG_DEVS_ETH_POW-
ERPC_ADS512101 package contains definitions that customize the driver to the ADS512101 board. This driver is not active
until the generic Ethernet support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

RTC Driver
The ADS512101 board uses an ST M41T662 I²C Real Time Clock. The CYGPKG_DEVICES_WALLCLOCK_ST_M41TXX
package contains all the code necessary to support this device. This device also needs the CYGPKG_IO_I2C package to be
loaded. This driver is not active until the generic wallclock device support package, CYGPKG_IO_WALLCLOCK, is included
in the configuration.

Watchdog Driver
The ADS512101 board uses the MPC5121e's internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_MPC512X
package contains all the code necessary to support this device. Within that package the CYGNUM_DEVICES_WATCH-
DOG_POWERPC_MPC512X_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by default
will force a reset of the board upon timeout. This driver is not active until the generic watchdog device support package, CYG-
PKG_IO_WATCHDOG, is included in the configuration.

UART Serial Driver
The ADS512101 board uses the MPC5121e's Programmable Serial Controllers (PSC's) configured for UART mode. Two serial
UART adaptors are available on the board. However, only PSC3 is attached to a (pin D-Sub connector. PSC4 is connected
to header P8.

I2C Driver
The MPC512X HAL contains a driver for the I²C busses on the board. There are several devices attached to the busses, of
which, only the RTC on Bus0 is actually used bt eCos.

CAN Driver
The MPC512X contains four Freescale MSCAN devices, although only one of these is brought out to an external con-
nector. The package CYGPKG_DEVS_CAN_MSCAN is a general driver for the MSCAN, and the package CYGPKG_DE-
VS_CAN_ADS512101 configures this for the ADS512101 platform.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is one flag specific
to this port:

-mcpu=e300c3 The powerpc-eabi-gcc compiler supports many variants of the PowerPC architecture. A
-m option should be used to select the specific variant in use. The MPC5121e is a e300c4
processor, and the current tools do not have an option to select this processor directly
so instead we select a processor that is identical as far as the compiler is concerned, the
e300c3.

3353

ADS512101 Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug applications loaded in RAM, or even applications resident in ROM.

The MPC512x core only supports two hardware breakpoints, and so they should be used sparingly. If using a GDB front-
end such as Eclipse, check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether to set
hardware or software breakpoints by default. Be sure to configure your device appropriately.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.mpc5121ads.cfg file should be used to setup and configure the hardware to an appro-
priate state to load programs. This includes setting up the clocks, chip selects and SDRAM controller.

The peedi.mpc5121ads.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [PLATFORM_MPC8300] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using powerpc-eabi-gdb and the GDB interface.
In the case of the latter, powerpc-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

 (gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.mpc5121ad-
s.cfg file, and halts the target. This behaviour is repeated whenever the board is reset.

If the board is reset (by pressing the reset button) and the 'go' command is then given, then the board will boot as normal. If
a RedBoot is resident in flash, it will be run.

Consult the PEEDI documentation for information on other features.

Configuration of JTAG applications

If the JTAG device has initialized the processor, such as by using the peedi.mpc5121ads.cfg configuration on the
PEEDI, applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be disabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG
startup type in the configuration tool sets these options automatically.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on PSC3.

3354

ADS512101 Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the ADS512101 hardware, and should be
read in conjunction with that specification. The ADS512101 platform HAL package complements the PowerPC architectural
HAL and the MPC51XX variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the on-chip peripherals that eCos uses. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external RAM and programming the various
internal registers. This is all done in the hal_hardware_init function in the assembler source file ads512101.S.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0xFC000000 of the physical memory space. It is mapped by the BAR registers
1-1 to virtual address 0xFC000000 with caching enabled, and to 0x50000000 with caching disabled. The
PowerPC reset vector is at 0xFFF00100 so RedBoot is normally programmed from 0xFFF00000.

SDRAM This is located at address 0x00000000 of the physical memory space. The first 0x3000 bytes are used for
the exception entry trampolines. The following 512 bytes contain the VSR table and the next 256 bytes
are normally used for the eCos virtual vectors, allowing RAM-based applications to use services provided
by the ROM monitor. For ROM and JTAG startup, all remaining SDRAM is available. For RAM startup,
available RAM starts at location 0x00100000, with the bottom 1MiB reserved for use by RedBoot. The
SDRAM is mapped 1-1 with cache enabled at virtual address 0x00000000 and uncached at 0x20000000.

SRAM The 128KiB of on-chip SRAM is mapped 1-1 at 0x30000000. This memory is not used by eCos and is
therefore available for application use.

Peripherals All on-chip peripherals are accessed relative to the address in the IMMBAR register. Both the PEEDI con-
figuration file and eCos itself set this to 0xE0000000. The CPLD is mapped to 0xE2000000 and is accessible
just beyond the IMMBAR peripherals.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information.

Example 350.1. ads512101 Real-time characterization

 Startup, main stack : stack used 1032 size 5920
 Startup : Interrupt stack used 571 size 4096
 Startup : Idlethread stack used 480 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 0 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 1.49 microseconds (74 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64

3355

ADS512101 Board Support

 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 2.91 2.38 3.68 0.29 46% 32% Create thread
 0.28 0.26 1.00 0.02 98% 98% Yield thread [all suspended]
 0.29 0.26 0.98 0.04 90% 90% Suspend [suspended] thread
 0.27 0.26 0.62 0.01 96% 96% Resume thread
 0.40 0.38 1.10 0.03 96% 96% Set priority
 0.03 0.02 0.24 0.01 98% 73% Get priority
 0.72 0.68 1.90 0.06 84% 84% Kill [suspended] thread
 0.26 0.26 0.34 0.00 98% 98% Yield [no other] thread
 0.41 0.38 0.86 0.03 67% 85% Resume [suspended low prio] thread
 0.26 0.26 0.28 0.00 96% 96% Resume [runnable low prio] thread
 0.33 0.32 0.42 0.01 62% 35% Suspend [runnable] thread
 0.27 0.26 0.28 0.01 73% 73% Yield [only low prio] thread
 0.26 0.26 0.34 0.01 84% 84% Suspend [runnable->not runnable]
 0.69 0.68 0.84 0.02 90% 90% Kill [runnable] thread
 0.64 0.60 2.16 0.06 93% 93% Destroy [dead] thread
 1.14 1.10 1.44 0.05 79% 79% Destroy [runnable] thread
 3.93 2.88 5.30 0.38 54% 7% Resume [high priority] thread
 0.67 0.62 2.36 0.06 85% 75% Thread switch

 0.02 0.02 0.18 0.00 99% 99% Scheduler lock
 0.21 0.20 0.30 0.01 62% 62% Scheduler unlock [0 threads]
 0.21 0.20 0.22 0.01 61% 61% Scheduler unlock [1 suspended]
 0.21 0.20 0.30 0.01 68% 68% Scheduler unlock [many suspended]
 0.21 0.20 0.22 0.01 60% 60% Scheduler unlock [many low prio]

 0.18 0.04 0.80 0.11 43% 43% Init mutex
 0.37 0.34 1.28 0.06 96% 96% Lock [unlocked] mutex
 0.38 0.34 1.72 0.08 96% 96% Unlock [locked] mutex
 0.30 0.26 1.02 0.04 96% 96% Trylock [unlocked] mutex
 0.26 0.26 0.34 0.00 96% 96% Trylock [locked] mutex
 0.06 0.04 0.42 0.02 96% 96% Destroy mutex
 1.57 1.54 1.82 0.02 93% 3% Unlock/Lock mutex

 0.33 0.14 1.22 0.15 62% 50% Create mbox
 0.01 0.00 0.04 0.01 50% 46% Peek [empty] mbox
 0.36 0.32 1.44 0.07 96% 96% Put [first] mbox
 0.02 0.02 0.10 0.00 96% 96% Peek [1 msg] mbox
 0.35 0.32 0.46 0.04 71% 71% Put [second] mbox
 0.02 0.02 0.10 0.00 96% 96% Peek [2 msgs] mbox
 0.34 0.30 1.28 0.06 96% 96% Get [first] mbox
 0.31 0.30 0.40 0.01 50% 46% Get [second] mbox
 0.29 0.26 0.92 0.04 96% 96% Tryput [first] mbox
 0.31 0.28 0.86 0.03 96% 96% Peek item [non-empty] mbox
 0.34 0.32 0.80 0.03 96% 96% Tryget [non-empty] mbox
 0.27 0.26 0.34 0.01 96% 59% Peek item [empty] mbox
 0.27 0.26 0.36 0.01 96% 50% Tryget [empty] mbox
 0.03 0.02 0.12 0.01 71% 71% Waiting to get mbox
 0.03 0.02 0.12 0.01 71% 71% Waiting to put mbox
 0.08 0.06 0.50 0.03 96% 96% Delete mbox
 1.17 1.16 1.34 0.01 96% 96% Put/Get mbox

 0.07 0.04 0.26 0.04 75% 75% Init semaphore
 0.26 0.26 0.34 0.01 93% 93% Post [0] semaphore
 0.33 0.32 0.42 0.01 50% 46% Wait [1] semaphore
 0.27 0.24 0.74 0.03 96% 96% Trywait [0] semaphore
 0.25 0.24 0.36 0.01 96% 65% Trywait [1] semaphore
 0.05 0.04 0.22 0.02 96% 62% Peek semaphore
 0.06 0.04 0.32 0.02 50% 46% Destroy semaphore
 1.09 1.08 1.20 0.01 96% 62% Post/Wait semaphore

3356

ADS512101 Board Support

 0.21 0.06 0.66 0.08 50% 25% Create counter
 0.03 0.02 0.20 0.02 96% 75% Get counter value
 0.02 0.02 0.10 0.00 96% 96% Set counter value
 0.31 0.30 0.56 0.02 96% 93% Tick counter
 0.06 0.04 0.32 0.02 59% 37% Delete counter

 0.08 0.04 0.54 0.06 93% 71% Init flag
 0.30 0.26 1.00 0.04 96% 96% Destroy flag
 0.26 0.24 0.90 0.04 96% 96% Mask bits in flag
 0.30 0.28 0.88 0.04 96% 96% Set bits in flag [no waiters]
 0.41 0.36 1.42 0.06 96% 96% Wait for flag [AND]
 0.35 0.34 0.44 0.01 96% 50% Wait for flag [OR]
 0.38 0.36 0.38 0.00 96% 3% Wait for flag [AND/CLR]
 0.35 0.34 0.46 0.01 96% 50% Wait for flag [OR/CLR]
 0.02 0.02 0.12 0.01 96% 96% Peek on flag

 0.34 0.18 1.14 0.08 71% 21% Create alarm
 0.41 0.38 1.18 0.05 96% 96% Initialize alarm
 0.25 0.24 0.42 0.02 96% 62% Disable alarm
 0.39 0.36 0.88 0.03 96% 96% Enable alarm
 0.30 0.28 0.46 0.02 96% 50% Delete alarm
 0.35 0.34 0.42 0.01 96% 59% Tick counter [1 alarm]
 2.13 2.12 2.14 0.01 53% 53% Tick counter [many alarms]
 0.57 0.56 0.68 0.01 96% 59% Tick & fire counter [1 alarm]
 9.50 9.50 9.58 0.00 96% 96% Tick & fire counters [>1 together]
 2.36 2.36 2.36 0.00 100% 100% Tick & fire counters [>1 separately]
 1.18 1.18 1.32 0.00 99% 99% Alarm latency [0 threads]
 1.45 1.18 1.72 0.16 51% 27% Alarm latency [2 threads]
 4.51 3.24 6.08 0.56 50% 21% Alarm latency [many threads]
 2.11 2.10 3.44 0.02 99% 99% Alarm -> thread resume latency

 0.57 0.32 2.36 0.00 Clock/interrupt latency

 0.75 0.38 2.88 0.00 Clock DSR latency

 18 0 1177 (main stack: 1272) Thread stack used (1960 total)
 All done, main stack : stack used 1272 size 5920
 All done : Interrupt stack used 263 size 4096
 All done : Idlethread stack used 1117 size 2048

Timing complete - 29950 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The ADS512101 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
MPC55XX variant HAL, and the PowerPC architectural HAL documentation should be consulted for further details.

3357

Chapter 351. Freescale MPC5554DEMO
Board Support

3358

Freescale MPC5554DEMO Board Support

Name
eCos Support for the MPC5554DEMO Board — Overview

Description
This document covers the Freescale MPC5554DEMO and MPC5554EVB boards. These boards are essentially identical and
will be referred to collectively as the MPC5554DEMO throughout this document. The board contains an MPC5554 micro-
processor, 512KB of RAM and external connections for one serial channel. There is also 2MB of on-chip flash memory and
64KB of internal SRAM.

For typical eCos development, a RedBoot image is programmed into the on-chip flash memory, and the board will boot this
image from reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos
applications via the gdb debugger using the serial line.

Supported Hardware
The on-chip flash memory consists of 20 blocks in a variety of sizes between 16KiB and 128KiB, occupying 2MB. In a typical
setup, RedBoot is programmed into flash at 0x20000 and occupies the next 256KiB. The topmost block is used to manage
the flash and hold RedBoot fconfig values. The first 128KiB and blocks between 0x00060000 and 0x001DFFFF may be used
by application code.

There is a serial driver CYGPKG_IO_SERIAL_POWERPC_ESCI which supports both the eSCI based on-chip serial devices.
Only eSCI device A is actually brought out to an external connector. This device can be used by RedBoot for communication
with the host. The serial driver package is loaded automatically when configuring for the Mpc5554demo target.

eCos manages the on-chip interrupt controller. The architecture-defined decrementer is used to implement the eCos system
clock and the microsecond delay function. Other on-chip devices (Caches, PIO, UARTs) are initialized only as far as is nec-
essary for eCos to run. Other devices (CAN, eTPU, eMIOS etc.) are not touched.

Tools
The MPC5554DEMO port is intended to work with GNU tools configured for a powerpc-eabi target. The original port was
undertaken using powerpc-eabi-gcc version 3.3.3, powerpc-eabi-gdb version 6.1, and binutils version 2.14.

3359

Freescale MPC5554DEMO Board Support

Name
Setup — Preparing the MPC5554DEMO board for eCos Development

Overview
In a typical development environment, the MPC5554DEMO board boots from flash into the RedBoot ROM monitor. eCos
applications are configured for RAM startup and then downloaded and run on the board via the debugger powerpc-eabi-gdb.
Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configu-
ration

Description Use File

ROM RedBoot running
from on-chip ROM

MPC5554DEMO_redboot_ROM.ecm MPC5554DEMO_redboot_ROM.bin

RAM RedBoot running in
external RAM

MPC5554DEMO_redboot_RAM.ecm MPC5554DEMO_redboot_RAM.bin

JTAG RedBoot running
in external RAM,
loaded by JTAG

MPC5554DEMO_redboot_JTAG.ecm MPC5554DEMO_redboot_JTAG.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. The baud rate can be changed
using the flash configuration console baud rate option. RedBoot also supports flash management.

Initial Installation
The simplest approach to installing RedBoot is to make use of the eSys Flasher utility and the P&E Wiggler shipped with the
board. The reader is referred to the documentation for this utility for details of its use; the following is a simple step-by-step
guide to using it to install RedBoot on the board:

1. Install the eSys Flasher utility on a suitable PC running Windows XP.

2. Copy MPC5554DEMO_redboot_ROM.srec to a suitable location on the Windows PC.

3. Connect a straight-through (not null modem) serial cable between the COM-1 serial port of the board and a serial port on
a convenient host (which need not be the PC running eSys Flasher). Run a terminal emulator (Hyperterm or minicom) at
38400 baud.

4. Connect the P&E Wiggler to the MPC5554DEMO board and via a USB cable to the Windows PC. Connect the power
supply to the MPC5554DEMO board and power it on. At some point during this process XP may ask you to install a device
driver. The necessary files will have been installed with the utility, so just follow the directions to install the driver.

5. Start eSys Flasher and select "P&E Wiggler (USB)" from the initial dialog. If the program connects to the board then the
MCU and Part ID should be displayed at the top right of the next dialog.

6. Click on the "Program Flash" button. Select "S-Record" in the following dialog (and optionally "Verify after Program"),
and press "Program". In the "Open" dialog navigate to where the MPC5554DEMO_redboot_ROM.srec file is located
and select it. The utility will now erase, program and optionally verify the flash. When finished, press the "Close" button
to exit the utility.

7. Pressing the reset button on the board should cause RedBoot to start up and display the following output:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 18:06:16, Nov 26 2007

3360

Freescale MPC5554DEMO Board Support

Platform: MPC5554DEMO (PowerPC MPC5554)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007 eCosCentric Limited

RAM: 0x20000000-0x20080000, [0x20006b88-0x20051000] available
FLASH: 0x00000000-0x001fffff, 1 x 0x4000 blocks, 2 x 0xc000 blocks, 1 x 0x4000 blocks, 2 x 0x10000 blocks, 14 x 0x20000 blocks
RedBoot>

8. RedBoot's flash management and configuration should be initialized as follows:

RedBoot> fis init
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Unlocking from 0x001e0000-0x001fffff: .
... Erase from 0x001e0000-0x001fffff: .
... Program from 0x20060000-0x20080000 to 0x001e0000: .
... Locking from 0x001e0000-0x001fffff: .
RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlocking from 0x001e0000-0x001fffff: .
... Erase from 0x001e0000-0x001fffff: .
... Program from 0x20060000-0x20080000 to 0x001e0000: .
... Locking from 0x001e0000-0x001fffff: .
RedBoot>

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot for the MPC5554DEMO are:

$ mkdir redboot_mpc5554demo_rom
$ cd redboot_mpc5554demo_rom
$ ecosconfig new mpc5554demo redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/powerpc/mpc5554demo/current/misc/mpc5554demo_redboot_ROM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.srec.

3361

Freescale MPC5554DEMO Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The MPC5554DEMO platform HAL package is loaded automatically when eCos is configured for an mpc5554demo target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup
The MPC5554DEMO platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash at location 0x00020000 and boots from that location. powerpc-eabi-gdb is then used to load a RAM startup
application into memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By
default the application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including
diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0x00020000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

JTAG This startup type can be used for finished applications which will be loaded into external RAM via a JTAG debugger.
The application will be self-contained with no dependencies on services provided by other software. The JTAG de-
bugger should initialize the hardware enough to load the code into RAM, eCos startup code will perform any further
hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The MPC5554 microcontroller contains 2MiB of flash memory. The CYGPKG_DEVS_FLASH_MPC5500 package contains
all the code necessary to support access to the flash. The MPC5554DEMO platform HAL package contains definitions that
customize the driver to the MPC5554DEMO board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are two flags
specific to this port:

3362

Freescale MPC5554DEMO Board Support

-mcpu=8540 The powerpc-eabi-gcc compiler supports many variants of the PowerPC architecture. A
-m option should be used to select the specific variant in use. The MPC5554 is a Book
E processor, and the current tools do not have an option to select this processor directly
so instead we select a processor that is also Book E based and which is supported: the
MPC8540.

-msoft-float The PowerPC processor used in the MPC5554DEMO boards does not have a floating
point unit. Therefore it is necessary to translate any floating point operations into soft-
ware emulation. This option tells the compiler to do that.

3363

Freescale MPC5554DEMO Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug applications loaded in RAM, or even applications resident in ROM.

Debugging of ROM applications is only possible if using hardware breakpoints. The MPC5554 core only supports four such
hardware breakpoints, and so they should be used sparingly. If using a GDB front-end such as Eclipse, check it has not set
unnecessary extra breakpoints. Some JTAG devices give the option of whether to set hardware or software breakpoints by
default. Be sure to configure your device appropriately.

Abatron BDI3000 notes

On the Abatron BDI3000, the bdi3000.mpc5554demo.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the TLB, PLL, external SRAM cache and flash memory controller.

The bdi3000.mpc5554demo.cfg file also contains an option to define whether hardware or software breakpoints are
used by default, using the BREAKMODE directive in the [TARGET] section. Edit this file if you wish to use software break
points, and remember to use the boot command on the BDI3000 command line interface to make the changes take effect.

On the BDI3000, debugging can be performed either via the telnet interface or using powerpc-eabi-gdb and the bdiGDB
interface. In the case of the latter, powerpc-eabi-gdb needs to connect to TCP port 2001 on the BDI3000's IP address. For
example:

(gdb) target remote 111.222.333.444:2001

By default when the BDI3000 is powered up, the target will always run the initialization section of the bdi3000.m-
pc5554demo.cfg file (which configures the CPU clock among other things), and halts the target. This behaviour is repeated
with the reset halt command.

If the board is reset when in 'reset halt' mode (either with the 'reset halt' or 'reset' commands, or by pressing the reset button)
and the 'go' command is then given, then the board will boot from ROM as normal.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

MPC5554>load 0x20000500 test.bin bin
Loading test.bin , please wait
Loading program file passed
MPC5554>go 0x20000540

Consult the BDI3000 documentation for information on other formats.

Ronetix PEEDI notes

On the Ronetix PEEDI, the peedi.mpc5554demo.cfg file should be used to setup and configure the hardware to an
appropriate state to load programs. This includes setting up the TLB, PLL, external SRAM cache and flash memory controller.

The peedi.mpc5554demo.cfg file also contains an option to define whether hardware or software breakpoints are used
by default, using the CORE0_BREAKMODE directive in the [PLATFORM_MPC5500] section. Edit this file if you wish to use
software break points, and remember to reset the PEEDI using the reset button or with the reboot command on the PEEDI
command line interface to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using powerpc-eabi-gdb and the GDB interface.
In the case of the latter, powerpc-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

3364

Freescale MPC5554DEMO Board Support

(gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.mpc5554de-
mo.cfg file (which configures the CPU clock among other things), and halts the target. This behaviour is repeated with the
reset reset command.

If the board is reset (either with the 'reset', or by pressing the reset button) and the 'go' command is then given, then the board
will boot from ROM as normal.

It is also possible for the target to always run, without initialization, after the reset button has been pressed. This mode is
selected with the reset run command. This conveniently allows the target to be connected to the JTAG debugger, and be able
to reset it with the reset button, without being required to always type 'go' every time. Thereafter, invoking the reset command
will repeat the previous reset style. Also in this mode, exceptions will be handled by board software, rather than causing the
JTAG debugger to halt the CPU.

Suitably configured RAM applications can be loaded either via GDB, or directly via the telnet CLI. For example:

mpc5554>mem load tftp://192.168.1.1/test.bin bin 0x20000500
++ info: Loading image file: tftp://192.168.1.1/test.bin
++ info: At absolute address: 0x20000500
loading at 0x20000500
loading at 0x20008500
loading at 0x20010500
loading at 0x20018500

Successfully loaded 128KB (131072 bytes) in 0.3s
mpc5554>go 0x20000540

Consult the PEEDI documentation for information on other formats.

Configuration of JTAG applications

If the JTAG device has initialized the processor, such as by using the peedi.mpc5554.cfg configuration on the PEEDI, or
the bdi3000.mpc5554.cfg configuration on the BDI3000, applications can be loaded directly into RAM without requiring
a ROM monitor. This loading can be done directly through the JTAG device, or where supported by the JTAG device, through
GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be disabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG
startup type in the configuration tool sets these options automatically.

Running RAM applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on eSCI device A.

3365

Freescale MPC5554DEMO Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the MPC5554DEMO hardware, and
should be read in conjunction with that specification. The MPC5554DEMO platform HAL package complements the PowerPC
architectural HAL and the MPC55XX variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external RAM and programming the various
internal registers. This is all done in the hal_hardware_init function in the assembler source file mpc5554demo.S.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0x00000000 of the physical memory space. It is mapped by the BAM
1-1 to virtual address 0x00000000 with caching enabled, and by eCos to 0x10000000 with
caching disabled.

SRAM This is located at address 0x20000000 of the physical memory space. The first 512 bytes are
used for the VSR table and the next 256 bytes are normally used for the eCos virtual vectors,
allowing RAM-based applications to use services provided by the ROM monitor. The next 512
bytes are used for a shared interrupt state table, recording mask and priority values for each
interrupt source. For ROM and JTAG startup, all remaining SRAM is available. For RAM
startup, available RAM starts at location 0x00008000, with the bottom 32kiB reserved for use
by RedBoot. The SRAM is mapped 1-1 with cache enabled at virtual address 0x20000000 and
uncached at 0x30000000.

on-chip peripherals These are available via 1-1 uncached mappings at 0xFFF00000 and 0xC3F00000.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information.

Example 351.1. mpc5554demo Real-time characterization

 Startup, main stack : stack used 708 size 5664
 Startup : Interrupt stack used 856 size 4096
 Startup : Idlethread stack used 220 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 13 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 6.71 microseconds (858 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 17
 Thread switches: 128
 Mutexes: 32
 Mailboxes: 32

3366

Freescale MPC5554DEMO Board Support

 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 17.12 15.38 34.45 2.10 94% 88% Create thread
 1.33 1.22 3.09 0.21 94% 94% Yield thread [all suspended]
 1.97 1.52 6.89 0.63 94% 88% Suspend [suspended] thread
 1.53 1.13 7.45 0.70 94% 94% Resume thread
 1.91 1.72 3.33 0.17 52% 41% Set priority
 0.09 0.07 0.48 0.05 94% 94% Get priority
 5.12 3.79 22.52 2.05 94% 94% Kill [suspended] thread
 1.37 1.22 3.71 0.28 94% 94% Yield [no other] thread
 2.25 2.00 6.18 0.46 94% 94% Resume [suspended low prio] thread
 1.18 1.14 1.88 0.08 94% 94% Resume [runnable low prio] thread
 1.65 1.52 3.00 0.21 82% 82% Suspend [runnable] thread
 1.58 1.22 7.39 0.68 94% 94% Yield [only low prio] thread
 1.14 1.10 1.69 0.06 94% 94% Suspend [runnable->not runnable]
 4.23 3.61 11.97 0.92 94% 94% Kill [runnable] thread
 3.71 2.78 15.52 1.39 94% 94% Destroy [dead] thread
 5.83 5.39 12.48 0.78 94% 94% Destroy [runnable] thread
 13.28 10.80 26.84 2.26 82% 88% Resume [high priority] thread
 2.69 2.59 12.10 0.19 98% 98% Thread switch

 0.05 0.04 1.36 0.02 99% 99% Scheduler lock
 0.85 0.84 1.98 0.02 99% 99% Scheduler unlock [0 threads]
 0.84 0.84 0.98 0.00 99% 99% Scheduler unlock [1 suspended]
 0.84 0.84 0.98 0.00 99% 99% Scheduler unlock [many suspended]
 0.85 0.84 1.07 0.00 99% 99% Scheduler unlock [many low prio]

 0.86 0.16 3.54 0.17 87% 6% Init mutex
 1.76 1.39 7.95 0.39 96% 96% Lock [unlocked] mutex
 2.00 1.58 15.00 0.81 96% 96% Unlock [locked] mutex
 1.41 1.21 7.68 0.39 96% 96% Trylock [unlocked] mutex
 1.16 1.10 2.88 0.11 96% 96% Trylock [locked] mutex
 0.16 0.15 0.55 0.02 96% 96% Destroy mutex
 8.00 7.90 10.75 0.19 93% 93% Unlock/Lock mutex

 1.29 0.33 13.13 0.74 90% 96% Create mbox
 0.87 0.20 2.05 0.74 59% 59% Peek [empty] mbox
 1.97 1.52 13.41 0.72 96% 96% Put [first] mbox
 0.03 0.02 0.60 0.04 96% 96% Peek [1 msg] mbox
 1.58 1.52 3.07 0.10 93% 93% Put [second] mbox
 0.03 0.02 0.44 0.03 96% 96% Peek [2 msgs] mbox
 2.26 1.65 19.64 1.09 96% 96% Get [first] mbox
 1.78 1.65 3.17 0.18 90% 68% Get [second] mbox
 1.42 1.28 5.59 0.26 96% 96% Tryput [first] mbox
 1.42 1.30 5.07 0.23 96% 96% Peek item [non-empty] mbox
 1.53 1.42 5.02 0.22 96% 96% Tryget [non-empty] mbox
 1.27 1.24 1.85 0.05 93% 93% Peek item [empty] mbox
 1.33 1.27 3.45 0.13 96% 96% Tryget [empty] mbox
 0.10 0.05 1.82 0.11 96% 96% Waiting to get mbox
 0.07 0.05 0.46 0.04 93% 93% Waiting to put mbox
 0.42 0.34 3.06 0.17 96% 96% Delete mbox
 5.90 5.57 13.93 0.62 93% 93% Put/Get mbox

 0.46 0.15 1.38 0.08 84% 12% Init semaphore
 1.13 1.04 1.82 0.13 90% 71% Post [0] semaphore
 1.30 1.25 1.64 0.08 87% 87% Wait [1] semaphore
 1.17 1.09 3.89 0.17 96% 96% Trywait [0] semaphore
 1.04 1.04 1.23 0.01 96% 96% Trywait [1] semaphore
 0.18 0.15 1.05 0.05 96% 96% Peek semaphore
 0.17 0.15 0.73 0.04 96% 96% Destroy semaphore
 5.01 4.98 5.89 0.06 96% 96% Post/Wait semaphore

 1.02 0.24 4.36 0.21 90% 6% Create counter
 0.69 0.06 3.77 0.66 78% 78% Get counter value

3367

Freescale MPC5554DEMO Board Support

 0.07 0.04 1.02 0.06 96% 96% Set counter value
 1.31 1.26 1.85 0.09 84% 84% Tick counter
 0.18 0.15 1.30 0.07 96% 96% Delete counter

 0.50 0.15 1.72 0.09 87% 6% Init flag
 1.46 1.23 6.98 0.34 96% 96% Destroy flag
 1.08 1.02 3.10 0.13 96% 96% Mask bits in flag
 1.37 1.22 6.13 0.30 96% 96% Set bits in flag [no waiters]
 1.96 1.70 10.25 0.52 96% 96% Wait for flag [AND]
 1.65 1.63 2.24 0.04 96% 96% Wait for flag [OR]
 1.71 1.70 2.16 0.03 96% 96% Wait for flag [AND/CLR]
 1.64 1.63 1.96 0.02 96% 96% Wait for flag [OR/CLR]
 0.00 0.00 0.00 0.00 100% 100% Peek on flag

 2.24 0.68 11.62 0.59 93% 3% Create alarm
 3.04 2.24 14.94 0.97 87% 84% Initialize alarm
 1.14 1.03 4.33 0.20 96% 96% Disable alarm
 2.09 1.83 9.42 0.47 96% 96% Enable alarm
 1.33 1.22 4.84 0.22 96% 96% Delete alarm
 1.53 1.41 5.14 0.23 96% 96% Tick counter [1 alarm]
 7.59 7.47 11.20 0.23 96% 96% Tick counter [many alarms]
 2.49 2.44 4.22 0.11 96% 96% Tick & fire counter [1 alarm]
 44.24 44.22 44.78 0.03 96% 96% Tick & fire counters [>1 together]
 8.64 8.62 9.40 0.05 96% 96% Tick & fire counters [>1 separately]
 5.57 5.53 8.68 0.05 99% 99% Alarm latency [0 threads]
 6.86 5.54 7.84 0.58 67% 32% Alarm latency [2 threads]
 6.85 5.53 11.23 0.67 76% 19% Alarm latency [many threads]
 10.28 10.05 31.93 0.44 97% 97% Alarm -> thread resume latency

 1.12 1.08 6.98 0.00 Clock/interrupt latency

 2.77 2.26 12.51 0.00 Clock DSR latency

 635 604 665 (main stack: 1244) Thread stack used (1704 total)
 All done, main stack : stack used 1244 size 5664
 All done : Interrupt stack used 288 size 4096
 All done : Idlethread stack used 617 size 2048

Timing complete - 30880 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The MPC5554DEMO platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
MPC55XX variant HAL, and the PowerPC architectural HAL documentation should be consulted for further details.

3368

Chapter 352. MPC8309KIT Board Support

3369

MPC8309KIT Board Support

Name
eCos Support for the MPC8309KIT Board — Overview

Description
This document covers the MPC8309KIT board. The board consists of a MPC8309SOM card plugged in to a MPC830X carrier
board. The SOM contains an MPC8309 microprocessor, 256MiB of RAM and 8MiB of Flash. There are external connections
for a single RS232 UART and the Fast Ethernet Controller.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger using the serial line or Ethernet.

Supported Hardware
The Flash memory consists of 127 blocks each of 64KiB, and 8 blocks of 8KiB, occupying 8MiB. In a typical setup, RedBoot is
programmed into the base of flash at 0xFE000000 and occupies the next 768KiB. The topmost 64KiB block is used to manage
the flash and holds RedBoot fconfig values. The remainder may be used by application code.

There is a serial driver CYGPKG_IO_SERIAL_GENERIC_16X5X which supports the 16X5X compatible DUARTs. The
package CYGPKG_IO_SERIAL_POWERPC_MPC8309KIT provides definitions to configure the generic driver to the board.
Only UART0 is actually brought out to a usable DB9 external connector via an RS232 transceiver; UART1 is delivered to the
second DB9 via an RS485 transceiver. This device can be used by RedBoot for communication with the host. The serial driver
package is loaded automatically when configuring for the MPC8309KIT target.

The UEC Ethernet driver, CYGPKG_DEVS_ETH_POWERPC_UEC is used to control the QUICC Engine UCC based Ethernet
device. This driver only supports a single Ethernet interface at present: the RJ-45 socket on the SOM board.

eCos manages the on-chip interrupt controller. The architecture-defined decrementer is used to implement the eCos system
clock and the microsecond delay function. A GTM is used to implement a profiling timer. Other on-chip devices (Caches,
GPIO, UARTs) are initialized only as far as is necessary for eCos to run. The remaining devices (PCI, CAN, USB etc.) are
not touched.

Interrupt Nesting
eCos normally operates with a sequential interrupt model, where each ISR is run with interrupts disabled and coincident ISRs are
run in turn. However, the PowerPC HAL and kernel are designed to support nested interrupts where required. The MPC83XX
variant HAL and MPC8309KIT platform HAL have been validated for nested interrupt support.

No special configuration is required to use nested interrupts, support for this is always present. Nested interrupts can be enabled
simply by re-enabling interrupts in an ISR. However, there are a number of issues that need to be considered:

1. All ISRs are entered with interrupts disabled and should be exited with interrupts disabled. So the ISR must bracket any
code that can be preempted with enable and disable calls.

2. An ISR must cancel the cause of its own interrupt before re-enabling interrupts otherwise it could put the CPU into an
interrupt loop. This should include a call to cyg_interrupt_acknowledge(), maybe writing to device registers, or
even a call to cyg_interrupt_mask() to block the interrupt source.

3. Stack usage within ISRs and the level of nesting may require the value of CYGNUM_HAL_COMMON_INTERRUPTS_S-
TACK_SIZE to be increased. Note that DSRs are also run on the interrupt stack, so excessive stack usage in any DSR must
also be accounted for.

4. ISRs for standard devices do not enable interrupts, and will thus run to completion with interrupts off. These ISRs will
impose latency on the start of any nested ISR and will preempt it while interrupts are enabled. However, the only ISRs
currently supported are for the Ethernet, serial, I²C and system timer, all of which are either minimal, or very simple.

5. There is no prioritisation of ISRs, hardware prioritisation only determines which of any simultaneously pending ISRs is
delivered to the CPU next. Any ISR can interrupt any other, low priority ISRs are not blocked by high priority ones. If

3370

MPC8309KIT Board Support

some sort of prioritisation is required, it must be implemented in software by selectively masking and unmasking vectors
as appropriate.

The following shows the suggested layout of an ISR that supports nesting:

 cyg_uint32 nested_isr(cyg_uint32 vector, CYG_ADDRWORD data)
 {
 CYG_INTERRUPT_STATE ints;

 cyg_interrupt_acknowledge(vector);

 // Cancel or mask interrupt here

 // Enable CPU interrupts
 HAL_ENABLE_INTERRUPTS();

 // Code here is preemptable

 // Disable interrupts before return
 HAL_DISABLE_INTERRUPTS(ints);

 return 1;
 }

See the Timers Test for an example of a program that uses nested interrupts.

Tools
The MPC8309KIT port is intended to work with GNU tools configured for a powerpc-eabi target. The original port was
undertaken using powerpc-eabi-gcc version 4.4.5, powerpc-eabi-gdb version 7.2, and binutils version 2.20.1.

3371

MPC8309KIT Board Support

Name
Setup — Preparing the MPC8309KIT board for eCos Development

Overview
In a typical development environment, the MPC8309KIT board boots from flash into the RedBoot ROM monitor. eCos ap-
plications are configured for RAM startup and then downloaded and run on the board via the debugger powerpc-eabi-gdb.
Preparing the board therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running directly
from flash

redboot_ROM.ecm redboot_ROM.bin

RAM RedBoot running in external
RAM

redboot_RAM.ecm redboot_RAM.bin

JTAG RedBoot running in external
RAM, loaded by JTAG

redboot_JTAG.ecm redboot_JTAG.bin

Under normal circumstances the ROM RedBoot is used. The JTAG RedBoot is used to install the ROM RedBoot, and the
RAM RedBoot may be used to update it.

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. The baud rate can be changed
using the flash configuration console baud rate option. RedBoot also supports flash management.

Initial Installation
The simplest approach to installing RedBoot is to make use of a JTAG device to run a JTAG version of RedBoot on the board
and use that to download and install ROM RedBoot. The following is a simple step-by-step guide to installing RedBoot on
the board using a Ronetix PEEDI JTAG emulator:

1. Set up the PEEDI as described in the Ronetix documentation. The peedi.mpc8309kit.cfg file should be used to setup
and configure the hardware.

2. Connect a null modem serial cable between the MPC8309KIT board and a suitable host. Run a serial terminal emulator
(Hyperterm, Teraterm or minicom) on the host, connecting to the serial device at 115200 baud with no flow control.

3. Connect an Ethernet cable between the board and your local network.

4. From the loaders/mpc8309kit sub-directory of your eCosPro installation, copy redboot_JTAG.srec and red-
boot_ROM.bin to the data area of a TFTP server the PEEDI can access.

5. Connect a telnet session to the PEEDI and issue a reset command to the PEEDI to put the device into a known state:

 mpc8309> reset stop
 ++ info: user reset
 mpc8309>
 ++ info: HRESET, SRESET and TRST asserted
 ++ info: TRST released
 ++ info: BYPASS check passed
 ++ info: 1 TAP controller(s) detected
 ++ info: TAP : IDCODE = 0x16AC101D, MPC8308
 ++ info: overriding RCW (0xA0600000 0x44050008)
 ++ info: HRESET and SRESET released
 ++ info: CPU PVR is 0x80850020 (e300c3)
 ++ info: CPU SVR is 0x81100011
 ++ info: setting breakpoint at 0x00000100
 ++ info: core 0: initialized

3372

MPC8309KIT Board Support

6. Now issue the following command, substituting your own TFTP server address:

 mpc8309> mem load tftp://192.168.7.22/redboot_JTAG.srec srec
 * warning: default file for this core not specified
 ** warning: use CORE_FILE parameter to specify default file
 ++ info: Loading image file: tftp://192.168.7.22/redboot_JTAG.srec
 ++ info: At absolute address: 0x00000000
 loading at 0x0
 loading at 0x3500
 loading at 0xB500
 loading at 0x13500
 loading at 0x1B500
 loading at 0x22220
 loading at 0x2A220
 loading at 0x32220
 loading at 0x327E8
 loading at 0x3A7E8

 Successfully loaded 248KB (253956 bytes) in 1.7s
 mpc8309>

7. Now issue the go command:

 mpc8309> go 0x100

You should see something similar to the following output on the board serial line.

 +**Warning** FLASH configuration checksum error or invalid key
 Use 'fconfig -i' to [re]initialize database
 Ethernet eth0: MAC address 00:04:9f:ef:03:01
 IP: 192.168.7.171/255.255.255.0, Gateway: 192.168.7.1
 Default server: 0.0.0.0
 DNS server IP: 192.168.7.3, DNS domain name: <null>

 RedBoot(tm) bootstrap and debug environment [JTAG]
 Non-certified release, version UNKNOWN - built 13:34:41, Mar 2 2012

 Copyright (C) 2000-2009 Free Software Foundation, Inc.
 Copyright (C) 2003-2012 eCosCentric Limited
 RedBoot is free software, covered by the eCos license, derived from the
 GNU General Public License. You are welcome to change it and/or distribute
 copies of it under certain conditions. Under the license terms, RedBoot's
 source code and full license terms must have been made available to you.
 Redboot comes with ABSOLUTELY NO WARRANTY.

 Platform: MPC8309KIT (PowerPC MPC8309)
 RAM: 0x00000000-0x10000000 [0x00049bc0-0x0ffe1000 available]
 FLASH: 0xfe000000-0xfe7fffff, 127 x 0x10000 blocks, 8 x 0x2000 blocks
 RedBoot>

8. RedBoot's flash management and configuration should be initialized as follows:

 RedBoot> fis init
 About to initialize [format] FLASH image system - continue (y/n)? y
 *** Initialize FLASH Image System
 ... Unlocking from 0xfe7f0000-0xfe7fffff:
 ... Erase from 0xfe7f0000-0xfe7fffff:
 ... Program from 0x0fff0000-0x10000000 to 0xfe7f0000:
 ... Locking from 0xfe7f0000-0xfe7fffff:
 RedBoot> fconfig -i
 Initialize non-volatile configuration - continue (y/n)? y
 Run script at boot: false
 Use BOOTP for network configuration: true
 Default server IP address: 192.168.7.22
 Console baud rate: 115200
 DNS domain name: example.com
 DNS server IP address: 192.168.7.3
 Network hardware address [MAC] for eth0: 0x00:0x04:0x9F:0xEF:0x03:0x073
 GDB connection port: 9000
 Force console for special debug messages: false
 Network debug at boot time: false
 Update RedBoot non-volatile configuration - continue (y/n)? y

3373

MPC8309KIT Board Support

 ... Unlocking from 0xfe7f0000-0xfe7fffff:
 ... Erase from 0xfe7f0000-0xfe7fffff:
 ... Program from 0x0fff0000-0x10000000 to 0xfe7f0000:
 ... Locking from 0xfe7f0000-0xfe7fffff:
 RedBoot>

For the "Default server IP address", enter the IP address of the TFTP server on which the redboot_ROM.bin is to be
found.

9. Now we need to download and program a ROM version of RedBoot. From RedBoot, issue the following command, sub-
stituting the IP address of your TFTP server:

 RedBoot> load -r -b %{freememlo} -h 192.168.7.22 redboot_ROM.bin
 Using default protocol (TFTP)
 Raw file loaded 0x00049c00-0x00089cd7, assumed entry at 0x00049c00
 RedBoot>

10.Program the RedBoot into the board:

 RedBoot> fis create RedBoot
 An image named 'RedBoot' exists - continue (y/n)? y
 ... Unlocking from 0xfe000000-0xfe0bffff:
 ... Erase from 0xfe000000-0xfe0bffff:
 ... Program from 0x00049c00-0x00089cd8 to 0xfe000000:
 ... Locking from 0xfe000000-0xfe0bffff:
 ... Unlocking from 0xfe7f0000-0xfe7fffff:
 ... Erase from 0xfe7f0000-0xfe7fffff:
 ... Program from 0x0fff0000-0x10000000 to 0xfe7f0000:
 ... Locking from 0xfe7f0000-0xfe7fffff:
 RedBoot>

11.RedBoot is now programmed into the board. Detach the PEEDI and reset the board and you should see the following output:

 +Ethernet eth0: MAC address 00:04:9f:ef:03:73
 IP: 192.168.7.182/255.255.255.0, Gateway: 192.168.7.1
 Default server: 192.168.7.22
 DNS server IP: 192.168.7.3, DNS domain name: <null>

 RedBoot(tm) bootstrap and debug environment [ROM]
 Non-certified release, version UNKNOWN - built 10:42:26, Mar 2 2012

 Copyright (C) 2000-2009 Free Software Foundation, Inc.
 Copyright (C) 2003-2012 eCosCentric Limited
 RedBoot is free software, covered by the eCos license, derived from the
 GNU General Public License. You are welcome to change it and/or distribute
 copies of it under certain conditions. Under the license terms, RedBoot's
 source code and full license terms must have been made available to you.
 Redboot comes with ABSOLUTELY NO WARRANTY.

 Platform: MPC8309KIT (PowerPC MPC8309)
 RAM: 0x00000000-0x10000000 [0x0001a9b8-0x0ffe1000 available]
 FLASH: 0xfe000000-0xfe7fffff, 127 x 0x10000 blocks, 8 x 0x2000 blocks
 RedBoot>

To reinstall RedBoot, the above process can be repeated, or a RAM RedBoot can be loaded by the ROM RedBoot and used
like the JTAG RedBoot to load and program a new ROM RedBoot.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the the ROM version of RedBoot for the MPC8309KIT are:

 $ mkdir redboot_mpc8309kit_rom
 $ cd redboot_mpc8309kit_rom
 $ ecosconfig new mpc8309kit redboot
 $ ecosconfig import $ECOS_REPOSITORY/hal/powerpc/mpc8309kit/current/misc/mpc8309kit_redboot_ROM.ecm
 $ ecosconfig resolve
 $ ecosconfig tree
 $ make

3374

MPC8309KIT Board Support

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

3375

MPC8309KIT Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The MPC8309KIT platform HAL package is loaded automatically when eCos is configured for an mpc8309kit target.
It should never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of
switching target hardware.

Startup
The MPC8309KIT platform HAL package supports three separate startup types:

RAM This is the startup type which is normally used during application development. The board has ROM RedBoot using
RAM from 0x00000000 and applications will be loaded from 0x00100000. powerpc-eabi-gdb is used to load a RAM
startup application into memory and debug it. It is assumed that the hardware has already been initialized by RedBoot.
By default the application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, in-
cluding diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xFE000000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

JTAG This startup type can be used for finished applications which will be loaded into external RAM via a JTAG debugger.
The application will be self-contained with no dependencies on services provided by other software. The JTAG de-
bugger should initialize the hardware enough to load the code into RAM, eCos startup code will perform any further
hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The MPC8309KIT board contains 8MiB of flash memory. The CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2 package
contains all the code necessary to support access to the flash. The MPC8309KIT platform HAL package contains definitions
that customize the driver to the MPC8309KIT board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Ethernet Driver
The MPC8309KIT board uses the QUICC Engine UCC UEC1 Ethernet device attached to an external PHY. The CYGP-
KG_DEVS_ETH_POWERPC_UEC package contains all the code necessary to support this device. This driver only supports a

3376

MPC8309KIT Board Support

single Ethernet interface at present: the RJ-45 socket on the SOM board. This driver is not active until the generic Ethernet
support package, CYGPKG_IO_ETH_DRIVERS, is included in the configuration.

RTC Driver
The CYGPKG_DEVICES_WALLCLOCK_MPC83XX package supports the MPC8309 RTC device. The driver supports only
clocking from the 32kHz RTC input clock. This driver is not active until the generic wallclock device support package, CYG-
PKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The MPC8309KIT board uses the MPC8309 internal watchdog support. This device is compatible with the watchdog on
the MPC512X family and so shares that device driver. The CYGPKG_DEVICES_WATCHDOG_MPC512X package con-
tains the code necessary to support this device. Within that package the CYGNUM_DEVICES_WATCHDOG_POWERPC_M-
PC512X_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by default will force a reset of
the board upon timeout. This driver is not active until the generic watchdog device support package, CYGPKG_IO_WATCH-
DOG, is included in the configuration.

UART Serial Driver
The MPC8309KIT board uses the 16X5X compatible serial DUARTs. Two serial UART adaptors are available on the board.
Only UART0 is actually brought out to a usable DB9 external connector via an RS232 transceiver; UART1 is delivered to
the second DB9 via an RS485 transceiver. The generic 16X5X driver CYGPKG_IO_SERIAL_GENERIC_16X5X supports
the 16X5X compatible DUARTs. The package CYGPKG_IO_SERIAL_POWERPC_MPC8309KIT provides definitions to
configure the generic driver to the board.

I2C Driver
The MPC512X HAL contains a driver for the I²C busses on the board. There are several devices attached to the busses, see the
board documentation for a description. The file mpc512x_i2c.c and the header plf_io.h contain definitions for some
of these devices. The test programs pca9534_1.c and pca9534_2.c contain tests that exercise the I²C bus by flashing
the LEDs on the carrier board.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on a
per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There is one flag specific
to this port:

-mcpu=e300c3 The powerpc-eabi-gcc compiler supports many variants of the PowerPC architecture. A
-m option should be used to select the specific variant in use. The MPC8309 contains an
e300c3 processor, and this option allows the compiler to optimize code for this processor
variant.

3377

MPC8309KIT Board Support

Name
JTAG support — Usage

Use of JTAG for debugging
JTAG can be used to single-step and debug applications loaded in RAM, or even applications resident in ROM.

The MPC8309 core only supports a limited number of hardware breakpoints, so they should be used sparingly. If using a GDB
front-end such as Eclipse, check it has not set unnecessary extra breakpoints. Some JTAG devices give the option of whether
to set hardware or software breakpoints by default. Be sure to configure your device appropriately.

Ronetix PEEDI Notes

On the Ronetix PEEDI, the peedi.mpc8309kit.cfg file should be used to setup and configure the hardware to an appro-
priate state to load programs. This includes setting up the clocks, chip selects and SDRAM controller.

The peedi.mpc8309kit.cfg file also contains an option to define whether hardware or software breakpoints are used by
default, using the CORE0_BREAKMODE directive in the [PLATFORM_MPC8300] section. Edit this file if you wish to use
hardware break points, and remember to restart the PEEDI to make the changes take effect.

On the PEEDI, debugging can be performed either via the telnet interface or using powerpc-eabi-gdb and the GDB interface.
In the case of the latter, powerpc-eabi-gdb needs to connect to TCP port 2000 on the PEEDI's IP address. For example:

 (gdb) target remote 111.222.333.444:2000

By default when the PEEDI is powered up, the target will always run the initialization section of the peedi.mpc8309k-
it.cfg file, and halts the target. This behaviour is repeated whenever the board is reset.

If the 'reset run' command is given, then the board will boot as normal. If a RedBoot is resident in flash, it will be run.

Consult the PEEDI documentation for information on other features.

Configuration of JTAG applications

If the JTAG device has initialized the processor, such as by using the peedi.mpc8309kit.cfg configuration on the
PEEDI, applications can be loaded directly into RAM without requiring a ROM monitor. This loading can be done directly
through the JTAG device, or where supported by the JTAG device, through GDB.

In order to configure the application to support this mode, some configuration settings are required. Firstly
CYGSEM_HAL_USE_ROM_MONITOR must be disabled. Secondly the CYGDBG_HAL_DIAG_TO_DEBUG_CHAN option
should be disabled in order to prevent HAL diagnostic output being encoded into GDB ($O) packets. Selecting the JTAG
startup type in the configuration tool sets these options automatically.

Running JTAG applications

Once loaded and running via JTAG, HAL diagnostic output will appear by default on the serial line.

3378

MPC8309KIT Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the MPC8309KIT hardware, and should
be read in conjunction with that specification. The MPC8309KIT platform HAL package complements the PowerPC architec-
tural HAL and the MPC83XX variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize the on-chip peripherals that eCos uses. There is an exception
for RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external RAM and programming the various
internal registers. This is all done in the hal_hardware_init function in the assembler source file mpc8309kit.S.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

Flash This is located at address 0xFE000000 of the physical memory space. It is mapped by the BAR registers
1-1 to virtual address 0xFE000000 with caching enabled, and to 0x5E000000 with caching disabled. While
the PowerPC reset vector is at 0xFFF00100 the chip bootstrap mechanism means that ROM applications
actually boot from 0x00000100, where the flash is remapped during startup. Initialization code remaps the
flash to 0xFE000000 and moves execution there.

SDRAM This is located at address 0x00000000 of the physical memory space. The first 0x3000 bytes are used for
the exception entry trampolines. The following 512 bytes contain the VSR table and the next 256 bytes
are normally used for the eCos virtual vectors, allowing RAM-based applications to use services provided
by the ROM monitor. For ROM and JTAG startup, all remaining SDRAM is available. For RAM startup,
available RAM starts at location 0x00100000, with the bottom 1MiB reserved for use by RedBoot. The
SDRAM is mapped 1-1 with cache enabled at virtual address 0x00000000 and uncached at 0x20000000.

Peripherals All on-chip peripherals are accessed relative to the address in the IMMBAR register. Both the PEEDI con-
figuration file and eCos itself set this to 0xE0000000.

Real-time characterization
The tm_basic kernel test gives statistics gathered about the real-time characterization and performance of the kernel. The sample
output is shown here for information.

Example 352.1. mpc8309kit Real-time characterization

 Startup, main stack : stack used 1080 size 6048
 Startup : Interrupt stack used 4064 size 4096
 Startup : Idlethread stack used 508 size 2048

eCos Kernel Timings
Notes: all times are in microseconds (.000001) unless otherwise stated

Reading the hardware clock takes 1 'ticks' overhead
... this value will be factored out of all other measurements
Clock interrupt took 2.38 microseconds (79 raw clock ticks)

Testing parameters:
 Clock samples: 32
 Threads: 64
 Thread switches: 128
 Mutexes: 32

3379

MPC8309KIT Board Support

 Mailboxes: 32
 Semaphores: 32
 Scheduler operations: 128
 Counters: 32
 Flags: 32
 Alarms: 32

 Confidence
 Ave Min Max Var Ave Min Function
 ====== ====== ====== ====== ========== ========
 17.15 16.32 20.55 0.34 65% 14% Create thread
 0.98 0.90 3.06 0.10 95% 75% Yield thread [all suspended]
 0.92 0.84 2.31 0.10 87% 75% Suspend [suspended] thread
 0.92 0.84 1.98 0.10 87% 75% Resume thread
 1.16 1.08 3.39 0.12 85% 84% Set priority
 0.24 0.18 0.66 0.05 75% 78% Get priority
 1.91 1.74 7.26 0.21 96% 82% Kill [suspended] thread
 0.96 0.90 2.61 0.09 87% 75% Yield [no other] thread
 1.28 0.96 3.06 0.14 79% 9% Resume [suspended low prio] thread
 0.91 0.84 2.07 0.10 87% 75% Resume [runnable low prio] thread
 1.23 0.99 3.60 0.13 85% 1% Suspend [runnable] thread
 0.98 0.90 3.06 0.10 95% 75% Yield [only low prio] thread
 0.93 0.84 2.16 0.10 87% 70% Suspend [runnable->not runnable]
 1.77 1.62 6.69 0.17 96% 90% Kill [runnable] thread
 2.22 2.04 5.13 0.12 70% 43% Destroy [dead] thread
 3.31 2.88 8.94 0.21 87% 10% Destroy [runnable] thread
 8.08 6.87 14.22 0.34 76% 1% Resume [high priority] thread
 2.00 1.92 3.99 0.08 86% 75% Thread switch

 0.06 0.03 0.57 0.01 74% 25% Scheduler lock
 0.68 0.66 1.65 0.02 99% 61% Scheduler unlock [0 threads]
 0.66 0.66 1.29 0.01 99% 99% Scheduler unlock [1 suspended]
 0.68 0.66 1.23 0.02 99% 50% Scheduler unlock [many suspended]
 0.68 0.66 1.41 0.02 50% 49% Scheduler unlock [many low prio]

 0.24 0.09 1.47 0.10 75% 31% Init mutex
 1.16 0.96 3.69 0.17 75% 78% Lock [unlocked] mutex
 1.23 0.99 4.41 0.20 75% 81% Unlock [locked] mutex
 0.98 0.81 3.06 0.15 75% 84% Trylock [unlocked] mutex
 0.96 0.78 2.97 0.15 71% 71% Trylock [locked] mutex
 0.12 0.06 0.87 0.08 93% 71% Destroy mutex
 5.43 5.01 10.05 0.66 90% 90% Unlock/Lock mutex

 0.37 0.24 1.71 0.09 71% 46% Create mbox
 0.13 0.06 0.33 0.06 59% 71% Peek [empty] mbox
 1.29 1.11 3.72 0.18 68% 87% Put [first] mbox
 0.13 0.06 0.33 0.07 53% 68% Peek [1 msg] mbox
 1.33 1.20 3.90 0.18 96% 90% Put [second] mbox
 0.13 0.06 0.33 0.07 50% 71% Peek [2 msgs] mbox
 1.30 1.08 3.84 0.18 71% 81% Get [first] mbox
 1.32 1.20 3.78 0.17 96% 87% Get [second] mbox
 1.28 1.17 3.24 0.13 96% 84% Tryput [first] mbox
 1.16 1.05 2.97 0.13 93% 87% Peek item [non-empty] mbox
 1.20 1.08 3.39 0.15 96% 87% Tryget [non-empty] mbox
 1.11 0.96 3.03 0.15 68% 71% Peek item [empty] mbox
 1.09 0.93 2.91 0.14 93% 59% Tryget [empty] mbox
 0.15 0.09 0.48 0.07 87% 75% Waiting to get mbox
 0.15 0.09 0.48 0.08 81% 75% Waiting to put mbox
 0.36 0.24 1.47 0.10 62% 53% Delete mbox
 3.55 3.39 7.59 0.25 96% 96% Put/Get mbox

 0.18 0.06 1.56 0.10 78% 46% Init semaphore
 0.82 0.72 1.95 0.09 50% 46% Post [0] semaphore
 0.91 0.78 2.43 0.11 81% 46% Wait [1] semaphore
 0.83 0.72 2.01 0.10 53% 46% Trywait [0] semaphore
 0.77 0.72 1.35 0.07 90% 71% Trywait [1] semaphore
 0.16 0.06 1.20 0.09 59% 46% Peek semaphore
 0.15 0.06 1.02 0.08 46% 46% Destroy semaphore
 2.96 2.85 5.31 0.16 96% 96% Post/Wait semaphore

 0.28 0.21 1.71 0.09 96% 96% Create counter

3380

MPC8309KIT Board Support

 0.13 0.00 0.45 0.06 59% 21% Get counter value
 0.02 0.00 0.15 0.04 81% 81% Set counter value
 0.96 0.87 1.86 0.08 81% 84% Tick counter
 0.18 0.03 0.69 0.10 65% 43% Delete counter

 0.18 0.06 1.35 0.10 78% 46% Init flag
 0.87 0.72 2.40 0.12 71% 46% Destroy flag
 0.79 0.72 1.65 0.09 96% 71% Mask bits in flag
 0.88 0.75 2.01 0.09 50% 46% Set bits in flag [no waiters]
 0.99 0.87 3.12 0.15 96% 71% Wait for flag [AND]
 0.97 0.87 2.76 0.14 96% 81% Wait for flag [OR]
 0.99 0.87 3.21 0.15 96% 84% Wait for flag [AND/CLR]
 0.96 0.87 2.67 0.13 96% 84% Wait for flag [OR/CLR]
 0.03 0.00 0.24 0.05 71% 71% Peek on flag

 0.41 0.27 1.47 0.12 68% 56% Create alarm
 1.21 1.02 3.39 0.20 93% 71% Initialize alarm
 0.93 0.84 1.89 0.11 84% 71% Disable alarm
 1.19 0.99 3.48 0.21 96% 71% Enable alarm
 1.05 0.90 2.61 0.16 84% 71% Delete alarm
 0.90 0.81 1.71 0.09 93% 71% Tick counter [1 alarm]
 3.04 2.97 3.96 0.10 96% 71% Tick counter [many alarms]
 1.20 1.11 2.58 0.12 93% 84% Tick & fire counter [1 alarm]
 12.84 12.75 14.22 0.12 96% 71% Tick & fire counters [>1 together]
 3.36 3.27 4.86 0.11 96% 71% Tick & fire counters [>1 separately]
 1.51 1.50 2.79 0.02 99% 99% Alarm latency [0 threads]
 2.22 1.50 3.72 0.36 67% 14% Alarm latency [2 threads]
 7.42 5.28 9.93 1.13 47% 30% Alarm latency [many threads]
 3.83 3.78 7.95 0.10 95% 94% Alarm -> thread resume latency

 0.88 0.39 3.75 0.00 Clock/interrupt latency

 1.39 0.54 6.45 0.00 Clock DSR latency

 17 0 2024 (main stack: 6047) Thread stack used (2024 total)
 All done, main stack : stack used 1592 size 6048
 All done : Interrupt stack used 756 size 4096
 All done : Idlethread stack used 1172 size 2048

Timing complete - 31290 ms total

PASS:<Basic timing OK>
EXIT:<done>

Other Issues
The MPC8309KIT platform HAL does not affect the implementation of other parts of the eCos HAL specification. The
MPC55XX variant HAL, and the PowerPC architectural HAL documentation should be consulted for further details.

3381

MPC8309KIT Board Support

Name
GPIO Support — Details

Synopsis
#include <cyg/hal/hal_io.h>

cyg_uint32 pin = CYGHWR_HAL_MPC83XX_GPIO(ctlr, bit, mode);

CYGHWR_HAL_MPC83XX_GPIO_SET (pin);

CYGHWR_HAL_MPC83XX_GPIO_OUT (pin, val);

CYGHWR_HAL_MPC83XX_GPIO_IN (pin, val);

Description
This section describes how to use macros provided by eCos to manage GPIO functionality on the MPC83XX processors.

The MPC83XX HAL provides a number of macros to support the encoding of GPIO pin identity and configuration into a single
32 bit descriptor. This is useful to drivers and other packages that need to configure and use different lines for different devices.

A descriptor is created with CYGHWR_HAL_MPC83XX_GPIO(ctlr, bit, mode) which takes the following arguments:

ctlr This identifies the GPIO controller to which the pin is attached. It may take the value
1 or 2.

bit This gives the bit or pin number within the port. These are numbered from 0 to 32. Note
that the bit numbers conform to the Freescale big-endian numbering scheme.

mode This defines the mode in which the pin is to be used. There are 4 main options: INPUT
sets the pin as an input, OUTPUT sets it as an output. INPUT_OPENDRAIN and OUT-
PUT_OPENDRAIN set it as input or output with an open drain.

The following examples show how this macro may be used:

// Define controller 1 pin 10 as an input
#define CYGHWR_HAL_MPC8309_PIN1 CYGHWR_HAL_MPC83XX_GPIO(1, 10, INPUT)

// Define controller 2 pin 23 as an open drain output
#define CYGHWR_HAL_MPC8309_PIN23 CYGHWR_HAL_MPC83XX_GPIO(2, 23, OUTPUT_OPENDRAIN)

Additionally, the macro CYGHWR_HAL_MPC83XX_GPIO_NONE may be used in place of a pin descriptor and has a value
that no valid descriptor can take. It may therefore be used as a placeholder where no GPIO pin is present or to be used.

The remaining macros all take a GPIO pin descriptor as an argument. CYGHWR_HAL_MPC83XX_GPIO_SET configures
the pin according to the descriptor and must be called before any other macros. CYGHWR_HAL_MPC83XX_GPIO_OUT sets
the output to the value of the least significant bit of the val argument. The val argument of CYGHWR_HAL_MPC83XX_G-
PIO_IN should be a pointer to an int, which will be set to 0 if the pin input is zero, and 1 otherwise.

3382

MPC8309KIT Board Support

Name
Test Programs — Details

Test Programs
The MPC8309KIT HAL contains some test programs which allow various aspects of the microcontroller or the architecture
to be tested.

Timers Test
The timers test checks the functionality of the microcontroller timers and in particular the interrupt nesting mechanism. This
test also acts as and example of how to handle nested interrupts. The test programs the four available GTM timers to interrupt
at a variety of different rates and records various parameters. The timers are programmed to interrupt at higher rates for higher
interrupt priority timers. This information is summarized at the start of the run:

Options:
 LOOPS 24
 LOITER 1
 DSRS 1
 MHZ 10
 SYSTICK 1
 DELAY 0
 LATENCY 1
 LATENCY_HIST 20
 LATENCY_BASE 0

 CSB clock 133333332Hz

T Interval Frequency Tick Prescaler Vector
4: 127us 10256410 97ns 13 73
2: 355us 10256410 97ns 13 79
3: 731us 10256410 97ns 13 85
1: 999us 10256410 97ns 13 91

The options indicate what compile-time options have been applied. See the source of the test for a brief description of each.
The table gives for each timer the requested interval between interrupts, the programmed frequency, the resulting length of a
tick, the prescaler used to achieve this and the interrupt vector. Each timer is programmed to run at approximately 10MHz and
the tick value is the resulting tick duration at that frequency. Each timer will actually interrupt every Interval*Tick*MHZ
nanoseconds. The vector numbers also define the static priority of the interrupts, so timer 4 is highest priority, and timer 1
lowest. After initialization the test outputs a sequence of tables of the following format every 5 seconds:

ISRs max_nesting 5 max_nesting_seen 6
Spurious interrupts: 0

ISR Preempt:
T Ticks 0 1 2 3 4
4: 944k 688k 81k 89k 84k 66
2: 338k 245k 28k 0 29k 34k
3: 164k 118k 13k 15k 0 16k
1: 120k 86k 0 10k 10k 12k
ISR Nesting:
T 1 2 3 4 5 6
4: 688k 204k 43k 6810 966 0
2: 245k 73k 16k 1991 63 0
3: 118k 36k 8144 1002 24 2
1: 86k 26k 5975 792 4 1
DSRs
T: 0 1 2 3 4
4: preempt: 671k 5522 5524 5510 369
 count: 0 93k 317 0 0
2: preempt: 239k 1933 2 1973 1969
 count: 0 33k 0 0 0
3: preempt: 115k 955 1063 0 955
 count: 0 16k 0 0 0
1: preempt: 84k 0 711 689 691
 count: 0 12k 0 0 0
ISR Latency
 T: Max Ave Histogram (ns)...
 ns ns 0 97 194 291 388 485 582 679 776 873 970 1067 1164 1261 1358 1455 1552 1649 1746 1843+
 4: 1455 485 0 0 261 466 496 700k 233k 2644 1150 1037 941 889 875 714 355 194 1 2 0 61
 2: 1649 485 0 0 79 84 75 248k 81k 1200 784 751 672 577 626 609 550 388 261 1083 9 73
 3: 1649 485 0 0 16 15 20 120k 38k 620 397 396 368 352 343 329 319 243 182 721 8 60

3383

MPC8309KIT Board Support

 1: 2716 485 0 0 0 0 0 87k 28k 515 293 293 263 252 275 253 252 200 145 576 14 59

The first line shows the depth of ISR nesting seen since the last report, plus the maximum seen throughout the run. The second
line counts the number of spurious interrupts seen, and should always be zero. The above example is taken from the end of a
run, although there are only 4 timers, this run has seen a nesting level of 5 and a whole run total of 6.

The ISR Preempt table contains a row for each timer. The Ticks column shows the total number of ISRs called for this timer.
The 0 column shows how many ISR calls interrupted thread state. The remaining columns show how many ISR calls preempted
the ISR for the given timer. For example, the ISR for timer 3 preempted the ISR for timer 2 about 15000 times. Mostly the
ISRs do not interrupt themselves, but timer 4's ISR has interrupted itself 66 times. This is because the ISRs delay for a while to
improve the possibility of preemption, and the accumulation of latencies occasionally results in an ISR still running when the
next interrupt occurs. Note that this only records the ISR immediately below the current one on the stack, not every nested ISR.

The ISR Nesting table indicates for each ISR how deeply nested the ISRs are when each is run. In each line, the 1 column
indicates how many times the ISR was first on the stack, the 2 column how many times there was one preempted ISR, the 3
column how many times there were two preempted ISRs and so on. For example, the ISR for timer 1 has been at the base of
the stack about 86000 times, preempted one other ISR about 26000 times and preempted a stack of five ISRs just once.

The DSRs table contains two rows for each timer. The preempt: row shows how many times the ISR preempted the DSR for
the given timer. The zero column correspond to thread state as before. For example the ISR for timer 2 preempted the DSR
for timer 4 1969 times. The count: row shows the range of count values passed to the DSR and indicates the number of
DSR calls not matched exactly to ISR calls. The ISR calls the DSR every 10 ticks, so the total counts should be one tenth of
the ISR Ticks value. In this run only timer 4 has accumulated any instances where a new ISR occurred before a previously
posted DSR could run.

The ISR latency table shows, for each ISR the range of ISR latencies. This is done by reading the timer counter on entry to the
ISR and calculating the delay from the point at which the timer triggered the interrupt. For each timer the maximum latency
seen is recorded, together with the average for the last 5 seconds. In the histogram, each column represents an additional tick
of the 10MHz frequency of each timer, multiplied up to its duration in nanoseconds. Entries count the number of ISRs that
were seen with that latency and the 1843+ column accumulates all larger latencies.

I2C Tests
Two programs are supplied to test the functioning of I²C. The MPC8309KIT board has a number of I²C devices, but no external
access to the busses. These tests access the only device that provides visible confirmation of its functions: by manipulating the
LEDs attached to a PCA9534 GPIO expander on the carrier board on I²C bus 2.

There are two programs; pca9534_1 operates the I²C device in polled mode and pca9534_2 operates in in interrupt driven
mode. Otherwise they are identical.

3384

Chapter 353. MPC512X Variant Support

3385

MPC512X Variant Support

Name
CYGPKG_HAL_POWERPC_MPC512X — eCos Support for the MPC512X Microprocessor Family

Description
The Freescale MPC512X series of PowerPC microcontrollers is supported by eCos with an eCos processor variant HAL and
a number of device drivers supporting some of the on-chip peripherals. These include device drivers for PSC serial and SPI,
I²C, FEC Ethernet, watchdog devices and the PATA interface. In addition it provides common functionality and definitions
that MPC512X based platform ports may require, as well as definitions useful to application developers.

This documentation covers the MPC512X functionality provided but should be read in conjunction with the specific HAL
documentation for the platform port. That documentation will cover issues that are platform-specific and are not covered here,
and may also describe differences that override or supersede what the STM32 variant HAL provides. The areas that are specific
to platform HALs and not the STM32 variant HAL include:

• memory map and related configuration and setup

• Clock parameters

• GPIO and pin configuration

• Any special handling for external interrupts, or additional interrupts

• Diagnostic I/O baud rates

• Additional diagnostic I/O devices, if any

3386

MPC512X Variant Support

Name
On-chip Subsystems and Peripherals — Hardware Support

Hardware support
This section describes the devices controlled by this HAL.

Cache Handling

The MPC512X contains both data and instruction caches. The cyg/hal/hal_cache.h header defines the cache sizes for
the processor variants and defines the eCos standard macros for operating on the caches.

PSC support

The MPC512X contains a number of general purpose Programmable Serial Controllers (PSCs) which can be used as UARTs
or SPI master or slave controllers (along with other modes that eCos does not support).

For each PSC, N, there are a number of configuration options:

CYGHWR_HAL_POWERPC_MPC512X_PSCN

This defines the mode in which this PSC is to be used. If set to UNUSED then the PSC is not used and its external pins are
available for alternate device functions. If it is set to UART it is used as a UART. If set to SPI then it is an SPI master,
and if set to SPISLAVE an SPI slave device.

CYGHWR_HAL_POWERPC_MPC512X_PSCN_TXFIFO_SIZE

This defines the size of the transmit FIFO for this PSC, and must be a multiple of 4. The default value is chosen depending
on the mode.

CYGHWR_HAL_POWERPC_MPC512X_PSCN_RXFIFO_SIZE

This defines the size of the receive FIFO for this PSC, and must be a multiple of 4. The default value is chosen depending
on the mode.

CYGHWR_HAL_POWERPC_MPC512X_PSCN_TXFIFO_ADDRESS

This defines the address in the shared FIFO RAM of the transmit FIFO for this PSC. This value is usually calculated from
the defined sizes of the PSCs and should not be changed without good reason.

CYGHWR_HAL_POWERPC_MPC512X_PSCN_RXFIFO_ADDRESS

This defines the address in the shared FIFO RAM of the transmit FIFO for this PSC. This value is usually calculated from
the defined sizes of the PSCs and should not be changed without good reason.

It is normally the responsibility of the platform HAL to define the mode in which each PSC is to be used.

The MPC512X variant HAL supports basic polled HAL diagnostic I/O over any of the PSC UART devices. There is also a fully
interrupt-driven serial device driver suitable for eCos applications for all on-chip serial devices. The serial driver consists of
an eCos package: CYGPKG_IO_SERIAL_POWERPC_PSC which provides all support for the MPC512X PSC serial devices.
Using the HAL diagnostic I/O support, any of these devices can be used by the ROM monitor or RedBoot for communication
with GDB. If a device is needed by the application, either directly or via the serial driver, then it cannot also be used for GDB
communication using the HAL I/O support. An alternative serial port should be used instead.

Any PSC which is put into UART mode will be included in both the HAL's list of available polled serial devices and be
available for use by the serial driver. The MPC512X UARTs provide TX and RX data lines plus hardware flow control using
RTS/CTS for those UARTs that have them connected.

A separate SPI master driver is available as the package CYGPKG_DEVS_SPI_POWERPC_PSC, and SPI slave support is
present in this variant HAL and is described later.

3387

MPC512X Variant Support

Interrupts

The MPC512X HAL provides standard support for interrupt decoding and delivery. The available interrupt vectors are defined
in the cyg/hal/hal_intr.h header. Interrupts from the FIFO controller are additionally decoded into their own separate
set of vectors.

The MPC512X has a somewhat unusual interrupt priority mechanism. Vectors are collected together into groups and the priority
of an interrupt can only be varied within that group. The unusual part is that instead of assigning a priority to a vector, a vector
is assigned to a priority. It is not permitted to assign a vector to more than one priority. eCos does not enforce unique priority
assignments, this is left to the user. Priorities range from 0 to 7; any value outside that range will leave the priority unchanged
at the hardware default. Hence in many placed, a priority value of 8 is used to effectively not change the setting.

GPIO and Pin Configuration

The variant HAL provides support for packaging the configuration of a GPIO line into a single 16-bit descriptor that can then
be used with macros to configure the pin and set and read its value. Similar descriptor based support is also available for
controlling the configuration of external IO pins.

I²C Support

This variant HAL contains an I²C driver that may be used with the standard I²C infrastructure. For each I²C bus there are a
number of configuration options:

CYGINT_HAL_POWERPC_MPC512X_I2C_BUSN

This interface must be implemented by the platform HAL to indicate that the given I²C bus is connected to devices.

CYGHWR_HAL_POWERPC_MPC512X_I2C_BUSN_CLOCK

This is the I²C bus clock speed in Hz. Usually frequencies of either 100kHz or 400kHz are chosen, the latter sometimes
known as fast mode.

CYGHWR_HAL_POWERPC_MPC512X_I2C_BUSN_INTR_PRI

This is the I²C bus interrupt priority. It may range from 0 to 7; the default of 8 selects the default hardware setting.

Profiling Support

The MPC512X HAL contains support for gprof-base profiling using a sampling timer. The default timer used is GPT7. The
timer used is selected by a set of #defines in src/var_misc.c which can be changed to refer to a different timer if
required. This timer is only enabled when the gprof profiling package (CYGPKG_PROFILE_GPROF) is included and enabled
in the eCos configuration, otherwise it remains available for application use.

Clock Control
The platform HAL must provide the input clock frequency (CYGHWR_HAL_POWERPC_MPC512X_CLOCK_REF_CLK) in its
CDL file. This is then combined with the following options defined in this package to calculate the system clocks:

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_SPMF

This defines the system PLL multiplier and should match the value supplied by the reset configuration word.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_SYS_DIV

This option defines the system clock divider multiplied by 10. It must match the value supplied by the reset configuration
word. CDL does not currently handle real values, so this value must be represented by a scaled integer. Not all values that
can be represented by this option are valid.

3388

MPC512X Variant Support

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_CPMF

This option defines the Core PLL multiplier multiplied by 10. It must match the value supplied by the reset configuration
word. CDL does not currently handle real values, so this value must be represented by a scaled integer.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_SDHC_DIV

This option defines the SDHC divider multiplied by 100. It must match the value programmed into the SCFR2 register
by the platform HAL initialization code. The default value equates to the hardware default setting for the register. CDL
does not currently handle real values, so this value must be represented by a scaled integer. Not all values that can be
represented by this option are valid.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_DIU_DIV

This option defines the DIU divider multiplied by 100. It must match the value programmed into the SCFR1 register by the
platform HAL initialization code. The default value equates to the hardware default setting for the register. CDL does not
currently handle real values, so this value must be represented by a scaled integer. Not all values that can be represented
by this option are valid.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_IPS_DIV

This option defines the IPS divider. It must match the value programmed into the SCFR1 register by the platform HAL
initialization code. The default value equates to the hardware default setting for the register.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_PCI_DIV

This option defines the PCI divider. It must match the value programmed into the SCFR1 register by the platform HAL
initialization code. The default value equates to the hardware default setting for the register.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_LPC_DIV

This option defines the LPC divider. It must match the value programmed into the SCFR1 register by the platform HAL
initialization code. The default value equates to the hardware default setting for the register.

CYGHWR_HAL_POWERPC_MPC512X_CLOCK_NFC_DIV

This option defines the NFC divider. It must match the value programmed into the SCFR1 register by the platform HAL
initialization code. The default value equates to the hardware default setting for the register.

These setting are used to calculate a variety of clock values which are then used in the HALs and drivers to set baud rates,
timers and other clock-related features.

Note that when changing or configuring any of these clock settings, you should consult the relevant processor datasheet as
there may be both upper and lower constraints on the frequencies of some clock signals, including intermediate clocks. There
are also some clocks where, while there is no strict constraint, clock stability is improved if values are chosen wisely. Finally,
be aware that increasing clock speeds using this package may have an effect on platform specific properties, such as memory
timings which may have to be adjusted accordingly.

3389

MPC512X Variant Support

Name
SPI Slave — Hardware Support for SPI Slave Device

Synopsis
#include <cyg/hal/mpc512x_spislave.h>

typedef void hal_mpc512x_spi_slave_rx(hal_mpc512x_spi_slave *slave, cyg_uint8 *buf);

hal_mpc512x_spi_slave *hal_mpc512x_spi_slave_init(int psc, cyg_uint32 tfr_size,
cyg_uint32 flags, hal_mpc512x_spi_slave_rx *rx_callback, void *user_data);

int hal_mpc512x_spi_slave_tx(hal_mpc512x_spi_slave *slave, cyg_uint8 *buf);

Introduction
SPI slave support is provided by a module in the MPC512X variant HAL. It comprises a data structure, two functions and
the prototype of a function that must be supplied by the user. All of these may be defined by including the cyg/hal/
mpc512x_spislave.h header file.

Configuration
Any PSC that is to be used as an SPI slave must be configured into SPISLAVE mode. If this is done then the following
configuration options become available:

CYGHWR_HAL_POWERPC_MPC512X_PSCX_SPI_SLAVE_MAX

This option defines the maximum transfer size that any SPI slave device can handle. This is used to define the size of the
buffers allocated to any SPI slave device. Individual SPI slaves may define FIFO sizes less than or equal to this value.

CYGHWR_HAL_POWERPC_MPC512X_PSCN_SPI_SLAVE_MAX

This option defines the maximum transfer size that the SPI slave device on PSCN can handle. This is used to control the
size of the FIFOs allocated to this device. At initialization an application can choose an actual transfer size equal to or
less than this value.

CYGHWR_HAL_POWERPC_MPC512X_PSCN_SPI_SLAVE_INTR_PRI

This option defines interrupt priority for the SPI slave on PSCN. The priority may range from 0 to 7. The default value
of 8 selects the hardware default level.

Usage
The SPI protocol is highly asymmetric. The timing of when a transfer starts, the frequency at which it is clocked and any gap
between individual bytes is under the control of the master. The slave device has no mechanism for influencing any of this.
For example, with an 8MHz clock the slave would have to supply one byte every microsecond, and the gap between bytes
is only 125ns. In a processor that has many other demands on its time, this kind of latency is hard to guarantee. Therefore,
the SPI slave support provided makes use of the hardware characteristics to avoid any software being involved in the main
part of an SPI transfer.

The SPI slave support makes use of the hardware FIFOs associated with each PSC. By pre-loading the transmit FIFO with data
and keeping the transfer size to less than the FIFO size, the entire transfer can occur without software involvement. Software
only needs to get involved at the end of the transfer, to empty the data sent by the master from the receive FIFO, and to load
data for the next transfer into the transmit FIFO. To make this work, all transfers must be less than the size configured for the
FIFOs, and all transfers must be of the same pre-defined size.

An SPI slave PSC is initialized by calling hal_mpc512x_spi_slave_init(). The psc parameter identifies the PSC
to be initialized, which must have been configured in SPISLAVE mode. The tfr_size parameter defines the transfer size

3390

MPC512X Variant Support

to be used, and must be less than or equal to this PSC's maximum transfer size. rx_callback is a pointer to a function that
will be called when data is available and user_data is a user-supplied value. The flags parameter contains configuration
flags, at present these can be used to set the SPI CPHA and CPOL parameters used to control data sampling and clocking.

On return the init function will return a pointer to a hal_mpc512x_spi_slave structure which is used in the other API calls.
If the initialization fails for some reason, NULL is returned. After a successful initialization, the SPI slave is ready for the
master to initiate a transfer.

When the master performs a transfer, bytes will be clocked in to the receive FIFO and bytes will be clocked out of the transmit
FIFO. Initialization will have pre-primed the transmit FIFO with tfr_size zeroes, so on the first transfer the master can only
send data to the slave. Once the transfer is complete the PSC will raise an interrupt and call the rx_callback() function.
This will be provided with a pointer to a buffer containing the received data. The user_data may be accessed via the slave
pointer. This function is called from DSR mode, so should not call any functions that potentially cause a context switch;
generally it should use a semaphore or other synchronization object to wake up a thread to perform any further processing. The
receive buffer will be overwritten by the next transfer, so should be copied out to private memory if it needs to be preserved.

To supply data to be sent during the next transfer, the user should call hal_mpc512x_spi_slave_tx(). The buf ar-
gument points to tfr_size bytes to be sent. There is sufficient buffering for a single pending transfer, in addition to the
contents of the FIFO, so this function may be called before the previous transfer completes. On completion of the transfer,
the transmit FIFO will be filled from the pending buffer. If the pending buffer is already full when this function is called the
thread will be made to wait until the buffer is empty.

The following code (with some irrelevant details omitted) gives the basic outline of how a dedicated SPI slave might be
structured:

// Omitted: standard headers

#include <cyg/hal/mpc512x_spislave.h>

#define PSC 3
#define TFR_SIZE 32

cyg_sem_t sem;

cyg_uint8 tx_buf[CYGHWR_HAL_POWERPC_MPC512X_PSCX_SPI_SLAVE_MAX];
cyg_uint8 rx_buf[CYGHWR_HAL_POWERPC_MPC512X_PSCX_SPI_SLAVE_MAX];

// SPI slave callback
void rx_callback(hal_mpc512x_spi_slave *slave, cyg_uint8 *buf)
{
 // Copy received data to private buffer
 memcpy(rx_buf, buf, TFR_SIZE);

 // Wake up thread
 cyg_semaphore_post(&sem);
}

// Entry function for SPI slave handling thread
// Omitted: thread creation
void spi_slave(cyg_addrword_t arg)
{
 hal_mpc512x_spi_slave *slave;

 // Initialize semaphore
 cyg_semaphore_init(&sem, 0);

 // Initialize SPI slave on the PSC
 slave = hal_mpc512x_spi_slave_init(PSC,
 TFR_SIZE,
 HAL_SPI_SLAVE_CPHA0|HAL_SPI_SLAVE_CPOL0,
 &rx_callback,
 NULL);

 // Omitted: raise error on slave == NULL

 // Loop forever handling transfers
 while(1)
 {

3391

MPC512X Variant Support

 // Wait for a transfer to complete
 cyg_semaphore_wait(&sem);

 // Omitted: deal with received data.

 // Omitted: create transmit data for next transfer.

 // Queue up for next transfer
 hal_mpc512x_spi_slave_tx(slave, tx_buf);
 }
}

A test program in the ADS512101 board HAL (the only board on which this device could be tested) demonstrates the use of
the SPI slave support in a real program.

3392

Part LXXXV. SH Architecture

Table of Contents
354. Renesas SDK7780 Development Board Support .. 3395

Overview ... 3396
Setup .. 3397
Configuration ... 3401
The HAL Port .. 3403

355. SuperH SH4-202 MicroDev Board Support .. 3405
Overview ... 3406
Setup .. 3407
Configuration ... 3411
The HAL Port .. 3413

356. STMicroelectronics ST40 Evaluation Board Support .. 3415
Overview ... 3416
Setup .. 3417
Configuration ... 3421
The HAL Port .. 3423

3394

Chapter 354. Renesas SDK7780
Development Board Support

3395

Renesas SDK7780 Development Board Support

Name
eCos Support for the Renesas SDK7780 Development Board — Overview

Description
The Renesas SDK7780 Development Board (henceforth just "SDK7780") has an SH7780 processor, 128MB of external
SDRAM, 128MB of external flash memory, an SMSC LAN91C111 ethernet controller with integrated PHY, two 9-pin SCIF
serial interfaces plus required support chips for all the on-chip peripherals.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The SDK7780 contains two banks of two Spansion S29GL256M flash parts. The banks may be swapped between CS0 and CS1
by SW4-1. Bank A contains ETS and the TFTP bootloader and is left alone. Bank B contains RedBoot which is usually installed
by the bootloader. Flipping SW4-1 causes the system to boot from Bank B. Only Bank B, accessed via CS0, is managed by
eCos. Bank A is left untouched to preserve ETS and allow RedBoot to be reprogrammed. In a typical setup, the first two flash
blocks (256K bytes) are reserved for use for the ROM RedBoot image. The topmost block is used to manage the flash and hold
RedBoot fconfig values. The remaining blocks between 0x80040000 and 0x83FDFFFF can be used by application code.

The board is fitted with a JTAG socket allowing use of the E10A JTAG interface to perform hardware debugging. At present
there is no GDB support for this device, howver it may be used from HEW to debug application in ROM or loaded via serial
or ethernet.

There is a serial driver CYGPKG_DEVS_SERIAL_SH_SCIF which supports the two on-chip serial devices. Either of these
devices can be used by RedBoot for communication with the host. If a device is needed by the application, either directly
or via the serial driver, then it cannot also be used for RedBoot communication. Either the alternative serial port, or another
communication channel such as ethernet should be used instead. The serial driver package is loaded automatically when con-
figuring for the sdk7780 target.

There is an ethernet driver CYGPKG_DEVS_ETH_SH_SDK7780 which provided configuration parameters for the onboard
ethernet device. The device itself is supported by the CYGPKG_DEVS_ETH_SMSC_LAN91CXX package. These drivers are
also loaded automatically when configuring for the sdk7780 target, although not activated until generic ethernet package sup-
port is also added.

There is a watchdog driver CYGPKG_DEVICES_WATCHDOG_SH_SH4A. This driver is also loaded automatically when con-
figuring for the SDK7780 target.

There is a driver for the on-chip real-time clock (RTC) at CYGPKG_DEVICES_WALLCLOCK_SH3. This driver is also loaded
automatically when configuring for the SDK7780 target.

eCos manages the on-chip interrupt controller. Timer 0 is used to implement the eCos system clock, and timer 1 is used to
implement a microsecond delay function. Timer 2 is unused and left for the application. Other on-chip devices (FEMI, EMI,
LMI, INTC, TMU, CAC, UBC, CPG) are initialized only as far as is necessary for eCos to run. Other devices (eg DMAC,
MMCIF, HAC, SSI, FLCTL etc) are not touched.

Tools
The SDK7780 port is intended to work with GNU tools configured for an sh-elf target. The original port was done using sh-
elf-gcc version 3.4.4, sh-elf-gdb version 6.3, and binutils version 2.16.

3396

Renesas SDK7780 Development Board Support

Name
Setup — Preparing the SDK7780 board for eCos Development

Overview
In a typical development environment, the SDK7780 board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger sh-elf-gdb. Preparing the board
therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROM.ecm redboot_ROM.bin

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot_RAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. This baud rate can be changed
via the configuration option CYGNUM_HAL_SH_SH4_SCIF_BAUD_RATE and rebuilding RedBoot. RedBoot also supports
ethernet communication and flash management.

Initial Installation

Flash Installation

This process makes use of the ETS software programmed into flash bank A in order to write RedBoot into flash bank B. To
do this you will need to set up a TFTP server on a machine that is accessible from the development board.

Before downloading and programming the RedBoot image, ETS and the TFTP Bootloader must be configured. Full details for
doing this are available in the documentation that accompanies the board. The following steps should be read in conjunction
with that.

The first step is to connect an RS232 cable between the upper of the SDK7780 serial ports and the host PC. Next start a
terminal emulation application such as HyperTerminal or minicom on the host PC and set the serial communication parameters
to 115200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking). Also connect an ethernet cable that
is on the same network as the TFTP server.

Apply power to the SDK7780 and press the power button. The board should boot automatically into ETS and after an initial
report of the board configuration should display the ETS MAIN MENU. Select option 2 Boot Configuration Menu and
then option 1 Change Configuration. Now select option 1 TFTP and accept the default 5s delay. Check that SW4-4&5
are off and answer Y to the remaining questions. Once the process is finished, reset the board to restart.

On restart the board will boot into the TFTP Boot Loader after a 5s delay. It will immediately drop into a configuration dialog.
Decide whether to use DHCP or static IP. Static IP is recommended for which you will need to enter this board's IP address
and that of the TFTP server. For the kernel filename enter redboot.bin; answer Y to download to flash bank B; enter B
for the file format; accept the default load address; answer N for the disk image and command line; enter F to select the flash
boot option and Y for SW4-4 state. The output should look something like this:

Press 'SPACE Bar' key or wait for 5 seconds to enter TFTP Boot Loader.

Press any other key to start ETS.

Starting TFTP Boot Loader...

Renesas SDK7780 (Little Endian Mode)
SH TFTP Bootloader Version 2.30
 Copyright (C) 2000 Free Software Foundation, Inc.
 Copyright (C) 2004 Renesas Technology Europe Limited

3397

Renesas SDK7780 Development Board Support

This software comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome to redistribute it under
under the terms of the GNU Lesser General Public License version 2.1 or later.

Platform MAC Address - 0000:87D6:3EB2

No configuration found in flash, entering setup...

Setup TFTP Bootloader Configuration:

At any prompt press 'Enter' to leave unchanged or 'Esc' key to quit.

Use DHCP to setup network?(Default=Static IP)[Y/N]: n

Enter board IP address [NNN.NNN.NNN.NNN] : 10.0.3.2
Enter server IP address [NNN.NNN.NNN.NNN] : 10.0.1.2
Enter kernel (user program) filename : redboot.bin
Download to flash Bank B?(Default=Bank A) [Y/N] : y
Download file format Binary/S-record? [B/S] : b
Binary load address [default=H'88210000] :
Load a disk image? [Y/N] : n
Setup kernel command line? [Y/N] : n
Boot option: TFTP, Flash, Don't Boot(TFTP Bootloader Main Menu)? [T/F/N]: f

Is flash Bank A write protect switch SW4-4 = 'OFF'? [Y/N] : y

Updating Boot Flash - Do not switch-off, reset or disconnect until complete.
Please wait, saving the new Boot configuration...

Successfully saved new TFTP Bootloader configuration.

TFTP Bootloader Main Menu

 1. Boot from network
 2. Boot from flash
 3. Boot from FAT32 format MMC card
 4. Load program into flash
 5. Display configuration
 6. Change configuration
Command:>

The bootloader will now drop into its main menu. We are now ready to download and program the RedBoot image. Locate
the file redboot_ROM.bin in the release loaders directory and copy it to the TFTP server's directory naming it red-
boot.bin. At the TFTP bootloader select option 4 which should it to fetch the redboot.bin file from the server. Answer
Y for the SW4-5 state and wait for the flash to be written. The output should look something like this:

TFTP Bootloader Main Menu

 1. Boot from network
 2. Boot from flash
 3. Boot from FAT32 format MMC card
 4. Load program into flash
 5. Display configuration
 6. Change configuration
Command:>4
Board IP address : 10.0.3.2
Server IP address: 10.0.1.2
Downloading redboot.bin to flash bank B
Downloaded 175144 bytes, crc 471083609

Is flash Bank B write protect switch SW4-5 = 'OFF'? [Y/N] : y
Flash: S29GL256M (67108864 bytes)
Sectors: 1024 (131072 bytes each)
Writing to flash...
b 00000001 add A4000000

Toggle flash bank select switch to boot from bank B

TFTP Bootloader Main Menu

3398

Renesas SDK7780 Development Board Support

 1. Boot from network
 2. Boot from flash
 3. Boot from FAT32 format MMC card
 4. Load program into flash
 5. Display configuration
 6. Change configuration
Command:>

Toggle SW4-1 to select bank B for booting and reset the board. The following output should appear:

+**Warning** FLASH configuration checksum error or invalid key
Use 'fconfig -i' to [re]initialize database
Ethernet eth0: MAC address 00:00:d6:87:b2:3e
IP: 10.0.2.4/255.0.0.0, Gateway: 10.0.0.3
Default server: 0.0.0.0

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 13:52:55, Jan 22 2007

Platform: Renesas SDK7780 (SH7780)
Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Copyright (C) 2003, 2004, 2005, 2006, 2007 eCosCentric Limited

RAM: 0x88000000-0x8a000000, [0x8800b758-0x89fc1000] available
FLASH: 0x80000000-0x83ffffff, 512 x 0x20000 blocks
RedBoot>

At this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration check-
sum error is expected. To perform this initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Erase from 0x83fe0000-0x83ffffff: .
... Program from 0x89fd0000-0x89ff0000 to 0x83fe0000: .
RedBoot>

At the end, the block of flash at location 0x83FE0000 holds information about the various flash blocks, allowing other flash
management operations to be performed.

Flash Configuration

The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address:
Console baud rate: 115200
DNS server IP address:
Set eth0 network hardware address [MAC]: false
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x83fe0000-0x83ffffff: .
... Program from 0x89fd0000-0x89ff0000 to 0x83fe0000: .
RedBoot>

For most of these configuration variables, the default value is correct, although you may wish to provide a default server used
for TFTP retrieval, and default DNS server. If there is no suitable BOOTP or DHCP service running on the local network then
BOOTP should be disabled and, instead, RedBoot will prompt for a fixed IP address, netmask, and addresses for the local
gateway and DNS server.

Once you have set appropriate RedBoot flash configuration values you may reset the board. When RedBoot issues its prompt,
it is ready to accept connections from sh-elf-gdb, allowing applications to be downloaded and debugged. Connections can be
made via either serial port, or by TCP to port 9000 (or an alternative port if manually set by the fconfig command).

3399

Renesas SDK7780 Development Board Support

Occasionally it may prove necessary to update the installed RedBoot image. This can be done simply by repeating the above
process by toggling SW4-1 back to boot ETS and the TFTP bootloader. Alternatively, the existing RedBoot install can be used
to load the RAM-resident version in which case the standard RAM RedBoot build can be used. See the RedBoot documentation
for instruction on how to do this.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild the RAM version
of RedBoot are:

$ mkdir redboot_ram
$ cd redboot_ram
$ ecosconfig new sdk7780 redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/sh/sdk7780/VERSION/misc/redboot_RAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding the ROM version involve basically the same process. The ROM version uses the file redboot_ROM.ecm and
generates a file named redboot.bin. Make sure you don't mix up the different redboot.bin files; rename them to something
more memorable such as redboot_RAM.bin and redboot_ROM.bin.

3400

Renesas SDK7780 Development Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The SDK7780 platform HAL package is loaded automatically when eCos is configured for an sdk7780 target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The SDK7780 platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash at location 0x80000000/0xA0000000 and boots from that location. sh-elf-gdb is then used to load a RAM
startup application into memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By
default the application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including
diagnostic output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0x80000000/0x-
A0000000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then serial port COM 0 will be claimed for HAL
diagnostics.

Flash Driver
The SDK7780 board contains 128M bytes of Flash, in two banks of two Spansion S29GL256M parts in parallel. Each part
consists of 512 blocks of 64KB each, but since two parts are used in parallel they are viewed as 512 blocks of 128KB each.
Flash bank A is not touched by eCos, so effectively the board is viewed as having a single 64MB bank of flash.

These are AMD 29xxxxx compatible parts, and as such the CYGPKG_DEVS_FLASH_AMD_AM29XXXXX_V2 package con-
tains all the code necessary to support these parts. The SDK7780 platform HAL contains definitions that customize the driver
to the SDK7780 board.

Ethernet Driver
The SDK7780 board contains an SMSC LAN91C111 ethernet device. The CYGPKG_DEVS_ETH_SMSC_LAN91CXX package
contains all the code necessary to support this part and the CYGPKG_DEVS_ETH_SH_SDK7780 package contains definitions
that customize the driver to the SDK7780 board.

The ethernet will automatically auto-negotiate 10Mbps or 100Mbps operation with its link peer, as well as full duplex or half
duplex mode.

The driver usually reads the MAC address (ESA) from the EEPROM connected to the MAC. Alternatively an address can be set
in the CDL configuration in the component CYGSEM_DEVS_ETH_SH_SDK7780_ETH0_SET_ESA within the SDK7780

3401

Renesas SDK7780 Development Board Support

ethernet driver; or an address can be set in the Flash configuration of RedBoot using the fconfig command. If both are set,
the Flash configuration is used in preference.

PCI Driver
The SDK7780 board is fitted with four 3V PCI slots, which are accessed via the PCIC funtional unit on the SH7780. eCos
supports PCI devices inserted in these slots and if the PCI library is selected in the eCos configuration, a driver will usually
call cyg_pci_init() which will automatically configure memory and I/O base address registers, as well as any interrupts
the device requires.

The CPU is able to access the PCI memory space through the memory window at 0xb0000000, and the PCI I/O space through
the memory window at 0xFE200000. PCI bus master devices may access system memory (usually for DMA), at windows
starting at address 0x0 in both memory and I/O PCI spaces.

Note that the PCI INTD line is on a pin shared with the CTS line for SCIF0. If this interrupt is to be used, SW4-8 must be
set to OFF.

SCIF Serial Driver
The SDK7780 board uses the SH7780 internal SCIF serial support Two serial ports are available: SCIF0 which is mapped to
virtual vector channel 0 in the HAL diagnostic driver or "/dev/ser0" in the interrupt-driven driver; and SCIF1 which is
mapped to virtual vector channel 1 and "/dev/ser1". Only SCIF0 supports modem control signals such as those used for
hardware flow control, and SW4-8 must be set to ON for CTS to be routed to the DB9 connector.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

RTC Driver
The SDK7780 board uses the SH7780 internal RTC support. The CYGPKG_DEVICES_WALLCLOCK_SH3 package contains
all the code necessary to support this device. This driver is not active until the generic wallclock device support package,
CYGPKG_IO_WALLCLOCK, is included in the configuration.

Watchdog Driver
The SDK7780 board uses the SH7780 internal watchdog support. The CYGPKG_DEVICES_WATCHDOG_SH_SH4A package
contains all the code necessary to support this device. Within that package the CYGNUM_DEVS_WATCHDOG_ARM_AT91R-
M9200_DESIRED_TIMEOUT_MS configuration option controls the watchdog timeout, and by default will force a reset of the
board upon timeout. This driver is not active until the generic watchdog device support package, CYGPKG_IO_WATCHDOG,
is included in the configuration.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are two flags
specific to this port:

-m4 The sh-elf-gcc compiler supports many variants of the SH architecture, from the SH2
onwards. A -m option should be used to select the specific variant in use, and with
current tools -m4 is the correct option for the SH7780.

3402

Renesas SDK7780 Development Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the SDK7780 hardware, and should be
read in conjunction with that specification. The SDK7780 platform HAL package complements the SH architectural HAL and
the SH4 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external SDRAM and programming the various
internal registers including clocks, EMI and LMI. The values used for most of these registers are assigned fixed values from
a table in the header cyg/hal/platform.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

off-chip Flash This is located at address 0x00000000 of the physical memory space and is therefore accessible
in the P1 region at location 0x80000000. An uncached shadow of this memory is available in
the P2 region at 0xA0000000. The contents of the flash are organized as described earlier.

external SDRAM This is located at address 0x08000000 of the physical memory space and is therefore access-
able in the P1 region at location 0x88000000. An uncached shadow of this memory is avail-
able in the P2 region at 0xA8000000. The first 512 bytes are used for hardware exception vec-
tors. The next 256 bytes are normally used for the eCos virtual vectors, allowing RAM-based
applications to use services provided by the ROM monitor. For ROM startup, all remaining
SDRAM is available. For RAM startup, available SDRAM starts at location 0x88020000, with
the bottom 128Kbytes reserved for use by RedBoot.

on-chip peripherals These are accessible via the P4 region at location 0xE0000000 onwards. The on-chip PCI
controller has apertures into the PCI memory bus at 0xB0000000 and 0xFD000000 in the P2
region, and access to to the PCI IO space at 0xFE200000. Other base addresses of on-chip
peripherals can be found in the SH7780 Hardware Manual.

off-chip peripherals All off-chip peripherals used by eCos are accessed via on-chip bus controllers such as LMI
or PCI. All others are left untouched.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer 0, which
should not be used directly by application code. Timer 1 is used to implement a microsecond resolution busy delay service.
Timers 2 to 5 are not used by eCos so application code is free to manipulate these as required. The actual HAL macros for
managing the clock are provided by the SH architecture processor HAL.

There is a software model of the structure of the SH family clock supply subsystem which performs the correct calculations
to yield not only the inputs for the CPU clock but also the peripheral clocks fed to the serial device, memory controllers and
other devices. The values for the master crystal, the PLL multipliers and various dividers are supplied by the platform HAL.
Some care must be taken in defining these since wrong values will cause the timers and the SCIF baud rate to be miscalculated
(resulting visibly in garbage on the serial output).

The SH7780 extends the SH family clock model by providing a CLOCKGEN subsystem allowing the hardware clock frequency
to be controlled. The CLOCKGENA.PLL1CR register is the primary means to do this, and is initialised by switches 1, 2, 3 and

3403

Renesas SDK7780 Development Board Support

7 on DIP switch block MD_SW. The delivery default settings for these switches is to select clock mode 0 giving a 400MHz
CPU clock, 100MHz local bus and 50MHz peripheral clock.

If the DIP switches are changed from the default then the values of CYGHWR_HAL_SH_OOC_DIVIDER_IFC, CYGH-
WR_HAL_SH_OOC_DIVIDER_BFC and CYGHWR_HAL_SH_OOC_DIVIDER_PFC must be changed to match.

Other Issues
The SDK7780 platform HAL does not affect the implementation of other parts of the eCos HAL specification. The SH4 variant
HAL, and the SH architectural HAL documentation should be consulted for further details.

It should be noted that the floating point support in the SH HAL has a caveat that, if the FPSCR register is changed, it may get
reverted at a later stage by certain operations performed by the GCC compiler. This behaviour is intentional as the alternative
would be to update the GCC compiler's internal state about the FPSCR at every context switch which would be expensive for
a feature that is unlikely to be used frequently. If the FPSCR is to be changed by the application, the developer should call the
function __set_fpscr(int), passing it the new FPSCR value.

3404

Chapter 355. SuperH SH4-202 MicroDev
Board Support

3405

SuperH SH4-202 MicroDev Board Support

Name
eCos Support for the SuperH SH4-202 MicroDev Board — Overview

Description
The SuperH SH4-202 MicroDev board (henceforth just "MicroDev") has an SH4-202 processor, 64MB of external SDRAM,
32MB of external flash memory, an SMSC LAN91C111 ethernet controller and connectors plus required support chips for
all the on-chip peripherals.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of 128 blocks of 256k bytes each. In a typical setup, the first flash block is used for the ROM
RedBoot image and the second is used to store a version of RedBoot that can run out of RAM. The topmost two blocks are
used to manage the flash and hold RedBoot fconfig values. The remaining 124 blocks between 0xA0080000 and 0xA1F7FFFF
can be used by application code.

The board is fitted with a PLCC socket suitable for an EEPROM (or PROM) such as the 1Mbit ST M29WO10B. This is enabled
by toggling two DIP switches, after which the EEPROM is mapped into the same address as the flash memory. Therefore, the
flash is not accessible if booting from the EEPROM.

There is a serial driver CYGPKG_DEVS_SERIAL_SH_SCIF which supports the on-chip serial device. This device can be
used by RedBoot for communication with the host. If this device is needed by the application, either directly or via the serial
driver, then it cannot also be used for RedBoot communication. Another communication channel such as ethernet should be
used instead. The serial driver package is loaded automatically when configuring for the MicroDev target.

There is an ethernet driver CYGPKG_DEVS_ETH_SH_MICRODEV for the on-chip ethernet device. This driver is also loaded
automatically when configuring for the MicroDev target.

eCos manages the on-chip interrupt controller. Timer 0 is used to implement the eCos system clock, and timer 1 is used to
implement a microsecond delay function. Timer 2 is unused and left for the application. Other on-chip devices (FEMI, EMI,
INTC, TMU, CAC, UBC) are initialized only as far as is necessary for eCos to run. Other devices (eg RTC, DMAC, etc) are
not touched.

Tools
The MicroDev port is intended to work with GNU tools configured for an sh-elf target. The original port was done using sh-
elf-gcc version 3.2.1, sh-elf-gdb version 5.3, and binutils version 2.13.1.

3406

SuperH SH4-202 MicroDev Board Support

Name
Setup — Preparing the MicroDev board for eCos Development

Overview
In a typical development environment, the MicroDev board boots from flash into the RedBoot ROM monitor. eCos applica-
tions are configured for RAM startup and then downloaded and run on the board via the debugger sh-elf-gdb. Preparing the
board therefore usually involves programming a suitable RedBoot image into flash memory. Alternatively RedBoot may be
programmed into a PLCC EEPROM and inserted into socket U21, although in that case, the flash memory is not accessible.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from the
board's flash

redboot_ROM.ecm redboot_ROM.bin

EEPROM RedBoot running from the
board's socketed EEPROM

redboot_EEPROM.ecm redboot_EEPROM.bin

RAM Used for upgrading ROM
version

redboot_RAM.ecm redboot_RAM.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 38400 baud. This baud rate can be changed
via the configuration option CYGNUM_HAL_SH_SH4_SCIF_BAUD_RATE and rebuilding RedBoot. RedBoot also supports
ethernet communication and flash management.

Initial Installation

Flash Installation

This process assumes that the board is connected to a SuperH Micro Probe. The Micro Probe should be set up as described
in Appendix A of the "SH4 Development Tools User Guide". You should also have access to the SuperH development tools
since it is necessary to use the version of GDB that comes with those tools to access the Micro Probe, sh-elf-gdb will not work.

Programming the RedBoot ROM monitor into flash memory requires an application that can manage flash blocks. RedBoot
itself has this capability. Rather than have a separate application that is used only for flash management during the initial
installation, a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used to load
the normal flash-resident version of RedBoot and program it into the flash.

The first step is to connect an RS232 null modem cable between the MicroDev serial port and the host PC. Next start a terminal
emulation application such as HyperTerminal or minicom on the host PC and set the serial communication parameters to 38400
baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking).

Now run the sh4gdb command, giving it the name of the RAM redboot ELF file, connect to the Micro Probe, load the executable
and run it. The entire session should look like this:

$ sh4gdb redboot_RAM.elf
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sh-superh-elf"...
(gdb) sh4si superh
The target is assumed to be little endian
The target architecture is assumed to be sh4
0xa0000000 in ?? ()
(gdb) load
Loading section .vectors, size 0x9e0 lma 0x88010000

3407

SuperH SH4-202 MicroDev Board Support

Loading section .text, size 0x1ab20 lma 0x880109e0
Loading section .rodata, size 0x3e6c lma 0x8802b500
Loading section .data, size 0xf30 lma 0x8802f370
Start address 0x88010000, load size 131740
Transfer rate: 351306 bits/sec, 433 bytes/write.
(gdb) cont
Continuing.

The required redboot_RAM.elf file is normally supplied with the eCos release in the loaders directory. If it needs to
be rebuilt then instructions for this are supplied below.

If this sequence fails in any way then check the setup and connections of the Micro Probe. It if is successful then you should
see the following printed out on the serial line:

+FLASH configuration checksum error or invalid key
... waiting for BOOTP information
Ethernet eth0: MAC address 00:08:ee:00:0b:37
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 14:28:55, Sep 8 2003

Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x88000000-0x8c000000, 0x8812cca0-0x8bfb1000 available
FLASH: 0xa0000000 - 0xa2000000, 128 blocks of 0x00040000 bytes each.
RedBoot>

If the ethernet cable is not plugged in there may be a fairly long wait after the "... waiting for BOOTP information" message. At
this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration checksum
error is expected. To perform this initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
... Unlock from 0xa1fc0000-0xa2000000: .
... Erase from 0xa1fc0000-0xa2000000: .
... Program from 0x8bfbf000-0x8bfff000 at 0xa1fc0000: .
... Lock from 0xa1fc0000-0xa2000000: .
RedBoot>

At the end, the block of flash at location 0xA1FC0000 holds information about the various flash blocks, allowing other flash
management operations to be performed. The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Console baud rate: 38400
DNS server IP address:
Set eth0 network hardware address [MAC]: false
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Unlock from 0xa1f80000-0xa1f81000: .
... Erase from 0xa1f80000-0xa1f81000: .
... Program from 0x8bfb2000-0x8bfb3000 at 0xa1f80000: .
... Lock from 0xa1f80000-0xa1f81000: .
RedBoot>

For most of these configuration variables, the default value is correct. If there is no suitable BOOTP service running on the local
network then BOOTP should be disabled and, instead, RedBoot will prompt for a fixed IP address, netmask, and addresses
for the local gateway and DNS server.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work, it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m xmodem -b %{freememlo}

3408

SuperH SH4-202 MicroDev Board Support

The file redboot_ROM.bin should now be uploaded using the terminal emulator. The file is a raw binary and should be
transferred using the X-modem protocol.

Raw file loaded 0x8812d000-0x8814e32f, assumed entry at 0x8812d000
xyzModem - CRC mode, 1064(SOH)/0(STX)/0(CAN) packets, 2 retries
RedBoot>

Once RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0xa0000000-0xa0040000: .
... Program from 0x8812d000-0x8816d000 at 0xa0000000: .
... Unlock from 0xa1fc0000-0xa2000000: .
... Erase from 0xa1fc0000-0xa2000000: .
... Program from 0x8bfbf000-0x8bfff000 at 0xa1fc0000: .
... Lock from 0xa1fc0000-0xa2000000: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0xA0000000, and the flash info block at
0xA1FC0000 has been updated. The initial setup is now complete. Power off the Micro Probe and reset the MicroDev board
using S6. You should see the following:

+... waiting for BOOTP information
Ethernet eth0: MAC address 00:08:ee:00:0b:37
Can't get BOOTP info for device!

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 14:22:57, Sep 8 2003

Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.

RAM: 0x88000000-0x8c000000, 0x8800db98-0x8bfb1000 available
FLASH: 0xa0000000 - 0xa2000000, 128 blocks of 0x00040000 bytes each.
RedBoot>

When RedBoot issues its prompt, it is also ready to accept connections from sh-elf-gdb, allowing applications to be downloaded
and debugged.

Occasionally it may prove necessary to update the installed RedBoot image. This can be done simply by repeating the above
process, using the Micro Probe. Alternatively, the existing RedBoot install can be used to load the RAM-resident version.
You can even install the RAM resident RedBoot in the "RedBoot[backup]" flash region. See the RedBoot documentation for
instruction on how to do this.

EEPROM Installation

The board has a 32-pin PLCC socket suitable for an EEPROM, silk screened U21. To use RedBoot running from EEPROM, you
must first program the file redboot_EEPROM.bin (normally supplied with the eCos release in the loaders directory) into
the EEPROM using an appropriate programmer. No byte swapping is required. If RedBoot needs to be rebuilt, then instructions
for this are supplied below, and the import file redboot_EEPROM.ecm should be used.

To configure the board to boot from the EEPROM instead of flash, you must power off the board and change the following DIP
switch settings, which may both be found on DIP switch 2 (silk screened S2): switch 2 (silk screened FEMI SIZ1) should be
set to ON, which will change the access width for FEMI area 0 from 32-bit to 8-bit; switch 6 (silk screened FPGA SW3) should
be set to OFF to configure the FPGA to map memory accesses for FEMI area 0 to point at the EEPROM instead of flash. In
this mode, it is no longer possible to access flash memory as the EEPROM is mapped into the same area in the address space.

Note that it is usually preferable to boot from flash instead of EEPROM as flash is accessed 32-bits at a time, whereas the
EEPROM is accessed 8-bits at a time, which therefore affects performance as this requires 4 times as many read cycles.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. The steps needed
to rebuild the RAM version of RedBoot are:

3409

SuperH SH4-202 MicroDev Board Support

$ mkdir redboot_ram
$ cd redboot_ram
$ ecosconfig new sh4_202_md redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/sh/sh4_202_md/v2_0_2/misc/redboot_RAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding the ROM versions involves basically the same process. The ROM version uses the file redboot_ROM.ecm and
generates a file redboot.bin. Make sure you don't mix up the different redboot.bin files; rename them to something more
memorable such as redboot_RAM.bin and redboot_ROM.bin.

3410

SuperH SH4-202 MicroDev Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The MicroDev platform HAL package is loaded automatically when eCos is configured for an sh4_202_md target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The MicroDev platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash at location 0xA0000000 and boots from that location. sh-elf-gdb is then used to load a RAM startup application
into memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By default the
application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including diagnostic
output.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0xA0000000.
The application will be self-contained with no dependencies on services provided by other software. eCos startup code
will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup.

If the application does not rely on a ROM monitor for diagnostic services then the serial port will be claimed for HAL diag-
nostics.

Flash Driver
The MicroDev board contains 32Mb of Intel StrataFlash, specifically, two E28F128 parts in parallel. The CYGP-
KG_DEVS_FLASH_STRATA package contains all the code necessary to support these parts and the CYGPKG_DE-
VS_FLASH_SH_MICRODEV package contains definitions that customize the driver to the MicroDev board.

Note that if booting from EEPROM instead of flash, the flash driver will not be able to detect or use the flash parts.

Ethernet Driver
The MicroDev board contains an SMSC LAN91C111 ethernet device. The CYGPKG_DEVS_ETH_SMSC_LAN91CXX pack-
age contains all the code necessary to support this part and the CYGPKG_DEVS_ETH_SH_MICRODEV package contains de-
finitions that customize the driver to the MicroDev board.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

3411

SuperH SH4-202 MicroDev Board Support

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are two flags
specific to this port:

-m4 The sh-elf-gcc compiler supports many variants of the SH architecture, from the SH2
onwards. A -m option should be used to select the specific variant in use, and with
current tools -m4 is the correct option for the SH4-202.

3412

SuperH SH4-202 MicroDev Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the MicroDev hardware, and should be
read in conjunction with that specification. The MicroDev platform HAL package complements the SH architectural HAL and
the SH4 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external DRAM and programming the various
internal registers. The values used for most of these registers are assigned fixed values from a table in the header cyg/hal/
platform.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

off-chip Flash This is located at address 0x00000000 of the physical memory space and is therefore accessible
in the P1 region at location 0x80000000. An uncached shadow of this memory is available in
the P2 region at 0xA0000000. The contents of the flash are organized as described earlier.

off-chip EEPROM If selected by the DIP switches, this occupies the same addresses as the off-chip flash, and
the flash is no longer visible.

external SDRAM This is located at address 0x08000000 of the physical memory space and is therefore access-
able in the P1 region at location 0x88000000. An uncached shadow of this memory is avail-
able in the P2 region at 0xA8000000. The first 256 bytes are used for hardware exception vec-
tors. The next 256 bytes are normally used for the eCos virtual vectors, allowing RAM-based
applications to use services provided by the ROM monitor. For ROM startup, all remaining
SDRAM is available. For RAM startup, available SDRAM starts at location 0x80100000, with
the bottom 1MB reserved for use by RedBoot.

on-chip peripherals These are accessible via the P4 region at location 0xE0000000 onwards.

off-chip peripherals The ethernet device is located at 0xA7500000. The FPGA interrupt controller is located at
0x06110000. These are the only off-chip peripherals accessed by eCos. All others are left
untouched.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer 0, which
should not be used directly by application code. Timer 1 is used to implement a microsecond resolution busy delay service.
Timer 2 is not used by eCos so application code is free to manipulate this as required. The actual HAL macros for managing
the clock are provided by the SH architecture processor HAL.

There is a software model of the structure of the SH family clock supply subsystem which performs the correct calculations to
yield not only the inputs for the CPU clock but also the peripheral clocks fed to the serial device, memory controllers and other
devices. The values for the master crystal, the PLL multipliers and various dividers are supplied by the platform HAL. Some
care must be taken in defining these since wrong values will cause the timers and the SCIF baud rate to be miscalculated. If
the OSCAR chip switches are changed from the default then the value of CYGHWR_HAL_SH_OOC_XTAL must be changed
to match.

3413

SuperH SH4-202 MicroDev Board Support

Other Issues
The MicroDev platform HAL does not affect the implementation of other parts of the eCos HAL specification. The SH4 variant
HAL, and the SH architectural HAL documentation should be consulted for further details.

It should be noted that the floating point support in the SH HAL has a caveat that, if the FPSCR register is changed, it may get
reverted at a later stage by certain operations performed by the GCC compiler. This behaviour is intentional as the alternative
would be to update the GCC compiler's internal state about the FPSCR at every context switch which would be expensive for
a feature that is unlikely to be used frequently. If the FPSCR is to be changed by the application, the developer should call the
function __set_fpscr(int), passing it the new FPSCR value.

3414

Chapter 356. STMicroelectronics ST40
Evaluation Board Support

3415

STMicroelectronics ST40 Evaluation Board Support

Name
eCos Support for the STMicroelectronics ST40 Evaluation Board — Overview

Description
The STMicroelectronics ST40 Evaluation Board (henceforth just "ST40EB") has an ST40RA166XH processor, 32MB of
external SDRAM, 4MB of external flash memory, an STE10/100A ethernet controller with integrated PHY (Intel i21143/DEC
Tulip compatible), two 9-pin SCIF serial interfaces, LCD display panel and connectors plus required support chips for all the
on-chip peripherals.

For typical eCos development, a RedBoot image is programmed into the flash memory, and the board will boot this image from
reset. RedBoot provides gdb stub functionality so it is then possible to download and debug stand-alone and eCos applications
via the gdb debugger. This can happen over either a serial line or over ethernet.

Supported Hardware
The flash memory consists of two ST M29W160DB parts in parallel, giving a total of 4M bytes of external Flash. In a typical
setup, the first four flash blocks (256K bytes) are reserved for use for the ROM RedBoot image and the subsequent two are
used to store a version of RedBoot that can run out of RAM. The topmost block is used to manage the flash and hold RedBoot
fconfig values. The remaining blocks between 0xA0080000 and 0xA03DFFFF can be used by application code.

The board is fitted with a HUDI socket allowing use of the ST40-Connect/SH JTAG interface to perform hardware debugging.
To use this, a set of GDB macro files are provided with a GNU GDB toolset provided by ST, and to connect to the board in
this case the command to be used from the GDB prompt is:

(gdb) mb360 XX.XX.XX.XX

XX.XX.XX.XX is the IP address (or DNS name) allocated to the ST40-Connect.

Images loaded in this way must be for RAM startup, and should ensure that the eCos CDL configuration option "Work with a
ROM monitor" (CYGSEM_HAL_USE_ROM_MONITOR) is disabled. This happens automatically for RedBoot.

There is a serial driver CYGPKG_DEVS_SERIAL_SH_SCIF which supports the two on-chip serial devices. Either of these
devices can be used by RedBoot for communication with the host. If a device is needed by the application, either directly
or via the serial driver, then it cannot also be used for RedBoot communication. Either the alternative serial port, or another
communication channel such as ethernet should be used instead. The serial driver package is loaded automatically when con-
figuring for the st40raeb target.

There is an ethernet driver CYGPKG_DEVS_ETH_SH_ST40EB for the ST40EB's onboard ethernet device. The device is
accessed via the PCI bus. This driver is also loaded automatically when configuring for the st40raeb target, although not
activated until generic ethernet package support is also added.

eCos manages the on-chip interrupt controller. Timer 0 is used to implement the eCos system clock, and timer 1 is used to
implement a microsecond delay function. Timer 2 is unused and left for the application. Other on-chip devices (FEMI, EMI,
LMI, INTC, TMU, CAC, UBC, CPG) are initialized only as far as is necessary for eCos to run. Other devices (eg RTC, DMAC,
ST expansion module interface (STEMI) etc) are not touched.

Tools
The ST40EB port is intended to work with GNU tools configured for an sh-elf target. The original port was done using sh-elf-
gcc version 3.2.1, sh-elf-gdb version 5.3, and binutils version 2.13.1.

3416

STMicroelectronics ST40 Evaluation Board Support

Name
Setup — Preparing the ST40EB board for eCos Development

Overview
In a typical development environment, the ST40EB board boots from flash into the RedBoot ROM monitor. eCos applications
are configured for RAM startup and then downloaded and run on the board via the debugger sh-elf-gdb. Preparing the board
therefore usually involves programming a suitable RedBoot image into flash memory.

The following RedBoot configurations are supported:

Configuration Description Use File

ROM RedBoot running from
the board's flash

redboot_ROM.ecm redboot_ROM.bin

RAM Used for upgrading
ROM version

redboot_RAM.ecm redboot_RAM.bin

RAM_NOETH Used for programming
RedBoot the first time

redboot_RAM_NOETH.ecm redboot_RAM_NOETH.bin

For serial communications, all versions run with 8 bits, no parity, and 1 stop bit at 115200 baud. This baud rate can be changed
via the configuration option CYGNUM_HAL_SH_SH4_SCIF_BAUD_RATE and rebuilding RedBoot. RedBoot also supports
ethernet communication and flash management.

Initial Installation

Flash Installation

This process assumes that the board is connected to an ST40-Connect/SH. The ST40-Connect should be set up as described in
the ST Micro Connect Manual. You should also have access to the SuperH development tools since it is necessary to use the
version of GDB that comes with those tools to access the ST40-Connect, sh-elf-gdb will not work.

Programming the RedBoot ROM monitor into flash memory requires an application that can manage flash blocks. RedBoot
itself has this capability. Rather than have a separate application that is used only for flash management during the initial
installation, a special RAM-resident version of RedBoot is loaded into memory and run. This version can then be used to load
the normal flash-resident version of RedBoot and program it into the flash.

The first step is to connect an RS232 null modem cable between either of the ST40EB serial ports and the host PC. Next start a
terminal emulation application such as HyperTerminal or minicom on the host PC and set the serial communication parameters
to 115200 baud, 8 data bits, no parity, 1 stop bit (8N1) and no flow control (handshaking).

Now run the sh4gdb command, giving it the name of the RAM_NOETH redboot ELF file, connect to the ST40-Connect, load
the executable and run it. The entire session should look like this:

$ sh4gdb -nw redboot_RAM_NOETH.elf
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host=i686-pc-linux-gnu --target=sh-superh-elf"...
(gdb) mb360 172.31.1.90
The target is assumed to be little endian
The target architecture is assumed to be sh4
0xa0000000 in ?? ()
(gdb) load
Loading section .vectors, size 0x9d0 lma 0x88020000
Loading section .text, size 0x1d650 lma 0x880209d0
Loading section .rodata, size 0x4364 lma 0x8803e020
Loading section .data, size 0x12b8 lma 0x880423a0

3417

STMicroelectronics ST40 Evaluation Board Support

Start address 0x88020000, load size 144956
Transfer rate: 1159648 bits/sec, 3814 bytes/write.
(gdb) cont
Continuing.

The required redboot_RAM_NOETH.elf file is normally supplied with the eCos release in the loaders directory. If it
needs to be rebuilt then instructions for this are supplied below. The RAM_NOETH build is used this time instead of plain
RAM as it does not contain any PCI or ethernet support. PCI support has been observed to cause complications with using
the ST40-Connect.

If this sequence fails in any way then check the setup and connections of the ST40-Connect. It if is successful then you should
see the following printed out on the serial line:

+FLASH configuration checksum error or invalid key

RedBoot(tm) bootstrap and debug environment [RAM]
Non-certified release, version UNKNOWN - built 09:27:11, Sep 20 2004

Platform: ST40 Eval Board (ST40)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x88000000-0x8a000000, [0x880491e0-0x89fd1000] available
FLASH: 0x80000000 - 0x80400000, 32 blocks of 0x00020000 bytes each.
RedBoot>

At this stage the RedBoot flash management initialization has not yet happened so the warning about the configuration check-
sum error is expected. To perform this initialization use the fis init -f command:

RedBoot> fis init -f
About to initialize [format] FLASH image system - continue (y/n)? y
*** Initialize FLASH Image System
*** Initialize FLASH Image System
... Erase from 0x80040000-0x803e0000:
... Erase from 0x80400000-0x80400000:
... Erase from 0x803e0000-0x80400000: .
... Program from 0x89fe0000-0x8a000000 at 0x803e0000: .
RedBoot>

At the end, the block of flash at location 0x89FE0000 holds information about the various flash blocks, allowing other flash
management operations to be performed.

It is now possible to load the flash-resident version of RedBoot. Because of the way that flash chips work, it is better to first
load it into RAM and then program it into flash.

RedBoot> load -r -m ymodem -b %{freememlo}

The file redboot_ROM.bin should now be uploaded using the terminal emulator on your host. The file is raw binary and
should be transferred using the Y-modem protocol.

Raw file loaded 0x8804fc00-0x88075137, assumed entry at 0x8804fc00
xyzModem - CRC mode, 1197(SOH)/0(STX)/0(CAN) packets, 4 retries
RedBoot>

Once the ROM version of RedBoot has been loaded into RAM it can be programmed into flash:

RedBoot> fis create RedBoot -b %{freememlo}
An image named 'RedBoot' exists - continue (y/n)? y
... Erase from 0x80000000-0x80040000: ..
... Program from 0x8804fc00-0x8808fc00 at 0x80000000: ..
... Erase from 0x803e0000-0x80400000: .
... Program from 0x89fe0000-0x8a000000 at 0x803e0000: .
RedBoot>

The flash-resident version of RedBoot has now been programmed at location 0x80000000/0xA0000000, and the flash info
block at 0x89FE0000/0xA9FE0000 has been updated (on the SuperH, addresses beginning 0xA are the non-cacheable shadow
versions in the P2 region of addresses beginning 0x8 from the P1 region). The initial setup is now complete. Power off the
ST40-CONNECT and reset the ST40EB board using the reset button SW2. You should see something similar to the following:

3418

STMicroelectronics ST40 Evaluation Board Support

+FLASH configuration checksum error or invalid key
... waiting for BOOTP information
Ethernet eth0: MAC address 00:80:e1:12:00:3b
IP: 172.31.1.99/255.255.255.0, Gateway: 172.31.1.1
Default server: 172.31.1.2, DNS server IP: 172.31.1.1

RedBoot(tm) bootstrap and debug environment [ROM]
Non-certified release, version UNKNOWN - built 01:21:36, Sep 20 2004

Platform: ST40 Eval Board (ST40)
Copyright (C) 2000, 2001, 2002, Free Software Foundation, Inc.
Copyright (C) 2003, 2004, eCosCentric Limited

RAM: 0x88000000-0x8a000000, [0x8800e380-0x89fd1000] available
FLASH: 0x80000000 - 0x80400000, 32 blocks of 0x00020000 bytes each.
RedBoot>

If the ethernet cable is not plugged in there may be a fairly long wait after the "... waiting for BOOTP information" message.

Flash Configuration

The next step is to set up RedBoot's non-volatile configuration values:

RedBoot> fconfig -i
Initialize non-volatile configuration - continue (y/n)? y
Run script at boot: false
Use BOOTP for network configuration: true
Default server IP address:
Console baud rate: 115200
DNS server IP address:
Set eth0 network hardware address [MAC]: false
GDB connection port: 9000
Force console for special debug messages: false
Network debug at boot time: false
Update RedBoot non-volatile configuration - continue (y/n)? y
... Erase from 0x803e0000-0x80400000: .
... Program from 0x89fe0000-0x8a000000 at 0x803e0000: .
RedBoot>

For most of these configuration variables, the default value is correct, although you may wish to provide a default server used
for TFTP retrieval, and default DNS server. If there is no suitable BOOTP service running on the local network then BOOTP
should be disabled and, instead, RedBoot will prompt for a fixed IP address, netmask, and addresses for the local gateway
and DNS server.

Once you have set appropriate RedBoot flash configuration values you may reset the board. When RedBoot issues its prompt,
it is ready to accept connections from sh-elf-gdb, allowing applications to be downloaded and debugged. Connections can be
made via either serial port, or by TCP to port 9000 (or an alternative port if manually set by the fconfig command).

Occasionally it may prove necessary to update the installed RedBoot image. This can be done simply by repeating the above
process, using the ST40-Connect. Alternatively, the existing RedBoot install can be used to load the RAM-resident version in
which case the standard RAM RedBoot build can be used instead of the RAM_NOETH build. You can even install the RAM
resident RedBoot in the "RedBoot[backup]" flash region. See the RedBoot documentation for instruction on how to do this.

Rebuilding RedBoot
Should it prove necessary to rebuild a RedBoot binary, this is done most conveniently at the command line. Assuming your
PATH and ECOS_REPOSITORY environment variables have been set correctly, the steps needed to rebuild the RAM version
of RedBoot are:

$ mkdir redboot_ram
$ cd redboot_ram
$ ecosconfig new st40raeb redboot
$ ecosconfig import $ECOS_REPOSITORY/hal/sh/st40eb/VERSION/misc/redboot_RAM.ecm
$ ecosconfig resolve
$ ecosconfig tree
$ make

3419

STMicroelectronics ST40 Evaluation Board Support

At the end of the build the install/bin subdirectory should contain the file redboot.bin.

Rebuilding the ROM or RAM_NOETH versions involve basically the same process. The ROM version uses the file red-
boot_ROM.ecm and the RAM_NOETH version uses the file redboot_RAM_NOETH.ecm and both versions generate a
file named redboot.bin. Make sure you don't mix up the different redboot.bin files; rename them to something more mem-
orable such as redboot_RAM.bin and redboot_ROM.bin.

3420

STMicroelectronics ST40 Evaluation Board Support

Name
Configuration — Platform-specific Configuration Options

Overview
The ST40EB platform HAL package is loaded automatically when eCos is configured for an st40raeb target. It should
never be necessary to load this package explicitly. Unloading the package should only happen as a side effect of switching
target hardware.

Startup
The ST40EB platform HAL package supports two separate startup types:

RAM This is the startup type which is normally used during application development. The board has RedBoot programmed
into flash at location 0x80000000/0xA0000000 and boots from that location. sh-elf-gdb is then used to load a RAM
startup application into memory and debug it. It is assumed that the hardware has already been initialized by RedBoot. By
default the application will use the eCos virtual vectors mechanism to obtain certain services from RedBoot, including
diagnostic output.

This startup type can also be used with the configuration option CYGSEM_HAL_USE_ROM_MONITOR disabled to allow
eCos applications loaded into RAM to be run using the ST40-Connect and debugged using the SuperH sh4gdb version
of GDB in the same way as the RAM version of RedBoot was loaded earlier.

ROM This startup type can be used for finished applications which will be programmed into flash at location 0x80000000/0x-
A0000000. The application will be self-contained with no dependencies on services provided by other software. eCos
startup code will perform all necessary hardware initialization.

RedBoot and Virtual Vectors
If the application is intended to act as a ROM monitor, providing services for other applications, then the configuration option
CYGSEM_HAL_ROM_MONITOR should be set. Typically this option is set only when building RedBoot.

If the application is supposed to make use of services provided by a ROM monitor, via the eCos virtual vector mechanism, then
the configuration option CYGSEM_HAL_USE_ROM_MONITOR should be set. By default this option is enabled when building
for a RAM startup, disabled otherwise. It can be manually disabled for a RAM startup, making the application self-contained,
as a testing step before switching to ROM startup, or for standalone RAM applications loaded and debugged with sh4gdb.

If the application does not rely on a ROM monitor for diagnostic services then serial port COM 0 will be claimed for HAL
diagnostics.

Flash Driver
The ST40EB board contains 4M bytes of Flash, specifically, two ST M29W160DB parts in parallel. Each part starts with
bootblocks of 16K bytes, 8K bytes, 8K bytes and 32K bytes respectively, followed by 31 blocks of 64K bytes each. These are
AMD 29xxxxx compatible parts, and as such the CYGPKG_DEVS_FLASH_AMD_AM29XXXXX package contains all the code
necessary to support these parts and the CYGPKG_DEVS_FLASH_SH_ST40EB package contains definitions that customize
the driver to the ST40EB board.

Ethernet Driver
The ST40EB board contains an STE10/100A ethernet device. This is largely compatible with Intel i21143/DEC Tulip parts.
The device is accessed via the PCI bus. The CYGPKG_DEVS_ETH_INTEL_I21143 package contains all the code necessary
to support this part and the CYGPKG_DEVS_ETH_SH_ST40EB package contains definitions that customize the driver to the
ST40EB board.

The ethernet will automatically auto-negotiate 10Mbps or 100Mbps operation with its link peer, as well as full duplex or half
duplex mode.

3421

STMicroelectronics ST40 Evaluation Board Support

The driver usually reads the MAC address (ESA) from the EEPROM connected to the STE. Alternatively an address can be
set in the CDL configuration in the component CYGSEM_DEVS_ETH_SH_ST40EB_ETH0_SET_ESA within the ST40EB
ethernet driver; or an address can be set in the Flash configuration of RedBoot using the fconfig command. If both are set,
the Flash configuration is used in preference.

PCI Driver
The ST40EB board is fitted with three 5V PCI slots, which are accessed via a PCI-PCI bridge, as is the onboard STE10/100A
ethernet device. The 3.3V PCI slot is accessed directly. eCos supports PCI devices inserted in these slots and if the PCI library is
selected in the eCos configuration, a driver will usually call cyg_pci_init() which will automatically configure memory
and I/O base address registers, as well as any interrupts the device requires.

The CPU is able to access the PCI memory space through the memory window from 0xb0000000 to 0xb5ffffff, and the PCI
I/O space through the memory window from 0xb6000000 to 0xb6ffffff. PCI devices may access system memory (usually for
DMA), at windows starting at address 0x0 in both memory and I/O PCI spaces.

System Clock
By default, the system clock interrupts once every 10ms, corresponding to a 100Hz clock. This can be changed by the config-
uration option CYGNUM_HAL_RTC_DENOMINATOR which corresponds to the clock frequency. Other clock-related settings
are recalculated automatically if the denominator is changed.

Compiler Flags
The platform HAL defines the default compiler and linker flags for all packages, although it is possible to override these on
a per-package basis. Most of the flags used are the same as for other architectures supported by eCos. There are two flags
specific to this port:

-m4 The sh-elf-gcc compiler supports many variants of the SH architecture, from the SH2
onwards. A -m option should be used to select the specific variant in use, and with
current tools -m4 is the correct option for the ST40.

3422

STMicroelectronics ST40 Evaluation Board Support

Name
HAL Port — Implementation Details

Overview
This documentation explains how the eCos HAL specification has been mapped onto the ST40EB hardware, and should be
read in conjunction with that specification. The ST40EB platform HAL package complements the SH architectural HAL and
the SH4 variant HAL. It provides functionality which is specific to the target board.

Startup
Following a hard or soft reset the HAL will initialize or reinitialize most of the on-chip peripherals. There is an exception for
RAM startup applications which depend on a ROM monitor for certain services.

For ROM startup, the HAL will perform additional initialization, setting up the external SDRAM and programming the various
internal registers including clocks, EMI and LMI. The values used for most of these registers are assigned fixed values from
a table in the header cyg/hal/platform.inc.

Linker Scripts and Memory Maps
The platform HAL package provides the memory layout information needed to generate the linker script. The key memory
locations are as follows:

off-chip Flash This is located at address 0x00000000 of the physical memory space and is therefore accessible
in the P1 region at location 0x80000000. An uncached shadow of this memory is available in
the P2 region at 0xA0000000. The contents of the flash are organized as described earlier.

external SDRAM This is located at address 0x08000000 of the physical memory space and is therefore access-
able in the P1 region at location 0x88000000. An uncached shadow of this memory is avail-
able in the P2 region at 0xA8000000. The first 256 bytes are used for hardware exception vec-
tors. The next 256 bytes are normally used for the eCos virtual vectors, allowing RAM-based
applications to use services provided by the ROM monitor. For ROM startup, all remaining
SDRAM is available. For RAM startup, available SDRAM starts at location 0x80020000, with
the bottom 128Kbytes reserved for use by RedBoot.

on-chip peripherals These are accessible via the P4 region at location 0xE0000000 onwards. The on-chip PCI
controller is located at base address in the P2 region at 0xB0000000, and a memory-mapped
view of the PCI space configuration registers at 0xB7000000. Other base addresses of on-chip
peripherals can be found in the ST40RA datasheet (P/N: ADCS 7260755H).

off-chip peripherals All off-chip peripherals used by eCos are accessed via on-chip bus controllers such as LMI,
EMI or PCI. All others are left untouched.

Clock Support
The platform HAL provides configuration options for the eCos system clock. This always uses the hardware timer 0, which
should not be used directly by application code. Timer 1 is used to implement a microsecond resolution busy delay service.
Timer 2 is not used by eCos so application code is free to manipulate this as required. The actual HAL macros for managing
the clock are provided by the SH architecture processor HAL.

There is a software model of the structure of the SH family clock supply subsystem which performs the correct calculations
to yield not only the inputs for the CPU clock but also the peripheral clocks fed to the serial device, memory controllers and
other devices. The values for the master crystal, the PLL multipliers and various dividers are supplied by the platform HAL.
Some care must be taken in defining these since wrong values will cause the timers and the SCIF baud rate to be miscalculated
(resulting visibly in garbage on the serial output).

The ST40 extends the SH family clock model by providing a CLOCKGEN subsystem allowing the hardware clock frequency
to be controlled. The CLOCKGENA.PLL1CR register is the primary means to do this, and is initialised by switches 1, 2 and 3

3423

STMicroelectronics ST40 Evaluation Board Support

on DIP switch block SW3. As the ST40EB is fitted with an ST40RA166 processor, it is assumed that a speed of 166MHz has
been selected. This corresponds to SW3-1 set to OFF, SW3-2, set to OFF and SW3-3 set to ON.

If the DIP switches are changed from the default then the value of CYGHWR_HAL_SH_OOC_XTAL must be changed to match.
Consult the ST40RA documentation on appropriate values for the clock and associated divider options for the subclocks if
you wish these to be altered from the default.

Other Issues
The ST40EB platform HAL does not affect the implementation of other parts of the eCos HAL specification. The SH4 variant
HAL, and the SH architectural HAL documentation should be consulted for further details.

It should be noted that the floating point support in the SH HAL has a caveat that, if the FPSCR register is changed, it may get
reverted at a later stage by certain operations performed by the GCC compiler. This behaviour is intentional as the alternative
would be to update the GCC compiler's internal state about the FPSCR at every context switch which would be expensive for
a feature that is unlikely to be used frequently. If the FPSCR is to be changed by the application, the developer should call the
function __set_fpscr(int), passing it the new FPSCR value.

3424

Part LXXXVI. TILE-Gx Architecture

Table of Contents
357. TILE-Gx Architectural Support .. 3427

Overview ... 3428
Hardware Setup .. 3430
eCos Configuration Options .. 3439
The HAL Port .. 3441

358. TILE-Gx TMC Library ... 3446
Overview ... 3447

3426

Chapter 357. TILE-Gx Architectural
Support

3427

TILE-Gx Architectural Support

Name
Overview — eCos Support for the TILE-Gx Family of Processors

Description
This package CYGPKG_HAL_TILEGX provides architectural HAL support for running eCos aplications on a Tilera TILE-Gx
processor. In many ways this is a very unusual architecture for running eCos, and therefore the TILE-Gx eCos port is also
somewhat different from ports to other architectures.

This section of the package documentation gives a brief description of the TILE-Gx hardware, how it is typically used, and the
main limitations of the eCos port. Later sections describe the process of preparing hardware for running an eCos application,
the various configuration options provided by the port, and some of the implementation details.

The Hardware
A TILE-Gx chip contains of an array of CPU cores, known as tiles. It also contains a set of memory interfaces and I/O periph-
erals. The cores, memory and peripherals are connected via a mesh interconnect. One of the peripherals, USB, can be used to
connect the TILE-Gx chip to a host PC for software development.

Each tile is a fully-fledged and fairly conventional CPU, aimed at running an advanced operating system like Linux. It has a
register bank of 64 64-bit registers, some of which have a dedicated purpose such as communication over the mesh network.
There are also a considerable number of special purpose registers or SPRs. Many of these are intended for system software,
for example to control the memory management unit and the interrupt subsystem.

Each tile has a split instruction/data primary cache and a secondary cache. The hardware also implements a distributed tertiary
cache over the mesh interconnect. Assuming the MMU is set up correctly on each tile the hardware will maintain cache co-
herency. Shared memory can be used for exchanging large amounts of data between tiles. The mesh interconnect also provides
two buses, the I/O Dynamic Network or IDN and the User Dynamic Network or UDN. These allow the transfer of fairly small
packets, up to a couple of hundred 64-bit words of data, between tiles.

On power up the hardware runs a hypervisor boot image, typically loaded from a serial ROM although alternative images
can be loaded from a host PC over USB. Usually the hypervisor proceeds to run an SMP Linux kernel on all the tiles, and
applications run as processes on top of Linux in a protected environment. The kernel runs on top of the hypervisor, and control
over the various peripherals and memory resources is shared between the two in complicated ways. It is possible to partition
the chip's tiles such that Linux only runs on some of them, while others run a bare metal executable or BME application. A
BME application replaces the hypervisor and runs with full access to the hardware. The eCos port uses this functionality to
run eCos applications on some of the tiles.

Limitations
The eCos port to the TILE-Gx architecture is subject to some important restrictions, and application developers should be
aware of these.

3428

TILE-Gx Architectural Support

1. At the time of writing eCos does not provide full SMP functionality. It is possible to run eCos applications on multiple
tiles at the same time, but these tiles all run their own private instance of eCos. Each tile is allocated its own private mem-
ory. Once the eCos applications are running on the various tiles they can communicate over the UDN bus or over shared
memory, and they can also communicate with Linux processes running inside the Linux partition. The TMC support pack-
age CYGPKG_HAL_TILEGX_TMC in packages/hal/tilegx/tmc provides some support code for this, and more
importantly some detailed examples.

2. Also at the time of writing eCos does not support operating in 64-bit mode. In practice this is not a major problem. Although
TILE-Gx is a 64-bit architecture the instruction set provides full support for running in 32-bit mode, and tile-gcc has a -
m32 flag to support this. Running in 32-bit mode should have no detrimental effect on performance. In fact it may improve
performance very slightly because pointers in data structures will consume less memory, allowing more data to fit into
the caches and reducing the memory bandwidth requirements. The main restriction is that the address space of an eCos
application is limited to two gigabytes (it should be four gigabytes but tile-gdb appears to get confused at times when
dealing with 32-bit pointers with the top bit set).

3. The eCos ports depends on various bits of Tilera software. The port has been performed with the TileraMDE-4.1.0.148119
release of the Multicore Development Environment. If there are incompatible changes to the MDE, for example if the hy-
pervisor code for loading and starting a BME application is rewritten, then such changes could stop the eCos port working in
strange ways. The TMC package's examples for setting up shared memory between a Linux process and an eCos application
are also particularly vulnerable to breakage given the rapid rate of development of the Linux kernel.

4. The Tilera support for BME applications is limited. That means that sharing resources between the Linux partition and BME
tiles running eCos is generally difficult, and at times may be impossible. For example there is no easy way for eCos to allocate
additional physical memory: after bootstrap all unallocated memory belongs to the Linux partition and the hypervisor. If
more memory is needed then the allocation has to be performed by a Linux process and the details of the allocation can then
be passed on to the eCos application, allowing the latter to map the memory into its address space.

Particular difficulties are likely to arise when it comes to peripherals. Sharing a peripheral between an eCos application and
a Linux device driver will typically be impossible: the latter will not have been written to allow sharing, and any spinlocks
or other locking mechanisms that may exist will not be accessible to an eCos application.

3429

TILE-Gx Architectural Support

Name
Setup — preparing the hardware for eCos development

Overview

Just as the TILE-Gx hardware is rather different from more conventional hardware used to run eCos, the process of setting
up the hardware is also rather different. Most importantly eCos only runs on some of the tiles in a chip, with Linux and the
hypervisor running on the other tiles. It is the hypervisor that is responsible for booting all the tiles. Setting up the hardware
involves constructing and running a suitable hypervisor image. Such an image contains the following:

1. The hypervisor executable, hv. This is a 64-bit ELF executable. A default build is provided with the Tilera Multicore De-
velopment Environment (MDE) in the $TILERA_ROOT/tile/boot subdirectory, but a custom build may be necessary
to cope with specific hardware such as ethernet PHY chips.

2. A hypervisor configuration file, typically with .hvc suffix. An example can be found in the MDE file $TILER-
A_ROOT/tile/etc/hvc/vmlinux.hvc. Amongst other functionality this configuration file allows some of the tiles
to be designated as BME or bare metal executable tiles, which will run a dedicated application directly on the hardware
instead of layered on top of Linux and the hypervisor. eCos applications run in a BME tile.

3. A Linux kernel, for example $TILERA_ROOT/tile/boot/vmlinux. This is another 64-bit ELF executable. Again
a custom build of the Linux kernel may be needed on some hardware. Note that the default vmlinux file has not been
stripped of debug information and has not been compressed, so it will be some tens of megabytes in size.

4. An initial RAM file system, for example $TILERA_ROOT/tile/boot/initramfs.cpio.gz. This contains exe-
cutables, shared libraries, and other files needed by the Linux system at run-time. Applications are very likely to involve a
custom version of this RAM file system containing additional files, for example the application executables. Usually ELF
files will be stripped off their debug information as they are incorporated into the initramfs file, and of course the latter
is compressed.

5. If the hypervisor configuration file specifies that one or more tiles should form a BME partition, the executable that should
run on those tiles must also be incorporated into the hypervisor image since it is the hypervisor that will launch that exe-
cutable.

A hypervisor image is created directly by the tile-mkboot command, or indirectly by tile-monitor. An initramfs file is cre-
ated by tile-gen-initramfs. Full information on these commands is provided in the Tilera documentation, especially UG509
The Multicore Development Environment System Programmer's Guide. That information is not repeated here, instead this
document focusses only on eCos-specific aspects. It is assumed throughout that the application developer has a working MDE
installation and that the hardware is already set up for developing Linux applications.

The setup process is different for debug and production systems. A debug system allows eCos applications to be loaded and
debugged via tile-gdb, and will be used for most of the development process. In a production system the eCos application is
loaded and starts running automatically during bootstrap, but cannot be debugged via tile-gdb (except under certain circum-
stances when running on the simulator instead of real hardware). There are also three different scenarios: running on real hard-
ware with the hypervisor image loaded over USB; running on real hardware with the hypervisor image booting automatically
from a serial ROM; and running on the simulator.

Debugging Overview

Debugging an application running on a TILE-Gx chip generally involves software rather than any hardware debug technology.
First consider a process running in the Linux partition of a TILE-Gx chip:

3430

TILE-Gx Architectural Support

This shows a 4x4 TILE-Gx chip with 12 of the tiles configured as a Linux partition and 4 tiles configured as a BME partition.
There are two application processes running in the Linux partition, P1 and P2, both sitting on top of the Linux kernel which
in turn sits on top of the hypervisor. There is also an auxiliary process, the shepherd. A host PC is connected to the TILE-
Gx target via USB and ethernet. Debugging an application on the TILE-Gx target involves running tile-gdb on the host PC.
This debugger instance connects to the shepherd process on the target, and communication between the two uses the gdb
remote protocol over TCP/IP. When for example tile-gdb needs to read a memory location inside process P1 it constructs a
memory read remote protocol request and sends this to the shepherd on the target. The shepherd decodes the request and then
makes a ptrace system call into the Linux kernel. The kernel performs the desired operation and passes the result back to
the shepherd. This constructs a remote protocol reply message which gets sent back to tile-gdb on the host, and the debugger
now has the required information.

Debugging an eCos application running inside a BME tile involves a similar but not identical process. The key difference is that
a Linux kernel running in the TILE-Gx chip has no control over any of the BME tiles, so the ptrace system call is useless.
Instead the main debug functionality is provided by a special eCos application, gdbstubs, held in the file gdb_module.64.
The hypervisor boots this eCos application into each BME tile. The user's eCos application is loaded and run on top of gdbstubs.
Now, unfortunately gdbstubs does not have the same ready access to the outside world as the Linux shepherd: the target's
network and USB interfaces are managed by the Linux side so gdbstubs cannot easily provide TCP/IP communication. Instead
there is another process, LittleBoPeep running inside the Linux partitition alongside the shepherd. LittleBoPeep accepts TCP/IP
connections from tile-gdb instances on the host. Remote protocol requests are passed on to gdbstubs running on the appropriate
BME tiles over the TILE-Gx internal UDN communication network. gdbstubs decodes the request, performs the appropriate
operation such as reading a memory location, and sends the reply back to LittleBoPeep over UDN. LittleBoPeep then forwards
the reply to tile-gdb on the host, and the debugger now has the required information.

3431

TILE-Gx Architectural Support

UDN messages are addressed to a specific tile, so for LittleBoPeep to receive messages from gdbstubs it must bind itself to
a specific tile within the Linux partition. It will always select the last tile in that partition. This may cause problems if other
Linux applications attempt to use UDN communications. By default a user-level process like LittleBoPeep does not have
permission to access the UDN network, so it has to make a call into the Linux kernel to obtain access. The Linux kernel will only
allow one process per tile to perform UDN communication, which is a somewhat strange restriction since the UDN hardware
supports four separate communication channels and LittleBoPeep only needs one of them. Therefore if some other process
runs on the same tile as LittleBoPeep and claims UDN access first, LittleBoPeep's UDN initialization will fail. Alternatively if
LittleBoPeep initializes first then the other process' attempt at claiming UDN access will fail. This problem cannot be worked
around without changing the Linux kernel.

Hardware, USB Bootstrap, Debug system
The first scenario involves a debug system running on real hardware with the hypervisor image booted via USB and tile-
monitor. This is likely to be the most common scenario during software development. The first step is to take an existing .hvc
hypervisor configuration file, for example $TILERA_ROOT/tile/etc/hvc/vmlinux.hvc, and append lines like the
following:

Define the BME tiles
bme bmeapp private 3,0 3,1 3,2 3,3
 memory 0 default
 pertile va=0x6c000000

These lines define a BME partition consisting of four tiles: 3,0 3,1 3,2 and 3,3. The BME partition can be given more, fewer, or
different tiles by changing this list of tile addresses. The application that will be run on each tile is given an alias of bmeapp,
and that alias will be mapped on to a real filename via a tile-monitor command line argument. The keyword private is
essential: it informs the hypervisor that each BME tile is independent from the other and needs its own memory. The alternative
would be a BME partition running a single SMP application with the memory shared between the BME tiles, and SMP is not
supported with the current TILE-Gx eCos port.

The line memory 0 default determines which memory controller is used for the BME tiles' memory. This particular line
is cloned from the MDE's tilegx/examples/bme/client_server/sim.hvc. Application developers may wish to
use different settings for this as per the Tilera manual UG509, section 8.4.3.

The bulk of the memory allocated to a BME application is determined automatically by the hypervisor from information in
the ELF executable. However the hypervisor will allocate an additional block of pertile memory to hold the initial stack, some
hypervisor data structures, and so on. The line pertile va=0x6c000000 places that additional block within the 32-bit
address space supported by an eCos application. This line must not be changed since eCos expects to find the memory at that
address.

Note that the Tilera tools support only a single BME partition definition in the hypervisor configuration file. Therefore it is not
possible to run different applications on different BME tiles, or to have different memory settings for different tiles. Usually
this will not be an issue for a debug system because the executable is always a gdbstubs binary.

Once the hypervisor configuration file is ready it is possible to boot up the system with tile-monitor:

tile-monitor --verbose --dev /usb0 --hvc ecos.hvc \
 --mkboot-args -+- --no-strip -+- \
 --bme bmeapp=<path0>/gdb_module.64 \
 --upload <path1>/LittleBoPeep /LittleBoPeep \
 --launch - /LittleBoPeep 3,0 3,1 3,2 3,3 -

The various options are as follows:

• --verbose is optional. It enables additional diagnostics within tile-monitor which may help to track down problems.

• --dev /usb0 tells tile-monitor how to interact with the target hardware, in this case through the tileusb0 device
provided by the Tilera USB device driver. If the hardware is accessed via some other means then argument will need to
be adjusted accordingly.

• --hvc ecos.hvc identifies the hypervisor configuration file that should be used.

• --mkboot-args -+- --no-strip -+- causes tile-monitor to pass the argument --no-strip when it invokes a
sub-process tile-mkboot to create the hypervisor image. By default tile-mkboot will strip all debug information out of ELF

3432

TILE-Gx Architectural Support

executables that go into the hypervisor image, including the BME executable. Unfortunately tile-strip is not compatible
with eCos executables and will corrupt them, preventing the hypervisor from correctly loading these executables into the
BME tiles. Suppressing the automatic stripping bypasses this problem.

• --bme bmeapp=<eCos executable>. The BME lines in the hypervisor configuration file specified bmeapp as an
alias for the executable that should be run on all BME tiles. Here we specify exactly which file corresponds to that alias. For
a debug system the executable should always be a gdbstubs binary gdb_module.64. A prebuilt version of that executable
should be included in the release, or alternatively a binary can be rebuilt as described below.

• --upload <path1>/LittleBoPeep /LittleBoPeep. This uploads the LittleBoPeep executable to the target,
storing in in the root of the RAM file system.

• --launch - /LittleBoPeep 3,0 3,1 3,2 3,3 - Once LittleBoPeep has been uploaded to the Linux system
it is started with the appropriate arguments. These arguments specify the BME tiles running gdbstubs and should match the
list in the hypervisor configuration file.

The above invocation of tile-monitor uses the default hypervisor executable, the default Linux kernel executable and the
default initramfs file from $TILERA_ROOT/tile/boot. Alternative versions of these can be specified if desired using --
hv-bin-dir, --vmlinux or --initramfs options. See the tile-monitor documentation for more information.

Once the hypervisor image has been created, downloaded over USB, and started the hypervisor will set up the BME tiles and
start the bmeapp application on each one. When gdbstubs is that application it will pause early on during initialization, waiting
to be contacted by LittleBoPeep over the UDN network. Some time later, when uploading and launching LittleBoPeep tile-
monitor should report the following:

[monitor] Uploading...
[monitor] Uploading complete.
[monitor] Process 551 created using '/LittleBoPeep'.

The exact process number may vary depending on what else is running. LittleBoPeep will now start running, connect to
gdbstubs running on the specified tiles, and report the status of each one on the system console:

LittleBoPeep: starting.
LittleBoPeep: tile 3,0, gdbstubs active, listening on port 10300
LittleBoPeep: tile 3,1, gdbstubs active, listening on port 10301
LittleBoPeep: tile 3,2, gdbstubs active, listening on port 10302
LittleBoPeep: tile 3,3, gdbstubs active, listening on port 10303

At this point LittleBoPeep, running in the Linux partition, is ready to accept TCP connections from tile-gdb on any network
interface to any of the specified ports. Assume that the target-side Linux system has been set up with TCP/IP networking
enabled and that the gbe0 network interface has been assigned the network address 10.1.1.42. Also assume that the user has
configured and built a RAM-startup eCos application, for example the Hello World example, as per the eCos User Guide. It
is now possible to load and run the eCos executable on one of the BME tiles:

% tile-gdb --quiet hello
Reading symbols from .../hello...done.
(gdb) target remote 10.1.1.42:10300
Remote debugging using 10.1.1.42:10300
0x00016550 in ?? ()
(gdb) load
Loading section .text, size 0x15d80 lma 0x10010000
Loading section .data, size 0x180 lma 0x10025d80
Start address 0x10010000, load size 89856
Transfer rate: 37 KB/sec, 987 bytes/write.
(gdb) break exit
Breakpoint 1 at 0x10021d40: file .../src/exit.cxx, line 75.
(gdb) continue
Continuing.
Hello, eCos world!
[Switching to Thread 2]

Breakpoint 1, exit (status=0x0) at .../src/exit.cxx:75
75 {
(gdb) maintenance packet r
sending: "r"
received: ""

3433

TILE-Gx Architectural Support

(gdb) quit
A debugging session is active.

 Inferior 1 [Remote target] will be killed.

Quit anyway? (y or n) y

Obviously the sizes, transfer rate, and so on will vary somewhat. The command target remote 10.1.1.42:10300 tells tile-gdb
to establish a TCP/IP connection to IP address 10.1.1.42, port 10300, and communicate using the gdb remote protocol. The IP
address corresponds to the target's gbe0 network interface - note that any of the target's network interfaces may be used, gbe0
is used here simply as an example. The port number is one of the ones reported by LittleBoPeep and corresponds to tile 3,0.
The eCos application is loaded and runs to completion, hitting a breakpoint at the exit() function. Note that the application's
console output goes over the debug channel and is reported by tile-gdb. LittleBoPeep supports concurrent debug sessions to
every BME tile running gdbstubs, but only one tile-gdb instance can interact with a given tile at a time.

Normally when gdb exits the target-side application is left running. Most of the time this is not what is wanted when developing
an eCos application. Instead the desired behaviour is that the tile gets restarted, ready for loading and running another build of
the application being debugged. That is achieved by the maintenance packet r command. Quitting tile-gdb after that command
has been issued will cause the tile to restart, and LittleBoPeep will report:

LittleBoPeep: tile 3,0 is resetting.
LittleBoPeep: tile 3,0, gdbstubs active, listening on port 10300

The port assignment used by LittleBoPeep is straightforward: given a gdbstubs instance running on tile x,y, LittleBoPeep will
accept TCP connections on port (10000 + 100x + y). This numbering scheme should support chips with up to 10000 tiles,
although of course trying to debug applications on even a small fraction of that number of tiles will prove problematical.

eCos applications run with limited memory protection, and have unrestricted access to system resources such as the special
purpose registers used for controlling the MMU and interrupts. Therefore an eCos application can crash the tile it is running on,
for example by accidentally overwriting some critical area of memory. At that point tile-gdb and LittleBoPeep will no longer
be able to communicate with the gdbstubs executable running on the target tile, and LittleBoPeep will report this:

LittleBoPeep has lost one of her sheep.
 Tile 3,0 has stopped responding to UDN packets.
 This tile is now marked as crashed and cannot be used again until the hardware is reset.

Most commonly this condition will be detected when the application stops producing output and the user attempts to interrupt
it with a ctrl-C. Unfortunately the gdb remote protocol provides no easy way for LittleBoPeep to reliably send a suitable
diagnostic message to tile-gdb, so the debugger will simply report that the connection to the target has been closed.

It should be noted that eCos does run with the MMU enabled and that the eCos application only has access to the memory
allocated to its tile by the hypervisor during bootstrap, plus any additional memory explicitly mapped into the address space
typically by calling hal_tilegx_mmap(). That additional memory may correspond to memory-mapped I/O devices. It
may also be memory allocated by a Linux application using the TMC library whose details are then passed on to the eCos
application. eCos does not have access to other memory in the system so for example it cannot overwrite kernel data structures
on some other tile running Linux.

The above tile-gdb example assumes that the system is set up with Linux TCP/IP networking enabled, so that tile-gdb can
connect to LittleboPeep. If this is not the case, for example because all network interfaces are needed for non-TCP/IP commu-
nications, then a slightly different approach is needed. tile-monitor and the target-side shepherd process provide tunnelling
support: tile-monitor will accept connections on the host PC and forward any data to the shepherd over the USB connection;
the shepherd process will establish a matching TCP/IP connection within the Linux partition and forward any data to its des-
tination within the target. Tunnelling requires some additional arguments when invoking tile-monitor:

tile-monitor --verbose --dev /usb0 --hvc ecos.hvc \
 --mkboot-args -+- --no-strip -+- \
 --bme bmeapp=<path0>gdb_module.64 \
 --tunnel 10300 10300 --tunnel 10301 10301 \
 --tunnel 10302 10302 --tunnel 10303 10303 \
 --upload <path1>/LittleBoPeep /LittleBoPeep \
 --launch - /LittleBoPeep 3,0 3,1 3,2 3,3 -

tile-monitor on the host PC will accept connections on port 10300, and the shepherd will establish a matching target-side
connection to port 10300. Each tunnel argument establishes one such pairing. Inside the tile-gdb session it is necessary to use

3434

TILE-Gx Architectural Support

a remote address of localhost:10300 instead of 10.1.1.42:10300, connecting via tile-monitor instead of directly
to the remote port.

Hardware, ROM Bootstrap, Debug System
This scenario also allows eCos applications to be debugged via tile-gdb and LittleBoPeep. However the hypervisor image is
not booted into the target hardware via tile-monitor and USB. Instead the hardware boots automatically from a serial ROM.
Setting up a system like this requires two steps: constructing a suitable hypervisor boot image; and programming that image
into the serial ROM.

Creating the boot image involves either the tile-mkboot command or tile-monitor --create-bootrom which implicitly invokes
the former. The latter approach is taken here. As before a boot image incorporates a hypervisor executable, a hypervisor
configuration file, a Linux kernel, an initramfs file, the executable to run on any BME tiles, and a small number of support
files. The hypervisor executable and configuration file can be the same as before, and gdb_module.64 should again be used
as the BME executable. However the Linux kernel and the initramfs file need special attention.

A typical serial ROM is comparatively small, usually 16MB. Worse, that ROM normally holds a primary boot loader and
two separate boot images, the current image plus a backup image to allow recovery if and when things go wrong. That means
a new boot image file has to be a bit less than 8MB. Given that an uncompressed unstripped Linux kernel is some tens of
megabytes, clearly it is necessary to strip and compress it when generating the boot image. tile-mkboot will do this by default
to all executables, but this behaviour can be suppressed with the --no-strip option.

Unfortunately tile-mkboot will also attempt to strip and compress any BME executables, and does not provide any finer-grained
control over this behaviour. Applying tile-strip to an eCos executable will corrupt it, and the hypervisor's BME loader code
does not support loading compressed executables. Therefore if tile-mkboot stripping and compression is enabled then the eCos
application cannot be loaded into a BME tile, but if it is disabled then the resulting boot image file will be far too large for
the serial ROM.

The solution is to pre-strip and pre-compress the Linux kernel file before constructing the boot image.

$ tile-strip -o vmlinux_stripped $TILERA_ROOT/tile/boot/vmlinux
$ bzip2 -9 vmlinux_stripped

That takes care of the Linux kernel. It is also necessary to customize the initramfs file so that LittleBoPeep is started automati-
cally during the Linux bootstrap process. The process of constructing a custom initramfs with tile-gen-initramfs is documented
in the Tilera manual UG509, section 3.4.2. It involves editing a contents.txt file, adding the following lines:

file /usr/bin/LittleBoPeep DIR/LittleBoPeep 755 0 0
file /etc/rc.local DIR/rc.local 644 0 0

This assumes that the LittleBoPeep executable has been placed in the same directory as the edited contents.txt and that
a file rc.local has been created alongside it. That file should contain:

/usr/bin/LittleBoPeep 3,0 3,1 3,2 3,3 &

(This assumes that the application being developed does not already involve an rc.local file to start various processes
within the Linux partition. If that file already exists then the LittleBoPeep line can just be appended.)

The Linux bootstrap will automatically run /etc/rc.local if that exists, so LittleBoPeep will be started in the background
and will connect to gdbstubs on the four tiles specified. Obviously if the hypervisor configuration file lists a different set of
tiles then rc.local should be updated to match.

Once a suitable Linux kernel and initramfs file are ready the boot image can be created:

tile-monitor --no-dev --create-bootrom image.bootrom \
 --hvc ecos.hvc --mkboot-args -+- --no-strip -+- \
 --vmlinux vmlinux_stripped.bz2 \
 --initramfs ecos_initramfs.cpio.gz \
 --bme bmeapp=<path>/gdb_module.64

This should produce a suitable file image.bootrom. That file can now be transferred to a running TILE-Gx system and
programmed into the serial ROM using sbim -i image.bootrom. When the hardware is rebooted the hypervisor will automat-
ically set up the BME tiles as per the ecos.hvc configuration file, load and start gdb_module.64 on each BME tile, and
start the Linux kernel on the remaining tiles. The Linux kernel will go through its boot process and end up running /etc/

3435

TILE-Gx Architectural Support

rc.local, which in turn will start LittleBoPeep running. LittleBoPeep will connect to gdbstubs on the specified tiles, then
it will accept debug connections from tile-gdb over TCP/IP as before.

Hardware, USB Bootstrap, Production System
Once the eCos application has been debugged to the developer's satisfaction it is time to switch from a debug system to a
production system. This no longer involves gdbstubs or LittleBoPeep. Instead the eCos application is incorporated directly
into the hypervisor boot image and started automatically. Note that this will happen fairly early on in the bootstrap process,
before the Linux kernel is started let alone any Linux processes running on top of the kernel. Console output from the eCos
application will go the target's system console.

The first step is to change the eCos configuration option CYG_HAL_STARTUP from RAM to ROM. For the TILE-Gx
architecture RAM startup is for applications which will run on top of gdbstubs, while ROM startup is for applications which
are incorporated into the hypervisor boot image. The eCos configuration should then be rebuilt and the application relinked.
Assume this application is called ecosapp.

Now, an eCos application is a 32-bit executable. The hypervisor BME loading code only supports 64-bit executables. To
work around this the TILE-Gx architectural HAL comes with a utility script tile-ecos-32to64 which reads in a full 32-bit
executable, discards anything which will not be needed on the target-side such as debug information, and outputs a 64-bit
pseudo-executable.

tile-ecos-32to64 ecosapp ecosapp.64

The output file ecosapp.64 will not be a fully-fledged ELF executable and other tools such as tile-objdump may be confused
by it. It is intended only for use by the hypervisor's BME loader. If say a disassembly is required then tile-objdump should be
applied to the original 32-bit file, not the generated 64-bit pseudo-executable. The system can now be started via tile-monitor:

tile-monitor --verbose --dev /usb0 --hvc ecos.hvc \
 --mkboot-args -+- --no-strip -+- \
 --bme bmeapp=ecosapp.64

Most of these arguments are the same as when booting a debug system over USB. The same hypervisor executable, hypervisor
configuration file, Linux kernel and initramfs file can be used. A different file is associated with the bmeapp alias, and there is
no need to upload and launch LittleBoPeep since there are no gdbstubs instances running in any of the BME tiles for it to talk to.

The Tilera hypervisor only supports a single application which will be run on all BME tiles. If the system needs different
functionality on different tiles then the eCos application must be a union of all functionality, and a run-time decision must be
made as to which tile runs what code.

Hardware, ROM Bootstrap, Production System
Setting up a production system which can boot from ROM is very similar to setting up a debug system. It will again be necessary
to strip and compress the Linux kernel before generating the boot image. As far as eCos is concerned there is no need for
anything extra in the initramfs file. In particular the LittleBoPeep executable would serve no purpose so does not need to be
included or started from rc.local.

As far as the eCos executable is concerned, this must be processed in the same way as when booting a production system over
USB. The eCos configuration must be changed to ROM startup and rebuilt, the application must be relinked, and the resulting
32-bit executable must be processed with tile-ecos-32to64. Once this is done the boot image can be created using tile-monitor:

tile-monitor --no-dev --create-bootrom image.bootrom \
 --hvc ecos.hvc --mkboot-args -+- --no-strip -+- \
 --vmlinux vmlinux_stripped.bz2 \
 --bme bmeapp=ecosapp.64

The resulting image.bootrom file can now be transferred to a running TILE-Gx system and programmed into the serial
ROM using sbim -i image.bootrom.

Simulator, Debug System
Running an application in the simulator is mostly similar to running on the hardware, albeit very much slower. Also the
simulator does not implement all the hardware functionality, for example ethernet emulation is very limited. Typically a slightly

3436

TILE-Gx Architectural Support

different hypervisor configuration file is used, see $TILERA_ROOT/tile/etc/hvc/vmlinux-sim.hvc as opposed to
$TILERA_ROOT/tile/etc/hvc/vmlinux.hvc. The file will need to be edited to incorporate a BME partition.

The simulator is usually started by another tile-monitor invocation:

tile-monitor --verbose --simulator --config gx8016 \
 --console --functional --gdb-port 9000 \
 --bm-debug-on-panic --debug-on-crash \
 --hvc ecos-sim.hvc \
 --mkboot-args -+- --no-strip -+- \
 --bme bmeapp=<path0>/gdb_module.64 \
 --tunnel 10300 10300 --tunnel 10301 10301 \
 --tunnel 10302 10302 --tunnel 10303 10303 \
 --upload <path1>/LittleBoPeep /LittleBoPeep \
 --launch - /LittleBoPeep --spin 3,0 3,1 3,2 3,3 -

Here tile-monitor is instructed to start a functional simulation of a gx8016 chip and provide the system console. A hypervisor
image is created containing gdb_module.64 and that executable will be started automatically on all BME tiles defined in
the hypervisor configuration file. Once Linux is up and running in the simulator LittleBoPeep is loaded and started. Given
the simulator's very limited ethernet support TCP/IP networking will not be available, so tile-gdb will have to connect to
LittleBoPeep over a tunnel set up by tile-monitor on the host PC and the shepherd process on the target.

LittleBoPeep is started with an additional argument, --spin. This works around another limitation within the TILE-Gx Linux
world. When gdbstubs sends a gdb remote protocol message or reply to LittleBoPeep over the UDN network, there is no easy
way for that UDN traffic to wake up a sleeping Linux process. Normally LittleBoPeep polls the UDN network for incoming data
at 10 millisecond intervals, waking up every clock tick. That gives acceptable latencies and bandwidth when debugging on real
hardware. However simulating a 10 millisecond interval takes many real seconds, impacting gdb communication performance
sufficiently badly that tile-gdb becomes almost unusable. Running LittleBoPeep with --spin forces it to poll continuously
for incoming UDN traffic instead of at intervals. This will greatly improve debug performance, but of course debugging will
still be slow compared with real hardware. It should be noted that --spin disables the code in LittleBoPeep which detects
crashed tiles, so these will no longer be reported.

Simulator, Production System
Although rarely useful, it is possible to run a production system on the simulator. As with production systems running on real
hardware, the eCos configuration needs to be switched to ROM startup and rebuilt, the eCos application needs to be relinked,
and tile-ecos-32to64 has to be used to convert the 32-bit executable to a 64-bit pseudo-executable which can be read by the
hypervisor's BME loader.

tile-monitor --verbose --simulator --config gx8016 \
 --console --functional --gdb-port 9000 \
 --bm-debug-on-panic --debug-on-crash \
 --hvc ecos-sim.hvc \
 --mkboot-args -+- --no-strip -+- \
 --bme bmeapp=ecosapp.64

The tile-monitor options are largely the same as when running a debug system. ecosapp.64 is used instead of the gdbstubs
gdb_module.64 file. There is no need to upload or launch LittleBoPeep since there are no gdbstubs instances for it to
interact with, and if LittleBoPeep is not used then there is no need to set up TCP/IP tunnels between the host and target.

The TILE-Gx architectural HAL does provide a configuration option which may prove useful in this environment: CYGH-
WR_HAL_TILEGX_SIMULATOR. Enabling this option causes the eCos application to trigger a backdoor provided by the sim-
ulator. The simulation will be halted until tile-gdb is attached to the simulator, and information will be output on exactly how
that should be done. However note that the executable file used should be the original 32-bit one, not the 64-bit pseudo-exe-
cutable since that no longer contains any debug information. The resulting debug session will have limited debug functionality
compared with the gdbstubs/LittleBoPeep solution, for example it will not support thread-aware debugging, and of course the
simulator does not provide a full simulation of all the hardware. Never the less this does provide a limited way of debugging
eCos code in a production system, which is not possible on real hardware.

Rebuilding gdbstubs and LittleBoPeep
A full release of eCos for the TILE-Gx architecture should include prebuilt binaries of gdbstubs and LittleBoPeep. If for any
reason it is necessary to rebuild these, the process is straightforward. First, LittleBoPeep. The source code for this is found in the

3437

TILE-Gx Architectural Support

host subdirectory of the TILE-Gx architectural HAL package, packages/hal/tilegx/arch, together with a makefile.
Simply running make inside that directory produce a new LittleBoPeep executable. To rebuild a gdbstubs executable, create
a new directory and inside that directory run the following commands:

$ ecosconfig new tilegx stubs
U CYGDBG_HAL_COMMON_INTERRUPTS_SAVE_MINIMUM_CONTEXT, new inferred value 0
U CYGDBG_HAL_COMMON_CONTEXT_SAVE_MINIMUM, new inferred value 0
$ ecosconfig tree
$ make
...

At the end of the build the install/bin subdirectory will contain a 32-bit gdb_module.img executable and a 64-bit
pseudo-executable gdb_module.64. The latter file is suitable for including in a hypervisor image in a debug system.

3438

TILE-Gx Architectural Support

Name
Options — Configuring the TILE-Gx Architectural HAL Package

Loading and Unloading the Package
The TILE-Gx architectural HAL package CYGPKG_HAL_TILEGX will be loaded automatically when eCos is configured for
a tilegx target, as will other hardware-specific packages such as the TMC support library. It should never be necessary to load
this package explicitly. Unloading the package should only happen as a side effect of switching target hardware.

Startup
The configuration option CYG_HAL_STARTUP can take one of two values: RAM and ROM. RAM startup is the default
except when rebuilding a gdbstubs image. RAM startup should be used in a debug system when the application runs on top
of gdbstubs, allowing the use of tile-gdb. Applications linked against a RAM-startup build of eCos cannot be incorporated
into a hypervisor boot image. ROM startup should be used in a production system, and when rebuilding a gdbstubs image.
Applications linked against a ROM-startup build of eCos should be incorporated into a hypervisor boot image and run on the
target, not on top of gdbstubs.

There are two related options: CYGSEM_HAL_ROM_MONITOR and CYGSEM_HAL_USE_ROM_MONITOR. These options
need to exist only to satisfy expectations elsewhere in the eCos source base. There should be no need to change the default
values.

RAM Sizing
On a typical eCos target all available memory will be used by eCos. Often the amount of memory will be fixed at compile-time,
but some targets support run-time memory sizing. This approach will not work on a TILE-Gx system: typically most of the
memory will be needed by the Linux partition, and each BME tile running eCos will need its own allocation.

Instead the memory size of each BME tile is determined at the point that the hypervisor loads the ROM-startup executable held
in the boot image. That executable will be gdbstubs in a debug system, or the eCos application in a production system. The
memory consists of a ROM region holding the code and a RAM region for data. In a debug system gdbstubs will use only a
small amount of the RAM region and the rest will be used for the code and data of the RAM-startup application that will be
loaded and run via tile-gdb. The hypervisor will also allocate a small amount of additional memory at location 0x6c000000
for the startup stack and some data structures, and some memory at the top of the address space for interrupt vectors.

It is possible but non-trivial to increase the amount of memory available at run-time, using the shared memory techniques
described in the TMC support package. Essentially a process running in the Linux partition would allocate a large block of
memory and pass the details on to the eCos application, which can then map the block into its own address space. However
this additional memory has to be managed entirely by the application. There is no easy way to add it to the eCos system heap.

For a ROM startup application or for gdbstubs the RAM size is controlled by the configuration option
CYGNUM_HAL_TILEGX_RAM_SIZE, and has a default value of 4096K or 4 megabytes. The size can be increased or de-
creased to match the application's actual needs. However the hypervisor will perform rounding of the requested size. For RAM
sizes up to 16MB the hypervisor will round the requested size up to 64K, 256K, 1MB, 4MB or 16MB. For RAM sizes larger
than 16MB the hypervisor will allocate multiple blocks of 16MB each. eCos will use the amount of memory actually allocated
by the hypervisor so there is no point in specifying an intermediate value size of say 8MB: the hypervisor will round this up
to 16MB and eCos will use all 16MB.

For a RAM startup application changing CYGNUM_HAL_TILEGX_RAM_SIZE usually has little or no effect. eCos will use the
actual amount of memory allocated by the hypervisor to gdbstubs, irrespective of the value of this option. However the option is
used in the linker script to specify the size of the RAM region. If the total application code and static data requirements exceed
the option's 4MB default value then the application will fail to link because the linker believes that only 4MB are available.
In these circumstances it is possible to increase the option's value and thus allow the link to succeed. Obviously it will still be
necessary to run a suitably-sized gdbstubs executable so that the hypervisor really will allocate the desired amount of memory.

For a production system, changing this configuration option in the ROM startup eCos application is straightforward. For a
debug system things are a little more complicated: the option would have to affect the gdbstubs executable, not the application

3439

TILE-Gx Architectural Support

being debugged, since it is the former that is loaded by the hypervisor. Rebuilding a custom gdbstubs executable with a different
RAM size is not hard, but it is annoying. As an alternative the RAM size can also be set when using tile-ecos-32to64 to convert
a 32-bit executable to a 64-bit pseudo-executable:

$ tile-ecos-32to64 -m 16384 gdb_module.img gdb_module_16MB.64

This creates a variant of the usual gdb_module.64 with an 16384K or 16MB RAM size instead of the default 4MB, using
the prebuilt gdb_module.img file shipped with the release.

Diagnostics
The option CYGHWR_HAL_TILEGX_DIAGNOSTICS_DESTINATION controls what happens to eCos console output. For
a ROM startup application eCos output will be sent to the hypervisor over the IDN bus and will be displayed on the system
console. For a RAM startup application eCos output will by default be sent to LittleBoPeep and then on to tile-gdb. However
it is possible to redirect the console output to the hypervisor and hence the system console if desired.

System Clock
The configuration options CYGNUM_HAL_RTC_NUMERATOR and CYGNUM_HAL_RTC_DENOMINATOR control the
frequency of the eCos system clock, or more precisely they are used to calculate the value programmed into the
TILE_TIMER_CONTROL special purpose register. The number of nanoseconds between clock ticks is given by NUMERA-
TOR/DENOMINATOR. The default value of the NUMERATOR is 1000000000, the number of nanoseconds in a second.
Therefore simple clock frequencies can be achieved simply setting the DENOMINATOR to that frequency. For example the
default 100Hz system clock is achieved by a DENOMINATOR value of 100. For more complicated clock frequencies the
calculation could involve unacceptable rounding errors, and it may be necessary to change both the NUMERATOR and DE-
NOMINATOR to avoid these.

When running on the simulator the default 100Hz clock requires a simulation of 10 milliseconds between clock ticks, and that
may take a few tens of second of real time. If the application spends much of its time waiting for the next clock tick then
performance may be greatly improved by running with a faster clock.

Simulator Support
Any ROM startup application including gdbstubs can be run on the Tilera simulator if desired, without changing any configu-
ration options. However it is possible to build the system specifically for running on the simulator by enabling the configuration
option CYGHWR_HAL_TILEGX_SIMULATOR. This enables some extra code in the eCos startup code which causes the system
to pause until tile-gdb is connected and resumes execution. The simulator will output details of exactly how tile-gdb should
connect, but note that the file being debugged should be the original 32-bit executable and not the 64-bit pseudo-executable
generated by tile-ecos-32to64. Enabling the option also causes the system to halt if and when a non-recoverable double fault
exception occurs, which may make debugging such faults slightly less difficult. Finally it changes the behaviour of some eCos
testcases, causing them to run far fewer iterations than a testcase running on real hardware.

Compiler Flags
The package has two sets of configuration options related to compiler and linker flags. The first set consists of CYGBLD_GLOB-
AL_CFLAGS and CYGBLD_GLOBAL_LDFLAGS, plus supporting options CYGBLD_GLOBAL_COMMAND_PREFIX, CYG-
BLD_LINKER_SCRIPT, and CYGHWR_MEMORY_LAYOUT needed by other parts of the eCos source base. CFLAGS defines
the default compiler flags that will be used for all packages, LDFLAGS the default linker flags. The most important flag is -
m32 to force a 32-bit build.

The second consists of CYGPKG_HAL_TILEGX_CFLAGS_ADD and CYGPKG_HAL_TILEGX_CFLAGS_REMOVE, plus sup-
porting options CYGPKG_HAL_TILEGX_TESTS and CYGBLD_HAL_TILEGX_BUILD_STUBS64. CFLAGS_ADD is used
to specify additional compiler flags that should be used when compiling the TILE-Gx architectural HAL package, and
CFLAGS_REMOVE can be used to remove some of the global flags.

3440

TILE-Gx Architectural Support

Name
HAL Port — Implementation Details

Description
This section of the documentation gives an outline description of the most important parts of the architectural HAL package,
and especially how the eCos HAL specification has been mapped on to the TILE-Gx hardware.

The TILE-Gx HAL is organized somewhat differently from HALs for other targets. Typically an eCos port involves three or
four separate HAL packages: the architectural HAL handles features that are common to every chip within an architecture; a
variant HAL copes with different families within an architecture, for example one family may support only on-chip memory
and no MMU while another family is designed for use with external memory; within a family there may be different processors
supporting different sets of peripherals; finally a platform HAL handles anything specific to the circuit board rather than to
the chip, for example the amount of external memory. The TILE-Gx port does not require these complications. Most of the
hardware variations will be handled by the hypervisor or within the Linux partition and do not affect the eCos side of things.

Data Types
The eCos port to the TILE-Gx architecture only supports 32-bit mode. int, long and pointers are all 32 bits, and a long
long is 64 bit. The chip always runs in little-endian mode.

Header Files
The architectural HAL package provides the standard HAL header files cyg/hal/hal_arch.h, cyg/hal/hal_in-
tr.h, cyg/hal/hal_io.h, and so on. However there is one important difference between the TILE-Gx versions of these
headers and their equivalents for other architectures. Typically hal_intr.h provides definitions of all the interrupt and
exception vectors, directly or indirectly. Similarly hal_io.h provides definitions for some or all of the on-chip peripherals.
These definitions are required by some parts of eCos, for example the kernel needs to know which interrupt corresponds to
the system clock, but they are specific to individual processors or variants. The gcc toolchain supports the architecture as a
whole so cannot supply these definitions.

For TILE-Gx the situation is different. The multicore development environment comes with a full set of definitions in various
headers below the arch subdirectory, for example arch/interrupts.h defines all the interrupt vectors, and arch/
spr_def.h defines the special purpose registers. tile-gcc will find these header files automatically. The headers are intended
for use by the Linux kernel but are mostly usable by eCos and eCos applications. There may be some instances where these
header files reference Linux-specific functionality, or where they assume a 64-bit build. Duplicating all this information in the
eCos header files would serve no purpose.

Memory Layout and the Linker Script
The memory layout for a ROM startup application or for gdbstubs is as follows:

Location Purpose

0x00010000 Code (.text section, read-only data)

0x10000000 Data (.data and .bss sections, eCos heap)

0x6C000000 Startup stack and Hypervisor Data

0xFFFFFFFFFE000000 Interrupt vectors

The amount of memory allocated for the ROM region is just large enough to hold the application's code and read-only data,
plus enough for a shadow copy of the .data initialized static data section. That shadow copy is needed to allow for platform
restarts. The hypervisor will round up this amount to a suitable page boundary.

eCos memory accesses go through the MMU so the above memory locations are translated to physical addresses. There-
fore one eCos tile's location 0x10000000 will correspond to a different physical memory address from another tile's location
0x10000000, and these memory regions are not shared between tiles.

3441

TILE-Gx Architectural Support

The amount of memory allocated for the RAM region is determined by the CYGNUM_HAL_TILEGX_RAM_SIZE con-
figuration option, but can be overridden by passing a suitable -m <size> option to tile-ecos-32to64 when the executable
is converted into a format suitable for including into a hypervisor boot image. The first 4K are reserved for a system data
structure hal_tilegx_global_state which contains information such as the virtual vector table, interrupt-related data,
and MMU settings. In a debug system this data structure must be shared between the ROM-startup gdbstubs and the RAM-
startup application, which is most conveniently done by placing it at a well-known location.

In a debug system the next 60K of the RAM region, up to location 0x10010000, is reserved for use by gdbstubs. The remaining
memory holds the application code, data, and heap.

The hypervisor allocates some additional memory at location 0x6c000000 (strictly, at the pertile va location specified in the
hypervisor configuration file, but that location should be 0x6c000000). The hypervisor assumes that the application is an
ordinary BME application which will need memory for its stack and heap, and which will also need information from the
hypervisor such as the tile's CPU speed. The eCos requirements are different but there is no easy way to return this memory
to the hypervisor. Instead eCos can still make good use of it for the startup and interrupt stack, and it does need some of
the same information from the hypervisor. If an application wishes to access this hypervisor information it can do so via
hal_tilegx_global_state.hv_global_info, as defined in cyg/hal/hal_tilegx.h.

When an interrupt occurs the cpu branches to a location determined by the current cpu protection level and the interrupt vector
number. eCos always runs at protection level 2, which means that the relevant locations occupy approximately 16K starting
at location 0xFFFF_FFFF_FE00_0000. eCos needs to provide these interrupt vectors so an executable contains a section for
this. Strictly the location can be changed by manipulating the INTERRUPT_VECTOR_BASE_2 special purpose register but
there is no good reason for doing so.

The linker script src/tilegx.ld defines all the above, in conjunction with pkgconf/hal_tilegx.h and pkg-
conf/mlt_tilegx.h.

For a RAM startup application running on top of gdbstubs, the application's code will be placed at location 0x10010000
onwards, immediately after the memory reserved for hal_tilegx_global_state and gdbstubs. The application's static
data will follow immediately after the code. The rest of the memory will be allocated to the system heap for dynamic memory
allocation. A RAM startup application will run in the memory map set up by the hypervisor, so the RAM size is determined
by the CYGNUM_HAL_TILEGX_RAM_SIZE option used when gdbstubs was configured, or alternatively by the memory size
passed to tile-ecos-32to64. The RAM startup initialization code will determine the actual amount of RAM and size the system
heap accordingly.

Startup
During bootstrap the hypervisor will initialize all BME tiles as per the configuration file, allocating memory as per the exe-
cutable's memory map, then jumping to the executable's entry point. The hypervisor runs at protection level 2, and starts the
executable with the same protection level. There is never any need for eCos to change this protection level, and doing so would
introduce various complications especially in the interrupt handling code.

For ROM startup the application entry point is hal_tilegx_start in src/vectors.S. If the application has been
started by the hypervisor then that will have already taken care of much of the low-level initialization, for example zeroing
the .bss uninitialized static data region. However it is also possible for an application to perform a restart. This happens most
commonly when a maintenance packet r command is issued from inside tile-gdb and the debug session is then terminated,
but a restart can also be caused by a double fault exception or by using the HAL_PLATFORM_RESET() macro defined in
cyg/hal/hal_intr.h. After a restart the assembler initialization code needs to do rather more work, including restoring
all initialized static data to their original values, zeroing all uninitialized static data, and switching to an appropriate stack.

If eCos has been built with configuration option CYGHWR_HAL_TILEGX_SIMULATOR enabled and if it is actually running
inside the simulator then the application will halt at this point, allowing the user to attach tile-gdb.

Once the assembler initialization code has finished it jumps to the C function hal_tilegx_c_startup(), defined in
src/tilegx.c. This performs initialization or reinitialization of various other subsystems including the memory manage-
ment unit's translation lookaside buffers (TLBs), interrupt handling, virtual vectors, and gdbstubs as appropriate. Finally it
runs through any C++ static constructors, including those for other eCos packages like the eCos kernel, and calls the generic
cyg_start() routine.

3442

TILE-Gx Architectural Support

For RAM startup the application entry point is again hal_tilegx_start in src/vectors.S, but the code executed is
somewhat different from that for ROM startup. Again there is a jump to hal_tilegx_c_startup() in src/tilegx.c,
and from there to cyg_start().

Thread Contexts
The HAL_SavedRegisters structure defined in cyg/hal/hal_arch.h defines the storage needed for saving and restoring
a thread context during context switches and interrupt handling. Mostly it consists of the registers r0-r53, but there is some
additional state which overlaps the stack frames defined by the TILE-Gx ABI. The details are generally of no interest to
application developers.

There is one piece of system state which is not held in the saved context structure and which arguably should be: the special
purpose register SPR_CMPEXCH_VALUE. This register is not used in ordinary code. It serves only to help implement shared
memory spinlocks:

 int result;
 __insn_mtspr(SPR_CMPEXCH_VALUE, oldval);
 result = __insn_cmpexch4(&spinlock, newval);

It is possible for an interrupt to occur between setting SPR_CMPEXCH_VALUE and applying the cmpexch4 or cmpexch
instructions, and the register may get overwritten before the code resumes. The Linux kernel saves and restores this special
purpose register during interrupt handling, adding several cycles to the interrupt latency. The eCos HAL does not save this
register on the assumption, and instead the spinlock code has to disable interrupts around the above pair of instructions:

 CYG_INTERRUPT_STATE ints_state;
 int result;
 HAL_DISABLE_INTERRUPTS(ints_state);
 __insn_mtspr(SPR_CMPEXCH_VALUE, oldval);
 result = __insn_cmpexch4(&spinlock, newval);
 HAL_RESTORE_INTERRUPTS(ints_state);

This makes interrupt handling more efficient but spinlocks more expensive. Since eCos does not support SMP operations
spinlocks are unlikely to be used often, and it is expected that this approach will be a net performance gain.

Interrupts
Interrupt management requires several pieces of functionality. First it must be possible to disable and reenable interrupts, so
that critical code sections can run atomically. Second it must be possible to mask and unmask individual interrupt sources.
Third, if support for nested interrupts is enabled via the configuration option CYGSEM_HAL_COMMON_INTERRUPTS_AL-
LOW_NESTING then it should be possible to assign priorities to the various interrupts, such that inside an interrupt handler
lower priority interrupts are masked and higher priority interrupts are unmasked. Finally other eCos code including the kernel
and any device drivers must be able to register their own interrupt handling functions. There are two versions of such handlers:
a low-level VSR must be written in assembler, but is called very early after an interrupt triggers; a higher-level ISR can be
written in C, but the system needs to do more work before the ISR can be called.

Each TILE-Gx tile has two special purpose registers or SPRs which control how interrupts are handled. INTERRUPT_MASK_2
can be used to mask or unmask the various interrupt sources (there are other registers for protection levels 0, 1, and 3 but those
are irrelevant to the eCos port). INTERRUPT_CRITICAL_SECTION can be used to block all maskable interrupts. At first
glance this second register could be used to implement the disable/reenable functionality. Unfortunately that does not quite
work. If a CPU exception occurs while INTERRUPT_CRITICAL_SECTION is set then that is treated as a non-recoverable
double fault. Since gdbstubs depends on CPU exceptions for some of the debug functionality, the implementation takes a
different approach.

During normal execution INTERRUPT_MASK_2 holds the set of all interrupts that are currently masked, as expected. A
shadow copy of this set is held in the global hal_tilegx_global_state.global_interrupt_mask. Disabling
interrupts involves setting INTERRUPT_MASK_2 to 0xFFFF_FFFF_FFFF_FFFF, and reenabling interrupts involves restoring
INTERRUPT_MASK_2 as per the shadow copy.

The above explanation is actually oversimplified. Implementing prioritized nested interrupts requires some additional compli-
cations. Associated with each interrupt source is an interrupt mask holding the set of all interrupts with equal or lower prior-
ities. There are also two pseudo-interrupt sources, none and disabled, with associated masks 0 and 0xFFFF_FFFF_FFF-
F_FFFF. At any time the value of the INTERRUPT_MASK_2 SPR is the union of the global interrupt mask and the current

3443

TILE-Gx Architectural Support

interrupt's mask. During normal execution the current interrupt is none so INTERRUPT_MASK_2 holds the same value as
the global interrupt mask. When interrupts are disabled the current interrupt is disabled so INTERRUPT_MASK_2 holds
0xFFFF_FFFF_FFFF_FFFF. While processing an interrupt INTERRUPT_MASK_2 holds all globally masked interrupts and
all interrupts masked for the current interrupt. Keeping everything up to date in the right order requires considerable care, but
achieves the desired functionality.

Assuming an unmasked interrupt triggers, the hardware jumps to location 0xFFFF_FFFF_FE00_0000 + (0x100 * interrup-
t_number). The ROM startup executable or gdbstubs provides the code that resides at that location, as per the macro intvec
in src/vectors.S. This initial code allocates space for a HAL_SavedRegisters structure on the stack , saves a small num-
ber of registers, loads a per-interrupt VSR function pointer from hal_tilegx_global_state, and jumps to that VSR.
Usually that VSR will be hal_default_interrupt_vsr, again in src/vectors.S, but applications can install their
own VSR functions if interrupt latency is particularly critical for an interrupt source. Any such VSR is likely to be based at
least in part on the default one.

The default VSR saves additional registers, updates the current interrupt field in hal_tilegx_global_state and the
INTERRUPT_MASK_2 SPR, synchronizes with the kernel, and enables nested interrupts. It then calls the ISR associated with
the current interrupt. ISRs can be written in C but there are constraints on what they are allowed to do. More information on
this is provided in the kernel documentation. When the ISR returns the VSR performs additional processing, possibly including
a context switch to a higher-priority thread that is now runnable, before eventually returning to the interrupted code.

CPU Exceptions
On TILE-Gx exceptions like SIGILL, an illegal instruction exception, are implemented in much the same way as interrupts.
However exceptions cannot be masked. The CPU jumps to a location near 0xFFFF_FFFF_FE00_0000, where the ROM
startup executable or gdbstubs will have placed suitable code. That code jumps to a VSR, which this time will usually be
hal_default_exception_vsr instead of hal_default_interrupt_vsr. This in turn calls hal_tilegx_ex-
ception_handler() in src/tilegx.c which will usually deliver the exception to the kernel. There are various special
cases, for example a SIGILL exception may be the result of hitting a tile-gdb breakpoint.

One of the exceptions is special: double fault. This occurs when a CPU exception occurs while the INTERRUPT_CRITI-
CAL_SECTION SPR is set. Double faults are not recoverable: critical information held in other SPRs will have been overwrit-
ten. If running in the simulator and CYGHWR_HAL_TILEGX_SIMULATOR is set then the simulation will be halted. Otherwise,
in the absence of a better solution, an attempt will be made to restart the system. The structure field hal_tilegx_glob-
al_state.started_by will be set to hal_tilegx_started_by_double_fault, allowing application code to
detect this after the restart and take any action that might be appropriate. Double faults should be rare, but application devel-
opers should be aware of the possibility.

The Idle Thread
The kernel's idle thread will execute the nap instruction, causing the tile to sleep until the next interrupt occurs.

The System Clock
The kernel clock has been implemented using the TILE_TIMER_CONTROL special purpose register, so that hardware is not
available for use by application code. The auxiliary tile timer is available for use by the application, but note that the simulator
does not implement that timer.

The counter value programmed into the TILE_TIMER_CONTROL register is determined from the system clock frequency,
which is information provided by the hypervisor, and from the configuration options CYGNUM_HAL_RTC_NUMERATOR and
CYGNUM_HAL_RTC_DENOMINATOR. The hardware does not support automatic reloading of the counter when a clock in-
terrupt occurs, so the interrupt handler has to reload it explicitly. That code attempts to compensate for the time taken from
the interrupt triggering to the counter being reloaded. The accuracy cannot be completely guaranteed, especially in a debug
system, so a small amount of clock drift may occur.

The Cache
The TILE-Gx architecture has a complicated caching system including per-tile primary and secondary caches and a distrib-
uted tertiary cache. The hardware maintains data cache coherency so there is very rarely any need for code to exercise fine-

3444

TILE-Gx Architectural Support

grained control over the cache such as flushing cachelines. Therefore the various cache-related eCos macros like HAL_D-
CACHE_SYNC() are defined as no-ops. The hardware does not maintain coherency between the instruction and data cache
so eCos does define a number of instruction cache macros like HAL_ICACHE_INVALIDATE(). These are needed by the
gdbstubs code to implement breakpoints, and are unlikely to be of any interest to application developers.

Diagnostics
The port supports two destinations for diagnostic output. Applications built for ROM startup will send their diagnostic output to
the hypervisor over the IDN bus, and the hypervisor will output the text on the system console. For a RAM startup application
diagnostic output will normally be sent to tile-gdb via LittleBoPeep, but the output can be redirected to the hypervisor if desired.
This behaviour is controlled by the CYGHWR_HAL_TILEGX_DIAGNOSTICS_DESTINATION configuration option.

Other Functionality
The TILE-Gx architectural HAL provides two non-standard functions which can be used to manage the MMU settings:

#include <cyg/hal/hal_tilegx.h>

int hal_tilegx_mmap(unsigned long long virtual_address,
 unsigned long long physical_address,
 unsigned long long dtlb_attributes);

void hal_tilegx_munmap(unsigned long long virtual_address);

hal_tilegx_mmap() can be used to map a physical address into the tile's virtual address space with the specified attributes.
The physical address can correspond to real memory. Typically this will be allocated by a process running in the Linux partition,
and the details can then be forwarded to an eCos application which will map it into its address space. Alternatively the physical
address can correspond to a memory-mapped device. The virtual address can be anywhere in the address space that is not
already used, but preferably in the range 0x0000_0000 to 0x7FFF_FFFF to avoid problems with 32-bit pointers. Low memory
is normally used for the system's ROM and RAM regions and 0x6C00_0000 is used for the hypervisor data, but anywhere
between 0x4000_0000 to 0x6800_0000 or 0x7000_0000 to 0x7FFF_FFFF is normally fine. The address should be aligned to
a boundary suitable for the block size. The final argument will be written to the DTLB_CURRENT_ATTR SPR and consists of
numerous fields. The Tilera documentation should be consulted for more information. hal_tilegx_mmap() returns 0 if
the operation fails, typically because all of the data TLBs are already in use, or 1 on success.

hal_tilegx_munmap() can be used to undo a previous hal_tilegx_mmap() call.

3445

Chapter 358. TILE-Gx TMC Library

3446

TILE-Gx TMC Library

Name
Overview — eCos Port of a Subset of the TMC Library

Description
The Tilera Multicore Components or TMC Library provides a variety of primitives for building parallel programs. It is doc-
umented in UG527, “The Applications Libraries Reference Manual”. The eCos package CYGPKG_HAL_TILEGX_TMC im-
plements a subset of this library. The subset supports communication between Linux applications running on some of the tiles
on a TILE-Gx chip and eCos applications running on other tiles. The package also contains a number of example applications
demonstrating the communication functionality.

The package CYGPKG_HAL_TILEGX_TMC is automatically included in any configuration for a TILE-Gx target. It does not
have to be added to the configuration. The package does not add any overhead to eCos applications which do not use any of
its functionality, so there is no reason for ever removing the package from the configuration.

The Tilera TMC library consists of the following components:

1. UDN helper routines for communication over the UDN bus. Most of these have been ported to eCos.

2. Performance tuning. The routine tmc_perf_get_cpu_speed() is implemented.

3. Spinning shared memory synchronization primitives. These have all been ported to eCos.

4. Scheduler shared memory synchronization primitives. These have not been ported. The primitives interact with the Linux
kernel, and there is no way for an eCos application running on a BME tile to do that.

5. Specified-attribute memory page allocation. These have not been ported. Allocating memory pages involves calling into
the hypervisor and the hypervisor is no longer present on BME tiles running eCos. However it is possible for a Linux
application to allocate one or more pages, pass the details on to an eCos application, and have the latter map the pages
into its address space.

6. Common memory, allowing pages to be mapped at the same virtual address in different processes. These have not been
ported. Linux applications run in 64-bit mode with a 64-bit address space, whereas eCos applications run in 32-bit mode
with 32-bit addresses. This makes it difficult to use the same virtual addresses.

7. CPU sets and affinitization. These have not been ported. The primitives are intended to allow threads to be bound to specific
tiles. Since each eCos instance runs on only one tile there is no point in attempting to support such affinitization.

8. User space interrupt installation routines. These have not been ported. eCos has its own model of how interrupts should
be handled and its own routines for managing interrupts. Trying to support the TMC's model of interrupt handling as well
would complicate things for little or no gain.

9. Interprocessor interrupt event-handling. These have not been ported. It is not clear that they are actually useful since there is
no primitive for generating an IPI interrupt. Instead UDN communications provides a way of sending data asynchronously
to another tile, and if desired that UDN communication can be processed by an interrupt handler.

10.Using mspaces for standard malloc/free. These have not been ported. Under Linux they provide an alternative implemen-
tation of the C library's malloc() and free() routines, offering some control over home caching and memory page
sizes. For eCos applications it makes more sense to use the standard eCos heap using memory provided by the hypervisor
during startup.

11.Cache control. These functions have not been ported, and the Tilera documentation recommends against using these low-
level shared memory primitives. The main functionality provided, memory fences to guarantee visibility of stores to cache
coherent memory, is instead provided by the eCos HAL_MEMORY_BARRIER() macro.

12.Multiple heap allocation. These routines allow for the allocation of separate mspaces with control over cache homing and
other functionality. They involve interaction with the hypervisor's memory page support which is not possible for an eCos
application.

13.Task management and cleanup. These primitives relate to support for multiple processes and interaction with the Tilera
shepherd process. Since eCos does not support multiple processes, only multiple threads, the primitives are not applicable.

3447

TILE-Gx TMC Library

The package only provides implements of the header files <tmc/udn.h>, <tmc/spin.h>, and <tmc/perf.h>. The
other header files do exist but will generate a compile-time warning if they are included. Providing these dummy headers
prevents the compiler from accidentally including the Linux TMC headers.

Restrictions
The eCos TMC support is subject to a number of important restrictions which application developers must be aware of.

When a Linux process uses tmc_alloc_map() or a similar routine to allocate a block of memory, that memory is owned by
the Linux process. Details of the block including the physical address can be passed on to eCos applications which can then map
it into their address space. If the Linux process exits or gets killed off the Linux kernel and hypervisor will reclaim the allocated
block, which may then get reused for some other Linux process or for the kernel or hypervisor itself. Meanwhile the eCos
application may still have a mapping to the underlying physical memory and may still write to it, corrupting memory that now
belongs to some random other part of the system. Neither the hypervisor nor the Linux kernel have any way of keeping track
of what memory has been mapped into an eCos application's address space, so they cannot do anything to avoid this problem.

The only solution is to make sure that the eCos application is always informed when the Linux process exits, so that it can
unmap any shared memory pages. That is not always easy to achieve, especially in a debug environment, but it is the application
developer's responsibility.

Separately, UDN communication is subject to a major restriction. By default a Linux application does not have access to the
UDN bus, and must explicitly obtain such access from the Linux kernel by a call to tmc_udn_init(). The kernel only
grants UDN access to one task per tile. In a debug environment LittleBoPeep runs on one of the tiles providing gdb debug
functionality for eCos tiles, and LittleBoPeep needs to use the UDN bus for this. Therefore Linux applications requiring UDN
access cannot run on the same tile as LittleBoPeep, usually the highest-numbered tile not used for BME.

UDN Support
The following UDN routines are supported:

tmc_udn_header_from_cpu()
tmc_udn_send_buffer()
tmc_udn0_receive_buffer(), tmc_udn1_receive_buffer() and tmc_udn2_receive_buffer()
tmc_udn_send()
tmc_udn_send_1() to tmc_udn_send_20()
tmc_udn0_receive() to tmc_udn2_receive()
tmc_udn0_available_count() to tmc_udn2_available_count()
tmc_udn_available_mask()

The functions related to UDN channel 3, tmc_udn3_receive_buffer(), tmc_udn3_receive() and tmc_ud-
n3_available_count() are not supported. UDN channel 3 is used for communication between LittleBoPeep and gdb-
stubs, and if application code tried to use this channel as well then things would get very confusing with UDN traffic going
to the wrong program.

There are four other UDN functions in the Tilera TMC library which are not supported under eCos: tmc_udn_init(),
tmc_udn_close(), tmc_udn_activate(), and tmc_udn_persist_after_exec(). Under Linux tmc_ud-
n_init() is needed to request access to the UDN bus from the Linux kernel. That is not necessary under eCos since eCos
applications run at protection level 2, which is sufficient for UDN access. The three other functions are also related to access
rights and are equally unnecessary.

Spinning Shared Memory Synchronization
The following are supported:

tmc_spin_mutex_t

TMC_SPIN_MUTEX_INIT tmc_spin_mutex_init()
tmc_spin_mutex_lock() tmc_spin_mutex_trylock()

3448

TILE-Gx TMC Library

tmc_spin_mutex_unlock()

tmc_spin_queued_mutex_t

TMC_SPIN_QUEUED_MUTEX_INIT tmc_spin_queued_mutex_init()
tmc_spin_queued_mutex_lock() tmc_spin_queued_mutex_trylock()
tmc_spin_queued_mutex_unlock()

tmc_spin_rwlock_t

TMC_SPIN_RWLOCK_INIT tmc_spin_rwlock_init()
tmc_spin_rwlock_rdlock() tmc_spin_rwlock_wrlock()
tmc_spin_rwlock_tryrdlock() tmc_spin_rwlock_trywrlock()
tmc_spin_rwlock_rdunlock() tmc_spin_rwlock_wrunlock()
tmc_spin_rwlock_unlock()

tmc_spin_barrier_t

TMC_SPIN_BARRIER_INIT() tmc_spin_barrier_init()
tmc_spin_barrier_wait()

These data types and functions have the same semantics as the Tilera TMC versions, so the Tilera documentation can be
consulted for more details.

An important point about these routines is that the various unlock functions and the barrier wait function involve a memory
barrier, guaranteeing that all memory writes are visible to other tiles. Therefore code that only manipulates shared data while
owning a lock automatically avoids many memory consistency problems.

Example Applications
The package comes with a number of example applications in the examples subdirectory:

udn0 This example illustrates UDN communication between a TILE-Gx Linux application
and one or more instances of an eCos application.

udn1 This example is derived from udn0. It adds direct communication between the instances
of the eCos application.

shm0 This example sets up a block of shared memory between a Linux application and one or
more instances of an eCos application. The shared memory is used to hold large amounts
of data. The Linux application sends UDN messages to control what each eCos instance
does with that shared data.

shm1 This example also sets up a block of shared memory. However UDN communication is
used only during initialization, to set up the shared memory. All subsequent communi-
cation between Linux and eCos goes via the shared memory.

spintest This is a testcase for the various spinning shared memory synchronization primitives.

not61850 This is an example involving a Linux host application, a TILE-GX Linux application,
and one or more instances of an eCos worker application. It combines ethernet traffic
using the gxio/mpipe library routines running in the TILE-Gx Linux application, and
communication between that and the eCos workers over shared memory and the UDN
bus. It was written to a specific customer's requirements and may be of limited interest
to other users.

3449

Real-time
characterization of
selected targets
Symbols

A
ads512101, 3355
at91sam7a2ek, 2123
at91sam7a3ek, 2135
at91sam7sek, 2149
at91sam7xek, 2165
atmel-at91rm9200-kits, 2281

B
bcm56150_ref, 2572
bcm943362wcd4, 3025
bcm943364wcd1, 3038

C
cyclone5_sx, 2589

D
dnp_sk23, 2306
dreamchip_a10, 2606

E
ea_quickstart, 2199

I
iar_kickstart, 2210

K
kb9200, 2319

M
m5213evb, 3207
mcimx25x, 2490
mimxrt1050_evk, 3096
mpc5554demo, 3366
mpc8309kit, 3379

N
nucleo144_stm32h723, 2931

P
pi, 2686

S
sam4e_ek, 2811

sam9260ek, 2368
sam9261ek, 2384
sam9263ek, 2399
sam9g20ek, 2414
sam9g45ek, 2429
sama5d3xpld, 2662
sama5d3x_cm, 2646
samx70_ek, 2821
stm324x9i_eval, 2966
stm32f429i_disco, 2891
stm32f4dis, 2950
stm32f746g_disco, 2905
stm32f7xx_eval, 2989
stm32h735_disco, 2918
stm32l476_disco, 3008
stm32l4r9_disco, 3051
stm32x0g_eval, 2877

T
twr_k60n512, 2753
twr_k70f120m, 2768

V
VM, 2705, 2716

Z
zoom_l138, 2465

3450

	eCosPro Reference Manual
	Table of Contents
	Part I. The eCos Kernel
	Kernel Overview
	SMP Support
	Thread creation
	Thread information
	Thread control
	Thread termination
	Thread priorities
	Per-thread data
	Thread destructors
	Exception handling
	Counters
	Clocks
	Alarms
	Mutexes
	Condition Variables
	Semaphores
	Mail boxes
	Event Flags
	Spinlocks
	Scheduler Control
	Interrupt Handling
	Kernel Real-time Characterization
	Kernel thread-aware debugging
	Kernel and infrastructure instrumentation

	Part II. The eCos Hardware Abstraction Layer (HAL)
	Chapter 1. Introduction
	Chapter 2. Architecture, Variant and Platform
	Chapter 3. General principles
	Chapter 4. HAL Interfaces
	Base Definitions
	Byte order
	Label Translation
	Base types
	Atomic types

	Architecture Characterization
	Register Save Format
	Thread Context Initialization
	Thread Context Switching
	Bit indexing
	Idle thread activity
	Reorder barrier
	Breakpoint support
	GDB support
	Setjmp and longjmp support
	Stack Sizes
	Address Translation
	Global Pointer

	Interrupt Handling
	Vector numbers
	Interrupt state control
	ISR and VSR management
	Interrupt controller management

	Clocks and Timers
	Clock Control
	Microsecond Delay
	Clock Frequency Definition

	HAL I/O
	Register address
	Register read
	Register write

	HAL Unique-ID
	HAL_UNIQUE_ID_LEN
	HAL_UNIQUE_ID

	Cache Control
	Cache Dimensions
	Global Cache Control
	Cache Line Control

	Linker Scripts
	Diagnostic Support
	SMP Support
	Target Hardware Limitations
	HAL Support
	CPU Control
	Test-and-set Support
	Spinlocks
	Scheduler Lock
	Interrupt Routing

	Chapter 5. Exception Handling
	HAL Startup
	Vectors and VSRs
	Default Synchronous Exception Handling
	Default Interrupt Handling

	Chapter 6. HAL GDB File I/O Routines
	HAL GDB File I/O Routines

	Chapter 7. Porting Guide
	Introduction
	HAL Structure
	HAL Classes
	File Descriptions
	Common HAL
	Architecture HAL
	Variant HAL
	Platform HAL
	Auxiliary HAL

	Virtual Vectors (eCos/ROM Monitor Calling Interface)
	Virtual Vectors
	Initialization (or Mechanism vs. Policy)
	Pros and Cons of Virtual Vectors
	Available services

	The COMMS channels
	Console and Debugging Channels
	Mangling
	Controlling the Console Channel
	Footnote: Design Reasoning for Control of Console Channel

	The calling Interface API
	Implemented Services
	Compatibility
	Implementation details
	New Platform Ports
	New architecture ports

	IO channels
	Available Procedures
	Usage
	Compatibility
	Implementation Details
	New Platform Ports

	HAL Coding Conventions
	Implementation issues
	Source code details
	Nested Headers

	Platform HAL Porting
	HAL Platform Porting Process
	Brief overview
	Step-by-step
	Minimal requirements
	Adding features

	Hints

	HAL Platform CDL
	eCos Database
	CDL File Layout
	Startup Type
	Build options
	Common Target Options

	Platform Memory Layout
	Layout Files
	Reserved Regions

	Platform Serial Device Support

	Variant HAL Porting
	HAL Variant Porting Process
	HAL Variant CDL
	Cache Support

	Architecture HAL Porting
	HAL Architecture Porting Process
	CDL Requirements

	Chapter 8. Future developments

	Part III. The ISO Standard C and Math Libraries
	Chapter 9. C and math library overview
	Included non-ISO functions
	Math library compatibility modes
	matherr()
	Thread-safety and re-entrancy

	Some implementation details
	Thread safety
	C library startup

	Chapter 10. Overview of ISO Standards Compliance
	Definitions
	Scope
	General Overview
	Common C/C﻿+﻿+ headers
	<assert.h>
	<complex.h>
	<ctype.h>
	<errno.h>
	<fenv.h>
	<float.h>
	<inttypes.h>
	<iso646.h>
	<limits.h>
	<locale.h>
	<math.h>
	<setjmp.h>
	<signal.h>
	<stdarg.h>
	<stdbool.h>
	<stddef.h>
	<stdint.h>
	<stdio.h>
	<stdlib.h>
	<string.h>
	<tgmath.h>
	<time.h>
	<wchar.h>
	<wctype.h>

	C11 specific headers
	<stdalign.h>
	<stdatomic.h>
	<threads.h>
	<uchar.h>

	Part IV. eCosPro Standard C﻿+﻿+ library support package
	Chapter 11. Introduction
	Overview of features

	Chapter 12. Usage
	Requirements
	Issues to consider
	Using C﻿+﻿+ exceptions
	Application size
	C﻿+﻿+ exceptions in callbacks
	Licensing
	Standards Compliance
	Open issues
	GCC 3.3.x issues
	GCC 3.4.x issues
	Generic issues

	Chapter 13. Testing
	Chapter 14. Toolchain

	Part V. eCos Support for Dynamic Memory Allocation
	Memory Allocation
	Memory Pool Functions
	Memory Debug Data

	Part VI. I/O Package (Device Drivers)
	Chapter 15. Introduction
	Chapter 16. User API
	Chapter 17. Serial driver details
	Raw Serial Driver
	Runtime Configuration
	API Details
	cyg_io_write
	cyg_io_read
	cyg_io_get_config
	cyg_io_set_config

	TTY driver
	Runtime configuration
	API details

	Chapter 18. How to Write a Driver
	How to Write a Serial Hardware Interface Driver
	DevTab Entry
	Serial Channel Structure
	Serial Functions Structure
	Callbacks

	Serial testing with ser_filter
	Rationale
	The Protocol
	The Serial Tests
	Serial Filter Usage
	A Note on Failures
	Debugging

	Chapter 19. Device Driver Interface to the Kernel
	Interrupt Model
	Synchronization
	SMP Support
	Device Driver Models
	Synchronization Levels
	The API
	cyg_drv_isr_lock
	cyg_drv_isr_unlock
	cyg_drv_spinlock_init
	cyg_drv_spinlock_destroy
	cyg_drv_spinlock_spin
	cyg_drv_spinlock_clear
	cyg_drv_spinlock_try
	cyg_drv_spinlock_test
	cyg_drv_spinlock_spin_intsave
	cyg_drv_spinlock_clear_intsave
	cyg_drv_dsr_lock
	cyg_drv_dsr_unlock
	cyg_drv_mutex_init
	cyg_drv_mutex_destroy
	cyg_drv_mutex_lock
	cyg_drv_mutex_trylock
	cyg_drv_mutex_unlock
	cyg_drv_mutex_release
	cyg_drv_cond_init
	cyg_drv_cond_destroy
	cyg_drv_cond_wait
	cyg_drv_cond_signal
	cyg_drv_cond_broadcast
	cyg_drv_interrupt_create
	cyg_drv_interrupt_delete
	cyg_drv_interrupt_attach
	cyg_drv_interrupt_detach
	cyg_drv_interrupt_mask
	cyg_drv_interrupt_mask_intunsafe
	cyg_drv_interrupt_unmask
	cyg_drv_interrupt_unmask_intunsafe
	cyg_drv_interrupt_acknowledge
	cyg_drv_interrupt_configure
	cyg_drv_interrupt_level
	cyg_drv_interrupt_set_cpu
	cyg_drv_interrupt_get_cpu
	cyg_ISR_t
	cyg_DSR_t

	Instrumentation

	Part VII. File System Support Infrastructure
	Chapter 20. Introduction
	Chapter 21. File System Table
	Chapter 22. Mount Table
	Chapter 23. File Table
	Chapter 24. Directories
	Chapter 25. Synchronization
	Chapter 26. Initialization and Mounting
	Chapter 27. Automounter
	Chapter 28. Sockets
	Chapter 29. Select
	Chapter 30. Devices
	Chapter 31. Writing a New Filesystem

	Part VIII. FAT File System Support
	Chapter 32. Introduction
	Chapter 33. Configuring the FAT Filesystem
	Including FAT Filesystem in a Configuration
	Configuring the FAT Filesystem

	Chapter 34. Using the FAT Filesystem
	Chapter 35. Removable Media Support
	Chapter 36. Non-ASCII Character Set Support
	Chapter 37. Formatting Support
	Chapter 38. Testing

	Part IX. Multimedia File System
	Chapter 39. Introduction
	Chapter 40. Disk Data Structure
	Directory
	Free List
	Block Allocation Tables
	Data Area

	Chapter 41. Runtime Filesystem Organization
	FILEIO Interface
	File and Directory Handling
	Caches
	Disk Interface
	Scan and Format

	Chapter 42. Configuration
	Configuration Options
	General Options
	Formatting Options
	Footprint Options

	Configuration Guidelines
	Block Size
	BAT Size
	Directory Size
	Cache Sizes

	Chapter 43. Usage
	FILEIO Interface
	MMFSLib
	MMFSLib API
	Example

	Chapter 44. Testing

	Part X. Disk IO Package
	Chapter 45. Introduction
	Chapter 46. Configuring the DISK I/O Package
	Including DISK I/O in a Configuration
	Configuring the DISK I/O Package

	Chapter 47. Usage
	Chapter 48. Hardware Driver Interface
	DevTab Entry
	Disk Controller Structure
	Disk Channel Structure
	Disk Functions Structure
	Callbacks
	Putting It All Together

	Part XI. USB Mass Storage Support
	Overview

	Part XII. MMC, SD, SDHC and SDIO Media Card Disk Driver
	Device Driver for MMC, SD, SDHC and SDIO media Cards

	Part XIII. MMC/SD Card Device Drivers
	Chapter 49. Atmel SAM series Multimedia Card Interface (MCI) driver
	Overview

	Part XIV. The Yaffs filesystem
	Chapter 50. What is Yaffs?
	Chapter 51. Getting started with Yaffs
	Licensing considerations
	Installation
	Installation via the eCos Configuration Tool
	Installing from the command-line

	Configuration and Building
	Package dependencies
	Configuration options

	Using Yaffs
	Mounting a filesystem
	Mount-time options

	Data flushing
	Checkpointing
	Limitations

	Memory requirements
	Worked example

	Testing

	Chapter 52. Using Yaffs with RedBoot
	Memory considerations under RedBoot

	Part XV. eCos NAND I/O
	Chapter 53. The eCos NAND Flash Library
	Description
	Structure of the library
	Device support

	Danger, Will Robinson! Danger!
	Differences between NAND and NOR flash
	Preparing for deployment

	Chapter 54. Using the NAND library
	Configuring the NAND library
	The NAND Application API
	Device initialisation and lookup
	NAND device addressing
	NAND device partitions
	About the spare area

	Manipulating the NAND array
	Reading data
	Writing data
	Erasing blocks
	Common error returns

	Ancillary NAND functions

	Chapter 55. Writing NAND device drivers
	Planning a port
	Driver structure and layout
	Chip partitions
	Locking against concurrent access
	Required CDL declarations

	High-level (chip) functions
	Device initialisation
	Reading, writing and erasing data
	Searching for factory-bad blocks
	Declaring the function set

	Low-level (board) functions
	Talking to the chip
	Setting up the chip partition table
	Putting it all together…

	ECC implementation
	The ECC interface

	Chapter 56. Tests and utilities
	Unit and functional tests
	Ancillary NAND utilities

	Chapter 57. The eCos configuration store
	Overview
	Design limitations

	Using the config store
	Locking
	Configuration
	Storage details
	Padding
	Scanning

	Part XVI. NAND Device Drivers
	Chapter 58. Samsung K9 family NAND chips
	Overview
	Using this driver in a board port
	Memory usage
	Low-level functions required from the platform HAL

	Chapter 59. ST Microelectronics NANDxxxx3a chips
	Overview
	Using this driver in a board port
	Memory usage note
	Low-level functions required from the platform HAL

	Chapter 60. Micron MT29F family NAND chips
	Overview
	Using this driver in a board port
	Memory usage
	Low-level functions required from the platform HAL

	Synthetic Target NAND Flash Device

	Part XVII. Journalling Flash File System v2 (JFFS2)
	Journalling Flash File System v2 overview
	Using JFFS2

	Part XVIII. NOR Flash Support
	Chapter 61. The eCos NOR FLASH Library
	Notes on using the NOR FLASH library
	Danger, Will Robinson! Danger!

	Chapter 62. The Version 2 eCos FLASH API
	FLASH user API
	Initializing the FLASH library
	Retrieving information about FLASH devices
	Reading from FLASH
	Erasing areas of FLASH
	Programming the FLASH
	Locking and unlocking blocks
	Locking FLASH mutexes
	Configuring diagnostic output
	Return values and errors

	FLASH device API
	The FLASH device Structure

	Chapter 63. The legacy Version 1 eCos FLASH API
	FLASH user API
	Initializing the FLASH library
	Retrieving information about the FLASH
	Reading from FLASH
	Erasing areas of FLASH
	Programming the FLASH
	Locking and unlocking blocks
	Return values and errors
	Notes on using the FLASH library

	FLASH device API
	The flash_info structure
	Initializing the device driver
	Querying the FLASH
	Erasing a block of FLASH
	Programming a region of FLASH
	Reading a region from FLASH
	Locking and unlocking FLASH blocks
	Mapping FLASH error codes to FLASH IO error codes
	Determining if code is in FLASH
	Implementation Notes

	Chapter 64. FLASH I/O devices
	Overview and CDL Configuration
	Using FLASH I/O devices

	Chapter 65. Common SPI Flash Memory Device Driver
	eCos Common Support for SPI Flash Memory Devices
	Common SPI Memory Device Hardware Driver

	Chapter 66. AMD AM29xxxxx Flash Device Driver
	eCos Support for AMD AM29xxxxx Flash Devices and Compatibles
	Instantiating an AM29xxxxx Device

	Chapter 67. Atmel AT45xxxxxx DataFlash Device Driver
	Overview
	Instantiating a DataFlash Device

	Chapter 68. Freescale MCFxxxx CFM Flash Device Driver
	Freescale MCFxxxx CFM Flash Support

	Chapter 69. Intel Strata Flash Device Driver
	Overview
	Instantiating a Strata Device
	Strata-Specific Functions

	Chapter 70. SST 39VFXXX Flash Device Driver
	Overview
	Instantiating an 39vfxxx Device

	Part XIX. ecoflash Flash Programming Utility
	ecoflash Flash Programming Utility

	Part XX. Flash Safe
	Flash Safe
	Flash Safe Programmer Interface

	Part XXI. PCI Library
	Chapter 71. The eCos PCI Library
	PCI Library
	PCI Overview
	Initializing the bus
	Scanning for devices
	Generic config information
	Specific config information
	Allocating memory
	Interrupts
	Activating a device
	Links

	PCI Library reference
	PCI Library API
	Definitions
	Types and data structures
	Functions
	Resource allocation
	PCI Library Hardware API
	HAL PCI support

	Part XXII. SPI Support
	Chapter 72. SPI Support
	Overview
	SPI Interface
	Porting to New Hardware

	Chapter 73. Freescale MCFxxxx ColdFire QSPI Bus Driver
	Freescale MCFxxxx Coldfire QSPI Bus Driver

	Chapter 74. Microchip (Atmel) USART-as-SPI Bus Driver
	Microchip (Atmel) SAM E70/S70/V70/V71 USART-as-SPI Bus Driver

	Part XXIII. I²C Support
	Chapter 75. I²C Support
	Overview
	I²C Interface
	Porting to New Hardware

	Chapter 76. Freescale MCFxxxx ColdFire I2C Bus Driver
	Freescale MCFxxxx Coldfire I2C Bus Driver

	Part XXIV. ADC Support
	Chapter 77. ADC Support
	eCos Support for Analog/Digital Converters
	ADC Device Drivers

	Chapter 78. STM32 ADC Driver
	STM32 ADC Driver

	Chapter 79. STR7XX ADC Driver
	STR7XX ADC Driver

	Chapter 80. TSC ADC Driver
	TSC ADC Driver

	Chapter 81. Atmel AFEC (ADC) Driver
	Atmel AFEC ADC Driver

	Chapter 82. NXP i.MX RT ADC Driver
	NXP i.MX RT ADC Driver

	Part XXV. Pulse Width Modulation (PWM) Support
	Chapter 83. PWM Support
	Overview

	Part XXVI. Framebuffer Support
	Chapter 84. Framebuffer Support
	Overview
	Framebuffer Parameters
	Framebuffer Control Operations
	Framebuffer Colours
	Framebuffer Drawing Primitives
	Framebuffer Pixel Manipulation
	Writing a Framebuffer Device Driver

	Chapter 85. CSB337/900 Framebuffer Device Driver
	CSB337/900 Framebuffer Device Driver

	Chapter 86. i.MXxx Framebuffer Device Driver
	i.MXxx Framebuffer Device Driver

	Chapter 87. iPAQ Framebuffer Device Driver
	iPAQ Framebuffer Device Driver

	Chapter 88. PC VGA Framebuffer Device Driver
	PC VGA Framebuffer Device Driver

	Chapter 89. Synthetic Target Framebuffer Device
	Synthetic Target Framebuffer Device

	Part XXVII. CAN Support
	Chapter 90. CAN Support
	Overview
	CAN Interface
	Configuration
	Device Drivers

	Chapter 91. NXP FlexCAN CAN Driver
	NXP FlexCAN CAN Driver

	Chapter 92. FlexCAN CAN Driver
	FlexCAN CAN Driver

	Chapter 93. MSCAN CAN Driver
	MSCAN CAN Driver

	Chapter 94. LPC2XXXX CAN Driver
	LPC2XXX CAN Driver

	Chapter 95. Atmel SAM CAN Driver
	Atmel SAM CAN Driver

	Chapter 96. Atmel MCAN CAN Driver
	Atmel MCAN CAN Driver

	Chapter 97. SJA1000 CAN Driver
	SJA1000 CAN Driver

	Chapter 98. BXCAN CAN Driver
	BXCAN CAN Driver

	Chapter 99. STR7XX CAN Driver
	STR7XX CAN Driver

	Part XXVIII. Coherent Connection Bus
	Chapter 100. Coherent Connection Bus overview
	Introduction

	Chapter 101. Configuration
	Configuration Overview
	Quick Start
	Configuring the CCB memory footprint
	Configuring the CCB control thread
	Configuring the CCB master server

	Chapter 102. API Overview
	Application support API
	cyg_ccb_build_message
	cyg_ccb_check_response

	I/O Device Driver Interface

	Chapter 103. Internals
	Chapter 104. Debug and Test
	Debugging
	Asserts
	Diagnostic Output

	Testing
	ccb_ut
	ccb_master

	Part XXIX. STM32 Coherent Connection Bus Driver
	Chapter 105. STM32 Coherent Connection Bus Driver overview
	Introduction

	Chapter 106. Configuration
	Configuration Overview
	Configuring the STM32 CCB driver

	Chapter 107. Debug and Test
	Debugging
	Asserts
	Diagnostic Output

	Part XXX. MODBUS
	Chapter 108. MODBUS overview
	Introduction

	Chapter 109. Configuration
	Configuration Overview
	Quick Start
	Configuring the MODBUS server
	Configuring the ModbusTCP Server

	Chapter 110. API Overview
	Application API
	cyg_modbus_server_start
	cyg_modbus_server_stop

	Backend API
	cyg_modbus_response
	cyg_modbus_raw_pdu
	cyg_modbus_response_nocopy
	cyg_modbus_response_exception
	cyg_modbus_get_uid

	ModbusTCP specific API
	cyg_modbus_acm_add
	cyg_modbus_acm_remove

	MODBUS Exceptions
	Backend Interface
	cyg_mbop_read_discrete_inputs
	cyg_mbop_read_coils
	cyg_mbop_write_single_coil
	cyg_mbop_write_multiple_coils
	cyg_mbop_read_input_regs
	cyg_mbop_read_holding_regs
	cyg_mbop_write_single_reg
	cyg_mbop_write_multiple_regs
	cyg_mbop_rw_multiple_regs
	cyg_mbop_mask_reg
	cyg_mbop_read_fifo_queue
	cyg_mbop_read_file_record
	cyg_mbop_write_file_record
	cyg_mbop_read_id
	cyg_mbop_canopen

	Example backend

	Chapter 111. Internals
	Chapter 112. Debug and Test
	Debugging
	Asserts
	Diagnostic Output

	Testing
	modbus_ut
	modbus_server

	Part XXXI. Direct Memory Access Controller (DMAC) Device Drivers
	Chapter 113. Atmel DMA Controller (DMAC)
	Atmel DMAC Driver

	Chapter 114. Atmel DMA Controller (XDMAC)
	Atmel XDMAC Driver

	Part XXXII. RPMSG Support
	Overview
	RPMSG Application API

	Part XXXIII. Serial Device Drivers
	Chapter 115. Freescale MCFxxxx Serial Driver
	MCFxxxx Serial Driver

	Chapter 116. NXP PNX8310 Serial Driver
	PNX8310 Serial Driver

	Chapter 117. Nios II Avalon UART Serial Driver
	Nios II Avalon UART Serial Driver

	Part XXXIV. USB Support
	Overview
	Configuration
	Transfer Objects
	Host Device Objects
	Class Drivers
	Host Controller Drivers
	Target Objects
	Peripheral Controller Drivers

	Part XXXV. USB Serial Support
	Chapter 118. USB Serial Support
	Overview

	Chapter 119. USB Target CDC ACM Protocol Driver
	Overview

	Chapter 120. USB Host CDC ACM Protocol Driver
	Overview

	Chapter 121. USB Host FTDI Protocol Driver
	Overview

	Part XXXVI. VirtIO Support
	Overview
	Virtio API

	Part XXXVII. Wallclock Device Drivers
	Chapter 122. Wallclock Support
	Wallclock support
	C API

	Chapter 123. Dallas DS1302 Wallclock Device Driver
	Dallas DS1302 Wallclock Device Driver

	Chapter 124. Dallas DS1306 Wallclock Device Driver
	Dallas DS1306 Wallclock Device Driver

	Chapter 125. Dallas DS1307 Wallclock Device Driver
	Dallas DS1307 Wallclock Device Driver

	Chapter 126. Dallas DS1390 Wallclock Device Driver
	Dallas DS1390 Wallclock Device Driver

	Chapter 127. Freescale MCFxxxx On-Chip Wallclock Device Driver
	Freescale MCFxxxx On-Chip Wallclock Device Driver

	Chapter 128. Intersil ISL1208 Wallclock Device Driver
	Intersil ISL1208 Wallclock Device Driver

	Chapter 129. Intersil ISL12028 Wallclock Device Driver
	Intersil ISL12028 Wallclock Device Driver

	Chapter 130. ST M41TXX Wallclock Device Driver
	ST M41TXX Wallclock Device Driver

	Chapter 131. ST M48T Wallclock Device Driver
	ST M48T Wallclock Device Driver

	Part XXXVIII. Watchdog Drivers
	Chapter 132. Freescale Kinetis Watchdog Driver
	Kinetis Watchdog Driver

	Chapter 133. Freescale MCFxxxx SCM Watchdog Driver
	MCFxxxx SCM Watchdog Driver

	Chapter 134. Freescale MCFxxxx Watchdog Driver
	MCFxxxx Watchdog Driver

	Chapter 135. Freescale MCF5272 Watchdog Driver
	MCF5272 Watchdog Driver

	Chapter 136. Freescale MCF5282 Watchdog Driver
	MCF5282 Watchdog Driver

	Chapter 137. Freescale MCF532x Watchdog Driver
	MCF532x Watchdog Driver

	Chapter 138. Nios II Avalon Timer Watchdog Driver
	Nios II Avalon Timer Watchdog Driver

	Chapter 139. NXP PNX8310 Watchdog Driver
	PNX8310 Watchdog Driver

	Chapter 140. NXP PNX8330 Watchdog Driver
	PNX8330 Watchdog Driver

	Chapter 141. Synthetic Target Watchdog Device
	Synthetic Target Watchdog Device

	Part XXXIX. eCos POSIX compatibility layer
	Chapter 142. POSIX Standard Support
	Process Primitives [POSIX Section 3]
	Functions Implemented
	Functions Omitted
	Notes

	Process Environment [POSIX Section 4]
	Functions Implemented
	Functions Omitted
	Notes

	Files and Directories [POSIX Section 5]
	Functions Implemented
	Functions Omitted
	Notes

	Input and Output [POSIX Section 6]
	Functions Implemented
	Functions Omitted
	Notes

	Device and Class Specific Functions [POSIX Section 7]
	Functions Implemented
	Functions Omitted
	Notes

	C Language Services [POSIX Section 8]
	Functions Implemented
	Functions Omitted
	Notes

	System Databases [POSIX Section 9]
	Functions Implemented
	Functions Omitted
	Notes

	Data Interchange Format [POSIX Section 10]
	Synchronization [POSIX Section 11]
	Functions Implemented
	Functions Omitted
	Notes

	Memory Management [POSIX Section 12]
	Functions Implemented
	Functions Omitted
	Notes

	Execution Scheduling [POSIX Section 13]
	Functions Implemented
	Functions Omitted
	Notes

	Clocks and Timers [POSIX Section 14]
	Functions Implemented
	Functions Omitted
	Notes

	Message Passing [POSIX Section 15]
	Functions Implemented
	Functions Omitted
	Notes

	Thread Management [POSIX Section 16]
	Functions Implemented
	Functions Omitted
	Notes

	Thread-Specific Data [POSIX Section 17]
	Functions Implemented
	Functions Omitted
	Notes

	Thread Cancellation [POSIX Section 18]
	Functions Implemented
	Functions Omitted
	Notes

	Non-POSIX Functions
	General I/O Functions
	Socket Functions
	Notes

	References and Bibliography

	Part XL. µITRON
	Chapter 143. µITRON API
	Introduction to µITRON
	µITRON and eCos
	Task Management Functions
	Error checking

	Task-Dependent Synchronization Functions
	Error checking

	Synchronization and Communication Functions
	Error checking

	Extended Synchronization and Communication Functions
	Interrupt management functions
	Error checking

	Memory pool Management Functions
	Error checking

	Time Management Functions
	Error checking

	System Management Functions
	Error checking

	Network Support Functions
	µITRON Configuration FAQ

	Part XLI. TCP/IP Stack Support for eCos
	Chapter 144. Ethernet Driver Design
	Chapter 145. Sample Code
	Chapter 146. Configuring IP Addresses
	Chapter 147. Tests and Demonstrations
	Loopback tests
	Building the Network Tests
	Standalone Tests
	Performance Test
	Interactive Tests
	Maintenance Tools

	Chapter 148. Support Features
	TFTP
	DHCP

	Chapter 149. TCP/IP Library Reference
	getdomainname
	gethostname
	byteorder
	ethers
	getaddrinfo
	gethostbyname
	getifaddrs
	getnameinfo
	getnetent
	getprotoent
	getrrsetbyname
	getservent
	if_nametoindex
	inet
	inet6_option_space
	inet6_rthdr_space
	inet_net
	ipx
	iso_addr
	link_addr
	net_addrcmp
	ns
	resolver
	accept
	bind
	connect
	getpeername
	getsockname
	getsockopt
	ioctl
	listen
	poll
	select
	send
	shutdown
	socket

	Part XLII. FreeBSD TCP/IP Stack port for eCos
	Chapter 150. Networking Stack Features
	Chapter 151. Freebsd TCP/IP stack port
	Targets
	Building the Network Stack

	Chapter 152. APIs
	Standard networking

	Part XLIII. eCos PPP User Guide
	Chapter 153. Features
	Chapter 154. Using PPP
	Chapter 155. PPP Interface
	cyg_ppp_options_init()
	cyg_ppp_up()
	cyg_ppp_down()
	cyg_ppp_wait_up()
	cyg_ppp_wait_down()
	cyg_ppp_chat()

	Chapter 156. Installing and Configuring PPP
	Including PPP in a Configuration
	Configuring PPP

	Chapter 157. CHAT Scripts
	Chat Script
	ABORT Strings
	TIMEOUT
	Sending EOT
	Escape Sequences

	Chapter 158. PPP Enabled Device Drivers
	Chapter 159. Testing
	Test Programs
	Test Script

	Part XLIV. lwIP - the lightweight IP stack for eCosPro
	Chapter 160. lwIP overview
	Introduction
	lwIP sources and ports
	External documentation
	Licensing

	Chapter 161. Basic concepts
	Structure
	Application Programming Interfaces (APIs)
	Protocol implementations
	Packet data buffers
	Configurability
	Limitations
	Quick Start

	Chapter 162. Port
	Port status
	Implementation
	System Configuration
	System Source
	Threads

	Extensions
	eCos API reference
	cyg_lwip_init
	cyg_lwip_netif_print_info
	cyg_net_eth_phy_ctx_acquire
	cyg_net_eth_phy_dsr
	cyg_lwip_tick_to_msec
	cyg_lwip_msec_to_tick
	cyg_lwip_statistics

	Chapter 163. Configuration
	Configuration Overview
	Configuring the lwIP stack
	Performance and Footprint Tuning
	Performance
	TCP
	Receive Window
	Maximum Segment Size
	Sending Data

	Optimizations
	Checksums
	Network-vs-Host
	Device Driver
	Release Builds

	Memory Footprint
	lwIP Footprint
	Example "small" footprint

	Chapter 164. Sequential API
	Overview
	Comparison with BSD sockets
	BSD API Restrictions

	Netbufs
	TCP/IP thread
	Usage
	API declarations
	Types
	IP address representation
	IPv4 Addresses
	IPv6 Addresses
	ipX Helpers

	Error codes

	API reference
	netbuf_new()
	netbuf_delete()
	netbuf_alloc()
	netbuf_free()
	netbuf_ref()
	netbuf_len()
	netbuf_data()
	netbuf_next()
	netbuf_first()
	netbuf_copy()
	netbuf_copy_partial()
	netbuf_chain()
	netbuf_fromaddr()
	netbuf_fromaddr_ip6()
	netbuf_fromport()
	netconn_new()
	netconn_new_with_callback()
	netconn_new_with_proto_and_callback()
	netconn_delete()
	netconn_type()
	netconn_peer()
	netconn_addr()
	netconn_bind()
	netconn_bind_ip6()
	netconn_connect()
	netconn_connect_ip6()
	netconn_disconnect()
	netconn_listen()
	netconn_accept()
	netconn_recv()
	netconn_recv_tcp_pbuf()
	netconn_recved()
	netconn_write()
	netconn_send()
	netconn_close()
	netconn_shutdown()
	netconn_set_noautorecved()
	netconn_get_noautorecved()
	netconn_err()

	Chapter 165. Raw API
	Overview
	Usage
	Callbacks
	tcp_arg()

	TCP connection setup
	tcp_new()
	tcp_bind()
	tcp_listen()
	tcp_accept()
	tcp_connect()

	Sending TCP data
	tcp_write()
	tcp_sent()

	Receiving TCP data
	tcp_recv()
	tcp_recved()

	Application polling
	tcp_poll()

	Closing connections, aborting connections and errors
	tcp_close()
	tcp_abort()
	tcp_err()

	Lower layer TCP interface
	UDP interface
	udp_new()
	udp_remove()
	udp_bind()
	udp_connect()
	udp_disconnect()
	udp_send()
	udp_recv()

	System initialization
	Initialization detail

	Chapter 166. Debug and Test
	Debugging
	Asserts
	Memory Allocations
	Statistics
	GDB/RedBoot
	Host Tools

	Testing
	lwipsnmp
	lwipsntp
	lwiperf
	unitwrap
	socket
	tcpecho
	udpecho
	frag
	nc_test_slave
	httpd
	httpd2
	lookup
	sys_timeout
	lwiphttpd

	Part XLV. Ethernet Device Support
	Chapter 167. Writing Ethernet Device Drivers
	Generic Ethernet API
	Review of the functions
	Init function
	Start function
	Stop function
	Control function
	Can-send function
	Send function
	Deliver function
	Receive function
	Poll function
	Interrupt-vector function

	Upper Layer Functions
	Callback Init function
	Callback Tx-Done function
	Callback Receive function

	Calling graph for Transmission and Reception
	Transmission
	Receive

	Chapter 168. lwIP Direct Ethernet Device Driver
	Introduction
	API reference
	cyg_lwip_eth_ecos_init()
	cyg_lwip_eth_low_level_output()
	cyg_lwip_eth_run_deliveries()
	cyg_lwip_eth_ioctl()
	DRV_HDWR_pbuf_pool_free_hook()

	Multiple direct drivers
	lwIP MANUAL initialisation

	Chapter 169. CDC-EEM Target USB driver
	Introduction
	API
	Configuration
	Configuration Overview
	Configuring the CDC-EEM driver

	Debug and Test
	Debugging
	Asserts
	Diagnostic Output

	Chapter 170. RNDIS Target USB driver
	Introduction
	API
	Configuration
	Configuration Overview
	Configuring the RNDIS driver

	Debug and Test
	Debugging
	Asserts
	Diagnostic Output

	Chapter 171. Ethernet PHY Device Support
	Ethernet PHY Device API

	Chapter 172. Synopsys DesignWare Ethernet GMAC Driver
	Synopsys DesignWare Ethernet GMAC Driver

	Chapter 173. Freescale ColdFire Ethernet Driver
	Freescale ColdFire Ethernet Driver

	Chapter 174. Nios II Triple Speed Ethernet Driver
	Nios II Triple Speed Ethernet Driver

	Chapter 175. SMSC LAN9118 Ethernet Driver
	SMSC LAN9118 Ethernet Driver

	Chapter 176. Synthetic Target Ethernet Driver
	Synthetic Target Ethernet Driver

	Part XLVI. DNS for eCos and RedBoot
	Chapter 177. DNS
	DNS API
	DNS Client Testing

	Part XLVII. eCosPro-SecureSockets
	Chapter 178. OpenSSL eCos Support
	Introduction
	Licensing, Copyrights and Patents

	Configuration
	Full Configuration
	Default Configuration
	Kernel Configuration
	Serial Line Support
	File System Dependencies
	Configuring OpenSSL

	openssl Command Tool
	Thread Safety
	eCos Customization
	Random Number Support
	BIO_diag

	Tests
	Limitations

	Chapter 179. OpenSSL Manual
	openssl Command Line Tool
	openssl
	asn1parse
	ca
	ciphers
	cms
	crl
	crl2pkcs7
	dgst
	dhparam
	dsa
	dsaparam
	ec
	ecparam
	enc
	errstr
	gendsa
	genpkey
	genrsa
	nseq
	ocsp
	passwd
	pkcs12
	pkcs7
	pkcs8
	pkey
	pkeyparam
	pkeyutl
	rand
	req
	rsa
	rsautl
	s_client
	s_server
	s_time
	sess_id
	smime
	speed
	spkac
	ts
	verify
	version
	x509
	config
	x509v3_config

	Cryptographic functions
	crypto
	ASN1_generate_nconf
	ASN1_OBJECT_new
	ASN1_STRING_length
	ASN1_STRING_new
	ASN1_STRING_print_ex
	bio
	BIO_ctrl
	BIO_f_base64
	BIO_f_buffer
	BIO_f_cipher
	BIO_find_type
	BIO_f_md
	BIO_f_null
	BIO_f_ssl
	BIO_new_CMS
	BIO_new
	BIO_push
	BIO_read
	BIO_s_accept
	BIO_s_bio
	BIO_s_connect
	BIO_set_callback
	BIO_s_fd
	BIO_s_file
	BIO_should_retry
	BIO_s_mem
	BIO_s_null
	BIO_s_socket
	blowfish
	bn
	bn_internal
	BN_add
	BN_add_word
	BN_BLINDING_new
	BN_bn2bin
	BN_cmp
	BN_copy
	BN_CTX_new
	BN_CTX_start
	BN_generate_prime
	BN_mod_inverse
	BN_mod_mul_montgomery
	BN_mod_mul_reciprocal
	BN_new
	BN_num_bytes
	BN_rand
	BN_set_bit
	BN_swap
	BN_zero
	buffer
	CMS_add0_cert
	CMS_add1_recipient_cert
	CMS_compress
	CMS_decrypt
	CMS_encrypt
	CMS_final
	CMS_get0_RecipientInfos
	CMS_get0_SignerInfos
	CMS_get0_type
	CMS_get1_ReceiptRequest
	CMS_add1_signer
	CMS_sign
	CMS_sign_receipt
	CMS_uncompress
	CMS_verify
	CMS_verify_receipt
	CONF_modules_free
	CONF_modules_load_file
	CRYPTO_set_ex_data
	d2i_ASN1_OBJECT
	d2i_CMS_ContentInfo
	d2i_DHparams
	d2i_DSAPublicKey
	d2i_ECPrivateKey
	d2i_PKCS8PrivateKey
	d2i_PrivateKey
	d2i_RSAPublicKey
	d2i_X509_ALGOR
	d2i_X509_CRL
	d2i_X509_NAME
	d2i_X509
	d2i_X509_REQ
	d2i_X509_SIG
	des
	des_modes
	dh
	DH_generate_key
	DH_generate_parameters
	DH_get_ex_new_index
	DH_new
	DH_set_method
	DH_size
	dsa
	DSA_do_sign
	DSA_dup_DH
	DSA_generate_key
	DSA_generate_parameters
	DSA_get_ex_new_index
	DSA_new
	DSA_set_method
	DSA_SIG_new
	DSA_sign
	DSA_size
	ecdsa
	engine
	err
	ERR_clear_error
	ERR_error_string
	ERR_get_error
	ERR_GET_LIB
	ERR_load_crypto_strings
	ERR_load_strings
	ERR_print_errors
	ERR_put_error
	ERR_remove_state
	ERR_set_mark
	evp
	EVP_BytesToKey
	EVP_DigestInit
	EVP_DigestSignInit
	EVP_DigestVerifyInit
	EVP_EncodeInit
	EVP_EncryptInit
	EVP_OpenInit
	EVP_PKEY_cmp
	EVP_PKEY_CTX_ctrl
	EVP_PKEY_CTX_new
	EVP_PKEY_decrypt
	EVP_PKEY_derive
	EVP_PKEY_encrypt
	EVP_PKEY_get_default_digest
	EVP_PKEY_keygen
	EVP_PKEY_new
	EVP_PKEY_print_private
	EVP_PKEY_set1_RSA
	EVP_PKEY_sign
	EVP_PKEY_verify
	EVP_PKEY_verify_recover
	EVP_SealInit
	EVP_SignInit
	EVP_VerifyInit
	hmac
	i2d_CMS_bio_stream
	i2d_PKCS7_bio_stream
	lhash
	lh_stats
	md5
	mdc2
	OBJ_nid2obj
	OpenSSL_add_all_algorithms
	OPENSSL_Applink
	OPENSSL_config
	OPENSSL_ia32cap
	OPENSSL_load_builtin_modules
	OPENSSL_VERSION_NUMBER
	pem
	PEM_write_bio_CMS_stream
	PEM_write_bio_PKCS7_stream
	PKCS12_create
	PKCS12_parse
	PKCS7_decrypt
	PKCS7_encrypt
	PKCS7_sign_add_signer
	PKCS7_sign
	PKCS7_verify
	rand
	RAND_add
	RAND_bytes
	RAND_cleanup
	RAND_egd
	RAND_load_file
	RAND_set_rand_method
	rc4
	ripemd
	rsa
	RSA_blinding_on
	RSA_check_key
	RSA_generate_key
	RSA_get_ex_new_index
	RSA_new
	RSA_padding_add_PKCS1_type_1
	RSA_print
	RSA_private_encrypt
	RSA_public_encrypt
	RSA_set_method
	RSA_sign_ASN1_OCTET_STRING
	RSA_sign
	RSA_size
	sha
	SMIME_read_CMS
	SMIME_read_PKCS7
	SMIME_write_CMS
	SMIME_write_PKCS7
	threads
	ui_compat
	ui
	x509
	X509_NAME_add_entry_by_txt
	X509_NAME_ENTRY_get_object
	X509_NAME_get_index_by_NID
	X509_NAME_print_ex
	X509_new
	X509_STORE_CTX_get_error
	X509_STORE_CTX_get_ex_new_index
	X509_STORE_CTX_new
	X509_STORE_CTX_set_verify_cb
	X509_STORE_set_verify_cb_func
	X509_verify_cert
	X509_VERIFY_PARAM_set_flags

	SSL Functions
	ssl
	d2i_SSL_SESSION
	SSL_accept
	SSL_alert_type_string
	SSL_CIPHER_get_name
	SSL_clear
	SSL_COMP_add_compression_method
	SSL_connect
	SSL_CTX_add_extra_chain_cert
	SSL_CTX_add_session
	SSL_CTX_ctrl
	SSL_CTX_flush_sessions
	SSL_CTX_free
	SSL_CTX_get_ex_new_index
	SSL_CTX_get_verify_mode
	SSL_CTX_load_verify_locations
	SSL_CTX_new
	SSL_CTX_sessions
	SSL_CTX_sess_number
	SSL_CTX_sess_set_cache_size
	SSL_CTX_sess_set_get_cb
	SSL_CTX_set_cert_store
	SSL_CTX_set_cert_verify_callback
	SSL_CTX_set_cipher_list
	SSL_CTX_set_client_CA_list
	SSL_CTX_set_client_cert_cb
	SSL_CTX_set_default_passwd_cb
	SSL_CTX_set_generate_session_id
	SSL_CTX_set_info_callback
	SSL_CTX_set_max_cert_list
	SSL_CTX_set_mode
	SSL_CTX_set_msg_callback
	SSL_CTX_set_options
	SSL_CTX_set_psk_client_callback
	SSL_CTX_set_quiet_shutdown
	SSL_CTX_set_read_ahead
	SSL_CTX_set_session_cache_mode
	SSL_CTX_set_session_id_context
	SSL_CTX_set_ssl_version
	SSL_CTX_set_timeout
	SSL_CTX_set_tlsext_status_cb
	SSL_CTX_set_tmp_dh_callback
	SSL_CTX_set_tmp_rsa_callback
	SSL_CTX_set_verify
	SSL_CTX_use_certificate
	SSL_CTX_use_psk_identity_hint
	SSL_do_handshake
	SSL_free
	SSL_get_ciphers
	SSL_get_client_CA_list
	SSL_get_current_cipher
	SSL_get_default_timeout
	SSL_get_error
	SSL_get_ex_data_X509_STORE_CTX_idx
	SSL_get_ex_new_index
	SSL_get_fd
	SSL_get_peer_cert_chain
	SSL_get_peer_certificate
	SSL_get_psk_identity
	SSL_get_rbio
	SSL_get_session
	SSL_get_SSL_CTX
	SSL_get_verify_result
	SSL_get_version
	SSL_library_init
	SSL_load_client_CA_file
	SSL_new
	SSL_pending
	SSL_read
	SSL_rstate_string
	SSL_SESSION_free
	SSL_SESSION_get_ex_new_index
	SSL_SESSION_get_time
	SSL_session_reused
	SSL_set_bio
	SSL_set_connect_state
	SSL_set_fd
	SSL_set_session
	SSL_set_shutdown
	SSL_set_verify_result
	SSL_shutdown
	SSL_state_string
	SSL_want
	SSL_write

	Part XLVIII. Mbed TLS
	Chapter 180. Mbed TLS overview
	Introduction

	Chapter 181. Configuration
	Configuration Overview
	Quick Start

	Chapter 182. eCos port
	Overview
	Entropy

	Chapter 183. Test Programs
	Test Programs

	Part XLIX. eCosPro-SecureShell
	eCos Dropbear Port
	Dropbear Ssh Daemon
	Dropbear Ssh Client
	Dropbear Scp Client

	Part L. FTP Client for eCos TCP/IP Stack
	Chapter 184. FTP Client API and Configuration
	FTP Client API
	Support API
	ftp_delete
	ftpclient_printf
	Basic FTP Client API
	ftp_get
	ftp_put
	ftp_get_var
	ftp_put_var
	Extended FTP Client API
	ftp_get_extended
	ftp_put_extended
	ftp_get_extended_var
	ftp_put_extended_var

	FTP Client Configuration

	Part LI. FTP Server Support
	Overview
	FTP Server API
	Test Programs

	Part LII. Embedded HTTP Server
	Chapter 185. Embedded HTTP Server
	Introduction
	Server Organization
	Server Configuration
	Support Functions and Macros
	HTTP Support
	General HTML Support
	Table Support
	Forms Support
	Predefined Handlers

	System Monitor

	Part LIII. SNMP
	Chapter 186. SNMP for eCos
	Version
	SNMP packages in the eCos source repository
	MIBs supported
	Changes to eCos sources
	Starting the SNMP Agent
	Configuring eCos
	Version usage (v1, v2 or v3)
	Traps
	snmpd.conf file

	Test cases
	SNMP clients and package use
	Unimplemented features
	MIB Compiler
	snmpd.conf

	Part LIV. mDNS Responder and DNS-SD
	Chapter 187. mDNS overview
	Introduction

	Chapter 188. API
	API
	cyg_mdns_init
	cyg_mdns_terminate
	cyg_mdns_enable
	cyg_mdns_disable
	cyg_mdns_service_register
	cyg_mdns_service_unregister
	cyg_mdns_sethostname
	cyg_mdns_hostname_callback_register
	cyg_mdns_gethostname
	cyg_mdns_setservicelabel
	cyg_mdns_getservicelabel
	cyg_mdns_servicelabel_callback_register
	cyg_mdns_hinfo_register
	cyg_mdns_discovery_callback_register
	cyg_mdns_discovery_callback_unregister
	cyg_mdns_discovery_callback_flags
	cyg_mdns_discovery_query

	Example Responder
	Example DNS-SD Queries

	Chapter 189. Support API
	Support API
	cyg_mdns_strlen
	cyg_mdns_name_uncompress
	cyg_mdns_strlen_vector
	cyg_mdns_strlen_uncompressed
	cyg_mdns_name
	cyg_mdns_build_txt_vector
	cyg_mdns_build_strtab_vector
	cyg_mdns_strcasecmp_strtab

	Chapter 190. Configuration
	Configuration Overview
	Quick Start
	Configuring the mDNS Responder
	Configuring the mDNS DNS-SD support

	Tuning
	Footprint
	Service Labels
	Statistics
	Real-World Example

	Chapter 191. Debug and Test
	Debugging
	Asserts
	Diagnostic Output

	Testing
	mdns_example
	dnssd_example
	mdns_testp
	mdns_farm
	Bonjour Conformance Test
	DNS-SD Example

	Part LV. NTP Client Support
	Overview
	NTP Client API
	Test Programs

	Part LVI. Simple Network Time Protocol Client
	Chapter 192. The SNTP Client
	Starting the SNTP client
	What it does
	Configuring the unicast list of NTP servers
	Warning: timestamp wrap around
	The SNTP test program

	Part LVII. WLAN
	Chapter 193. WLAN overview
	Introduction

	Chapter 194. Configuration
	Configuration Overview
	Configuration Options

	Chapter 195. WLAN API
	API
	wlan_diag_dump_ascii

	Chapter 196. Testing
	wlan_scan
	wlan_switch

	Part LVIII. Cypress WWD WLAN
	Chapter 197. Cypress WWD overview
	Introduction
	WICED-SDK Installation

	Chapter 198. Configuration
	Configuration Overview
	Chipset Firmware
	Configuration Options

	Chapter 199. Platform/Variant HAL

	Part LIX. Common Clock Services
	Chapter 200. Overview
	Introduction
	Functionality
	Concepts and structure

	Chapter 201. Dependencies
	HAL
	Kernel
	Wallclock (RTC)
	C library and POSIX layers

	Chapter 202. Configuration
	Chapter 203. API reference
	cyg_clock_get_systime()
	cyg_clock_get_systime_res
	cyg_clock_set_systime()
	cyg_clock_sync_wallclock()
	cyg_clock_adjust_systime()
	Time change notification
	cyg_clock_sysclock_handle()
	Time conversions

	Part LX. Object Loader
	Object Loader
	Extending the Object Loader

	Part LXI. CPU load measurements
	Chapter 204. CPU Load Measurements
	CPU Load API
	cyg_cpuload_calibrate
	cyg_cpuload_create
	cyg_cpuload_delete
	cyg_cpuload_get
	Implementation details
	SMP Support

	Part LXII. gprof Profiling Support
	Profiling

	Part LXIII. gcov Test Coverage Support
	Test Coverage

	Part LXIV. CRC Algorithms
	Chapter 205. CRC Functions
	CRC API
	cyg_posix_crc32
	cyg_crc32
	cyg_ether_crc32
	cyg_crc16

	Part LXV. CryptoAuthLib
	Chapter 206. CryptoAuthLib overview
	Introduction

	Chapter 207. Configuration
	Configuration Overview
	Quick Start

	Chapter 208. eCos port
	Overview

	Chapter 209. Test Programs
	Test Programs

	Part LXVI. LibTomCrypt Cryptography Library
	LibTomCrypt Cryptography Library

	Part LXVII. LibTomMath Multi-Precision Math Package
	LibTomMath Multi-Precision Math Package

	Part LXVIII. BootUp ROM loader
	Chapter 210. BootUp overview
	Introduction
	Configuration
	Platform Support
	Application Identity

	Building BootUp

	Applications using VALID_ALT
	Supported Platform HALs and targets

	Part LXIX. Bundle image support
	Chapter 211. Bundle overview
	Introduction
	Configuration

	Chapter 212. Bundle format
	Introduction
	Internal Structure

	Chapter 213. Bundle API
	API
	cyg_bundle_access_direct
	cyg_bundle_access_file
	cyg_bundle_access_flash
	cyg_bundle_access_init
	cyg_bundle_access_release
	cyg_bundle_verify
	cyg_bundle_item_find
	cyg_bundle_item_release
	cyg_bundle_enumerate
	cyg_bundle_info
	cyg_bundle_read

	Chapter 214. Host tool
	Introduction

	Chapter 215. Bundle tests
	bundle1

	Part LXX. RTT
	Chapter 216. RTT overview
	Introduction

	Chapter 217. Configuration
	Configuration Overview
	Quick Start
	Options

	Chapter 218. eCos port
	Overview

	Chapter 219. Test Programs
	Test Programs

	Part LXXI. eCos Support for Segger SystemView tracing
	Chapter 220. SystemView overview
	Introduction

	Chapter 221. SystemView Recording
	H/W debugger
	J-Link/J-Trace H/W debugger
	svproxy

	I/O Communication
	Performance and Analysis

	Overflows

	Chapter 222. Events
	SystemView Events
	Kernel Instrumentation
	Infra Trace

	Chapter 223. Configuration
	CYGBLD_SYSTEMVIEW_ENABLED
	CYGOPT_SYSTEMVIEW_RECORDER_HAL
	CYGOPT_SYSTEMVIEW_RECORDER
	CYGBLD_SYSTEMVIEW_RECORDER_UART

	Part LXXII. RedBoot User's Guide
	Chapter 224. Getting Started with RedBoot
	More information about RedBoot on the web
	Installing RedBoot
	User Interface
	RedBoot Editing Commands
	RedBoot Command History
	RedBoot Startup Mode
	RedBoot Resource Usage
	Flash Resources
	RAM Resources

	Configuring the RedBoot Environment
	Target Network Configuration
	Host Network Configuration
	BOOTP/DHCP server settings for most Linux distributions
	DNS server for most Linux distributions
	RedBoot network gateway

	Verification

	Chapter 225. RedBoot Commands and Examples
	Introduction
	Common Commands
	alias
	baudrate
	cache
	channel
	cksum
	disks
	dump
	help
	iopeek
	iopoke
	gunzip
	ip_address
	load
	mcmp
	mcopy
	mfill
	ping
	reset
	version

	Flash Image System (FIS)
	fis init
	fis list
	fis free
	fis create
	fis load
	fis delete
	fis lock
	fis unlock
	fis erase
	fis read
	fis write

	Filesystem Interface
	fs info
	fs mount
	fs umount
	fs cd
	fs mkdir
	fs rmdir
	fs rm
	fs mv
	fs cp
	fs cat
	fs ls
	fs write

	Persistent State Flash-based Configuration and Control
	Persistent State in a NAND-based environment
	Manipulating persistent state stored on NAND

	Executing Programs from RedBoot
	go
	exec

	NAND configuration commands
	nconfig list
	nconfig info
	nconfig types
	nconfig get
	nconfig put
	nconfig del
	nconfig dump

	NAND manipulation commands
	nand list
	nand info
	nand badblocks states
	nand badblocks summary
	nand badblocks list
	nand badblocks mark
	nand erase
	nand eraseblock

	Chapter 226. Rebuilding RedBoot
	Introduction
	Variables
	Building RedBoot using ecosconfig
	Rebuilding RedBoot from the eCos Configuration Tool

	Chapter 227. Updating RedBoot
	Introduction
	Load and start a RedBoot RAM instance
	Update the primary RedBoot flash image
	Reboot; run the new RedBoot image

	Chapter 228. Initial Installation
	Hardware Installation
	What to Expect

	Part LXXIII. Robust Boot Loader
	Robust Boot Loader
	RedBoot Commands
	Application Library
	Application Library Extensions

	Part LXXIV. RedBoot Extra Initialization
	RedBoot Extra Initialization

	Part LXXV. Unity
	Chapter 229. Unity overview
	Introduction

	Chapter 230. Configuration
	Configuration Overview
	Quick Start

	Chapter 231. eCos port
	Overview

	Chapter 232. Test Programs
	Test Programs

	Part LXXVI. Synthetic Target Architecture
	Chapter 233. eCos Synthetic Target
	Overview
	Installation
	Running a Synthetic Target Application
	The I/O Auxiliary's User Interface
	The Console Device
	System Calls
	Writing New Devices - target
	Writing New Devices - host
	Porting

	Part LXXVII. ARM7/ARM9/XScale/Cortex-A Architecture
	Chapter 234. ARM Architectural Support
	ARM Architectural HAL
	Configuration
	The HAL Port

	Chapter 235. Atmel AT91 Processor Variant Support
	Overview of Atmel AT91 Processor Variant
	Hardware definitions
	Interrupt Controller
	Timers
	Serial UARTs

	Chapter 236. Atmel AT91SAM7 Processor Variant Support
	eCos Support for the Atmel AT91SAM7 Processor Variant
	Hardware definitions
	Interrupt Vector Definitions

	Chapter 237. Atmel AT91SAM7A2-EK Board Support
	eCos Support for the Atmel AT91SAM7A2-EK
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 238. Atmel AT91SAM7A3-EK Board Support
	eCos Support for the Atmel AT91SAM7A3-EK
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 239. Atmel AT91SAM7S-EK Board Support
	eCos Support for the Atmel AT91SAM7S-EK
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 240. Atmel AT91SAM7X-EK Board Support
	eCos Support for the Atmel AT91SAM7X-EK
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 241. NXP LPC2xxx variant HAL
	Overview
	On-chip subsystems and peripherals
	The HAL Port

	Chapter 242. Ashling EVBA7 Eval Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 243. Embedded Artists LPC2468 OEM Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 244. Embedded Artists QuickStart Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 245. IAR KickStart Card Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 246. Keil MCB2387 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 247. Phytec phyCORE LPC2294 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 248. ST STR7XX variant HAL
	Overview
	On-chip Subsystems and Peripherals
	The HAL Port
	Power Management

	Chapter 249. ST STR710-EVAL Board HAL
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 250. Atmel AT91RM9200 Processor Support
	eCos Support for the Atmel AT91RM9200 Processor
	Hardware definitions
	Interrupt controller
	Timer counters
	Serial UARTs
	Multimedia Card Interface (MCI) driver
	Two-Wire Interface (TWI) driver
	Power saving support

	Chapter 251. Atmel AT91RM9200 Development Kit/Evaluation Kit Board Support
	eCos Support for the Atmel AT91RM9200 Development Kit/Evaluation Kit
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 252. Cogent CSB337 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 253. SSV DNP/9200 with DNP/EVA9 Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 254. KwikByte KB920x Board Family Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 255. Motorola MX1ADS/A Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 256. Texas Instruments OMAP L1xx Processor Support
	Overview
	Hardware definitions
	Interrupt Controller
	Timers
	Serial UARTs
	Multimedia Card Interface (MMC/SD) Driver
	I2C Two Wire Interface
	Pin Configuration and GPIO Support
	Peripheral Power Control
	DMA Support

	Chapter 257. Atmel SAM9 Processor Support
	Overview
	Hardware definitions
	Interrupt controller
	Timers
	Serial UARTs
	Two-Wire Interface (TWI) driver
	Power saving support

	Chapter 258. Atmel AT91SAM9260 Evaluation Kit Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 259. Atmel AT91SAM9261 Evaluation Kit Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 260. Atmel AT91SAM9263 Evaluation Kit Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 261. Atmel AT91SAM9G20 Evaluation Kit Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 262. Atmel AT91SAM9G45-EKES Evaluation Kit Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 263. ARM Versatile 926EJ-S Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 264. Spectrum Digital OMAP-L137 Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 265. Logic Zoom Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 266. Freescale i.MXxx Processor Support
	Overview
	Hardware definitions
	Interrupt Controller
	Timers
	Serial UARTs
	Pin Configuration and GPIO Support
	Peripheral Clock Control

	Chapter 267. Freescale MCIMX25WPDK Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 268. Intel IQ80321 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 269. Intel XScale IXP4xx Network Processor Support
	Overview
	IXP4xx hardware definitions
	IXP4xx interrupt controller
	General-purpose timers
	Watchdog
	Serial UARTs
	PCI bus controller
	PCI bus IDE controllers
	CompactFlash cards in TrueIDE mode
	GPIO

	Chapter 270. Intel XScale IXDP425 Network Processor Evaluation Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 271. Altera Hard Processor System Support
	Overview
	Hardware definitions
	Interrupt Controller
	Timers
	Serial UARTs
	Multimedia Card Interface (MMC/SD) Driver
	I2C Interface
	Pin Configuration and GPIO Support

	Chapter 272. Broadcom IProc Support
	Overview
	Hardware definitions
	Interrupt Controller
	Timers
	Serial UARTs

	Chapter 273. Broadcom BCM283X Processor Support
	Overview
	Hardware Definitions
	Interrupt Controller
	Timers
	Serial UARTs
	I²C Interface
	GPIO Support
	DMA Support
	GPU Communication Support
	Frequency Control

	Chapter 274. Broadcom BCM56150 Reference Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 275. Altera Cyclone V SX Board Support
	Overview
	Setup
	Configuration
	SMP Development and Debugging Support
	The HAL Port

	Chapter 276. Dream Chip A10 Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	SMP Development and Debugging Support
	The HAL Port

	Chapter 277. Atmel ATSAMA5D3 Variant HAL
	Atmel SAMA5D3 Variant HAL
	Hardware definitions
	Bootstrap
	On-chip Subsystems and Peripherals
	GPIO Support on SAMA5D3 processors
	Peripheral clock control
	DMA Support
	Configuration
	Test Programs

	Chapter 278. Atmel SAMA5D3x-MB (MotherBoard) Platform HAL
	SAMA5D3x-MB Platform HAL
	Setup
	Configuration
	The HAL Port
	BootUp Integration

	Chapter 279. Atmel SAMA5D3x-CM (CPU Module) Platform HAL
	SAMA5D3x-CM Platform HAL
	The HAL Port

	Chapter 280. Atmel SAMA5D3 Xplained Platform HAL
	SAMA5D3 Xplained Platform HAL
	Setup
	Configuration
	The HAL Port
	BootUp Integration

	Chapter 281. Raspberry Pi Board Support
	Overview
	Setup
	JTAG Debugger Support
	Configuration
	SMP Development and Debugging Support
	The HAL Port
	RedBoot Extensions

	Chapter 282. Virtual Machine Support
	Overview
	Configuration
	The HAL Port

	Chapter 283. QEMU Virtual Machine Support
	Overview
	Setup
	Configuration
	SMP Development and Debugging Support
	The HAL Port

	Chapter 284. Xvisor Virtual Machine Support
	Overview
	Setup
	Configuration
	SMP Development and Debugging Support
	The HAL Port

	Part LXXVIII. Cortex-M Architecture
	Chapter 285. Cortex-M Architectural Support
	Cortex-M Architectural HAL
	Configuration
	Floating Point support
	The HAL Port
	Cortex-M Hardware Debug

	Chapter 286. Kinetis Variant HAL
	Kinetis Variant HAL
	On-chip Subsystems and Peripherals

	Chapter 287. Freescale TWR-K60N512 and TWR-K60D100M Platform HAL
	Freescale TWR-K60N512/TWR-K60D100M Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port

	Chapter 288. Freescale TWR-K70F120M Platform HAL
	Freescale TWR-K70F120M Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port

	Chapter 289. LM3S Variant HAL
	LM3S Variant HAL
	On-chip Subsystems and Peripherals
	GPIO Support

	Chapter 290. LM3S8962-EVAL Platform HAL
	LM3S8962 EVAL Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 291. LPC1XXX Variant HAL
	LPC1XXX Variant HAL
	On-chip Subsystems and Peripherals
	GPIO Support
	Peripheral Clock and Power Control

	Chapter 292. MCB1700 Platform HAL
	MCB1700 Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 293. SAM3/4/x70 Variant HAL
	SAM3/4/X70 Variant HAL
	On-chip Subsystems and Peripherals
	GPIO Support on SAM Processors
	Peripheral clock control

	Chapter 294. Atmel SAM4E-EK Platform HAL
	SAM4E-EK Platform HAL
	Setup
	Configuration
	The HAL Port

	Chapter 295. Atmel SAMX70-EK Platform HAL
	SAMX70-EK Platform HAL
	Setup
	Configuration
	The HAL Port

	Chapter 296. STM32 Variant HAL
	STM32 Variant HAL
	On-chip Subsystems and Peripherals
	GPIO Support on STM32F processors
	Peripheral clock control
	DMA Support
	Test Programs

	Chapter 297. STM3210C-EVAL Platform HAL
	STM3210C EVAL Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port
	Test Programs

	Chapter 298. STM3210E-EVAL Platform HAL
	STM3210E EVAL Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port
	Test Programs

	Chapter 299. STM32X0G-EVAL Platform HAL
	STM32X0G EVAL Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port
	Test Programs

	Chapter 300. STM32F429I-DISCO Platform HAL
	STM32F429I-DISCO Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs

	Chapter 301. STM32F746G-DISCO Platform HAL
	STM32F746G-DISCO Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs

	Chapter 302. STM32H735-DISCO Platform HAL
	STM32H735-DISCO Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs

	Chapter 303. STM32H7 Nucleo-144 Platform HAL
	STM32H7 Nucleo-144 Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs

	Chapter 304. STM32F4DISCOVERY Platform HAL
	STM32F4DISCOVERY Platform HAL
	Setup
	Configuration
	JTAG/SWD debugging support
	The HAL Port

	Chapter 305. STM324X9I-EVAL Platform HAL
	STM324X9I-EVAL Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs
	BootUp Integration

	Chapter 306. STM32F7XX-EVAL Platform HAL
	STM32F7XX-EVAL Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs
	BootUp Integration

	Chapter 307. STM32L476-DISCO Platform HAL
	STM32L476-DISCO Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs
	BootUp Integration

	Chapter 308. BCM943362WCD4 Platform HAL
	BCM943362WCD4 Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port
	Test Programs

	Chapter 309. BCM943364WCD1 Platform HAL
	BCM943364WCD1 Platform HAL
	Setup
	Configuration
	JTAG debugging support
	The HAL Port
	Test Programs

	Chapter 310. STM32L4R9-DISCO Platform HAL
	STM32L4R9-DISCO Platform HAL
	Setup
	Configuration
	Hardware debugging support
	The HAL Port
	Test Programs
	BootUp Integration

	Chapter 311. STM32L4R9-EVAL Platform HAL
	Chapter 312. NXP i.MX RT10XX Variant HAL
	NXP i.MX RT10XX Variant HAL
	On-chip Subsystems and Peripherals
	Hardware Configuration Support on IMX Processors
	OCOTP Support on IMX Processors
	BootUp

	Chapter 313. NXP MIMXRT1xxx-EVK Platform HAL
	NXP MIMXRT1xxx-EVK Platform HAL
	Setup
	Configuration
	The HAL Port

	Part LXXIX. H8300 Architecture
	Chapter 314. H8/300 Architectural Support
	Overview
	Configuration
	The HAL Port

	Part LXXX. i386 Architecture
	Chapter 315. I386 PC Support
	eCos Support for the i386 PC
	Setup
	Configuration
	The HAL Port

	Chapter 316. STPC Atlas Support
	STPC Atlas Processor

	Part LXXXI. M68000 / ColdFire Architecture
	Chapter 317. M68000 / ColdFire Architectural Support
	Overview
	Configuration
	The HAL Port

	Chapter 318. Freescale MCFxxxx Variant Support
	MCFxxxx ColdFire Processors

	Chapter 319. Freescale MCF5272 Processor Support
	The MCF5272 ColdFire Processor

	Chapter 320. Freescale M5272C3 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 321. Freescale MCF5275 Processor Support
	The MCF5275 ColdFire Processor Family

	Chapter 322. Freescale MCF5282 Processor Support
	The MCF5282 ColdFire Processor

	Chapter 323. Freescale M5282EVB Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 324. Freescale M5282LITE Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 325. SSV DNP/5280 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 326. Motorola MCF521x Processor Support
	The MCF521x ColdFire Processor Family

	Chapter 327. Motorola M5213EVB Board Support
	M5213EVB Board

	Chapter 328. Freescale M5208EVBe Platform HAL
	Overview
	Setup
	Configuration
	Test Programs

	Chapter 329. Motorola MCF532x Processor Support
	The MCF532x ColdFire Processor Family

	Chapter 330. senTec Cobra5329 Board Support
	Overview
	Setup
	Configuration

	Chapter 331. Motorola MCF520x Processor Support
	The MCF520x ColdFire Processor Family

	Part LXXXII. MIPS Architecture
	Chapter 332. MIPS Architectural HAL
	MIPS Architectural HAL
	Configuration
	The HAL Port

	Chapter 333. MIPS32 Variant HAL
	MIPS32 Variant HAL
	Configuration
	The MIPS32 HAL Port

	Chapter 334. MIPS SEAD3 Board Support
	Overview
	Setup
	Configuration
	The HAL Port
	JTAG Debugging

	Chapter 335. MIPS Malta Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 336. NXP PNX83xx Common Support
	PNX83xx Processors

	Chapter 337. NXP PNX8310 Processor Support
	The NXP PNX8310 Processor

	Chapter 338. NXP STB200 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 339. NXP PNX8330 Processor Support
	The NXP PNX8330 Processor

	Chapter 340. NXP STB220 Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Part LXXXIII. NIOS2 Architecture
	Chapter 341. Nios II Architectural Support
	Nios II Architectural HAL
	Generic Installation Instructions
	Configuration
	The HAL Port

	Chapter 342. Nios II Stratix II/2s60_RoHS and Cyclone II/2c35 Platform HAL
	Overview

	Chapter 343. Nios II Cyclone II/2c35 Standard H/W Design HAL
	Cyclone II Standard Hardware Design HAL

	Chapter 344. Nios II Cyclone II/2c35 TSEplus H/W Configuration HAL
	Cyclone II TSEplus Hardware Design HAL

	Chapter 345. Nios II Stratix II/2s60_RoHS Standard H/W Design HAL
	Stratix II Standard Hardware Design HAL

	Chapter 346. Nios II Stratix II/2s60_RoHS TSEplus H/W Design HAL
	Stratix II TSEplus Hardware Design HAL

	Chapter 347. Board-level Support for the Nios II Embedded Evaluation Kit, Cyclone III edition
	Overview

	Chapter 348. Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector H/W Design HAL
	Nios II Embedded Evaluation Kit, Cyclone III Edition, appselector Hardware Design HAL

	Part LXXXIV. PowerPC Architecture
	Chapter 349. A&M Adder Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 350. ADS512101 Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 351. Freescale MPC5554DEMO Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port

	Chapter 352. MPC8309KIT Board Support
	Overview
	Setup
	Configuration
	JTAG debugging support
	The HAL Port
	GPIO Support
	Test Programs

	Chapter 353. MPC512X Variant Support
	MPC512X Variant HAL
	On-chip Subsystems and Peripherals
	SPI Slave support

	Part LXXXV. SH Architecture
	Chapter 354. Renesas SDK7780 Development Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 355. SuperH SH4-202 MicroDev Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Chapter 356. STMicroelectronics ST40 Evaluation Board Support
	Overview
	Setup
	Configuration
	The HAL Port

	Part LXXXVI. TILE-Gx Architecture
	Chapter 357. TILE-Gx Architectural Support
	Overview
	Hardware Setup
	eCos Configuration Options
	The HAL Port

	Chapter 358. TILE-Gx TMC Library
	Overview

	Real-time characterization of selected targets

